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A typical scenario for training military personnel to fly specialized aircraft is 

to have aviators fly mock missions in a simulator with an instructor nearby. When 

evaluating the performance of these aviators, flight instructors rely on observation 

and after-the-fact assessment. Scan patterns are vital aspects of context for a flight 

instructor, and are fundamental to basic flight. For example, a student might scan 

too rapidly, omit, or fixate - these are common errors when scanning the horizon 

and cross-checking instruments (United States Air Force [USAF], 2019). 

Anecdotally, flight instructors often cite that head and eye movements are pivotal 

for judging student intent and situational awareness. Virtual reality-based training 

environments with embedded eye-tracking offer the possibility to automate and 

provide more context to some aspects of instructor observations and potentially 

expedite the learning process. In this work, we evaluate how using eye-tracking 

(with machine learning) can objectively assess aviator scan patterns during 

training, which may reduce instructor overall workload. Therefore, two key 

research questions are: 

1. Do flight instructors assess the quality of scan patterns of an aviator 

similarly? 

2. If so, can machine learning techniques be used to automate the instructor 

evaluation of scan pattern quality for aviators in various phases of flight? 

We hypothesize that both research questions can be answered in the affirmative. A 

gaze or scan pattern is a technique in which an aviator observes all requisite 

information inside and outside the aircraft in-order appropriately and safely fly 

that aircraft. The scan begins and ends in the same position, observing all 

applicable items - “systematically, thoroughly...complete, and continuous” 

(United States Navy [USN], 2019).  

We propose a new method for gaze classification by transforming gaze or 

scan patterns into heatmaps and classifying them with deep convolutional neural 

networks (Krizhevsky, Sutskever, & Hinton, 2012). The patterns are classified into 

levels of “quality” that would typically require review from an instructor. Data are 

collected in a mixed-reality training environment using a physical flight 

simulator, a virtual reality environment, and a gaze-tracking sensor for monitoring 

eye movements within the virtual space. From these devices a heatmap is 

synthesized from the pattern created by the gaze of an aviator flying during a 

specified window of time. We detail the contributions of our work as follows: 

• We designed and carried out a human subjects experiment for aviators in a 

variety of flight scenarios. We recruited three instructors to review the gaze 

patterns from these scenarios, and we analyzed inter-rater reliability; We 

conclude there is strong agreement between these expert raters on what gaze 

quality is for a given maneuver. 

• We propose methods for gaze data augmentation specific to pilot gaze 

patterns that increase robustness of trained machine learning models. 
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• We investigate two competing, convolutional neural network architectures: 

a task agnostic model and a multi-task model. We evaluate the architectures 

with K-fold cross-validation, achieving greater than 93.0% average test 

accuracy compared to instructor observation. 

The location of gaze within a reference frame, i.e. what the aviator is looking at as 

mapped to that reference frame, is deceptively complex when measured from an 

unconstrained head mounted system. The calculation is based upon: (1) the 

alignment of head and eye positions with respect to the subject’s field of view 

(FOV), (2) the object observed, (3) the location on the object observed, (4) the 

reference frame into which the point-of-gaze is mapped, (5) the angular error and 

precision of that translation, and (6) the calibration error -therefore the mapped 

position within that reference frame can vary dramatically. Thus, the problem is 

not as simple as pinpointing the objects within the reference frame and defining a 

bounding box. Moreover, the regions of interest for a pilot gaze pattern will vary 

depending on the maneuver in question, and the number of regions within that 

reference frame can increase based on the complexity of the maneuver. A 

classifier that uses gaze must both scale with increased regions of interest and 

handle perturbations in gaze position as projected onto the reference frame. This is 

not just for fixed head position (among aviators), but in dynamic support of the 

yaw, pitch, and roll of head and eye movements of a given aviator - especially as it 

pertains to the movement of the subject’s FOV about the heads-up display’s 

(HUD) eyebox (Spitzer, Ferrell, & Ferrell, 2017). An obvious fixed-position 

example is that aviators have different abdomen heights and seat height 

preferences, which can lead to some aviators looking slightly downward or slightly 

upward towards the instrument panel and displays (USN, 2015). One machine 

learning model that can learn features that are robust to translations is a 

convolutional neural network (CNN) (LeCun, Bengio, et al., 1995). CNNs are 

capable of handling fixed and dynamic perturbations throughout a reference 

frame, and do not require individual labeling of regions of interest (Chollet, 

2017a). Given these advantages of CNNs, we hypothesize these models are 

superior in classifying gaze. 

 

LITERATURE REVIEW 

Our work builds from a number of research communities. As such, we divide 

our discussion into five relatively disjoint areas: (1) sight picture, (2) situational 

awareness, (3) heatmaps in eye-tracking, (4) physiology and eye-tracking in 

aviation, and (5) other works in gaze classification. 

Sight Picture 

When training pilots to perform new maneuvers, instructors will often 

refer to the concept of a “sight picture” and assess pilots for their ability to recall 

and use different sight pictures. In the case of firearms, sight picture can be 
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referred to as the perspective, as viewed by the shooter, created by “the alignment 

of the sights of a firearm with the target” (Merriam-Webster, 2020). The concept 

of sight picture in aviation originated with fixed gunnery weapons (Miller & 

Gleason, 1947). When such a firearm is affixed to an aircraft the whole aircraft 

must be maneuvered in order to properly aim. Thus, an early concept of sight 

picture in aviation can be thought of as the perspective of the pilot—what he/she 

sees through a reflector plate of the cockpit—given the aircraft serves as the 

firearm. This requires perceptual abilities to evaluate aim and fly the aircraft 

(Miller & Gleason, 1947). Students would learn a series of sight pictures for a 

discrete number of angles of attack (AoA), which is further compounded by the 

realities of a moving target in air-to-air situations. Strong “perceptual memory” is 

required for both understanding what the correct sight picture is and correcting to 

it, given the current sight picture (Miller & Gleason, 1947). Applications and 

technology have evolved, but the concept of aligning an aircraft with the 

environment for the purpose of accomplishing a specific maneuver based on an 

understood mental picture of what is correct—from the perspective of the pilot in 

the seat of the cockpit—has become fundamental to basic flight (Federal Aviation 

Administration & Soucie, 2017; Kershner, 2001; USN, 2011, 2015, 2019). Thus, 

gaze patterns may have a strong relationship to the internal sight picture of an 

aviator, and we hypothesize that instructors can evaluate the quality of gaze 

patterns based on the expected patterns for a given flight maneuver. 

Situational Awareness 

In the context of aviation, situation or situational awareness (SA) is an 

established cognitive construct representing a state of knowledge about a dynamic 

environment, which is linked probabilistically with pilot performance (Endsley & 

Garland, 2000a). In the aviation community, the idea of SA is often associated 

with the pilot’s ability to answer specific questions about their environment and 

maneuver. In aviation, maintaining accurate SA is crucial to ensure mission 

success, and the lack of SA is often associated with pilot error (Endsley & 

Robertson, 2000; Fuller, Johnston, & McDonald, 1995). As a result, the need to 

accurately measure SA is important to improve both training design and overall 

training outcomes (Endsley & Garland, 2000b). Much effort has been conducted 

towards the understanding of eye movements and gaze patterns, which “shed 

considerable light on [aviators’] real-time behavior” in aviation and aerospace as a 

whole (Valerie et al., 2005). For example, using nine gaze representations, (Newn, 

Velloso, Allison, Abdelrahman, & Vetere, 2017) showed that humans have a strong 

capacity to accurately infer intent. Our research could potentially provide a form of 

context or situation awareness to a broader evaluation system. 

