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ABSTRACT 

 

INTRODUCTION: This dissertation identifies factors significantly predicting participants' 

preference for riding in an autonomous vehicle rather than flying on a commercial aircraft. A 

plethora of research has investigated these two transportation industries independently; however, 

scarcely any research has considered the impact these two industries will have on each other. 

Travelers’ preference for riding in an autonomous vehicle rather than a commercial aircraft was 

investigated through four different scenarios. 

 

METHOD: A regression equation was created to predict participants’ preferred travel method 

and validated through a two-stage process. Stage 1 involved the creation of the regression 

equation, and a total of 1,008 participants responded to an online survey, providing information 

on demographics, travel-related behavior, and their preference for riding in an autonomous 

vehicle rather than flying on a commercial aircraft. Stage 2 involved validation of the 

regression equation, and 1,008 participants responded to the same online survey. Stage 2 

participants’ scores were predicted using the regression equation created in Stage 1. Then, their 

predicted scores and actual scores were compared to validate the equation throughout four 

different travel scenarios. 

 

RESULTS: In Stage 1, a backward stepwise regression assessed the twenty predictive factors 

(age, gender, ethnicity, social class, price, perceived value, familiarity, fun factor, wariness of 

new technology, personality (openness, conscientiousness, extraversion, agreeableness, and 

neuroticism), general vehicle affect, general airplane affect, vehicle comfort, vehicle external 

factors, airplane comfort, and airplane external factors). These factors were tested in four 

different scenarios, which varied only in the length of time participants would spend traveling. 
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CONCLUSION: A predictive model was created for each scenario, and then all four models 

were validated in Stage 2 using participants’ predicted scores and actual scores. Models were 

validated using a t-test, correlation, and comparison of cross-validated R
2
. The most robust 

model was for the four-hour trip, with six variables significantly predicting participants’ 

preferred travel method, which accounted for 50.7% of the variance in the model (50.1% 

adjusted). Upper Social Class, Vehicle Affect, Airplane Affect, and Vehicle Comfort were the 

only significant predictors throughout all four scenarios. These four predictors will help other 

researchers and experts in the vehicle industry identify the first adopters of this new technology. 

The implications of the results and suggestions for future research are discussed. 
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Chapter One 

 

Introduction 
 

 

Purpose Statement 

 

As automation and technology rapidly advance in our society, industries are researching 

and developing both the automation and user interaction with the automation. Recently, the 

automotive industry has experienced a significant amount of media attention for different 

companies’ attempts to build and introduce fully autonomous, driverless vehicles (i.e., no human 

driver). Research has investigated various factors influencing consumers’ willingness to use 

fully autonomous vehicles. However, little research has investigated the impact fully 

autonomous cars could have on other transportation industries, such as commercial aviation. 

When people choose a travel method (fly or drive), there are often several factors that affect their 

decision, such as personal characteristics/preferences, length of trip, price, etc. Therefore, the 

current research seeks to explore the relatively unknown area of identifying which factors 

influence a person’s preference for riding in an autonomous vehicle rather than flying on a 

commercial aircraft. This study consists of creating and validating a predictive model measuring 

participants’ choice of preferred travel method using several different personal factors, feelings 

toward traveling, and feelings toward new technologies. 

 

The current chapter discusses the background and rationale for this line of research, 

including operational definitions of all terms, research questions, and hypotheses to enhance 

understanding and future researchers interested in replicating the study. Furthermore, this chapter 

provides an overview of the significance offered by this study, as well as relevant limitations and 

assumptions that could significantly impact the findings and interpretations of this study. 
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Background and Rationale 

 

The introduction of fully autonomous vehicles onto public roads opens several avenues of 

research, and perhaps one of the most important is consumers’ acceptance and adoption of using 

this new technology. For years, vehicles have been increasing in their technology and automated 

operations, offering automated assistance ranging from passive lane departure warnings to active 

collision avoidance. Regardless of the automation level, humans have retained control of the 

vehicle, and drivers maintain awareness of the car and their environment throughout the entire 

trip. However, advancing research and development is poised to change the traditional 

interactions between humans and vehicles fundamentally. 

 

There are five levels of vehicle automation ranging from Level One – limited automation 

 

– to Level Five – full automation (i.e., no human driver). Prominent vehicle manufacturers, such 

as Waymo, Uber, Tesla, etc. have been furiously competing to safely push Level Five vehicles 

onto the market (NHTSA, 2016; Reimer, 2014). Most companies make similar claims regarding 

the capabilities of this new technology, such as operating on any road and in any conditions that 

a human driver could negotiate; however, without any input from a human driver. Importantly, 

a lot of research and development has focused on ensuring the vehicle can safely and efficiently 

maneuver in its environment while transporting passengers and interacting with other 

 
drivers/vehicles and pedestrians. However, research often fails to equally consider 

consumers’ behavioral intentions toward this new technology or the impact it will have on 

other transportation industries. 

 

One of the most significant transportation industries involves commercial aviation. 

While the industry is doing well right now, fully autonomous vehicles could potentially disrupt 

the entire industry if travelers choose to ride to their destination rather than fly. Flying presents 
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travelers with a stressful, time consuming, and often uncomfortable ordeal, as people navigate 

through traffic, airport security, and share personal space with a stranger. Flights that are only 

1-2 hours can often take the same amount of time if the person had just driven to their 

destination (i.e., 5-6 hours of trip time). Understandably, people don’t want to drive for 5-6 

hours straight; thus, the lesser of two evils become flying. However, the introduction of fully 

autonomous vehicles now presents a third, and perhaps better, option for travelers. 

 

If travelers don’t want to go through the hassle of flying commercially, but they also 

don’t want to drive for six hours straight, riding in an autonomous vehicle may provide the 

perfect solution. For the added convenience of traveling on your time schedule, stopping when 

you need to, having personal space, etc. travelers may even feel comfortable adding a few hours 

to their trip. Furthermore, since there is no need for a traditional setup inside autonomous 

vehicles, travelers may have a couch that pulls out to a bed and can sleep through the night 

while their car ferries them to their destination. Once at their destination, they now have a 

vehicle to use, whereas if they had flown, they would’ve had to rely on ridesharing services, 

public transportation, or a rental car. 

 

Previous research examined travelers’ opinions when asked to choose between using a 

driverless vehicle or commercially flying. Results indicated that almost 2/3 of participants would 

instead use a driverless car than fly for a midrange, 5-hour trip (Rice & Winter, 2018). Although 

plane tickets seem costly, airlines don’t make a significant amount of money off each flight (about 

$10-$20 off each ticket). If airlines start losing, for example, a conservative estimate of one out of 

every ten passengers, they could potentially experience significant financial detriments. To offset 

losing money, airlines may seek other means of increasing revenue, such as 
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increased ticket prices, higher fees for seat selection/baggage, reduced route options, etc., 

which may deter more customers. 

 

Problem Statement 

 

Although there is still some debate as to the exact date fully autonomous vehicles will be 

available, it is no longer a question of if but rather when. While many companies are focusing on 

research and development, not many industries or researchers are striving to understand the 

impact autonomous vehicles will have on the rest of the transportation industry. Therefore, the 

purpose of the current research is to understand better the impact that autonomous vehicles could 

have on the rest of the transportation industry, mainly commercial aviation. 

 

Unsurprisingly, the transportation industry relies heavily on travelers to make a profit; 

thus, it is very much at the mercy of the traveling public’s preferences. Right now, travelers 

tolerate commercial aviation because it is a necessary evil. Most people don’t choose commercial 

aviation because they enjoy the experience. Flying commercial involves arriving at the airport 

hours early, going through security, sharing personal space with a stranger, being cramped in a 

tiny chair for long periods, etc. Unfortunately, it’s the only reasonable method to travel long 

distances. Traveling via automobile is usually more comfortable because passengers have greater 

control over their experience. However, it can be exhausting, and therefore, dangerous to travel 

long distances, especially if the driver is alone or attempting to cover the entire range in one trip 

without stopping to rest. 

 

Therefore, people often choose to fly commercial when traveling long distances, but the 

introduction of fully autonomous vehicles could potentially disrupt the commercial aviation 

industry. To date, only one study has investigated the impact of fully autonomous vehicles on the 

commercial aviation industry (Rice & Winter, 2018); however, this study did not focus on 
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identifying predictors of passenger behavior. A better understanding of what type of traveler is 

most likely to choose to ride in an autonomous vehicle rather than flying on a commercial 

aircraft could provide crucial information for saving the commercial aviation industry and 

growing the driverless vehicle industry. This dissertation offers a basis for further understanding 

of the personal characteristics of travelers, which may influence their decision between one of 

two travel methods. 

 

Operational Definition of Terms 

 

1. Travel Method Preference refers to the participants’ preference for riding in a fully 

autonomous vehicle rather than flying in a commercial aircraft for a variety of 

different scenarios. This is measured from the average score on the Travel Method 

Preference Scale (see Appendix A). 

 
2. Age refers to the participant’s age measured in years. 

 

3. Gender refers to the social construct of the participant’s gender, either male, female, or 

a written response for ‘other.’ 

 
4. Social Class refers to the participant’s self-identified membership within a 

hierarchical social grouping based on wealth, education, occupation, income, etc.. 

 
5. Ethnicity refers to the participant’s self-identified ethnicity from the following options: 

1) Caucasian, 2) African descent (e.g., African American), 3) Hispanic descent (e.g., 

Latin America), 4) Asian descent, 5) India (not Asian), or 6) Other. 

 
6. Price refers to whether or not participants believe the cost of an airplane ticket is 

an essential factor for them. 
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7. Perceived Value refers to the participants’ perception of how much worth they believe 

autonomous vehicles provide. This is measured from the average score on the 

Perceived Value scale (see Appendix B). 

 
8. Familiarity refers to the participants’ familiarity with autonomous vehicles. This 

is measured from the average score on the Familiarity scale (see Appendix C). 

 
9. Fun Factor refers to how much entertainment or enjoyment participants believe they 

will experience with autonomous vehicles. This is measured from the average score on 

the Fun Factor scale (see Appendix D). 

 
10. Wariness of New Technologies refers to the participants’ fear of or hesitation in using 

new technology, such as autonomous vehicles. This is measured from the average 

score on the Wariness of new technologies scale (see Appendix E). 

 
11. Personality refers to five individual variables that represent aspects of the participant’s 

personality: Openness to Experience, Conscientiousness, Extraversion, Agreeableness, 

and Neuroticism. Each of these five personality traits is measured by the participants 

score on four questions of the Mini International Personality Item Pool (Mini-IPIP; 

Donnellan, Oswald, Baird, & Lucas, 2006). All five personality constructs are 

represented on the scale, for a total of 20 questions. 

 
12. General Vehicle Affect refers to the participant’s general emotional response to the 

hypothetical scenario about autonomous vehicles presented in the survey. This is 

measured from the average score on the General Affect scale (see Appendix F). 

 
13. General Airplane Affect refers to the participant’s general emotional response to the 

hypothetical scenario about commercial aircraft presented in the survey. This is 

measured from the average score on the General Affect scale (see Appendix F). 
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14. Vehicle External Comfort refers to the participants’ overall level of comfort while 

traveling in a vehicle, such as space and the ability to sleep (see Appendix G). 

 
15. Vehicle External Factors refers to the participants’ overall satisfaction level with 

external factors associated with traveling in a vehicle, such as schedule flexibility (see 

Appendix H). 

 
16. Airplane Comfort refers to the participants’ overall level of comfort while traveling in a 

commercial aircraft, such as space and the ability to sleep (see Appendix I). 

 
17. Airplane External Factors refers to the participants’ overall satisfaction level with 

external factors associated with traveling in a commercial aircraft, such as going 

through TSA security (see Appendix J). 

 

Research Questions 

 

1. RQ1: Are any basic demographic variables (age, gender, social class, and ethnicity) 

significant predictors of participants’ preferred travel method when controlling for 

all other variables? 

 
2. RQ2: Is price a significant predictor of participants’ preferred travel method 

when controlling for all other variables? 

 
3. RQ3: Are current consumer perceptions (perceived value, familiarity, fun factor, 

wariness of new technologies), significant predictors of participants’ preferred 

travel method, when controlling for all other variables? 

 
4. RQ5: Are any personality traits (Big Five), significant predictors of participants’ 

preferred travel method, when controlling for all other variables? 

 
5. RQ6: Is vehicle affect a significant predictor of participants’ preferred travel 

method when controlling for all other variables? 
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6. RQ7: Is airplane affect a significant predictor of participants’ preferred travel 

method when controlling for all other variables? 

 
7. RQ8: Is vehicle comfort a significant predictor of participants’ preferred travel method 

when controlling for all other variables? 

 
8. RQ9: Is vehicle external factors a significant predictor of participants’ preferred 

travel method when controlling for all other variables? 

 
9. RQ10: Is airplane comfort a significant predictor of participants’ preferred travel method 

when controlling for all other variables? 

 
10. RQ11: Is airplane external factors a significant predictor of participants’ preferred 

travel method when controlling for all other variables? 

 

Research Hypotheses 

 

Hypothesis 1 
 

 

H01: Demographic variables (age, gender, social class, and ethnicity) do not 

significantly predict participants’ preferred travel method when controlling for all other 

variables. 

 

HA1: At least one demographic variable (age, gender, social class, and ethnicity) 

will significantly predict participants’ preferred travel method when controlling for all 

other variables. 

 

Hypothesis 2 
 

 

H02: Price does not significantly predict participants’ preferred travel method 

when controlling for all other variables. 
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HA3: Price is a significant predictor of participants’ preferred travel method when 

controlling for all other variables. 

 

Hypothesis 3 
 

 

H03: Current consumer perceptions (perceived value, familiarity, fun factor, 

wariness of new technologies) do not significantly predict participants’ preferred 

travel method when controlling for all other variables. 

 

HA3: At least one current consumer perceptions (perceived value, familiarity, 

fun factor, wariness of new technologies) will significantly predict participants’ 

preferred travel method when controlling for all other variables. 

 

Hypothesis 4 
 

 

H04: None of the big five personality traits significantly predicts participants’ 

preferred travel method when controlling for all other variables. 

 

HA4: At least one of the big five personality traits is a significant predictor 

of participants’ preferred travel method when controlling for all other variables. 

 

Hypothesis 5 
 

 

H05: Vehicle Affect is not a significant predictor of participants’ preferred travel 

method when controlling for all other variables. 

 

HA5: Vehicle Affect is a significant predictor of participants’ preferred 

travel method when controlling for all other variables. 
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Hypothesis 6 
 

 

H06: Airplane Affect is not a significant predictor of participants’ preferred 

travel method when controlling for all other variables. 

 

HA6: Airplane Affect is a significant predictor of participants’ preferred travel 

method when controlling for all other variables. 

 

Hypothesis 7 
 

 

H07: Vehicle Comfort is not a significant predictor of participants’ preferred 

travel method when controlling for all other variables. 

 

HA7: Vehicle Comfort is a significant predictor of participants’ preferred 

travel method when controlling for all other variables. 

 

Hypothesis 8 
 

 

H08: Vehicle External Factors is not a significant predictor of 

participants’ preferred travel method when controlling for all other variables. 

 

HA8: Vehicle External Factors is a significant predictor of participants’ 

preferred travel method when controlling for all other variables. 

 

Hypothesis 9 
 

 

H09: Airplane Comfort is not a significant predictor of participants’ 

preferred travel method when controlling for all other variables. 

 

HA9: Airplane Comfort is a significant predictor of participants’ preferred 

travel method when controlling for all other variables. 
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Hypothesis 10 
 

 

H10: Airplane External Factors is not a significant predictor of 

participants’ preferred travel method when controlling for all other variables. 

 

H10: Airplane External Factors is a significant predictor of participants’ 

preferred travel method when controlling for all other variables. 

 

Significance of Study 

 

The push for integrating autonomous vehicles onto America’s public roadways has 

received a plethora of attention from different media outlets, research organizations, and 

consumer safety reports. However, all of these different avenues of investigation and 

information dissemination have yet to consider the impact autonomous vehicles could have on 

the commercial aviation industry. Currently, the commercial aviation industry is financially 

performing well. However, they have a historically low-profit margin per flight (McCartney, 

2018) and travelers don’t typically experience high levels of enjoyment from this mode of 

transportation (Kloppenborg & Gourdin, 1992; Nadiri, Hussain, Ekiz, & Erdogan, 2008; Young, 

Cunningham, & Lee, 1994). 

 

Several consumer reports have begun speculating as to the impact autonomous vehicles 

will have on the transportation industry. The overarching conclusion being that as autonomous 

cars become more available, affordable, and safe, travelers will increasingly choose them over 

other modes of transportation, mostly because of the increased comfort and convenience they will 

offer. On the other hand, only one scientific study has investigated the potential impact 

autonomous vehicles will have on the commercial aviation industry (Rice & Winter, 2018). 
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Therefore, the practical significance of the current research involves the exploration of 

factors potentially influencing travelers’ decision to choose one method of travel over the other. 

If enough travelers view autonomous vehicles as a preferred alternative mode of travel over 

commercial aircraft, then this could have tremendous negative implications for the success of the 

commercial aviation industry. The current study investigates factors that may predict travelers’ 

preferred travel method. The findings from this study can help both the autonomous vehicle 

industry and the commercial aviation industry better understand their customers and identify 

important factors to prioritize when building and maintaining customer support. However, as 

previously stated, this is a relatively unexplored area of research. Therefore, future research 

should replicate and build upon the current study to better understand travelers’ behavioral 

intentions between these two modes of transportation. 

 

Study Limitations and Delimitations 

 

Limitations 

 

Unfortunately, research is unable to account for every single possible variable and 

external factor; thus, there are a few limitations associated with the project. Potentially one of the 

most significant limitations is the fact that I collected data via an online convenience sampling 

technique from Amazon’s Mechanical Turk® (MTurk). I utilized MTurk because it provides 

researchers with access to a large pool of participants for a relatively small financial cost and is 

optimal for survey distribution. Fortunately, recent research has indicated that data collected 

from MTurk has reliability ratings comparable to traditionally collected laboratory data 

(Buhrmester, Kwang, & Gosling, 2011; Germine et al., 2012; Rice, Winter, Doherty & Milner, 

2017). 
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Another limitation associated with this research is that participants will receive monetary 

compensation for completing the survey. Paying participants to complete the survey may tempt 

them to rush through the questions so that they can finish and move on to the next task. The nature 

of this research assumes that participants are taking their time to understand the scenarios and 

provide thoughtful responses. Fortunately, MTurk attempts to mitigate some of this concern by 

providing a type of reliability rating for each participant that researchers can access. MTurk users 

who consistently provide thoughtful and careful responses to HITs (Human Intelligence Tasks) have 

higher reliability ratings than users who speed through tasks or provide inaccurate data (i.e., 

skipping questions, “Christmas-treeing” responses, guessing, etc.). To ensure high-quality data 

collection for this study, MTurk participants were required to have at least a 98% approval rating 

and have completed more than 100 HITs before completing the current survey. 

 

Furthermore, the nature of survey data means that it is almost entirely dependent upon 

self-reports, which relies on participants’ accuracy of self-awareness. Unfortunately, many 

external factors could influence participants’ response bias, thus affecting their responses. For 

example, if a participant was recently in a car crash, then their opinion of vehicles may be 

abnormally more negative than usual; however, the researchers are not privy to that 

information. Also, individuals may have varying understandings of the survey scale prompts, 

Agree, and Strongly Agree or the difference between them. Fortunately, the nature of online 

surveys also allows for large amounts of data collection, which helps minimize variance. 

 

Delimitations 

 

I placed certain boundaries upon the accessible participant population, background 

literature, procedures, and analyses. For the accessible population, only participants who are 18 

years of age or older and who have internet access were allowed to participate in the study; thus, 
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the results are not necessarily generalizable to younger travelers or those without internet 

access. Furthermore, because fully autonomous vehicles are not yet legal, we cannot ask 

participants about their past behavior or even conduct experimental in-person research. Instead, 

we must entirely rely on participants’ perceived behavioral intentions. 

 

Although participants have probably never traveled in a fully autonomous vehicle, I 

assumed that most people have probably experienced riding in modern cars and traveling via 

commercial aircraft; thus, they can make reasonable comparisons about their experiences. 

Furthermore, because this line of research is interested in participants' perceived behavioral 

intentions, we can collect data from potential travelers as well as people who have traveled in the 

past. Thus, there was no need to limit the survey to only people who indicated a history of 

traveling, as this research was also interested in future travelers’ behavioral intentions. 

 

Finally, several scales were either adapted or created for this particular research. Before 

scale creation, I conducted an extensive literature review to ensure there were no pre-existing 

instruments that could measure the same constructs within a reasonable time frame. Both I tested 

the adapted scales and the newly created scales for reliability and validity using Cronbach’s 

Alpha and Guttman’s split-half tests. All the results from these analyses indicated medium-high 

reliability and validity (see Table 1 for an overview of results and related appendices). 

 

Assumptions of Regression 

 

The current line of research utilizes multiple regression as the data analysis technique and 

model fitting, which allows for the creation and validation of a sound prediction model. As with 

any statistical procedure, there are certain assumptions of the data are required to ensure 

appropriate analysis. The assumptions for multiple regression are as follows: 
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1. There is one continuous dependent variable. 

 

2. There are two or more independent variables. 

 

3. Observations are independent. 

 

4. A linear relationship between the dependent variable and independent variables, 

individually and collectively. 

 
5. There is homoscedasticity in the data. 

 

6. There is no multicollinearity in the data. 

 

7. There are no significant outliers in the data. 

 

8. The residuals (errors) are normally distributed. 
 

 

The first two assumptions are concerned with study design and the design of the survey 

instruments representing the independent variables. For this study, there is only one dependent 

variable, travel method preference, thus satisfying the first assumption. Furthermore, there are 20 

independent variables, thus fulfilling the second assumption, as well. 

 

Assumption three states that the observations should be independent, meaning that the errors 

of each observation should not be correlated with each other (if they were then another type of 

analysis might be more appropriate). Independence of observations is tested using the Durbin-

Watson statistical output produced by SPSS or by assessing the scatterplot of the residuals. The 

residuals scatterplot can also assist with verifying the fourth assumption, which states that there 

should be a linear relationship between the independent variables and dependent variables, both 

individually and collectively. The fifth assumption is concerned with ensuring there is 

homoscedasticity in the data, which means that the variance of error terms should be similar across 

the values of the independent variables. A plot of standardized residuals versus 
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predicted values can show whether points are equally distributed across all values of the 

independent variables. 

 

The sixth assumption is concerned with ensuring there is no multicollinearity within the 

data, meaning that the independent variables are not highly correlated with each other. The 

presence of multicollinearity can be tested through SPSS using Tolerance/Variance Inflation 

Factor (VIF) values and correlation values. Assumption seven states that there should be no 

outliers in the data, as this can interfere with accurate regression analysis. Before analysis, I 

screened the data to identify any outliers. I removed these outliers from the final analysis (all 

data modified or removed from the final analysis will be stored in a separate folder so as not to 

be erased). Finally, assumption eight states that the residuals (errors) should be normally 

distributed. This assumption can be checked by comparing the residual plot to a superimposed 

normal curve or a P-P plot. 

 

Summary 

 

Chapter One identified the problem area that the current research addresses and outlines 

the background information and rationale behind the present study. To this end, I provide a 

detailed description of the study’s operational definitions, research questions, hypotheses, and 

practical significance. As with all research, acknowledgment of limitations and assumptions of 

the appropriate statistical procedure are highlighted. In the following chapter, a thorough 

description of relevant literature will be explored, thus providing rationale as to the inclusion of 

the independent variables as well as the adaption/creation of the scales used within the survey. 
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Chapter Two 

 

Review of Related Literature 
 

 

Introduction 

 

Understanding and reporting human behavior can be challenging compared to other 

disciplines because the primary objects of interest – humans – are continually changing and 

evolving. As technology and automation continue rapidly advancing in our society, 

particularly in the aviation and automotive industry, accurately interpreting and predicting 

consumers’ behavior will offer insights into the success or failure of these potentially 

competing industries. As autonomous vehicles grow in their capabilities, safety, and 

accessibility, they introduce the potential to disrupt the commercial airline industry, 

encroaching upon commercial aviation’s current customer base (Nishimoto, 2018; Rice & 

Winter, 2018). Previous research on user acceptance of autonomous automobiles has offered 

different definitions, models, and measures of acceptance; however, researchers have yet to 

consider the impact of the autonomous vehicle industry on the commercial aviation industry. 

 

The purpose of this dissertation is to understand better what type of person would choose 

to ride in an autonomous vehicle rather than fly in a commercial aircraft. Ultimately, my goal is 

to build a prediction model, which will assist researchers in understanding the different personal 

factors affecting a person’s decision when they must choose between two different, competing 

technologies. Previous research and rationale for each factor will be provided, in addition to the 

discussion of regression and prediction models, particularly for the research within this 

dissertation. 
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Sources 

 

Compilation of this literature review involved collating a variety of sources from two 

main search engines, Google Scholar and Embry-Riddle Aeronautical University’s Hunt 

Library portal, which allowed access to journals and databases not freely available on Google 

Scholar. Databases mined for the information included SpringerLink, ScienceDirect, IEEE 

Xplore, Sage, NIH NCBI, among others. Within these databases, I collected data from peer-

reviewed journal articles, books, conferences, papers/proceedings, and news reports. Keywords 

and phrases related to the research-specific variables were used, including gender, age, affect, 

wariness of new technology, technology acceptance model, fear of flying, autonomous vehicles, 

comfort while traveling, customer satisfaction, fun and modern technology, regression analysis, 

prediction models, and model fit. 

 

Dependent Variable: Preferred Travel Method 

 

For this study, the dependent variable will consist of participants’ preferred travel 

 

method, which indicates their level of preference for riding in an autonomous vehicle rather than 

flying on a commercial flight. However, it is essential to note that fully autonomous vehicles (no 

human involvement) are not yet legal. Thus participants will only be asked to indicate their 

perceived preferred travel method and will not be asked to ride in a fully autonomous vehicle or 

commercial airline flight. Travel method preference was measured using a scale created 

explicitly for this research, Travel Method Preference Scale (see Appendix A). I ran a pilot study 

to determine the reliability and validity of this scale, revealing a Cronbach’s alpha of .93, 

indicating high internal consistency and a Guttman’s split-half of .92, indicating high reliability. 
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Predictive Factors 

 

This dissertation considers 20 different factors that may significantly predict a 

participant’s preference for riding in a fully autonomous (driverless) vehicle. I considered these 

factors because the current line of research strived to build a prediction model that focused on 

personal factors related to the participant, rather than external factors outside of the participant’s 

control. These factors include age, gender, social class, ethnicity (individualistic and 

collectivistic), price, perceived value, familiarity, fun factor, wariness of new technology, 

personality (openness, conscientiousness, extraversion, agreeableness, and neuroticism), general 

vehicle affect, general airplane affect, vehicle comfort, vehicle external factors, airplane 

comfort, and airplane external factors. 

 

Consumer Travel Behavior 

 

The U.S. Department of Transportation recently released the 2017 National Household 

Travel Survey (NHTS), which contains the most comprehensive national household travel data 

since 2009, thus allowing insights into America’s current travel trends. While this survey 

provides a massive amount of data regarding travel behavior, perhaps one of the most interesting 

findings is the downward trend in trip rates per capita appears to be continuing, as compared to 

the previous surveys in 2009 and 2001 (Mcguckin, 2018; Polzin, 2018; U.S. Department of 

Transportation, 2018). While this particular survey did not investigate the reasons behind this 

continued downward trend (but suggested that future research further explore these trends and 

causal factors), it did provide information on other factors that may be influencing this 

downward trend in travel. 

