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ABSTRACT 

Robotic arms are traditionally mounted to rigid structures as they perform tasks. As a 

result, the arm’s movement would not affect the position of its mount and its operational 

space that it is performing a task within would remain constant. If a robotic arm were to 

function in orbit, the motion of the arm would cause it to rotate and translate about its 

center of mass, which changes as the joints of the arm rotate.  

The purpose of this thesis is to focus on the two-dimensional translational effects of an 

arm operating on a simulated zero-friction surface and provide a method to anticipate and 

stabilize these induced forces. By calculating the forces generated by the movement of a 

7-DOF Sawyer robotic arm using the arm’s Universal Robotics Description Format 

(URDF) parameters provided by Spear (2017)  and a Denavit-Hartenberg method for the 

geometric solution of the arm’s kinematics, the induced motion caused by the arm’s 

movement can be arrested by an efficient control system. Using an XY-table to 

compensate for the induced motion of the arm, a comparison is made for an open-loop 

and closed-loop control of a cable driven XY-table. From this analysis, a better 

understanding of an active mount solution for robotic arms can be identified. 

The key findings of this research are the validation of open-loop control response based 

on the calculated reaction force provided by kinematic analysis of the robotic arm’s 

center of mass. Additionally, a closed-loop control response is assessed based on an 

applied external force to the system during operation. Both results lead to a controlled 

system displacement error that does not exceed 1e10-14 meters for the four test cases 

presented.  
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1. Introduction 

The introduction consists of the problem statement to provide context for the research 

being conducted. The system overview section defines the various elements being 

modeling for simulation and their function. Objectives gives the testing criteria that will 

validate the problem-solving approach. Finally, research outline summarizes the entire 

process of problem solving leading up to the results section.  

1.1. Problem Statement 

Robotic arms are traditionally mounted to rigid structures as they perform tasks. As a 

result, the arm’s movement would not affect the position of its mount, and the operational 

space of the robotic system would remain constant. Newton’s third law of motion states 

for every force generated by the arm there will be an equal and opposite force applied to 

the mount. Typically, mounting the robotic arm to a rigid base would arrest the reactive 

force. This allows for a geometric solution to be derived for the arm and the operational 

space it occupies. This thesis considers the case in which the base mount can displace as 

a result of the operation of the robotic arm. If a robotic arm were to function in orbit, the 

motion of the arm would cause it to rotate and translate about its changing center of mass. 

For example, the inertial forces would be generated by the movement of its joints as it 

tries to carry out its task, similar to the challenges that astronauts face during their 

extravehicular activities. This thesis focuses on the two-dimensional translational effects 

of an arm operating on a simulated zero-friction surface and provides a method to 

stabilize these induced forces. By calculating the force generated by the movement of a 

7-DOF Sawyer robotic arm and stabilizing the forces exerted at its base using an open-
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loop and closed-loop control of an XY-table, a better understanding of an active mount 

solution for robotic arms will be established.  

1.2. System Overview 

The system considered in this study is comprised of two primary subsystems. The 

first subsystem is the 7-DOF Sawyer robotic arm, which is mounted on top of the second 

subsystem, the XY-table. Figure 1.1 depicts the Sawyer arm rigidly mounted to a pedestal 

that is a part of the XY-table. The table has free movement in only the planar directions. 

The robotic arm can move all of the seven rigid bodies attached to its base about revolute 

joints that fix each rigid body to the other in order. This order of rigid bodies is referred 

to sequentially with the base being frame 0 and the end-effector referenced as frame 7. 

The end-effector is a term used to describe the tool tip or point at the furthest extent of 

any robotic arm that the user intends to have reach a desired position. For this simulation, 

no tool is attached to frame 7, so the robotic arm’s wrist joint is identified as the end-

effector.  

 

 

Figure 1.1 Sawyer robotic arm mounted atop the XY-table. Joints are referred to by 
their sequence number in the image. 
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1 

2 
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1.2.1. Sawyer Arm 

The Sawyer robotic arm is composed of a series of rigid bodies. All except two of the 

rigid bodies are joined by a set of revolute joints. The base is fixed to a desired mounting 

surface. For the purpose of this study, that surface is the XY-table pedestal. The wrist 

joint, frame 7, is the second joint with only a single revolute joint. Joints one through six 

are all shaped similar to 90 deg elbows, which allows for their revolute joint axes to be 

perpendicular throughout the robotic arm’s operation. There is also a monitor that can 

rotate independently of joint number one for a user interface. 

The internal servomotors, wiring and power structure, along with the shape of the 

rigid bodies makes a precise measurement of inertial properties difficult without the 

URDF. This information is provided by the manufacturer and contains the inertial 

characteristics of each joint to a high degree of precision, which aids in the calculation of 

kinematic and kinetic attributes of the dynamics system and modeling the robotic arm as 

realistically as possible in the simulation environment.  

1.2.2. XY-Table 

The XY-table is a cable-driven planar movement simulator with two low friction 

sleds mounted onto a base that is fixed in the system’s inertial space. The two sleds can 

slide independently or together depending on the rotation of two torque inputs located at 

each end of the base. Figure 1.3 shows the XY-table without the Sayer robotic arm 

mounted to it for clarity.  
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Figure 1.2 XY-table (top view) shown with robotic arm and pedestal removed for clarity 
(MathWorks, 2019). 

 
 
 
1.3. Objectives 

From Newton’s third law it is expected that any object that is acted on by an external 

force will continue to move in the direction of that force vector until acted on by another 

force. For this system, the expectation is that the robotic arm’s movement has a series of 

reaction forces that will transfer through the joints to the base of the robotic arm. 

Typically, these forces are arrested by a rigid mount that is anchored to a solid surface, 

but instead if the mount were in a free-fall, or a micro-gravity environment, the reactive 

forces would cause the base of the robotic arm to rotate and translate from the torque 

inputs. For the mount to remain stable, another input would have to be applied to the 

mount to counter the torque. In this simulation, the applied forces exerted through the 

robotic arm base cause the pedestal to translate along the XY-plane. The XY-table 

applies a counter torque through its two torque inputs to arrest this translation and 

stabilize the pedestal at its origin point. To test this stability, three control scenarios are 

designed and observed. 

 

Control pulley 1 

Control pulley 2 
Sled 1 

Sled 2 

Base 

Pedestal center 
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1.3.1. Uncontrolled 

The first testing segment is an uncontrolled system. This would allow the pedestal 

free movement during the robotic arm’s operation and any external forces transferred to 

the pedestal would be expected to cause unimpeded translation in accordance with 

Newton’s third law. 

1.3.2. Open-Loop Control 

The second form of control is the open-loop control system. This controller will use 

the kinematic and kinetic properties calculated from the robotic arm’s center of mass to 

determine the input torques the xy-table will use for maintaining the robotic arm at the 

systems equilibrium position.  

1.3.3. Closed-Loop Control 

The third form of control is the use of feedback from a position sensor where the 

displacement of the pedestal from its start position is known and the torque inputs will 

continue to reduce error based on the feedback from the position sensor. This would be 

challenging in a physical environment because the system would require a known fixed 

point to measure displacement error.   

1.4. Outline 

This is organized as follows. Chapter 2 provides a review of key concepts and 

relevant literature. Chapter 3 discusses the simulated Sawyer robot arm modeling. 

Chapter 4 provides details regarding the method of calculating the reaction forces and 

inverse kinematic controller for the Sawyer robot arm and the controller development for 

the XY-table’s response to these forces. The results section is contained within Chapter 5 
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and the final chapter is Chapter 6, which provides a summary of the research method and 

conclusions determined from the research.  
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2. Literature Review 

The kinematic modeling of a robotic arm describes the relationship between joint 

positions and the end-effector location in three-dimensional space. Forward kinematics 

require calculating the end-effector position from the joint positions given, while inverse 

kinematics is the process of obtaining the joint positions required to reach a desired end-

effector position (Stramigioli & Bruyninckx, 2001 p. 39). The first is used in the 

operation and simulation of linked rigid bodies or “robotic arms”, while the second is 

essential for motion planning. Two common issues occur when performing inverse 

kinematics. One is the possibility of multiple solutions, and the second is the potential for 

singularities within the results (Siciliano, 2008). 

The term “differential kinematics” refers to the relationship between the derivatives 

of the position being calculated. The computation of differential kinematics consists of 

determining linear and angular velocities of the end-effector from the knowledge of joint 

velocities. Along with its relationship to motion analysis, differential kinematics is often 

used to solve inverse kinematics problems by integrating the calculated velocities to 

determine a desired joint position, especially when the manipulator has a high degree of 

freedom (DOF) kinematic structure. There are two methods commonly used for 

kinematic modeling, one based on the Denavit–Hartenberg (DH) parameters method and 

another based on screw theory. While the DH parameters method is largely used in the 

robotics industry, the screw theory approach is less common. 

