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ABSTRACT 

As the number of potential applications for Unmanned Aerial Vehicles (UAVs) keeps 

rising steadily, the chances that these devices will operate in close proximity to static or 

dynamic obstacles also increases. Therefore, collision avoidance is an important 

challenge to overcome for Unmanned Aerial Vehicle operations. Electro-optical devices 

have several advantages such as light weight, low cost, low algorithm requirements with 

respect to computational power and possibly night vision capabilities. Therefore, vision-

based Unmanned Aerial Vehicle collision avoidance has received considerable attention. 

Although much progress has been made in collision avoidance systems (CAS), most 

approaches are focused on two-dimensional environments. In order to operate in complex 

three-dimensional urban environments, three-dimensional collision avoidance systems 

are required. This thesis develops a three-dimensional vision-based collision avoidance 

system to providesense and avoid capabilities for unmanned aerial vehicles (UAVs) 

operating in complex urban environments with multiple static and dynamic collision 

threats. This collision avoidance system is based on the principle of proportional 

navigation (Pro-Nav), which states that a collision will occur when the line-of-sight 

(LOS) angles to another object remain constant. According to this guidance law, 

monocular electro-optical devices can be implemented on Unmanned Aerial Vehicles, 

which can provide measurements of the line-of-sight angles, indicating potential collision 

threats. In this thesis, the guidance laws were applied to a nonlinear, six degree-of-

freedom Unmanned Aerial Vehicles model in different two-dimensional or three-

dimensional simulation environments with a varying number of static and dynamic 

obstacles.   
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1. Introduction 

An Unmanned Aerial Vehicle (UAV), also known as a drone, has no on-board pilot 

or crew. Unmanned aerial vehicles are a part of an unmanned aircraft system (UAS), 

which also comprises a communication system between the UAV and the ground 

controller. The operator's remote control or on-board computer can give the UAV varying 

degrees of autonomy. 

UAVs were initially used in military applications, but the potential of UAVs to be 

widely used in civil applications is also considerable, and their use has rapidly expanded 

to business. UAVs have many advantages, such as low cost, safety benefits, and mobility. 

Due to those benefits, UAVs can potentially replace crewed aerial vehicles in many tasks 

that are too dangerous or dirty for the human to complete. On the other hand, some 

features of UAV operations can cause problems and challenges because they are not 

directly controlled by a human during flight. One of the biggest challenges is collision 

avoidance. In order to complete a successful flight mission, collision avoidance ability is 

necessary for both static and dynamic obstacles. Fundamentally, UAV avoidance and 

other air traffic, ground traffic, or robots have some similarities but also retain their 

characteristics, like flight dynamics or collision detection, which makes them a unique 

and interesting basis for research (Pham, Smolka, Stoller, Phan, & Yang, 2015). 

1.1. Sense-and-Avoid functionality 

After removing the pilot from the traditional aircraft control system, to overcome the 

most prominent challenge of collision avoidance, UAVs need to have Sense-and-Avoid 

(SAA) functionality or a SAA system. 
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An effective SAA system should meet the following requirements： 

1. Be able to detect obstacles and potential collisions.  

2. Division of levels of risk to determine imminent collisions. 

3. Determine the right time to react to the potential collisions and determine the 

particular maneuver and flight trajectory based on geometric or optical 

measurements. 

4. Generate the command to the controller and complete the maneuver. 

 

 

Figure 1.1  SAA Components (Skowron, Chmielowiec, lowacka , Krupa, & Srebro, 
2019). 

 

A typical SAA system has four components, including sensing, conflict detection, 

collision avoidance, and the flight controller, as shown in Figure 1 (Skowron, 

Chmielowiec, lowacka , Krupa, & Srebro, 2019). The last part is common for both 

unmanned vehicles and manned vehicles; thus, in this thesis, we limit the discussion to 

the first three components, and they will be explained in detail later. 

1.2. Sensing and Detection 

Sensing and detection are the first step of a SAA or Collision Avoidance System 

(CAS); the sensing ability is how the UAVs collect useful information from the 
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surrounding environment. In contrast to trajectory planning, collision avoidance systems 

focus more on perceived risks and reacting to the dangers as soon as possible. Thus, the 

sensor does not have to obtain all the information of the obstacles; only the information 

required to indicate a collision is needed. In general, the SAA sensing can be divided into 

two different types: Cooperative Sensing (e.g., ADS-B, TCAS, ACAS) and 

Noncooperative Sensing (e.g., vision sensors, RADAR and FOV). 

1.2.1. Cooperative Sensing 

As discussed by Skowron et al. (2019), cooperative sensing is based on several 

aircraft, which are equipped with similar devices, cooperating with each other, with the 

information transmitted between the aircraft. The most common cooperative sensors are 

ADS-B, TCAS, ACAS. In the beginning, those sensing solutions were designed for large 

scale manned aircraft to avoid midair collisions, but with further development, their size 

has been modified to fit mid or small-scale vehicles like UAVs. 