 

In particular, advanced technology has allowed people to substitute traditional 

communication methods for a multitude of new behaviors, “such as teleworking, e-commerce, 
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social media networking instead of in-person social interactions, distance learning, and 

electronic transfer of documents, media, music, information, and more” (Polzin, 2018, para. 6). 

In general, people appear to be using technology and the Internet more to accomplish tasks 

previously completed in person, thus reducing long travel time. According to the survey, e-

commerce is growing exponentially, which could potentially account for the decline in Vehicle 

Miles Traveled (VMT; Polzin, 2018; U.S. Department of Transportation, 2018). 

 

Since people seem to be moving more toward online work, transactions, and 

communications, it will be interesting to see the effect that autonomous vehicles will have 

upon travelers’ behavior. If travelers are no longer tasked with actual driving, but can continue 

working, shopping, and communicating online, will the trend in VMT start revealing an 

increase? While autonomous vehicles may seem like transportation technology for the future, 

reputable vehicle companies, such as General Motors, Nissan, Toyota, and Tesla, have already 

been investing in research and development of autonomous vehicles for several years, if not 

decades (Eden, Nanchen, Ramseyer, & Evéquoz, 2017; Lavieri et al., 2017; Yadron, 2016). 

Many of these companies expect to have fully autonomous, self-driving vehicles on the roads 

within a few years. Tesla states all their vehicles “come standard with advanced hardware 

capable of providing Autopilot features today, and full self-driving capabilities in the future – 

through software updates designed to improve functionality over time” (Tesla, 2019, para. 1). 

 

Researchers developed a mathematical model (Bass diffusion) to predict ‘market 

penetration’ and ‘market saturation’ of fully autonomous vehicles using historical data on the 

adoption of hybrid electric cars and internet/cell phone adoption in the United States (Lavasani, 

Jin, & Du, 2016). This model assumes that autonomous vehicles will be available by 2025 and 

points out that market saturation occurs when 75% of U.S. households have purchased an 
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autonomous vehicle, which is forecasted to happen in 2059. A market analysis conducted by the 

Center for Automotive Research interviewed more than 25 senior technologists, automotive 

industry experts, academics, and government officials. The report concluded that 

 

technological change toward full automation is inevitable given market dynamics 

and social, economic, and environmental forces. It is considered that the 

marketplace (i.e., consumers) will be the engine pulling the industry forward. The 

transitions to [autonomous vehicles are] framed as a radical revolution in the way 

we interact with vehicles and the future design of roads and cities that will need 

several technological, regulatory, and societal factors to successfully align to be 

achieved. 

 

Clark et al., 2016, p. 11 
 

 

Autonomous vehicles offer the possibility of revolutionizing the way individuals travel 

and use their cars. If companies like Tesla are correct in their predictions of autonomous vehicle 

capabilities’, passengers may have the option of being chauffeured between origins and 

destinations in a demand-responsive manner. Tesla describes the feature of ‘Enhanced Summon,’ 

which allows the “car [to] navigate complex environments and parking spaces, maneuvering 

around objects as necessary, [and] come find you anywhere in a parking lot” (Tesla, 2019, para. 

3). With these capabilities, ridesharing services, such as Uber, Lyft, Zipcar, etc. could be 

operated with autonomous vehicle fleets (Lavieri et al., 2017). 

 

For example, a study conducted in Ulm, Germany, concluded that participants’ membership 

in the carsharing service, car2go, significantly increased their willingness to forego the purchase of 

a private car (Firnkhorn & Müller, 2011; Lavieri et al., 2017). More recently, 
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researchers surveyed 10,000 respondents on their acceptance of driverless vehicles and 

sociodemographic variables through a 94-item online questionnaire. Results indicated that 

scores on the questionnaire were explained through factors pertaining to the following variables: 

perceived usefulness of driverless vehicles, perceived ease of use, pleasure/fun in using 

driverless vehicles, familiarity with driverless vehicles, and being comfortable with technology 

(Nordhoff, de Winter, Kyriakidis, van Arem, & Happee, 2018). Many of these variables, and the 

aforementioned research, influenced the research design and variables investigated for the 

current study. However, it’s important to remember that autonomous vehicles are only one side 

of this debate over travelers’ preferred mode of transportation; thus, it’s equally important to 

consider commercial aviation travel, as well. 

 

Researchers have already begun acknowledging and investigating the impact that 

driverless vehicles could have on the commercial aviation industry (Fairs, 2015; Goldstein, 2017; 

Radfar, 2017; Rice & Winter, 2018). Representatives of large vehicle companies have stated that 

self-driving cars could disrupt the airline and hotel industries, particularly for short-haul flights, 

as the hassle of commuting to and from the airport will be eliminated (Fairs, 2015; Goldstein, 

2017; Radfar, 2017; Rice & Winter, 2018). Commercial aviation may experience this 

encroachment upon their customer base as travelers opt to ride in driverless vehicles rather than 

take a traditional short-haul flight. 

 

Currently, the commercial aviation industry seems to be experiencing a robust economic 

period as airlines are making meaningful profits within the United States (International Air 

Transport Association, 2018; Stalnaker, Usman, Taylor, & Alport, 2018). However, this increase in 

airline profit often results from an increased cost leveled at the consumer (Graham, 2018). For 

example, to maintain low airfares, and thus an adequate customer base, many airlines charge for 
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amenities that were once included, such as carry-on or checked luggage, onboard food, 

selecting seats, and boarding order. Furthermore, after the terrorist attacks of 9/11, airport 

security measures were increased significantly (although whether or not this increased safety is 

up for debate). This heightened security created an additional increase in travel time, in some 

cases doubling the actual trip time (Barros & Tomber, 2010; Rice & Winter, 2018). 

 

One previous study has begun quantitatively investigating the impact of driverless 

vehicles on the commercial aviation industry (Rice & Winter, 2018). Over 2,000 participants 

responded to an online survey detailing varying travel scenarios that differed in trip length time 

and asked participants to indicate if they would prefer to fly commercial or ride in an 

autonomous vehicle. In general, an increase in travel time positively correlated with an increase 

in the percentage of customers who would prefer to fly commercial. However, in all cases, when 

participants were told that they would need a vehicle at their destination, and flying commercial 

would require them to rent a vehicle at their destination, willingness to fly commercial 

decreased. In one scenario, the total travel time was 5 hours for both the drive and the flight. 

When participants had to rent a vehicle at their destination, only 26% of participants indicated 

that they would still want to fly commercial (Rice & Winter, 2018). 

 

To date, the study mentioned above is the only research quantitatively investigating the 

impact of driverless vehicles on the commercial aviation industry, particularly with a focus on 

consumer traveler behavior. Thus, there is a wide range of variables explored in the current 

research, as this still an incredibly new field that research has yet to determine influencing 

factors. However, the technology and advancements within the automotive industry are 

continuing to advance – regardless of whether or not there is comprehensive consumer behavior 

research and information. Therefore, it’s vital to continue exploring what factors will influence 
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future customers’ decisions when asked to choose between flying commercial or riding in an 

autonomous vehicle 

 

Automated Vehicles 

 

Technological advancements have been growing exponentially in modern society, 

particularly within the automotive industry, with the advent of automated, driverless cars. 

Automated ground vehicles offer many benefits, including increased safety (Bansal, Kockelman, 

 

& Singh, 2016; Diels, 2014; Fagnant & Kockelman, 2015; Manyika et al., 2013; Maccubin et 

al., 2008). There were over 37,000 fatalities from vehicle crashes in 2016 alone (National 

Highway Transportation Safety Administration [NHTSA], 2016), which are often due to human 

error (NHTSA, 2015). 

 

Autonomous vehicles are those where the full-time performance is undertaken 

by an automated driving system for all aspects of the dynamic driving task, 

which includes the operational (steering, braking, accelerating, monitoring the 

vehicle and roadway) and tactical (responding to events, determining when to 

change lanes, turn, use signals, etc.) aspects of the driving task under all roadway 

and environmental conditions that can be managed by a human driver. 

 

Meng et al., 2018, p. 105 
 

 

Depending upon the manufacturer, fully autonomous vehicles maneuver through the 

environment using a few different mechanisms; however, all Level 4 systems – and the majority of 

Level 3 – acquire and maintain situational awareness and “self”-awareness (Jo, Kim, Kim, Jang, & 

Sunwoo, 2014; Karagiannis et al., 2011). Maintaining active situational awareness and self-

awareness is often achieved through two main procedures, localization and mapping or 
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simultaneous localization and mapping (Elbanhawi, Simic, & Jazar, 2015; Meng et al., 2018). 

Thus, facilitating road lane following and obstacle avoidance (Alves de Lima & Victorino, 

2016). 

 

Previous research has identified ten different levels of automation within the industry that 

range from full human involvement (Level One – No Automation) to no human involvement 

(Level Ten – Full Automation). According to the NHTSA, there are six different levels of 

automated vehicle systems that range from providing simple driver assistance to controlling the 

majority of driving functions (NHTSA, 2016; Reimer, 2014). 

 

The first, Level 0, is classified as ‘No Automation’ because the driver must perform all 

driving-related tasks without help from the technological system. Level 1 is classified as ‘Driver 

Assistance’ because the driver still completes all driving-related tasks; however, the driver may 

receive some assistance from the technology, such as forward collision warning, lane departure 

warning, and blind-spot alerts (NHTSA, 2016; Reimer, 2014). However, vehicular systems 

within this level do not offer any automated assistance, so the driver must remain alert and in 

control at all times. Level 2 systems include ‘Partial Automation,’ which combines some 

automation functions, like adaptive cruise control, imminent collision braking, and lane-keeping; 

however, the driver is still expected to maintain awareness and responsibility for the vehicle 

(Reimer, 2014). 

 

Level 3 automated systems contain ‘Conditional Automation’ because they encompass two 

or more functions that tend to be slightly more advanced than the versions offered with Level 2 

automation (NHTSA, 2016). For example, some vehicles provide lateral and longitudinal control of 

the vehicle in traffic jams or on highways (Rajamani, Tan, Law, & Zhang, 2000; Reimer, 2014). 

Vehicles with Level 3 automated systems will provide some self-driving 
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features and allow the driver to delegate full control of all critical operational functions to the 

computerized system. Mostly, the human driver will not have to maintain constant awareness of 

the system or roadway while driving but will still retain the option to manually take over, if they 

wish – or if the environment is not appropriate for Level-3 driving (Reimer, 2014). 

 

Drivers can expect to see ‘High Automation’ within Level 4 systems meaning that the 

vehicle will be capable of performing the majority of critical driving functions under certain 

conditions (NHTSA, 2016). Those situation-dependent conditions will vary among 

manufacturers, such as weather, road terrain, traffic, etc. Finally, Level 5 automation will consist 

of ‘Full Automation,’ such that the vehicle is entirely capable of performing all driving-related 

functions without any input from the driver. The interior of cars at this stage of automation may 

look altogether different from our vehicle interiors today. There will no longer be a need for the 

setup we currently have in vehicles (i.e., front seat/back seat configuration, steering wheel, 

dashboard, etc.). 

 

Instead, level five vehicles may resemble luxurious train cars or private jets, such as Volvo’s 

360c. This car conceptualizes “passengers entering through a wide gullwing door, which could lead 

to a spacious living room setup with a seat that can convert to a bed, or a mobile conference room 

with an interactive table and coffee makers…and the windows double as augmented reality displays” 

(Nishimoto, 2018, para. 3). The interior design will resemble social, work, and entertainment spaces 

allowing the passenger to engage in non-driving tasks, such as checking emails, reading books, 

watching movies, face to face conversations, etc. (Diels, 2014). When questioned, individuals noted 

several positive attributes of driverless vehicles. Driverless vehicles have improved fuel efficiency, 

shorter journey times, and in some cases, increased 
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productivity because the passenger(s) no longer has to monitor the external environment (Clark, 

Parkhurst, & Ricci, 2016). 

 

While the automotive industry has steadily researched and developed autonomous 

vehicles, as of now, it is still illegal to operate a fully autonomous vehicle on public roadways. 

At the federal level, the NHTSA has published a ‘preliminary statement of policy concerning 

automated vehicles’ (NHTSA, 2015) after multiple states requested clarification and guidance 

on conducting safe trials of automation vehicles on public roads. Within this legislation, NHTSA 

focused on three main areas of 

 

technological development: 1) in-vehicle crash avoidance systems (either 

warning the driver or involving automation to control the vehicle), 2) vehicle to 

vehicle communications (developed for crash avoidance), and 3) self-driving 

vehicles, [which] are view viewed along a continuum of automation, 

 

Clark et al., 2016, p. 10 
 

 

similar to the hierarchy of automation published by the Society of Automotive Engineers 

International (2014). While these features increase safety and consumer confidence within 

fully autonomous vehicles, there are still several different personal factors potentially 

influencing consumers’ decision-making process. 

 

Personality 

 

Our personality can often play a significant role in our perceptions, feelings, and, 

ultimately, the adoption of new technology. The Big Five personality scale (or OCEAN) is a 

widely used tool for measuring different aspects of peoples’ personalities because it facilitates 

the prediction of behavioral intentions and offers the rationale behind people’s actions. This scale 
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is composed of the components, Openness to experience, Conscientiousness, Extraversion, 

Agreeableness, and Neuroticism, of which participants score along a continuum indicating their 

propensity to display that trait. 

 

Previous research has investigated participants’ “perceptions of user acceptance of, 

concerns about, and willingness to buy AV [autonomous vehicle] technology” (Clark et al., 

2016, p. 17). However, personality traits only weakly correlate with these different perceptions 

of autonomous vehicles (Clark et al., 2016; Kyriakidis, Happee, & de Winter, 2015). On the 

other hand, research has also demonstrated that individuals with high levels of Extraversion are 

often more likely to have high levels of initial trust in a machine, which can positively 

influence behavioral intentions (Merritt & Ilgen, 2008). Therefore, the literature cannot 

definitively state that personality will affect consumers’ decisions in one direction as 

personality may or may not influence participants’ decision-making process. 

 

Gender 

 

While differences between males and females are not as vast as scientists once believed, 

there are still important distinctions between these two genders, particularly regarding their 

decision-making process. The majority of our knowledge regarding gender differences in 

decision-making comes from the financial and economic domain (Charness & Gneezy, 2012; 

Fonseca, Mullen, Zamarro, & Zissimopoulos, 2012; Francis, Hasan, Park, & Wu, 2014; Powell 

 

& Ansic, 1997). Researchers studied these differences before the field of psychology began 

equally representing female participants (Liu & Mager, 2016). However, subsequent research 

in other areas has continued to explore gender differences, thus replicating and supporting 

several previous findings. 
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In general, women tend to be more risk-averse than men. When faced with an identical 

situation, women tend to choose the safer outcome (Borghans, Heckman, Golsteyn, & Meijers, 

2009; Byrnes, Miller, & Schafer, 1999; Charness & Gneezy, 2012; Fehr-Duda, de Gennaro, & 

Schubert, 2006; Rice & Winter, 2019). Scientific literature has replicated this finding on 

financial decision-making, lifestyle choices, social situations, etc. For example, previous 

research demonstrates that when participants rate their perceived willingness to fly on 

autonomous aircraft (Rice & Winter, 2019), undergo robotic dentistry (Anania et al., 2018b), 

or walk across the street in front of a driverless vehicle (Winter et al., 2019), women responded 

with significantly lower rates of perceived willingness than men. 

 

However, it’s important to note that the research mentioned above contains the 

underlying assumption that the hypothetical scenario presented to participants entails a certain 

level of risk (i.e., participants did not read completely harmless situations). Previous research 

indicates that flying in a commercial aircraft represents a certain level of risk (Clemes, Gan, 

Kao, & Choong, 2008; Mehta, Rice, Winter, & Eudy, 2017). “Male passengers were more 

satisfied with the safety and security dimensions than female passengers” (Clemes et al., 2008, p. 

59). Interestingly, researchers do not fully understand why women tend to make more risk-

aversive choices, although evolutionary psychology has proposed a plausible cause. 

 

While researchers cannot empirically test theories generated from evolutionary psychology, 

they do attempt to provide some iota of an explanation into human behavior. This research can be 

beneficial as people are notoriously bad at accurately explaining all the factors affecting their 

behavior and decisions (Donaldson & Grant-Vallone, 2002; Paulhus & Vazire, 2007). Often, when 

participants subjectively recount their motivations, thoughts, and desires, they fail to account for or 

misrepresent the impact of specific stimuli (Lelkes et al., 2012; Paulus 
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& Vazire, 2007). Thus, researchers can only account for a piece of the whole picture, which 

usually results in researchers seeking out objective ways to collect as much information as 

possible. 

 

Historically, during our species’ hunter-gatherer days, women typically stayed near the 

home, foraging for vegetables and fruit and caring for the children, while the men ventured out to 

hunt for wild game (Trivers, 1972). Thus, women were not exposed to as many potentially risky 

situations as men and often erred on the side of caution. Furthermore, because women were 

mostly in charge of childcare, they were predisposed to making safer choices, which would 

hopefully ensure the safety and survival of their offspring – and the continuation of their family 

(Buss, 2003; Harris, Jenkins, & Glaser, 2006). On the other hand, men were often faced with 

unavoidable risky scenarios as they traveled through uncivilized terrain and hunted wild game. 

 

Evolutionarily, our modern environment and technology are still incredibly new, and our 

brains have not yet evolved, meaning that we still have the same mind as our hunter-gatherer 

ancestors (Kaas, 2013; Neubauer, Hublin, & Gunz, 2018). Therefore, in general, women tend to 

be predisposed to making relatively safer choices compared to men, and previous research has 

indicated that men show more positive perceptions of advanced technology like autonomous 

vehicles (Byrnes et al., 1999; Kyriakidis et al., 2015; Payre, Cestac, & Delhomme, 2014). 

However, it’s important to note that while gender could influence someone’s behavior, there are 

also a lot of other causal factors that could interfere with someone’s decision-making process, 

regardless of gender. 

 

Age 

 

In American society, a person’s age typically represents specific actions someone may 

not accomplish. For example, citizens can’t legally drink until they are 21 years old, and citizens 

30 



 
can’t legally drive by themselves until they are 18 years old. As we get older, we often lose 

privileges, such as living independently or driving ourselves. While many of these age-related 

barriers stem from legitimate reasons (for example, more drivers in their mid-60s and older start 

experiencing fatal vehicular crashes; Li, Braver, & Chen, 2003; NHTSA, 2015), they often result 

in limiting older individuals’ freedom and mobility. Cessation of driving due to age-related 

obstacles (i.e., slower reaction time, poor eyesight, reduced mobility, etc.) often leads to an 

increased reliance on the assistance of others or increased isolation. Increased isolation can also 

exacerbate depression symptoms (Marottoli et al., 1997; Ragland, Satariano, & MacLeod, 2005). 

Therefore, older people may view autonomous vehicles as avenues to help maintain or increase 

levels of autonomy and freedom because they no longer have to rely on another person to drive 

them (Harper, Hendrickson, Mangones, & Samaras, 2016; Howard & Dai, 2014). 

 

Furthermore, financial means often increase as we age, as well, making it more feasible to 

purchase new technology that may help maintain or increase our freedom and mobility, such as 

automated, driverless vehicles (Reimer, 2014). On the other hand, previous research has indicated 

that older adults express higher levels of satisfaction when flying commercial aviation than younger 

adults (Clemes, Gan, Kao, & Choong, 2008). However, it’s important to note that financial freedom 

again plays a vital role as older adults may be able to afford flying with higher quality airlines or to 

pay for upgrades, which positively enhances their overall experience. 

 

In contrast, younger people, especially those living in urban areas, were more likely to 

have positive perceptions of autonomous vehicles compared to other groups (Hulse, Xie, & 

Galea, 2018). Recent research investigated the effect of age on participants’ perception of risk of 

different types of vehicles, finding that younger participants viewed vehicles as riskier than older 

participants (Hulse et al., 2018). However, this effect disappeared when the participants were 
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prompted with risk perceptions of an autonomous vehicle, perhaps because none of the groups 

had any experience with autonomous cars; thus, there were no preconceived notions of potential 

risk (Hulse et al., 2018). Therefore, the current study will consider age as a predictive factor; 

however, the literature is still undecided as to the direction of the relationship between age and 

perception of using an automated vehicle. 

 

Ethnicity 

 

Unsurprisingly, the environment and society can often have a significant impact on our 

worldview and our mentality. Researchers categorized societies according to different aspects of 

their culture. Culture is “the collective programming of the mind that distinguishes the members 

of one group or category of people from others” (Hofstede, 2011, p. 3). Primarily, it describes a 

group of people in general terms as characteristics of individuals are often displayed along a bell 

curve. Thus the majority of individuals that fall along the middle make up the characteristics of 

that culture (Hofstede, 2011). Certain aspects of our culture, such as societal and national 

norms, are more deeply rooted in the human mind. These aspects have a more significant effect 

on our behavior than other elements, such as the culture found within our occupation, different 

hobbies, pop culture, etc. (Hofstede, 2011). 

 

Previous research divided national cultures into individualistic or collectivistic dimensions 

along a scale (Hofstede, 2011). This scale “relates to the integration of individuals into primary 

groups” (Hofstede, 2011, p. 8). In individualistic cultures, people are often focused on their 

immediate wellbeing and potentially the wellbeing of their immediate family. They tend to focus on 

promoting themselves and achieving individual success without considering the needs or what is best 

for overall group success. On the other hand, citizens of collectivistic cultures are more integrated 

with each other, and there are often large, extended family units who 
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are incredibly loyal to each other and focus on promoting the success of the overall 

group without concern for individual desires (Hofstede, 2011). 

 

Western cultures (e.g., the United States of America and Europe) tend to identify more 

strongly with Individualism as compared to Eastern communities (e.g., Asia and the Middle East), 

which tend to identify more strongly with Collectivism. Ethnographical research indicates that 

ethnicity influences people’s emotional reactions and behavioral intentions toward autonomous 

technology (Mehta et al., 2017; Srite & Karahanna, 2006). In particular, participants from 

collectivistic societies tend to be more trusting of new technology and are more likely to use the 

latest technology, especially if it could potentially benefit the rest of their community (Haboucha, 

Ishaq, & Shiftan, 2017; Hofstede, 1980, 2001; Markus & Kitayama, 1991; Mehta et al., 2017). On 

the other hand, people from individualistic societies tend to be less trusting of new technology and 

less willing to use the latest technology, regardless of whether or not it offers societal-wide benefits 

(Hofstede, 1980, 2001; Markus & Kitayama, 1991; Mehta et al., 2017). 

 

While ethnicity and culture are two separate concepts, previous research has indicated 

they are strongly related, with ethnic identity acting as an essential determinant of cultural 

norms, values, and preferences (Desmet, Ortuño-Ortín, & Wacziarg, 2017). Therefore, the 

currents study asks participants to provide their ethnicity and categorized as individualistic or 

collectivistic. The categorization of cultures is following Hofstede’s list of countries and their 

classification of individualism or collectivism (Hofstede & Bond, 1984). However, it is essential 

to note that other factors, such as individuals’ income, have been shown to influence levels of 

individualism and collectivism, thus prompting the need for exploration of additional factors. 
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Social Class 

 

Several different variables comprise the overarching category of social class or 

socioeconomic status (SES), such as income, education level, type of employment, etc. (Ames, 

Go, Kaye, & Spasojevic, 2011). As a whole, these variables may influence a person’s 

willingness to use or acceptance of technology, particularly new or potentially risky technology. 

Sociologists often define social class as a group of individuals within a society that share similar 

features related to their economic status, such as income (adjusted for cost of living), education, 

job type, neighborhood type, etc. 

 

There is some debate as to the exact breakdown of social classes within America; 

however, the majority of experts agree that there are five main categories: Upper Class, Upper 

Middle Class, Lower Middle Class, Working Class, and Lower Class (Poor). According to the 

Pew Research Center, 19% of American adults comprise Upper Class with annual household 

income more than double the national median (Elkins, 2019; Kochhar, 2018). Previous research 

has indicated that those within higher social classes tended to view technology more positively 

and have considerably more experience using technology than other groups (Maldifassi & 

Canessa, 2009; Porter & Donthu, 2006). Although several different factors comprise social class, 

previous research has demonstrated that income can impact awareness and acceptance of 

technology. 

 

While income itself is a relatively straightforward factor, it can significantly influence 

peoples’ perceptions and behavioral intentions. In particular, individuals with high levels of self-

reported income seem to be the most receptive to using new technologies and reflects actual 

usage behavior (Choi & DiNitto, 2013; Junco, Merson, & Salter, 2010). Individuals with higher 

incomes may have easier access to new technology, thus increasing their familiarity and 
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perceived usefulness of the technology, which positively influences their acceptance and usage 

of the technology (Davis, 1989). 

 

The majority of research considering the impact of income on technology use and 

adoption has focused on differential rates of Internet subscriptions and use. Research suggests 

that the cost to access to the Internet, along with other demographic factors, significantly 

influences participants’ likelihood of using the Internet, such that individuals with lower income 

are less likely to use Internet technology (Greenhow, Walker, & Kim, 2014; Jensen, King, 

Davis, & Guntzviller, 2010; Junco et al., 2010; Porter & Donthu, 2006). 

 

Results from exploring the relationship between Internet subscription and actual usage 

behavior may extrapolate to other new technologies, such as autonomous vehicles; and a few 

studies have investigated the influence of participants’ income on their perceptions of 

autonomous vehicles (Nordhoff et al., 2018; Howard and Dai, 2014; Levin & Boyles, 2019). 

Regarding acceptance and use of new technology, individuals’ income typically represents a 

significant predictor of participants’ preference as those with higher levels of income indicated a 

higher perceived likelihood of using autonomous vehicle technology (Nordhoff et al., 2018; 

Howard and Dai, 2014; Levin & Boyles, 2019). Because higher income is associated with upper-

level social classes, a participants’ self-identified social class may influence their thoughts about 

new technology. However, it’s important to note that there are still many other factors 

potentially affecting participants’ acceptance of modern technology. 

 

Technology Acceptance 

 

While autonomous vehicles are increasing in their sophistication, the availability of 

technology is not always positively correlated with consumer acceptance and usage of 

technology. For example, consider the unfortunate fates of highly-touted technological products, 
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such as Google Glass, Sony Betamax, and Microsoft Zune, to name a few (Gilbert, 2019). 

Previous research has investigated different theories of human behavior regarding the 

acceptance of new technology (Ajzen, 1991; Legris, Ingham, & Collerette, 2003; Davis, 1985; 

Venkatesh, Morris, Davis, & Davis, 2003). The Unified Theory of Acceptance and Use of 

Technology (UTAUT) explores and identifies several factors affecting a person’s behavioral 

intentions and actual acceptance and use of new technology (Venkatesh et al., 2003). 

