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Delay Cause by Year, Percent of
Total Delay Minutes (%)
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Causes, effects & why flight delays prediction

“Delayed flights remain a common problem on both sides of
the Atlantic. Official figures show 11% of UK flights were

delayed In the second quarter of 2021, while 16% of US

flights took off late in 2021 as a whole (BBC, 7" Feb.
2022).”

Crucial in decision-making

Negative economic impact on stakeholders'

Increase satisfaction & non-aviation revenue

Cut unnecessary expenditures. Thus, new &
existing services can be improved
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We proposed a deep BILSTM architecture to perform flight delay analysis & prediction

We used real world dataset to train/test the deep BILSTM model & then test the model in flight delays classification

We compared the performances of our proposed deep BILSTM with the LSTM on structure data
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Dataset Snippet

Dataset Description

Year Month DayofMoni DayOfWee DepTime CRSDepT ArrTime
2013 ’ 17 4 1038 1045 1451
2013 18 < 1037 1045 1439
2013 19 6 1035 1040 1515
2013 20 7 1037 1045 1455
2013 21 1 1044 1045 1446
2013 22 2 1054 1045 1502
2013 23 3 1036 1045 1504
2013 24 4 1036 1045 1520
2013 25 5 1042 1045 1525
2013 26 6 1034 1040 1509
2013 27 7 1042 1045 1506
2013 28 1 1045 1045 1520
2013 29 2 1116 1045 1607
2013 30 3 1538 1045 19353
2013 31 4 10359 1045 1520
2013 1 2 1939 1840 29
2013 2 3 1848 1840 2333
2013 3 4 1617 1605 1925

www.cranfield.ac.uk

SOURCE: Flight Right and Bureau of Transportation Statistics (BTC: https://www.transtats.bts.gov/)

CRSAITI

150
150
145
150
150
150
150
150
150
145
150
150
150
150
150
2151
2151
1

Summary

-

?7?

~

Period: October — December 2013

-

-

Over 1million flight
Instances
- Total = 1,500,575
- features =29

~

4 N

- Cancelled flights = 15,600

/

-

~

- Origin and destinations

-

alrports = 322

- Diverted = 3,780
- Missing Information = 4,437

o /

/

4 I
- Airlines = 14

N /

NTAS’22

7 of 16



cranfield ) Feature Selection Criteria

University

Feature should not contain information that indicates after a flight has taken off e.g ArrTime & ActualEllapseTime etc.

Features having no information about flight delays are removed e.g TallNum & Year etc.

All features with a high correlation with other features are removed e.g DayofMonth & Dayof\Week etc.

Months Date Recorded flight months from October to December.
Distance Date Origin and destination distance in miles

ScheduleDepTime Date Departure schedule.

TaxiOut Hours and Minutes Taxi-out time In minutes.

DepDelay Hours and Minutes Time difference between a scheduled and actual departure.
.AereIay Hours and Minutes Time difference between a scheduled and actual arrival.

www.cranfield.ac.uk
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Methodology

Feature Scaling
Min-Max
Normalisation
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Results: Evaluation Metrics

All the computations were conducted on a Personal Computer (P.C.) with Intel(R) Core(T.M.) i7-9700 CPU with a processor speed of
3.00GHz and 32GHz RAM. We used libraries such as TensorFlow Core-2.4.1, TensorFlow GPU-2.4.1, Pytorch 1.9.1, NumPy-1.19.1,
pandas-0.25.3, sci-kit learn-0.23.2, Scipy-1.5.2, PySimpleGUI-4.29.0 and Matplolib-3.3.1.

ZzO(TPa‘l' TNa)

Accuracy = =
2 _o(TPg+TNg+ FPy+ FNy)
Zfl=0 I'Pg
Recall = <
2 _o(TPa+ FNy)
. Z_oTP
Precision = a=9 4

2 _o(TPg+ FPy)

F1 = 2 X (Precision X Recall)

(Precision +Recall)

2 _o(TP, XTN,)— (FN, X FP,)
2 _o(TPg+FPy)+ (TP3+TNg)+ (TNg+ FPy)+ (TNg+ FNy)

MCC =
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Results: Performance Comparison
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LSTM Class 0 0.8384 0.9443 0.8756 107892
Class 1 0.4469 0.0743 0.0896 101823
- Accuracy - - 0.7645 209715
0.4644
- Macro Average 0.4532 0.4532 0.4356 209715
- Weighted Average 0.7362 0.7453 0.7453 209715
BiLSTM Class 0 0.8324 0.9898 0.8945 107892
Class 1 0.5643 0.0989 0.4988 101823
0.9944
_ Macro Average 0.4202 0.4332 0.4122 209715
- Weighted Average 0.70023 0.7234 0.7213 209715
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e Results: BiLSTM Confusion Matrix
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¢ranfied ) Conclusion & Future Work

Presented results were based on optimal results achieved by the LSTM & BILSTM networks

Deep BILSTM outperforms LSTM with higher average combine classification accuracy & Mathew's correlation coefficient value

Demonstrate an alternate approach for flight delay classification, and is expected to be among the recent contribution in the area

More cross-validation methods and larger sample sizes across different regions to further evaluate the models for a better generalisation

Modify neural network architectural design to achieve better tuning and higher accuracy of the models across different ratios of training/testing

LSTM low performance maybe improved by training the model with the weather, aircraft age, aircraft model & factors limiting airport
Infrastructure (i.e., available runways to flights)

The LSTM & BILSTM models can be further investigated using weather-related delay since it is highly imbalanced

www.cranfield.ac.uk
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