2.1. Kinematic Modeling – Denavit–Hartenberg Method 

The DH parameter method describes the kinematic relations between the linked rigid 

bodies connected by 1 degree-of-freedom rotational, prismatic and spherical joints. All 
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versions of the convention require four parameters to completely describe the relative 

pose of a link relative to the previous link in the series. Determining the DH parameters 

requires defined reference frames (i) for every linked rigid body. The DH parameter 

method described by Hartenberg is summarized by the following steps: 

1. Determine z-axis rotation from frame i-1 to frame i. 

2. Determine z-axis displacement from frame i-1 to frame i. 

3. Determine x-axis rotation from frame i-1 to frame i. 

4. Determine x-axis displacement from frame i-1 to frame I (Hartenberg, 1955, 

pp. 215-221). 

With the successful completion of these steps it is possible to determine the 

homogeneous transformation matrices for each joint and finally the overall homogeneous 

transformation matrix utilizing all of the joint transformation matrices can be calculated.  

The resulting transformation matrix (T) or matrices can then be utilized by 

associating a vector within the body frame of a single rigid body to the inertial frame of 

the series of rigid bodies. This is demonstrated by Figure 2.1 and Equation 2.1. 

 
 

 

Figure 2.1 Rigid body (j) within the inertial frame (i) with two vectors defining the 
location of point P in both frames (Briot & Khalil, 2015, p. 20). 
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𝒓௢೔௉ = 𝑇௜௝𝒓௢ೕ௉     (2.1)  

2.2. Kinematic Modeling – Screw Theory Method 

Screw theory is a tool used for kinematic analyses of linked rigid body kinematic 

systems like robotic arms. Its origins in Mozzi and Chasles Theorem date back to 1763; 

however, its application to kinematic rigid body systems, like robotic arms was first 

published in 1999 when Roth and Tsai developed a method to represent the pose of a 

kinematic chain based on Chasles Theorem (Tsai, 1999, p. 42).  

A screw has geometric properties that represent both rotational and translational 

components. It has a singular axis, on which both quantities are defined, and a 

scalar pitch, which relates translation and rotation (Davidson, 2004, p. 763). Screw theory 

associates physical meaning to a purely geometric entity, by its use to express velocities 

(angular and linear ones) as twists, and forces as wrenches. A twist (∈) represents the 

instantaneous motion of a rigid body relative to a referenced axis of rotation. The typical 

expression denotes ω as the angular velocity of rotation about a certain axis and v is the 

instantaneously linear velocity of translation along the same axis, as shown in Figure 2.2. 

 
 

 

Figure 2.2 General screw motion displaced from an inertial frame (Chen, 2015, p. 2). 
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For a general case, the transformation matrix from the origin to a point on the rigid 

body is referred to as the initial configuration of the body coordinate system B relative to 

the inertial coordinate A at the base. After the twist motion of the rigid body, the final 

configuration of B to A in terms of a twist exponential is Equation 2.2 (Chen, 2015, p. 3). 

𝑇௔௕(𝜃) =  𝑒ఢොఏ𝑇௔௕(0)      (2.2)  

For a set of rigid bodies connected in series, the expression for twist is represented by 

Equation 10. The subscript (i) of Equation 2.3 refers to the sequence number for the rigid 

body in the system (Chen, 2015, p. 3). 

 𝜖௜̂ = ቂ
𝜔௜

× 𝑟௜

0 0
ቃ       (2.3)  

For an open-chain serial robot with total number of n revolute joints, the forward 

kinematics can be achieved by the product of the exponential formula in Equation 2.1 

multiplied for each joint and finally multiplied against the initial static configuration of 

the robotic arm to achieve Equation 2.4 (Chen, 2015, p. 3). 

𝑇଴௡(𝜃) = 𝑒ఢො೔ఏ೔𝑒ఢො೔శభఏ೔శభ … 𝑒ఢො೙షభఏ೙షభ𝑇଴௡(0)    (2.4)  

The DH parameter and Screw Theory methods result in the same transformation 

matrices. For a dynamic system, the expression is maintained in its analytical form to be 

utilized for any kinematic process that requires the system to be defined geometrically. 

The transformation matrix is able to identify the forward kinematic transformation matrix 

for any set of joint angles of a linked series of rigid bodies. The process of obtaining the 

kinematic model of a manipulator is summarized from Chen (2015) by following steps: 

1. Choose a fixed coordinate system from where the screws will be expressed. 

2. Define a reference configuration for the manipulator, from which screw 

parameters s and s0 for each joint of the manipulator are determined. 
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3. For each joint, identify the Rodrigues parameters as well as the joint variable 

(i). 

4. Determine the homogeneous transformation matrices for each joint. 

5. Determine the overall homogeneous transformation matrix.  

Screw theory is always represented relative to a reference coordinate system. 

Although in manipulators the base reference system if often of interest, any reference 

system can be used to determine the kinematic equations of the robot. That allows the 

choice of one that simplifies the computation of the screws which will in turn simplify 

the transformation matrices. 

2.3. Differential Kinematics – Denavit-Hartenberg Method 

There are two ways to derive the map between individual body frame and inertial 

frame velocities. The simple geometric analytical approach observes that each joint 

contributes to the end-effector movement. Therefore, the total velocity of it is the sum of 

these contributions, shown in Equation 2.5, where 𝑷𝒊ି𝟏 is the position vector of the end-

effector from the origin of the i−1 frame, and 𝒒̇ is the column vector of joint angular 

velocity (Rocha & Tonetto, 2011, p. 726). 

𝐱̇ = ቂ
𝒗௡

𝝎௡
ቃ = ቈ

∑ ൣ𝜽̇𝒊(𝒛𝒊ି𝟏 × 𝑷𝒊ି𝟏) + 𝒛𝒊ି𝟏𝑑̇𝒊൧
𝒏
𝒊ୀ𝟏

∑ 𝜽̇𝒏
𝒏
𝒊ୀ𝟏 𝒛𝒊ି𝟏

቉ = 𝑱(𝒒)𝒒̇     (2.5) 

2.4. Differential Kinematics – Screw Theory Method 

In this method, the end-effector velocity frame is relative to a point instantaneously 

coincident with the origin of the inertial frame (to which all joint screws are expressed). 

The end-effector velocity is expressed by the twist from Equation 2.2, which is equal to 

the sum of the twist of all joints shown in Equation 2.6 (Rocha & Tonetto, 2011, p. 726). 



12 
 

 

∑ 𝜖௜̂𝒒̇௜
𝒏
𝒊ୀ𝟏 = [𝜖௜̂ ⋯ 𝜖௡̂] ൥

𝒒̇௜

⋮
𝒒̇𝒏

൩ = 𝑱(𝒒)𝒒̇   (2.6) 

The columns of the Jacobian are the normalized screws of each joint, while the 

magnitudes of the twists compose the joint velocities column vector 𝒒̇. Screw-based 

kinematic modeling has some advantages compared to modeling using DH parameters, 

although Screw Theory appears more complex to execute compared to a direct geometric 

approach like the DH parameter method. 

The flexibility of reference frames using the Screw Theory transformation matrix 

setup method is a beneficial feature, since it eases the parameter identification process 

and can be used to obtain simplified analytical expressions for use with forward and 

inverse kinematics in robotic arm operations. 

For this research the DH parameter method was utilized primarily because of the 

large quantity of supporting documentation available during the derivation process. Both 

methods yield the necessary homogenous transformation matrices with the only challenge 

being the limit of available resources to process these analytical expressions. More 

detailed discussion of the execution of the DH parameter method and the resulting 

Jacobian velocities as it applies to this research can be found in section 4.1.2. 

  



13 
 

 

3. Background 

The background section provides the details regarding the modeling and tools used to 

produce the simulated testing environment. It also includes the general robotic operation 

processes, typical for all robotic systems. 

3.1. Kinematics Modeling 

In this simulation, system analysis needs to be done in order to study the dynamics of 

each part of the system. The kinematics analysis is divided into forward and inverse 

kinematics. Forward kinematics consists of finding the position of the end-effector in the 

inertial space knowing joint angles as 𝑓(𝜃ଵ, 𝜃ଶ, … , 𝜃௡) = [𝑥, 𝑦, 𝑧] and the inverse 

kinematics consist of determining the required joint angles to achieve a known end-

effector position, 𝑓(𝑥, 𝑦, 𝑧) = [𝜃ଵ, 𝜃ଶ, … , 𝜃௡]. The relationship between the joint angles 

and end-effector position is more clearly displayed in block diagram form in Figure 3.1. 

 
 

 

Figure 3.1 Cycle of geometric parameters being manipulated to determine either the 
end effector position or joint angles. 
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Forward and inverse kinematics utilize transformation matrices which consist of 

displacement and rotation matrices to determine the desired geometric parameters. A 

more detailed discussion of this calculation is provided in section 4.1.  