Flight instructors seek to comprehend the intent and awareness of their 

students - context that is currently derived from in-flight observation and post-

flight examination. Because of this, situation-aware avionics - capable of assisting 
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either the flight instructor or the aviator in understanding the human-machine state 

(Calhoun, 2016) in real-time - is highly sought after. Key motivations include 

accelerating aircrew training, improving aircrew performance, and decreasing pilot 

workload. Our work expands upon these ideas by comparing gaze on an equal 

footing, using subject matter expert opinion (i.e., flight instructors) to label gaze 

heatmaps. 

Heatmaps in Eye-Tracking 

Gaze can be defined as the direction of the visual axis within a reference 

frame. It is  a summation of eye position relative to the head, and the head 

position relative to the same reference frame (Guitton & Volle, 1987). The 

visualization of gaze is a key research area in gaze tracking. A predominant gaze 

visualization is the heatmap. Heatmaps can provide clear depictions of aggregate 

gaze by combining gaze fixations while sacrificing the depiction of the order in 

which the fixations occurred (Duchowski, Price, Meyer, & Orero, 2012). Privitera 

(2006) found that different subjects are mostly consistent on what regions they 

observed, but are less consistent in the order they view them. Therefore, order 

is not necessarily as important as the locations observed (Duchowski et al., 

2012). Spakov provides an in-depth examination on the methods for visualizing 

fixations, including heatmaps (Spakov, 2008; Spakov & Miniotas, 2007). 

Moreover, Stellmach, Nacke, and Dachselt (2010) examined gaze fixation in 

three-dimensional (3D) virtual environments surveying 3D scan paths, 3D 

heatmaps; and they provide a prototype toolkit for aiding future eye-tracking 

studies.  

Given heatmaps are accumulated fixations, Stellmach et al. found that 

they are useful for indicating visual attention over a period of time because 

visualizing data in three dimensions enables a representation over a longer period of 

time. We chose to use two-dimensional heatmaps within three fixed reference 

frames around aviators because: (1) experienced aviators have highly developed 

perceptual memory and judgment (Miller & Gleason, 1947), (2) heatmaps provide a 

clear depiction of aggregate gaze (Duchowski et al., 2012), (3) subjects are 

consistent on regions they observed (Privitera, 2006), (4) gaze order is not 

necessarily as important (Duchowski et al., 2012), (5) heatmaps are useful for 

indicating visual attention over a period of time (Stellmach et al., 2010), and 

(6) humans have a strong capacity to infer intent through gaze representation 

(Newn et al., 2017).  

In our experiments, we segmented flights into smaller phases, where 

similar gaze region abstractions can be expected. The three reference frames 

chosen provide full cockpit coverage. As an example, Figure 1 is a high-

resolution heatmap aggregated over a full normal landing maneuver (the clouds 

are part of a background image only, and do not reflect what the pilot actually saw 

during the landing). The three reference frames are shown in the Figure and 
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overlaid with heatmaps denoting where the pilot scanned, from the perspective of 

each frame. From the heatmaps, it is apparent that the pilot looked directly at the 

HUD most of the time, while periodically scanning the horizon. 

 

 

 

 

 

 

 

 

 

Figure 1. Aggregate high-resolution heatmap of a normal landing. 

Physiology and Eye-Tracking in Aviation 

Our work is not the first to look at eye tracking with aviation. However, 

previous works do not attempt to classify the quality of a gaze pattern. Instead, 

their focus is often on capturing the attention or cognitive workload of the pilot. 

Schnell, Keller, and Poolman (2008) sought to assess workload with a tool that 

works to unify flight data with physiological measures into a single framework in 

flight and in real-time. Weibel, Fouse, Emmenegger, Kimmich, and Hutchins 

(2012) looked at digital ethnography to understand visual attention of aircrew 

throughout varying phases of flight using a mobile eye-tracking system — they 

reported on techniques and methods to digest and visualize the dynamics of time- 

synchronized, multimodal, visual attention data. Specifically, they looked at 

visualizing tracking data, analyzing areas-of-interest, with infrared markers and the 

errors associated, visualizing the temporal dynamics, such as overlaying gaze on 

video frames, and gaze-to- object recognition. Weibel et al. sought to discern when 

an aviator’s gaze fixed on an object of interest without IR markers. They did this 

with OpenCL by matching objects from one frame to all frames. Vrzakova and 

Bednarik (2012) sought to understand how mobile eye-tracking could work in a 

real cockpit. Recently, Lounis, Peysakhovich, and Causse (2018) looked to 

enhance aircrew-aircraft interaction. They monitored the attentional behavior of 

aircrew using a gaze tracker and developed a cockpit monitoring database that 

serves as an assessment tool. They expanded on their work by developing a flight 

eye-tracking assistant built on their database that uses thresholding of dwell times 

for areas of interest with audible alarms (Lounis, Peysakhovich, & Causse, 2020). 

While these previous works investigated physiology in the context of aviators, none 

explicitly address quality of gaze as observed by a subject matter expert. 

Other Works in Gaze Classification 

A number of works have investigated the classification of intent and 

attention from gaze data. While looking at a way to discern intent, Goldberg and 
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Schryver (1993) developed heuristics from multiple discriminant analysis to 

enable gaze-controlled UI zoom. Frutos-Pascual and Garcia-Zapirain (2015) look 

at attention performance with saccadic and fixation gaze data over 32 children. 

They achieved 88.0% accuracy with a random forest classifier. Abdelrahman et al. 

(2019) developed a way of classifying attention types through the use of thermal 

imaging and eye tracking. They developed several classifiers capable of 

classifying four types of attention (Sohlberg & Mateer, 1987) with an average 

AUC of 80.3%. Similar research to the work Weibel et al. conducted, Barz and 

Sonntag (2016) examined using gaze-to-object recognition with neural networks to 

classify objects and ensure the user draws attention to that object. They use a 

dispersion algorithm for fixation (Barz, Daiber, & Bulling, 2016) and thresholds 

for attention. Interestingly, a significant step towards gaze classification was 

conducted by Li, Mettler, and Andersh (2015). They investigated classifying gaze 

itself by breaking it into three fundamental patterns: (1) sac- cades (Carpenter, 

1977; Guitton & Volle, 1987), (2) smooth pursuits (Robinson, 1965), and fixations 

(Robinson, 1964). They studied consumer helicopter drone pilots, while per- 

forming guidance and control tasks, as well as surgeons who conducted a peg 

transfer task (Sroka et al., 2010). They devised a scheme for converting gaze to a 

fixed reference frame for classification. They employed a spherical head centric 

coordinate frame, from a study of the receptive field of flies (Huston & Krapp, 

2008), correlated with six-cameras. Using both empirical thresholding and hidden 

Markov models (HMM) to classify gaze data, they were able to accurately classify 

the three fundamental patterns with the use of gaze velocity and distance. 

Our work is similar to these in that we classify gaze patterns based on 

discrete criteria. However, we use a more complex classification task — equating 

gaze patterns to human observation. Because the complexity of the classification 

task is increased, we also investigate multiple reference frames and a convolutional 

neural network architecture with increased predictive power. The advantage of this 

methodology is its ability to handle both perturbations in gaze position and scale 

with more complex gaze regions as the task and gaze patterns increase in 

complexity—all without the use of bounding boxes. 
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Figure 2. BBXR mixed-reality simulator (Hanson, 2018). 

