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ABSTRACT 

To take advantage of multi-material additive manufacturing technology using mixtures of 

metal alloys, a topology optimization framework is developed to synthesize high-strength 

spatially periodic metamaterials possessing unique thermoelastic properties. A thermal 

and mechanical stress analysis formulation based on homogenization theory is developed 

and is used in a regional scaled aggregation stress constraint method, and a method of 

worst-case stress minimization is also included to efficiently address load uncertainty. It 

is shown that the two stress-based techniques lead to thermal expansion properties that 

are highly sensitive to small changes in material distribution and composition. To resolve 

this issue, a uniform manufacturing uncertainty method is utilized which considers 

variations in both geometry and material mixture. Test cases of high stiffness, zero 

thermal expansion, and negative thermal expansion microstructures are generated, and 

the stress-based and manufacturing uncertainty methods are applied to demonstrate how 

the techniques alter the optimal designs. Large reductions in stress are achieved while 

maintaining robust strength and thermal expansion properties.  

An extensive analysis is also performed on structures made from two-dimensional lattice 

materials. Numerical homogenization, finite element analysis, analytical methods, and 

experiments are used to investigate properties such as stiffness, yield strength, and 

buckling strength, leading to insights on the number of cells that must be included for 

optimal mechanical properties and for homogenization theory to be valid, how failure 

modes are influenced by relative density, and how the lattice unit cell can be used to 

build macrostructures with performance superior to structures generated by conventional 

topology optimization. 
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1. Introduction 

Additive manufacturing technology has recently advanced to the point where highly 

complex structures, which were previously impossible to fabricate, are now feasible 

designs for creating functional and load-bearing components for use in industries such as 

aerospace, automotive, and biomedical. Among these complex new structures are lattice 

structures, which are repeating arrangements of small interconnected features often made 

up of straight struts connected at their ends. The smallest repeating unit of these 

structures is called the unit cell. 

Extensive work has already been completed on lattice structures (L. J. Gibson & 

Ashby, 1999). Wang and McDowell (2004) analyzed and presented structural equations 

for seven different two-dimensional planar lattice cells. They derived analytical 

expressions for in-plane mechanical properties, such as initial yielding and elastic 

buckling loads, of several cell geometries. Maskery et al. (2018) computationally and 

experimentally investigated three different triply periodic minimal surface (TPMS) 

structures, which shed light on their mechanical properties and failure mechanisms and 

established relationships between their geometries and mechanical properties. Niu et al. 

(2018) developed an analytical solution for the effective Young’s modulus of a three 

dimensional triangular lattice structure and compared the results to finite element analysis 

and experiment. 

Taking the concept of a periodic lattice structure a step further, the geometry and 

orientation of the unit cell can be spatially varied to create structures with customized 

performance characteristics. If the cells are sufficiently small compared to the entire 

structure they make up, the lattice may be treated as a homogeneous material using 
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homogenization theory. The macroscopic properties of the material can then be tailored 

by varying the geometries and orientations of individual cells throughout the domain of 

the lattice material. There have been a small number of theoretical works on topology and 

orientation optimization of lattice structures (Allaire, Geoffroy-Donders, & Pantz, 2018; 

Geoffroy-Donders, Allaire, & Pantz, 2020; Groen & Sigmund, 2018), but there have been 

no experimental investigations or high-fidelity computational analyses done on the 

designs that were synthesized. On the other hand, there are many studies on 3D printing 

of lattice structures (Kang et al., 2019; Maskery, Aboulkhair, Aremu, Tuck, & Ashcroft, 

2017; Maskery et al., 2018; Ngim, Liu, & Soar, 2009; Niu et al., 2018; Yan, Hao, 

Hussein, & Young, 2015) showing that similar investigations could also be done for 

spatially varying lattices. 

Another important development in additive manufacturing, multi-material additive 

manufacturing, has allowed for different materials and their unique properties to be taken 

advantage of in different areas of single components (Bandyopadhyay & Heer, 2018). 

More recently, multi-material additive manufacturing has been achieved using metal 

alloys (Hofmann, Kolodziejska, et al., 2014; Hofmann, Roberts, et al., 2014) which can 

be particularly useful in industries such as aerospace and automotive where structures are 

subjected to both mechanical and thermal loads. In general, a single material will not 

simultaneously have optimal strength, stiffness, and thermal expansion characteristics for 

a given application. By using multiple materials, where each individual material has some 

unique advantage, parts can be tailored to have specific mechanical and thermal 

characteristics that would otherwise be impossible using just one of those materials.  
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Topology optimization (Bendsoe & Sigmund, 2013) provides a tool for generating 

complex components that may be difficult or unintuitive to design using traditional 

methods. One excellent use is for the design of optimized lattice structures (Osanov & 

Guest, 2016), usually referred to with various names such as periodic microstructures, 

mesostructures, metamaterials, architected materials, lattice structures, or cellular 

structures. Using numerical homogenization (Andreassen & Andreasen, 2014) together 

with topology optimization (Andreassen, Clausen, Schevenels, Lazarov, & Sigmund, 

2011), periodic structures can be designed that effectively act as homogeneous materials 

with special macroscopic properties. This method, known as inverse homogenization, 

was first introduced for periodic truss, frame, and continuum structures (Sigmund, 1994, 

1995) and was used to design microstructures with prescribed elastic properties and 

negative Poisson’s ratios. 

Sigmund and Torquato (1997) later used the inverse homogenization method to 

design multi-material periodic microstructures, achieving materials with extreme thermal 

expansion coefficients beyond those of the constituent materials. Some of the possibilities 

for these extreme properties include zero thermal expansion, negative thermal 

expansions, extreme positive thermal expansions, or specific values of thermal 

expansion. The precise control over these coefficients provided by topology optimization 

leads to designs that can eliminate unwanted thermal expansion, cancel out expansion of 

neighboring materials, eliminate thermal expansion mismatch, or create thermally 

actuating materials. These characteristics are highly desirable for applications such as 

spacecraft instruments sensitive to small deformations caused by temperature changes. 
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Multi-material topology optimization has also been used to design thermoelastic 

materials with graded interfaces using a level-set method (Faure, Michailidis, Parry, 

Vermaak, & Estevez, 2017); materials with extremal and anisotropic thermal 

conductivities (Zhou & Li, 2008); auxetic materials with negative Poisson’s ratios 

(Bruggi & Corigliano, 2019; Vogiatzis, Chen, Wang, Li, & Wang, 2017; Zhang, Luo, & 

Kang, 2018); materials with both negative thermal expansion and negative Poisson’s ratio 

(Y. Wang, Gao, Luo, Brown, & Zhang, 2017); and materials made of trusses using a 

geometry projection technique for maximum stiffness or minimum Poisson’s ratio 

(Kazemi, Vaziri, & Norato, 2020). Thermoelastic metamaterials designed using topology 

optimization have also been experimentally tested using multi-material polymer additive 

manufacturing, demonstrating fabrication feasibility with currently available commercial 

technology (Takezawa & Kobashi, 2017). 

While there have been a number of studies on multi-material periodic 

microstructures, all of them are missing an important consideration: stress and 

mechanical failure. Purely stiffness-based topology optimization is susceptible to stress 

concentrating features such as sharp re-entrant corners and thin hinges in compliant 

mechanism-like materials. This issue becomes more severe for multi-material periodic 

microstructures, as designs tend to have complex features and mismatches in material 

properties that cause additional stresses (e.g. thermal stress). High stress can cause failure 

before high stiffness or low thermal expansion becomes useful, and stress concentrations 

also reduce fatigue life which is an important consideration for automobiles, aircraft, and 

spacecraft which may have operational lives up to decades in length. 
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While stress-based topology optimization is an extremely important problem, it 

comes with several of its own difficulties. One of these is the singularity issue, where the 

stress at a point approaches infinity as the density at that point approaches zero. In 

continuum structures, several stress relaxation methods exist to solve this issue such as 𝜀-

relaxation (Duysinx & Bendsøe, 1998), the qp-approach (Bruggi, 2008), and stress 

interpolation schemes (Le, Norato, Bruns, Ha, & Tortorelli, 2010).  Another difficulty in 

stress-based topology optimization is the local nature of stress. For full control of the 

local stress field, constraints at every point in the structure would need to be enforced. In 

topology optimization this becomes computationally expensive, so more efficient global 

constraint functions can be implemented such as by using the p-norm, Kresselmeier-

Steinhauser, or global 𝐿𝑞 methods (Deaton & Grandhi, 2014; Duysinx & Sigmund, 

1998). 

In the microstructure side of topology optimization, only a small number of studies 

have applied stress constraints to single material (or two-phase solid and void) unit cell 

designs. Picelli et al. (2017) used a level set method to minimize the stress via a p-norm 

functional, making use of the three unit strain cases from the 2D homogenization 

problem. Although the stress fields were only based on the fluctuating component of 

strain, they still captured the stress concentrations and thus could be used to eliminate the 

features causing them. Noël and Duysinx (2017) minimized local von Mises stresses in 

two-phase microstructures using shape optimization and the extended finite element 

method (XFEM), again only using the fluctuating component of strain. Collet, Noël, 

Bruggi, and Duysinx (2018) later applied local stress constraints using an active set 

selection strategy to density-based topology optimization, using the fluctuating strain-
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based stress fields and arbitrary non-physical applied strains and allowable stresses to 

obtain designs with reduced stress concentrations. Coelho, Guedes, and Cardoso (2019) 

applied a similar approach using parallel processing to help overcome the computational 

cost of using local stress constraints, and also using a stress analysis formulation which 

gave the full physical stress fields from physically meaningful mechanical loads. In 

another study by Maharaj and James (2019), metamaterials for a nonpneumatic tire were 

designed by topology optimization without the use of homogenization theory. Stress and 

buckling constraints were implemented with single global aggregation functions. 

Another characteristic of periodic microstructures is that their properties can be 

highly sensitive to small changes in the unit cell layout. Stress concentrations may be 

greatly reduced by simply rounding sharp corners or by adding small spots of higher 

strength material, which would require very precise manufacturing to replicate. If these 

subtle changes cannot be reproduced, stress concentrations could be reintroduced or the 

thermal expansion properties could be significantly altered. Adding to this problem, 

periodic microstructures are manufactured on small scales, making manufacturing 

uncertainty an even more important consideration. 

Uncertainty in loading conditions is also important, since microstructures are usually 

used to construct a macrostructure that may experience a variety of internal stress states 

which are not completely known beforehand. In some applications, an orthotropic 

microstructure is oriented along directions of loads in the macrostructure (Allaire, 

Geoffroy-Donders, & Pantz, 2019; Geoffroy-Donders et al., 2020), meaning there are a 

limited number of load combinations to consider. In other cases, a microstructure (e.g. 

isotropic) may be needed which can handle many loading conditions. 
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This thesis presents a stress-based topology optimization framework for multi-

material (three-phase) thermoelastic microstructure designs including considerations for 

manufacturing and loading uncertainties. It also presents a computational and 

experimental analysis of lattice structures, including experiments on spatially varying 

lattice structures. The main contributions of the work are: 

1. Development of a mechanical and thermal stress analysis formulation for 

multi-material periodic microstructures based on homogenization theory, 

which uses physically meaningful macroscopic stress or strain states to 

give full microscopic stress fields; 

2. Consideration of load uncertainty using worst-case stress analysis, which 

was motivated by recognizing that specific load cases for periodic 

microstructures are difficult to know beforehand; 

3. Presentation of the adjoint sensitivities for each of the two stress analysis 

methods, giving the capability of constraining or minimizing stresses in 

gradient-based microstructure optimizations; 

4. Inclusion of a multi-material uniform manufacturing uncertainty method, 

resulting from the observation that small changes in designs to satisfy 

stress requirements cause large changes in thermal expansion properties; 

5. Demonstration of the framework using numerical examples showing how 

the stress-based and uncertainty formulations change basic stiffness-based 

designs into robust stress-tolerant designs; 

6. A computational analysis of simple lattice structures investigating 

stiffness, strength, and buckling properties verified by experiments; 
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7. An experimental analysis of spatially varying lattice structures 

demonstrating significant advantages over structures designed by 

conventional solid-void topology optimization. 

The remainder of the thesis is organized as follows. In Section 2, the topology 

optimization method for designing thermal and mechanical metamaterials is described. 

Section 3 presents and discusses several example designs generated using this method, 

including an orthotropic microstructure, a metamaterial with zero thermal expansion, and 

a metamaterial with negative thermal expansion. In Section 4, simple mechanical lattice 

structures are analyzed using numerical techniques. These lattice structures are then 

experimentally tested in Section 5 along with several examples of more complex spatially 

varying lattice structures. Finally, conclusions and possible continuations of the work are 

discussed in Section 6. 
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2. Metamaterial Topology Optimization: Methodology 

The density-based metamaterial topology optimization is formulated as a three-phase 

problem to be solved by the globally convergent method of moving asymptotes 

(GCMMA) (Svanberg, 2002), where the three phases are empty space and two distinct 

materials. The three phases are described by design variables 𝒙1 and 𝒙2. The variable 𝒙1 

represents the spatial distribution of material density, where 𝒙1 = 0  corresponds to void 

and 𝒙1 = 1 corresponds to fully solid material. The variable 𝒙2 represents the material 

mixture distribution, where 𝒙2 = 0 corresponds to purely the first material and 𝒙2 = 1 to 

purely the second material, with intermediate values representing a mixture of the two 

materials. The problem is solved on a rectangular domain, and the design variables are 

given a small number 𝑥𝑚𝑖𝑛 = 10−6 as their minimum value to avoid singular stiffness 

matrices in the finite element analysis. 

2.1. Homogenization Theory and Finite Element Formulation 

Homogenization theory is used to compute the effective macroscopic properties of a 

structure made of a spatially periodic unit cell. All of the formulations in this section have 

already been shown in references such as (Andreassen & Andreasen, 2014; Bendsoe & 

Sigmund, 2013; Guedes & Kikuchi, 1990; Hassani & Hinton, 1998; Hollister & Kikuchi, 

1992; Sigmund & Torquato, 1997), however some of the relevant details are given again 

here for completeness.  

The theory assumes that the scale of the unit cell is much smaller than the entire 

structure so that the problem can be separated into microscopic and macroscopic scales. 

From this assumption, functions describing behavior of the structure can be 

asymptotically expanded. The displacement field is represented by: 
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𝒖𝜖(𝒙, 𝒚) = 𝒖0(𝒙, 𝒚) + 𝜖𝒖1(𝒙, 𝒚) + 𝜖
2𝒖2(𝒙, 𝒚) + ⋯  (1) 

Where 𝜖 is the ratio of the size of the microstructure to the size of the macrostructure, 𝒙 is 

the spatial coordinates at the macroscopic scale, 𝒚 is the spatial coordinates at the 

microscopic scale, 𝒖𝜖 is the full displacement field, 𝒖0 is the average macroscopic 

displacement field, and 𝒖1, 𝒖2, and the rest of the higher order variables are the periodic 

fluctuations in the displacement field at the microscopic scale. It can be shown that the 

macroscopic displacement 𝒖0 is a function of 𝒙 only. 