 

The UTAUT resulted from a comprehensive review and synthesis of several theoretical 

models exploring participants’ behavioral intentions and actual behavior. These models included 

the Theory of Reasoned Action, the Technology Acceptance Model, the Theory of Planned 

Behavior, and the Model of Personal Computer Utilization (Ajzen, 1991; Davis, 1989; Davis, 

Bagozzi, & Warshaw,1989; Fishbein & Ajzen, 1975; Thompson, Higgins, & Howell, 1991; 

Venkatesh et al., 2003). These models explain participants’ acceptance and use of information 

systems and information technology. The aforementioned models explained between 17% - 70% 

of the variance in behavioral intentions (Venkatesh et al., 2003). 

 

One of the main factors that separate the UTAUT from other models is that it contains four 

key elements (performance expectancy, effort expectancy, social influence, and facilitating 

conditions). Venkatesh and colleagues (2003) have identified performance expectancy as the extent 

to which consumers believe using a particular technology will provide them with benefits in 

completing a specific activity. Effort expectancy is the level of physical or mental effort the users 

think they will have to exert while using the technology. Social influence entails the extent to which 

consumers believe that their peer group (e.g., friends or family) will find a technology beneficial 

and express a desire or likelihood also to use the technology. Facilitating conditions 

 
 

 

36 



 
refer to the consumers’ perceptions of the support services offered in conjunction with 

the technology in the case of a problem or failure (Venkatesh, Thong, & Xu, 2012). 

 

Also, the model includes four moderators (gender, age, experience, and voluntariness), 

which help add predictive power (Dwivedi, Rana, Jeyaraj, Clement, & Williams, 2017; 

Venkatesh et al., 2003). However, these moderators are often used on a case by case basis as 

they are not always relevant for every situation. For example, if a company mandates that 

employees must use a specific piece of technology, then voluntariness as a moderator is not 

particularly applicable. Some factors that evolved from the Technology Acceptance Model 

include individuals’ perceived usefulness of the new technology (i.e., performance 

expectancy) and perceived ease of use of the latest technology (i.e., effort expectancy). 

 

Perceived usefulness is “the degree to which a person believes that using a particular 

system would enhance his or her job performance” (Davis, 1989, p. 320). Technology with 

a high degree of perceived usefulness provides the user with some type of desired 

advantage, performance, or service. Previous research indicates that a person’s perceived 

performance highly correlates with actual system usage (Robey, 1979). 

 

Perceived ease of use is “the degree to which a person believes that using a particular 

system would be free of effort” (Davis, 1989, p. 320). While people are often willing to work 

harder for services or products they desire, this usually occurs through a cost-benefit analysis. 

 
When determining whether or not to use new technology, if it will cost us more resources 

(e.g., time, money, mental/physical effort, etc.) than we’ll gain, we often choose not to use the 

technology. 
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Earlier studies attempting to predict users’ acceptance of new technologies using these 

different factors have consistently found significant results from using a mixture of these different 

models (Larue, Rakotonirainy, Haworth, & Darvell, 2015; Henzler, Boller, Buchholz, 

 
& Dietmeyer, 2015; Osswald, Wurhofer, Trösterer, Beck, & Tscheligi, 2012; Rahman, Lesch, 

Horrey, & Strawderman, 2017). Recently, researchers used a combination of these different 

 

models to measure participants’ acceptance of using Adaptive Driver Assistance Systems 

(ADAS), such as lane assist, collision avoidance, adaptive cruise control, etc. Results 

indicated that attitude, perceived usefulness, perceived ease of use, performance expectancy, 

and effort expectancy were all significant predictors of participants’ behavioral intention 

(Rahman et al., 2017). 

 

A comparison of predictive ability among the different models indicated that TAM (Davis, 

1985) exhibited the highest adjusted R
2
, performing better than the TPB and the UTAUT (Rahman 

et al., 2017). While comprehensive, these published scales were too lengthy for the current research, 

potentially causing survey fatigue, which can lead to corrupted data. Thus, to measure the different 

aspects that were consistent throughout the aforementioned models, the study utilized shortened 

scales that encompassed participants’ familiarity with the technology, perceived value of the 

technology, and anticipated fun factor (i.e., enjoyment from using) of the new technology. 

Researchers previously validated these scales; however, the statements changed to reflect the 

appropriate scenario presented in the current dissertation. Before implementation, I validated the 

scales’ internal consistency and reliability and reported the results in Table 1. 

 

Perceived Value 

 

According to the Technology Acceptance Model and the Unified Theory of Acceptance 

and Use of Technology, participants’ perceived usefulness of technology is a strong predictor of 
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actual user behavior. An individuals’ perceived value often determines usefulness in a particular 

product or service. The perceived value represents “the consumer’s overall assessment of the 

utility of a product based on perceptions of what is received and what is given” (Zeithaml, 1988, 

p. 14). This concept often contains different aspects that either have utilitarian (functional 

values, efficiency values, economic values, etc.) or hedonic (recreational values, aesthetic 

values, playfulness values, etc.) features within the product or service (Mathwick, Malhotra, & 

Rigdon, 2001; Jones, Reynolds, & Arnold, 2006; Chai, Malhotra, & Alpert, 2015). 

 

For this dissertation, I used a five-statement Likert-scale which had ratings from Strongly 

Disagree (-2) to Strongly Agree (2), with a neutral option of 0. The statements on this scale were: 

 
1) I think driverless vehicle technology is useful, 2) A driverless vehicle would be something 

valuable for me to own, 3) There would be value in using a driverless vehicle, 4) If driverless 

vehicles were available, I think it would be beneficial to use one, and 5) A driverless vehicle 

would be beneficial to me. I provide the relevant psychometrics for this scale in Appendix B. 

 

The majority of the statements on this scale relate to ways that participants may infer or 

perceive the driverless vehicle to benefit them in some manner or provide some type of value. 

Intuitively, if a person believes that a technological product has a high value, they will 

probably be more likely to use the technology (Venkatesh et al., 2003; Davis, 1989; Turel, 

Serenko, & Bontis, 2007). While the concept of ‘value’ can be somewhat vague, research has 

focused on aspects, such as monetary, emotional, social, and performance dimensions 

associated with the technology, indicating that consumers’ perceived value of technology 

significantly affects their intentions to use the technology (Turel et al., 2007). 

 

Also, marketing and consumer behavior researchers have found various constructs related to 

hedonic motivation (i.e., enjoyment or perceived value) are essential predictors of consumers’ 

39 



 
technology use (Brown & Venkatesh, 2005; Holbrook & Hirschman, 1982; Nysveen et al., 

2005). Consumers often use judgments of perceived value to make a comparison within and 

across products (Oliver, 1997). However, it’s important to note that perceived value often 

influences a person’s experience with the technology. For example, age is often a significant 

predictor of users’ acceptance of smartphone technology because younger people have grown 

up with this technology and have more experience with smartphones than older people; thus, 

they are more familiar with the technology (Fozard & Wahl, 2012; Kang et al., 2010; Klimova 

& Poulova, 2018). 

 

Familiarity 

 

Previous research on consumer behavior has investigated the impact of familiarity with a 

specific product or task. As a person’s experience and knowledge about a product increase, this 

leads to the development of mental heuristics, which facilitate the decision-making process (Alba 

& Hutchinson, 1987; Bozinoff, 1981; Kinard, Capella, & Kinard, 2009). Familiarity may be 

described as our acknowledgment and comprehension of an external stimulus, whether that’s 

another person or a piece of machinery. Familiarity is often associated with a positive 

connotation; however, being familiar with something does not always guarantee that we 

experience positive feelings or that we trust the external stimulus to act appropriately. 

Furthermore, if you are unfamiliar with an external stimulus, then you may also be less likely to 

trust the system as you are unsure of its reliability and any potential risk factors. Therefore, 

familiarity with a system can have a significant impact on a user’s propensity to trust and use the 

system. 

 

While there are many different forms of trust (Kramer, 1999), previous research has 

identified two types that significantly influence human-machine interactions, dispositional trust, 
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and history-based trust (Merritt & Ilgen, 2008). Dispositional trust is more generalizable 

because it encompasses our level of trust in other persons or machines upon our first encounter 

before a significant interaction even occurs (Kramer, 1999; Merritt & Ilgen, 2008). On the other 

hand, history-based trust establishes as we experience more interactions between ourselves and 

the other person – or machine. Both our preconceived notions about someone else or a piece of 

machinery, and our continued interactions can influence our propensity to trust the external 

system. 

 

Research suggests that if a person is more familiar with a particular 

situation/product/task, and they’ve had positive experiences, this may increase positive 

emotional responses and correlates with behavioral intentions (Gefen, 2000). Furthermore, a 

survey investigating public opinion regarding driverless vehicles found that participants’ who 

reported higher levels of familiarity with autonomous vehicles correlated with increased 

expectations of safety benefits and a more efficient fuel economy. Participants with high levels 

of familiarity were less concerned over learning how to use an autonomous vehicle, “and less 

concerned about self-driving vehicles moving around while unoccupied…and they were more 

interested in having this technology on their vehicle(s)” (Schoettle & Sivak, 2014, p. 20). 

 

For this dissertation, I used a five-statement Likert-scale which had ratings from Strongly 

Disagree (-2) to Strongly Agree (2), with a neutral option of 0. The statements on this scale were: 

 
1) Driverless vehicles have been of interest to me for a while, 2) I have a lot of knowledge about 

driverless vehicles, 3) I have read a lot about driverless vehicles, 4) I know more about driverless 

vehicles than the average person, and 5) I am familiar with driverless vehicles. I provide the 

relevant psychometrics for this scale in Appendix C. 
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Fun Factor 

 

As previously noted, hedonic motivation can significantly influence consumers’ 

willingness and intentions to use a product. Specifically, the perceived level of enjoyment or fun 

they will experience while using technology predicts behavioral intentions. Research 

investigating factors that would predict participants’ acceptance of driverless vehicles 

discovered that individuals’ “gave high ratings for thinking that they would enjoy taking a ride 

in a driverless vehicle…[and] higher ratings for believing that people important to them would 

like it when they use driverless vehicles” (Nordhoff et al., 2018, p. 5). 

 

On the other hand, individuals reporting on their use of ADAS, such as Adaptive Cruise 

Control noted that they experienced “feelings of losing control as well as reduced autonomy and 

competence” (Eckoldt, Knobel, Hassenzahl, Schumann, 2012; Meschtscherjakov et al., 2015, p. 

2414). Furthermore, additional research has shown that as autonomy increases within vehicles, 

drivers/passengers experienced decreased perceived enjoyment, as well (Meschtscherjakov et 

al., 2015; Rödel, Stadler, Meschtscherjakov, & Tscheligi, 2014). Therefore, it’s important to 

note that participants’ perceived fun or enjoyment can affect their willingness to ride in a 

driverless vehicle. Participants may view driverless cars as more fun (potentially because of the 

new technology) or being less fun (because they are no longer in control). 

 

For this dissertation, I used a five-statement Likert-scale which had ratings from Strongly 

Disagree (-2) to Strongly Agree (2), with a neutral option of 0. The statements on this scale were: 

 
1) I am interested in trying out a driverless vehicle, 2) I like the idea of driverless vehicles, 3) I 

think it would be cool to use a driverless vehicle, 4) I've always wanted to use a driverless 

vehicle, and 5) I think it would be fun to use a driverless vehicle. See Appendix D for relevant 

psychometrics of this scale. 
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Wariness of New Technology 

 

Technology-wise, Western society has developed more in the last 50 years than the 

previous two centuries combined (Berman & Dorrier, 2016), in large part due to 

unprecedented advancements in the fields of science, technology, engineering, and 

mathematics. These advancements have resulted in impressive contributions to our society; 

however, technology often advances so quickly that we don’t have time to understand all of its 

facets and potential drawbacks fully. When confronted with new technology, people often 

question their safety, reliability, and potential risk. This uncertainty can affect users’ levels of 

trust (Merritt & Ilgen, 2008) within the system and, ultimately, their willingness to use the new 

technology (Lee & Moray, 1992; Lee & See, 2004; Muir, 1987; Riley, 1989). 

 

Within the aviation industry, consumer perception of risk influences a multitude of 

varying factors, such as “financial risk, social risk, and psychological risk” (Ringle Sarstedt, & 

Zimmerman, 2011, p. 460). Even though air travel is reportedly one of the safest ways to travel 

– and accident rates have fallen over the past 20 years – passengers often “perceive air travel as 

more risky than is justified from an objective point of view because individuals generally 

overassess [sic] the risk associated with low-probability events” (Ringle et al., 2011, p. 460; 

Viscusi, 1985). However, this perception of risk is influenced by the media because they highly 

publicize the accidents, which causes people to overestimate the probability of the event 

happening again (Folkes, 1988). Furthermore, our perceptions of risk influence affect – or 

emotion – that is either elicited from the external stimulus or based upon our experience (Peters, 

Burraston, & Mertz, 2004), particularly when faced with new technology, such as autonomous 

vehicles. 
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General Affect 

 

Traditionally, researchers studied people’s decision-making process in the financial field 

as economists, marketing, and industry endeavored to discover how people thought out complex 

decisions and made choices throughout their daily life (Frydman & Camerer, 2016; George & 

Dane, 2016; Sokol-Hessner, Raio, Gottesman, Lackovic, & Phelps, 2016). The most efficient 

decision-making process would consist of the organism considering the advantages and 

disadvantages of every choice and then selecting the most economical option (i.e., more benefits 

compared to disadvantages; Frydman & Camerer, 2016; Slovic, Peters, Finucane, & MacGregor, 

2005). While this style of decision-making is effective, researchers quickly realized that people 

don’t typically operate with this type of objective thought process (Tversky & Kahneman, 

1986). Research has uncovered a significant factor affecting humans’ rational and objective 

decision-making process – affect (Lerner, Li, Valdesolo, & Kassan, 2015; Peters, Västfjäll, 

Gärling, & Slovic, 2006; Slovic et al., 2005; Zajonc, 1980). 

 

Previous research continuously indicates that affect – or emotion – plays a significant 

role in peoples’ decision-making process (Lerner et al., 2015; Peters et al., 2006; Schwarz & 

Clore, 2003; Slovic et al., 2005). When people may not have a lot of knowledge about the 

situation, or they feel unsure about a situation, thus relying on their mental heuristics (Slovic, 

Finucane, Peters, & MacGregor, 2007). Mental heuristics primarily consist of “short-cuts” that 

our brain takes when making decisions, which help us move throughout our day more 

efficiently. If we stopped and thought out the pros and cons of every single decision, our day 

would collapse with this time-consuming process, and it would take a long time to accomplish 

anything meaningful. Therefore, our brain tends to make quick judgments/decisions to help 

speed along this process and help us progress through the day. 
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Often, these mental short-cuts or snap decisions are created from the emotions elicited 

from our current situation/dilemma or based on our prior experiences (Damasio, 1994; 

Kahneman, 2011; Lerner et al., 2014; Volz & Hertwig, 2016). Emotions represent a relatively 

dynamic mental state that can change throughout the day and occur automatically (Slovic et al., 

2005). Emotions depend upon our current situation and what we are experiencing (compared to 

our ‘mood,’ which tends to be relatively stable, and changes are only made slowly over time). 

Evolutionarily, emotional decision-making probably helped our ancestors survive potentially 

dangerous situations where they didn’t have a lot of information, or they didn’t have time to 

think through all the possible advantages and disadvantages (Slovic et al., 2005). Thus, erring 

on the side of caution and allowing negative emotions, such as fear, anger, disgust, etc. to guide 

their behavior and decisions may have helped them survive. 

 

Customer Satisfaction 

 

Two of the largest travel industries of the modern society include commercial aviation and 

automobiles (U.S. Department of Transportation, 2017). These two industries have a lot at stake 

when building and retaining a strong customer base, although, until recently, they weren’t really in 

competition with each other. The length of time it takes to complete a trip plays a significant role in 

travelers’ decision to fly or drive. Previous research has indicated that as travel time/length increases 

for a journey, people are more likely to choose to fly because driving for that long would simply be 

too exhausting (Gronau, 1970). However, when the trip is shorter, people often prefer driving to their 

destination because automotive travel provides more comfort than commercial airline travel. Riding 

in a vehicle saves the traveler from dealing with airports (and airport traffic), lack of freedom in 

choosing departure/arrival time, airplane food, sitting next to strangers, etc. (Kloppenborg & 

Gourdin, 1992; Nadiri et al., 2008; Young, Cunningham, 
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& Lee, 1994). Therefore, passengers’ perceived level of comfort can significantly affect their 

 

preferred travel method, autonomous vehicle, or commercial airliner. 
 

 

Traditionally, commercial aviation travel faced onerous regulations as to where airlines 

could operate and what services they could offer (Piercy, 2001). However, the 1978 Airline 

Deregulation Act allowed airlines to begin customizing features offered to passengers, which 

ultimately influenced the price passengers paid for an airline ticket (Koklic, Kukar-Kinney, & 

Vegelj, 2017; Levin, 1987). Competition between airlines drove down ticket prices (Loureiro & 

Fialho, 2016). This competition also enticed airline companies to lure in more customers 

through obtaining high customer satisfaction levels and offering high-quality service. Thus 

allowing the airline to reasonably charge for a higher ticket price and increase profitability 

(Keeton, 2010; Smith, 2004). 

 

Many airlines began offering incentives, such as frequent flyer programs, free carry-on 

luggage, increased legroom, etc., to attract and retain loyal customers (Fornell, 1992; Miller, 

1993). Growing a loyal customer base was important because loyal customers are more likely 

to continue using a particular service (Cronin & Taylor, 1992; Forgas, Moliner, Sánchez, & 

Palau, 2010; Fornell, 1992; Oliver, 1997). The main point behind these additional features was 

to increase customer satisfaction, which “directly affects customers’ future behavioral 

intentions” (Clemes et al., 2008, p. 52; Koklic et al., 2017); therefore, many airline companies 

began investigating how they could positively influence customer satisfaction. 

 

Passengers often report perceived comfort while traveling as one of the main contributors 

to their overall satisfaction levels (Clemes et al., 2008; Jacobson & Martinez, 1974). Comfort 

while traveling entails factors, such as adequate knee and legroom, comfortable seating, 

neighboring travelers (Kloppenborg & Gourdin, 1992; Nadiri et al., 2008; Young et al., 1994), 
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“vibrations, noise, temperature, and air quality measurement systems” (Elbanhawi, Simic, & 

Jazar, 2015, p. 5; Han, 2013). Passengers’ perceived levels of comfort while traveling on an 

airplane or ground vehicle are influenced by similar factors. However, a significant difference 

is that passengers have control over many of these factors when traveling via ground vehicles. 

 

Vehicle manufacturers focusing on designing and developing fully autonomous 

automobiles have consistently cited the increased level of comfort afforded passengers and their 

desire to replace short-haul flight (Nishimoto, 2018). Once travelers factor in travel time for 

short-haul flights, such as driving to the airport, going through security, actual flight time, 

retrieving luggage, and time to drive to the destination from the airport, it can often take the 

same amount of time, if not slightly longer, than if the traveler had just driven there (Nishimoto, 

2018). Furthermore, travelers must experience all of the negative factors that accompany air 

travel. On the other hand, autonomous vehicles potentially offer travelers all of the comfort of 

traveling via ground vehicle transportation without the adverse effects of driving for long 

periods. 

 

Thi study considered two different methods of travel, commercial aviation, and driverless 

vehicles. While several various factors influence a person’s willingness to choose a specific method, 

comfort while traveling impacts passengers’ choice, which includes elements, such as appropriate 

sitting room, fellow passengers, etc. (Clemes et al., 2008; Kloppenborg & Gourdin, 1992; Jacobson 

& Martinez, 1974). Importantly, passenger comfort levels positively correlate with higher customer 

satisfaction levels, which also positively influence customer loyalty and their likelihood to continue 

using that particular service (Cronin & Taylor, 1992; Forgas et al., 2010; Fornell, 1992; Koklic et al., 

2017; Oliver, 1997). Therefore, perceived comfort may significantly predict a person’s preferred 

travel method, particularly if they believe that one 
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mode of transportation may offer higher levels of comfort than another mode of travel 

(i.e., autonomous vehicle vs. commercial aircraft). 

 

For this research, I created four different scales designed to measure participants’ overall 

perceived satisfaction/comfort of traveling in a vehicle or a commercial aircraft. I used factor 

analysis to condense over 30 travel-related variables into the four scales, Vehicle Comfort, 

Vehicle External Factors, Airplane Comfort, and Airplane External Factors. These scales range 

from three to five statements on a 5-point Likert scale from Strongly Disagree to Strongly Agree. 

The two comfort scales measured participants’ overall feeling of comfort while traveling with 

that specific method, such as “I enjoy sleeping while traveling in a vehicle” or “I enjoy sleeping 

while on traveling in an airplane.” The two external factors scales measured participants’ 

satisfaction with their overall experience of traveling with that specific method, such as “I enjoy 

having schedule flexibility (the ability to leave when I want)” or “I enjoy waiting in the airport 

before I leave my departure point.” Appendices G-J provides the full scales. 

 

Regression and Prediction Models 

 

The purpose of this research is to build a prediction model for understanding what type of 

person would choose to ride in an autonomous vehicle rather than fly in a commercial airliner. I 

assessed 20 different factors according to their level of significant contribution to the overall 

model. These factors include age, gender (male and female), social class, ethnicity, price, 

perceived value, familiarity, fun factor, wariness of new technology, personality (openness, 

conscientiousness, extraversion, agreeableness, and neuroticism), general vehicle affect, general 

airplane affect, vehicle comfort, vehicle external factors, airplane comfort, and airplane external 

factors. I included inclusion justification for each factor in the previous sections; therefore, the 
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current section will review an explanation of research design methodology as supported 

by similar topics in the scientific literature. 

 

Although several different scientific models measure consumers’ acceptance of new 

technology, many of these models comprise factors that are outside of the users’ control, such 

as facilitating conditions, social influence, external factors, etc. For this research, the objective 

was to build a model primarily based upon participant demographics (i.e., individual 

characteristics that the participant either has control over or views as a part of their identity). 

Therefore, using the most recent UTAUT model would be inappropriate because it considers 

many elements outside of the users’ control. Furthermore, the current research was not 

explicitly exploring participants’ acceptance of new technology, but rather their choice between 

two different technologies. Despite the multitude of varying technology acceptance/planned 

behavior models, none measured this specific variable. Thus, the current research uses 

demographic data and smaller scale items (Perceived Value scale, Familiarity scale, Fun Factor 

scale, and the comfort/external factors scales) to accurately measure participant-specific traits. 

 

Previous research attempting to model human behavioral intentions has frequently used 

regression analyses, similar to the methodology and design in the current study. Investigation of 

willingness to interact with driverless vehicles (Anania et al., 2018a; Howard & Dai, 2014; Hulse 

et al., 2018; Milner et al., 2019), willingness to fly in autonomous airplanes (Rice, Winter, 

Mehta, & Ragbir, 2019), and predictors of behavior (Beck & Ajzen, 1991; Rahmati-Najarkolaei, 

Rahnama, Fesharaki, & Behnood, 2016) used prediction models and regression analyses to 

assess different predictors affecting participants’ behavioral intentions. 

 

This line of research is comprised of two separate stages to facilitate the creation and 

validation of a prediction model. The first stage uses participant data to build a regression 
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equation that predicts what type of person would choose to ride in an autonomous vehicle 

rather than fly on a commercial aircraft. The second stage utilizes a secondary set of data to test 

the validity of the model created in the first stage. Because this model involved multiple 

variables, and previous research has successfully used similar, sound methodology, a multiple 

linear regression was the appropriate statistical technique to utilize (Harrell, 2015). 

 

Summary 

 

The purpose of Chapter 2 is to explore previous literature relevant to the variables 

considered in the current study. This review facilitates a general understanding of the different 

factors, how they may or may not be related, and identifies any gaps in the literature/research. 

A review of the literature highlights a hole in the intersection of autonomous vehicle research 

and commercial aviation research, particularly concerning factors affecting consumers’ 

decision-making and their preferred mode of travel. Moving forward, Chapter 3 will describe 

the current study’s methodology, including information about the population, sample, 

instrumentation, procedures, variables, design, and analyses. The information presented in 

Chapter 3 contains sufficient detail so that future researchers may easily replicate the study, 

provided access to adequate resources. 
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Chapter Three 

 

Methodology 
 

 

Introduction 

 

The current section provides a detailed account of the methodology used to research this 

study. The purpose of this chapter is to provide sufficiently detailed information so that future 

researchers may easily replicate the procedure, assuming they have access to adequate resources. 

Therefore, I discuss details regarding the specific steps, tools/instruments, and research design. 

Within these areas of foci, I focus on participant parameters, such as the population and sample. 

Furthermore, there will be a thorough description of the procedures and methods utilized for 

data collection, variables, and estimated statistical power for analyses. Lastly, I address legal and 

ethical measures taken to protect participants’ anonymity and confidentiality throughout the 

research. 

 

Research Design 

 

The purpose of this research was to develop a model depicting what type of personal 

characteristics determine a person’s likelihood of choosing to ride in an autonomous vehicle 

rather than fly on a commercial aircraft. This goal was achieved primarily through a quantitative 

research study using a correlational design with multiple linear regression as the preferred 

statistical procedure for data analysis. This design and analysis are the most appropriate method 

for prediction and model fit, which is the goal of this research. 

 

Linear regression presents the opportunity to explore factors affecting participants’ 

decision to ride in a fully autonomous vehicle rather than fly in a commercial aircraft. The 

current research study will not attempt to examine differences between groups; thus, there is 

no need for statistical analyses comparing groups, such as t-tests or Analysis of Variance 
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(ANOVA). Furthermore, the current study design lends itself to data collection via a survey as 

naturalistic observation and archival research would either be impossible or insufficient, 

especially because fully autonomous vehicles are not yet available or street legal. Therefore, the 

current study used a survey-based correlational quantitative design with multiple linear 

regression as the analysis. 

 

Population and Sample 

 

Population 

 

The current research study seeks to build a prediction model to determine what type of 

person is likely to choose to ride in a fully autonomous vehicle rather than flying on a 

commercial aircraft. Once fully autonomous vehicles become legal and available to the public, 

the results of this study will hopefully be generalizable to the target population, which includes 

any people wishing to travel and faced with choosing between using an autonomous vehicle or 

flying commercial. Accurately understanding consumer behavior, particularly regarding new 

technology, could have a significant impact on industries introducing this new technology and 

industries that may be threatened by the latest technology. Unfortunately, it is implausible to 

gather data from every single person in the target population. Therefore, I collected data from a 

representative sample of the accessible population. Because this research consists of an online 

survey, the accessible population includes any travelers who have access to the internet and 

use Amazon’s MTurk platform. Only participants aged 18 years or older were considered as 

part of the accessible population. 

 

Sample 

 

Data was collected via convenience sampling techniques from participants recruited 

using MTurk. Participants received 50 cents for their participation in the study, which required 
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about 5-10 minutes of their time. This research study encompassed two different stages to 

facilitate the building of the prediction model and then testing the model fit; thus, the 

study required two separate sets of participants. 

 

While convenience sampling may be viewed as a limitation, prior research has indicated 

that online survey data is as reliable and valid as traditional laboratory data (Berinsky, Huber, & 

Lenz, 2012; Buhrmester, Kwang, & Gosling, 2011; Coppock, 2018; Deutskens, de Jong, Ruyter, 

 

& Wetzels, 2006; Germine et al., 2012; Rice, Winter, Doherty, & Milner, 2017). Furthermore, I 

strived to eliminate possible bias that may arise from the convenience sampling technique. I 

ensured that the survey was available to anyone who has internet access, is 18 years or older, 

and remaining open for several hours so that participants from multiple time zones have the 

opportunity to participate. 