3.2. Simulation and Modeling 

Effective modeling of robotic arms can be done with a variety of existing software 

resources. For the purpose of this simulation, the robotic arm requires a mathematical 

programming language to calculate the kinematic and kinetics. The controllers operating 

on the robotic arm and the XY-table require a graphical simulation environment. Finally, 

for 3D modeling of the system, a computer animated design (CAD) software is required. 

3.2.1. MATLAB 

The programming language MATLAB provides the appropriate tools and resources 

for performing the kinematics and kinetic calculations. This software includes symbolic 

variable solutions and matrix algebra functions for rapid processing. Performing these 

calculations by hand is very tedious and allows significant opportunity for error. Without 

the support of computing resources, complex dynamic modeling would not be possible. 

The programming language has a robotics package and SolidWorks plug-in to support 

building the simulation into a 3D environment.  

3.2.2. Simscape Multibody 

Although MATLAB does have the resources to complete the simulation of joint 

position angles and end-effector position error, Simulink offers a graphical structure for 

the controller and methods to display the physical model through its Simscape Multibody 

addon. This addon allows 3D CAD models to be imported into a simulation environment 
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where the user can apply dynamic motion to the system using a controller. This forms the 

simulation environment for analyzing the robotic arm’s movement. 

3.2.3. SolidWorks 

A 3D CAD software like SolidWorks provides the ability to verify the mass 

properties of each rigid body within the Sawyer robotic arm for use in verifying the 

inertia matrices for the individual rigid bodies and the system inertia matrix in its inertial 

frame. Additionally, it provides a resource for applying accurate origins and coordinate 

frame orientations matching those used for the coordinate frames from the DH 

parameters. Resolving this issue in a CAD program prevents complications when the 3D 

models are imported into the simulation environment. Conflicts between the inherited 

joint origin and the origin needed for dynamic modeling prevent proper visualization of 

the robotic arm’s movement and the XY tables response.   

  



16 
 

 

4. Kinematics 

The solution method proposed for determining the reaction forces at the base of the 

robotic arm require knowledge of the joint angles, angular velocities and angular 

accelerations for the Sawyer robot arm. These variables can be provided by an inverse 

kinematic controller, then applied to a set of analytical forward kinematic equations to 

determine the center of mass (CM) of the robot arm at a given time (t). The differential 

kinematics of the CM position provide the analytical expressions for inertial, centripetal 

and Coriolis forces that comprise the force vector at the center of mass and in turn the 

reaction force at the base of the robotic arm. This solution process for calculating the 

forces generated by the Sawyer arm is summarized by the block diagram in Figure 4.1. 

 
 

  

Figure 4.1 Solution process for calculating the forces of the Sawyer robot arm. 
 
 
 
4.1. Forward Kinematics and System Dynamics 

For a robotic arm, each of the rigid bodies within the system must be characterized by 

determining a geometric relationship between all of the joints that can be utilized for 

determining the end-effector location. The goal is to determine the displacement of the 

end-effector as a vector of cartesian coordinates in the robotic arm’s inertial frame as a 
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function of the unique joint angles. The general function for the position of the end-

effector appears in the following form 𝑓(𝑞ଵ, 𝑞ଶ, … , 𝑞௡) = [𝑥, 𝑦, 𝑧] ∈ ଷ. There are two 

accepted methods for determining the end-effector location. one is a more direct 

geometric method utilizing rotation matrices with series of trigonometric functions; the 

second method is referred to as Screw Theory, which is a method of performing algebraic 

operations on vector pairs in three-dimensional space, which leads to exponential 

representations for the system transformation matrices. Both of these methods utilize DH 

parameters and provide an accurate end effector position, but vary in complexity to set 

up. This analysis will continue utilizing the DH parameters. 

4.1.1. Coordinate Frame Assignment 

One of the critical elements for the application of DH parameters is the location and 

orientation of the coordinate frames throughout the robotic arm. In some instances, it is 

possible to reduce the complexity of the final function with respect to joint angles by 

limiting rotations about unnecessary axes and having a displacement vector that has only 

one or two non-zero cartesian elements. The benefits of this effort will be clarified in the 

next sections. Figure 4.2 depicts the Sawyer robotic arm and the arrangement of each 

rigid body coordinate frame in the system. 
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Figure 4.2 Geometric properties of the Sawyer robotic arm. Coordinate frames (black). 
Displacements (green). Rigid bodies (red). Revolute joints (blue) (Layeghi, 2017). 

 
 
Figure 4.2 shows that there is a rotation centered about the z-axis of every coordinate 

system and all displacements occur along the z-axis of the rigid bodies, with the 

exception of frame 0 to frame 1, where the displacement vector has a single component 

of x-axis displacement. The overall robotic arm coordinate system layout minimizes the 

necessary calculations for finding the end-effector position as shown in the next sections. 

4.1.2. Denavit-Hartenberg Parameters 

With an efficient coordinate system placement, the DH parameters can be 

determined. These parameters are determined by following a series of steps to compose a 

table of values specific to the rigid body system. Summarizing the method used by Hayat 

in 2013 the steps are as follows for any two joined frames: 
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1) Determine z-axis rotation from frame i-1 to frame i. 

2) Determine z-axis displacement from frame i-1 to frame i. 

3) Determine x-axis rotation from frame i-1 to frame i. 

4) Determine x-axis displacement from frame i-1 to frame i. 

Continuing to perform this procedure from frame i to frame n results in a table of DH 

parameters. The DH parameters for the Sawyer robotic arm shown in Figure 4.1 are given 

in Table 4.1. 

 
 
Table 4.1  

DH Parameters (Sawyer robotic arm) 

Link q (deg) d (mm) a (mm) α (deg) 
0-1 0 317 81 -90 
1-2 270 194.5 0 -90 
2-3 0 400 0 -90 
3-4 180 168.5 0 -90 
4-5 0 400 0 -90 
5-6 180 136.3 0 -90 
6-7 270 134.75 0 0 

(Layeghi, 2017) 

 
 
 

4.1.3. Homogeneous Transformation Matrix 

A homogeneous transformation matrix can be defined by combining the rotation 

matrix between any two connected rigid body frames with the corresponding 

displacement vector. The general form of the homogeneous transformation matrix for the 

system is shown in Equation 4.1. The transformation matrix (T) is a [4x4] matrix 

comprised of a [3x3] rotation matrix (R), the [3x1] displacement vector (D), and 

augmented by a series of zeroes and 1 in the 4th row to create a square matrix. 
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𝑇 = ቂ
𝑅 𝐷
0 1

ቃ     (4.1) 

A rotation matrix has the following form when defining a standard 3-2-1 Euler 

rotation angle for rotation of a coordinate frame about x, y and z axes.  

𝑅௫ = ൥
1 0 0
0 𝑐𝑜𝑠α −𝑠𝑖𝑛𝛼
0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

൩          (4.2) 

𝑅௬ = ൥
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽

0 1 0
−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽

൩          (4.3) 

𝑅௭ = ൥
𝑐𝑜𝑠q −𝑠𝑖𝑛q 0
𝑠𝑖𝑛q 𝑐𝑜𝑠q 0

0 0 1

൩            (4.4) 

For the Sawyer robot arm the rotation matrix about the y-axis is not used because of 

the efficient placement of the coordinate systems for the DH parameters. As shown in 

Table 4.1, there was no definition for rotation about the y-axis so that element can 

removed from the transformation matrix for the Sawyer arm.  

The displacement vectors along the z-axis and the x-axis are D and A, respectively. 

The number of displacement vectors needed to calculate the transformation matrix is 

reduced because there is no displacement in the y-axis direction between any two frames. 

𝐷 = ቎

𝑑௫

𝑑௬

𝑑௭

቏ ;  𝑑௫ = 0,    𝑑௬ = 0,    𝑑௭ = 𝑑     (4.5) 

𝐴 = ൥

𝑎௫

𝑎௬

𝑎௭

൩ ;  𝑎௫ =  𝛼,  𝑎௬ = 0,    𝑎௭ = 0     (4.6) 

By multiplying the rotation matrices and displacement vectors together the following 

general homogeneous transformation matrix between two frames can be found as 
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𝑇 = 𝑅௭𝐷𝐴𝑅௫ = ൦

𝑐𝑜𝑠q −𝑠𝑖𝑛qcosα 𝑠𝑖𝑛qsinα 𝑎𝑐𝑜𝑠𝑞
𝑠𝑖𝑛q 𝑐𝑜𝑠qcosα −𝑐𝑜𝑠qsinα 𝑎𝑠𝑖𝑛𝑞

0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 𝑑
0 0 0 1

൪  (4.7) 

Each row of Table 4.1 provides a set of values that can be applied to Equation 4.7 which 

yields a transformation matrix for every set of linked rigid bodies (i.e. 0→1, …, 6→7).  