The microscopic fluctuating displacement field 𝝌 is given by the problem: 

∫ 𝐶𝑖𝑗𝑝𝑞
𝜕𝝌𝑝

𝑘𝑙

𝜕𝑦𝑞

𝜕𝑣𝑖(𝒚)

𝜕𝑦𝑗
𝑑𝑌 

 

𝑌

= ∫ 𝐶𝑖𝑗𝑘𝑙
𝜕𝑣𝑖(𝒚)

𝜕𝑦𝑖
𝑑𝑌 

 

𝑌

 (2) 

Where 𝑌 is the domain of the unit cell, 𝑪 is the local (meaning it is a function of 𝒚) 

stiffness tensor, and 𝒗 is a virtual displacement field. The solution of the fluctuating 

displacement field 𝒖1 is then: 

𝑢𝑖
1 = −𝜒𝑖

𝑘𝑙(𝒙, 𝒚)
𝜕𝑢𝑘

0(𝒙)

𝜕𝑥𝑙
 (3) 

Equation (3) shows that the displacement fields 𝝌 found from Equation (2) are not the 

true fluctuating displacements, but the negative of them which will be important later for 

the stress analysis of the microstructure.  

The homogenized stiffness tensor, which describes the macroscopic behavior of the 

periodic microstructure, is written as: 

𝐶𝑖𝑗𝑘𝑙
𝐻 =

1

|𝑌|
∫ 𝐶𝑝𝑞𝑟𝑠 (𝜀𝑝𝑞

0(𝑖𝑗)
− 𝜀𝑝𝑞

∗(𝑖𝑗)
) (𝜀𝑟𝑠

0(𝑘𝑙) − 𝜀𝑟𝑠
∗(𝑘𝑙))𝑑𝑌

 

𝑌

 (4) 

Where |𝑌| is the volume of the unit cell, 𝜀𝑝𝑞
0(𝑖𝑗)

 are applied macroscopic strains, and 𝜀𝑝𝑞
∗(𝑖𝑗)

 

are fluctuating strain fields in the microstructure related to 𝝌: 
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𝜀𝑝𝑞
∗(𝑖𝑗)

=
1

2
(
𝜕𝜒𝑝

𝑖𝑗

𝜕𝑦𝑞
+
𝜕𝜒𝑞

𝑖𝑗

𝜕𝑦𝑝
) (5) 

Similarly, the thermal expansion characteristics of the microstructure can be 

homogenized. A thermal displacement field 𝚪 is given by: 

∫ 𝐶𝑖𝑗𝑝𝑞
𝜕Γ𝑝

𝜕𝑦𝑞

𝜕𝑣𝑖(𝒚)

𝜕𝑦𝑗
𝑑𝑌 

 

𝑌

= ∫ 𝛽𝑖𝑗
𝜕𝑣𝑖(𝒚)

𝜕𝑦𝑗
𝑑𝑌 

 

𝑌

 (6) 

Where 𝜷 is the local thermal stress tensor. The homogenized thermal stress tensor is: 

𝛽𝑖𝑗
𝐻 =

1

|𝑌|
∫ 𝐶𝑝𝑞𝑟𝑠(𝛼𝑝𝑞 − 𝜀𝑝𝑞

𝛼 ) (𝜀𝑟𝑠
0(𝑖𝑗)

− 𝜀𝑟𝑠
∗(𝑖𝑗)

) 𝑑𝑌
 

𝑌

 (7) 

Where 𝜶 = [𝛼 𝛼 0]𝑇 is the local thermal expansion tensor and 𝜺𝛼 is the strain field 

related to 𝚪 which has the same form as Equation (5). 

In practice, Equations (2) and (6) are discretized and solved by the finite element 

method with periodic boundary conditions. The stiffness matrix is given by:  

𝑲 =∑∫ 𝑩𝑒
𝑇𝑪𝑒𝑩𝑒𝑑𝑉𝑒

 

𝑉𝑒

𝑁

𝑒=1

 (8) 

Where 𝑩𝑒 is the element strain-displacement matrix, 𝑪𝑒 is the element stiffness matrix, 

and 𝑉𝑒 is the volume of the element. The mechanical force vector, which comes from 

Equation (2), is dependent on the design and is assembled using: 

𝑭𝑚 =∑∫ 𝑩𝑒
𝑇𝑪𝑒𝜺

0𝑑𝑉𝑒

 

𝑉𝑒

𝑁

𝑒=1

 (9) 

The thermal force vector is also design dependent and comes from Equation (6). It is 

assembled with: 

𝑭𝑡ℎ =∑∫ 𝑩𝑒
𝑇𝑪𝑒𝜶𝑒Δ𝑇𝑑𝑉𝑒

 

𝑉𝑒

𝑁

𝑒=1

 (10) 
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Where 𝜶𝑒 = [𝛼𝑒 𝛼𝑒 0]𝑇 is the coefficient of thermal expansion of the element and Δ𝑇 

is an applied temperature change. The problems (2) and (6) in their finite element forms 

are then: 

𝑲𝝌 = 𝑭𝑚 (11) 

𝑲𝚪 = 𝑭𝑡ℎ (12) 

To compute the homogenized stiffness matrix in two dimensions, Equation (11) is 

solved three times for three linearly independent unit strain cases. The first strain case is 

𝜺1
0 = [1 0 0]𝑇, the second is 𝜺2

0 = [0 1 0]𝑇, and the third is 𝜺3
0 = [0 0 1]𝑇. 

With the resulting three displacement fields the homogenized stiffness matrix is 

computed using: 

𝐶𝑖𝑗
𝐻 =

1

|𝑉|
∑∫ (𝝌𝑒

0(𝑖) − 𝝌𝑒
(𝑖))

𝑇

𝒌𝑒 (𝝌𝑒
0(𝑗)

− 𝝌𝑒
(𝑗)
)𝑑𝑉𝑒

 

𝑉𝑒

𝑁

𝑒=1

 (13) 

Where 𝝌𝑒
0(𝑖)

 are element displacements related to the strain fields 𝜺𝑖
0 at the level of the 

microstructure.  

For the homogenized thermal stress vector, Equation (12) is solved once using a unit 

applied temperature change and the resulting thermal displacement field is used along 

with the three displacement fields used in (13): 

𝛽𝑖
𝐻 =

1

|𝑉|
∑∫ (𝚪𝑒

0 − 𝚪𝑒)
𝑇𝒌𝑒(𝝌𝑒

0(𝑖) − 𝝌𝑒
𝑖 )𝑑𝑉𝑒

 

𝑉𝑒

𝑁

𝑒=1

 (14) 

Where 𝚪𝑒
0 is an element displacement vector for a unit thermal strain.  

 Finally the homogenized thermal expansion vector is found using: 

𝜶𝐻 = [𝑪𝐻]−1𝜷𝐻 (15) 



13 

 

The homogenized properties of the unit cell are used in the objective and constraint 

functions for the optimization problems, allowing for design of the periodic 

microstructures that exhibit special properties at the macroscale. 

2.2. Filtering of Design Variables 

Mesh-dependency and checkerboard patterns are dealt with by using a density filter 

(Bruns & Tortorelli, 2001) with threshold projection (F. Wang, Lazarov, & Sigmund, 

2011) on the design variables. The filtered variable for an element 𝑒 is given by: 

𝑥̃𝑖𝑒 =
1

  ∑ 𝐻𝑒𝑗
𝑖

𝑗∈Ne

 ∑ 𝐻𝑒𝑗
𝑖

𝑗∈Ne

𝑥𝑖𝑗 

𝐻𝑒𝑗
𝑖  = 𝑚𝑎𝑥 (0, 𝑟𝑚𝑖𝑛

𝑖  –  𝛥(𝑒, 𝑗)) 

(16) 

Where 𝑖 represents either the density (𝑖 = 1)  or composition (𝑖 = 2) design variables. 𝑁𝑒 

is the number of variables 𝑥𝑖𝑗 which have a distance 𝛥(𝑒, 𝑗) to variable 𝑥𝑖𝑒 that is less 

than a chosen minimum radius 𝑟𝑚𝑖𝑛
𝑖 . The distance between design variables includes 

consideration of the periodic boundary conditions of the homogenization problem, i.e. a 

variable located on one edge of the domain has a distance to a variable near the opposite 

edge that is not across the middle of the domain, but is the shorter distance found by 

crossing the boundary and entering again on the opposite side.  

The physical design variables are computed using the threshold projection: 

𝑥̅𝑖𝑒 =
tanh(𝛽𝑖𝜂) + tanh(𝛽𝑖(𝑥̃𝑖𝑒 − 𝜂))

tanh(𝛽𝑖𝜂) + tanh(𝛽𝑖(1 − 𝜂))
 (17) 

Where the parameter 𝛽𝑖 controls the intensity of the projection, giving a linear 

interpolation when  𝛽𝑖 → 0 and approaching a step function when 𝛽𝑖 → ∞. The parameter 

𝜂 controls the location of the inflection point and is set to 𝜂 = 0.5.  
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The physical design variables represent the physical design and are used for all 

material property, objective, and constraint function computations. When finding the 

sensitivities of the functions with respect to the unfiltered variables, the chain rule is 

used: 

𝜕𝑓

𝜕𝑥𝑖𝑗
=∑

𝜕𝑓

𝜕𝑥̅𝑖𝑒
𝑒∈D

𝜕𝑥̅𝑖𝑒
𝜕𝑥̃𝑖𝑒

𝜕𝑥̃𝑖𝑒
𝜕𝑥𝑖𝑗

  (18) 

In order for the rectangular finite elements to be able to accurately model stress at 

curved edges, a gradient region of intermediate density must be left at the boundaries of 

the solid part of the design. To achieve this, 𝛽𝑖 is limited to a relatively small value, 

which preserves the smoothing effect of the density filter at the edges of the solid regions. 

Different values could be chosen for 𝑟𝑚𝑖𝑛
𝑖  and 𝛽𝑖, however for this work they are simply 

given the same values for each material: 𝑟𝑚𝑖𝑛
𝑖 = 𝑟𝑚𝑖𝑛 = 3 and 𝛽𝑖 = 𝛽 = 1.5𝑟𝑚𝑖𝑛. 

2.3. Material Property Interpolation Models 

The solid isotropic material with penalization (SIMP) scheme is commonly used for 

density-based topology optimization to make the design variables continuous and suitable 

for gradient-based optimization, however this model can experience issues in problems 

with design-dependent loads (Lee, James, & Martins, 2012) due to the derivative of the 

interpolation function approaching zero at low values of the design variables. The 

rational approximation of material properties (RAMP) (Stolpe & Svanberg, 2001) model 

provides a non-zero sensitivity at all values of the design variables which helps the 

optimizer add material density to void regions (Deaton & Grandhi, 2016) and change the 

material composition from pure material 1 to a mixture. In the thermoelastic inverse 

homogenization problem of this thesis, both the mechanical load vector and the thermal 
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load vector are design-dependent, so this characteristic of the RAMP interpolation is 

advantageous even without thermal considerations. 

The RAMP interpolation function for any material property 𝑃 is given by: 

𝜂𝑖
𝑃 =

𝑥𝑖

(1 + 𝑞𝑖
𝑃(1 − 𝑥𝑖))

 (19) 

Where 𝑥𝑖 is either the design variable 𝑥1 or 𝑥2, and 𝑞𝑖
𝑃 is the penalization factor chosen 

for the particular property and design variable. Material properties are then modeled in 

the form: 

𝑃 = 𝜂1
𝑃(𝑃1 + 𝜂2

𝑃(𝑃2 − 𝑃1)) (20) 

Where 𝑃1 and 𝑃2 are the properties of pure materials 1 and 2, 𝜂1
𝑃 is the interpolation 

function of the property on the density, and 𝜂2
𝑃is the interpolation on the material 

composition.  

For the interpolation with density for elastic modulus 𝐸, the penalty factor is chosen 

as 𝑞𝑖
𝑃 = 𝑞1

𝐸 = 8. For stiffness as a function of material composition, 𝑞2
𝐸  is set such that it 

satisfies the Hashin-Shtrikman bounds (Hashin & Shtrikman, 1963) (𝑞2
𝐸 = 0.333 for 

materials with 
𝐸1

𝐸2
= 1.5 and 𝜈 = 0.33) to penalize the mixture of materials while ensuring 

that it still has physically achievable properties where the filtering causes it to appear at 

material interfaces. Mixtures are penalized because there are currently no accurate 

material models for additively manufactured metal gradients, so it is preferable to simply 

avoid them as much as possible. The coefficient of thermal expansion 𝛼 is not affected by 

density since density should not affect how the material expands as temperature changes, 

so the interpolation is a constant value of one. The interpolation with respect to material 

mixture uses a concave down RAMP function by setting 𝑞2
𝛼 = −0.333. For the material 
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strength, or maximum allowable stress 𝜎𝑎, the function with respect to density is also a 

constant value of one. With respect to material composition, a concave up function with 

𝑞2
𝜎𝑎 = 0.333 is used. These interpolation functions used are summarized in Table 2.1. 

 

Table 2.1  

Material property interpolation functions. 

Property Symbol Interpolation Functions 

Elastic 

Modulus 
𝐸 𝜂1

𝐸 =
𝑥1

(1 + 8(1 − 𝑥1))
 𝜂2

𝐸 =
𝑥2

(1 + 0.333(1 − 𝑥2))
 

Coefficient 

of Thermal 

Expansion 

𝛼 𝜂1
𝛼 = 1 𝜂2

𝛼 =
𝑥2

(1 − 0.333(1 − 𝑥2))
 

Allowable 

Stress 
𝜎𝑎 𝜂1

𝜎𝑎 = 1 𝜂2
𝜎𝑎 =

𝑥2

(1 + 0.333(1 − 𝑥2))
 

 

2.4. Microstructure Thermoelastic Stress Analysis 

The stress in the microstructure is computed at the center of each element using the 

thermal stress equation: 

𝝈𝑒 = 𝑪𝑒
0𝜺𝑒 − 𝑪𝑒

0𝜶𝑒Δ𝑇 (21) 

Where 𝑪𝑒
0 is the solid element stiffness matrix of the element and Δ𝑇 is a uniform change 

in temperature. The local strain field 𝜺 consists of an applied average macroscopic strain 

𝜺̅, the fluctuating part of the mechanical strain 𝜺∗, and the thermal strain 𝜺𝛼. Since the 

fluctuating strains 𝜺∗ are calculated from 𝝌 through Equation (5), which Equation (3) 

shows is actually the negative of the fluctuating displacement field, it is subtracted from 

𝜺̅. Substituting the full strain field with its constituents gives: 

𝝈𝑒 = 𝑪𝑒
0(𝜺̅ − 𝜺𝑒

∗ + 𝜺𝑒
𝛼) − 𝑪𝑒

0𝜶𝑒Δ𝑇 (22) 
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Rather than running a fifth independent finite element analysis with the prescribed 

loads to find 𝜺𝑒
∗  and 𝜺𝑒

𝛼, the results of the four finite element problems with unit strain 

cases that were used to compute the homogenized properties 𝑪𝐻 and 𝜷𝐻 can be scaled to 

the prescribed load magnitudes. The fluctuating mechanical strain subtracted from the 

macroscopic strain can be rewritten in terms of the fluctuating mechanical strains caused 

by the three unit macroscopic strains, and the thermal strain field caused by a unit 

temperature change can be scaled to the strain field for the prescribed temperature 

change:  

𝝈𝑒 = 𝑪𝑒
0((𝑰 − 𝜺𝑒

∗)𝜺̅ + 𝜺𝑒
𝛼Δ𝑇) − 𝑪𝑒

0𝜶𝑒Δ𝑇 (23) 

Where 𝑰 is a 3x3 identity matrix representing the three unit macroscopic strain cases, 𝜺𝑒
∗  

now is a 3x3 matrix where each column is the fluctuating strain corresponding to the 

cases in 𝑰, where the three fluctuating displacement fields were previously obtained from 

the homogenization finite element analyses. 