 

DATA COLLECTION 

The data collection effort consisted of a repeated measures experiment 

(each maneuver was flown twice), including three flight maneuvers. The 

experiments were approved by a university IRB, application H18-105-LARE. We 

recruited 40 test subjects consisting of twenty-one pilots, nine operators, and ten 

novices. The pilot group involved individuals with military and commercial 

experience, all of whom had military flying experience in heavy, rotary, and/or 

fighter-type aircraft. Operators included naval flight officers (NFOs), combat 

systems officers (CSOs), remotely piloted aircraft (RPA) sensor operators, and 

avionics technicians; all with some flight or simulation experience. Novices 

consisted of those who had no aircraft experience at all. Gaze data and screen 

capture video were recorded for each maneuver. The three maneuvers flown during 

this experiment are listed as follows: 

• Cruise Maneuver: the subject was instructed to fly straight and level 

maintaining 12,500 ft and 350 knots-indicated airspeed (KIAS) with 

tolerances of ±100 ft and ±15 KIAS for five minutes. 

• Normal Takeoff: the subject was positioned on the centerline of the runway 

13R at (simulated) Falon Naval Air Station (NAS) KNFL. The subject was 

asked to smoothly apply max power, rotate at 140 KIAS, and pitch between 

seven- and ten-degrees nosehigh – climbing 3,000 ft and leveling off. 

Tolerances included: ±1◦, ±10 ft centerline, and ±2 deg runway heading. 

• Normal Landing: the subject was positioned on final to runway 13R at 

Falon NAS. At decision height, 500 ft above ground level (AGL), the 

subject initiated a full- stop landing. The subject was instructed to 

verbalize his or her desired touchdown point upon nearing the runway. 

Tolerances included the nose-wheel within 10 feet of centerline. 

Three other maneuvers were also flown. These maneuvers were collected during 
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the same experiment, but for other associated research. Using the concept of sight 

picture, they were useful in augmenting the original dataset, especially for less 

accurate gaze patterns (discussed further in a later section). The other three 

maneuvers flown are listed as follows: 

• Boundary Avoidance Tracking — Longitudinal Axis: the subject was 

positioned be- hind a target aircraft that moved periodically, at random, in 

the vertical axis. As the target aircraft moved, the subject was asked to 

keep their aircraft’s crosshair inside of a defined boundary about the 

target’s longitudinal cross-section. With maneuver duration and subject 

piloting ability, the task difficulty was increased by reducing the boundary 

spacing. 

• Boundary Avoidance Tracking — Lateral Axis: the subject joined on a 

target aircraft’s right-wing. The target moved periodically and at random 

intervals in the vertical axis. As the target aircraft moved, the subject was 

asked to keep their aircraft’s wing or canopy handle inside of a defined 

boundary about the target’s lateral cross-section. With the progression of 

the maneuver, the task difficulty was increased by reducing the boundary 

spacing. 

• Air Intercept: the subject begin flying straight and level. The subject 

obtained a radar lock on bandit aircraft. They offset his/her aircraft 30◦ left 

or right and descend 10◦ nose low to the bandit’s altitude. At level-off, the 

pilot accelerated to > 400 KIAS, and executed an intercept/escort profile. 

Subject closed for visual identification (VID) and verification of the 

aircraft markings (fin flash). 

 

Boundary avoidance tracking (BAT) is a flight test technique used to 

understand the “pilot-in-the-loop handling qualities” (Gray, 2008). For both 

boundary avoidance tracking tasks, when the subject overshot a boundary, they 

were asked to rapidly recover and place the aircraft back into position and continue 

the maneuver. The BAT tasks were used to increase the required pilot workload to 

complete the maneuver. To this end, the simulator operator had the ability to 

manipulate the pitch control laws to increase/decrease the overall response of the 

aircraft. The operator altered the control laws in such a manner as to ensure the 

subject was stabilized before stepping to the next adjustment in a buildup manner. 

The subject flew each BAT maneuver for a minimum of five minutes. 

Prior to data-collection each subject was given five minutes to familiarize 

themselves with the aircraft, during which any questions were answered. For 

Novices, they were shown how to use the stick, throttle, rudder pedals, and the 

heads-up-display (HUD) symbology was explained. During each maneuver the 

subject was asked to perform the maneuver as he or she normally would. Novices 
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were asked to perform the best they could, and no guidance was provided on proper 

gaze or scanning patterns. Given the air intercept task is a more complicated 

maneuver each subject was given the opportunity to practice the maneuver once; 

this demonstration data was also captured. 

Equipment 

The test simulator utilized was a prototype Blue Boxer Extended Reality 

Simulator (BBXR) (Hanson, 2018), provided by L3Harris Technologies. The Blue 

Boxer is a portable, training, mixed reality system that simulates the flight 

characteristics of aircraft. It utilizes virtual reality and high-precision hand 

tracking. Designed to be compact and portable, the system amalgamates physical 

and virtual mission equipment to simulate the flight environment. A key 

component of this system is the HTC VIVE Pro Eye Virtual Reality (VR) Headset 

for eye-tracking measurements. The HTC VIVE contains an integrated Tobii eye 

tracker, which is robust to head movements and can be worn with eye glasses. The 

Tobii eye tracker is similar in specification to the Tobii Glasses Pro line, with 90 

Hz sampling rate, single point calibration, absolute pupil measurement, and 

slippage compensation if the headset moves unexpectedly. Gaze patterns over the 

course of each maneuver were collected. These are heatmap patterns that are 

traced from the visual eye path—containing eye fixations. The heatmap of gaze is 

calculated with a fixed origin relative to the virtual cockpit. As such, head position 

and orientation, relative to the cockpit, were collected. 

Data Format 

The BBXR provided gaze data at 90Hz, and this included the left, right, 

and combined x-position and y-position on a given field of view (FOV) which is 

projected onto a two- dimensional square reference frame also known as a 

screenspace. Three screenspaces were established with 60◦ FOV and with the 

same camera origin located just above the pilot’s chair. This position did not 

change for the duration of the data collection effort. 

The three screenspaces are located relative to the cockpit, as shown in 

Figure 1. One screenspace is center and in-front of the multi-function displays and 

heads-up display. The other two screenspaces are positioned parallel to each other. 

They are aft and perpendicular to the center screenspace. One is on the left-hand 

side of the cockpit, and the other is on the right-hand side, effectively surrounding 

the pilot within the cockpit. Gaze position is reported for each screenspace. If the 

subject is looking at something in a given FOV, the position for that screenspace 

is reported between 0 and 1 for both x and y coordinates. 

Expert Review 

Once data collection was completed, the screen capture video was separated 

by subject and maneuver. Heatmaps were generated, using a non-overlapping 30-

second sliding window for the duration of each maneuver flown. Three subject 

matter experts labeled a subset of the gaze data using maneuver videos and 
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heatmaps to establish inter-rater reliability. The subject matter experts included two 

experienced instructor pilots (IP) and one experienced instructor combat systems 

officer (CSO). Table 1 lists the demographic information for each expert rater that 

reviewed the subject gaze patterns. Further details on the review process are 

discussed in a subsequent section. 