When a series of homogeneous transformation matrices is combined, the result is a 

matrix that defines the rotation and displacement between the initial frame and final 

frame of the sequence as follows. 

𝑇଴଻ = 𝑇଴ଵ𝑇ଵଶ𝑇ଶଷ𝑇ଷସ𝑇ସହ𝑇ହ଺𝑇଺଻ = ൦

0 0 1 1015.75
1 0 0 160.3
0 1 0 317
0 0 0 1

൪     (4.8) 

The transformation matrix shown for T07 in Equation 4.8 is the result of inputting all of 

the DH parameters in Table 4.1 that were determined from Figure 4.1. Therefore, 

Equation 4.8 represents the transformation of the end effector into the base frame 0 for 

the initial configuration of the Sawyer robotic arm. In general, the joint angles (qi) about 

the z-axis are not constants, but rather are variables because these joint angles change 

throughout the robotic arm’s operation. For that reason, the transformation matrices must 

be expressed in their analytical form for all general calculations using the transformation 

matrices. 

4.1.4. Velocity Jacobian Matrices 

For use in the robotic arm controller described in detail in section 4.2, the velocity 

Jacobian matrices are comprised of two primary components: the linear and angular 

velocity Jacobian. These matrices relate the linear and angular velocity of the end-

effector to the angular velocity of the individual joints. Each Jacobian matrix is a [3x7] 
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matrix and the concatenated final matrix is a [6x7] Jacobian matrix that is utilized for 

determining joint velocity or system kinetic energy, shown in Equation 4.9. 

𝐽 = ൤
𝐽௩(𝒒)

𝐽ఠ(𝒒)
൨ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

డ௩ೣ

డ௤భ

డ௩ೣ

డ௤మ

డ௩ೣ

డ௤య

డ௩ೣ

డ௤ర

డ௩ೣ

డ௤ఱ

డ௩ೣ

డ௤ల

డ௩ೣ

డ௤ళ

డ௩೤

డ௤భ

డ௩೤

డ௤మ

డ௩೤

డ௤య

డ௩೤

డ௤ర

డ௩೤

డ௤ఱ

డ௩೤

డ௤ల

డ௩೤

డ௤ళ

డ௩೥

డ௤భ

డ௩೥

డ௤మ

డ௩೥

డ௤య

డ௩೥

డ௤ర

డ௩೥

డ௤ఱ

డ௩೥

డ௤ల

డ௩೥

డ௤ళ

డఠೣ

డ௤భ

డఠೣ

డ௤మ

డఠೣ

డ௤య

డఠೣ

డ௤ర

డఠೣ

డ௤ఱ

డఠೣ

డ௤ల

డఠೣ

డ௤ళ

డఠ೤

డ௤భ

డఠ೤

డ௤మ

డఠ೤

డ௤య

డఠ೤

డ௤ర

డఠ೤

డ௤ఱ

డఠ೤

డ௤ల

డఠ೤

డ௤ళ

డఠ೥

డ௤భ

డఠ೥

డ௤మ

డఠ೥

డ௤య

డఠ೥

డ௤ర

డఠ೥

డ௤ఱ

డఠ೥

డ௤ల

డఠ೥

డ௤ళ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   (4.9) 

The linear velocity Jacobian (Jv) is composed of a series of partial derivatives of the 

cartesian velocity components with respect to the joint angles, as shown in Equation 4.10. 

𝐽௩(𝑞௜) = 𝒛௜ିଵ ×  (𝒐௡ − 𝒐௜ିଵ) =

⎣
⎢
⎢
⎢
⎡

డ௩ೣ

డ௤೔

డ௩೤

డ௤೔

డ௩೥

డ௤೔ ⎦
⎥
⎥
⎥
⎤

,    (4.10) 

The vector zi-1 refers to the z-axis element, or third column of the rotation matrix within 

the transformation matrix (Equation 4.1) for a set of rigid bodies. The vector on refers to 

the vector from the base frame (frame 0) to the end-effector in frame 7. Vector on-1 

references the vector from the base frame to the center of mass (CM) of the rigid body 

that contains the rotation vector zi-1. This vector is important because the desired velocity 

of a rigid body is always uniform through its CM in the robotic arm’s inertial frame.  For 

additional reference, these vectors are shown in a general layout for an arbitrary series of 

rigid bodies in Figure 4.3. 
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Figure 4.3 Velocity Jacobian matrix vectors for revolute joints (TTU Advanced Robotics, 
2010). 

 
 
 
The expression given in Equation 4.10 is specifically for determining the linear 

velocity Jacobian of a single revolute joint. Alternate forms of this expression are 

required for spherical joints and prismatic joints. For the Sawyer robotic arm, all joints 

are revolute. By applying Equation 4.10 for each joint, the linear velocity Jacobian matrix 

takes the following form: 

[𝐽௩(𝒒)] =

⎣
⎢
⎢
⎢
⎡

డ௩ೣ

డ௤భ

డ௩ೣ

డ௤మ
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డ௤య
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డ௤ర
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డ௤ఱ
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డ௤ల

డ௩ೣ

డ௤ళ

డ௩೤

డ௤భ

డ௩೤

డ௤మ

డ௩೤

డ௤య

డ௩೤

డ௤ర

డ௩೤

డ௤ఱ
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డ௤ల

డ௩೤

డ௤ళ

డ௩೥

డ௤భ

డ௩೥

డ௤మ
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డ௤య

డ௩೥

డ௤ర

డ௩೥

డ௤ఱ

డ௩೥

డ௤ల

డ௩೥

డ௤ళ⎦
⎥
⎥
⎥
⎤

   (4.11) 

The elements of the linear velocity Jacobian matrix are composed of the same analytical 

expressions from the transformation matrices; therefore, the velocity Jacobian matrix will 

vary as the joint angles change.  

The angular velocity Jacobian (Jω) matrix takes a similar form as the linear velocity 

Jacobian matrix. As before the expression results in a [3x7] matrix comprised of partial 
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derivatives with respect to the joint angles, but the vector is simply the third column of 

the previous frame’s rotation matrix, as shown in Equation 4.12. 

𝐽௩(𝑞௜) = 𝒛௜ିଵ =

⎣
⎢
⎢
⎢
⎡

డ௩ೣ

డ௤೔

డ௩೤

డ௤೔

డ௩೥

డ௤೔ ⎦
⎥
⎥
⎥
⎤

,    (4.12) 

Also, similar to the linear velocity Jacobian, Equation 4.12 only applies to revolute joints. 

The matrix formed when Equation 4.12 is applied to all joints in the Sawyer robotic arm 

becomes 

[𝐽௩(𝒒)] =

⎣
⎢
⎢
⎢
⎡
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డ௤భ
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డ௤మ

డఠೣ

డ௤య
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డ௤ర
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డ௤ఱ

డఠೣ

డ௤ల

డఠೣ

డ௤ళ
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డ௤మ

డఠ೤

డ௤య

డఠ೤

డ௤ర

డఠ೤

డ௤ఱ

డఠ೤

డ௤ల

డఠ೤

డ௤ళ

డఠ೥

డ௤భ

డఠ೥

డ௤మ

డఠ೥

డ௤య

డఠ೥

డ௤ర

డఠ೥

డ௤ఱ

డఠ೥

డ௤ల

డఠ೥

డ௤ళ ⎦
⎥
⎥
⎥
⎤

                   (4.13) 

The concatenated [6x7] velocity Jacobian matrix will have the form shown in Equation 

4.9. This matrix will be a supporting element in the derivation of the equations of motion 

in the following sections. 

4.1.5. Center of Mass 

At any time (t), the robotic arm can be considered a single rigid body, fixed in its 

inertial frame. At that time, the center of mass (CM) has a specific location as a function 

of the joint angles {𝑞௜}௜ୀଵ
଻ . Finding this position from the known CM in each link’s body 

frame requires first transforming the body frame CM vectors to the inertial frame. This is 

done by transforming the body frame CM vector (pCM) to the inertial frame CM vector 

(PCM). The general expression for this process is shown in Equation 4.14.  

𝑷஼ெబ→೔
ห

௜௡௘௥௧௜௔௟
= ൭

𝑥஼ெ೔

𝑦஼ெ೔

𝑧஼ெ೔

൱ = 𝑇଴→௜𝒑஼ெబ→೔
ห

௕௢ௗ௬
   (4.14) 
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With seven rotating joints and eight total bodies, the base frame 0 is simply multiplied by 

identity to determine its inertial frame CM.  

Next, the entire robotic arm’s CM vector is determined by combining the mass of 

each joint (mi) with its corresponding CM vector as shown in Equation 4.15. 

𝑪𝑴(𝒒) =  ቈ
𝑥
𝑦
𝑧

቉

஼ெ

=
∑ ௠೔∗𝑷𝐶𝑀𝑖

೙
೔సబ

∑ ௠೔
೙
೔సబ

    (4.15) 

Equation 4.15 is kept in an analytical form that is dependent on the joint angles at time 

(t). The first and second derivatives with respect to time of the 𝑪𝑴 shown in Equation 4.16 

are utilized to determine the inertial, Coriolis and centripetal forces described in the following 

sections. 