Writing the strains in (23) in terms of the previously obtained displacement fields 

leads to the final equation for thermoelastic stress in the microstructure: 

𝝈𝑒 = 𝑪𝑒
0(𝑰 − 𝑩𝑒𝝌𝑒)𝜺̅ + 𝑪𝑒

0(𝑩𝑒𝚪𝑒 − 𝜶𝑒)Δ𝑇 (24) 

where 𝝌𝑒 contains three element displacement vectors and 𝚪𝑒 contains one.  

The macroscopic strain 𝜺̅ is analogous to displacements applied to the boundaries if 

its values are set to a constant. To apply a macroscopic stress 𝝈̅, analogous to distributed 

forces on the boundaries, the macroscopic strain corresponding to that stress is calculated 

using the relationship: 

𝜺̅ = 𝑺𝐻𝝈̅ + 𝜶𝐻𝛥𝑇 (25) 
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Here 𝑺𝐻 is the homogenized compliance matrix which is the inverse of the homogenized 

stiffness matrix 𝑪𝐻. 

Equation (24) is verified later in Section 3.1 by comparing to a macroscopic stress 

analysis in the commercial finite element analysis software ANSYS. 

2.5. Failure Constraints 

The failure constraint functions are based on the von Mises failure criterion: 

𝜎𝑒
𝑣𝑀 = √𝜎1𝑒

2 + 𝜎2𝑒
2 − 𝜎1𝑒𝜎2𝑒 + 3𝜏12𝑒

2  (26) 

Where 𝜎1, 𝜎2, and 𝜎12 are the horizontal, vertical, and shear components of stress 

calculated using Equation (24). This stress is relaxed using another RAMP interpolation 

function on density which resolves the stress singularity issue: 

𝜂𝐹 =
𝑥1

1 + 𝑞𝐹(1 − 𝑥1)
 (27) 

𝜎𝑒
𝑣𝑀𝑟 = 𝜂𝑒

𝐹𝜎𝑒
𝑣𝑀 (28) 

The penalty parameter is selected as 𝑞𝐹 = −0.5 to obtain a concave down interpolation 

that penalizes intermediate densities. Next, the failure index is obtained. This is the ratio 

of the relaxed stress to the allowable stress, where a value greater than one indicates that 

failure has occurred: 

𝐹𝑒 =
𝜎𝑒
𝑣𝑀𝑟

𝜎𝑒
𝑎  (29) 

With multiple materials, different strengths in each material can cause the weaker 

material to come closer to failure despite having lower stress than the stronger material.  

To address the issue of computational cost associated with the number of constraints 

while preserving the local nature of stress, a multiple-group stress constraint method is 

adopted. The sorting method used is the stress level technique of Holmberg et. al (2013) 
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which places elements into equally sized groups based on failure index level, i.e. a certain 

number 𝑛 of the elements closest to failure are placed in the first group, the next 𝑛 

elements closest to failure are placed into the second group, and so on until all elements 

are grouped. The last group may have a different number of elements.  

After the elements are sorted, their failure indexes are aggregated into a single value 

for each group using a p-norm function: 

𝐹𝑚
𝑃𝑁 = [

∑ (𝐹𝑒)
𝑝𝑁𝑚

𝑒=1

𝑁𝑚
]

1
𝑝

 (30) 

Where 𝑚 is the group number, 𝑁𝑚 is the number of elements in the group, and 𝑝 is a 

parameter that affects how close 𝐹𝑚
𝑃𝑁 is to the maximum 𝐹𝑒 in the group. The larger 𝑝 is, 

the closer they will be, but convergence issues will occur if it is too high. The value used 

in this work is 𝑝 = 10. Since the p-norm function does not exactly capture the maximum 

failure indexes in each group, using more groups can reduce the difference between the 

averages and the maximum and lead to better control on the peak failure index. An 

adaptive scale factor is then used to bring the p-norm values even closer to the highest 

values (Deaton & Grandhi, 2016; Le et al., 2010) by using information from the previous 

iteration (𝑘 − 1): 

𝑠𝑚
𝑘 =

max(𝐹𝑒)
𝑘−1

(𝐹𝑚𝑃𝑁)𝑘−1
 (31) 

With each of the failure index groups aggregated by the p-norm function and adjusted 

with the adaptive scale factors, the constraint functions are defined as follows: 

𝑔𝑚(𝒙1, 𝒙2) = 𝑠𝑚
𝑘 (𝐹𝑚

𝑃𝑁)𝑘 − 1 < 0 (32) 

From numerical experiments, it was found that defining groups in only the first 

iteration and maintaining this grouping for the remainder of the optimization gave the 
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best convergence characteristics. A quantity of three groups was used as it provided a 

good balance between computational cost and instability caused by larger adaptive scale 

factors. 

2.6. Load Uncertainty 

Since periodic microstructures are typically used to construct macrostructures that 

experience many different internal stress states, constraining microstructure stress for a 

single load case will not always make a cell robust enough for these applications. For 

applications such as oriented microstructures (Allaire et al., 2019; Geoffroy-Donders et 

al., 2020) or multi-scale optimization (Guo, Zhao, Zhang, Yan, & Sun, 2015), loads will 

be known but there may be a certain amount of uncertainty in magnitude and direction. 

For example, an orthotropic microstructure oriented to the principal stress directions 

should never experience pure shear, however some variation of the nominal macroscopic 

load will also cause variation in the internal stress states of the macrostructure. In these 

cases with a limited number of stress states, Equation (24) can be evaluated multiple 

times using different values for 𝜺̅ and Δ𝑇 to represent the possible variations. Failure 

constraints can then be enforced on the stress distribution for each load case, improving 

the microstructure’s stress tolerance for only the relevant cases.  

Alternatively, if the possible loading conditions for the microstructure include many 

different macroscopic stress states, worst-case mechanical stresses can be calculated 

efficiently using an eigenvalue problem as first shown by Panetta et al. (2017) for the 

shape optimization of single material microstructures. In this method the von Mises stress 

at an element is expressed in matrix form as: 

𝜎𝑒
𝑣𝑀 = √𝝈̅𝑨𝑒𝑇𝑽𝑨𝑒𝝈̅ (33) 
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Where: 

𝑽 = [
1 −1/2 0

−1/2 1 0
0 0 3

] (34) 

and 𝑨𝑒 is the amplification matrix which maps the macroscopic stress 𝝈̅ to the 

microscopic stress 𝝈𝑒 at the point: 

𝑨𝑒 = 𝑪𝑒
0(𝑰 − 𝜺𝑒

∗)𝑺𝐻 (35) 

The maximum eigenvalue of the matrix 𝑨𝑒
𝑇𝑽𝑨𝑒 is the worst-case von Mises stress at the 

element, and the corresponding eigenvector represents the unit macroscopic stress vector 

responsible for that stress. Performing this eigenvalue analysis for each element leads to a 

different worst-case macroscopic stress vector and a different worst-case microscopic von 

Mises stress at each element: 

𝑠𝑒
𝑣𝑀 = √𝝈̅𝑒𝑨𝑒𝑇𝑽𝑨𝑒𝝈̅𝑒 (36) 

Similar to the von Mises stress calculated using Equation (24), the worst-case von 

Mises stress distribution is relaxed, divided by the allowable stress to obtain worst-case 

failure indexes, and aggregated with a p-norm function: 

𝑠𝑒
𝑣𝑀𝑟 = 𝜂𝑒

𝐹𝑠𝑒
𝑣𝑀 (37) 

𝐹𝑒
𝑠 =

𝑠𝑒
𝑣𝑀𝑟

𝜎𝑒
𝑎  (38) 

𝐹𝑠
𝑃𝑁 = [

∑ (𝐹𝑒
𝑠)𝑝𝑁

𝑒=1

𝑁
]

1
𝑝

 (39) 

The worst-case stress is minimized as an objective function, rather than used as 

constraints, so only one group without a scale factor is used. In this work the p-norm 

factor is set to 𝑝 = 3 when minimizing worst-case stress. 
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2.7. Manufacturing Uncertainty 

Robustness with respect to uniform manufacturing uncertainties is implemented using 

a multi-material extension of the methods presented by Sigmund (2009) and Silva et al. 

(2019), which was also applied to single-material microstructures by Andreassen et al. 

(2014). The value of the parameter 𝜂 in the threshold projection filter is adjusted to 

higher and lower values 𝜂𝐸 = 0.75 and 𝜂𝐷 = 0.25 to generate uniformly “eroded” and 

“dilated” versions of the density and composition variables: 

𝑥̅𝑖𝑒
𝐸 =

tanh(𝛽𝜂𝐸) + tanh(𝛽(𝑥̃𝑖𝑒 − 𝜂
𝐸))

tanh(𝛽𝜂𝐸) + tanh(𝛽(1 − 𝜂𝐸))
 

𝑥̅𝑖𝑒
𝐷 =

tanh(𝛽𝜂𝐷) + tanh(𝛽(𝑥̃𝑖𝑒 − 𝜂
𝐷))

tanh(𝛽𝜂𝐷) + tanh(𝛽(1 − 𝜂𝐷))
 

(40) 

Including the original physical variables created using 𝜂 = 0.5, there are now three 

versions of each creating a total of nine different possible versions of the design. The 

design constructed from the original variables 𝒙̅1 and 𝒙̅2 represents the “blueprint”, and 

the eight others represent the possible variations that might occur with manufacturing 

processes that uniformly over-build, under-build, over-mix, or under-mix the blueprint 

design and its material composition.  

With the eight additional designs representing uncertainty in manufacturing, new 

objective and constraint functions of the eroded and dilated physical variables can be 

defined that will lead to a more robust blueprint design. When taking the derivatives of 

these functions, the chain rule is used with the corresponding projection filter: 
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𝜕𝑓 (𝒙̅𝑖
𝐸(𝒙𝑖))

𝜕𝑥𝑖𝑗
=∑

𝜕𝑓

𝜕𝑥̅𝑖𝑒
𝐸

𝑒∈D

𝜕𝑥̅𝑖𝑒
𝐸

𝜕𝑥̃𝑖𝑒

𝜕𝑥̃𝑖𝑒
𝜕𝑥𝑖𝑗

  

𝜕𝑓 (𝒙̅𝑖
𝐷(𝒙𝑖))

𝜕𝑥𝑖𝑗
=∑

𝜕𝑓

𝜕𝑥̅𝑖𝑒
𝐷

𝑒∈D

𝜕𝑥̅𝑖𝑒
𝐷

𝜕𝑥̃𝑖𝑒

𝜕𝑥̃𝑖𝑒
𝜕𝑥𝑖𝑗

 

(41) 

2.8. Sensitivity Analysis 

GCMMA requires the first derivatives with respect to the design variables 𝒙1 and 𝒙2 

of the objective and constraint functions. These functions can include the homogenized 

stiffness matrix, homogenized thermal expansion, homogenized thermal stress 

coefficients, and material volume fractions, whose sensitivities have been shown 

previously (Bendsoe & Sigmund, 2013; Sigmund & Torquato, 1997). 

The failure constraint sensitivities are found by taking the derivative of the p-norm 

stress function with respect to the density variables 𝒙̅1 and the material composition 

variables 𝒙2 (Deaton & Grandhi, 2016; Holmberg et al., 2013). The chain rule is utilized 

while carrying through the summation sign, which is dropped for the terms that are 

nonzero for only one element. The adjoint method is used for the terms containing 

𝜕𝝌/𝜕𝑥̅𝑖𝑗 and 𝜕𝚪/𝜕𝑥̅𝑖𝑗, where the loads 𝜺̅ and Δ𝑇 can be factored out. The same adjoint 

vector is found for each of these terms, so the adjoint vector is also factored out.  

Applying these steps, the following sensitivities are obtained: 

𝜕𝐹𝑚
𝑃𝑁

𝜕𝑥̅1𝑗
=
𝜕𝐹𝑚

𝑃𝑁

𝜕𝐹𝑒

𝜕𝜂𝑒
𝐹

𝜕𝑥̅1𝑗

𝜎𝑒
𝑣𝑀

𝜎𝑒
𝑎 + ∑

𝜕𝐹𝑚
𝑃𝑁

𝜕𝐹𝑒

𝑁𝑚

𝑒=1

𝜂𝑒
𝐹

𝜎𝑒
𝑎

𝜕𝜎𝑒
𝑣𝑀

𝜕𝝈𝑒
𝑪𝑒
0(𝑰 − 𝑩𝑒𝝌e)

𝜕𝜺̅

𝜕𝑥̅1𝑗

+ 𝝀𝜎
𝑇 ((

𝜕𝑭𝑡ℎ

𝜕𝑥̅1𝑗
−
𝜕𝑲

𝜕𝑥̅1𝑗
𝚪)Δ𝑇 − (

𝜕𝑭𝑚

𝜕𝑥̅1𝑗
−
𝜕𝑲

𝜕𝑥̅1𝑗
𝝌) 𝜺̅) 

(42) 
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𝜕𝐹𝑚
𝑃𝑁

𝜕𝑥̅2𝑗
=
𝜕𝐹𝑚

𝑃𝑁

𝜕𝐹𝑒

𝜂𝑒
𝐹

𝜎𝑒
𝑎

𝜕𝜎𝑒
𝑣𝑀

𝜕𝝈𝑒

𝜕𝑪𝑒
0

𝜕𝑥̅2𝑗
((𝑰 − 𝑩𝑒𝝌𝑒)𝜺̅ + (𝑩𝑒𝚪𝑒 − 𝜶𝑒)Δ𝑇)

−
𝜕𝐹𝑚

𝑃𝑁

𝜕𝐹𝑒

𝜂𝑒
𝐹

𝜎𝑒
𝑎

𝜕𝜎𝑒
𝑣𝑀

𝜕𝝈𝑒
𝑪𝑒
0
𝜕𝜶𝑒
𝜕𝑥̅2𝑗

Δ𝑇 −
𝜕𝐹𝑚

𝑃𝑁

𝜕𝐹𝑒

𝜎𝑒
𝑣𝑀𝑟

(𝜎𝑒
𝑎)2

𝜕𝜎𝑒
𝑎

𝜕𝑥̅2𝑗

+ ∑
𝜕𝐹𝑚

𝑃𝑁

𝜕𝐹𝑒

𝑁𝑚

𝑒=1

𝜂𝑒
𝐹

𝜎𝑒
𝑎

𝜕𝜎𝑒
𝑣𝑀

𝜕𝝈𝑒
𝑪𝑒
0(𝑰 − 𝑩𝑒𝝌e)