 

Power Analysis 

 

A determination of a priori sample size was conducted to guarantee the validity of the 

relationships among the variables, thus allowing for causal inference. The program G*Power 

 

3.1.9.2 was used to perform these analyses. With a small effect size of .05, power (beta) of 

.99, and an alpha level of significance .05, and 20 predictors, each stage of the study needed a 

minimum sample size of 818 participants. 

 

As previously mentioned, the study was conducted twice to allow for the creation of the 

model/regression equation and then testing and validation of the model. At a minimum, each stage 

needs a total of 818 participants to build and test the model within the given parameters accurately. 

However, to account for the additional cases required to run a backward stepwise regression, 

possible missing data, outliers, or other potential issues, approximately 1,000 
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participants were surveyed for each stage, thus requiring a total of 2,000 participants for 

the entire line of research. 

 

Research Methodology 

 

As previously stated, participants were recruited online using Amazon’s MTurk, which 

provides an online platform that allows users to complete tasks, such as responding to surveys, 

for monetary compensation. MTurk has certain contingencies in place, thus preventing the use of 

robots, scripts, or other automated methods to complete tasks. Participants have an online profile 

that allows them to see requests to complete tasks, such as responding to surveys. Once they 

select a task, they are sent a link with specific instructions for completing the task. For this 

study, participants received a link to a Google Forms survey. 

 

The survey consisted of two sections such that one of the sections asks participants about 

autonomous vehicles, and the other section asks participants about commercial flights (these 

sections were counterbalanced). Once participants access the survey, they read the posted 

instructions and responded to the multiple-choice questions and the open-response prompt. 

Participants responded to the same survey in Stage 1 and Stage 2. 

 

In the autonomous vehicles section, participants read the following scenario, “Imagine a 

time in the future where driverless cars are available to the general public and they have a 

safety record equal to, or better than, regular cars. You have to travel from one major city to 

another for work related business, but the autopilot would do all the work and you could even 

sleep along the way.” Then, participants responded to a general affect scale (see Appendix F), 

the Vehicle Comfort scale (see Appendix G), Vehicle External Factors scale (see Appendix H), 

Wariness of New Technology scale (see Appendix E), Fun Factor scale (see Appendix D), 

Perceived Value scale (see Appendix B), and the Familiarity scale (see Appendix C). 
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In the commercial flight section, participants read the following scenario, “Imagine you 

have to travel from one major city to another for work related business. You decide to take a 

commercial flight.” Participants proceeded to answer the same scales from those mentioned 

above, except mentions of ‘autonomous vehicle’ were be replaced with ‘airplane,’ and they 

responded to the Airplane Comfort scale (see Appendix I) and the Airplane External Factors 

scale (see Appendix J). In each section, scale order was randomized by Google Forms® for each 

participant, and items within scales were presented in a randomized order. The instructions for 

responding to the scales read, “Please respond to each of the statements below indicating how 

strongly you agree or disagree with each statement.” 

 

To capture participants’ preferred travel method, participants read the following scenario, 

“Imagine a time in the future where autonomous cars are available to the general public and 

they have a safety record equal to, or better than, regular cars. You have to travel from one 

major city to another for work related business. The autopilot would do all the work and you 

could even sleep along the way. The alternative would be to take a regular commercial flight.” 

and responded to the Travel Method Preference Scale (see Appendix A). 

 

However, to determine if the length of the trip (i.e. the total time it would take to travel from 

origin to destination) affected participants’ response, they were also prompted with the following 

scenario before responding to the Travel Method Preference scale, “Imagine the drive will take you 

about 4 hours. The airline flight itself will take about 1 hour gate to gate; however, this does not 

encompass travel to/from the airport, security, baggage collection, etc. Given this information, 

which method of travel would you prefer?” Participants responded to this scenario four times, with 

the only difference being the schedule presented (i.e., the time it would take to 
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complete the drive and time it would take to fly (gate to gate)). The four different time 

schedules are as follows: 

 

• 4-hour drive/1-hour flight 

 

• 8-hour drive/1.5-hour flight 

 

• 12-hour drive/2-hour flight 

 

• 16-hour drive/2.5 hour flight 
 

 

Once completing their responses to the varying time schedules, participants responded 

to the open-ended question, “Are there any other factors that affected your choice of preferred 

method of travel?” Participants’ responses to this prompt may provide insight into factors that 

should be considered for future research, whether as mediating variables or additional predictors 

of behavioral intentions. 

 

Finally, participants provided demographic data to capture information related to the 

proposed predictors in the study (see Appendix K). This survey was the only instrument used to 

collect data for the current research. As previously stated, participants were recruited online 

using Amazon’s ® MTurk and compensated for their participation. This line of research 

consisted of two stages, allowing for the creation of the prediction model and validation of the 

prediction model (using a new set of data). Both stages used the same instrument. After 

completing the survey, participants received instructions on receiving their monetary 

compensation. 

 

Pilot Study 

 

Because this is exploratory research, I considered a multitude of factors as potentially 

influencing participants’ choice of preferred travel method. To help narrow the scope of the 
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project, I conducted two pilot studies to explore many of these factors and determine which ones 

were most significant, and thus, included in the final study. The first pilot study used a series of 

5-point Likert-type scales (from Strongly Disagree to Strongly Agree) to measure participants’ 

responses on a variety of travel-related factors. There were 252 (90 female) participants, and the 

average age was 34.92 (SD = 10.83). 

 

The 22 items from the survey were subjected to principal components analysis (PCA). 

Before performing the PCA, the suitability of the data for factor analysis was assessed. 

Inspection of the correlation matrix revealed the presence of 119 coefficients of .3 and above. 

The Kaiser-Meyer-Olkin value was .84, exceeding the recommended value of .6 (Kaiser, 1970, 

1974), and Bartlett’s Test of Sphericity (Bartlett, 1954) reached statistical significance, 

supporting the factorability of the correlation matrix. 

 

Principal components analysis revealed the presence of five components with eigenvalues 

exceeding 1, explaining 27%, 42%, 50%, 56%, and 61% of the variance, respectively. 

Interestingly, an inspection of the scree plot revealed a clear break after the fourth component. 

However, a Parallel Analysis showed only three components with eigenvalues exceeding the 

corresponding criterion values for a randomly generated data matrix of the same size (22 

variables x 250 respondents). The PCA was rerun with the fixed number of factors set to three, 

which explained 50% of the variance. 

 

Because of the relatively small difference in variance explained and the fact that this was 

exploratory, I decided to compromise between the results from the first PCA and the Parallel 

Analysis and retain only four components. Furthermore, the results from Cattell’s (1966) scree test 

also suggested the use of four components. These four components explained 56% of the variance 

with Component 1 contributing 27.33%, Component 2 contributing 15.15%, 
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Component 3 contributing 7.76%, and Component 4 contributing 5.9%. To aid in the 

interpretation of these components, I performed an oblimin rotation. The rotated solution 

revealed the presence of strong loadings and the majority of variables loading substantially on 

one component (see Tables 1 and 2 for the related Pattern Matrix and Structure Matrix) 

 

After conducting the factor analysis, the most influential factors tended to relate to 

participants’ characteristics of travel preferences rather than factors unrelated to them, such as 

food options in an airport/airplane. Furthermore, the factor analysis indicated which items ran 

together and allowed for the creation of four subscales designed to measure participants’ 

travel preferences, which were named 1) Vehicle Comfort, 2) Vehicle External Factors, 3) 

Airplane Comfort, and 4) Airplane External Factors. 

 

For the second pilot study, only factors measuring participants’ personal characteristics were 

considered. Ultimately, 20 factors were used as the independent variables with the potential to 

predict the dependent variable – participants’ preferred travel method. These predictors were 

 
1) Age, 2) Gender, 3) Social Class, 4) Ethnicity, 5) Price, 6) Perceived Value, 7) Familiarity, 8) 

Fun Factor, 9) Wariness of New Technology, 10) Openness, 11) Conscientiousness, 12) 

Extraversion, 13) Agreeableness, 14) Neuroticism, 15) Vehicle Affect, 16) Airplane Affect, 17) 

Vehicle Comfort, 18) Vehicle External Factors, 19) Airplane Comfort, and 20) Airplane External 

Factors. 

 

The majority of these factors were measured on 5-point Likert scales (from Strongly 

Disagree to Strongly Agree). There were 247 (98 female) participants, and the mean age was 

37.57 (SD = 12.26). After data collection, a backward stepwise regression was conducted to 

determine the factors significantly predicting the dependent variable. A backward stepwise 

regression begins with a fully saturated model (all factors are considered) and then, through an 
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iterative process, gradually eliminates the weakest variables from the model until only the 

strongest predictors remain (which are usually statistically significant). SPSS considers the 

significance of factors using an entry alpha value of .05 and .10 as the elimination threshold. 

This type of stepwise approach is useful because it gradually reduces the number of predictors, 

which reduces the problem of multicollinearity and helps avoid overfitting the model. 

However, it’s also important to note that when using this approach, once variables are removed 

from the model, they are never reconsidered. 

 

Participants responded to four different scenarios, designed to measure changes in 

participants’ responses based on length of trip (i.e., how long it takes to travel from origin to 

destination). A backward stepwise regression was conducted for each scenario. While there 

were slight differences, most final models included these significant predictors: Vehicle General 

Affect, Vehicle Comfort, Fun Factor, Plane Comfort, Gender, and Age (see tables 3 – 7 for a 

tabular reporting of the results). These models accounted for 13% - 44% of the adjusted variance 

in the criterion. These two pilot studies provide strong evidence of the impact of these specific 

independent variables on participants’ preferred travel method. 

 

Therefore, moving forward, only factors deemed as personal characteristics (or directly 

impacting participants’ travel experience) were considered for the current study. Focusing on 

personal attributes/experiences will provide industry, researchers, and designers with a better 

understanding of what type of person is most likely to choose to ride in an autonomous vehicle 

rather than flying on a commercial aircraft without worrying about the influence of external factors 

on their decision. As a Human Factors professional, one of the main goals is to understand what 

type of user is interested in a product/service and to ensure that the product/service is designed to fit 

their needs and wants. Too often, Human Factors professionals 
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are considered in the last stage of R&D (and perhaps even later). Thus it becomes challenging to 

enact real change, and the consumer forced to adapt themselves to the product/service. 

Therefore, this line of research strives to consider the consumer at the beginning of the process 

to provide the vehicle industry and aviation industry with a better understanding of their 

potential customer base. 

 

Variables 

 

Independent Variables 

 

This research seeks to build a prediction model. The independent variables consist of all 

the predictors used for model development and prediction of the dependent variable. As 

previously detailed, only factors pertaining to participants’ personal characteristics or personal 

travel preferences were considered in light of the findings from the previous pilot studies. These 

factors include age, gender, social class, ethnicity, price, perceived value, familiarity, fun factor, 

wariness of new technology, personality (openness, conscientiousness, extraversion, 

agreeableness, and neuroticism), vehicle affect, vehicle comfort, vehicle external factors, 

airplane affect, airplane comfort, and airplane external factors. Table 8 provides an overview of 

all independent variables, including question type, measurement type, and referenced 

appendices. Also, reliability estimates – calculated from the aforementioned pilot study – are 

provided, as well. 
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Table 8. Overview of Independent Variables 

 

Independent 

Question Type 

Measurement Cronbach’s Guttman’s 

Appendix 
Variable Type Alpha Split Half   

      

Age Free response Interval    

Gender 
Multiple choice/ 

Nominal 
   

free response 
   

     

Social Class Free response Interval    

Ethnicity 
Multiple choice/ 

Nominal 
   

free response 
   

     

Price Multiple choice Nominal    

Perceived Value Likert scale Interval .905 .892 Appendix B 

Familiarity Likert scale Interval .847 .841 Appendix C 

Fun Factor Likert scale Interval .918 .872 Appendix D 

Wariness of New 

Likert scale Interval .859 .831 Appendix E 
Technologies      

Openness to 
Subscale of Mini-     
IPIP (Donnellan et Interval .767 .851 

 

Experience 
 

al., 2006) 
    

     

 Subscale of Mini-     
Conscientiousness IPIP (Donnellan et Interval .711 .553  

 al., 2006)     

 Subscale of Mini-     
Extraversion IPIP (Donnellan et Interval .770 .629  

 al., 2006)     

 Subscale of Mini-     
Agreeableness IPIP (Donnellan et Interval .800 .624  

 al., 2006)     

 Subscale of Mini-     
Neuroticism IPIP (Donnellan et Interval .727 .562  

 al., 2006)     

General Affect Likert-type scale Interval .947 .941 Appendix F 
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Independent 

Question Type 

Measurement Cronbach’s Guttman’s 

Appendix 
Variable Type Alpha Split Half   

      

Vehicle Comfort Likert-type scale Interval .766 .465 Appendix G 

Vehicle External 
Likert-type scale Interval 

  Appendix H 

Factors 
   

     

Airplane Comfort Likert-type scale Interval   Appendix I 

Airplane External 
Likert-type scale Interval 

  Appendix J 

Factors 
   

     

      

 
 
 

 

Rather than break the variable of age into groups, it was treated as a continuous 

variable, allowing for any response in the free-response prompt. Gender was developed as a 

categorical variable with three choices, 1) male, 2) female, and 3) other. This was presented as 

multiple-choice; however, if participants choose ‘other,’ they were prompted to provide further 

detail in the free-response. Similarly, social class and ethnicity were measured as categorical 

variables with multiple-choice options. Price was presented as a continuous variable, a 7-point 

scale with options ranging from “Not at all important” (-3) to “Extremely important” (3). This 

variable measures whether or not the cost of an airplane ticket is important to participants. 

 

The independent variables, Perceived Value, Familiarity, Fun Factor, Wariness of New 

Technology, and Personality are measured via Likert scales, which are traditionally considered 

as an ordinal measurement. However, for this research, each scale is indexed to produce a 

single number, thus allowing for interval scale of measurement (Boone & Boone, 2012; Joshi, 

Kale, Chandel, & Pal, 2015; Rickards, Magee, & Artino, 2012; Sullivan & Artino, 2013). 

 

Perceived value was measured as the participant’s score averaged from their response to 

five statements, designed to capture how much they believe autonomous vehicles would provide 
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some type of benefit to them or society. Participants responded to five statements on a 5-point 

scale ranging from “Strongly Disagree” (-2) to “Strongly Agree” (2) with a zero-neutral point. 

The scale of measurement for this variable – and all other continuous variables – is ordinal; 

however, as previously mentioned, it will be treated as an interval scale of measurement. 

Familiarity was measured as the participant’s score averaged from their response to five 

statements, which are designed to measure their self-perceived level of knowledge or experience 

with autonomous vehicles. Participants responded to five statements on a 5-point scale ranging 

from “Strongly Disagree” (-2) to “Strongly Agree” (2) with a zero-neutral point. Fun factor was 

measured as the participant’s score averaged from their response to five statements, which are 

designed to estimate how much entertainment they believe autonomous vehicles would offer. 

Participants responded to five statement on a 5-point scale ranging from “Strongly Disagree” (-2) 

to “Strongly Agree” (2) with a zero-neutral point. 

 

Personality factors were measured as five discrete variables, which average participants’ 

responses to the different areas of Openness to Experience, Conscientiousness, Extraversion, 

Agreeableness, and Neuroticism. The Mini-International Personality Item Pool (Mini-IPIP; 

Donnellan et al., 2006), a 20-item survey, prompts participants to provide their responses on a 

5-point scale to a series of different statements that describe aspects of their personality. 

Participants have options ranging from “Very Inaccurate” (-2) to “Very Accurate” (2) with a 

zero-neutral option “Neither accurate nor inaccurate.” Where appropriate, items are reverse 

scored, and the sum of all responses represents the final value for participant’s score on that 

particular factor. 

 

Affect was measured as participants’ average score across seven statements designed to 

assess their overall mood while responding to the survey. Response prompts are on a five-point 
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scale ranging from “Strongly Agree” (-2) to “Strongly Agree” (2) with a zero-neutral point. For 

this research, participants responded to the General Affect scale twice, once in the autonomous 

vehicles section and once in the commercial airplanes section. 

 

The four remaining variables were designed to capture the participant’s overall 

satisfaction levels with different methods of transportation, autonomous vehicles, and 

commercial aircraft. The four scales (1) Vehicle Comfort, 2) Vehicle External Factors, 3) 

Airplane Comfort, and 4) Airplane External Factors) uniquely measure participants’ feelings 

about using a specific mode of travel and travel preferences that may also influence their 

decision. Overall, there are 14 items, and response prompts are on a 5-point scale ranging from 

Strongly Disagree (-2) to Strongly Agree (2). Participants’ responses will be averaged to provide 

their overall score for each scale. 

 

Dependent Variable 

 

For this research, the dependent variable is the participants’ preference for riding in 

an autonomous vehicle rather than flying on a commercial aircraft (see Appendix A). This 

was measured as participant’s average score on a four statement, a 5-point Likert scale with 

responses ranging from “Strongly Disagree” (-2) to “Strongly Agree” (2) with a zero-neutral 

point. Similar to the independent variables, the scale of measurement is technically ordinal; 

however, as is common in the field, it will be treated as interval data in the analysis (Boone & 

Boone, 2012; Joshi et al., 2015; Rickards et al., 2012; Sullivan & Artino, 2013). 

 

As previously mentioned, participants responded to four different time schedules, which 

represent the four different scenarios. The purpose of these scenarios is to determine if the length 

of the trip (i.e., the total time it would take to travel from origin to destination) affects 

participants’ responses. They read the following scenario before responding to the Travel 
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Method Preference scale, “Imagine the drive will take you about 4 hours. The airline flight itself 

will take about 1 hour gate to gate; however, this does not encompass travel to/from the airport, 

security, baggage collection, etc. Given this information, which method of travel would you 

prefer?” Participants will respond to this scenario four times, with the only difference being the 

schedule presented. 

 

Data Analysis 

 

For this dissertation, a correlational design using multiple linear regression was 

employed for analyzing Stage 1 data. Stage 2 employed model fit testing upon a new set of data 

to determine the validity of the previously developed model. As previously noted, using standard 

multiple linear regression allows for the most appropriate analysis of the relationship between 

the independent variables and the dependent variable. Using this method for Stage 1 analysis, a 

regression equation was developed, including coefficients for each independent variable 

significantly correlated to participants’ choice of traveling via an autonomous vehicle rather than 

a commercial flight. Stage 2 utilized a secondary set of data to test the model by predicting 

participants’ preferred travel method scores (from the equation created in Stage 1) and 

comparing the predicted scores against participants’ actual preferred travel method scores. 

Specifically, the regression equation was tested for model fit using a t-test, correlation, and 

cross-validated R
2
. 

 

First, the model fit was tested by conducting a t-test on the two sets of data (actual scores 

on the Preferred Travel Method scale and the predicted scores calculated from the stage 1 

regression equation). If there is a strong model fit, then there will be no statistically significant 

difference between the scores for the dependent variables. Therefore, I may infer that the 

predicted scores do not vary from the actual scores, thus validating the original equation. 
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Second, model fit was tested by conducting correlation analyses on the two sets of data. 

If there is strong model fit, then there will be a statistically significant correlation between the 

scores. This will allow me to infer that the predicted scores correlate with the actual scores, 

thus further supporting evidence of model fit. 

 

Third, model fit was tested using cross-validated R
2
. The cross-validated R

2
 = 1-(1- 

 

R
2
)[(n+k)/(n-k)], where R

2
 is overall R

2
 from the initial model, n is the sample size of the stage 1 

 

sample, and k is the degrees of freedom. A cross-validated R
2
 helps avoid the issue of overfitting 

 

the model and shows how well the model would apply to other samples from the population. If 
 

there is little to no difference between the overall R
2
 and the cross-validated R

2
, this is further 

 

evidence indicating the presence of model fit. 
 

 

Other methods of analysis were considered; however, because the primary purpose of this 

research is to build a predictive model, it was determined that linear regression was the most 

appropriate method rather than statistical techniques that compare groups. Particularly, standard 

multiple regression is pertinent for this line of research rather than hierarchical multiple 

regression as there lacks a theoretical basis for organizing the independent variables in a 

particular order during analysis. Furthermore, because the dependent variable is an interval scale 

of measurement, rather than dichotomous, logistical regression would have been inappropriate, 

as well. 

 

The current research employed a multiple regression analysis, which explores the 

influence of several independent variables on one continuous dependent variable. Furthermore, 

this particular analysis allows for considering the impact of one independent variable on the 

dependent variable while controlling for all other independent variables. The model developed 

 

 

66 



 
from this analysis will help researchers better understand what factors predict participants’ 

preferred travel method between fully autonomous vehicles and commercial airplanes. 

 

Participant Eligibility Requirements 

 

Following appropriate ethical regulations, participants needed to be at least 18 years of 

age or older. At the beginning of the survey instrument, participants responded to a dichotomous 

choice question (‘Yes’ or ‘No’) ensuring that they meet age requirements – and if not, they were 

automatically directed to a separate page, thus removing any chance to participate. The survey 

instrument and research methods have been designed to ensure that participants do not 

experience any harm or undue stress. All aspects of the research, including the protocol, 

instrumentation, and relevant materials, were assessed for approval by Embry-Riddle 

Aeronautical University’s Institutional Review Board (IRB) for transparency and appropriate 

care of participants. The IRB application and approval notice are included in Appendix L. 

 

Participants’ Protection 

 

The current study used an online convenience sample provided by Amazon’s ® 

Mechanical Turk ® (MTurk). MTurk protects all participants’ confidential information, and the 

researchers do not have access to it. Specifically, no names, contacting information, or otherwise 

identifying information is provided to researchers, which helps guarantee participants’ responses 

are kept anonymous and confidential. While participants’ responses were used for model 

construction and validation, they were only used in aggregated data analyses, and individual 

responses will not be published or available to the public. 

 

Legal and Ethical Consideration 

 

The human participants in this study were not exposed to any risk. As previously 

mentioned, MTurk was used to gather participants, and MTurk is responsible for screening all 
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participants to verify they have provided the correct information. Following ethical protocol, the 

current study only collected data from participants who indicated that they are at least 18 years 

old and ensured that study procedure and survey instrument did not cause participants any 

physical, physiological, emotional, or legal risks. The IRB at Embry-Riddle Aeronautical 

University reviewed the overall study, methodology, and survey instrumentation before data 

collection. 

 

Summary 

 

Chapter Three provides a detailed description of the methodology that was used for 

conducting this study, including the experimental design, procedures, participants, variables, and 

ethical considerations. If interested, future researchers should have enough detail and 

information to replicate this study successfully. Furthermore, the current chapter describes data 

analysis techniques to facilitate the interpretation of future results. The following sections will 

cover the performed data analyses and resulting statistics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

68 



Chapter Four 

 

Results 
 

 

Introduction 

 

The goal of the current research was to create and validate a regression model predicting 

participants’ preference for riding in an autonomous vehicle rather than a commercial aircraft 

through four different scenarios. Each scenario was identical except for the length of the trip, 

which included a four hour, eight hour, twelve hour, and sixteen hour travel scenario. This was 

primarily achieved by conducting a regression analysis and model fitting, which is the focus of 

the current chapter. Chapter four will detail the statistical analyses performed, including 

descriptive and inferential statistics. All data analyses were conducted using Microsoft Excel 

and the statistical analysis software, IBM SPSS. 

 

General Design 

 

The current research used a correlational design with multiple linear regression as the data 

analysis technique, which allowed for the creation of a model predicting participants’ preference 

for riding in an autonomous vehicle rather than flying on a commercial aircraft. Overall, 20 

independent variables were tested for their impact on participants’ preferred travel method. These 

variables were: age, gender, social class, ethnicity, price, perceived value, familiarity, fun factor, 

wariness of new technology, personality (openness, conscientiousness, extraversion, 

agreeableness, and neuroticism), vehicle affect, vehicle comfort, vehicle external factors, airplane 

affect, airplane comfort, and airplane external factors. The dependent variable was the 

participants’ preference for riding in an autonomous vehicle rather than flying in a commercial 

aircraft. In the first stage, the data was used to build the regression equation. The 
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second stage used a secondary data sample to test the regression equation through three different 

model fitting procedures. 

 

Research Tool and Instrument 

 

The most efficient method of collecting data for this study was through Google Forms® 

(see Appendix L for the entire instrument). Questions on the survey ranged from multiple choice, 

free response, to Likert/Likert-type scales. As previously mentioned, there were two versions of 

the survey, with the only difference being which section was presented to participants first 

(autonomous vehicle section or commercial aircraft section); however, the order and details of all 

other questions remained precisely the same. The surveys were administered once, and then the 

data were randomly split into two groups (before any data cleaning or analyses) for the two 

separate stages. Amazon’s MTurk® facilitated the recruitment of participants, and all 

participants were paid US$0.50 as monetary compensation for completing the survey. 

 

Descriptive Statistics 

 

The current line of research involved two separate stages, which allowed for the creation 

of the regression equation and validation of the equation. The resulting regression equation was 

designed to predict which type of person would prefer to ride in an autonomous vehicle rather 

than fly on a commercial aircraft. The total sample size included 2,016 participants (1,099 

females). 

 

Missing and Excluded Data 

 

For Stages 1 and 2, data were excluded if it met the following criteria. For the scales 

measuring Affect, Comfort, External Factors, Wariness, Fun Factor, Value, and Familiarity, if 

participants skipped two or more responses, they were removed. One missing response was 

considered manageable as the average was taken to indicate the overall score. For the personality 
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scales, if participants missed at least one answer, they were removed from the final analysis. 

Participants with at least one missing data point were excluded because personality was 

measured with summative data. Thus, any missing points would result in an unrepresentative 

overall score. Furthermore, to accurately create the formula for detecting outliers 

(Mahalanobis Distance), there could be no missing data; therefore, all other variables (gender, 

ethnicity, age, and social class) with missing responses were removed. 

 

Although it is impossible to discern why specific questions were missed (either 

participants simply didn’t notice the question, or they did not understand what was being asked), 

no clear patterns were detected in missing data points. Furthermore, the Institutional Review 

Board states that survey questions cannot be required. Thus participants have the freedom to 

bypass any questions they don’t understand or don’t wish to answer. Lastly, to adequately satisfy 

the assumptions of regression, outliers were removed prior to data analysis. The details of outlier 

identification and removal are provided in the Assumptions section. 