 

Table 1 

Rater Experience 
Instructor Pilot I Instructor Pilot II Instructor CSOa 

27 years flying 
12 aircraft flown 

5,025 total flight hours 
2,000 instructor hours 

USN TOPGUN graduate and 

instructor 

Former USN TOPGUN 

commanding officer 

40 years flying 
16 aircraft flown 

12,860 total flight hours 
1,250 instructor hours 

USN TOPGUN graduate and 

instructor 

First Officer on B-757/767, 

B-737 and Airbus 320 

13 years flying 
31 aircraft flown 

1,300 total flight hours 
225 CSO instructor hours 
USAF Test Pilot School 

graduate 

 

aTotal hours encompass both CSO and pilot time 
 

Demographics 

Table 2 lists the subject demographic information for the 40 test subjects. 

This includes the sample mean, standard deviation, min and max values for subject 

age, flight hours, and number of aircraft flown. Further the percentages for type of 

flight experience are listed. Note that the flight experience is not exclusive to 

military or civilian, a subject can have both. Therefore, flight experience can add 

up to greater than 100%. 

 

Table 2 

Subject Demographics 

 Age Hours Aircraft Flown 
Flight 

Experience 

Subjects 

  

x̄  
 

Std 

Dev 

 

Min 

M

Max 

 

x̄  

 

Std Dev 

 

Min 

 

Max 

 

x̄  

 

Std 

Dev 

  

Min 

 

Max 

 

Civilian Military 

All Subjects 
 

42.0 

 

10.7 

 

22 

6

61 

 

2816.0 2876.6 

 

0.0 

 

13000.0 4.2 

 

3.7 

 

0 

 

12 

 

25.0% 

 

72.5% 

Pilots 
 

47.4 

 

7.3 

 

35 

6

61 

 

4631.8 2739.3 

 

1700.0 

 

13000.0 6.5 

 

2.6 

 

3 

 

12 

 

42.9% 

 

100.0% 

Operators a 
 

37.9 

 

20.0 

 

23 

4

43 

 

1910.0 1550.0 

 

0.0 

 

4500.0 3.9 

 

3.9 

 

0 

 

9 

 

11.1% 

 

88.9% 

Novices 
 

34.8 

 

22.8 

 

22 

5

53 

 

0.0 0.0 

 

0.0 

 

0.0 0.0 

 

0.0 

 

0 

 

0 

 

0.0% 

 

   0.0% 

aFor operators, operator time and pilot time, if applicable, are reported combined. 
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GAZE QUALITY LABELING 

“Gaze quality” in the context of this research is defined as a rating on a 3-

class ordinal scale evaluating the subject’s ability to scan his/her environment in-

order to safely and correctly execute the assigned maneuver or task. It is based on 

instructor opinion among the three raters. To understand if instructors rated the 

gaze patterns similarly and to establish an appropriate scale, inter-rater reliability 

(IRR) was evaluated. The raters included two IPs and an instructor CSO. All three 

are seasoned instructors and evaluators with military experience. Given their 

experience, they have refined perceptual abilities, making them ideal for the 

labeling task. 

 

Figure 3. Example of a concatenated video frame from a video that instructors 

reviewed for labeling gaze quality. Three heatmaps of different screenspaces line 

the top of the frame and the bottom consists of video from the pilot (left) and a 

zoomed heatmap of the HUD (right). 

Review Interface Creation 

In support of our labeling effort we created high-resolution (hi-res) 

heatmaps for the instructors to review along with the maneuver video. These hi-res 

heatmaps were shown in conjunction with maneuver video so that instructors could 

label the quality of segments of gaze data over a window of time incorporating 

additional context outside of the heatmap and resolution. The data collection 

videos and data were segmented based on subject and maneuver. Hi-res heatmaps 
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were generated over 30-second, consecutive, non-overlapping windows during a 

maneuver. If there were any leftover data points, a final overlapping 30 second 

heatmap was generated for the last 30-seconds of the maneuver. The start and stop 

times of these 30-seconds windows were saved so that our machine learning model 

could process the data in the same labeled time window. A 30-second window was 

chosen because the raters considered that interval to be a reasonable amount of 

time for an instructor to observe and discern the quality of a student’s gaze 

pattern. The hi-res heatmaps were created by using a bivariate kernel density 

estimate (KDE) with a Gaussian kernel. A 500-level KDE overlay was generated on 

top of still images of the cockpit from each screenspace’s FOV, as shown in Figure 

3 (Top). The heatmap intensity was scaled over all three screenspaces. A zoomed 

version over the HUD was also created. 

The interface used by the instructors for labeling consisted of the three 

screenspace heatmaps and a zoomed HUD heatmap concatenated to each video 

frame of the pilot’s maneuver (Figure 3). This means that as the reviewer was 

observing the maneuver video, he/she was also viewing the hi-res heatmaps for 

the 30-second window of data being observed. The original maneuver video 

provided situational awareness on aircraft movement and position, but it also 

provided gaze convergence tracking represented by a green eye floating about the 

cockpit. This way, the instructors could review not only the heatmaps synthesized 

from gaze data, but they also observed what the pilot was staring at during their 

maneuvers. A reviewer always reviewed data for an entire maneuver and the 

windows of data were labeled in the order they appeared in the maneuver. Figure 

3 provides an example of a concatenated video frame. 

  

12

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 7 [2020], Iss. 3, Art. 7

https://commons.erau.edu/ijaaa/vol7/iss3/7
DOI: https://doi.org/10.15394/ijaaa.2020.1499



 

(a) (b) 

 
(c) (d) 

Figure 4. Sample counts for task agnostic and multi-task models. 

Rating Process 

For labeling, the three raters used a grading scheme of poor, fair, or 

correct. Within this scale the raters were further allowed to rate windowed data 

with scores that were “in- between” levels such as “poor-to-fair,” yielding a five-

class scale: (1) poor, (1.5) poor-to-fair, (2) fair, (2.5) fair-to-correct, and (3) correct. 

Pilot I reviewed 520 sets and Pilot II reviewed 517 sets of thirty-second windowed 

data, pulled from across all 40 test subjects. Of the total ratings, both pilot raters 

reviewed 109 gaze patterns that overlapped be- tween the two datasets to support 

the investigation of inter-rater reliability. The CSO was the primary annotator of 

the full dataset, and therefore provided ratings for all the data that the two pilot 

raters provided. The label count distributions are found on Figure 4. 

Inter-Rater Reliability Results 

When investigating inter-rater reliability, we employed Cohen’s κ (Cohen, 

1960, 1968), the correlation coefficient for the binary-rater case, Fleiss’ κ (Fleiss, 

1971) and Randolph’s κ (Randolph, 2005) for the multi-rater case. We also 

investigated multiple levels of agreement by transforming the 5-class ratings into 

multiple 3-class variations. Specifically, the 5-class was transformed into 3-class 
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ratings by ceiling and flooring the class labels. A final 3-class version was 

calculated by taking the floor of the rating 1.5 and the ceiling of the rating 2.5. The 

results of each transformation and evaluation criteria are shown in Table 3. 

