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Introduction
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Causes, effects & why flight delays prediction

Crucial in decision-making

Negative economic impact on stakeholders'

Increase satisfaction & non-aviation revenue

Cut unnecessary expenditures. Thus, new & 
existing services can be improved

PassengersAirlineAirportGovernment

o Airline per hour - $1400 -$4500

o Passenger- $35 -$63

SOURCE: US Bureau of Transportation Statistics

“Delayed flights remain a common problem on both sides of

the Atlantic. Official figures show 11% of UK flights were

delayed in the second quarter of 2021, while 16% of US

flights took off late in 2021 as a whole (BBC, 7th Feb.

2022).”

https://www.corractions.com/
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Motivation & Problem Statement

SOURCE: Flight Right and Bureau of Transportation Statistics (BTC)
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Summary of Related Works

Bisandu et al., [1] utilise a special type of  
deep recurrent neural network (RNN) 

known as deep long short-term memory 
(LSTM) and social ski driver conditional 

autoregressive based deep learning to 
study non-weather impacted delays 

In [2] and [3], the authors discuss the 
relevance of  data in predicting flight 

delays and identify major methods such 
as machine learning, deep learning and 

statistical methods as the currently 
applied methods in the research of  flight 

delays predictive tasks

In [4], the authors propose a method 
for predicting the flight departure 

delay in Nanjing Lukou
International Airport by applying 
four different supervised machine 

learning algorithms 

Kim et al., [5] proposed different 
architectural designs and 

implementation of  LSTM and RNN 
in predicting flight delays using 

sequences of  thresholds

Manna et al., [6] analyse air traffic 
data using a gradient boost decision 
tree, and the model produces higher 
accuracy based on their experiment

In [7], Chakrabarty used a grid search 
hyper-parameter tuning and gradient 

boosting classifier model for analysing and 
predicting the arrival delay of  American 

Airlines using the top 5 must busiest airports 
with a binary classification technique.

5 of 16
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Our Contribution

We proposed a deep BiLSTM architecture to perform flight delay analysis & prediction

We used real world dataset to train/test the deep BiLSTM model & then test the model in flight delays classification

We compared the performances of our proposed deep BiLSTM with the LSTM on structure data

6 of 16
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Dataset Description

Over 1million flight 

instances

- Total = 1,500,575

- features = 29

- Cancelled flights = 15,600

- Diverted = 3,780

- Missing Information = 4,437

- Origin and destinations 

airports = 322
- Airlines = 14

??

Period: October – December 2013
Dataset Snippet

SOURCE: Flight Right and Bureau of Transportation Statistics (BTC: https://www.transtats.bts.gov/)

Summary
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Feature Selection Criteria
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Features having no information about flight delays are removed e.g TailNum & Year etc. 

Feature should not contain information that indicates after a flight has taken off e.g ArrTime & ActualEllapseTime etc.

All features with a high correlation with other features are removed e.g DayofMonth & DayofWeek etc. 

NTAS’22

S/No Feature Type Description

1 Months Date Recorded flight months from October to December.

2 Distance Date Origin and destination distance in miles

3 ScheduleDepTime Date Departure schedule.

4 TaxiOut Hours and Minutes Taxi-out time in minutes.

5 DepDelay Hours and Minutes Time difference between a scheduled and actual departure.

6 ArrDelay Hours and Minutes Time difference between a scheduled and actual arrival.
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Methodology
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Results: Evaluation Metrics
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All the computations were conducted on a Personal Computer (P.C.) with Intel(R) Core(T.M.) i7-9700 CPU with a processor speed of

3.00GHz   and 32GHz RAM. We used libraries such as TensorFlow Core-2.4.1, TensorFlow GPU-2.4.1, Pytorch 1.9.1, NumPy-1.19.1, 

pandas-0.25.3, sci-kit learn-0.23.2, Scipy-1.5.2, PySimpleGUI-4.29.0 and Matplolib-3.3.1.

NTAS’22

Accuracy =  
 (𝑇𝑃𝑎+ 𝑇𝑁𝑎 )𝑧
𝑎=0

 (𝑇𝑃𝑎+ 𝑇𝑁𝑎+ 𝐹𝑃𝑎+ 𝐹𝑁𝑎 )𝑧
𝑎=0

         

       

Recall =  
 𝑇𝑃𝑎
𝑧
𝑎=0

 (𝑇𝑃𝑎+  𝐹𝑁𝑎 )𝑧
𝑎=0

        

 

Precision =  
 𝑇𝑃𝑎
𝑧
𝑎=0

 (𝑇𝑃𝑎+  𝐹𝑃𝑎 )𝑧
𝑎=0

                     

   

F1 =  2 X
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑋 𝑅𝑒𝑐𝑎𝑙𝑙 )

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙 )
                                   

  

MCC =  
 (𝑇𝑃𝑎  X 𝑇𝑁𝑎 )− (𝐹𝑁𝑎  X 𝐹𝑃𝑎 )𝑧
𝑎=0

 (𝑇𝑃𝑎+𝐹𝑃𝑎 )+ (𝑇𝑃𝑎+𝑇𝑁𝑎 )+ (𝑇𝑁𝑎+ 𝐹𝑃𝑎 )+ (𝑇𝑁𝑎+ 𝐹𝑁𝑎 )𝑧
𝑎=0
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Results: Performance Comparison 
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S/No Methods Classes Precision Recall F1-Score Support MCC

1 LSTM Class 0 0.8384 0.9443 0.8756 107892

0.4644

Class 1 0.4469 0.0743 0.0896 101823

Accuracy - - 0.7645 209715

Macro Average 0.4532 0.4532 0.4356 209715

Weighted Average 0.7362 0.7453 0.7453 209715

2 BiLSTM Class 0 0.8324 0.9898 0.8945 107892

0.9944

Class 1 0.5643 0.0989 0.4988 101823

Accuracy - - 0.9756 209715

Macro Average 0.4202 0.4332 0.4122 209715

Weighted Average 0.70023 0.7234 0.7213 209715
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Results: LSTM Confusion Matrix
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Results: BiLSTM Confusion Matrix
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Conclusion & Future Work
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Deep BiLSTM outperforms LSTM with higher average combine classification accuracy & Mathew's correlation coefficient value

Presented results were based on optimal results achieved by the LSTM & BiLSTM networks

Demonstrate an alternate approach for flight delay classification, and is expected to be among the recent contribution in the area

NTAS’22

More cross-validation methods and larger sample sizes across different regions to further evaluate the models for a better generalisation

Modify neural network architectural design to achieve better tuning and higher accuracy of the models across different ratios of training/testing

LSTM low performance maybe improved by training the model with the weather, aircraft age, aircraft model & factors limiting airport 

infrastructure (i.e., available runways to flights)

The LSTM & BiLSTM models can be further investigated using weather-related delay since it is highly imbalanced 
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Thank you for 
listening
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