 

Table 9 provides an overview of the full data set for Stage 1 and Stage 2, including 

frequency counts and percentage of excluded or missing data (Stage 1 N = 1,008 prior to data 

exclusion and Stage 2 N = 1,008 prior to data exclusion). From Stage 1, 129 data points were 

excluded due to the aforementioned exclusion criteria and 46 due to outliers, resulting in 863 

total participants for Stage 1. From Stage 2, 95 data points were excluded due to the 

aforementioned exclusion criteria and 30 due to outliers, resulting in 882 total participants for 

Stage 2. 
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Table 9 

Summary of Missing and Excluded Data 

Variable  Stage 1 Stage 2 

Preferred Travel Method  21 (2.08%) 22 (2.18%) 

Perceived Value  10 (.99%) 11 (1.09%) 

Familiarity  4 (.39%) 8 (.79%) 

Fun Factor  8 (.79%) 11 (1.09%) 

Wariness  6 (.59%) 8 (.79%) 

 Openness 21 (2.08%) 15 (1.48%) 

 Conscientiousness 23 (2.28%) 18 (1.78%) 

Personality Extraversion 22 (2.18%) 18 (1.78%) 

 Agreeableness 22 (2.18%) 18 (1.78%) 

 Neuroticism 13 (1.28%) 20 (1.98%) 

Vehicle General Affect  4 (.39%) 13 (1.28%) 

Airplane General Affect  10 (.99%) 11 (1.09%) 

Vehicle Comfort  5 (.49%) 4 (.39%) 

Vehicle External Factors  3 (.29%) 6 (.59%) 

Airplane Comfort  10 (.99%) 7 (.69%) 

Airplane External Factors  3 (.29%) 2 (.19%) 
Age  31 (3.07%)   

Total  185 (18.35%)
a 

192 (19.04%)
a 

 
a. Total is not the sum of all missing data, as some cases had 
multiple missing data points; does not include removal of outliers  

Stage 1 
 

 

After excluding data that did not meet the requirement and data outliers, the sample size 

 

for Stage 1 was N = 863, which included 457 females (53%). Participants’ mean age was 38.77 

 

(SD = 11.95). A summary of the descriptive statistics for Stage 1 is available in Table 10. 
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Table 10 

Summary of Stage 1 Descriptive Statistics 
 

 Variable   N M SD 
      

 Age  863 38.77 11.95 

Gender Male 406 (47%)   
      

 Female 457 (53%)   

 Upper Class 6 (0.7%)   

 Upper Middle Class 233 (27%)   

Social Class Lower Middle Class 357 (41.4%)   

 Working Class 213 (24.7%)   

 Lower Class 54 (6.3%)   

 Caucasian 684 (79%)   

 African descent 61 (7.1%)   

Ethnicity Asian descent 52 (6%)   
      

 Hispanic descent 42 (4.9%)   

 Indian 8 (0.9%)   

 Other 16 (1.9%)   
       

 
 

 

Stage 2 
 
 

After excluding data that did not meet the requirement and data outliers, the sample size for 

 

Stage 2 was N = 882, which included 512 females (56%). Participants’ mean age was 38.18 (SD 

 

= 11.92). A summary of the descriptive statistics for Stage 2 is available in Table 11. 
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Table 11 

Summary of Stage 2 Descriptive Statistics 
 

 Variable  N M SD 
      

 Age  882 38.19 11.92 

Gender Male 387 (44%)   
     

 Female 495 (56%)   

 Upper Class 7 (0.8%)   

 Upper Middle Class 242 (27.4%)   

Social Class Lower Middle Class 379 (43%)   

 Working Class 212 (24%)   

 Lower Class 42 (4.8%)   

 Caucasian 638 (72.3)   

 African descent 76 (8.6%)   

Ethnicity Asian descent 87 (9.9%)   
     

 Hispanic descent 52 (5.9%)   

 Indian 6 (0.7%)   

 Other 23 (2.6%)   
      

 
 

 

Sample Sizes, Effect Size, and Observed Power 

 

Due to the nature of online surveys, a convenience sample technique was utilized via 

 

Amazon’s Mechanical Turk. Appropriate apriori sample sizes provided adequate 

 

recommendations for sample sizes. Using G*Power 3.1.9.4, a minimum of 818 participants was 

 

necessary to adequately complete each stage of the study, with a small effect size of .05, an alpha 

 

level of .05, a power of .99, and 20 predictors. As noted earlier, both stages meet the minimum 

 

sample size requirements. 
 

 

Assumptions of Regression 

 

In total, there are eight assumptions associated with regression which need to be 

 

addressed before conducting inferential analyses. Chapter 1 detailed these assumptions, and the 

 

current section will review these assumptions regarding the specific data set that was used for 
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analysis. Each assumption will be evaluated and whether or not it satisfactorily met the 

requirements. Because the same dataset was used for all four scenarios, the assumptions were 

only tested once using the four-hour trip as the dependent variable. Therefore, these 

assumptions also account for the data used in the eight-hour, twelve-hour, and sixteen-hour 

scenarios. As a reminder, the regression assumptions are as follows: 

 

1. There is one, continuous, dependent variable. 

 

2. There are two or more independent variables. 

 

3. There is independence of observations. 

 

4. There is a linear relationship between the dependent variable and each of the 

independent variables, both individually and collectively. 

 
5. There is homoscedasticity in the data. 

 

6. There is no multicollinearity in the data. 

 

7. There are no significant outliers in the data. 

 

8. The residuals (errors) are normally distributed. 
 

 

Assumption 1 was satisfied because although the dependent variable is technically 

ordinal, it will be treated as continuous, or interval, during the analysis, which is a common 

practice in the field (Boone & Boone, 2012; Joshi et al., 2015; Rickards et al., 2012; Sullivan & 

Artino, 2013). The dependent variable averaged participants’ scores on a four-item Likert-type 

scale to obtain one overall score for each participant (Brown, 2011). Assumption 2 was also 

met as there were 20 independent variables, the majority of which were continuous. 

Assumption 3 (regarding the independence of observations) was also met as the Durbin-Watson 

statistic was 1.966, which meets the recommended range (1.5 – 2.5) for Durbin-Watson 

statistics (Field, 2009). 
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In addition, Assumption 4 was met as there was a linear relationship between the 

dependent variable and independent variables, both individually and collectively. The Partial 

Regression plots for the variables included in the final regression model were included in the 

analysis output, and all indicated a linear relationship. For the four-hour trip, the variables 

included in the final regression model included Vehicle Affect, Fun Factor, Value, Plane 

Affect, Plane Comfort, Extraversion, and Asian. See figures 1 – 6 for the partial regression 

plots for the quantitative variables. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Partial Regression Plot - Vehicle Affect  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Partial Regression Plot - Fun Factor 
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Figure 3: Partial Regression Plot - Value  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Partial Regression Plot - Plane Affect  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Partial Regression Plot - Plane Comfort 
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Figure 6: Partial Regression Plot - Extraversion 
 

 

Assumption 5 is concerned with homoscedasticity and ensuring that the variance of errors 

(residuals) is constant across all the values of the independent variable. This assumption can be 

checked by inspection of a plot of standardized residuals against the predicted values (see Figure 

7). Because the points on the scatterplot did not exhibit a pattern or funnel shape, the data was 

determined to have homoscedasticity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Scatterplot for homoscedasticity 

 

 

The sixth assumption revolves around no multicollinearity within the data. Multicollinearity 

can cause issues with understanding which variable contributes to the variance and creating a 

parsimonious model. For this data set, the Tolerance/VIF values were assessed to 
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ensure there were no violations (data violating this assumption will have a Tolerance value less 

than 0.1 and a VIF value of greater than 10). Fortunately, none of the variables in the final 

model violated this assumption (see Table 12 for an overview of the specific variable values for 

the 4hr model). 

 
 

Table 12  
Summary of Collinearity Statistics 

 
Model 

Collinearity Statistics 
 Tolerance VIF   
    

 (Constant)   

 Vehicle Affect .221 4.521 

 Fun Factor .175 5.717 

 Value .209 4.777 

 Plane Affect .618 1.618 

 Plane Comfort .611 1.637 
 
 

Assumption 7 is concerned with the detection and removal of outlying data points. An 

outlier is an observation that does not follow the usual pattern of data points, which may 

negatively affect the model fit of the regression equation. For this data set, outliers were detected 

using Mahalanobis Distance to indicate statistically significant outliers, α = .001. In total, 76 

cases were removed (46 from Stage 1 and 30 from Stage 2), which represents 3.7% of the data 

sample due to outliers. Researchers have suggested that within a normally distributed population, 

there is a 1% chance that you will get an outlying data point (Osborne & Overbay, 2004). 

Therefore, some of the outliers from the current data sample may be a result of other factors, 

such as data errors, misreporting, sampling error, standardization error, etc., and were 

appropriately removed. 

 

Assumption 8 is based upon the premise that residuals (errors) are normally distributed. 

This can be investigated by looking at a histogram with a superimposed normal curve and a P- 
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Plot. Figure 8 provides an overview of the histogram, and although the residuals aren’t entirely 

normal, they are sufficiently distributed to satisfy this assumption. However, for further 

consideration, the normal probability plot (P-Plot) should also be considered. If the residuals are 

normally distributed, the points will be aligned along the diagonal line; however, these points 

will rarely perfectly align; thus, some deviation is acceptable (Laerd Statistics, 2015). Figure 9 

provides an overview of the P-Plot, which indicates that the residuals do not deviate far from 

the diagonal line. Observation of these two tests provides evidence that the requirements for this 

assumption were adequately met. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Frequency Distribution Histogram of Residuals 
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Figure 9: Normal Probability Plot (p-plot) 
 

 

Stage 1 

 

Stage 1 was conducted to build the regression equation necessary for predicting 

participants’ preferred travel method. There were 20 total predictors used for this analysis, 

including age, gender, social class, ethnicity, price, perceived value, familiarity, fun factor, 

wariness of new technology, personality (openness, conscientiousness, extraversion, 

agreeableness, and neuroticism), vehicle affect, vehicle comfort, vehicle external factors, 

airplane affect, airplane comfort, and airplane external factors. A backward stepwise regression 

was utilized to determine which variables significantly predicted participants’ preferred travel 

method. Through an iterative process, a backward stepwise regression eliminates statistically 

insignificant predictors until the final model represents the statistically significant predictors. 

Participants’ preferred travel method was measured across four different scenarios, which 

represented the different travel length times: four-hour, eight-hour, twelve-hour, and sixteen-

hour. The final model for each scenario is detailed below. 
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Four-Hour Trip 

 

For the four-hour trip, the final model included ten significant predictors: Vehicle Affect, 

Fun Factor, Value, Plane Affect, Vehicle Comfort, Extraversion, Openness, African, Asian, and 

Upper Class. The resulting regression equation was: 

 
Y = .169 + .297X1 + .229X2 + .290X3 - .106X4 - .106X5 - .020X6 + .016X7- .222X8 - 

 

.302X9 - .670X10 

 

where Y is participants’ preference for riding in an autonomous vehicle, and X1 – X9 are 

Vehicle Affect, Fun Factor, Value, Plane Affect, Vehicle Comfort, Extraversion, Openness, African, 

Asian, and Upper Class, respectively. This model resulted in an R
2
 = .507 (adjusted R

2
 = 

 
.501), thus accounting for roughly 50% of the variance in participants’ preferred travel method. 

This model was statistically significant, F(10, 852) = 87.549, p < .001. The overall model 

summary and ANOVA can be found in appendices, M and N, respectively. 

 
The final model for the four-hour trip included ten significant predictors with the coefficients 

listed in Table 13. According to the unstandardized B coefficients, when holding all other variables 

constant, for every unit increase in Vehicle Affect, participants’ preference for traveling in an 

autonomous vehicle increases .297 units on average, the coefficient was significant, t(852) = 5.102, 

p < .001. Holding all other variable constant, for each unit increase in Fun Factor, participants’ 

preference for traveling in an autonomous vehicle increases .229 units on average, the coefficient 

was significant, t(852) = 3.859, p < .001. Holding all other variable constant, for each unit increase 

in Value, participants’ preference for traveling in an autonomous vehicle increases .290 units on 

average, the coefficient was significant, t(852) = 4.953, p < .001. Holding all other variable constant, 

for each unit increase in Plane Affect, participants’ preference for traveling in an autonomous 

vehicle decreases .106 units on average, the 
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coefficient was significant, t(852) = -2.978, p = .003. Holding all other variable constant, for 

each unit increase in Vehicle Comfort, participants’ preference for traveling in an autonomous 

vehicle decreases .106 units on average, the coefficient was significant, t(852) = -2.627, p = 

.009. Holding all other variable constant, for each unit increase in Extraversion, participants’ 

preference for traveling in an autonomous vehicle decreases .020 units on average, the 

coefficient was significant, t(852) = -2.768, p = .054. Holding all other variable constant, for 

each unit increase in Openness, participants’ preference for traveling in an autonomous vehicle 

increases .016 units on average, the coefficient was significant, t(852) = 1.186, p = .070. Holding 

all other variable constant, for each unit increase in African ethnicity, participants’ preference for 

traveling in an autonomous vehicle decreases .222 units on average, the coefficient was 

significant, t(852) = -1.943, p = .052. Holding all other variable constant, for each unit increase 

in Asian ethnicity, participants’ preference for traveling in an autonomous vehicle decreases .302 

units on average, the coefficient was significant, t(852) = -2.513, p = .012. Holding all other 

variable constant, for each unit increase in Upper Class, participants’ preference for traveling in 

an autonomous vehicle increases .670 units on average, the coefficient was significant, t(852) = - 

1.943, p = .052. 
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Table 13         

Regression Coefficients for four-hour trip (Model 18)      

 Unstandardized Standardized t Sig. Correlations  

Model
a 

Coefficients Coefficients      

B Std. Beta   Zero- Partial Part 
   

  error    order   

18   (Constant) .169 .146  1.157 .248    

VehicleAffect .297 .058 .259 5.102 .000 .630 .172 .123 
FunFactor .229 .059 .220 3.859 .000 .647 .131 .093 

Value .290 .058 .258 4.953 .000 .659 .167 .119 

PlaneAffect -.106 .035 -.091 -2.978 .003 -.068 -.102 -.072 

PlaneComfort -.106 .040 -.081 -2.627 .009 -.097 -.090 -.063 

Extraversion -.020 .007 -.070 -2.768 .006 -.040 -.094 -.067 

Imagination .016 .009 .045 1.816 .070 .097 .062 .044 

African -.222 .114 -.048 -1.943 .052 -.081 -.066 -.047 

Asian -.302 .120 -.061 -2.513 .012 -.032 -.086 -.060 

UpperClass .670 .345 .047 1.943 .052 .075 .066 .047  
a. Dependent Variable: Preferred Travel Method 

Eight-Hour Trip 
 
 

For the eight-hour trip, the final model included thirteen significant predictors: Vehicle 

 

Affect, Vehicle Comfort, Wariness of New Technology, Value, Familiarity, Plane Affect, Plane 

 

Price, Agreeableness, Conscientiousness, Gender, African, Asian, and Upper Class. The 

 

resulting regression equation was: 
 

 

Y = .552 + .367X1 + .094X2 + .088X3 + .221X4 - .196X5 - .291X6 - .100X7 - .023X8 - 

 

.021X9 - .203X10 - .390X11 - .391X12 + 1.367X13 

 
 

where Y was participants’ preference for riding in an autonomous vehicle, and X1 – X13 

 

is Vehicle Affect, Vehicle Comfort, Wariness of New Technology, Value, Familiarity, Plane 

 

Affect, Plane Price, Agreeableness, Conscientiousness, Gender, African, Asian, and Upper Class, 
 

respectively. This model resulted in an R
2
 = .333 (adjusted R

2
 = .322), thus accounting for 

 

roughly 32% of the variance in participants’ preference for riding in an autonomous vehicle. This 

 

model was statistically significant, F(13, 849) = 32.544, p < .001. The overall model summary 

 

and ANOVA can be found in appendices, O and P, respectively. 
 
 

 

84 



 
The final model for the eight-hour trip included thirteen significant predictors with the 

coefficients listed in Table 14. According to the unstandardized B coefficients, when holding all 

other variables constant, for every unit increase in Vehicle Affect, participants’ preference for 

traveling in an autonomous vehicle increases .367 units on average, the coefficient was significant, 

t(849) = 5.592, p < .001. Holding all other variables constant, for every unit increase in Vehicle 

Comfort, participants’ preference for traveling in an autonomous vehicle increases 

 
.094 units on average, the coefficient was significant, t(849), 1.823, p = .069. Holding all other 

variables constant, for every unit increase in Wariness of New Technology, participants’ 

preference for traveling in an autonomous vehicle increases .088 units on average, the coefficient 

was significant, t(849) = 2.172, p = .030. Holding all other variables constant, for every unit 

increase in Value, participants’ preference for traveling in an autonomous vehicle increases .221 

units on average, the coefficient was significant, t(849) = 3.685, p < .001. Holding all other 

variables constant, for every unit increase in Familiarity, participants’ preference for traveling in 

an autonomous vehicle increases .196 units on average, the coefficient was significant, t(849) = 

4.527, p < .001. Holding all other variables constant, for every unit increase in Plane Affect, 

participants’ preference for traveling in an autonomous vehicle decreases .291 units on average, 

the coefficient was significant, t(849) = -7.966, p < .001. 

 

Holding all other variables constant, for every unit increase in Plane Price, participants’ 

preference for traveling in an autonomous vehicle decreases .100 units on average, the 

coefficient was significant, t(849) = -2.966, p = .003. Holding all other variables constant, for 

every unit increase in Agreeableness, participants’ preference for traveling in an autonomous 

vehicle decreases .023 units on average, the coefficient was not significant, t(849) = -2.042, p = 

.041. Holding all other variables constant, for every unit increase in Conscientiousness, 
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participants’ preference for traveling in an autonomous vehicle decreases .021 units on average, 

the coefficient was significant, t(849) = -1.872, p = .061. Holding all other variables constant, for 

every unit increase in Gender, participants’ preference for traveling in an autonomous vehicle 

decreases .203 units on average, the coefficient was significant, t(849) = -2.674, p = .008. 

Holding all other variables constant, for every unit increase in African ethnicity, participants’ 

preference for traveling in an autonomous vehicle decreases .390 units on average, the 

coefficient was significant, t(849) = -2.768, p = .006. Holding all other variables constant, for 

every unit increase in Asian ethnicity, participants’ preference for traveling in an autonomous 

vehicle decreases .391 units on average, the coefficient was significant, t(849) = -2.623, p = 

.009. Holding all other variables constant, for every unit increase in Upper Class, participants’ 

preference for traveling in an autonomous vehicle increases 1.367 units on average, the 

coefficient was significant, t(849) = 3.191, p = .001. 

 

 

Table 14  
Regression Coefficients for eight-hour trip (Model 15) 

  Unstandardized Standardized t Sig.  Correlations  
 

Modela 
Coefficients Coefficients      

 B Std. Beta   Zero- Partial Part 
    

   error    order   

 15   (Constant) .552 .228  2.422 .016    

 VehicleAffect .367 .066 .302 5.592 .000 .455 .188 .157 

 VehicleComfort .094 .051 .061 1.823 .069 .229 .062 .051 

 WaryTech .088 .041 .068 2.172 .030 -.118 .074 .061 

 Value .221 .060 .186 3.685 .000 .457 .125 .103 

 Familiarity .196 .043 .144 4.527 .000 .268 .154 .127 

 PlaneAffect -.291 .037 -.237 -7.966 .000 -.142 -.264 -.223 

 PlanePrice -.100 .034 -.085 -2.966 .003 -.050 -.101 -.083 

 Agreeableness -.023 .011 -.061 -2.042 .041 -.022 -.070 -.057 

 Conscientiousness -.021 .011 -.054 -1.872 .061 -.086 -.064 -.052 

 Gender -.203 .076 -.081 -2.674 .008 .018 -.091 -.075 

 African -.390 .141 -.080 -2.768 .006 -.095 -.095 -.078 

 Asian -.391 .149 -.075 -2.623 .009 -.049 -.090 -.074 

 UpperClass 1.367 .428 .091 3.191 .001 .128 .109 .089 

 a. Dependent Variable: Preferred Travel Method      
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Twelve-Hour Trip 

 

For the twelve-hour trip, the final model included twelve significant predictors: 

Vehicle Affect, Vehicle Comfort, Wariness of New Technology, Familiarity, Plane Affect, 

Plane External Factors, Plane Price, Extraversion, Conscientiousness, Neuroticism, Asian, and 

Upper Class. The resulting equation was 

 

Y = -.445 + .454X1 + .132X2 + .117X3 + .135X4 - .363X5 + .111X6 - .110X7 + .017X8 - 

 

.022X9 + .027X10 - .339X11 + 1.307X12 

 

 

where Y was participants’ preference for riding in an autonomous vehicle, and X1 – X12 

are Vehicle Affect, Vehicle Comfort, Wariness of New Technology, Familiarity, Plane Affect, 

Plane External Factors, Plane Price, Extraversion, Conscientiousness, Neuroticism, Asian, and 

Upper Class, respectively. This model resulted in an R
2
 = .269 (adjusted R

2
 = .259), thus 

accounting for roughly 26% of the variance in participants’ preference for riding in an 

autonomous vehicle. This model was statistically significant, F(12, 850) = 26.052, p < .001. 

The overall model summary and ANOVA can be found in appendices, Q and R, respectively. 

 

The final model for the twelve-hour trip included twelve significant predictors with the 

coefficients listed in Table 15. According to the unstandardized B coefficients, when holding 

all other variables constant, for every unit increase in Vehicle Affect, participants’ preference 

for traveling in an autonomous vehicle increases .454 units on average, the coefficient was 

significant, t(850) = 10.141, p < .001. When holding all other variables constant, for every unit 

increase in Vehicle Comfort, participants’ preference for traveling in an autonomous vehicle 

increases .132 units on average, the coefficient was significant, t(850) = 2.588, p = .010. When 

holding all other variables constant, for every unit increase in Wariness of New Technology, 

participants’ preference for traveling in an autonomous vehicle increases .117 units on average, 
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the coefficient was significant, t(850) = 2.797, p = .005. When holding all other variables 

constant, for every unit increase in Familiarity, participants’ preference for traveling in an 

autonomous vehicle increases .135 units on average, the coefficient was significant, t(850) 

= 3.056, p = .002. 

 

When holding all other variables constant, for every unit increase in Plane Affect, 

participants’ preference for traveling in an autonomous vehicle decreases .363 units on average, the 

coefficient was significant, t(850) = -8.672, p < .001. When holding all other variables constant, for 

every unit increase in Plane External Factors, participants’ preference for traveling in an 

autonomous vehicle increases .111 units on average, the coefficient was significant, t(850) = 2.250, 

p = .025. When holding all other variables constant, for every unit increase in Plane Price, 

participants’ preference for traveling in an autonomous vehicle decreases .110 units on average, the 

coefficient was significant, t(850) = -3.196, p = .001. When holding all other variables constant, for 

every unit increase in Extraversion, participants’ preference for traveling in an autonomous vehicle 

increases .017 units on average, the coefficient was significant, t(850) 

 
= 1.823, p = .069. When holding all other variables constant, for every unit increase in 

Conscientiousness, participants’ preference for traveling in an autonomous vehicle decreases 

 
.022 units on average, the coefficient was significant, t(850) = 1.851, p = .065. When holding all 

 

other variables constant, for every unit increase in Neuroticism, participants’ preference for 

traveling in an autonomous vehicle increases .027 units on average, the coefficient was 

significant, t(850) = 2.472, p = .014. When holding all other variables constant, for every unit 

increase in Asian ethnicity, participants’ preference for traveling in an autonomous vehicle 

decreases .339 units on average, the coefficient was significant, t(850) = -2.244, p = .025. 

When holding all other variables constant, for every unit increase in Upper Class, participants’ 
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preference for traveling in an autonomous vehicle increases 1.307 units on average, the 

 

coefficient was significant, t(850) = 3.011, p = .003. 
 
 

 

Table 15  
Regression Coefficients for twelve-hour trip (Model 16) 

 Unstandardized Standardized t Sig.  Correlations  

Modela 
Coefficients Coefficients      

B Std. Beta   Zero- Partial Part 
   

  error    order   

16   (Constant) -.445 .280  -1.589 .112    

VehicleAffect .454 .045 .385 10.141 .000 .372 .329 .297 

VehicleComfort .132 .051 .089 2.588 .010 .216 .088 .076 

WaryTech .117 .042 .093 2.797 .005 -.046 .095 .082 

Familiarity .135 .044 .102 3.056 .002 .234 .104 .090 

PlaneAffect -.363 .042 -.303 -8.672 .000 -.150 -.285 -.254 

PlaneExtFact .111 .049 .080 2.250 .025 .015 .077 .066 

PlanePrice -.110 .034 -.096 -3.196 .001 -.086 -.109 -.094 

Extraversion .017 .009 .058 1.823 .069 .067 .062 .053 

Conscientiousness -.022 .012 -.059 -1.851 .065 -.115 -.063 -.054 

Neuroticism .027 .011 .082 2.472 .014 .078 .084 .073 

Asian -.339 .151 -.067 -2.244 .025 -.054 -.077 -.066 

UpperClass 1.307 .434 .090 3.011 .003 .126 .103 .088  
a. Dependent Variable: Preferred Travel Method  

 
 

 

Sixteen-Hour Trip 

 

For the sixteen-hour trip, the final model included twelve significant predictors: Vehicle 

Affect, Vehicle Comfort, Wariness of New Technology, Familiarity, Plane Affect, Plane 

External Factors, Plane Price, Extraversion, Neuroticism, Asian, Lower Class, and Upper Class. 

The resulting equation was 

 

Y = -.946 + .431X1 + .179X2 + .136X3 + .150X4 - .356X5 + .177X6 - .140X7 + .023X8 + 

 

.030X9 - .295X10 + .330X11 + 1.334X12 

 

 

where Y was participants’ preference for riding in an autonomous vehicle, and X1 – X12 

are Vehicle Affect, Vehicle Comfort, Wariness of New Technology, Familiarity, Plane Affect, 
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Plane External Factors, Plane Price, Extraversion, Neuroticism, Asian, Lower Class, and Upper 

Class, respectively. This model resulted in an R
2
 = .267 (adjusted R

2
 = .256), thus accounting for 

roughly 25% of the variance in participants’ preference for riding in an autonomous vehicle. This 

model was statistically significant, F(12, 850) = 29.260, p < .001. The overall model summary 

and ANOVA can be found in appendices, S and T, respectively. 

 

The final model for the sixteen-hour trip included twelve significant predictors with the 

coefficients listed in Table 16. According to the unstandardized B coefficients, when holding all 

other variables constant, for every unit increase in Vehicle Affect, participants’ preference for 

traveling in an autonomous vehicle increases .431 units on average, the coefficient was 

significant, t(850) = 9.456, p < .001. When holding all other variables constant, for every unit 

increase in Vehicle Comfort, participants’ preference for traveling in an autonomous vehicle 

increases .179 units on average, the coefficient was significant, t(850) = 3.443, p = .001. When 

holding all other variables constant, for every unit increase in Wariness of New Technology, 

participants’ preference for traveling in an autonomous vehicle increases .136 units on average, 

the coefficient was significant, t(850) = 3.198, p = .001. When holding all other variables 

constant, for every unit increase in Familiarity, participants’ preference for traveling in an 

autonomous vehicle increases .150 units on average, the coefficient was significant, t(850) = 

3.310, p = .001. 