 

Table 3 

Inter-rater Reliability 

Raters Coef. 5−Class 
Ceil 

[3−Class] 

Floor 

[3−Class] 

Floor/Ceil 

[3−Class] 

Pilot I and II 
Cohen’s κ .45 .60 .36 .71 

r .66 .68 .50 .79 

Pilot I and CSO 
Cohen’s κ .30 .40 .24 .37 

r .43 .46 .33 .44 

Pilot II and CSO 
Cohen’s κ .63 .66 .60 .71 

r .78 .72 .68 .76 

Pilot I, Pilot II, 

and CSO 

Fleiss’κ .30 .55 .39 .56 

Randolph’s κ .47 .78 .50 .78 

 

For the binary-rater case, pilots I and II’s Cohen’s κ were strongest when 

the floor and ceiling were utilized, a κ of 0.71. Further, an r-value of 0.79 reveals a 

strong positive linear relationship. Pilot I and the CSO had less agreement than 

that of both instructor pilots. However, when the ceiling method was used a κ of .4 

reflects moderate agreement. This was further observed by an r-value of 0.46 — 

indicating a positive linear relationship. Finally, Pilot II and the CSO exhibit 

strong agreement with a κ of 0.71 and an r-value of 0.76 when the floor and ceiling 

method was utilized. Overall, this signifies that Pilot I and the CSO have moderate 

agreement while both have strong agreement with Pilot II. 

The multi-rater case yielded a strong inter-rater relationship. Again, the 

ceiling and floor/ceiling methods provided the highest reliability. The overall 

multi-way Randolph’s κ was 0.78 and the multi-way Fleiss’ κ was 0.56, indicating a 

strong inter-rater reliability was established. Therefore, we answer our first 

research question by affirming our hypothesis: Instructors can grade gaze 

quality into three levels with sufficient similarity. 

Of note, the rating label distribution is uneven and further addressed in a 

subsequent section. While both the ceiling and the floor methods provide high 

inter-rater reliability, the floor/ceiling method was chosen as it yielded more labels 

for "poor" class — the weakest class count across tasks from the unaugmented 

dataset. 
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(a)      (b)       (c)      (d) 

Figure 5. Four example center screenspaces (a-d) — While (d) would rate “poor” 

for all 3-tasks, (a-c) are each characterized as (a) “correct”, (b) “fair”, and (c) 

“poor” given the climb, cruise, and decent task. However, (b) is labeled “correct” 

for the ground task, as only airspeed and centerline are needed, and (c) is labeled 

“correct” for the final approach task, a pilot flying the AoA bracket. 

Multi-Task Labeling 

Throughout the labeling of the dataset, raters expressed concern that there 

can be more than one phase within a maneuver. For example, on takeoff the pilot 

transitions from ground roll to a climb. Each of these phases can have a different 

“correct” gaze pattern. There is a potential robustness issue for a machine learning 

model because a given gaze pattern might be judged “correct” in one phase, but 

would garner only a “fair” in another phase, see Figure 5. A more robust solution is 

to use a multi-task machine learning model that has the ability to interpret the same 

gaze pattern differently, depending upon the phase. From the maneuvers we 

grouped the phases into three generalized phases (tasks) according to the relative 

similarity of gaze pattern for the phases: (1) climb, cruise, and decent (CCD), (2) 

ground, and (3) final approach. Taking advantage of the idea that there are 

common gaze patterns among phases, the annotator was asked to label every 

window of gaze data according to all three generalized phases. That is, the 

annotator labeled quality as if the subject was flying each of the three generic 

phases described above, and providing a label for each - Figure 4. 

 

DEEP LEARNING ARCHITECTURE 

Now that it has been established that instructors can similarly rate the gaze 

pattern of aviators, we move our analysis to our second research question: Can 

machine learning be used to automate the classification of gaze quality? To 

investigate this, we choose to use a model that can make predictions directly from 

heatmaps of the input gaze patterns: a convolutional neural network. For our 

convolutional architecture we employ two key techniques: transfer learning and 

multi-task learning. Leveraging prior knowledge to hasten the learning of new tasks 

is known as transfer learning (Jonathan Baxter et al., 1995; Pan & Yang, 2010). 
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These methods preserve and take advantage of previously trained models from one 

task or domain and apply them to a second different task or target domain. More 

broadly, transfer learning allows for domains, tasks, and distributions between 

training and test to be different (Pan & Yang, 2010). Such methods can affect new 

training of accurate models for an entirely different task and/or source domain 

where labeled data may be limited (Pan & Yang, 2010). In our research, the use of 

pre-trained layers is helpful because we can leverage the ability of the model to find 

a number of low-level image features such as edges, shapes, and noise that 

generalize to our target task of classifying gaze patterns. 

A related concept is the preservation of learned knowledge while training 

multiple tasks—multi-task learning. While multi-task learning can be considered a 

form of transfer learning, it traditionally differs in that the shared knowledge is 

learned at the same time, between tasks, and during the training process. A typical 

approach for multi-task learning is to uncover the shared latent features that can 

benefit each task (Pan & Yang, 2010). Ruder (2017) shows that multi-task 

learning models tend to prefer solutions that generalize. 

In this work we take advantage of the learned weights from the Visual 

Geometry Group’s 16-layer model (VGG16) from Simonyan and Zisserman 

(2015). VGG16 was trained on an ImageNet repository ILSVRC-2012 dataset 

(Russakovsky et al., 2015), a repository used for the 2012-2014 Large Scale 

Visual Recognition Challenge (ILSVRC). The ILSVRC-2012 dataset is built as a 

subset of ImageNet’s (Deng et al., 2009) greater repository with a training dataset 

of 1000 categories and 1.2 million images. We seek to take advantage of the spatial 

representations learned at the shallower depths of the VGG16 model— where 

such representations are less complex, domain specific, and more applicable to the 

gaze domain. Though these representations are trained on a substantially different 

task, we expect that many can be re-purposed for gaze classification, while other 

representations will be ignored. 

Two models were implemented - a task agnostic version which has no 

knowledge of the maneuver being performed, Figure 6, and a multi-task version 

with three tasks (such that a classification of quality is provided for each type of 

flight maneuver), Figure 7. Both models utilize the first seven weight layers of the 

VGG16 pre-trained model (pruned at the third max pooling layer), with all layer 

weights unchanged during training (that is, we do not optimize the weights copied 

from VGG16 in our network). The input remains a 224 x 244 3-channel tensor as 

with the VGG16 model. However, the three channels are no longer red, green, and 

blue. Instead, each channel consists of a screenspace - left, center, and right from 

the heatmaps synthesized by the test subject’s gaze pattern. We note this is an 

abuse of the original training of the VGG16 model, but we found the results to 

still be satisfactory. We hypothesize that, while the replacement of red-green-blue 

channels with screenspaces does not make intuitive sense, the neural network was 
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still able to make sense of representations. 

In an effort to provide reproducible results, we provide details of the training 

and modeling in the following paragraph. Many terms used here are used without 

definition, but are common in the machine learning community and are ubiquitous 

in the Tensorflow library. Our implementation utilized the Tensorflow version of 

VGG16, so all input tensors were standardized between -1 and 1. The pruned 

VGG16 model’s output is routed through two separable convolution layers 

(Chollet, 2017b) with 256 filters each, a kernel size of 3x3, and same size output 

padding. That output is then passed through a max pooling layer, with 2x2 pooling 

window size, and flattened. The flattened output is passed to three dense layers with 

a 0.5 dropout rate (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 

2014); each subsequent layer is a step down by a power of two of the previous 

dense layer. Specifically, 128, 64, and 32 nodes, form the bottleneck. Finally, for the 

task agnostic model, one 32-node dense layer is followed by a three-node dense 

layer with a softmax activation (Boltzmann, 1868; Goodfellow, Bengio, & 

Courville, 2016). For the three-task model, the bottleneck output is routed to three 

individual 32-node dense layers. Each are followed by a three-node dense layer 

with softmax activations. All hidden layers utilize a ReLU activation function 

(Hahnloser, Sarpeshkar, Mahowald, Douglas, & Seung, 2000; Jarrett, 

Kavukcuoglu, Ranzato, & LeCun, 2009; Nair & Hinton, 2010). We use a batch 

size of 64, but do not implement batch-normalization (Ioffe & Szegedy, 2015) 

given the suggestions of Simonyan and Zisserman (2015). 