𝒗஼ெ(𝒒, 𝒒̇) =
ௗ

ௗ௧
𝑪𝑴(𝒒)    (4.16) 

𝒂஼ெ(𝒒, 𝒒̇, 𝒒̈) =
ௗమ

ௗ௧మ
𝑪𝑴(𝒒)    (4.17) 

The expressions of the time derivatives of the CM vector are functions of angular 

velocity and angular acceleration at each joint for the given time t. 

4.1.6. Gravitational Force 

The next portion of the system dynamics derivation is to determine the gravitational 

torque applied by the gravitational force of the system. This requires knowledge of the 

mass for each link (mi), the gravitational acceleration vector acting on the link (g) and the 

current position CM vector (𝑪𝑴) as a function of the joint angles at time (t) The 

gravitational force of each link is given by Equation 4.18. 

𝑭௚ = ∑ 𝑚௜
௡
௜ୀଵ ∗ 𝒈 ∙ 𝑪𝑴      (4.18) 

As the joints rotate, the gravitational force will change as a function of q(t) much like 

the velocity Jacobians. All elements supporting the dynamics derivation are dependent on 
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the joint angles at a given time. The force vector shown in Figure 4.4 is subtracted from 

the measured forces of the robotic arm about the inertial frames x and y axes to remove 

the contribution of gravitational effects acting on the system. This removes the effect of 

external forces except the ones that are provided by the XY-table’s control inputs 

described in section 5.2.  

 
 

 

Figure 4.4 Gravitational force vector direction for Sawyer robot arm in start position. 
 
 
 
4.1.7. Inertial Force 

The inertial forces are referred to in Newton’s second law of inertia, Equation 4.19. 

These forces act on the robotic arm CM.   

𝑭𝑰𝒏 = ∑ 𝑚௜
௡
௜ୀ଴ ∗ 𝒂஼ெ    (4.19) 

𝑪𝑴 
𝑭௚ 
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4.1.8. Coriolis Force 

In order to account for the Coriolis forces acting on the system at the CM, the following 

expression for Coriolis forces acting on a single rigid body ∈ ଷ is written as shown in 

Equation 4.20. 

𝑭஼௢ = −2 ∗ 𝝎𝑪𝑴 × 𝒗஼ெ     (4.20) 

Equation 4.18 can be re-written using the linear vectors of CM and 𝒗஼ெ. 

𝑭஼௢ = −2 ∗ (𝑪𝑴 × 𝒗஼ெ) × 𝒗஼ெ    (4.21) 

4.1.9. Centripetal Force 

The centripetal forces of the system acting on a single rigid body that ∈ ଷ is given 

in Equation 4.22. 

𝑭஼௘ = − ∑ 𝑚௜
௡
௜ୀ଴ ∗ 𝝎𝑪𝑴 × (𝝎𝑪𝑴 × 𝑪𝑴)   (4.22) 

Equation 4.23 can be re-written similar to Equation 4.18 as follows. 

𝑭஼௘ = − ∑ 𝑚௜
௡
௜ୀ଴ ∗ (𝑪𝑴 × 𝒗஼ெ) × [(𝑪𝑴 × 𝒗஼ெ) × 𝑪𝑴] (4.23) 

4.1.10. Equations of Motion 

The resulting equation of motion for the Sawyer robot arm, Equation 4.24, is a 

summation of the forces acting at the robotic arm’s center of mass at time (t) and the 

reaction forces at the pedestal (FR) acting opposite to the forces at the robotic arm center 

of mass (FCM), Equation 4.25 (Schaub & Junkins, 2009, p. 28). 

𝑭஼ெ = 𝑭ூ௡ + 𝑭஼௘ + 𝑭஼௢     (4.24) 

𝑭஼ெ = −𝑭ோ      (4.25) 

Equation 4.25 relates all of the angular rates, angular accelerations, joint angles, 

inertias and masses for the robotic arm into a singular force vector in the inertial frame 
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that can be applied as a calculated disturbance to the XY-table in the open and closed-

loop control systems for the robotic arm. 

The base of the robotic arm is fixed to the pedestal upon which it is mounted. As a 

result, the reaction force in Equation 4.25 acts directly on the pedestal of the XY-table. 

For this reason, an expression relating the force applied at the pedestal by the robotic arm 

and the control wheels of the XY-table must be derived. 

The four free-body diagrams representing the cable tensions about each pulley 

segment for applied force along the x-axis of the inertial frame (Fx) of the XY-table are 

shown in Figure 4.5. 

 
 

 

 

 

 

 

 

 

Figure 4.5 XY-table Free-Body Diagram(s) for force along the x-axis. 
 
 
 
Force can only be exerted in the +x-direction if both control pulleys are applying 

additional tension, T5 and T6, in the directions shown in Figure 4.3. The summation of 

forces for these segments leads to the relationship between the forces in 2D and the 

applied control pulley forces, Equation 4.26. 

∑ 𝐹௫ = −Tଶ + Tସ − Tଵ + Tଷ − Tହ + T଺ − 𝐹௫ = 0   (4.26) 

A single connected cable has equal tension throughout the XY-table so all segments can 

be defined as a single value of tension (T) in Equation 4.27. 

T1 

T3 

T2 

T4 
T1 T2 

T3 T4 

T6 T5 
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𝑇 = 𝑇ଵ = 𝑇ଶ = 𝑇ଷ = 𝑇ସ     (4.27) 

The tensions at the control pulleys are applied when a torque (τ) is needed. For this 

reason, they add to the tension on either side of the pulley depending on the direction the 

torque is applied.  

𝜏ହ = 𝑟𝑇ହ      (4.268 

𝜏଺ = 𝑟𝑇଺      (4.29) 

𝐹௫ =
ଵ

௥
(−𝜏ହ + 𝜏଺)     (4.30) 

For force along the +y-axis (Fy) of the XY-table inertial frame, the control pulleys must 

apply the additional tensions, T5 and T6, in the directions shown in Figure 4.6. 

 
 

 

 

 

 

 

 

 

Figure 4.6 XY-table Free-Body Diagram(s) for force along the y-axis. 
 
 

 
∑ 𝐹௬ = Tଵ − Tଶ − Tସ + Tହ + Tଷ + T଺ − 𝐹௬ = 0   (4.31) 

𝐹௬ =
ଵ

௥
(𝜏ହ + 𝜏଺)     (4.32) 

൤
𝐹௫

𝐹௬
൨ =

ଵ

௥
ቂ
−1 1
1 1

ቃ ቂ
𝜏ହ

𝜏଺
ቃ    (4.33) 

ቂ
𝜏ହ

𝜏଺
ቃ = 𝑟 ቂ

−1 1
1 1

ቃ
ିଵ

൤
𝐹௫

𝐹௬
൨    (4.34) 

T1 

T3 

T2 

T4 
T1 T2 

T3 T4 

T6 

T5 
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Recalling the XY-table has been reduced to a system of approximately massless solid 

elements to imitate an air-bearing frictionless surface, Equation 4.34 must be represented 

without mass; otherwise it would result in trivial solutions. 

ቂ
𝑚𝑟𝑎ହ

𝑚𝑟𝑎଺
ቃ = 𝑟 ቂ

−1 1
1 1

ቃ
ିଵ

ቂ
𝑚𝑎௫

𝑚𝑎௬
ቃ   (4.35) 

ቂ
𝛼ହ

𝛼଺
ቃ = 𝑟 ቂ

−1 1
1 1

ቃ
ିଵ

ቂ
𝑎௫

𝑎௬
ቃ    (4.36) 

The resulting equation of motion for the XY-table relates the linear acceleration of 

the pedestal in the inertial frame to the angular acceleration of the control pulleys. One 

final step is to relate Equation 4.36 to the position of the pedestal in the inertial frame 

using the angle of rotation of the torque pulleys. This is done by the double integration of 

Equation 4.36 with respect to time in Equation 4.37 

൤
𝜃ହ

𝜃଺
൨ = 𝑟 ቂ

−1 1
1 1

ቃ
ିଵ

ቂ
𝑝௫

𝑝௬
ቃ    (4.37) 

 Equation 4.37 is associated with the XY-table as shown in Figure 4.7. The system is 

now completely defined and a control system for the XY-table can be developed based on 

Equation 4.37 (AbdelHamid, Abdeldayem, & Mabrouk, 2018, p. 65).  

 

 

    Figure 4.8 Coordinate frames of the XY-table including positive angle orientation. 
  

θ6 θ5 

Y 

X 
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5. Control Systems 

The control systems section defines the various controllers used throughout the 

simulation. Primarily the robotic arm and XY-table controllers. This section also includes 

the details regarding their operation and controller development. 