𝜕𝜺̅

𝜕𝑥̅2𝑗

+ 𝝀𝜎
𝑇 ((

𝜕𝑭𝑡ℎ

𝜕𝑥̅2𝑗
−
𝜕𝑲

𝜕𝑥̅2𝑗
𝚪)Δ𝑇 − (

𝜕𝑭𝑚

𝜕𝑥̅2𝑗
−
𝜕𝑲

𝜕𝑥̅2𝑗
𝝌) 𝜺̅) 

(43) 

Where: 

𝜕𝐹𝑚
𝑃𝑁

𝜕𝐹𝑒
=
(𝐹𝑚

𝑃𝑁)1−𝑝

𝑁𝑚
(𝐹𝑒)

𝑝−1 

𝜕𝜺̅

𝜕𝑥̅𝑖𝑗
=
𝜕𝑺𝐻

𝜕𝑥̅𝑖𝑗
𝝈̅ +

𝜕𝜶𝐻

𝜕𝑥̅𝑖𝑗
Δ𝑇 

𝜕𝑺𝐻

𝜕𝑥̅𝑖𝑗
= −𝑺𝐻

𝜕𝑪𝐻

𝜕𝑥̅𝑖𝑗
𝑺𝐻 

(44) 

The adjoint vector 𝝀𝜎 is calculated by assembling and solving the adjoint problem, once 

for each group, using: 

𝝀𝜎𝑲 = [∑
𝜕𝐹𝑚

𝑃𝑁

𝜕𝐹𝑒

𝑁𝑚

𝑒=1

𝜂𝑒
𝐹

𝜎𝑒
𝑎

𝜕𝜎𝑒
𝑣𝑀

𝜕𝝈𝑒
𝑪𝑒
0𝑩𝑒]

𝑇

 (45) 

The sensitivity of the worst-case stress p-norm function is similar up until the point 

where the derivative of the worst-case stress is required: 

𝜕𝐹𝑠
𝑃𝑁

𝜕𝑥̅𝑖𝑗
= 
𝜕𝐹𝑠

𝑃𝑁

𝜕𝐹𝑒
𝑠

𝑠𝑒
𝑣𝑀

𝜎𝑒
𝑎

𝜕𝜂𝑒
𝐹

𝜕𝑥̅𝑖𝑗
−
𝜕𝐹𝑠

𝑃𝑁

𝜕𝐹𝑒
𝑠

𝑠𝑒
𝑣𝑀𝑟

(𝜎𝑒
𝑎)2

𝜕𝜎𝑒
𝑎

𝜕𝑥̅𝑖𝑗
+∑

𝜕𝐹𝑠
𝑃𝑁

𝜕𝐹𝑒
𝑠

𝜂𝑒
𝐹

𝜎𝑒
𝑎

𝜕𝑠𝑒
𝑣𝑀

𝜕𝑥̅𝑖𝑗

𝑁

𝑒=1

 (46) 
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Since the macroscopic stress is not the same for every element, the chain rule is used to 

write the equation in a form that allows for the use of the adjoint method on the term 

containing 𝝌: 

𝜕𝐹𝑠
𝑃𝑁

𝜕𝑥̅𝑖𝑗
= 
𝜕𝐹𝑠

𝑃𝑁

𝜕𝐹𝑒
𝑠

𝑠𝑒
𝑣𝑀

𝜎𝑒
𝑎

𝜕𝜂𝑒
𝐹

𝜕𝑥̅𝑖𝑗
−
𝜕𝐹𝑠

𝑃𝑁

𝜕𝐹𝑒
𝑠

𝑠𝑒
𝑣𝑀𝑟

(𝜎𝑒
𝑎)2

𝜕𝜎𝑒
𝑎

𝜕𝑥̅𝑖𝑗

+∑
𝜕𝐹𝑠

𝑃𝑁

𝜕𝐹𝑒
𝑠

𝜂𝑒
𝐹

𝜎𝑒
𝑎 (
𝜕𝑠𝑒

𝑣𝑀

𝜕𝑪𝑒
0 ∶

𝜕𝑪𝑒
0

𝜕𝑥̅𝑖𝑗
+
𝜕𝑠𝑒

𝑣𝑀

𝜕𝝌
∶
𝜕𝝌

𝜕𝑥̅𝑖𝑗
+
𝜕𝑠𝑒

𝑣𝑀

𝜕𝑺𝐻
∶
𝜕𝑺𝐻

𝜕𝑥̅𝑖𝑗
)

𝑁

𝑒=1

 

(47) 

Where: 

𝜕𝑠𝑒
𝑣𝑀

𝜕𝑪𝑒
0 =

𝝈̅𝑒
𝑇𝑨𝑒

𝑇𝑽

√𝝈̅𝑒𝑇𝑨𝑒𝑇𝑽𝑨𝑒𝝈̅𝑒
⊗ (𝑰 − 𝑩𝑒𝝌𝑒)𝑺

𝐻𝝈̅𝑒 

𝜕𝑠𝑒
𝑣𝑀

𝜕𝝌𝑒
= −

𝝈̅𝑒
𝑇𝑨𝑒

𝑇𝑽𝑪𝑒
0𝑩𝑒

√𝝈̅𝑒𝑨𝑒𝑇𝑽𝑨𝑒𝝈̅𝑒
⊗𝑺𝐻𝝈̅𝑒 

𝜕𝑠𝑒
𝑣𝑀

𝜕𝑺𝐻
=
𝝈̅𝑒
𝑇𝑨𝑒

𝑇𝑽𝑪𝑒
0(𝑰 − 𝑩𝑒𝝌𝑒)

√𝝈̅𝑒𝑇𝑨𝑒𝑇𝑽𝑨𝑒𝝈̅𝑒
⊗ 𝝈̅𝑒 

(48) 

Here the macroscopic stress was treated as a constant since this is a derivative of an 

eigenvalue with unit eigenvectors.  

Substituting (48) into (47), using the adjoint method, and taking 𝑖 = 1 for the density 

variables and 𝑖 = 2 for the composition variables leads to the final sensitivity equations 

for the worst-case stress p-norm function: 

𝜕𝐹𝑠
𝑃𝑁

𝜕𝑥̅1𝑗
= 
𝜕𝐹𝑠

𝑃𝑁

𝜕𝐹𝑒
𝑠

𝑠𝑒
𝑣𝑀

𝜎𝑒
𝑎

𝜕𝜂𝑒
𝐹

𝜕𝑥̅1𝑗
+∑

𝜕𝐹𝑠
𝑃𝑁

𝜕𝐹𝑒
𝑠

𝜂𝑒
𝐹

𝜎𝑒
𝑎

𝝈̅𝑒
𝑇𝑨𝑒

𝑇𝑽𝑪𝑒
0(𝑰 − 𝑩𝑒𝝌𝑒)

√𝝈̅𝑒
𝑇𝑨𝑒

𝑇𝑽𝑨𝑒𝝈̅𝑒
⊗ 𝝈̅𝑒 ∶

𝜕𝑺𝐻

𝜕𝑥̅1𝑗

𝑁

𝑒=1

− 𝝀𝑠 ∶ (
𝜕𝑭𝑚

𝜕𝑥̅1𝑗
−
𝜕𝑲

𝜕𝑥̅1𝑗
𝝌𝑒) 

(49) 
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𝜕𝐹𝑠
𝑃𝑁

𝜕𝑥̅2𝑗
= −

𝜕𝐹𝑠
𝑃𝑁

𝜕𝐹𝑒
𝑠

𝑠𝑒
𝑣𝑀𝑟

(𝜎𝑒
𝑎)2

𝜕𝜎𝑒
𝑎

𝜕𝑥̅2𝑗
+
𝜕𝐹𝑠

𝑃𝑁

𝜕𝐹𝑒
𝑠

𝜂𝑒
𝐹

𝜎𝑒
𝑎

𝝈̅𝑒
𝑇𝑨𝑒

𝑇𝑽

√𝝈̅𝑒𝑇𝑨𝑒𝑇𝑽𝑨𝑒𝝈̅𝑒
⊗ (𝑰 − 𝑩𝑒𝝌𝑒)𝑺

𝐻𝝈̅𝑒

∶
𝜕𝑪𝑒

0

𝜕𝑥̅2𝑗
+∑

𝜕𝐹𝑠
𝑃𝑁

𝜕𝐹𝑒
𝑠

𝜂𝑒
𝐹

𝜎𝑒
𝑎

𝝈̅𝑒
𝑇𝑨𝑒

𝑇𝑽𝑪𝑒
0(𝑰 − 𝑩𝑒𝝌𝑒)

√𝝈̅𝑒𝑇𝑨𝑒𝑇𝑽𝑨𝑒𝝈̅𝑒
⊗ 𝝈̅𝑒 ∶

𝜕𝑺𝐻

𝜕𝑥̅2𝑗

𝑁

𝑒=1

− 𝝀𝑠 ∶ (
𝜕𝑭𝑚

𝜕𝑥̅2𝑗
−
𝜕𝑲

𝜕𝑥̅2𝑗
𝝌𝑒) 

(50) 

𝝀𝑠𝑲 = [∑
𝜕𝐹𝑠

𝑃𝑁

𝜕𝐹𝑒
𝑠

𝜂𝑒
𝐹

𝜎𝑒
𝑎

𝝈̅𝑒
𝑇𝑨𝑒

𝑇𝑽𝑪𝑒
0𝑩𝑒

√𝝈̅𝑒𝑨𝑒
𝑇𝑽𝑨𝑒𝝈̅𝑒

⊗𝑺𝐻𝝈̅𝑒

𝑁

𝑒=1

]

𝑇

 (51) 
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3. Metamaterial Topology Optimization: Numerical Examples 

In this section, the framework is used to design several microstructure test cases made 

from additively manufactured stainless steel 304L and Invar 36 (Hofmann, Roberts, et al., 

2014; Z. Wang, Palmer, & Beese, 2016). The properties used for the examples are shown 

in Table 3.1. 

 

Table 3.1 

Material properties of stainless steel 304L and Invar 36. 

Properties Stainless Steel 304L Invar 36 

Elastic Modulus, 𝐸 (𝐺𝑃𝑎) 240 160 

Poisson’s Ratio, 𝜈 0.33 0.33 

Coefficient of Thermal Expansion, 𝛼 (10−6/°𝐶) 15 1.5 

Allowable Stress, 𝜎𝑎 (𝑀𝑃𝑎)  400 250 

(Hofmann, Roberts, et al., 2014; Z. Wang et al., 2016) 

 

The multi-material microstructure topology optimization problem is highly non-

convex, with many different possible material layouts that can achieve the desired 

macroscopic properties. This makes the algorithm very susceptible to finding local 

minimums. Several strategies for dealing with this local minimum problem were 

suggested by Sigmund and Torquato (1997), and similar ones are also used here to help 

find better local minimums which are hopefully global optimums (although this cannot be 

guaranteed). Lines of geometric symmetry are enforced to reduce the space of possible 

designs and aid in achieving the desired symmetry in material properties, and the density 

filter is used to smooth out local minimums at the beginning of the optimizations by 

applying it twice to the starting design in the first iteration. 
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Another issue is that even if a reasonable local minimum is found there may still be 

others that give similar performance, making it difficult to evaluate how the stress-based 

formulations influence the designs. To avoid this problem, the optimizations are first 

performed without any stress-based functions to find fully optimized stiffness-based 

designs. The stiffness-based optimizations are ran repeatedly with different initial 

conditions, and the best results are then chosen as the starting points for all subsequent 

stress-based optimizations. Starting with an optimized stiffness-based design ensures that 

any further changes are due to the effects of stress or uncertainty considerations, and not 

because the algorithm has simply found a different local minimum.  

Each of the following examples are two dimensional square cells of unit length, 

width, and thickness. The cells are meshed with a grid of 100x100 plane stress elements. 

The optimizations were considered converged when the change in each design variable 

was less than 0.001. Invar 36 and stainless steel 304L are represented in the design plots 

by red and blue colors, respectively, with mixtures shown by the gradient between the 

two colors which is demonstrated in Figure 3.1. Density is represented by the opacity of 

the elements, making void space appear white. 

 

 

Figure 3.1  Color representation of the composition variable 𝒙2 for plots of designs made 

from Invar 36, stainless steel 304L, and their mixtures. 
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3.1. Thermoelastic Stress Analysis Verification 

To verify that Equation (24) is accurate, a macroscopic finite element model 

consisting of a grid of several multi-material square cells with square holes was analyzed 

in ANSYS as a standard mechanics approach. Displacements were applied to the 

boundaries equivalent to a macroscopic strain of 𝜺̅ = [0 −0.01 0]𝑇. The strain 

components 𝜀1̅ = 0 and 𝜀1̅2 = 0 were replicated by fixing the horizontal displacements of 

the left and right boundaries, and 𝜀2̅ = −0.01 was applied by fixing the vertical 

displacement of the bottom boundary and by applying a compressive displacement of one 

hundredth of the macrostructure’s total height to the top boundary. A uniform thermal 

condition of Δ𝑇 = 100℃ was also applied to the entire macrostructure. The same 

conditions were evaluated using the homogenization-based thermal stress Equation (24). 

The practically identical results are shown in Figure 3.2. 

 

   
(a) (b) (c) 

Figure 3.2  Thermal and mechanical stress computed using the presented 

homogenization-based formulation compared to a standard mechanics analysis in 

ANSYS. (a) The cell geometry and composition; (b) the microscopic stress computed 

using the homogenization-based formula; and (c) the stress computed using ANSYS 

showing a single cell at the center of the macrostructure. 
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3.2. Maximum Orthotropic Stiffness Single-Material Microstructure 

The first optimization example is a typical orthotropic lattice structure commonly 

used in other studies on periodic microstructures (Coelho et al., 2019; Collet et al., 2018; 

Sigmund, 2000). The stiffness-based design is found using the following optimization 

formulation: 

(a) Maximization of stiffness 𝐶11
𝐻 + 𝐶22

𝐻  subjected to a volume fraction of 60%. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒:  𝐶11
𝐻 + 𝐶22

𝐻  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜: 𝑉𝑓 = 0.6 
(52) 

Without any requirements imposed on thermal expansion, the optimization converges to 

pure steel and achieves a homogenized stiffness of 𝐶11
𝐻 = 95.6 𝐺𝑃𝑎. The design is 

analyzed by computing the homogenized Young’s modulus in all directions, performing a 

stress analysis using a macroscopic stress state of 𝝈̅ = [−114 −114 0]𝑇 𝑀𝑃𝑎, and 

performing a worst-case stress analysis. The optimized design, homogenized Young’s 

modulus polar plots, and stress analysis results are shown in Figure 3.3, row (a). The 

maximum microscopic stress is 7% higher than the steel’s allowable stress, which occurs 

at the sharpest points of the hole’s corners. For the worst-case microscopic stress 

distribution most stress eigenvectors are close to a pure shear state, with the maximum 

corresponding to the eigenvector 𝝈̅𝑒 = [0.11 0.11 0.99]𝑇 𝑃𝑎. 