 

Figure 6. Task Agnostic Convolutional Neural Network. 
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≥ 

 

Figure 7. Multi-task Convolutional Neural Network. 

 

Figure 8. Center Screenspace Scaled 25 X 25 (A) Count Matrix, (B) Heatmap, 

(C) Gaussian Blur, and (D) Actual 244 x 244. 

Input Heatmap Generation 

For input heatmap generation the gaze data provided by the BBXR was 

mapped to a two- dimensional tensor. The model input is of the shape 244 x 244 

with three channels, the same shape as with VGG16. However, rather than using 

the RGB channels, each channel is a distinct screenspace generated from the gaze 

data over a thirty-second window, left, center, and right - in this order. While this 

method may introduce errors in the input distribution of VGG16, we did not 

observe any worrying behavior of the model; the VGG16 layers remained frozen and 

were not fine-tuned. Kernel density estimation, which was used to create visually 

appealing heatmaps for the instructors to review, was not used to create the 

heatmaps for the neural network because of the considerable amount of time 

needed to compute it. Instead, we employed a significantly faster approach for 

generating the heatmaps for the neural network. Specifically, to create the desired 

input tensor, we first mapped a consecutive thirty seconds of data to the desired 

resolution, 244 x 244. This was done by multiplying all values 0 and < 1 by 244 

for both x and y values. Second, a count matrix was generated, where a 244 x 244 

matrix of 0s is created and a 1 added to the position of each x and y pair. Third, the 

maximum value was calculated across all three screenspaces because the heat or 
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intensity was measured over all channels in the tensor, and all non-zero values are 

divided by this maximum value. Fourth, for a smoother input, a Gaussian blur with 

std of 1.0 was taken over the newly generated heatmap. Ultimately, this creates a 

lower resolution version of the Hi-def heatmap, for a given window of data, used 

for labeling—but this feature can be computed faster than realtime, making it 

appropriate for a number of applications. A scaled example of the center screenspace 

as it is transformed to a heatmap is shown in Figure 8. As noted, all three 

screenspaces are stacked to create a 244 x 244 x 3 tensor. 

Training 

For training we use the adaptive momentum stochastic optimization 

method (Kingma & Ba, 2017) with a learning rate range of 1e-6 to 1e-3, standard 

beta values, and gradient clipping range of 0.0 to 0.5. We chose the best hyper 

parameters based on the cross- validation results. Before training, we randomly 

separated 10% of the pilots for a final test set. The remaining 90% of the data was 

used for a 10-fold, across-subject cross-validation. That is, a given aviator cannot 

simultaneously be in a training fold and a validation fold. This resulted in 

validating folds consisting of about three aviators. We load balanced (i.e., 

stratified) these test folds such that at least one of the three subjects was always a 

novice or operator and one was always a pilot. Otherwise the three subjects were 

chosen at random. Each fold was trained for fifty epochs. A final model was then 

trained with all the data, except the 10% portioned test dataset. 

Data Augmentation 

For deep learning applications, it is ideal to have as much data as possible 

for training. In the absence of numerous labeled data, an augmentation process 

can help to synthetically boost the number of training samples. This is commonly 

known as data augmentation — using existing labels and manipulating the input 

data to create new samples. Augmentation is only used for the training samples. 

That is, the testing samples remained unchanged. 

For augmenting gaze data, we implemented several augmentation methods. 

These included: (1) removing or clipping a portion of the heatmap, (2) perturbing 

the heatmap within the reference frame along an axis, (3) mirroring the heatmap 

across the vertical or horizontal axes, and (4) having the rater label gaze patterns 

from unassociated maneuvers according to proper sight picture. This process 

resulted in approximately 9,400 training samples across all gaze quality classes in 

addition to the original 3,877 samples. 

The clipping method takes advantage of the sight picture awareness and 

further modifies a window of data by creating a new heatmap. This involves 

generating a heatmap from a portion of the windowed data and relabeling the new 

pattern respective to the given phase. For this research we only modified heatmaps 

created from “correct” labeled data. For example, take the CCD generic phase. 

Aggregate the windowed data that are labeled “correct.” These gaze patterns tend 
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to have a triangle-like shape over the HUD about the airspeed, altitude, and pitch 

ladder/flight path marker (FPM). We created a new heatmap by removing the left 

portion, any data with less than a ratio of 0.49 for the x-coordinate - gaze 

convergence over the airspeed indicator. We repeated this process again creating a 

second new heatmap by clipping the right side, any data greater than a ratio of 

0.51 for the x-coordinate - gaze convergence over the altitude indicator. This 

method added twice the size of CCD class “correct” labels to the class 

“acceptable” labels. Post clipping, these heatmaps were verified or relabeled 

manually by the annotator and normalized by their largest value. 

For this research we only perturbed the heatmaps vertically along the y-axis. 

Specifically, the heatmaps were adjusted up or down by ratios between -0.03 and 

0.1. The heatmaps retained their original labels, and were further verified by the 

annotator. This method doubled the available training samples for our 

convolutional networks. 

The mirroring method used flipped the heatmap about an axis, and then 

labeled appropriately given the sight picture, for each task. We only utilized 

mirroring about the y-axis. This was particularly useful for “poor” labeled gaze 

data that has heavy gaze fixation on one side or the other. Finally, gaze heatmaps 

from the other maneuvers, Section, were labeled. In conjunction with the 

concatenated videos we took advantage of the perceptual awareness of the raters, 

Section, by having the annotator mentally project the appropriate phase sight 

picture onto the maneuver being flown - both boundary avoidance and air intercept 

tasks. Augmented gaze pattern label distributions are found in Figure 4. 

 

 

GAZE CLASSIFICATION RESULTS 

As discussed, the training of each model included the 10-Fold, across-subject, 

cross-validation followed by a final fit over the entire dataset minus the 10% set 

aside for the test dataset. Results for both the 10% test set and the averaged cross-

validation are presented. The training for both the task agnostic and multi-task 

models converged on or about the 20th epoch of the optimization. The results of 

the task agnostic and multi-task models are discussed below, followed by a second 

inter-rater reliability analysis comparing the two models to the human gaze quality 

raters. 

Task Agnostic Model 

To evaluate the performance of each model, we choose to use the 

confusion matrix. A confusion matrix is a method for counting the number of 

observations where an instructor rated a gaze pattern quality one way and the 

model predicted the gaze pattern quality as either poor, fair, or correct. By 

counting the number of times the instructor and the model agree for each 

classification category and the number of times they disagree, we can formulate a 
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confusion matrix. Ideally, the matrix shows only values on the diagonal of the 

matrix, indicating that no confusions occurred. Figure 9(a) presents the task 

agnostic model’s confusion matrix for both the average accuracy and average 

categorical true positive rates over all ten folds. Figure 9(b) characterizes the 

confusion matrix for test accuracy and true positive rates for each category. 