5.1. Inverse Kinematic Control 

In order to control the system when a target location for the end-effector is selected, 

the inverse kinematics must be derived (Ali, Park, & Lee, 2010, p. 704). Several methods 

exist for inverse kinematics. The Sawyer arm is not avoiding obstacles within its 

operating area so there is no risk of collisions in the simulation. In order to develop a 

control system that assigns the joints angular rates {𝑞̇௜}௜ୀଵ
଻  as the arm moves from its 

initial position (xe) to the target position (xd), a control system like the one shown in 

Figure 5.1 is required. 

 
 

 

Figure 5.1 Inverse kinematic control system utilizing the Jacobian matrix inverse 
(Siciliano et al., 2010, p. 133). 

 
 
For this control system the position error (e) and its relation to the Jacobian matrix (J) 

are shown as follows. 
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𝑒 =  𝑥ௗ − 𝑥௘     (5.1) 

𝑒 =  𝐽∆𝑞      (5.2) 

The inverse Jacobian matrix will take the error of the position (e) and provide the 

necessary joint angle rates {𝑞̇௜}௜ୀଵ
଻ . 

∆𝑞 =  𝐽ିଵ𝑒     (5.3) 

5.1.1. Damped Least Squares Inverse Jacobian Control 

Due to issues with the inverse Jacobian at joint angles that create mathematical 

singularities within the Jacobian matrices a damped least squares method is implemented 

in the following form, where α is a weighing factor (Buss, 2004, p. 10). 

𝐽௅ௌ
ᇱ = 𝐽்(𝐽𝐽் + 𝛼ଶ𝐼)ିଵ    (5.4) 

A large weighting factor increases the ability for the damped least squares to overcome 

singularities at the expense of final position accuracy. 

The position error gain is given by the [6x6] matrix (K). The target velocity is added 

to the position error to better enable the arm to continue tracking a dynamic target 

position. The feedback value (k(.)) applies the forward kinematics expressions described 

in section 4.1 for converting the resulting joint positions {𝑞௜}௜ୀଵ
଻  to cartesian coordinates 

in the base frame of the robotic arm.  

5.1.2. Singularity Resolution 

Due to the constant scalar weighting factor (α) applied to the damped least squares 

inverse Jacobian controller, the singularity mitigation causes the final position error not 

to converge to zero. The larger a weighting value is introduced to the controller, the less 

accurate the final position of the end-effector (Siciliano, 1990, p. 204). This result is 

caused by the weighting factor creating an additional error within the Jacobian inverse of 
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the controller to avoid elements along the diagonal of the Jacobian matrix from becoming 

zero. Any zeros within the Jacobian matrix would prevent the Jacobian matrix from being 

inverted and the controller would be unable to solve for the joint angular velocities 

(Siciliano & Bruno, 1990, p. 202).  

To overcome this issue, the scalar gain matrix (K) is adjusted from a series of scalar 

values to a series of gains K(t) that are functions of the simulation time t. For the 

controller being applied to the Sawyer robot arm, the gain matrix takes the form of 

Equation 5.5. 

𝐾(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎡
350 0 0 0 0 0

0 350 0 0 0 0
0 0 350 0 0 0
0 0 0 0.001 0 0
0 0 0 0 0.001 0
0 0 0 0 0 0.001 + (𝑡 ∗ 300)⎦

⎥
⎥
⎥
⎥
⎤

     (5.5) 

The gain matrix increases the gain applied to joint 6 the longer the controller operates, 

which can be observed in Figure 5.2.  

 
 

 

Figure 5.2 Time varying gain matrix for all test cases. 
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The result is the end-effector position error is continuously decreased by the controller to 

compensate for the additional error generated by adding weighting factor to the Jacobian 

control expression. 

5.2. XY-table Control 

The XY-table controls the force applied by the robotic arm at the pedestal by using a 

simple PID control system with a goal of reducing the steady state error for the XY-table 

once all of the joints of the robotic arm have arrived at fixed positions and no additional 

force is applied to the XY-table. The open-loop response attempts to do this strictly by 

utilizing the EOM for the Sawyer robotic arm to define the forces applied to the pedestal. 

From this result, the position of the table at time (t) is calculated and the XY-table 

reduces the steady-state error. The success of the open-loop system response is largely 

based on the successful calculation of the reaction forces at the pedestal.  

The closed-loop response applies a position feedback loop that will combine the 

disturbance caused by the robotic arm with any remaining steady-state error. Once the 

robotic arm’s joints reach fixed positions, the remaining steady-state error provided by 

the position sensor will be reduced by the controller to within machine precision 

tolerance.   

5.2.1. Open-Loop Control 

The open-loop controller consists of a target position in the system xy-plane and a 

position error at time t, caused by a disturbance which is generated by the movement of 

the Sawyer robotic arm. The block diagram of this controller is shown in Figure 5.3. 

 
 



35 
 

 

 

Figure 5.3 Open-loop control system applied to XY-table. 
 
 
 
The control block for this controller is Equation 4.35, which generates the angular 

velocity of the control pulleys for the XY-table. The control blocks output is then applied 

to the control pulleys in order to maintain the pedestal center at the system origin.  

5.2.2. Closed-loop 

The closed-loop controller consists of the same design as the open-loop in section 

5.2.1 with the addition of a position feedback loop. The block diagram of this controller 

is shown in Figure 5.4. 

 
 

 

Figure 5.4 Closed-loop control system applied to XY-table. 
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Unlike the open-loop control system, the feedback loop in Figure 5.4 determines the 

difference between the current pedestal position and the measured pedestal position from 

the position sensor. The result is the residual error which is summed with the calculated 

position error to provide the controller with the actual position error of the pedestal. Once 

the arm’s joint velocities have been reduced to zero, the remaining position error from the 

feedback will be corrected by the controller. This will allow the system to continue 

reducing the steady-state error to within machine precision. The feedback block in this 

controller will convert the control pulley output signal to the current corrected position 

before being compared to the measured position sensor input. The difference of these two 

signals will be passed on to the summing block to be combined with the disturbance to 

become the total system error at time (t).  
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6. Simulation Results 

The following sections provide the detailed results of the various test cases performed 

within the Simscape Multibody simulation. As stated previously in this research the test 

cases performed are a series of robotic arm movements with 1-DOF and 7-DOF’s with 

the XY-table providing open and closed loop stability to the system. The uncontrolled 

cases validate the problem statement in addition to the validity of the simulation 

environment. 

6.1. Uncontrolled Cases 

The implementation of the damped least squares inverse Jacobian controller yields an 

infinite number of test cases. For the purpose of this thesis, four cases have been chosen 

for analysis. Two cases represent simple movements of the robotic arm that provide a 

fundamental understanding of the applied and reaction forces for the complete system. 

The remaining two cases demonstrate the complex dynamic movements of a 7-DOF 

system and how these reaction forces provide unique and complex results for the open 

and closed-loop XY-table control systems.  

6.1.1. Case I – Simple Movement I 

For case I the movement only requires the end-effector to acquire the target position 

using a single axis. To ensure the controller does not use other joints to arrive at the target 

location and therefore keep the movement of the arm using as few degrees of freedom as 

possible, all undesired joint rotations have been restricted within the robotic arm 

controller to output an angular velocity of zero at all times. Reduced DOF movements 

add clarity to the model’s overall performance. The 2-DOF movement rotates at joint 2 
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(q2) and causes the robotic arm to raise directly upward along the zy-plane as shown in 

Figure 6.1a and b to arrive at the target end-effector position of 𝑟 = 〈0.081,0.16,1.25〉 m.  

 
 

 
Figure 6.1a End-effector position throughout simulation of case I. 

 
 
 
 

  

Figure 6.1b Initial and final positions of case I. XY-table removed for clarity. End-
effector position (yellow). Target end-effector position (red).  
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The joint angles shown in Figure 5.1b are fixed throughout the simulation, with 

the exception of joint 2, which supports the observed movement in Figure 6.1b. 

 

 
Figure 6.1c Joint angles from start position to fixed final positions when end-effector 
reaches target position for case I. 

 
 
 
The resulting displacement and acceleration in Figure 6.2 demonstrate a result that is 

unique to the robotic arm’s mass distribution and the aggressive response of the model 

due to high displacement error in the first 0.2 seconds. The magnitude of the force 

applied is larger in cases III and IV because the robotic arm is extended fully throughout 

the movement. As a result, the displacement of the pedestal occurs more rapidly and 

reaches 4 meters of displacement along a single axis. The expectation is that a uniform 

rotation along the zy-plane would cause the reaction force to accelerate the pedestal along 

the y-axis. This is observed in Figure 6.2.  
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Figure 6.2 Planar displacement and acceleration of the XY-table pedestal center in case I. 