Next, failure constraints are included in the formulation: 

(b) Maximization of stiffness 𝐶11
𝐻 + 𝐶22

𝐻  subjected to a volume fraction of 60% and the 

failure constraints using the applied load of 𝝈̅ = [−114 −114 0]𝑇 𝑀𝑃𝑎. 

Row (b) of Figure 3.3 shows that the stress constraints bring the microscopic stress down 

to the same value as the allowable stress by slightly increasing the radius of the corners at 
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a small cost to stiffness, a result similar to that achieved by Collet et al. (2018). The 

maximum worst-case stress is also reduced as a side effect.  

 

 (i) (ii) (iii) (iv) 

(a) 
𝐶11
𝐻 = 95.6 𝐺𝑃𝑎 

    

(b) 
𝐶11
𝐻 = 95.1 𝐺𝑃𝑎 

    

(c) 
𝐶11
𝐻 = 95.1 𝐺𝑃𝑎 

    

Figure 3.3  Results of optimization problems (a), (b), and (c). Density and composition 

shown in column (i); polar plots of homogenized Young’s modulus 𝐸𝐻 (GPa) shown in 

column (ii); von Mises failure index 𝐹 shown in column (iii); and worst-case von Mises 

failure index 𝐹𝑠 (× 10−8) shown in column (iv).  

 

The third formulation for the single-material orthotropic microstructure is a 

minimization of the worst-case stresses: 

(c) Minimization of 𝐹𝑠
𝑃𝑁 subjected to a volume fraction of 60% and lower bounds on 

the stiffness 𝐶11
𝐻  and 𝐶22

𝐻  equal to that of design (b), 𝐶11
𝐻 = 95.1 𝐺𝑃𝑎. 

Minimizing the worst-case stress increases the shear strength of the cell by creating a 

more circular shape and a stiffness polar plot that is slightly closer to isotropic. The 

maximum worst-case stress is reduced by 23% compared to design (a), however this is at 

the cost of increasing the maximum stress from the hydrostatic load to 8% higher than the 
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allowable. This is due to not including a failure constraint for the specific load case. 

Consequently, this shows that worst-case stress minimization may not strengthen the cell 

for all load cases simultaneously. If it is known that the microstructure will never 

experience the worst-case states, it will be better to optimize for a single load case, or a 

few load cases, using Equation (24) and failure constraint functions (32). Otherwise, 

worst-case stress minimization can make a more robust structure since the maximum 

worst-case stresses are larger than the maximum stresses of other load cases. 

3.3. Maximum Isotropic Stiffness, Zero Thermal Expansion Microstructure 

The second example is a thermoelastic metamaterial that will not expand or shrink 

when its temperature changes. Special properties such as this are achievable by taking 

advantage of the mismatch in thermal expansion properties between steel and Invar. This 

mismatch also introduces thermal stresses which are induced by Δ𝑇. 

The stiffness-based design is generated using the following formulation: 

(d) Maximization of stiffness 𝐶11
𝐻 + 𝐶22

𝐻  subjected to a volume fraction of 50%, 

homogenized coefficients of thermal expansion of zero, and isotropic homogenized 

stiffness. Horizontal, vertical, and diagonal geometric symmetry is enforced.  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒:  𝐶11
𝐻 + 𝐶22

𝐻  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜:

{
  
 

  
 
𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦:𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙,  𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙, 𝑎𝑛𝑑 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙

𝑉𝑓 = 0.5

𝛼11
𝐻 < 0

𝛼22
𝐻 < 0

(𝐶11
𝐻 + 𝐶22

𝐻 − 2(𝐶12
𝐻 + 2𝐶33

𝐻 ))
2

(𝐶11
𝐻 + 𝐶22

𝐻 )2
+
(𝐶11

𝐻 − 𝐶22
𝐻 )2

(𝐶11
𝐻 + 𝐶22

𝐻 )2
< 0.001 

 
(53) 
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The best stiffness-based design found using formulation (d) is shown in row (d) of 

Figure 3.4. Not intuitively, it is mainly constructed from the lower stiffness material 

Invar. Small bars of steel function as thermal actuators, causing the Invar structure to 

contract inwards in such a way that its positive thermal expansion is cancelled out. 

  

 (i) (ii) (iii) (iv) 

(d) 
𝐶11
𝐻 = 19.8 𝐺𝑃𝑎 

    

(e) 
𝐶11
𝐻 = 16.7 𝐺𝑃𝑎 

    

(f) 
𝐶11
𝐻 = 16.7 𝐺𝑃𝑎 

    

(g) 
𝐶11
𝐻 = 17.7 𝐺𝑃𝑎 

    

Figure 3.4  Results of optimization problems (d), (e), (f), and (g). Density and 

composition shown in column (i); polar plots of homogenized Young’s modulus 𝐸𝐻 

(GPa) shown in column (ii); von Mises failure index 𝐹 shown in column (iii); and worst-

case von Mises failure index 𝐹𝑠 (× 10−8) shown in column (iv).  

 

Comparing design (d) (after thresholding intermediate densities to create a fully solid-

void design) with the bounds relating bulk modulus to thermal expansion derived by 

Gibianski and Torquato (1997), the bulk modulus is 60% of the theoretical maximum at 

the material volume fractions of 5% steel and 45% Invar. This is somewhat lower than 
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85% of the bound achieved by Sigmund and Torquato (1997) for a 25%-25% volume 

fraction microstructure, however the absolute bulk modulus of design (d) is 

approximately 35% higher after accounting for the difference in the constituent material 

stiffness ratio by using a weighted average. Computing the bounds for every possible 

volume fraction combination in Figure 3.5 shows that low volume fractions of steel and 

high volume fractions of Invar are indeed necessary to achieve optimal bulk modulus. 

Designs with bulk modulus closer to the bounds are likely possible by using a smaller 

filter radius and relaxing the geometric symmetry constraints. 

 

 

Figure 3.5  The upper bounds of bulk modulus (Pa) for zero thermal expansion isotropic 

microstructures of every possible volume fraction. The highest values occur for large 

volume fractions of Invar, the weaker of the two materials. 
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Stress analysis is performed on design (d) with a macroscopic stress of 𝝈̅ =

[−20 −20 0]𝑇 𝑀𝑃𝑎 and a temperature change of Δ𝑇 = 100 °𝐶, showing stress 

concentrations double the allowable stress in the thin Invar members in Figure 3.4. The 

worst-case stresses also show similar concentrations, with high failure index also present 

throughout more of the structure compared to the specific load case. The failure 

constraints are then added to the optimization formulation: 

(e) The same as problem (d) with failure constraints on the applied loads of 𝝈̅ =

[−20 −20 0]𝑇 𝑀𝑃𝑎 and Δ𝑇 = 100 °𝐶. 

The results of optimization formulation (e) are shown in row (e) of Figure 3.4. Activating 

the stress constraints here brings the maximum stress down to the allowable stress at a 

cost of decreasing the stiffness by 16%. A hole appears in the center where previously 

there was low stress, and this material is distributed elsewhere to reinforce more highly 

stressed areas while satisfying the constraint on volume (𝑉𝑓 = 0.5). Small spots of high 

strength steel appear where the stress concentrations existed in design (d). The design is 

also more evenly stressed for the chosen load case, however the maximum worst-case 

stress (corresponding to 𝝈̅𝑒 = [−0.19 −0.01 −0.98]𝑇 𝑃𝑎) increases. Since this is an 

isotropic microstructure, it would be advantageous to make use of its robust stiffness by 

subjecting it to loads in any direction. Therefore, a worst-case stress minimization for 

robust strength is probably the best choice of stress-based methods:  

(f) Minimization of 𝐹𝑠
𝑃𝑁 subjected to a volume fraction of 50%, homogenized 

coefficients of thermal expansion of zero, isotropic homogenized stiffness, and a 

lower bound on stiffness equal to the result of problem (e). Horizontal, vertical, and 

diagonal geometric symmetry is enforced. 
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The worst-case stress minimization of problem (f), shown in row (f) of Figure 3.4, 

results in a cell without a central hole, several more areas with reinforcing steel, thicker 

thin members at the corners, and an overall smoother geometry. The maximum worst-

case stress is reduced by 12% and its overall distribution is much more even. The thermal 

expansion is zero, however the newly introduced reinforcing steel is only present as thin 

edges and small spots. These would be extremely difficult to manufacture accurately for 

small cell sizes, and given that the steel controls the macroscopic thermal expansion, any 

inaccuracy would likely ruin the zero thermal expansion property. To investigate this, the 

manufacturing uncertainty method of Section 2.7 is applied to design (f) and shown in 

Figure 3.6 with the uncertain designs’ thermal expansions and worst-case stress 

distributions. The thermal expansion reduces to as much as −0.6𝛼𝐼𝑛𝑣𝑎𝑟 for the design 

uncertainty of eroded density and dilated composition, and increases up to 2.1𝛼𝐼𝑛𝑣𝑎𝑟 for 

the dilated density and eroded composition uncertainty. The eroded density uncertainties 

also have significantly increased worst-case stress due to the thinner geometry.  

To control the thermal expansion and stress when manufacturing uncertainty is 

present, the following formulation is used: 

(g) Minimization of the sum of blueprint and manufacturing uncertainty design worst-

case stress functions 𝐹𝑠
𝑃𝑁 subjected to the same constraints as problem (f), and also 

subjected to thermal expansion constraints −0.35 <
𝛼𝐻

𝛼𝐼𝑛𝑣𝑎𝑟
< 0.35 on each of the 

eight manufacturing uncertainty designs. 

The resulting design, shown in row (g) of Figure 3.4, is less complex than design (f), 

with fewer spots of reinforcing steel introduced due to the robust thermal expansion 

constraints. Instead of by adding steel to the mixture, the stress is reduced by rounding 
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out corners and increasing the thickness of thin Invar members. The thermal expansions 

became the limiting constraints, and the stiffness lower bound was never reached at the 

cost of higher worst-case stress compared to design (f). In the end a blueprint design is 

generated that is more robust to stress and is still likely to have a thermal expansion close 

to zero after inevitable manufacturing errors occur. The fourth and fifth columns of 

Figure 3.6 show the manufacturing uncertainty analysis of design (g), where it can be 

seen how the thermal expansions of the designs with eroded composition are much less 

affected by over-built steel features. However, in comparison to design (f), more severe 

stress concentrations are present as a tradeoff. 

The resulting improvement to manufacturability in exchange for higher stresses 

demonstrates the benefits of reduced manufacturing uncertainty. With more accurate 

methods of fabrication, higher performing optimal structures are possible by taking 

advantage of finer features such as the spots of reinforcing steel on stress concentrating 

areas in design (f). However, multi-material additive manufacturing technologies using 

metal alloys are currently not precise enough for such features. Since homogenization 

theory assumes the unit cell is small compared to the macrostructure, a large number of 

unit cell repetitions may be needed to achieve the homogenized properties at the 

macroscale, which may necessitate a small cell size. A typical metamaterial structure can 

have cells sizes on the order of centimeters or millimeters, meaning that the small 

features within individual cells could be measured in micrometers. Clearly, the 

consideration of manufacturing uncertainty to avoid these difficult features is almost a 

necessity at the current time. 
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Uncertainty Design (f) 𝑭𝑠 (× 10−8) Design (g) 𝑭𝑠 (× 10−8) 

𝒙̅1
𝐸 , 𝒙̅2

𝐸 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +0.089  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −0.32  

𝒙1
𝐸 , 𝒙2 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −0.54  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −0.29  

𝒙1
𝐸 , 𝒙2

𝐷 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −0.60  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −0.18  

𝒙̅1, 𝒙̅2
𝐸 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +0.98  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −0.00  

𝒙̅1, 𝒙̅2
𝐷 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −0.23  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +0.08  

𝒙1
𝐷 , 𝒙̅2

𝐸 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +2.10  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +0.35  

𝒙̅1
𝐷 , 𝒙̅2 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +0.76  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +0.30  

𝒙̅1
𝐷 , 𝒙̅2

𝐷 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +0.27  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +0.35  

Figure 3.6  Uniform manufacturing uncertainties of designs (f) and (g) with their 

homogenized thermal expansions and worst-case stress distributions. 
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3.4. Negative Thermal Expansion Microstructure 

The third example is a low-stiffness thermoelastic metamaterial with a thermal 

expansion that is as negative as possible: 

(h) Minimization of thermal expansion 𝛼1
𝐻 + 𝛼2

𝐻 subjected to a volume fraction of 50% 

and small lower bounds on stiffness. Horizontal, vertical, and diagonal geometric 

symmetry is enforced.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  𝛼11
𝐻 + 𝛼22

𝐻  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜:

{
 
 

 
 
𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦:𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙,  𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙, 𝑎𝑛𝑑 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙

𝑉𝑓 = 0.5

𝐶11
𝐻 + 𝐶22

𝐻 > 0.02(𝐶11
𝑆𝑡𝑒𝑒𝑙 + 𝐶22

𝑆𝑡𝑒𝑒𝑙)

𝐶12
𝐻 > 0.02𝐶12

𝑆𝑡𝑒𝑒𝑙

𝐶33
𝐻 > 0.002𝐶33

𝑆𝑡𝑒𝑒𝑙

 
(54) 

The stiffness-based design created by optimization problem (h) and its analysis is 

shown in row (h) of Figure 3.7. The design consists of four composite beam-like 

structures connected by thin compliant hinges. As the steel sides of the beams expand 

more than the Invar sides, the beams bend inwards to create the macroscopically negative 

thermal expansion of the metamaterial. The stress analysis is performed with a 

macroscopic stress of 𝝈̅ = [18 18 0]𝑇 𝑀𝑃𝑎 and a temperature change of Δ𝑇 =

100 °𝐶. The chosen tensile load pulling against the contraction caused by the temperature 

increase produces stress concentrations at the hinges 2.7 times the allowable stress. The 

structure is highly orthotropic, and as such the worst-case stresses dominate at the thin 

hinge points of the compliant mechanism-like cell and are maximum for an almost pure 

shear stress state of 𝝈̅𝑒 = [−0.03 −0.09 0.99]𝑇 𝑃𝑎.  
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 (i) (ii) (iii) (iv) 

(h) 
𝛼𝐻

𝛼𝐼𝑛𝑣𝑎𝑟
= −3.88 

    

(i) 
𝛼𝐻

𝛼𝐼𝑛𝑣𝑎𝑟
= −2.53 

    

(j) 
𝛼𝐻

𝛼𝐼𝑛𝑣𝑎𝑟
= −2.53 

    

(k) 
𝛼𝐻

𝛼𝐼𝑛𝑣𝑎𝑟
= −2.53 

    

Figure 3.7  Results of optimization problems (h), (i), (j), and (k). Density and 

composition shown in column (i); polar plots of homogenized Young’s Modulus 𝐸𝐻 

(GPa) shown in column (ii); von Mises failure index 𝐹 shown in column (iii); and worst-

case von Mises failure index 𝐹𝑠 (× 10−7) shown in column (iv). 