The task agnostic model has an average fold accuracy of 89.9% with a test 

accuracy of 89.2%. The average true positive rates over all folds is 93.0% for 

poor, 89.0% for fair, and 84.0% for correct. The test dataset true positive rates are 

slightly different for each quality label with 90.0%, 68.0%, and 93.0% for poor, 

fair, and correct. The fair case is likely reflective of the potential task agnostic 

issues discussed previously. That is, an unseen heatmap from the test dataset is 

potentially classified incorrectly because it can have two different quality labels 

depending on the flight phase—and the agnostic model has no information 

regarding flight phase. Ultimately, this model accurately classifies gaze patterns 

that are poor 90.0%, fair 68.0%, correct 93.0% of the time. This may imply that a 

“correct” or “poor” gaze pattern generalizes across a number of flight phases, 

whereas fair patterns are more dependent on phase. Because of the low 

performance at grading “fair” gaze patterns, we conclude that the performance of 

the task-agnostic model is not reliable enough for use in automating the scoring of 

aviator gaze patterns. We therefore turn our focus to a more expressive model, the 

multi-task model, to understand if its performance is more consistent. 

 

  
(a)                        (b) 

Figure 9. Task Agnostic model: (a) Combined confusion matrix over 10-folds (b) 

Confusion matrix over held out test dataset. 

Multi-task Model 

The confusion matrices for the multi-task model are more involved to 

interpret. Rather than presenting the confusion matrix overall, we must present one 

confusion matrix for each of the three flight maneuvers. Figure 10 (a-c, top row) 
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presents the multi-task model’s confusion matrices as well as the average 

accuracy over all ten folds for each task. Figure 10 (d-f, bottom row) depicts the 

confusion matrix for test accuracy for each category. The “final approach” task 

was converted to a binary classification because too few examples were labeled as 

“fair” by the raters. Because there were not enough ground truth labels to train the 

model, we only report the binary classification “poor” versus “correct.” 

 

 
(a)        (b)           (c) 

(d)       (e)          (f) 

Figure 10. Multi-task model combined confusion matrices over: (a) 10-folds 

climb, cruise, and decent, (b) 10-folds ground, (c) 10-folds final approach (d) 

Climb, cruise, and decent test dataset, (e) Ground test dataset, and (f) Final 

approach test dataset. 

 

The multi-task model has an average fold accuracy of 94.2% with a 93.0% 

average test accuracy across all tasks. Individually, the average fold accuracy for 

each task is 89.1%, 90.2%, and 94.63% with test accuracies of 91.0%, 91.8%, and 

96.45%, for CCD, ground, and final approach, respectively. The test dataset true 

positive rates are comparatively stronger for each task than with our task agnostic 

model. CCD classifies 91.0%, 86.0%, and 94.0%, while the ground task classifies 

92.0%, 88.0%, and 94.0%. Finally, the final approach task classifies 96.0% and 

100.0% for “poor” and “fair” each. Overall, these results look promising and are 

substantially better than the task agnostic model. These results imply that the 
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model is robust to different tasks, but they do not indicate if the model is 

comparable to a human instructor. To elucidate if the model is significantly 

different than a trained instructor, we analyze inter-rater reliability, including the 

model as if it were a fourth instructor. 

Human-Model Inter-Rater Reliability 

We compared inter-rater reliability measures for the task agnostic model 

and multi-task model, separately. This analysis is identical to that carried out in 

Table 3 among raters, except we treat each model as if it were a human instructor. 

Table 4 presents the results of the IRR analysis between each rater and model, 

among all raters and each model, and among a subset of raters and each model. This 

analysis helps to answer the following question: Does the model agree with 

human raters in a manner that is similar to how human raters agree with each 

other? 

 

Table 4 

Inter-rater Reliability, Model as Additional Rater 

Raters and Model r Cohen’s κ Fleiss’ κ Randolph’s κ 

Pilot I & Task Agnostic .25 .18   

Pilot II & Task Agnostic .42 .37   

CSO & Task Agnostic .50 .43   

All Raters & Task Agnostic   .39 .61 

Pilot I & Multi-task .28 .23   

Pilot II & Multi-task .73 .67   

CSO & Multi-task .75 .70   

All Raters & Multi-task   .57 .77 

Pilot I, II, & Multi-task   .53 .76 

Pilot II, CSO, & Multi-task   .66 .85 

Pilot I, CSO, & Multi-task   .36 .62 

 

The task agnostic model has Cohen’s κ of .18, .37, and .43 with Pilot I, 

Pilot II, and the CSO, respectively. These κ values signify some agreement with 

Pilot I and moderate agreement with Pilot II and the CSO. For the multi-rater 

variants, the Fleiss and Randolph κ’s are .39 and .61, establishing moderate IRR 

agreement according to the scale defined by Landis and Koch (1977). This is 

consistent with our previous conclusion that the task agnostic model performance 

is not reliable enough for use in scoring aviator gaze patterns. For the multi-task 

model strong inter-rater reliability is achieved. The multi-task model and Pilot II 

have Cohen’s κ of .67, substantial agreement. The relationship between the CSO 

and the model is a κ of .70, also a substantial agreement. This indicates strong 

agreement, especially given that CSO and Pilot II have a Cohen’s κ of .71 

(Table 3). Furthermore, Pilot II and the CSO each have an r value with the multi-
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task model that signifies a strong linear relationship, with .73 and .75 

respectively. The least agreement is between the multi-task model and pilot I, 

which has a κ of .23. While lower, this is similar to the CSO and Pilot I, which 

have a κ of .37 (Table 3) — the lowest agreement between human raters. 

For the multi-rater case, the model and all three raters have a Fleiss’ κ of 

.57—which is a slightly better Fleiss’ κ than that of the all human raters, .56 

(Table 3). Both rater combinations have the same Randolph’s κ of .77, signifying 

substantial agreement. If Pilot I is removed from the multi-rater analysis, the 

highest multi-rater κ values are achieved, .66, Fleiss, and .85, Randolph - almost 

perfect agreement. 

In summary, for inter-rater reliability among the raters and the models, it is 

apparent that both models are similar to the respective relationships among the 

full dataset annotator, the CSO, and the two pilot raters — that is the CSO and 

Pilot I having shown less agreement than the CSO and Pilot II. We therefore 

conclude that the performance of the multi-task model is sufficient to be used 

as an automated gaze scoring tool, which is directly affirming of our hypothesis 

for research question two. 

 

DISCUSSION 

Overall, the performance of the multi-task model was comparable to an 

instructor for verifying gaze quality. Therefore, it should be possible to deploy this 

model for applications such as (1) augmenting instructor observations or (2) 

training pilots to better scan for different maneuvers automatically in a real-time 

environment. The processing time required for the model is primarily due to the 

time needed for collecting gaze points. If implemented as a pipeline and primed 

with the initial observation window that slides overtime, the model could support a 

frame rate of greater than 30 FPS. The actual time required for just the 

classification portion took, on average, less than 400 ms running on a 2018 Mac 

Book Pro. Therefore, the creation of an interface which, in real-time, displays the 

predicted gaze pattern quality for the pilot, is possible. This can assist pilots in 

adjusting their technique during practice sessions or in mission execution. One 

limitation of using a CNN to classify gaze is that the results are empirical and 

linked to the setup used for training. This means that the models investigated in 

this study are relevant only for the heads-up-display and instrument display in our 

simulator. While it is assumed that gaze pattern classification will generalize to 

other instrument display panels, each display configuration requires the training 

of a new CNN model, especially if it differs significantly from the panel used in 

this study.     
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(a) CCD task      (b) Ground task       (c) Final task         (d) Negative example 

Figure 11. Zoomed Grad-CAM heatmaps at the separable convolution activation 

layer of the multi-task model, (see Figure 7); all Grad-CAMs were computed 

respective of the ‘correct’ label except for the negative example, which is labeled 

‘poor.’ 