 

When holding all other variables constant, for every unit increase in Plane Affect, 

 

participants’ preference for traveling in an autonomous vehicle decreases .356 units on average, 

 

the coefficient was significant, t(850) = -8.359, p < .001. When holding all other variables 

 

constant, for every unit increase in Plane External Factors, participants’ preference for traveling 

 

in an autonomous vehicle increases .177 units on average, the coefficient was significant, t(850) 
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= 3.536, p < .001. When holding all other variables constant, for every unit increase in Plane 

Price, participants’ preference for traveling in an autonomous vehicle decreases .140 units on 

average, the coefficient was significant, t(850) = -4.005, p < .001. When holding all other 

variables constant, for every unit increase in Extraversion, participants’ preference for traveling 

in an autonomous vehicle increases .023 units on average, the coefficient was significant, t(850) 

= 2.328, p = .020. When holding all other variables constant, for every unit increase in 

Neuroticism, participants’ preference for traveling in an autonomous vehicle increases .030 units 

on average, the coefficient was significant, t(850) = 2.887, p = .004. When holding all other 

variables constant, for every unit increase in Asian ethnicity, participants’ preference for 

traveling in an autonomous vehicle decreases .295 units on average, the coefficient was 

significant, t(850) = -1.917, p = .056. When holding all other variables constant, for every unit 

increase in Lower Class, participants’ preference for traveling in an autonomous vehicle 

increases .330 units on average, the coefficient was significant, t(850) = 2.168, p = .030. When 

holding all other variables constant, for every unit increase in Upper Class, participants’ 

preference for traveling in an autonomous vehicle increases 1.334 units on average, the 

coefficient was significant, t(850) = 3.014, p = .003. 
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Table 16 

Regression Coefficients for sixteen-hour trip (Model 16) 

 Unstandardized Standardized t Sig.  Correlations  

Modela 
Coefficients Coefficients      

B Std. Beta   Zero- Partial Part 
   

  error    order   

16   (Constant) -.946 .191  -4.948 .000    

VehicleAffect .431 .046 .358 9.456 .000 .355 .309 .278 

VehicleComfort .179 .052 .118 3.443 .001 .236 .117 .101 

WaryTech .136 .043 .107 3.198 .001 -.022 .109 .094 

Familiarity .150 .045 .111 3.310 .001 .250 .113 .097 

PlaneAffect -.356 .043 -.293 -8.359 .000 -.112 -.276 -.246 

PlaneExtFact .177 .050 .125 3.536 .000 .071 .120 .104 

PlanePrice -.140 .035 -.121 -4.005 .000 -.116 -.136 -.118 

Extraversion .023 .010 .074 2.328 .020 .088 .080 .068 

Neuroticism .030 .010 .090 2.887 .004 .071 .099 .085 

Asian -.295 .154 -.057 -1.917 .056 -.050 -.066 -.056 

LowerClass .330 .152 .065 2.168 .030 .050 .074 .064 

UpperClass 1.334 .443 .090 3.014 .003 .130 .103 .089 

a. Dependent Variable: Preferred Travel Method  
 
 

 

Stage Two 

 

As previously noted, the purpose of Stage 2 was to validate the regression equation that 

accounted for the most variance. For the current dissertation, four different scenarios were 

presented to participants, which represented the varying trip lengths: four hours, eight hours, 

twelve hours, and sixteen hours. In the following sections, the model fit for each regression 

equation produced will be validated. This validation was accomplished by comparing 

participants’ predicted scores on the Preferred Travel Method scale (using the equation created 

in Stage 1) to their actual scores on the Preferred Travel Method scale. This comparison was 

accomplished through a t-test, correlation, and cross-validated R
2
. 

 

Four-Hour Scenario 

 

To begin testing the predictive validity of the equation, a t-test was performed to compare 

participants’ predicted scores to their actual scores of preference for riding in an autonomous 
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vehicle rather than a commercial aircraft. This analysis resulted in a non-significant finding, 

 

t(1762) = -.176, p = .860, and is displayed in Table 17. 
 

 

Table 17 

T-Test between Actual and Predicted Scores of Preferred Travel Method 

  Levene’s Test for        

  Equality of    t-test for Equality of Means   

  Variances        

         95% Confidence 

         Interval 

  F Sig. t df Sig. Mean Std. Error Lower Upper 

       Difference Difference   

 Equal 122.032 .000 -.176 1762 .860 -.00857 .04858 -.10386 .08673 

 variances          

 assumed          
 
 

 

Furthermore, a correlational analysis was conducted to determine the relationship of 

similarity between the actual and predicted scores. Interpretation of the results indicate that 

the scores have a strong and positive relationship, r(880) = .653, p < .001. The results of this 

analysis are represented in Table 18. 

 

Table 18 

Correlational Analysis Between Actual and Predicted Preferred Travel Method Scores 

   Actual Predicted 

 Actual Pearson 1 .653 

  Sig.  .000 

  N 882 882 

 Predicted Pearson .653 1 

  Sig. .000  

  N 882 882 
 
 

 

Lastly, cross-validated R
2
 was compared to determine the validity of the regression 

 

equation. The following formula calculates the estimated squared cross-validity coefficient: 

2 =1−( − 1 )( +  + 1 )(1 −  2) 
  

  
−  − 1 
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where N = sample size, k = number of predictors, and R
2
 = observed squared multiple 

correlation (Pedhazur, 1997). Using the aforementioned formula, the stage two cross-validity 

coefficient is calculated below: 

 882 − 1  882 + 20 + 1  

.484=1−( 

 

)( 

   

)(1 − .507) 882 882 − 20 − 1 

 

where N = 882, k = 20, and R
2
 = .507. The cross-validity coefficient is 2 = .484, which indicates a good model fit 

because the cross-validity coefficient is similar to the R
2
 found in the original model produced during Stage 1. 

 

 

Eight-Hour Scenario 

 

To begin testing the predictive validity of the equation, a t-test was performed to compare 

participants’ predicted scores to their actual scores of preference for riding in an autonomous 

vehicle rather than a commercial aircraft. This analysis resulted in a non-significant finding, 

t(1762) = .576, p = .564, and is displayed in Table 19. 

 

Table 19  

T-Test between Actual and Predicted Scores of Preferred Travel Method 
  Levene’s Test for        

  Equality of    t-test for Equality of Means   

  Variances        

         95% Confidence 

         Interval 

  F Sig. t df Sig. Mean Std. Error Lower Upper 

       Difference Difference   

 Equal 528.738 .000 .576 1762 .564 .02806 .04870 -.06745 .12358 

 variances not          

 assumed          
 
 

 

Furthermore, a correlational analysis was conducted to determine the relationship of 

similarity between the actual and predicted scores. Interpretation of the results indicate that 

the scores have a strong and positive relationship, r(880) = .516, p < .001. The results of this 

analysis are represented in Table 20. 
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Table 20 

Correlational Analysis Between Actual and Predicted Preferred Travel Method Scores 

   Actual Predicted 

 Actual Pearson 1 .516 

  Sig.  .000 

  N 882 882 

 Predicted Pearson .516 1 

  Sig. .000  

  N 882 882 
 
 

 

Lastly, cross-validated R
2
 was compared to determine the validity of the regression 

equation. The following formula calculates the estimated squared cross-validity coefficient: 

2 =1−( − 1 )( +  + 1 )(1 −  2) 
  

  
−  − 1 

  

 

where N = sample size, k = number of predictors, and R
2
 = observed squared multiple 

correlation (Pedhazur, 1997). Using the aforementioned formula, stage two cross-validity 

coefficient is calculated below: 

 882 − 1  882 + 20 + 1  

.301=1−( 

 

)( 

   

)(1 − .333) 882 882 − 20 − 1 

 

where N = 882, k = 20, and R
2
 = .333. The cross-validity coefficient is 2 = .301, which indicates moderate to strong model fit 

because the cross-validity coefficient is similar to the R
2
 found in the original model produced during Stage 1. 

 

 

Twelve-Hour Scenario 

 

To begin testing the predictive validity of the equation, a t-test was performed to compare 

participants’ predicted scores to their actual scores of preference for riding in an autonomous 

vehicle rather than a commercial aircraft. This analysis resulted in a non-significant finding, 

t(1762) = -.335, p = .737, and is displayed in Table 21. 
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Table 21 

T-Test between Actual and Predicted Scores of Preferred Travel Method 
  Levene’s Test for        

  Equality of    t-test for Equality of Means   

  Variances         

         95% Confidence 

         Interval 

  F Sig. t df Sig. Mean Std. Error Lower Upper 

       Difference Difference   

 Equal 476.288 .000 -.335 1762 .737 -.01565 .04667 -.10717 .07588 
 Variances          

 Assumed          
 
 

 

Furthermore, a correlational analysis was conducted to determine the relationship of 

similarity between the actual and predicted scores. Interpretation of the results indicate that 

the scores have a strong and positive relationship, r(880) = .445, p < .001. The results from 

this analysis are represented in Table 22. 

 

Table 22 

Correlational Analysis Between Actual and Predicted Preferred Travel Method Scores 

   Actual Predicted 

 Actual Pearson 1 .445 

  Sig.  .000 

  N 882 882 

 Predicted Pearson .445 1 

  Sig. .000  

  N 882 882 
 
 

 

Lastly, cross-validated R
2
 was compared to determine the validity of the regression 

 

equation. The following formula calculates the estimated squared cross-validity coefficient: 

2 =1−( − 1 )( +  + 1 )(1 −  2) 
  

  
−  − 1 

  

 

where N = sample size, k = number of predictors, and R
2
 = observed squared multiple correlation 

 

(Pedhazur, 1997). Using the aforementioned formula, stage two cross-validity coefficient is 

 

calculated below: 
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 882 − 1  882 + 20 + 1  

.234=1−( 

 

)( 

   

)(1 − .269) 882 882 − 20 − 1 

 

where N = 882, k = 20, and R
2
 = .269. The cross-validity coefficient is 2 = .234, which indicates weak to moderate 

model fit because the cross-validity coefficient is somewhat similar to the R
2
 found in the original model produced 

during Stage 1. 

 

Sixteen-Hour Scenario 

 

To begin testing the predictive validity of the equation, a t-test was performed to compare 

participants’ predicted scores to their actual scores of preference for riding in an autonomous 

vehicle rather than a commercial aircraft. This analysis resulted in a non-significant finding, 

t(1762) = -.490, p = .624, and is displayed in Table 23. 

 

Table 23 

T-Test between Actual and Predicted Scores of Preferred Travel Method 
  Levene’s Test for        

  Equality of    t-test for Equality of Means   

  Variances         

         95% Confidence 

         Interval 

  F Sig. t df Sig. Mean Std. Error Lower Upper 

       Difference Difference   

 Equal 359.161 .000 -.490 1762 .624 -.02295 .04685 -.11484 .06895 
 Variances          

 Assumed          
 
 

 

Furthermore, a correlational analysis was conducted to determine the relationship of 

similarity between the actual and predicted scores. Interpretation of the results indicate that 

the scores have a strong and positive relationship, r(880) = .412, p < .001. The results of this 

analysis are represented in Table 24. 
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Table 24 

Correlational Analysis Between Actual and Predicted Preferred Travel Method Scores 

   Actual Predicted 

 Actual Pearson 1 .412 

  Sig.  .000 

  N 882 882 

 Predicted Pearson .412 1 

  Sig. .000  

  N 882 882 
 
 

 

Lastly, cross-validated R
2
 was compared to determine the validity of the regression 

equation. The following formula calculates the estimated squared cross-validity coefficient: 

2 =1−( − 1 )( +  + 1 )(1 −  2) 
  

  
−  − 1 

  

 

where N = sample size, k = number of predictors, and R
2
 = observed squared multiple 

correlation (Pedhazur, 1997). Using the aforementioned formula, stage two cross-validity 

coefficient is calculated below: 

 882 − 1  882 + 20 + 1  

.232=1−( 

 

)( 

   

)(1 − .267) 882 882 − 20 − 1 

 

where N = 882, k = 20, and R
2
 = .267. The cross-validity coefficient is 2 = .232, which indicates weak to moderate 

model fit because the cross-validity coefficient is somewhat similar to the R
2
 found in the original model produced 

during Stage 1. 

 

Summary 
 

 

The current research strived to build and validate a prediction equation for measuring 

participants’ preference for riding in an autonomous vehicle rather than flying in a commercial 

aircraft. To achieve this objective, the research and data analysis was conducted in two different 

stages. In stage one, participants’ responses to the Preferred Travel Method scale were used to 
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build the regression equation. In stage two, data was collected from a new set of participants, and 

their predicted responses were compared to their actual responses on the Preferred Travel 

Method scale. This comparison was accomplished by conducting a t-test, correlation, and cross-

validated R
2
. 

 

From stage one, the most robust model resulted from the four hour travel scenario and 

included ten significant predictors: Vehicle Affect, Fun Factor, Value, Plane Affect, Vehicle 

Comfort, Extraversion, Openness, African, Asian, and Upper Class, which accounted for 50.7% 

of the variance (50.1% adjusted). For the eight hour trip, the final model included thirteen 

significant predictors: Vehicle Affect, Vehicle Comfort, Wariness of New Technology, Value, 

Familiarity, Plane Affect, Plane Price, Agreeableness, Conscientiousness, Gender, African, 

Asian, and Upper Class, which accounted 33% of the variance (32% adjusted). For the twelve 

hour trip, the final model included twelve significant predictors: Vehicle Affect, Vehicle 

Comfort, Wariness of New Technology, Familiarity, Plane Affect, Plane External Factors, Plane 

Price, Extraversion, Conscientiousness, Neuroticism, Asian, and Upper Class, which accounted 

for 27% of the variance (26% adjusted). For the sixteen hour trip, the final model included 

twelve significant predictors: Vehicle Affect, Vehicle Comfort, Wariness of New Technology, 

Familiarity, Plane Affect, Plane External Factors, Plane Price, Extraversion, Neuroticism, Asian, 

Lower Class, and Upper Class, respectively, which accounted for 26% of the variance (25% 

adjusted). Due to the relatively exploratory nature of the current research, these models provide 

a foundation for future research to continue exploring. There are possibly several other factors 

affecting participants’ preference for riding in an autonomous vehicle and participants’ 

perceptions will likely continue evolving as autonomous vehicles become available to the 

public. A summary of all four models is provided below in Tables 25 – 27. 
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Table 25 

Model Summaries of Stage 1 

  Four-Hour Eight-Hour Twelve-Hour Sixteen-Hour 

      

 R2 .51 .33 .27 .26 

 Adj. R
2 

.50 .32 .26 .25 

 F 87.55 32.54 26.05 25.77 

 df 10, 852 13, 849 12, 850 12, 850 

 p < .001 < .001 < .001 < .001 

      

 Table 26     

 Statistically Significant Unstandardized Beta Coefficients of Stage 1  

  Four Hour Eight Hour Twelve Hour Sixteen Hour 

 Constant .169 .552 -.445 -.946 

 Age     

 Gender  -.203   

 Lower Class    .330 

 Working Class     

 Upper Middle     

 Upper Class .670 1.367 1.307 1.334 

 African -.222 -.390   

 Hispanic     

 Asian -.302 -.391 -.339 -.295 

 Indian     

 Other     

 Plane Price  -.100 -.110 -.140 

 Perceived Value .290 .221   

 Familiarity  .196 .135 .150 

 Fun Factor .229    

 Wariness Tech.  .088 .117 .136 

 Openness .016    

 Conscientiousness  -.021 -.022  

 Extraversion -.020  .017 .023 

 Agreeableness  -.023   

 Neuroticism   .027 .030 

 Vehicle Affect .297 .367 .454 .431 

 Vehicle Comfort -.106 .094 .132 .179 

 Vehicle Ext. Fact     

 Airplane Affect -.106 -.291 -.363 -.356 

 Airplane Comfort     

 Airplane Ext. Fact   .111 .177 
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 Table 27         

 Model Fit Summaries using Actual Vs. Predicted Scores (Stage 2)   

   T-test   Correlation Original R
2 

Cross-Validated R
2 

  t df Sig.  R Sig.   

 Four Hour -.176 1762 .860 .653 <.001 .507 .484 

 Eight Hour .576 1762 .564 .516 <.001 .333 .301 

 Twelve Hour -.335 1762 .737 .445 <.001 .269 .234 

 Sixteen Hour -.490 1762 .624 .412 <.001 .267 .232 
 
 

 

While none of the models produced the same set of predictive variables, there were a few 

similarities throughout the four models (see Table 28). Out of the 20 variables, only four showed 

up in every model: Upper Class, Vehicle Affect, Airplane Affect, and Vehicle Comfort. These 

findings support previous research that indicates people from upper social class tend to feel more 

accepting and have more favorable opinions associated with new technology (Maldifassi & 

Canessa, 2009; Porter & Donthu, 2006). Affect measured participants’ emotional response to the 

idea of riding in a fully autonomous vehicle. In contrast, airplane affect measured participants’ 

emotional response to the idea of riding in a commercial aircraft. Both these variables were 

significant in every travel scenario, thus demonstrating the significant impact of emotions on 

consumers’ decision-making processes. Furthermore, participants prioritized having a 

comfortable experience while riding in a driverless vehicle and those from an upper social class 

had a higher preference for riding in a driverless vehicle. 

 

At least one category within social class, ethnicity, and personality were also significant 

predictors in every scenario. Upper Class was a positive significant predictor in every scenario in 

addition to Lower Class, which was only significant in the sixteen-hour scenario. Personality 

was significant in every scenario with Openness in the four-hour with a positive coefficient. 

Conscientiousness had significant negative coefficient in the eight-hour and twelve-hour 
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scenarios. Extraversion showed up in three different models, including the four, twelve, 

and sixteen-hour scenarios. 

 

Interestingly, extraversion had a negative coefficient in the four-hour scenario, suggesting 

that as Extraversion increased, participants’ preference for riding in an autonomous vehicle 

decreased. However, in the twelve-hour and sixteen-hour scenario, Extraversion had a positive 

coefficient suggesting that as levels of extraversion increased, so too did their preference for 

riding in an autonomous vehicle. Agreeableness was only significant in the eight-hour scenario 

with a negative coefficient and Neuroticism was significant in the twelve-hour and sixteen-hour 

scenarios with positive coefficients. 

 

The next most common variables included Plane Price, Familiarity, and Wariness of 

New Technology, all of which were significant predictors in the eight, twelve, and sixteen-hour 

scenarios. Plane Price measured whether or not the cost of an airplane ticket was important for 

participants. In all three models, Plane Price had a negative coefficient, indicating that as the 

importance of the cost of an airplane ticket increased, participants’ preference for riding in a 

fully autonomous vehicle decreased. Familiarity measured participant’s perceived level of 

experience with an autonomous vehicle. Wariness of New Technology measured participants’ 

fear or concern associated with using new technology. 

 

For the remaining predictive variables, the majority were evenly spread out across the 

different models, except for gender. Gender was only significant in the eight-hour scenario, with 

females having a higher preference than males for riding in an autonomous vehicle. However, 

age was not a significant predictor in any scenario, nor was Vehicle External Factors or 

Airplane Comfort, in addition to a few other ethnicities and social class categories. 
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Table 28 

Summary of Significant Predictors across all four scenarios  
Four Hour Eight Hour Twelve Hour Sixteen Hour  

Age  

Gender  
Social Class 

Ethnicity  
Price 

Value  

Familiarity  
Fun Factor  
Wariness 

Personality  

Vehicle Affect 

Plane Affect 

Vehicle Comfort  
Vehicle External Factors 

Plane Comfort 

Plane External Factors  
Null hypothesis rejected Null hypothesis rejected for at least one of the categories  

 

 

During stage two analyses, all four models indicated statistically insignificant differences 

on the t-test, which is an indicator for strong model fit. All four models showed significant 

correlations with medium to strong relationships between the two datasets. Furthermore, all four 

models had cross-validated a R
2
 that was similar to the respective R

2
 found in Stage 1. The four-

hour scenario seemed to produce the strongest model as it had a statistically insignificant t-test, 

strong and positive correlation, and a small difference between the original R
2
 and the cross-

validated R
2
 when compared across all four models. 

 

The purpose of Chapter Four was to provide a detailed description of the analyses used 

for the current dissertation with a summary of results. All four models indicated a strong model 

fit. The four-hour travel scenario arguably provided the most robust and most parsimonious 

model as it had the highest amount of variance accounted for with the fewest number of variables 
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out of the four models. A detailed overview of the impact and meaning of these results will be 

 

discussed in the following section, Chapter Five. 
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Chapter Five 

 

Discussion 
 

 

Overview 

 

The current research strived to understand better the factors affecting participants’ 

preference for riding in an autonomous vehicle rather than flying in a commercial aircraft. This 

was accomplished through two different research stages that consisted of building a regression 

equation and then validating the equation through model fit. After removing missing data and 

outliers, there was a total of 1,745 participants (952 females) for both stages, who responded to 

the online survey. These participants were then split in half to facilitate the data analysis for 

stage one and two. In stage one, participants’ responses were used to create the regression 

equation, and then participants from the second stage were used to validate the regression 

equation using model fit analyses. Participants responded to the same survey in both stages, and 

the detailed methodology is provided in Chapter Three. 

 

The current research used a correlational design with multiple linear regression as the 

data analysis technique, which allowed for the creation of a model predicting participants’ 

preference for riding in an autonomous vehicle rather than flying on a commercial aircraft. 

Overall, 20 independent variables were tested for their impact on participants’ preferred travel 

method: age, gender, social class, ethnicity, price, perceived value, familiarity, fun factor, 

wariness of new technology, personality (openness, conscientiousness, extraversion, 

agreeableness, and neuroticism), vehicle affect, vehicle comfort, vehicle external factors, 

airplane affect, airplane comfort, and airplane external factors. The dependent variable was the 

participants’ preference for riding in an autonomous vehicle rather than flying on a 

commercial aircraft. The following are a list of the alternative hypotheses: 
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Hypothesis 1 
 

 

HA1: At least one demographic variable (age, gender, social class, and 

ethnicity) will significantly predict participants’ preferred travel method when 

controlling for all other variables. 

 

Hypothesis 2 
 

 

HA3: Price is a significant predictor of participants’ preferred travel method when 

controlling for all other variables. 

 

Hypothesis 3 
 

 

HA3: At least one current consumer perceptions (perceived value, familiarity, 

fun factor, wariness of new technologies) will significantly predict participants’ 

preferred travel method when controlling for all other variables. 

 

Hypothesis 4 
 

 

HA4: At least one of the big five personality traits is a significant predictor 

of participants’ preferred travel method when controlling for all other variables. 

 

Hypothesis 5 
 

 

HA5: Vehicle Affect is a significant predictor of participants’ preferred 

travel method when controlling for all other variables. 

 

Hypothesis 6 
 

 

HA6: Airplane Affect is a significant predictor of participants’ preferred travel 

method when controlling for all other variables. 
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Hypothesis 7 
 

 

HA7: Vehicle Comfort is a significant predictor of participants’ preferred 

travel method when controlling for all other variables. 

 

Hypothesis 8 
 

 

HA8: Vehicle External Factors is a significant predictor of participants’ 

preferred travel method when controlling for all other variables. 

 

Hypothesis 9 
 

 

HA9: Airplane Comfort is a significant predictor of participants’ preferred 

travel method when controlling for all other variables. 

 

Hypothesis 10 
 

 

H10: Airplane External Factors is a significant predictor of participants’ 

preferred travel method when controlling for all other variables. 

 

Moving forward, Chapter Five will provide a detailed description of the 

meaningfulness of the current research, including a summary of the results, their practical 

applications, limitations, and directions for future research. 

 

Summary of Findings 

 

As research continues to pursue the creation of a safe and efficient, fully autonomous 

vehicle, this new technology’s successful adoption hinges on the public’s perceptions of fully 

autonomous vehicles. Once autonomous vehicles become readily available to the public, they 

may have a tremendous negative impact on the commercial airline industry as people choose to 

ride in the autonomous vehicle rather than fly on a commercial aircraft. Therefore, understanding 
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the type of consumer who may want to ride in an autonomous vehicle rather than fly on a 

commercial aircraft may provide crucial information to both fields within the 

transportation industry. 

 

To investigate consumer perceptions, a predictive model was created and validated through 

two separate stages of data analysis (see Chapter 4 for a detailed description). In Stage 1, 20 

predictors were considered as potentially impacting participants’ choice for choosing to ride in an 

autonomous vehicle rather than fly on a commercial aircraft. Backward stepwise regression was used 

throughout four different scenarios to determine statistically significant predictors. 

 

For the four-hour travel scenario, ten variables were found to significantly predict 

participants’ preference for riding in an autonomous vehicle rather than flying on a commercial 

aircraft, including Vehicle Affect, Fun Factor, Value, Plane Affect, Vehicle Comfort, 

Extraversion, Openness, African, Asian, and Upper Class, which accounted for 50.7% of the 

variance (50.1% adjusted). In Stage 2, the regression equation was tested for model fit by 

comparing participants’ predicted scores to their actual scores using a t-test, correlation, and 

cross-validated R
2
. The t-test was not significant, t(1762) = -.176, p = .860, there was a strong 

and positive correlation, r(880) = .653, p < .001, and lastly the cross-validated R
2
 was .484, 

which is similar to the original R
2
, .507. When these three tests are considered together, they 

are all indicators of model fit and support the strength and validity of the model. 

 

For the eight-hour travel scenario, thirteen variables were found to significantly predict 

participants’ preference for riding in an autonomous vehicle rather than flying on a commercial 

aircraft, including Vehicle Affect, Vehicle Comfort, Wariness of New Technology, Value, 

Familiarity, Plane Affect, Plane Price, Agreeableness, Conscientiousness, Gender, African, Asian, 

and Upper Class, which accounted 33% of the variance (32% adjusted). In Stage 2, the 
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regression equation was tested for model fit by comparing participants’ predicted scores to their 

actual scores using a t-test, correlation, and cross-validated R
2
. The t-test was significant, t(1762) 

 
= -.176, p = .860, there was a strong and positive correlation, r(880) = .516, p < .001, and 

lastly the cross-validated R
2
 was .301, which is similar to the original R

2
 was .333. When these 

three tests are considered together, they are all indicators of model fit and support the strength 

and validity of the model. 

 

For the twelve-hour travel scenario, twelve variables were found to significantly predict 

participants’ preference for riding in an autonomous vehicle rather than flying on a commercial 

aircraft, including Vehicle Affect, Vehicle Comfort, Wariness of New Technology, Familiarity, 

Plane Affect, Plane External Factors, Plane Price, Extraversion, Conscientiousness, Neuroticism, 

Asian, and Upper Class, respectively, which accounted for 27% of the variance (26% adjusted). In 

Stage 2, the regression equation was tested for model fit by comparing participants’ predicted scores 

to their actual scores using a t-test, correlation, and cross-validated R
2
. The t-test was not significant, 

t(1762) = -.335, p = .737, there was a strong and positive correlation, r(880) = .445, p 

 

< .001, and lastly the cross-validated R
2
 was .234, which is similar to the original R

2
, .269. When 

these three tests are considered together, they are all indicators of model fit and support the 

strength and validity of the model. 
 

 

For the sixteen-hour travel scenario, twelve variables were found to significantly predict 

participants’ preference for riding in an autonomous vehicle rather than flying on a commercial 

aircraft, including Vehicle Affect, Vehicle Comfort, Wariness of New Technology, Familiarity, 

Plane Affect, Plane External Factors, Plane Price, Extraversion, Neuroticism, Asian, Lower Class, 

and Upper Class, respectively, which accounted for 27% of the variance (26% adjusted). In Stage 2, 

the regression equation was tested for model fit by comparing participants’ predicted 
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scores to their actual scores using a t-test, correlation, and cross-validated R
2
. The t-test was not 

significant, t(1762) = -.490, p = .624, there was a strong and positive correlation, r(880) = .412, p 
 

< .001, and lastly the cross-validated R
2
 was .232, which is similar to the original R

2
, .267. When 

these three tests are considered together, they are all indicators of model fit and support the 

strength and validity of the model. 
 