  
 
 
6.1.2. Case II – Simple Movement II 

Similar to case I, the movement only requires the end-effector to acquire the target 

position using a single axis of rotation. All undesired joint movements have been 

restricted within the robotic arm controller to output an angular velocity of zero at all 

times. The only joint rotating in case II is joint 1 (q1), as shown in Figure 6.3a and b with 

a target end-effector position of 𝑟 = 〈−0.1603,1.016.0.317〉 m. 

 
 

 
Figure 6.3a End-effector position throughout simulation of case II. 
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Figure 6.3b Initial and final positions of case II. XY-table removed for clarity. End-
effector position (yellow). Target end-effector position (red). 

 
 
 

Figure 6.3b displays joint 1 as the only joint increasing from 
గ

ଶ
 to 𝜋 in the xy-plane. All 

other joints remain fixed throughout the simulation. 

 
 

 
Figure 6.3c Joint angles from start position to fixed final positions when end-effector 
reaches target position for case II. 

 
 
 
Figure 6.4 shows the pedestal acceleration starts with the rapid movement to reduce 

error with the reaction force vector along the y-axis and shortly after; as the angular 

velocity for joint 1 decrease, the applied force along the x-axis and the force along the y-
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axis inverts, reducing acceleration along the y-axis. The results in a displacement that 

begins rapidly along the y-axis and sharply increases in magnitude along the x-axis 

shortly after in the simulation.  

 

Figure 6.4 Planar displacement and acceleration of the XY-table pedestal center in case 
II. 

 
 
 
6.1.3. Case III – 7-DOF Movement I 

For the third case, a target end-effector position has been chosen that will demonstrate 

the high DOF dynamic capability of the robotic arm. The result is a variety of reaction 

forces acting on the pedestal of the XY-table that will require a response from the XY-

table’s control systems. In the inertial frame of the combined XY-table and robotic arm 

the target end-effector position is 𝑟 = 〈0.6,0.6.0.6〉 m. Figure 6.5a and b shows the initial 

configuration and the final configuration once the end-effector reaches its target position. 
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Figure 6.5a End-effector position throughout simulation of case III. 

 
 
 

Figure 6.5b Initial and final positions of case I. XY-table removed for clarity. End-
effector position (yellow). Target end-effector position (red). 
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Figure 6.5c Joint angles from start position to fixed final positions when end-effector 
reaches target position for case I. 

 
 
 
The reaction force applied to the pedestal of the XY-table causes a similar 

displacement error as observed in previous test cases, which is shown in Figure 6.6. At 

the time the joint angles have reached their final configuration, the acceleration of the 

pedestal becomes zero because there is no longer a reaction force from the robotic arm 

acting on the pedestal.  

 
 

  
Figure 6.6 Planar displacement and acceleration of the XY-table pedestal center in case I. 
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6.1.4. Case IV – 7-DOF Movement II 

For case IV, the movement displayed in Figure 6.7a and b will utilize all of its joints 

to arrive at a separate, unique end-effector position at  𝑟 = 〈0.8,0.0.0.6〉 m in the robotic 

arm’s inertial frame. 

 
 

 
Figure 6.7a End-effector position throughout simulation of case IV. 

 
 
 

  

Figure 6.7b Initial and final positions of case IV. XY-table removed for clarity. End-
effector position (yellow). Target end-effector position (red). 
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Figure 6.7c Joint angles from start position to fixed final positions when end-effector 
reaches target position for case IV. 

 
 
 

The joint angles follow a similar pattern as in case I, achieving the completed movement 

in t < 2 seconds as shown in Figure 6.7c. 

The robotic arm’s dynamic movement provides a reduced reaction force to the 

pedestal, which causes the XY-table pedestal to accelerate at half the rate observed in 

case III. In Figure 6.8, the pedestal’s displacement does not exceed 2 meters along the x 

or y axes when compared with the results of case III. 

 

  
Figure 6.8 Planar displacement and acceleration of the XY-table pedestal center in 
case IV. 
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The largest movement of the robotic arm occurs within the first 0.2 seconds of the 

simulation. This is the period where most of the reaction force at the pedestal is applied 

and accounts for most of the displacement. 

6.2. Open-Loop Control 

With control applied to the system by the two control pulleys of the XY-table, the 

table will used the calculated forces exerted by the robotic arm as disturbances to the 

table’s position in the systems inertial frame, with the difference being the control pulleys 

resisting the forces by applying a counter-force to the pedestal to maintain equilibrium. 

The more accurately the disturbances are calculated, the smaller the steady-state position 

error for the system will be. 

6.2.1. Case I – Simple Movement I 

Comparing the calculated position error to the simulated position error that is 

provided by the Simscape Multibody platform, the results shown in Figure 6.9 

demonstrate similar plots for each result respectively. 

 

  
Figure 6.9 Calculated displacement (left) and measured displacement (right) of the XY-
table pedestal center in case I. 
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When the open-loop control is applied based on the calculated disturbance the control 

pulleys follow a path opposite that of the applied disturbance which results in the pedestal 

attempting controlled motion in the opposite direction along each axis as shown in Figure 

6.10. 

 

 
Figure 6.10 Open-loop control output converted to the XY-table pedestal position, case I. 

 
 
 

When the control is applied, the reaction forces of the robotic arm are cancelled out and 

the final position maintains equilibrium in the system inertial frame throughout the 

simulation. 

For comparison, the controller is then applied using the measured disturbance with 

the open-loop control. The two results are compared in Figure 6.11 to observe differences 

between the measured displacement of the modeled system and the error calculated 

within the controller. 
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Figure 6.11 Comparison of the residual error between the open-loop control with a 
measured system disturbance and calculated disturbance for case I. 

  
 
 

The differences in the resulting residual error for each form of disturbance is minimal, on 

the order of 10ିଵହ m. This can be regarded as a negligible error in most applications.  

6.2.2. Case II – Simple Movement II 

Comparing the calculated position error to the simulated position error that is 

provided by the Simscape Multibody platform, the results shown in Figure 6.12 

demonstrate similar plots for each result. 

 

Figure 6.12 Calculated displacement (left) and measured displacement (right) of the 
XY-table pedestal center in case II. 
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When the open-loop control is applied based on the calculated disturbance the control 

pulleys follow a path opposite that of the applied disturbance, which results in the 

pedestal attempting controlled motion in the opposite direction along each axis as shown 

in Figure 6.13. 

 

 
Figure 6.13 Open-loop control output converted to the XY-table pedestal position, case 
II. 

 
 
 

When the control is applied the reaction forces of the robotic arm are cancelled out and 

the final position goes to zero. 

 For comparison, the controller is then compared using the measured disturbance with 

the open-loop control. The two results are compared in Figure 6.14 to observe differences 

between the measured displacement error of the simulated Simscape Multibody system 

and calculated system disturbances within the controller. 
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Figure 6.14 Comparison of the residual error between the open-loop control with a 
measured system disturbance and a calculated disturbance for case II. 

  
 
 

As with case I, the differences in the resulting residual error for each form of disturbance 

is on the order of 10ିଵହ m.  

6.2.3. Case III – 7-DOF Movement I 

Comparing the calculated position error to the simulated position error that is 

provided by the Simscape Multibody platform, the results shown in Figure 6.15 

demonstrate similar plots for each result. 

 

  
Figure 6.15 Calculated displacement (left) and measured displacement (right) of the 
XY-table pedestal center in case III. 
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When the open-loop control is applied based on the calculated disturbance the control 

pulleys follow a path opposite that of the applied disturbance which results in the pedestal 

attempting controlled motion in the opposite direction along each axis, Figure 6.16. 

 
 

 
Figure 6.16 Open-loop control output converted to the XY-table pedestal position, case 
III. 

 
 
 

When the control is applied the reaction forces of the robotic arm are cancelled out and 

the final position becomes zero throughout the simulation. 

 Comparing the results of the calculated displacement error to the measured 

displacement error with the open-loop control in Figure 6.17 a similar result as with 

previous test cases with a noticeable error propagation occurring the longer the 

displacement continues at constant velocity. 
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Figure 6.17 Comparison of the residual error between the open-loop control with a 
measured system disturbance and a calculated disturbance for case III. 

  
 
 

The differences in the resulting residual error for each form of disturbance is minimal, on 

the order of 10ିଵହ m. This can be regarded as a negligible error in most applications.  

6.2.4. Case IV – 7-DOF Movement II 

For case IV, the same process for analyzing the performance of the open-loop control 

was applied, this time with disturbances from the movements of the case IV robotic arm. 

Comparing the calculated position error to the simulated position error that is provided by 

the simulation within the Simscape Multibody platform, the results shown in Figure 6.18. 

 

  
Figure 6.18 Calculated displacement (left) and measured displacement (right) of the 
XY-table pedestal center in case IV. 
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The open-loop control is again applied based on the calculated disturbance which 

results in the pedestal attempting controlled motion in the opposite direction along each 

axis, Figure 6.19. 