 

In the same manner, pattern quality could be used by an instructor in a 

dashboard for a class of student pilots. Such a dashboard might increase the 

number of simultaneous pilots an instructor could effectively observe in a training 

setting. One limitation of the current model is that it can only display the overall 

quality of the gaze pattern, but cannot display what corrective actions a pilot 

might take to increase the gaze pattern quality. In future work, it may be possible 

to use gradient class activation mapping (Grad-CAM), Figure 11, to trace back to 

what portions of the input heatmap cause the model to have degraded performance 

(Selvaraju et al., 2017). From this knowledge, it should be possible to interpret the 

Grad-CAM output to instructions such as “Check your airspeed more often to 

improve gaze quality”, “Keep your airspeed and wingman in your scan, you are 

fixated on the altitude indicator.” With this kind of approach, a multi-modal 

variant could be created that takes into account aircraft state, gaze pattern quality, 

Grad-CAM, and a student’s site picture informing a student how to improve upon 

this site picture and scan with specific inputs. As an example, on final approach, 

the system could say something like, “You are not keeping your airspeed in your 

scan, pitch down 2◦ for airspeed.” Further, there are several ways to solve a 

glide slope problem on approach. This kind of model could inform an optimal 

solution based on the student perspective - with repetition, potentially improving 

perceptual awareness (Miller & Gleason, 1947). 

Given the performance of the multi-task model, it is preferable compared to 

the task agnostic model. However, this does introduce some complexities for 

deployment. For instance, in a real-time pilot feedback interface, the inference 

system would need to understand or be informed which flight phase the pilot was 

undertaking. Some of these maneuvers are easily categorized, such as using the 

“weight-on-wheels” signal of the aircraft to know when the aircraft is on the 

ground. Others, however, would require additional classification of the phase, 

sub-phase, or require the instructor/pilot to select what phase or maneuver is 

currently being undertaken. While potentially minor, it does add an extra layer to a 
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system that we prefer to be completely automatic. More complex gaze pattern 

classifiers can be built using fundamental gaze patterns, such as those shown in this 

study. Given continued development there is potential to further mitigate the need 

for manual task selection. The results of our research may also be applied 

outside of the virtual environment, in actual flight. For an apples-to-apples 

comparison, Figure 12 depicts the data from a complete final approach for both the 

mixed-reality simulator and a real-life flight conducted on a C-17 military cargo 

aircraft. This example is an instance of gaze pattern data having been collected on 

a real flight. What has not been shown is how the gaze pattern quality can be 

assessed automatically in real flight, there are several hurdles that will need to be 

overcome. The noise sources of sunlight, head/body movement from G-forces, and 

overall head movement in an actual flight could potentially reduce the accuracy of 

the model. In future work, deploying this model to real flight would need research 

into the noise sources and sensitivity of the model to this additional noise. Even 

so, we hypothesize that the model could work in real flights because the 

simulations are high quality, such that noise sources from focal length and 

maneuver specific noise are already captured well by the model. Future work will 

investigate this more systematically. 

 

  
(a)                          (b) 

Figure 12. Aggregate example heatmaps for final approach: (a) zoomed in 

heatmap of HUD, (b) Aggregate real-life flight on final approach in a C-17 

aircraft (Martin, Calhoun, Schnell, & Thompson, 2019). 

 

Finally, another limitation of our study is that our pilot population is 

comprised of individuals with military training. Moreover, the flight scenario 

employed used an instrument panel traditionally used in a fighter type aircraft. 

This may limit the generalizability of our findings to other styles of aircraft and 

training experience. Even so, modern commercial aircraft can be equipped with a 

HUD. The Boeing 787 includes a HUD as standard equipment (Nicholl, 2014). 

Furthermore, the positions of airspeed, altitude, and pitch ladder are typically 

standardized (Federal Aviation Administration, 2014). What is not standard is 
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HUD implementation (Nicholl, 2014). While there is no evidence to indicate the 

proposed methods would not work in a civilian aircraft, further investigation is 

warranted to ensure this conclusion. 

 

CONCLUSION 

In this research, we use convolutional neural networks to classify gaze or scan 

pattern quality for aviators in a multi-device, mixed reality aviation environment. 

We designed a human subjects experiment to inform the design and evaluation of 

these models with 40 subjects performing common flight maneuvers. We recruited 

three subject matter experts to rate the gaze patterns and analyzed their agreement, 

showing they have strong inter-rater reliability. Our multi-task convolutional neural 

network matched subject matter experts with greater than 93% average accuracy 

and strong multi-rater agreement, a κ of .77. 

This result suggests that gaze patterns for various flight maneuvers can be 

automatically classified into three levels of quality with reliable accuracy and in 

near-real time. This automated gaze classification may be of use in establishing the 

context of an aviator while they are learning a particular flight maneuver. The 

scope of our conclusions is limited to gaze patterns in the scenarios from our 

experiments, but gaze classification for additional flight maneuvers or for other 

activities in other domains may also be applicable. We leave the investigation of 

gaze quality classification in additional flight maneuvers and other disciplines to 

future work. 
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APPENDIX A: HEATMAP EXAMPLES 

The following are examples of poor, fair, and correct labeled heatmaps for 

each model task (flight phase) over a 30 second window. Note that this is not 

exhaustive, for example Figure 13 (c) is also “correct” for the final approach 

task. 

 

 

 

 

 

 

 

 

 
 

Figure 13. Climb, cruise, and decent task examples: poor (left), fair (right), and 

correct (bottom). 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 14. Ground task: poor (left), fair (right), and correct (bottom). 

 

 

 

 

 

 

 

 

 

 
 

Figure 15. Final approach task: poor (left), fair (right), and correct (bottom). 
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Figure 16. Negative heatmap examples: all heatmaps are rated ‘poor’ for CCD, 

ground, and final approach. All cover a 30-second window period. 

 

For each example in Figure 16, these heatmaps are negative examples and 

are labeled poor for all three model tasks (flight phases) — CCD, ground, and final 

approach. All cover a 30-second window period. 

 

APPENDIX B: HARDWARE AND SOFTWARE 

For this research, we used the Python versions of Scikit-Learn, TensorFlow 

and Keras. Both video concatenation with high-resolution heatmaps and model 

training were conducted on the Southern Methodist University high-performance 

compute cluster (HPC). Because the pruned VGG model remained frozen and the 

dataset is small, training was also conducted on a desktop machine using an 

NVIDIA RTX 2080 ti, with some memory limitations. The need for the HPC is 

due to memory requirements and less so computational power. Multiple folds could 

not be stored in RAM. Further, for batch size, GPU memory was a factor. 

At 870 TFLOPS, the HPC has 354 nodes, 11,276 AVX2 Intel CPU cores, 

275,968 accelerator cores, 120 TB in total memory, 100 Gb/s node interconnect 

bandwidth, and 2.8 PB of scratch space. The accelerator nodes include 36 

NVIDIA P100 GPUs with 16 GB CoWoS HBM2 memory and 24 NVIDIA V100 

GPUs with 32 GB of CoWoS HBM2 memory. The desktop machine included a 

12 core AMD Ryzen 9 3900X, 64 GB of DDR4 RAM, SSDs totaling 6 TB, 

and an NVIDIA RTX 2080 TI with 4352 cores and 11 GB GDDR6 memory. 
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