 

General Discussion 

 

Because this research was reasonably exploratory, there was a wide range of variables 

considered for inclusion, which is reflected in the different hypotheses. However, not all of the 

hypotheses were supported; therefore, this section will cover every hypothesis and provide 

rationale as to why or why not it may not have significantly predicted participants’ choice. 

 

The first hypothesis states that at least one demographic (age, gender, social class, and 

ethnicity) variable will significantly predict participants’ preferred travel method. Age was not a 

significant predictor in any scenario, and gender was only significant in the eight-hour scenario. 

At least one category within social class and ethnicity was a significant predictor in each 

scenario. Previous research has suggested that people of a certain age, gender, social class, and 

ethnicity may prefer using a certain type of technology, or at least feel comfortable/familiar 

with using technology (Borghans et al., 2009; Byrnes et al., 1999; Charness & Gneezy, 2012). 

However, that finding was not replicated in half of the travel scenarios. This hypothesis may 

have only been partially supported in the current study because autonomous vehicle technology 

is not yet available to the public; thus, no one has had a chance to use it yet. On the other hand, 

people of varying demographics may recognize the benefits of autonomous vehicles. Thus one 

group was not more partial to them than another group. 
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The second hypothesis stated that the price of an airplane ticket would significantly 

predict participants’ preference for riding in an autonomous vehicle. This hypothesis was mainly 

focused around the idea that riding in an autonomous car would be a cheaper alternative to flying 

commercial. Therefore, if the price of an airplane ticket were an important factor for participants, 

then they would probably prefer to ride in the autonomous vehicle. When asked about factors 

that affect passengers’ satisfaction with flying via commercial air travel, price is often listed as a 

top concern (Keeton, 2010; Smith, 2004), which fueled the creation of this particular hypothesis. 

However, this hypothesis was not supported by the data from the four-hour travel scenario. 

Interestingly, as the trips got longer, the price of a plane ticket did appear to become a significant 

predictor, although it was always with a negative coefficient. 

 

Due to the nature of online surveys, I was unable to ask follow-up questions; therefore, I 

can only speculate as to why price did not significantly predict participants’ preference for riding 

in an autonomous vehicle in the four-hour scenario. Because participants were only traveling for 

about four hours in the hypothetical scenario, it’s possible that they thought the price of an 

airline ticket for such a short flight would be roughly equivalent to how much they would spend 

on a road trip for the same amount of time; thus, there was no difference between the two 

options. Furthermore, as the length of the trip increased, the price of a ticket did become a 

significant predictor suggesting that trip length plays an important role. 

 

The third hypothesis was concerned with the possibility that current consumer 

perceptions (perceived value, familiarity, fun factor, wariness of new technologies) would 

significantly predict participants’ preference for riding in an autonomous vehicle. Based on 

research around consumers’ acceptance of new technology (i.e. TAM, UTUAT, TPB), many 

of these factors have been identified as influencing consumers’ perceptions, acceptance, and 
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willingness to use new technology (Ajzen, 1991; Legris et al., 2003; Davis, 1985; Venkatesh, et 

al., 2003), which provided the rationale for inclusion in the current study. Perceived Value was 

significant in the four-hour and eight-hour scenario; whereas fun factor was only significant in 

the four-hour scenario. Interestingly, familiarity and wariness of new technology did show up 

as significant predictors for the remaining travel scenarios. 

 

The factors of Perceived Value and Fun Factor significantly predicted participants’ 

preference for riding in an autonomous vehicle while familiarity and wariness of new 

technology did not in the four-hour scenario. It is assumed that the earliest adopters of new 

technology will likely perceive some type of benefit or entertainment to using the latest 

technology (Chai et al., 2015; Mathwick et al., 2001; Jones et al., 2006; Eckoldt et al., 2012), 

thus explaining the two significant predictors. Familiarity was most likely not significant 

because fully autonomous vehicle technology is not yet available to the public. Therefore no one 

is familiar with the technology. As previously stated, early adopters of new technology are likely 

not concerned with the possible risks associated with using the latest technology (at least not 

enough to hinder their potential usage); thus, explaining why wariness of new technology was 

not found as a significant predictor in the four-hour scenario. However, as trip length increased, 

participants may have become more concerned with the amount of time they would be spending 

in the vehicle and its reliability, thus influencing the significant predictor of wariness. 

 

The fourth hypothesis was concerned with at least one of the Big Five personality traits 

significantly predicting participants’ preferred travel method. Previous research has indicated that 

often people who score higher on the Extraversion and Openness scale are usually more receptive to 

new technology and express a greater desire to use it (Merritt & Ilgen, 2008). For the 
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current research, Openness was only significant in the four-hour scenario and Extraversion was a 

significant predictor in the four-hour, twelve-hour, and sixteen-hour scenarios. 

 

Although extraversion was found as a significant predictor, it actually had a negative 

coefficient in the four-hour scenario meaning that as extraversion increased, preference for riding 

in an autonomous vehicle rather than a commercial aircraft decreased. It’s possible that these 

participants felt that riding in a vehicle is an isolating experience compared to riding in a 

commercial aircraft where you are surrounded by other people and have multiple opportunities to 

engage in discussions with your neighbors. Whereas, when traveling in a vehicle, you are often 

traveling on your own; therefore, people with high levels of extraversion may have disliked that 

possible scenario. 

 

The fifth and sixth hypotheses addressed whether or not Vehicle Affect and Airplane 

Affect, respectively, would significantly predict participants’ preference for riding in an 

autonomous vehicle. These variables were designed to measure participants’ emotional reaction 

to the idea of riding in an autonomous vehicle and their emotional reaction to riding in a 

commercial aircraft. Previous research has indicated that emotions, or affect, often play a 

considerable role in humans’ decision-making process (Lerner et al., 2015; Peters et al., 2006; 

Schwarz & Clore, 2003; Slovic et al., 2005), particularly regarding unfamiliar or potentially 

dangerous scenarios. As expected, these particular variables were found to predict participants’ 

preference in all four travel scenarios significantly. However, it’s important to note that Airplane 

Affect displayed a negative coefficient, such that as participants’ airplane affect decreased, their 

preference for riding in an autonomous vehicle rather than a commercial aircraft increased. 

 

The seventh and eighth hypotheses were concerned with the impact that Vehicle Comfort 

and Vehicle External Factors would have on participants’ preference. Vehicle Comfort was 
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designed to measure participants’ experience and satisfaction with riding in a vehicle, 

including aspects, such as the ability to fall asleep while traveling in a vehicle. Previous 

research investigating consumers’ satisfaction levels while traveling in similar modes of 

transportation (i.e. trains, planes, public buses, etc.) have indicated these factors often influence 

passengers’ satisfaction levels with their trip (Kloppenborg & Gourdin, 1992; Nadiri et al., 

2008; Young et al., 1994). Vehicle External Factors captured participants’ prioritization of 

things like schedule flexibility while traveling in a vehicle and the ability to maintain hygiene 

standards while traveling in a vehicle. The majority of these factors were included as they were 

significant in a prior pilot study. 

 

Vehicle comfort was a significant predictor in all four scenarios, which makes sense 

because passengers will be in the vehicle for an extended period; thus, comfort is paramount. 

However, vehicle external factors was not a significant predictor in any scenario. Although 

participants may value these aspects of riding in a vehicle, perhaps they were not significant 

enough to influence their decision. For example, the ability to fall asleep in a car or schedule 

flexibility may not be high on participants’ priority list when imagining what factors are 

essential to consider when traveling in an autonomous vehicle. 

 

The ninth hypothesis discussed whether or not the variable of Airplane Comfort would 

significantly predict participants’ preferred travel method. This variable was designed to measure 

features of passengers’ experience of riding in a commercial aircraft, such as available space to a 

passenger on an airplane, ability to maintain hygiene standards, and ability to fall asleep on a plane. 

Previous research studying consumers’ experience and satisfaction with commercial air travel have 

highlighted these different components as essential factors in determining consumers’ overall 

satisfaction level, which in turn, influences their future decision to continue 
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using that particular airline’s services (Kloppenborg & Gourdin, 1992; Nadiri et al., 2008; Young 

et al., 1994). Airplane Comfort was not a significant predictor in any of the scenarios, perhaps 

because if participants were concerned with riding in a vehicle then the comforts of an airplane 

aren’t prioritized. 

 

The final hypothesis was concerned with the variable, Airplane External Factors, 

significantly predicting participants’ preferred travel method. Similar to the Vehicle External 

Factors, this variable measured participants’ experience of riding in a commercial aircraft and the 

importance of factors, such as having limited schedule flexibility, sharing personal space with 

strangers, ability to fall asleep while on an airplane, etc. Research on travelers’ preferences and 

factors affecting their comfort levels has cited these types of aspects (Kloppenborg & Gourdin, 

1992; Nadiri et al., 2008; Young et al., 1994); thus, they were included in the current study. 

 

However, this particular variable did not significantly predict participants’ preferred 

travel method for the four-hour travel scenario or the eight-hour travel scenario. Still, it was a 

significant predictor for the twelve-hour and sixteen-hour scenario. This finding suggests that 

when the trips are shorter, passengers are not as concerned with travel-related features, such 

as the ability to fall asleep on an aircraft or sharing personal space with strangers. As a trip 

gets longer and takes more time to complete, different factors become important for 

passengers to consider and influence their preferences. 

 

Practical Applications 

 

Although this research merely provides a foundation for future research and is relatively 

exploratory, it can provide critical information for researchers in both the automotive industry 

and the commercial airline industry. As Human Factors practitioners, we always hope to be 

included at the very beginning of a design/research process so that we can better understand the 
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end-user – their wants, needs, fears, target population, etc. If we know the end-user, then we will 

be more effective in designing a safe and efficient product/service that consumers will want to 

use. Unfortunately, human factors researchers are often brought in at the end of the process and 

asked to solve huge problems that would have been much more manageable if addressed at the 

beginning of the process rather than the end. This particular research is unique because the field 

of autonomous vehicle technology is still so new that we can start investigating important factors 

at the beginning of the design and creation process, acting proactively to address consumer 

concerns rather than retroactively. 

 

One of the first steps as a Human Factors practitioner should be to understand your end-

user that is exactly what this dissertation has provided – identifying what type of person would 

prefer to ride in an autonomous vehicle rather than fly on a commercial aircraft. Experts in the 

automotive industry may use this research to find their first customers and adopters of the 

technology. On the other hand, the commercial airline industry may use this information to 

better understand which customers they are going to lose first to autonomous vehicles and how 

they can build incentive programs to retain those customers. 

 

The only four predictive variables that were present throughout all four of the travel 

scenarios were those of upper class, vehicle affect, airplane affect, and vehicle comfort. Participants 

from upper social class indicated the highest preference for riding in a driverless vehicle as compared 

to other social classes. This finding supports previous research indicating that upper social class 

citizens tend to view new technology more positively and are more willing to use it (Maldifassi & 

Canessa, 2009; Porter & Donthu, 2006). Results indicate that participants are having some type of 

emotional reaction to the idea of riding in an autonomous vehicle. The idea of riding in an 

autonomous vehicle evokes positive emotions while the idea of riding in a 
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commercial aircraft evokes negative emotions. While my research provides some additional 

information as to why consumers may be happy at the idea of riding in an autonomous vehicle 

(i.e. they believe it will be fun or bring added value to their life), industry experts should pursue 

this line of research to better understand what makes consumers excited about the prospect of 

riding in an autonomous vehicle and how those features can be safely explored. Understandably, 

participants are also concerned with maintaining comfortable travel arrangements while 

traveling in a driverless vehicle, such as how much space is available and the ability to sleep 

while traveling. 

 

On the other hand, the commercial airline industry can utilize the same information to 

understand better which type of consumer they are going to lose first to autonomous vehicles. If 

people are having an emotional reaction to entertainment and enjoyment, they will get out of 

riding in an autonomous vehicle, then how can commercial airlines make the experience of 

flying more enjoyable? Or perhaps the commercial airline industry can capitalize on the fact that 

for longer trips, it merely becomes more convenient to travel by air. Thus, they can focus on 

making their long-haul trips more comfortable and growing that customer base to compensate for 

the shrinking customer base using short-haul flights. The current dissertation is just one of the 

first steps in better understanding the impact of fully autonomous vehicles on the commercial 

airline industry. 

 

Limitations 

 

As with all research, there are some limitations to the current study that should be 

addressed for full transparency. One of the most critical limitations was the use of a convenience 

sampling technique as participants were recruited from Amazon’s Mechanical Turk (MTurk), 

which allowed me to collect thousands of participants in a timely manner. Although MTurk does 
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allow for a wide range of participants, it does limit the data collection process to those who 

have internet access and are registered users of Amazon’s MTurk, thus limiting some of the 

generalizability of the results. Fortunately, previous research has indicated that data collected 

from MTurk is as reliable as traditionally collected laboratory data (Buhrmester et al., 2011; 

Germine et al., 2012; Rice et al., 2017). 

 

Furthermore, actual behavioral data were not collected or analyzed, mostly because fully 

autonomous vehicles do not yet exist for the public, and paying participants to travel in a vehicle 

or a commercial aircraft would introduce a tremendous resource burden. Therefore, only 

behavioral intentions, or participants’ perceptions of their possible actions, were collected. 

While perceived actions correlate with actual behavior (Ajzen, 1991; Davis, 1989; Davis et al., 

1989; Fishbein & Ajzen, 1975), they are not the same thing. Therefore, it’s essential to consider 

the findings of the study within the light of perceptual intentions. 

 

To date, the current dissertation is one of the only studies examining the impact of fully 

autonomous vehicles on the commercial airline industry and identifying what type of person 

would prefer to ride in an autonomous vehicle rather than fly on a commercial aircraft. 

Therefore, this research was fairly exploratory, and while a wide range of variables were 

considered, the list was certainly not exhaustive. While this is a limitation of the current study, it 

does provide multiple opportunities for future research to consider the impact of other variables 

and how this information might be manipulated to affect consumer support and willingness to 

use an autonomous vehicle. 

 

Future Research 

 

The current research provides the foundation for several different research avenues to 

explore the impact of fully autonomous vehicles on the commercial airline industry. The findings 

118 



 
suggest that overall, participants are having an emotional reaction to the idea of riding in a fully 

autonomous vehicle rather than a commercial aircraft. Researchers from the automotive industry 

and commercial airline industry should explore participants’ emotional reactions to understand 

better what factors are influencing their decision-making process. Are consumers excited by the 

idea of riding in an autonomous vehicle? If so, what excites them? How can these facets be 

capitalized? Or perhaps consumers are worried about safety and comfort during long trips. How 

can the automotive industry alleviate these concerns or design vehicle interiors that are more 

suitable for longer trips? 

 

Likewise, the commercial airline industry can use this information to understand better 

participants’ emotional reactions to riding in an autonomous vehicle rather than an aircraft. What 

specifically do they not like about riding in airplanes? Can any of those factors be improved 

upon to help retain some of their customer base? Or perhaps if the commercial airline industry 

discovers that consumers will only fly for trips over eight hours in length, how can the industry 

attract more customers or improve their passengers’ experience so that they’re more willing to 

continue flying with that particular airline? Because the commercial airline industry already 

makes a relatively small profit off of each flight, U.S. based airlines must start considering the 

impact on their overall success and growth. 

 

Furthermore, findings from this research can also be extrapolated and applied to other 

transportation industries, such as trains, ridesharing services, boats, etc. Although the crux of 

this research is comparing commercial aviation to autonomous vehicles, commercial aviation is 

not the only other alternative mode of transportation available to travelers. Thus, understanding 

the impact of autonomous vehicles on different modes of transportation will probably start to 

provide additional information not discovered in this initial line of research. As previously 

 

119 



 
mentioned, this was a fairly exploratory study designed to understand better what type of 

person would prefer to ride in an autonomous vehicle rather than fly on a commercial aircraft. 

Once the basic type of passenger is identified, researchers from both industries can start better 

understanding the needs and wants of their consumer base. 

 

Conclusion 

 

As the introduction of autonomous vehicles becomes increasingly more likely, 

understanding their impact on the rest of the transportation industry is crucial for the success of 

other transportation methods, such as commercial aviation. The current research strived to 

answer preliminary questions regarding consumers’ acceptance and potential preference of riding 

in an autonomous vehicle rather than flying in a commercial aircraft. Through a series of two 

stages, a predictive model was created through backward stepwise regression predicting what 

type of person would prefer to ride in an autonomous vehicle rather than fly in a commercial 

aircraft. Then, this equation was tested for model fit by comparing participants’ predicted scores 

to their actual scores using a t-test, correlation, and cross-validated R
2
. While multiple 

hypothetical travel scenarios were considered, the most robust predictive model resulted from the 

four-hour travel scenario, accounting for 50% of the variance. Throughout the four travel 

scenarios, the most common significant predictors were upper social class, vehicle affect, 

airplane affect, and vehicle comfort, indicating the importance of emotions on consumers’ 

decision-making process along with comfortable travel and identifying early adopters, such as 

upper-class citizens. While future research should be conducted, the current findings can be used 

by both the automotive industry and the commercial airline industry to understand their 

customers’ preferences better while traveling in these two separate modes. 
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Appendices 

 

Appendix A – Travel Method Preference Scale 

 

The Preferred Travel Method scale has a Cronbach’s Alpha of .93 and Guttman’s Split Half of  
.92. Correlations between items ranged from r = .69 to .88. All of the aforementioned statistics 
indicate high internal consistency and high reliability. Participants read the following 
information: 
 

Please respond to each of the statements below indicating how strongly you agree or disagree 

 

with each statement. 
 

 

1. I would prefer the driverless car. 

 

Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

 

2. I would be more comfortable riding in the driverless car. 

 

Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

 

3. I would choose the driverless car. 

 

Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

 

4. I would be happier with the driverless car. 

 

Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 
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Appendix B – Perceived Value Scale 

 

Please respond to each of the statements below indicating how strongly you agree or 

disagree with each statement. 

 

1. I think driverless vehicle technology is useful.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

2. A driverless vehicle would be something valuable for me to own.  

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

3. There would be value in using a driverless vehicle.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

4. If driverless vehicles were available, I think it would be beneficial to use one. 

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

5. A driverless vehicle would be beneficial to me.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 
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Appendix C – Familiarity Scale 

 

Please respond to each of the statements below indicating how strongly you agree or 

disagree with each statement. 

 

1. Driverless vehicles have been of interest to me for awhile.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

2. I have a lot of knowledge about driverless vehicles.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

3. I have read a lot about driverless vehicles.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

4. I know more about driverless vehicles than the average person.  

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

5. I am familiar with driverless vehicles.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 
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Appendix D – Fun Factor Scale 

 

Please respond to each of the statements below indicating how strongly you agree or 

disagree with each statement. 

 

1. I am interested in trying out a driverless vehicle.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

2. I think it would be cool to use a driverless vehicle.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

3. I've always wanted to use a driverless vehicle.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

4. I think it would be fun to use a driverless vehicle.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

5. I am familiar with driverless vehicles.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 
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Appendix E – Wariness of New Technology Scale 

 

Please respond to each of the statements below indicating how strongly you agree or 

disagree with each statement. 

 

1. New technology scares me.    

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

2. In general, I am wary of new technology.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

3. I tend to fear new technology until it is proven to be safe.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

4. New technology is not as safe as it should be.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

5. New technology is likely to be dangerous.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 
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Appendix F – General Affect Scale 

 

Please respond to each of the statements below indicating how strongly you agree or 

disagree with each statement. 

 

1. I feel good about this.    

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

2. I feel positive about this.    

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

3. I feel favorable about this.    

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

4. I feel cheerful about this.    

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

5. I feel happy about this.    

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

6. I feel enthusiastic about this.    

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

7. I feel delighted about this.    

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 
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Appendix G – Vehicle Comfort Scale 

 

Please respond to each of the statements below indicating how strongly you agree or 

disagree with each statement. 

 

1. I enjoy traveling in a car if I don't have to drive.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

2. I enjoy how much space I have in a car.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

3. I enjoy sleeping while traveling in a car.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 
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Appendix H – Vehicle External Factors Scale 

 

Please respond to each of the statements below indicating how strongly you agree or 

disagree with each statement. 

 

1. I enjoy the freedom to stop and eat wherever and whenever I want.  

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

2. I enjoy having schedule flexibility (the ability to leave when I want).  

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

3. I can easily maintain my hygiene standards while traveling in a car.  

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 
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Appendix I – Airplane Comfort Scale 

 

Please respond to each of the statements below indicating how strongly you agree or 

disagree with each statement. 

 

1. I enjoy traveling in an airplane.    

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

2. I am ok with how much space I have on an airplane.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

3. I can easily maintain my hygiene standards while traveling in an airplane. 

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

4. I enjoy sleeping while traveling in an airplane.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

5. I can easily fall asleep while traveling on an airplane.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 
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Appendix J – Airplane External Factors Scale 

 

Please respond to each of the statements below indicating how strongly you agree or 

disagree with each statement. 

 

1. I enjoy waiting in the airport before I leave my departure point.  

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

2. I am ok having a limited choice over my departure time and arrival time. 

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 

3. I enjoy going through TSA security.   

 Strongly disagree Disagree Neither disagree nor agree Agree Strongly Agree 
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Appendix K – Participant Demographics Questions 

 

1. What is your gender? 

 

• Female 

 

• Male 

 

• Other ______ 
 

2. What is your ethnicity? 

 

• Caucasian 

 

• African descent (e.g., African American) 

 

• Hispanic descent (e.g., Latin America) 

 

• Asian descent 

 

• India (not Asian) 

 

• Other ______ 
 

3. What is your age? 

 

4. What is your social class? 

 

• Upper Class 

 

• Upper Middle Class 

 

• Lower Middle Class 

 

• Working Class 

 

• Lower Class 
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Appendix L – IRB Approval and Full Instrument  
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Appendix M – Model Summary: 4 hour trip 

Model Summary (Model 18) 

Model R R
2 

Adjusted R
2 

Std. Error of the Estimate 

1 .714 .510 .494 .83716 

2 .714 .510 .495 .83666 

3 .714 .510 .496 .83616 

4 .714 .510 .496 .83566 

5 .714 .510 .497 .83517 

6 .714 .510 .497 .83469 

7 .714 .510 .498 .83422 

8 .714 .510 .499 .83376 

9 .714 .510 .499 .83333 

10 .714 .510 .500 .83291 

11 .714 .510 .500 .83252 

12 .714 .510 .500 .83221 

13 .714 .510 .501 .83185 

14 .714 .509 .501 .83167 

15 .713 .509 .501 .83149 

16 .713 .508 .501 .83138 

17 .713 .508 .501 .83138 

18 .712 .507 .501 .83169   
Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Imagination, Age, 

Extraversion, VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, Asian, FunFactor, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Imagination, Age, 
Extraversion, VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Neuroticism, Indian, Asian, FunFactor, African, LowerClass, 

Hispanic, PlaneExtFact, Gender, UpperMiddle, Imagination, Age, Extraversion, VehExtFact, 
WorkingClass, Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Neuroticism, Indian, Asian, FunFactor, African, LowerClass, 

Hispanic, PlaneExtFact, Gender, Imagination, Age, Extraversion, VehExtFact, WorkingClass, 
Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, 

PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Neuroticism, Indian, Asian, FunFactor, African, LowerClass, 

Hispanic, PlaneExtFact, Gender, Imagination, Age, Extraversion, VehExtFact, WorkingClass, 
Conscientiousness, Agreeableness, WaryTech, PlaneAffect, VehicleComfort, PlaneComfort, 

VehicleAffect, Value 
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Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, 
Hispanic, PlaneExtFact, Gender, Imagination, Age, Extraversion, VehExtFact, 

WorkingClass, Conscientiousness, Agreeableness, WaryTech, PlaneAffect, VehicleComfort, 
PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, Hispanic, 
PlaneExtFact, Gender, Imagination, Age, Extraversion, VehExtFact, Conscientiousness, 
Agreeableness, WaryTech, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, Hispanic, 

Gender, Imagination, Age, Extraversion, VehExtFact, Conscientiousness, Agreeableness, 

WaryTech, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, Gender, 

Imagination, Age, Extraversion, VehExtFact, Conscientiousness, Agreeableness, WaryTech, 
PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, Gender, 
Imagination, Age, Extraversion, VehExtFact, Agreeableness, WaryTech, PlaneAffect, 
VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, 
Imagination, Age, Extraversion, VehExtFact, Agreeableness, WaryTech, PlaneAffect, 
VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, 
Imagination, Age, Extraversion, VehExtFact, Agreeableness, WaryTech, PlaneAffect, 
PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, Imagination, 

Age, Extraversion, Agreeableness, WaryTech, PlaneAffect, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, Imagination, Age, 

Extraversion, Agreeableness, WaryTech, PlaneAffect, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Asian, FunFactor, African, Imagination, Age, Extraversion, 
Agreeableness, WaryTech, PlaneAffect, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Asian, FunFactor, African, Imagination, Age, Extraversion, 
WaryTech, PlaneAffect, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Asian, FunFactor, African, Imagination, Age, Extraversion, 
PlaneAffect, PlaneComfort, VehicleAffect, Value 
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Predictors: (Constant), UpperClass, Asian, FunFactor, African, Imagination, Extraversion, 
PlaneAffect, PlaneComfort, VehicleAffect, Value 
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Appendix N – F Values and Significance: 4 hour trip  

ANOVA 

Model
a 

 Sum of Squares df Mean Square F Sig. 