 

The stress constraints are implemented in optimization problem (i): 

(i) The same as problem (h) with failure constraints on the applied load of 𝜎 =

[18 18 0]𝑇 𝑀𝑃𝑎 and Δ𝑇 = 100 °𝐶. 

Activating the failure constraints reduces the maximum failure index from 2.7 to 1.0 

(37% of the initial value) and reduces the maximum worst-case stress to 55% of the 

initial value (see row (i) of Figure 3.7). The reductions are achieved by thickening the 

hinges, changing the shape of the beam structures for a more uniform stress distribution, 

and by adding thin strips of reinforcing steel to the corners of the connecting members at 

the cell boundaries. A mixture of steel and Invar also appears on the inside of the hinges, 
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adding just enough steel to satisfy the failure constraints while gradually fading out in a 

gradient to avoid thermal stress concentrations. The shear stiffness also increases as a 

side-effect, and the thermal expansion increases from −3.88𝛼𝐼𝑛𝑣𝑎𝑟 to −2.53𝛼𝐼𝑛𝑣𝑎𝑟.  

Using the thermal expansion value of design (i) as an upper bound constraint, the 

worst-case stress is minimized: 

(j) Minimization of 𝐹𝑠
𝑃𝑁 subjected to a volume fraction of 50%, the same small lower 

bounds on stiffness, and upper bounds on the homogenized coefficients of thermal 

expansion equal to the result of problem (i). Horizontal, vertical, and diagonal 

geometric symmetry is enforced. 

Shown in row (j) of Figure 3.7, problem (j) achieves a maximum worst-case stress 

corresponding to 𝝈̅𝑒 = [−0.13 0.68 0.72]𝑇 𝑃𝑎 of 31% of problem (i) and only 17% 

of problem (h), and transforms the stiffness into a completely isotropic profile. The 

design is made robust to uncertain loads in both stiffness and strength, however it 

features thin hinges with thin reinforcing strips of steel that are not robust to 

manufacturing errors. Performing a manufacturing uncertainty analysis, shown in Figure 

3.8, shows the thermal expansion can increase up to positive +1.42𝛼𝐼𝑛𝑣𝑎𝑟 with over-built 

geometry and under-mixed composition. The maximum stress at the hinges also increases 

by over four times for the under-built geometry.  

Manufacturing uncertainty is introduced by the following formulation: 

(k) Minimization of the sum of blueprint and manufacturing uncertainty design worst-

case stress functions 𝐹𝑠
𝑃𝑁 subjected to the same constraints as problem (j), and also 

subjected to thermal expansion constraints 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ < −1.5 on each of the eight 

manufacturing uncertainty designs. 
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The blueprint design is shown in row (k) of Figure 3.7 and its manufacturing uncertainty 

analysis is shown in Figure 3.8. Robustness to manufacturing errors is achieved by 

shifting the use of the steel thermal actuator material from the inside of the beams to the 

outside of the hinges. Here it simultaneously strengthens the cell under shear loads and 

contributes to the contraction deformations needed to maintain negative macroscopic 

thermal expansion. Since these steel parts are relatively large and no small spots of 

reinforcing steel are present, the design can be manufactured with less precision and still 

achieve a negative thermal expansion property. Additionally, with no thin compliant 

hinges left, the stress is much more robust to manufacturing error with all uncertainty 

designs have similarly low maximum worst-case stresses. 
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Uncertainty Design (j) 𝑭𝑠 (× 10−7)  Design (k) 𝑭𝑠 (× 10−7)  

𝒙̅1
𝐸 , 𝒙̅2

𝐸 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −4.69  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −3.06  

𝒙̅1
𝐸 , 𝒙̅2 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −5.16  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −3.13  

𝒙̅1
𝐸 , 𝒙̅2

𝐷 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −4.96  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −2.82  

𝒙1, 𝒙̅2
𝐸  

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −2.02  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −2.32  

𝒙1, 𝒙2
𝐷 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −2.67  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −2.39  

𝒙̅1
𝐷 , 𝒙2

𝐸 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +1.42  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −1.50  

𝒙̅1
𝐷 , 𝒙̅2 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +1.03  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −1.79  

𝒙1
𝐷 , 𝒙̅2

𝐷 

    
 𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = +0.68  𝛼𝐻 𝛼𝐼𝑛𝑣𝑎𝑟⁄ = −1.78  

Figure 3.8  Uniform manufacturing uncertainties of designs (j) and (k) with their 

homogenized thermal expansions and worst-case stress distributions.  
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4. Lattice Structures: Numerical Analysis  

In this section, basic mechanical orthotropic lattice structures are analyzed in the 

context of using them to construct macrostructures. Their stiffness, strength, and buckling 

properties are investigated and methods of predicting their failure mode based on their 

relative density are developed.  

4.1. Unit Cell Geometry 

The unit cell displayed in Figure 4.1 is taken as a cross shape with the intersection of 

the struts at the center of the square-shaped domain.  

 

 

Figure 4.1  Geometry of the unit cell, where 𝐿 the side length of the square domain and 𝑡 
is the wall thickness. 

 

With a unit cell defined, larger lattice structures are created by adding the same 

number of cells to each spatial dimension, as illustrated in Figure 4.2. This ensures each 

structure analyzed has the same domain aspect ratio and relative density as the unit cell 

for fair comparisons of the mechanical properties. 
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Figure 4.2  Illustration of how more cells are added to the lattice structure while 

maintaining constant relative density and domain shape. 

 

4.2. Homogenization of Unit Cell Properties 

The computer codes developed by Andreassen and Andreasen (2014) and Dong, 

Tang, and Zhao (2019) are used to compute the homogenized properties of two and 

three dimensional unit cells, respectively. In two dimensions, either plane strain or 

plane stress conditions can be specified. In the case of a planar structure as considered 

in this thesis, the two-dimensional surface can be extruded into the out-of-plane 

direction to create a three-dimensional representation of the cell. The square or cube 

shaped unit cells are discretized using bilinear quadrilateral or trilinear hexahedral 

finite elements. Each element in the mesh has identical dimensions, meaning that it is 

not always possible to exactly match the mesh dimensions to the desired geometry of 

a specified relative density. The output properties are then mostly dependent on the 

resulting actual relative density of the mesh. Therefore, using these codes the number 

of elements must be chosen such that the relative density of the mesh is as close as 

possible to the desired relative density. For the case of specifying a 30% relative 

density, Figure 4.3 shows the result for the homogenized Young’s modulus 𝐸1
𝐻 from 

each of the three types of homogenization along with the resulting actual relative 
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density of the generated mesh. 𝐸1
𝐻 is normalized by dividing by the Young’s modulus of 

the solid material, 𝐸𝑠. 

 

 

Figure 4.3  Relative density of the FE mesh and homogenized value of Young’s modulus 

in the 1 direction versus the number of elements along the domain side length. 

 

In this case, 110 or 160 elements per cell side would be good choices to give a relative 

density close to 30% and produce accurate results.  

The homogenized Young’s modulus 𝐸𝐻 of a unit cell can be computed in various 

directions by rotating the homogenized stiffness matrix 𝑪𝐻 using the transformation 

matrix (Jones, 2014): 

 [𝑪𝜃
𝐻] = [𝑻][𝑪𝐻][𝑻]𝑇 (55) 

Where the transformation matrix is: 

 

𝑻 = [

cos2 𝜃 sin2 𝜃 2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

sin2 𝜃 cos2 𝜃 −2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 cos2 𝜃 − sin2 𝜃

] (56) 
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The results of performing the computation in every direction for a few different values of 

relative density are shown in Figure 4.4. The lattice structure displays an orthotropic 

behavior, with significantly higher stiffness in the directions parallel to the walls when 

extension is the only form of deformation. When loaded in a diagonal direction, the cells 

walls bend which cause the large reductions in stiffness. When increasing the relative 

density of the cell, the stiffness in the diagonal directions increases at a faster rate than in 

the parallel directions, and the diagram changes to a perfect circle at 100% density, 

indicating the isotropic properties of the solid material making up the cell. This result is 

significant when using lattice structures to design a macrostructure, as it shows the cell 

walls should be aligned with the load paths in order to maximize stiffness and strength. 

When orthotropic cells are used in optimization, it is therefore important that the 

orientation of the cells are included as design variables. 

  

 

Figure 4.4  The normalized homogenized Young’s modulus 𝐸1
𝐻/𝐸𝑠 of the unit cell 

plotted as a function of direction in polar coordinates for several different relative 

densities. 
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4.3. Analytical Equations 

Several analytical equations for the mechanical properties of lattice structures have 

already been derived in previous works. In this thesis, relations presented in (L. J. Gibson 

& Ashby, 1999; A.-J. Wang & McDowell, 2004) are used. However, the reported 

relationships for material properties and relative density are developed for only low 

density cells. Therefore, these relationships are modified in this work to make them 

applicable to high density cells as well.  

The exact relative density of the unit cell, 𝜌∗/𝜌𝑠, can be derived as: 

 
𝜌∗

𝜌𝑠
=
2𝐿𝑡 − 𝑡2

𝐿2
 (57) 

Where 𝜌∗ is the effective density of the structure and 𝜌𝑠 is the density of the solid 

material making up the structure. The effective Young’s modulus as a function of relative 

density of the cell is given by: 

 
𝐸1
∗

𝐸𝑠
=
𝐸2
∗

𝐸𝑠
= 1 − √1 − (

𝜌∗

𝜌𝑠
) (58) 

Where 𝐸1
∗ and 𝐸2

∗ are the effective Young’s moduli in the 1 and 2 directions and 𝐸𝑠 is the 

Young’s modulus of the solid material making up the cell. The effective Young’s 

modulus in the diagonal direction can also be obtained as a function of density: 

 
𝐸45
∗

𝐸𝑠
= 2(1 − √1 − (

𝜌∗

𝜌𝑠
))

3

 

 

(59) 

The power of three in Equation (59) confirms the large decrease in stiffness of the cell 

when it is loaded in an orientation other than the principal orthotropic directions. The 

effective yield strengths of the lattice structure are developed as: 
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(𝜎𝑦

∗)
1

𝜎𝑦𝑠
=
(𝜎𝑦

∗)
2

𝜎𝑦𝑠
= 1 − √1 − (

𝜌∗

𝜌𝑠
) (60) 

 
(𝜎𝑦

∗)
45

𝜎𝑦𝑠
= (1 − √1 − (

𝜌∗

𝜌𝑠
))

2

 (61) 

Where 𝜎𝑦𝑠 is the yield strength of the solid material. This shows that the strength also 

suffers a decrease when loaded in directions other than parallel to the walls, although it is 

less drastic than for the stiffness. Additionally, the effective elastic buckling stress of the 

lattice structure for loading along the cell wall directions is derived as: 

 
𝜎𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔
∗

𝐸𝑠
=
(𝑛𝜋)2

12
(1 − √1 − (

𝜌∗

𝜌𝑠
))

3

 (62) 

Where 𝑛 is the end constraint factor that depends on the boundary conditions. The critical 

value of relative density, where material yielding becomes an important factor and the 

lattice structure fails in a plastic buckling mode rather than completely elastic buckling, is 

derived as: 

 (
𝜌∗

𝜌𝑠
)
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

= √
48𝜎𝑦𝑠
(𝑛𝜋)2𝐸𝑠

−
12𝜎𝑦𝑠
(𝑛𝜋)2𝐸𝑠

 (63) 

4.4. Effect of the Number of Cells on Young’s Modulus 

As shown by Maskery et al. (2018) for the case of a three-dimensional diamond 

Triply Periodic Minimal Surface (TPMS) structure, the effective Young’s modulus of a 

periodic structure will approach an asymptote modulus as more cells are added to it. This 

is attributed to diminishing numbers of cells with free surfaces in proportion to the total 

number of cells in the structure. The asymptote modulus will be shown here to be the 

homogenized property of the periodic lattice structure. 
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This is done using finite element analysis (FEA), following the same method used by 

Maskery et al (2018). A displacement in the vertical direction is prescribed to the top 

surface to compress the structure in the in-plane direction. On the bottom surface, the 

displacement is constrained in only the vertical direction. A single node on a corner of the 

bottom surface is fully constrained to prevent rigid body translation. For 3D models, a 

second node some distance away (e.g. on an opposite side corner) is constrained in only 

the out-of-plane direction to prevent rigid body rotation. For 2D geometries, the entire 

face of the model can be constrained in the out-of-plane direction to prevent any out-of-

plane displacements or rotations of the midsurface. These boundary conditions compress 

the structure while allowing the top and bottom surfaces to freely expand. Mesh 

convergence studies were done for each of the following cases. 

To compute the effective elastic modulus after running the FEA, the reaction force 

resulting from the prescribed displacement is used in Equation (64): 

 
𝐸∗ =

𝑅𝐿

𝐴𝛿
 (64) 

where 𝛿 is the prescribed displacement, 𝑅 is the reaction force produced by that 

prescribed displacement, 𝐴 is the cross-sectional area of the structure domain, and 𝐿 is 

the undeformed height of the structure domain.  

Prior to investigating the change in effective properties of the lattice structure with 

varying numbers of cells, the effect of the out-of-plane length of the cells on the effective 

elastic modulus was determined. This can also be thought of as adding cells in the out-of-

plane dimension if the planar structure is modeled as a three dimensional solid. To 

accomplish this, 3D finite element models of a single cell in a 1x1 configuration and four 

cells in a 2x2 configuration of 30% relative density were used. The out-of-plane length 
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was varied from 1x the width of a single cell to 16x the width of a single cell. The 

results of this analysis are plotted in Figure 4.5. 

 

 

Figure 4.5  Effective Young’s modulus in the 1 direction computed by FEA versus the 

out-of-plane length of the cell. The homogenized value computed by the 3D code is 

shown by the solid black horizontal line. 

 

The effective Young’s modulus asymptotically approaches the homogenized 

value as the relative end effects on the cell are diminished.  It falls within 1% error 

relative to the homogenized value when the out-of-plane length is four times the cell 

domain length 𝐿. With thinner planar structures than this, 3D homogenization may 

not give entirely accurate properties. Another interesting result is that just a single cell 

converges to the homogenized value. The 2x2 cell configuration has results that are 

near identical to the single cell, which suggests that the effective Young’s modulus of 

the lattice structure has little to no dependence on the number of cells, at least when it 

is loaded parallel to the cell walls. 
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Figure 4.6  Three-dimensional end effects in a finite element simulation von Mises stress 

plot. As the out-of-plane cell length increases, the contribution of the end effects to the 

effective properties of the cell becomes negligible and the effective property approaches 

the homogenized value. 