 
 

 
Figure 6.19 Open-loop control output converted to the XY-table pedestal position, case 
IV. 

 
 
 
The results are compared with the measured disturbance in Figure 6.20 to observe the 

differences between the measured Simscape Multibody system and calculated system 

disturbances and how these results differ for case IV. 

 
 

 
Figure 6.20 Comparison of the residual error between the open-loop control with a measured 
system disturbance and a calculated disturbance for case IV. 
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The differences in the resulting residual error for each form of disturbance is 

minimal; however, case IV shows the deviations between the measured and calculated 

residual error increasing as the system continues to displace. The error still remains on 

the order of 10ିଵହ m. Based on the continued observation of propagated error; 

continuous movement could potentially cause an accumulation of error that could be 

significant over time. 

6.3. Closed-Loop Control 

Based on the performance of the open-loop controlled system, the closed-loop control 

simulation results would be redundant because a position feedback could not reduce the 

steady-state error any lower than the machine precision observed in all cases of section 

6.2.  For the closed-loop control cases, an external force that represents an external 

disturbance not accounted for in the model is applied to the robotic arm’s base causing a 

residual position error from the unintended displacement to be introduced through the 

feedback loop. The external force is comprised of two pulses along the x and y axes of 

the inertial frame shown in Figure 6.21. These pulses are applied at 150 N and 50 N for 

0.05 seconds at 0.05 seconds into the simulation.  

 

 
Figure 6.21 Externally applied forces measured at the pedestal. 
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The external forces shown in Figure 6.21 are arbitrary selections. The force 

magnitude is large enough to cause observable error for the closed-loop feedback. The 

forces are applied along two axes to provide residual position error along both x and y 

axes. The result of an unexpected external force is an increased acceleration of the 

pedestal and robotic arm which leads to a residual position error that is measured by a 

simulated position sensor at the pedestal center in the inertial frame. The sensor input will 

be utilized to provide the necessary feedback to stabilize the pedestal at the origin. 

6.3.1. Case I – Simple Movement I with External Force 

For case I, Figure 6.22 shows the comparison between the calculated position error 

being applied as the projected disturbance for the controller and the measured disturbance 

with the unanticipated external forces applied. The displacement at two seconds of 

simulation time shows a significant different between the two with the position error 

reaching four meters difference along the y-axis and a half meter difference for the x-

axis.  

 
 

 
Figure 6.22 Residual position error measured by the feedback of the closed-loop 
control system for case I. 
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The position error sensor input is added through the closed-loop feedback, allowing 

the controller to recognize the residual error not accounted for by the calculated 

disturbance block of the controller. Without the sensor feedback, the controller would fail 

to recognize the error and over or under compensates for the reaction forces at the 

pedestal. Figure 6.23 displays the controller response when the sensor feedback is added 

to the controller. When the control pulleys are applied, the reaction forces of the robotic 

arm are cancelled out and the final position becomes zero throughout the simulation. 

 

 
Figure 6.23 Closed-loop control output converted to the XY-table pedestal position, 
case I. 

 
 
 
The differences in the resulting residual error for each form of disturbance is minimal. 

Figure 6.24 shows the deviations between the measured and calculated residual error 

increasing as the position error increases. The error still remains on the order of 10ିଵହ m, 

but the closed-loop control is still limited by machine precision. This can be regarded as a 

negligible error in most applications. 
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Figure 6.24 Steady-state error of the pedestal position for closed-loop control case I. 
 
 
 
6.3.2 Case II – Simple Movement II with External Force  

For case II, Figure 6.25 shows the comparison between the calculated position error 

being applied as the projected disturbance for the controller and the measured disturbance 

with the unanticipated external forces applied. The position error is significantly 

impacted along the y-axis, but only a minor change is noticed for the x-axis. The 

similarity is coincidental and not due to differences in controller performance between 

case I and II. Identical closed-loop control systems are used throughout testing to 

maintain consistency in results for all cases.  

 
 

 
Figure 6.25 Residual position error measured by the feedback of the closed-loop 
control system for case II. 
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The position error sensor input added through the closed-loop feedback allows the 

controller to recognize the residual error not accounted for by the calculated disturbance 

block of the controller. As a result, Figure 6.26 displays the controller response with 

displacement error sensor feedback provided. When the XY-table control pulleys are 

applied the reaction forces of the robotic arm are cancelled out and the XY-table 

maintains equilibrium throughout the simulation. 

 
 

 
Figure 6.26 Closed-loop control output converted to the XY-table pedestal position, 
case II. 

 
 
 
The differences in the resulting residual error for each form of disturbance is minimal. 

Figure 6.27 shows the deviations between the measured and calculated residual error 

increasing as the position error increases. The error still remains on the order of 10ିଵହ m, 

but is reduced compared to the open-loop residual error plot in Figure 6.14. It is also 

noticeable that the error propagation is symmetric about the equilibrium and has been 

reduced during continued displacement. 
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Figure 6.27 Steady-state error of the pedestal position for closed-loop control case II. 

 
 
 
6.3.3. Case III – 7-DOF Movement I with External Force 

For case III, Figure 5.28 shows the comparison between the calculated position error 

being applied as the projected disturbance for the controller and the measured disturbance 

with the unanticipated external forces applied. The displacement at two seconds of 

simulation time shows a significant different. 

 

 
Figure 6.28 Residual position error measured by the feedback of the closed-loop 
control system for case III. 
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Figure 5.29 displays the controller response when the residual error in the feedback is 

provided. When the control pulleys are applied the reaction forces of the robotic arm are 

cancelled out and the final position is maintained at equilibrium throughout the 

simulation. 

 

 
Figure 6.29 Closed-loop control output converted to the XY-table pedestal position, 
case III. 

 
 
 

The differences in the resulting residual position error for each form of disturbance is 

minimal. Figure 5.30 shows the deviations between the measured and calculated residual 

error increasing as the position error increases. The error still remains on the order of 

10ିଵହ m, but the closed-loop control is still limited by machine precision.  
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Figure 6.30 Steady-state error of the pedestal position for closed-loop control case III. 

 
 
 
6.3.4. Case IV – 7-DOF Movement II with External Force 

For case IV, Figure 6.31 shows the comparison between the calculated position error 

being applied as the projected disturbance for the controller and the measured disturbance 

with the unanticipated external forces applied.  

 

 
Figure 6.31 Residual position error measured by the feedback of the closed-loop control 
system for case IV. 
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Figure 6.32 displays the controller response when the residual error in the feedback is 

provided. When the control pulleys are applied the reaction forces of the robotic arm are 

cancelled out and the final position becomes zero throughout the simulation. 

 

 
Figure 6.32 Closed-loop control output converted to the XY-table pedestal position, 
case IV. 

 
 
 
The differences in the resulting residual error for each form of disturbance is minimal. 

Figure 6.33 shows the deviations between the measured and calculated residual error 

increasing as the position error increases. The error still remains on the order of 10ିଵହ m, 

despite being small is still reduced compared to its open-loop control results in Figure 

6.20.  

 
 

 
Figure 6.33 Steady-state error of the pedestal position for closed-loop control case IV. 
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7. Conclusions and Recommendations 

The reaction forces generated by a robotic arm’s movement to a variety of end-

effector positions on a simulated zero-friction surface can be calculated and controlled 

utilizing a simple open-loop control system. For a variety of end-effector positions and 

joint movements the stability of its mount can be achieved with an accurate determination 

of the robotic arm’s center of mass kinematics and a form of control force exerted at the 

base to arrest any displacement error that occurs.  

For a non-ideal case involving dampening or viscous forces, the open-loop control is 

only as capable as the user’s ability to define these forces and relate them to the reaction 

force at the robot arm base. Examples include joint friction, torque limits to control and 

robotic arm stepper motors, step precision, slippage of the pulley system, signal noise to 

the controller from sensors and from the controller to motors and propagated error during 

continuous operation. Engaging with a physical Sawyer robotic arm will require the 

controller to be developed with these sources of error accounted for in order to reduce the 

steady-state position error. Continued research can be applied by taking the results of the 

ideal case outlined in this thesis and incorporating a series of comprehensive viscous 

forces, which can then be applied to the actual Sawyer robotic arm open-loop stability 

controller.  

Finally, one item that cannot be accounted for is the potential of failure within the 

system. In open-loop control, the lack of feedback from sensor systems reduces the open-

loop controller performance. Failure scenarios include sudden failure of a joint motor, 

sudden increase in friction within the joints due to lubrication failure or an external force 

applied to the system during operation as shown in closed-loop cases I, II, III and IV. For 
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these scenarios, an open-loop control will not be enough and sensor feedback must be 

applied to mitigate risks to system performance. For these reasons adopting a closed-loop 

control design with a sensor feedback to determine the residual displacement error in the 

physical system becomes a necessity for the successful system performance in any non-

idealized system applications. 
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