1 Regression 609.722 27 22.582 32.222 .000 

 Residual 585.201 835 .701   

 Total 1194.923 862    

2 Regression 609.721 26 23.451 33.501 .000 

 Residual 585.202 836 .700   

 Total 1194.923 862    

3 Regression 609.720 25 24.389 34.883 .000 

 Residual 585.204 837 .699   

 Total 1194.923 862    

4 Regression 609.718 24 25.405 36.379 .000 

 Residual 585.205 838 .698   

 Total 1194.923 862    

5 Regression 609.707 23 26.509 38.005 .000 

 Residual 585.216 839 .698   

 Total 1194.923 862    

6 Regression 609.693 22 27.713 39.778 .000 

 Residual 585.230 840 .697   

 Total 1194.923 862    

7 Regression 609.653 21 29.031 41.716 .000 

 Residual 585.270 841 .696   

 Total 1194.923 862    

8 Regression 609.596 20 30.480 43.846 .000 

 Residual 585.327 842 .695   

 Total 1194.923 862    

9 Regression 609.510 19 32.079 46.195 .000 

 Residual 585.413 843 .694   

 Total 1194.923 862    

10 Regression 609.408 18 33.856 48.802 .000 

 Residual 585.515 844 .694   

 Total 1194.923 862    

11 Regression 609.264 17 35.839 51.709 .000 

 Residual 585.659 845 .693   

 Total 1194.923 862    

12 Regression 609.002 16 38.063 54.958 .000 

 Residual 585.921 846 .693   

 Total 1194.923 862    

13 Regression 608.825 15 40.588 58.656 .000 

 Residual 586.098 847 .692   

 Total 1194.923 862    

14 Regression 608.385 14 43.456 62.828 .000 

 Residual 586.538 848 .692   

 Total 1194.923 862    

15 Regression 607.942 13 46.765 67.640 .000 
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 Residual 586.981 849 .691   

 Total 1194.923 862    

16 Regression 607.408 12 50.617 73.232 .000 

 Residual 587.515 850 .691   

 Total 1194.923 862    

17 Regression 606.813 11 55.165 79.824 .000 

 Residual 588.110 851 .691   

 Total 1194.923 862    

18 Regression 605.585 10 60.558 87.549 .000 

 Residual 589.338 852 .692   

 Total 1194.923 862    
 

Dependent Variable: Trip4hr 

 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, 

FunFactor, African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, 

Imagination, Age, Extraversion, VehExtFact, WorkingClass, Conscientiousness, 

Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, 

VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, Asian, FunFactor, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Imagination, Age, Extraversion, 

VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Neuroticism, Indian, Asian, FunFactor, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Imagination, Age, Extraversion, 

VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Neuroticism, Indian, Asian, FunFactor, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, Imagination, Age, Extraversion, VehExtFact, 

WorkingClass, Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Neuroticism, Indian, Asian, FunFactor, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, Imagination, Age, Extraversion, VehExtFact, 

WorkingClass, Conscientiousness, Agreeableness, WaryTech, PlaneAffect, VehicleComfort, 

PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, 

Hispanic, PlaneExtFact, Gender, Imagination, Age, Extraversion, VehExtFact, 
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WorkingClass, Conscientiousness, Agreeableness, WaryTech, PlaneAffect, 

VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, 

Hispanic, PlaneExtFact, Gender, Imagination, Age, Extraversion, VehExtFact, 

Conscientiousness, Agreeableness, WaryTech, PlaneAffect, VehicleComfort, PlaneComfort, 

VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, 

Hispanic, Gender, Imagination, Age, Extraversion, VehExtFact, Conscientiousness, 

Agreeableness, WaryTech, PlaneAffect, VehicleComfort, PlaneComfort, 

VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, Gender, 

Imagination, Age, Extraversion, VehExtFact, Conscientiousness, Agreeableness, WaryTech, 

PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, Gender, 

Imagination, Age, Extraversion, VehExtFact, Agreeableness, WaryTech, PlaneAffect, 

VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, 

Imagination, Age, Extraversion, VehExtFact, Agreeableness, WaryTech, PlaneAffect, 

VehicleComfort, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, 

Imagination, Age, Extraversion, VehExtFact, Agreeableness, WaryTech, PlaneAffect, 

PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, LowerClass, 

Imagination, Age, Extraversion, Agreeableness, WaryTech, PlaneAffect, PlaneComfort, 

VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Indian, Asian, FunFactor, African, Imagination, Age, 

Extraversion, Agreeableness, WaryTech, PlaneAffect, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Asian, FunFactor, African, Imagination, Age, 

Extraversion, Agreeableness, WaryTech, PlaneAffect, PlaneComfort, VehicleAffect, Value 
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Predictors: (Constant), UpperClass, Asian, FunFactor, African, Imagination, Age, 

Extraversion, WaryTech, PlaneAffect, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Asian, FunFactor, African, Imagination, Age, 

Extraversion, PlaneAffect, PlaneComfort, VehicleAffect, Value 

 

Predictors: (Constant), UpperClass, Asian, FunFactor, African, Imagination, Extraversion, 
PlaneAffect, PlaneComfort, VehicleAffect, Value 
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Appendix O – Model Summary: 8 hour trip 

Model Summary (Model 15) 

Model R R
2 

Adjusted R
2 

Std. Error of the Estimate 

1 .587 .345 .324 1.02553 

2 .587 .345 .325 1.02491 

3 .587 .345 .326 1.02431 

4 .587 .345 .326 1.02371 

5 .587 .345 .327 1.02329 

6 .587 .344 .327 1.02303 

7 .586 .344 .327 1.02292 

8 .586 .343 .327 1.02302 

9 .585 .342 .327 1.02304 

10 .584 .341 .327 1.02325 

11 .583 .340 .326 1.02356 

12 .582 .338 .326 1.02401 

13 .580 .336 .325 1.02495 

14 .578 .335 .324 1.02580 

15 .577 .333 .322 1.02669   
Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Imagination, Age, 

Extraversion, VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, 

FunFactor, African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Age, 

Extraversion, VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Extraversion, 

VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Extraversion, 

VehExtFact, Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, 

FunFactor, African, Hispanic, PlaneExtFact, Gender, UpperMiddle, Extraversion, 

VehExtFact, Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Other, Indian, PlanePrice, Asian, FunFactor, African, 

Hispanic, PlaneExtFact, Gender, UpperMiddle, Extraversion, VehExtFact, Conscientiousness, 

Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, 

VehicleAffect, Value 
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Predictors: (Constant), UpperClass, Other, Indian, PlanePrice, Asian, FunFactor, African, 

PlaneExtFact, Gender, UpperMiddle, Extraversion, VehExtFact, Conscientiousness, 

Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, 

VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Other, Indian, PlanePrice, Asian, FunFactor, African, 

PlaneExtFact, Gender, UpperMiddle, Extraversion, Conscientiousness, Agreeableness, 

WaryTech, Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Other, Indian, PlanePrice, Asian, FunFactor, African, 

PlaneExtFact, Gender, UpperMiddle, Extraversion, Conscientiousness, Agreeableness, 

WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Other, Indian, PlanePrice, Asian, FunFactor, African, 

Gender, UpperMiddle, Extraversion, Conscientiousness, Agreeableness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Indian, PlanePrice, Asian, FunFactor, African, Gender, 

UpperMiddle, Extraversion, Conscientiousness, Agreeableness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, PlanePrice, Asian, FunFactor, African, Gender, 

UpperMiddle, Extraversion, Conscientiousness, Agreeableness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, PlanePrice, Asian, FunFactor, African, Gender, 

Extraversion, Conscientiousness, Agreeableness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, PlanePrice, Asian, FunFactor, African, Gender, 

Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, 

VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, PlanePrice, Asian, African, Gender, Conscientiousness, 

Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Dependent Variable: Trip8hr 
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Appendix P – F Values and Significance: 8 hour trip  

ANOVA 

Model
a 

 Sum of Squares df Mean Square F Sig. 

1 Regression 395.615 20 19.781 17.714 .000 

 Residual 924.602 828 1.117   

 Total 1320.216 848    

2 Regression 395.331 19 20.807 18.650 .000 

 Residual 924.886 829 1.116   

 Total 1320.216 848    

3 Regression 394.994 18 21.944 19.686 .000 

 Residual 925.222 830 1.115   

 Total 1320.216 848    

4 Regression 394.542 17 23.208 20.835 .000 

 Residual 925.675 831 1.114   

 Total 1320.216 848    

5 Regression 393.936 16 24.621 22.115 .000 

 Residual 926.280 832 1.113   

 Total 1320.216 848    

6 Regression 392.793 15 26.186 23.520 .000 

 Residual 927.423 833 1.113   

 Total 1320.216 848    

7 Regression 390.901 14 27.922 25.058 .000 

 Residual 929.315 834 1.114   

 Total 1320.216 848    

8 Regression 388.561 13 29.889 26.788 .000 

 Residual 931.655 835 1.116   

 Total 1320.216 848    

9 Regression 386.453 12 32.204 28.833 .000 

 Residual 933.763 836 1.117   

 Total 1320.216 848    

10 Regression 385.101 11 35.009 31.336 .000 

 Residual 935.115 837 1.117   

 Total 1320.216 848    

11 Regression 382.359 10 38.236 34.165 .000 

 Residual 937.857 838 1.119   

 Total 1320.216 848    

12 Regression 395.615 20 19.781 17.714 .000 

 Residual 924.602 828 1.117   

 Total 1320.216 848    

13 Regression 395.331 19 20.807 18.650 .000 

 Residual 924.886 829 1.116   

 Total 1320.216 848    

14 Regression 394.994 18 21.944 19.686 .000 

 Residual 925.222 830 1.115   

 Total 1320.216 848    

15 Regression 394.542 17 23.208 20.835 .000 
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Residual 925.675 831 1.114 

Total 1320.216 848  

 

a. Dependent Variable: Trip8hr 

 

b. Predictors: (Constant), SocialClass, Gender, PlaneAffect, Ethnicity, Imagination, 

PlanePrice, Age, Value, Conscientiousness, Extraversion, VehExtFactors, 

WarNewTech, Familiarity, Agreeableness, Neuroticism, VehComfort, PlaneExtFactors, 

PlaneComfort, VehAffect, FunFactor 

 

c. Predictors: (Constant), SocialClass, Gender, PlaneAffect, Ethnicity, Imagination, 

PlanePrice, Value, Conscientiousness, Extraversion, VehExtFactors, WarNewTech, 

Familiarity, Agreeableness, Neuroticism, VehComfort, PlaneExtFactors, PlaneComfort, 

VehAffect, FunFactor 

 

d. Predictors: (Constant), SocialClass, Gender, PlaneAffect, Ethnicity, PlanePrice, Value, 

Conscientiousness, Extraversion, VehExtFactors, WarNewTech, Familiarity, Agreeableness, 

Neuroticism, VehComfort, PlaneExtFactors, PlaneComfort, VehAffect, FunFactor 

 

e. Predictors: (Constant), SocialClass, Gender, PlaneAffect, Ethnicity, PlanePrice, Value, 

Conscientiousness, Extraversion, VehExtFactors, WarNewTech, Familiarity, Agreeableness, 

VehComfort, PlaneExtFactors, PlaneComfort, VehAffect, FunFactor 

 

f. Predictors: (Constant), SocialClass, Gender, PlaneAffect, Ethnicity, PlanePrice, Value, 

Conscientiousness, Extraversion, VehExtFactors, WarNewTech, Familiarity, Agreeableness, 

VehComfort, PlaneExtFactors, PlaneComfort, VehAffect 

 

g. Predictors: (Constant), Gender, PlaneAffect, Ethnicity, PlanePrice, Value, 

Conscientiousness, Extraversion, VehExtFactors, WarNewTech, Familiarity, Agreeableness, 

VehComfort, PlaneExtFactors, PlaneComfort, VehAffect 

 

h. Predictors: (Constant), Gender, PlaneAffect, Ethnicity, PlanePrice, Value, 

Conscientiousness, Extraversion, WarNewTech, Familiarity, Agreeableness, VehComfort, 

PlaneExtFactors, PlaneComfort, VehAffect 

 

i. Predictors: (Constant), Gender, PlaneAffect, Ethnicity, PlanePrice, Value, 

Conscientiousness, WarNewTech, Familiarity, Agreeableness, VehComfort, 

PlaneExtFactors, PlaneComfort, VehAffect 
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j. Predictors: (Constant), Gender, PlaneAffect, Ethnicity, PlanePrice, Value, 

Conscientiousness, WarNewTech, Familiarity, Agreeableness, VehComfort, 

PlaneExtFactors, VehAffect 

 

k. Predictors: (Constant), Gender, PlaneAffect, Ethnicity, PlanePrice, Value, 

Conscientiousness, WarNewTech, Familiarity, Agreeableness, VehComfort, VehAffect 

 

l. Predictors: (Constant), Gender, PlaneAffect, Ethnicity, PlanePrice, Value, 
Conscientiousness, WarNewTech, Familiarity, Agreeableness, VehAffect 
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Appendix Q – Model Summary: 12 hour trip 
 

 

Model Summary (Model 16) 

Model R R2 Adjusted R
2 

Std. Error of the Estimate 

1 .532 .283 .260 1.04418 

2 .532 .283 .261 1.04355 

3 .532 .283 .262 1.04305 

4 .532 .283 .262 1.04255 

5 .532 .282 .263 1.04212 

6 .531 .282 .263 1.04184 

7 .530 .281 .263 1.04169 

8 .530 .280 .263 1.04175 

9 .529 .279 .263 1.04182 

10 .528 .278 .263 1.04195 

11 .527 .277 .263 1.04216 

12 .525 .276 .262 1.04257 

13 .524 .275 .262 1.04290 

14 .522 .273 .261 1.04357 

15 .520 .271 .260 1.04431 

16 .519 .269 .259 1.04512   
Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Imagination, Age, 

Extraversion, VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Age, Extraversion, 

VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Age, Extraversion, 

VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, Age, Extraversion, VehExtFact, 

WorkingClass, Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, Extraversion, VehExtFact, WorkingClass, 

Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, 

PlaneComfort, VehicleAffect, Value 
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Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Gender, Extraversion, VehExtFact, WorkingClass, 

Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, 

PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, 

Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, 

VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, African, LowerClass, 

PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, Agreeableness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, 

Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, African, LowerClass, 

PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Extraversion, WorkingClass, Conscientiousness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Extraversion, Conscientiousness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, African, PlaneExtFact, 

Extraversion, Conscientiousness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, 

VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, PlaneExtFact, Extraversion, 

Conscientiousness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, PlaneExtFact, Extraversion, 

Conscientiousness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect 
 

Dependent Variable: Trip12hr 
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Appendix R – F Values and Significance: 12 hour trip  

ANOVA 

Model
a 

 Sum of Squares df Mean Square F Sig. 

1 Regression 359.496 27 13.315 12.212 .000 

 Residual 910.403 835 1.090   

 Total 1269.898 862    

2 Regression 359.493 26 13.827 12.697 .000 

 Residual 910.406 836 1.089   

 Total 1269.898 862    

3 Regression 359.286 25 14.371 13.210 .000 

 Residual 910.613 837 1.088   

 Total 1269.898 862    

4 Regression 359.062 24 14.961 13.765 .000 

 Residual 910.836 838 1.087   

 Total 1269.898 862    

5 Regression 358.738 23 15.597 14.362 .000 

 Residual 911.160 839 1.086   

 Total 1269.898 862    

6 Regression 358.141 22 16.279 14.998 .000 

 Residual 911.758 840 1.085   

 Total 1269.898 862    

7 Regression 357.321 21 17.015 15.681 .000 

 Residual 912.577 841 1.085   

 Total 1269.898 862    

8 Regression 356.128 20 17.806 16.408 .000 

 Residual 913.770 842 1.085   

 Total 1269.898 862    

9 Regression 354.911 19 18.680 17.210 .000 

 Residual 914.988 843 1.085   

 Total 1269.898 862    

10 Regression 353.602 18 19.645 18.095 .000 

 Residual 916.296 844 1.086   

 Total 1269.898 862    

11 Regression 352.145 17 20.714 19.072 .000 

 Residual 917.754 845 1.086   

 Total 1269.898 862    

12 Regression 350.332 16 21.896 20.144 .000 

 Residual 919.566 846 1.087   

 Total 1269.898 862    

13 Regression 348.663 15 23.244 21.371 .000 

 Residual 921.236 847 1.088   

 Total 1269.898 862    

14 Regression 346.397 14 24.743 22.720 .000 

 Residual 923.501 848 1.089   

 Total 1269.898 862    

15 Regression 343.994 13 26.461 24.263 .000 
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 Residual 925.905 849 1.091   

 Total 1269.898 862    

16 Regression 341.466 12 28.455 26.052 .000 

 Residual 928.433 850 1.092   

 Total 1269.898 862     
Dependent Variable: Trip12hr 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Imagination, Age, 

Extraversion, VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, 

FunFactor, African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Age, 

Extraversion, VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Age, Extraversion, 

VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, Age, Extraversion, VehExtFact, 

WorkingClass, Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, Extraversion, VehExtFact, WorkingClass, 

Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, 

PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Gender, Extraversion, VehExtFact, WorkingClass, 

Conscientiousness, Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, 

PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, 

Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, 

VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, African, LowerClass, 

PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, Agreeableness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
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Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, 

Agreeableness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, African, LowerClass, 

PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Extraversion, WorkingClass, Conscientiousness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, African, 

LowerClass, PlaneExtFact, Extraversion, Conscientiousness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, African, PlaneExtFact, 

Extraversion, Conscientiousness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, 

VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, PlaneExtFact, Extraversion, 

Conscientiousness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, PlaneExtFact, Extraversion, 

Conscientiousness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect 
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Appendix S – Model Summary: 16 hour trip 
 

 

Model Summary (Model 16) 

Model R R2 Adjusted R
2 

Std. Error of the Estimate 

1 .530 .281 .258 1.06448 

2 .530 .281 .259 1.06387 

3 .530 .281 .260 1.06331 

4 .530 .281 .260 1.06288 

5 .529 .280 .261 1.06252 

6 .529 .280 .261 1.06221 

7 .529 .279 .261 1.06199 

8 .528 .279 .262 1.06173 

9 .527 .278 .262 1.06158 

10 .526 .277 .262 1.06177 

11 .525 .276 .261 1.06207 

12 .524 .275 .261 1.06227 

13 .523 .273 .260 1.06286 

14 .521 .271 .259 1.06370 

15 .518 .269 .258 1.06468 

16 .516 .267 .256 1.06555   
Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Imagination, Age, 

Extraversion, VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, 

FunFactor, African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, 

Imagination, Age, Extraversion, WorkingClass, Conscientiousness, Agreeableness, 

WaryTech, Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, 

FunFactor, African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, 

Imagination, Age, Extraversion, WorkingClass, Conscientiousness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, 

FunFactor, African, LowerClass, Hispanic, PlaneExtFact, Gender, Imagination, Age, 

Extraversion, WorkingClass, Conscientiousness, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, 

FunFactor, African, LowerClass, Hispanic, PlaneExtFact, Gender, Imagination, Age, 

Extraversion, WorkingClass, Conscientiousness, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, VehicleAffect, Value 
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Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, Age, Extraversion, WorkingClass, 

Conscientiousness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, Extraversion, WorkingClass, 

Conscientiousness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, 

WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, 

WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, Extraversion, WorkingClass, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, LowerClass, 

Hispanic, PlaneExtFact, Gender, Extraversion, WorkingClass, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, LowerClass, 

PlaneExtFact, Gender, Extraversion, WorkingClass, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, LowerClass, 

PlaneExtFact, Gender, Extraversion, WorkingClass, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, LowerClass, 

PlaneExtFact, Gender, Extraversion, WorkingClass, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, VehicleAffect 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, LowerClass, PlaneExtFact, 

Extraversion, WorkingClass, WaryTech, Familiarity, PlaneAffect, VehicleComfort, 

VehicleAffect 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, LowerClass, PlaneExtFact, 

Extraversion, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect 
 

Dependent Variable: Trip16hr 
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Appendix T – F Values and Significance: 16 hour trip  

ANOVA 

Model
a 

 Sum of Squares df Mean Square F Sig. 

1 Regression 370.064 27 13.706 12.096 .000 

 Residual 946.152 835 1.133   

 Total 1316.216 862    

2 Regression 370.022 26 14.232 12.574 .000 

 Residual 946.195 836 1.132   

 Total 1316.216 862    

3 Regression 369.884 25 14.795 13.086 .000 

 Residual 946.332 837 1.131   

 Total 1316.216 862    

4 Regression 369.522 24 15.397 13.629 .000 

 Residual 946.694 838 1.130   

 Total 1316.216 862    

5 Regression 369.026 23 16.045 14.212 .000 

 Residual 947.190 839 1.129   

 Total 1316.216 862    

6 Regression 368.456 22 16.748 14.844 .000 

 Residual 947.761 840 1.128   

 Total 1316.216 862    

7 Regression 367.722 21 17.511 15.526 .000 

 Residual 948.494 841 1.128   

 Total 1316.216 862    

8 Regression 367.050 20 18.353 16.280 .000 

 Residual 949.166 842 1.127   

 Total 1316.216 862    

9 Regression 366.192 19 19.273 17.102 .000 

 Residual 950.025 843 1.127   

 Total 1316.216 862    

10 Regression 364.730 18 20.263 17.974 .000 

 Residual 951.486 844 1.127   

 Total 1316.216 862    

11 Regression 363.067 17 21.357 18.934 .000 

 Residual 953.150 845 1.128   

 Total 1316.216 862    

12 Regression 361.578 16 22.599 20.027 .000 

 Residual 954.639 846 1.128   

 Total 1316.216 862    

13 Regression 359.377 15 23.958 21.208 .000 

 Residual 956.839 847 1.130   

 Total 1316.216 862    

14 Regression 356.746 14 25.482 22.521 .000 

 Residual 959.470 848 1.131   

 Total 1316.216 862    

15 Regression 353.834 13 27.218 24.011 .000 
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 Residual 962.382 849 1.134   

 Total 1316.216 862    

16 Regression 351.124 12 29.260 25.771 .000 

 Residual 965.092 850 1.135   

 Total 1316.216 862    

 

Dependent Variable: Trip16hr 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Imagination, Age, 

Extraversion, VehExtFact, WorkingClass, Conscientiousness, Agreeableness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, Imagination, Age, 

Extraversion, WorkingClass, Conscientiousness, Agreeableness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, 

FunFactor, African, LowerClass, Hispanic, PlaneExtFact, Gender, UpperMiddle, 

Imagination, Age, Extraversion, WorkingClass, Conscientiousness, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, 

FunFactor, African, LowerClass, Hispanic, PlaneExtFact, Gender, Imagination, Age, 

Extraversion, WorkingClass, Conscientiousness, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, PlaneComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, 

FunFactor, African, LowerClass, Hispanic, PlaneExtFact, Gender, Imagination, Age, 

Extraversion, WorkingClass, Conscientiousness, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, Age, Extraversion, WorkingClass, 

Conscientiousness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, FunFactor, 

African, LowerClass, Hispanic, PlaneExtFact, Gender, Extraversion, WorkingClass, 

Conscientiousness, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, Indian, PlanePrice, Asian, African, 

LowerClass, Hispanic, PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, 

WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, African, LowerClass, 

Hispanic, PlaneExtFact, Gender, Extraversion, WorkingClass, Conscientiousness, WaryTech, 

Familiarity, PlaneAffect, VehicleComfort, VehicleAffect, Value 
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Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, African, LowerClass, 

Hispanic, PlaneExtFact, Gender, Extraversion, WorkingClass, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, LowerClass, 

Hispanic, PlaneExtFact, Gender, Extraversion, WorkingClass, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, LowerClass, 

PlaneExtFact, Gender, Extraversion, WorkingClass, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect, Value 
 

Predictors: (Constant), UpperClass, Neuroticism, Other, PlanePrice, Asian, LowerClass, 

PlaneExtFact, Gender, Extraversion, WorkingClass, WaryTech, Familiarity, 

PlaneAffect, VehicleComfort, VehicleAffect 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, LowerClass, 

PlaneExtFact, Gender, Extraversion, WorkingClass, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, VehicleAffect 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, LowerClass, 

PlaneExtFact, Extraversion, WorkingClass, WaryTech, Familiarity, PlaneAffect, 

VehicleComfort, VehicleAffect 
 

Predictors: (Constant), UpperClass, Neuroticism, PlanePrice, Asian, LowerClass, PlaneExtFact, 

Extraversion, WaryTech, Familiarity, PlaneAffect, VehicleComfort, VehicleAffect 
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Table 1 

 

Pattern Matrix produced from the first pilot study factor analysis. 
 

 

Table 1 

 

Pattern Matrix
a
 from pilot study factor analysis  

  Component  

Variable 1 2 3 4 

VAR00001  .579   

VAR00002  .636   

VAR00003  .702   

VAR00004  .495  .411 

VAR00005  .436  .436 

VAR00006    .736 

VAR00007  .635   

VAR00008  .478  .424 

VAR00009   .716  

VAR00010   .856  

VAR00011 .689    

VAR00012 .725    

VAR00013 .607  .456  

VAR00014 .716    

VAR00015 .775    

VAR00016 .688    

VAR00017 .763    

VAR00018 .471    

VAR00019    .691 

VAR00020 .716    

VAR00021 .573    

VAR00022 .799    
 

Extraction Method: Principal Component Analysis.  

Rotation Method: Oblimin with Kaiser Normalization.  

a. Rotation converged in 16 iterations. 
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Table 2 

 

Structure Matrix produced from the first pilot study factor analysis. 
 
 

 

Table 2 

 

Structure Matrix from pilot study factor analysis   

Component  

Variable 1 2 3 4 

VAR00001  .595   

VAR00002  .652   

VAR00003  .690   

VAR00004  .555  .543 

VAR00005  .530  .554 

VAR00006    .694 

VAR00007  .614   

VAR00008  .549  .547 

VAR00009   .764  

VAR00010   .801  

VAR00011 .736  .416  

VAR00012 .775    

VAR00013 .669  .559  

VAR00014 .719    

VAR00015 .744    

VAR00016 .754    

VAR00017 .734    

VAR00018 .455    

VAR00019    .691 

VAR00020 .700    

VAR00021 .603    

VAR00022 .797    
 

Extraction Method: Principal Component Analysis. 

Rotation Method: Oblimin with Kaiser Normalization. 
 
 
 
 
 
 
 
 
 
 

 

182 



Table 3 

 

Regression results from the pilot study scenario 1: 4-hour road trip/ 1 hour flight. 
 

 

Table 3 

 

Pilot Study DV1: 4hr road trip/ 1hr flight 

 Beta Coef. Std. Error t-value Sig. 

Constant -.414 .219 -1.887 .060 

Vehicle General Affect .226 .090 2.945 .004* 

Vehicle External Factors .156 .088 3.028 .003* 

Fun Factor .430 .087 5.507 <.000* 

Plane Comfort -.084 .058 -1.705 .089 

Gender -.083 .121 -1.681 .094 

Age .104 .005 2.016 .045  

* indicates statistical significance 
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Table 4 

 

Regression results from the pilot study scenario 2: 8-hour road trip/ 1.5 hour flight. 
 

 

Table 4 

 

Pilot Study DV2: 8hr road trip/ 1.5hr flight 

 Beta Coef. Std. Error t-value Sig. 

Constant -.180 .129 -1.399 .163 

Vehicle General Affect .174 .123 1.885 .061 

Vehicle Comfort .146 .102 2.221 .027* 

Fun Factor .219 .115 2.420 .016* 

Plane Comfort -.246 .092 -3.561 <.000* 

Plane External Factors .234 .082 3.445 .001*  

* indicates statistical significance 
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Table 5 

 

Regression results from the pilot study scenario 3: 12-hour road trip/ 2 hour flight 
 

 

Table 5 

 

Pilot Study DV3: 12hr road trip/ 2hr flight 

 Beta Coef. Std. Error t-value Sig. 

Constant -.288 .112 -2.569 .011* 

Fun Factor .269 .075 4.224 <.000* 

Familiarity .195 .081 2.916 .004* 

Plane Comfort -.212 .087 -2.991 .003* 

Plane External Factors .217 .081 3.018 .003*  

* indicates statistical significance 
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Table 6 

 

Regression results from the pilot study scenario 4: 16-hour road trip/ 2.5 hour flight 
 

 

Table 6 

 

Pilot Study DV4: 16hr road trip/ 2.5hr flight 

 Beta Coef. Std. Error t-value Sig. 

Constant -.384 .116 -3.299 .001* 

Fun Factor .202 .078 3.095 .002* 

Familiarity .165 .084 2.397 .017* 

Plane Comfort -.224 .091 -3.083 .002* 

Plane External Factors .254 .084 3.449 .001*  

* indicates statistical significance 
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Table 7 

 

Summary of significant regression results from scenarios 1 – 4 
 

 

Table 7 

 

Summary of Significant Predictors 

 DV1 DV2 DV3 DV4 

Vehicle General Affect .004* - - - 

Vehicle Comfort - .027* - - 

Vehicle External Factors .003* - - - 

Fun Factor <.000* .016* <.000* .002* 

Plane Comfort - <.000* .003* - 

Plane External Factors - .001* .003* .001*  

* indicates statistical significance 
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