 

Switching to a 2D plane stress finite element model, a 30% relative density lattice is 

analyzed for several numbers of cells and the results are plotted in Figure 4.7. As 

expected, the effective elastic modulus of the lattice has no dependence on the number of 

cells that it is made up of. This behavior is a result of the load being perfectly parallel to 

the vertical lattice members. The perpendicular cross members do not transfer any load 

between vertical members, making each vertical one function as an independent column. 

The implication of this result for spatially varying optimized lattice structures is that as 

long as the cell orientations are aligned with the load paths, there should be little 

dependence of the structure’s stiffness on the number and size of cells that make it up. 

Allaire et al. (2018) demonstrated the result for an optimized spatially varying lattice 

structure by plotting the compliance and relative volume of the structure as a function of 

the characteristic size of the cells. Their results show no visible dependence of the 

compliance on the cell size, and any variation appears to be mainly a result of the small 

variations in relative volume and orientation with respect to principle directions.  
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Figure 4.7  Effective Young’s modulus in the 1 direction versus the number of cells 

making up the structure, where the homogenized value is shown by the solid black 

horizontal line. 

 

However, when the lattice is loaded diagonally, the effective Young’s modulus 

shows a dependence on the number of cells due to diagonal struts transferring load 

across and influencing their neighbors. For this loading case, 50% and 70% relative 

densities were also investigated. Figure 4.8 shows the effective Young’s modulus for 

30%, 50%, and 70% relative densities, normalized with respect to each of their 

respective homogenized values, versus the number of cells in the lattice. The trend is 

that the higher the relative density, the less cells that are needed to have an effective 

stiffness close to that of the homogenized value. 30% density falls within 1% error of 

its homogenized value with eight cells per side, 50% density achieves this with seven 

cells, and 70% density requires only five cells. For cells which cannot be aligned such 

that their members are tangential to the load paths (e.g. a hexagonal honeycomb cell 

which always has bending dominated deformations), it is expected that the number of 

cells making up the structure will always affect the overall properties of that structure. 
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Figure 4.8  Normalized effective Young’s moduli when loaded at a 45 degree angle for 

30%, 50%, and 70% relative densities versus the number of cells in the structure. The 

normalized homogenized values of each density are shown by the solid black horizontal 

line. 

 

4.5. Effect of Relative Density on Young’s Modulus 

Plotting the analytical equation for Young’s modulus as a function of relative density 

with Equation (58) along with the values obtained using homogenization results in Figure 

4.9. The analytical equation matches the homogenization results well at low relative 

densities. At higher relative densities, the homogenization deviates from the analytical 

results. This can be explained by the fact that the analytical derivation does not include 

the contribution of the cross member to the stiffness of the structure. When the vertical 

members are compressed, the cross members are squeezed where they connect to the 

vertical members. This adds extra stiffness to the structure, and this effect becomes more 

pronounced with thicker cross members.  
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Figure 4.9  Young’s modulus versus relative density for a 30% relative density lattice. 

 

A finite element analysis of the cell in compression in Figure 4.10 shows this effect 

clearly. At 100% relative density, the cell becomes a solid block of material, and so the 

analytical equation is able to predict the stiffness accurately again (it is simply the 

Young’s modulus of the solid material). The plane strain homogenized stiffness is larger 

than plane stress and 3D due to the additional resistance created by the plane strain 

condition and the Poisson effect. 

 

 

Figure 4.10  Von Mises stress contour plot and deformation of a lattice cell under a 

compression displacement in the vertical direction. The deformation of the horizontal 

member contributes to the effective stiffness of the lattice. 
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4.6. Effect of the Number of Cells on Buckling Load 

For buckling analysis using FEA, an additional node at the top surface of the finite 

element model is constrained in the lateral direction to create fixed-fixed boundary 

conditions that would be seen in a standard compression experiment using flat plates. The 

analysis is repeated for a 30% relative density lattice using varying numbers of cells and 

the results are plotted in Figure 4.11 along with examples of the mode shapes. Unlike the 

effective Young’s modulus when loaded parallel to the cell walls, the effective buckling 

stress, computed using linear static buckling analysis, shows a dependence on the number 

of cells making up the lattice. It converges to an asymptote value at approximately 8x8 

cells. The effective buckling stress is highest with only one cell and reduces as more cells 

are added. The relative densities are kept unchanged while the number of cells increases, 

which results in a lower buckling load by increasing the slenderness ratio of the vertical 

members.  

 

 

Figure 4.11  Effective buckling stress and mode shapes of a 30% relative density lattice 

versus number of cells in the structure. 



57 

 

4.7. Effect of Relative Density on Buckling Load and Failure Mode 

Using the properties of the material used for manufacturing test specimens, 

Equation (63) can be used to predict a critical density where the failure mode under 

compression loading changes from purely elastic buckling to plastic buckling. Since 

the members of the lattice bend when the structure buckles, the average of the yield 

strength in compression and tension is used (29 MPa). Plotting the analytical yield 

load versus relative density with the buckling load from FEA shows the critical point 

as the intersection of the two curves. Also plotting the analytical equation for 

buckling stress, it can be closely matched to the FEA results by setting 𝑛 = 0.85. 

This is shown in Figure 4.12.  

 

 

Figure 4.12  Effective failure stresses versus relative density for an 8x8 lattice structure. 

The intersection of the buckling stress curve and yield stress curve represents the critical 

density. 

 



58 

 

Wang and McDowell (2004) stated that 𝑛 ≈ 1, but by matching to FEA results a 

more precise value of 0.85 can be determined. Based on this analysis, the critical 

relative density for the square cell with square hole structure under fixed-fixed 

boundary conditions is (𝜌∗ 𝜌𝑠⁄ )𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ≈ 0.4. Below this density and the structure may 

elastically buckle under compression loading.  
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5. Lattice Structures: Experimental Analysis  

To verify the numerical analysis of the previous section, lattice structures were also 

additively manufactured and experimentally tested. First, basic lattice structures made of 

tiled unit cells were tested to investigate their stiffness, strength, and buckling behavior at 

different relative densities. Several examples of complex spatially varying lattice 

structures are also tested and analyzed to demonstrate the advantages of using 

metamaterials, or microstructures, to build macrostructures.  

5.1. Additive Manufacturing Process and Material Properties 

Several different additive manufacturing processes were considered for creating 

physical test specimens. Fused deposition modeling (FDM) and fused filament 

fabrication (FFF) printers using acrylonitrile butadiene styrene (ABS) plastics were 

investigated but were found to produce specimens with poor dimensional accuracy, 

significant warpage, and anisotropic and inconsistent mechanical properties. Selective 

laser sintering (SLS) processes were considered next, and Hewlett-Packard’s (HP) 

Multi Jet Fusion (MJF) process was selected. MJF functions similarly to SLS but 

makes use of fusing agents to aid in sintering the powders together. MJF offers high 

accuracy, high density, low cost, and short lead time parts with ductile material 

behavior. All test specimens in this thesis were manufactured by Autotiv 

Manufacturing Corporation using HP’s MJF process with HP 3D High Reusability 

PA 12, a nylon material.  

All specimens were tested on an MTS Criterion Model 43 testing system using a 

50 kN load cell. Digital image correlation (DIC) data was also collected using the 

VIC-3D system by Correlated Solutions, Inc. to obtain images and deformation data 
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from each test. Material properties were tested following ASTM standard test methods 

D638-14 and D695-15 for tensile and compressive properties of plastics. Type 1 tensile 

specimens at 4mm thickness were used for measuring the tensile properties. The 

rectangular prisms for strength (12.7x12.7x25.4mm3), and modulus or offset yield 

(12.7x12.7x50.8mm3) were tested to obtain compressive properties. During the testing of 

the taller modulus prisms, they were observed to exhibit some buckling behavior. 

Without access to a support jig for thin compression specimens, the shorter strength 

prism data was used for all compressive properties. 

PA 12 manufactured with SLS has been previously reported to have different 

properties in tension and compression by (Maskery et al., 2018) and (Ngim et al., 2009), 

and this result was also found in the present study. From the compression test, there is a 

linear region followed by plastic deformation. From the tension test, the curve is entirely 

nonlinear with no obvious linear elastic region, although it has approximately the same 

initial slope as the compression curve. The tension test also showed significantly less 

strength than the compression test. Since the compression data had a clear linear elastic 

portion of the stress-strain curve, it was used to obtain the elastic modulus 𝐸. Separate 

yield and ultimate strength values could be obtained for tension and compression 

individually. The average material properties determined from the test results are 

summarized in Table 5.1. 
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Table 5.1 

Measured material properties of HP 3D High Reusability PA 12. 

Property Compression Tension 

𝑬 [MPa] 950 950 

𝝈𝒚 [MPa] 43 15 

𝝈𝒖 [MPa] 73 38 

𝝂 0.30 0.44 

 

The software used for FEA was ANSYS. A multilinear isotropic hardening 

plasticity model was utilized for nonlinear analysis, where true strain and true stress 

data is required. Only plastic strain is provided as an input, with the first data point as 

zero strain. The remaining plastic strain data was then be determined by subtracting 

the full elastic strain component which is equal to the true stress at the point divided 

by the linear elastic Young’s modulus: 

 
𝜀𝑝𝑙𝑎𝑠𝑡𝑖𝑐 = 𝜀𝑡𝑟𝑢𝑒 −

𝜎𝑡𝑟𝑢𝑒 
𝐸

 (65) 

5.2. Simple Lattice Structures 

To test the effective Young’s modulus, effective stress at failure, and failure 

modes of the lattice under compression loading parallel to the cell walls, 8x8 cell 

lattices were manufactured at 30%, 40%, 50%, and 60% relative densities. The as-

manufactured prints are shown in Figure 5.1. The cell size was 𝐿 = 1 𝑐𝑚 on each, 

making the 8x8 lattices 8 cm tall by 8 cm wide. The out-of-plane thickness of each of 

the four printed specimens was six centimeters. Later they were cut into two 

specimens, each of three centimeter thickness, to allow for two tests of each density.   
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Figure 5.1  Lattice structures printed by the MJF process. 30%, 40%, 50%, and 60% 

relative densities from left to right. 

 

Before testing the structures, their cell wall thicknesses were measured to assess the 

accuracy of the manufacturing process. Twenty-five measurements of wall thicknesses 

were taken on each specimen. The average wall thickness of each specimen ranged from 

approximately 0% to 3% error compared to the CAD model dimensions. The results of 

this are summarized in Table 5.2. 

 

Table 5.2  

Lattice wall thickness measurements [mm]. 

 Test Specimen Set 1 Test Specimen Set 2 

Relative Density 30% 40% 50% 60% 30% 40% 50% 60% 

CAD Model 1.63 2.25 2.93 3.68 1.63 2.25 2.93 3.68 

Maximum 1.70 2.32 2.95 3.81 1.68 2.27 2.92 3.76 

Minimum 1.55 2.21 2.86 3.58 1.56 2.16 2.78 3.60 

Average 1.61 2.25 2.90 3.67 1.62 2.22 2.83 3.67 

Error (%) -1.48 -0.02 -0.82 -0.17 -0.97 -1.53 -3.24 -0.10 

Standard Deviation 0.037 0.030 0.026 0.051 0.036 0.027 0.038 0.039 

 

The two sets of specimens were tested in compression until they either fully densified 

or fractured. The resulting effective stress-strain curves for the first set of specimens 

tested are shown in Figure 5.2 for up to an effective strain of 20%.  
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Figure 5.2 Effective stress-strain curves from compression tests on 8x8 lattice structures 

of relative densities 30%, 40%, 50%, and 60%. 

 

The 30% relative density lattice was the only one to fully densify without fracturing 

after the collapse of the first layer of cells. DIC images of von Mises strains for the 

relative densities of 30% and 60% before and after buckling are shown in Figure 5.3. 

Figure 5.2 shows that the 30% relative density lattice has a linear effective stress-strain 

curve until it fails suddenly by buckling. The 40% relative density lattice shows some 

nonlinearity before it buckles, indicating that material yielding has become an important 

factor, while the 50% and 60% density lattices show obvious yielding in their stress-

strain curves meaning that material yielding is dominating for relative densities this high. 

Based on these experimental results, the relative density transition point where the failure 

mode switches from elastic to plastic buckling is somewhere just below 40% density, 

which is close to the prediction of the analysis in Section 4.7.  
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(a) (b) 

  
(c) (d) 

Figure 5.3  DIC images showing von Mises strain before and after buckling has occurred. 

(a) 30% relative density, which fails by purely elastic buckling, before buckling and (b) 

after buckling. (c) 60% relative density, which experiences material yielding before 

collapse, before buckling and (d) after buckling. 

 

From the effective stress-strain plots of the lattice structures the effective Young’s 

moduli and effective buckling stresses were determined. To obtain computational values 

of buckling stress, nonlinear FEA was performed in addition to linear analyses. The 

nonlinear effects included large deflections and material nonlinearity using an average of 

the stress-strain curves obtained from the material property experiments. A displacement 

was applied to the top surfaces similar to the linear analysis, but this displacement was 

applied gradually over 100 load steps. If necessary, a small perturbation load was applied 

to encourage the finite element models to buckle in the same mode that was observed in 
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the experiments. The force-displacement results were exported, allowing for the buckling 

stresses to be computationally determined even for the high density lattices where 

material yielding was occurring. The stress-strain curves resulting from the nonlinear 

analysis are compared to the experimental stress-strain curves in Figure 5.4. The 

similarity of the nonlinear analysis stress-strain curves to the experimentally measured 

curves demonstrates that nonlinear analysis can be an accurate method of determining 

buckling strength and critical density when plastic deformation influences the failure 

mode. 

 

  
(a) (b) 

  
(c) (d) 

Figure 5.4  Nonlinear finite element analysis results compared to experimental results for 

8x8 lattice structures of relative density (a) 30%, (b) 40%, (c) 50%, and (d) 60%. 
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Comparisons of the properties obtained from the experiments to those calculated with 

the analytical equations, FEA, and homogenization are summarized in Table 5.3 and 

Table 5.4. In Table 5.3 summarizing Young’s modulus results, FEA and homogenization 

show excellent agreement with themselves and to the experimental results for 50% and 

60% densities. For 30% and 40% densities, the stiffness obtained from FEA has errors of 

around 18% and 12%, respectively. This error is attributed to variabilities in the additive 

manufacturing process. While the wall thickness measurements in Table 5.2 are very 

close to the CAD model dimensions, any other aspect of the manufacturing process may 

have caused the higher errors for the thinner wall thickness structures. It is speculated 

that this could be related to heat, as higher temperatures could build up in thinner features 

where there is less material for the heat to dissipate into. Higher temperatures can create 

stronger material by more thoroughly melting or sintering powder together, as 

investigated by Gibson and Shi (1997) who show that fill laser power in SLS increases 

the density and tensile strength of nylon material.  

In Table 5.4 showing buckling stress results, analytical, linear FEA, and nonlinear 

FEA are in good agreement with each other for 30% relative density. The experimental 

results are higher, due to the same reasons they are for the elastic modulus. At higher 

densities, the analytical and linear FEA results diverge from the experimental. This is 

because material yielding reduces the buckling load below the purely elastic buckling 

load. Nonlinear FEA results remain close to the experimental for the higher densities 

because of its ability to include the effects of the material nonlinearity on the buckling 

behavior.  
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Table 5.3 

Comparison of Young’s moduli [MPa]. 

Relative Density 𝝆∗/𝝆𝒔 30% 40% 50% 60% 

Analytical 155 214 278 349 

Linear FEA, 3D 164 229 300 381 

Homogenized, 3D 166 231 301 381 

Experimental: Test #1 193 251 322 382 

Experimental: Test #2 194 261 302 382 

 

Table 5.4 

Comparison of effective buckling stress [MPa]. 

Relative Density 𝝆∗/𝝆𝒔 30% 40% 50% 60% 

Analytical, 𝒏 = 𝟎. 𝟖𝟓 2.46 6.46 14.18 28.03 

Linear FEA, 2D 2.25 6.17 14.11 28.90 

Nonlinear FEA, 2D 2.21 5.71 11.79 20.62 

Experimental: Test #1 2.91 6.98 12.48 19.80 

Experimental: Test #2 2.78 6.73 11.10 19.41 

 

5.3. Spatially Varying Lattice Structures: Cantilever Beam 

A test specimen of a cantilever beam generated by a homogenization-based 

method of macrostructure topology optimization developed by Kaveh Gharibi (2018) 

and Patricia Velasco (2020) was 3D printed as shown in Figure 5.5. It was painted 

with a speckle pattern to allow the DIC software to track motion and deformation of 

its surface. 
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Figure 5.5  Optimized cantilever beam test specimen as printed by MJF. 

 

The specimen was tested to failure in the MTS testing system at three millimeters of 

displacement per minute while capturing images each second with the DIC system. The 

DIC data allowed for the actual displacements and strain components everywhere on the 

part to be measured and compared to FEA results. During the test the beam failed by 

breaking off from its base, which was clamped inside the fixture. The failed beam is 

shown in Figure 5.6.  

 

 

Figure 5.6  Failure of the optimized lattice cantilever beam. 
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The deformation inside the fixture needed to be accounted for by using a full 3D 

finite element representation of the test specimen and simulating the compression-only 

contact between the specimen and its retaining plates. In this case, the contact simulation 

could be done fairly easily by only constraining the parts of the base that would come 

into compression contact with the fixture clamping system. Doing this for the 

optimized beam gives a load-displacement slope that agrees with the linear portion of 

the experimental results, plotted in Figure 5.7. 

 

  

Figure 5.7  Force-displacement curve measured during the test of the optimized beam 

compared to the slope computed using linear FEA on the three-dimensional test specimen 

CAD model. 

 

While the cantilever specimen in this experiment failed at its base with an applied 

load of 1197 N, this may have been preventable with larger fillets or a better 

clamping system that restrained more of the deformation inside the fixture. Also, 

structures other than a cantilever beam with different support conditions may not have 
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the same issue. To explore other possible failure modes for optimized lattice structures, a 

linear static analysis and an eigenvalue buckling analysis were performed on the 2D 

geometry of the optimized design. The maximum stresses at the fixture were ignored for 

the purpose of determining other potentially weak features in similarly designed 

structures with different support boundary conditions.  

Figure 5.8 (a) shows the von Mises strains measured by the DIC system at 500 N of 

applied force. Figure 5.8 (b) shows the von Mises strain from the linear static analysis at 

the same load with the contour plot colors and values matched to the DIC plot’s values. 

The experimental and FEA results show a high degree of similarity, demonstrating the 

validity of the analysis and DIC strain measurements. The highest strains, other than the 

strains at the fixture, are seen in the top-middle and bottom-middle areas of the beam at 

the corner of a cell hole near the edges of the structure. In the FEA, the stress here 

exceeds the ultimate tensile strength of the material (38 MPa) through the entire thickness 

of the member once the load has been increased to 2260 N. Figure 5.8 (c) shows the first 

buckling mode of an Eigenvalue buckling analysis occurring at a larger load of 3714 N. 

A thin structural member buckles in the lowest density region of the lattice. This region is 

at a lower density than the critical density calculated in Section 4.7, suggesting Equation 

(63) can be used to estimate the regions where elastic buckling has the potential to be a 

mode of failure. 
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(a) 

 

  
(b) 

  
(c) 

Figure 5.8  (a) Von Mises strain results from DIC at a load of 500 N, (b) FEA results at 

the same load with color scale values matched as closely as possible to the DIC results, 

and (c) the first buckling mode shape. 

 

Based on the computational analysis, the optimized cantilever beam design’s most 

critical failure mode is fracturing at the base, which is confirmed by the experiment. This 

point of failure is difficult to remedy for a cantilever beam, although other kinds of 
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structures such as simply supported beams may not have such severe stresses at their 

supports. In these cases, the structure may fail by a different mechanism. In the cantilever 

beam studied here, the next potential weak point is the high stress present in the top-

middle and bottom-middle sections. This was likely created by placing a cell hole corner 

near the structure’s edge, creating a thinner point in the member with higher stress which 

is also exacerbated by the sharp corner of the rectangular hole. A cell geometry using a 

hole with rounded corners may also help to relieve this stress, and if that issue could be 

solved, then elastic buckling of lattice cell walls in low relative density regions would 

become the next likely failure mode. 

5.4. Spatially Varying Lattice Structures: Three-Point Bending 

Experimental testing was also performed on three-point bending structures designed 

using conventional SIMP topology optimization and the methods of (Velasco, 2020) with 

triangular lattice material. Each beam was generated in a 3:1 aspect ratio rectangular 

design space, with two load cases of a point load near the left and right sides on the top of 

the beam. The final designs were scaled to a height of 62 millimeters with an out-of-plane 

thickness of 15 millimeters. Since the final designs can have different relative volumes 

than the optimization constraint, the slope of the force-displacement curve per unit 

surface area of the front face is used as a performance indicator to compare different 

designs. For a linear force-displacement relationship this is: 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑆𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 =

𝑃

𝛿𝐴
 (66) 

Where 𝑃 is the applied load, 𝛿 is the deflection at the point of load application, and 𝐴 

is the area of the front face of the structure. The computational results are displayed in 

Table 5.5, showing that the specific stiffness of the triangular lattice design, Case 1, 
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outperforms SIMP by 8% for a load applied to one side. Case 2 increases the 

performance by a further 5% over Case 1.  

 

Table 5.5 

Linear specific stiffness of three-point bending designs with P = 1 kN. 

Case 
Cell 
Size  
Λ 

Area 
(𝑚𝑚2) 

Max Deflection (𝑚𝑚) 
Specific Stiffness  

(𝑁/𝑚𝑚3) 

FEA Experiment FEA Experiment % Error 

SIMP N/A 4447 0.760 0.774 0.296 0.291 -1.7% 

1 4.4 5161 0.606 0.647 0.320 0.300 -6.3% 

2 4.5 5343 0.556 0.575 0.336 0.326 -3.0% 

 

Along with the computational analysis, the three designs were 3D printed, painted 

and stamped with a speckle pattern, and experimentally tested using DIC in a three-point 

bend fixture with a left offset load. These specimens are shown in Figure 5.9. The 

experimental results are compared to the computational results in Table 5.5, and Figure 

5.10 (a) shows the applied force (per unit area of the front faces of the structures) versus 

the displacement of the testing machine’s crosshead. Figure 5.10 (b)-(f) show the spatial 

distributions of the vertical component of displacement captured by DIC at the events 

marked in Figure 5.10 (a), which can have minor discrepancies compared to the 

crosshead displacements due to the DIC not being able to track the point of load 

application at the extreme edge of the structures.  

The linear parts of the experimental curves agree well with the linear computational 

analysis. Case 1 has a 3% higher specific stiffness (slope of the curve) than the SIMP 

design, while the lattice design of Case 2 has a slope 8% higher than Case 1.  
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Interestingly, in the nonlinear range at large displacements the lattice designs show a 

major strength advantage over the SIMP structure. The SIMP beam loses stiffness early 

on when its comparatively few and large structural members deform significantly and 

lose their ability to efficiently transfer load to the supports. It reaches a maximum load of 

4370 Newtons before failing catastrophically at a crosshead displacement of 8.9 

millimeters in Figure 5.10 (b).  

 

  
(a) 

  
(b) 

  
(c) 

Figure 5.9  Three-point bending test specimens as printed by MJF and after testing to 

failure. (a) SIMP, (b) triangular lattice (Case 1), (c) triangular lattice (Case 2). 

 

The triangular lattice beam of Case 1 continues to carry larger loads well beyond the 

strength of the SIMP design, reaching a maximum of 7934 Newtons for a 57% 

improvement to peak load per unit area. Its many small and closely spaced lattice 

members provide redundant load paths that the SIMP design does not have, allowing it to 
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achieve much higher deflections and forces by redistributing internal loads as individual 

small members reach their limits. An easily observable example of this load path 

redundancy is point (c) of the load-displacement curve, where a single small strut 

fractures in Figure 5.10 (c), but the overall structure continues to carry increasing loads. 

Following this strut fracture, a different region of lattice material buckles at 9.5 

millimeters of crosshead displacement, but the beam is able to continue deforming up 

until 10.2 millimeters at point (d) in Figure 5.10 (d) before failing completely. 

The triangular lattice beam of Case 2 similarly experiences much higher strength than 

the SIMP equivalent, as well as a progressive failure. Figure 5.10 (e) shows the structure 

at 8 millimeters of crosshead displacement after an initial local buckling event. Following 

this, it continues to deform while carrying a load per unit area approximately 35% larger 

than the SIMP beam’s maximum. Two small members fracture at 9.2 millimeters of 

crosshead displacement, Figure 5.10 (f), and then complete failure occurs at 9.9 

millimeters. 

The results of these experiments conclude that optimization based on lattice structures 

can produce designs with higher linear stiffness than conventional SIMP topology 

optimization. Additionally, the stiffness and strength was shown to be up to 57% greater 

than SIMP at large displacements due to the robust nature and progressive failure 

behavior of the triangular lattice cells. 
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(a) 

  
(b) (c) 

  
(d) (e) 

 
(f) 

Figure 5.10  Three-point bending tests. (a) Force per unit frontal surface area versus 

crosshead displacement at the point of load application, (b) the SIMP specimen 

immediately before complete failure at 8.8 mm of crosshead displacement, (c) the 

triangular lattice structure at 7.1 mm of crosshead displacement after a local failure 

occurred in one small strut (circled), (d) the triangular lattice structure at 10.2 mm of 

crosshead displacement after a local buckling failure had occurred, (e) the filled 

triangular lattice structure at 8 mm of crosshead displacement after an initial local 

buckling failure had occurred, (f) the filled triangular lattice structure at 9.2 mm of 

crosshead displacement after the local failure of two small struts (circled). 

 

 

(c) (e) (f) 

(b) 

(d) 
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6. Conclusions 

This thesis presented a stress-based and robust topology optimization framework for 

mechanical and thermoelastic microstructures constructed from up to two different 

materials and a void phase. The methods were developed to take advantage of multi-

material metal additive manufacturing technology and provide a tool for designing 

practical and reliable thermal structures for use in demanding applications. A formulation 

based on homogenization theory for mechanical and thermal stress analysis was 

developed, allowing for loads to be defined as macroscopic stresses, macroscopic strains, 

and uniform thermal loads. A method of worst-case stress analysis was then included, 

which allowed for effective stress-based optimizations with complete uncertainty in 

loading conditions. The adjoint sensitivity analysis for each stress method was presented 

for use in gradient-based optimization problems, and a method for consideration of 

uniform manufacturing uncertainties was included which was motivated by the 

observation that the properties of thermoelastic metamaterials are very sensitive to small 

design changes brought about by the stress-based formulations.  

The framework was used to generate several designs made from Invar 36 and 

stainless steel 304L, including a single material microstructure with maximum stiffness, 

an isotropic microstructure with zero thermal expansion and maximum bulk modulus, 

and a low-stiffness microstructure with negative thermal expansion. The stress-based 

formulations were applied and stresses of up to 2.7 times the allowable levels were 

controlled while worst-case stresses were reduced to as low as 17% the values of the 

stiffness-based designs. Comparatively small tradeoffs to thermal expansion or stiffness 

properties resulted. Next, it was shown that manufacturing uncertainties could increase 
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stresses and significantly alter the thermal expansions of the stress-based designs to the 

point that they were no longer negative or nowhere near the intended value of zero. The 

manufacturing uncertainty method was combined with the worst-case stress method, 

producing a zero thermal expansion microstructure with simplified features and a 

negative thermal expansion microstructure with a significantly different layout of 

materials. These microstructures were shown to be more robust with respect to load 

uncertainty in both stiffness and strength, while also possessing strength and thermal 

expansion properties that were less sensitive to uniform manufacturing errors. 

This thesis work also investigated the mechanical properties of simple lattice 

structures. First, the lattice unit cell was analyzed using numerical homogenization, finite 

element, and analytical techniques to gain insight into its properties. This analysis 

showed orthotropic, highly orientation-dependent stiffness and strength properties. The 

effect of the number of cells used to build a macrostructure was investigated, uncovering 

that the number of cells in a lattice structure with square holes has no effect on structural 

stiffness when the cell members are aligned to the load direction. If cells are not aligned 

to the loads, about 5-10 cells on each axis (25-100 cells in the structure), depending on 

the relative density, are necessary for stiffness to be at a maximum and properties 

obtained using homogenization theory to be valid.  

The effect of the relative density was also investigated, verifying an analytical 

equation for critical buckling density and showing that linear buckling analysis is only 

valid for relative densities below about 40% for the boundary conditions and material 

used in this study. At relative densities above the critical density, material nonlinearity 

became an important factor and nonlinear finite element analysis was shown to give 
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accurate failure stress results. Compression test experiments were performed on four 

different relative densities of an 8x8 cell lattice configuration additively manufactured 

using multi-jet fusion, verifying the analysis results and demonstrating the accuracies and 

deficiencies of the various analysis methods.  

Test specimens of spatially varying lattice structures were also additively 

manufactured using multi-jet fusion and experimentally tested to failure. The cantilever 

beam test showed that stress concentrations at the sharp corners of the basic lattice cell 

holes could be a cause of failure, as well as that lattice cells in regions of low relative 

density have the possibility of failing by elastic buckling. Nevertheless, lattice structures 

were shown to create superior performance in macrostructures compared to SIMP 

topology optimization in the tests of three-point bending beams. Both higher stiffness and 

significantly improved ultimate strength were attained due to the redundant load paths 

created by the lattices.   

For future work, the stress-based and robust metamaterial topology optimization 

method developed in Sections 2 and 3 can be utilized to design optimized periodic 

microstructures with greater stiffness and strength properties than the basic lattice 

structures analyzed in Sections 4 and 5. These optimized microstructures can then be 

used to design even higher performance macrostructures, potentially leading to 

improvements in many structural applications by saving weight, saving materials, or by 

tailoring macroscopic properties to achieve special mechanical and thermal properties. 
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