Airservices Australia introduces the working principle of the Automatic Dependent 

Surveillance-Broadcast (ADS-B) system in detail in “How ADS-B works”.  

ADS-B periodically broadcasts the precise position of aircraft, which is obtained by 

satellite navigation (2012). The position information is transmitted between aircraft, 

which can use the data to find out the position of the aircraft, such that RADAR is no 

longer required. The system does not need any pilot input and can continuously provide 

all the necessary flight data like position and velocity to the other aircraft. ADS-B can 

effectively reduce collisions and ensure safety and is regarded as essential in the future 

Unmanned Aircraft Systems (UAS) and Sense-and-Avoid (SAA) systems. 
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Figure 1.2  ADS-B schematic diagram (“Automatic dependent surveillance – broadcast”, 
n.d.). 
 

    Collision avoidance systems have been under development for many years. As 

early as the late 20th century, the Traffic Collision Avoidance System (TCAS) or Traffic 

Alert and Collision Avoidance System was originated, which tries to prevent mid-air 

collisions between two aircraft. TCAS can monitor the airspace including all aircraft that 

are equipped with a corresponding active transponder. The monitoring system will 

independently warn pilots of the existence of those transponder-equipped aircraft and the 

potential of mid-air collision (MAC). 

     TACS can effectively prevent collisions, but its deterministic logic also results in 

several limitations. For example, TCAS does not account for uncertainty caused by the 

pilot.  Different from TCAS, the Airborne Collision Avoidance System (ACAS, usually 

pronounced as ay-kas) can warn pilots of uncertainties and risk of collision threats by 
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applying probabilistic models to avoid false positives. When the system detects high risk, 

the system will commence a maneuver to avoid any imminent collision (Essen & 

Giannakopoulou, 2014).  

 

 

Figure 1.3  TCAS schematic diagram (Essen & Giannakopoulou, 2014). 
 

1.2.2. Noncooperative Sensing 

Compared with cooperative sensing, noncooperative sensing does not need other 

aircraft to participate in cooperation or share flight data with others. Aircraft equipped 

with this sensing solution deal with collision risk independently by analyzing signals 

from on-board sensors. Due to its independence, noncooperative sensing is suitable for 

small scale UAV collision avoidance at low altitude, and the technology development 

over the past several years has made this approach possible for UAV applications. Some 

common non-cooperative sensors include electro-optical sensor and RADAR. 

Vision sensors, which can provide images containing the coordinates of obstacles are 

commonly used sensors for collision avoidance. The SAA system can get useful 
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information directly from the image plane. For example, Saha, Natra and Waharte (2014) 

developed an SAA system by using a monocular camera to measure the real distance 

between the obstacles and the UAV. Vision sensors have the following advantages (Pham 

et al., 2015): 

1. They are small and lightweight, making them suitable for integration on small 

UAVs to complete avoidance maneuvers. 

2. They are easy to operate, which is beneficial to civil and business applications. 

3. Vision sensors can directly measure LOS angles for specific avoidance 

algorithms. 

4. This type of sensor resembles our natural vision, which makes it promising and 

gives researchers significant intuition. 

Radio Detection and Ranging (RADAR) is another representative sensing system 

which can provide useful information based on electromagnetic waves in the radio or 

microwave spectrum. According to Viquerat (2007), not only the obstacle velocity and 

range, but also the angular location with respect to the observer can be returned by the 

continuous wave microwave doppler RADAR under certain circumstances (pp. 245-254). 

Compared to cameras, a RADAR system has a larger detection range.  

Similar to RADAR, Light Detection and Ranging (LIDAR) and Sound Navigation 

and Ranging (SONAR) are also UAV-friendly active methods. LIDAR sensors illuminate 

laser light impulses and measure the reflected light to calculate the distance and create a 

3D representation of a digital image. SONAR uses acoustic waves reflection to 

accomplish a measurement. It is important to note that light impulses can help the sensing 

system to perform high-precision calculations, but they are also more susceptible to 
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atmospheric conditions. In contrast, SONAR performance also depends on the weather, 

but it can maintain high accuracy while keeping a lower cost. Therefore, SONAR is more 

popular in UAV applications (Skowron et al., 2019).  

1.3. Detection and Maneuver Approach 

After sensing obstacle information, the next important step is determining if a 

collision will occur; then the collision avoidance system can make a decision to generate 

an avoidance command. Whether the impact can be accurately detected is a critical 

quality of the system, which depends on the sensing information and the algorithms used 

to process the sensor data. At present, the most commonly used methods are trajectory 

calculation and distance estimation (Pham et al., 2015). 

Trajectory calculation and distance estimation methods have the same basic idea, 

which is checking the distance between the UAV and the obstacle when the distance is 

less than a setup threshold value. The detection system will regard the obstacle as an 

imminent collision. These methods are widely used in CAS; both of them will calculate 

the shortest distance between the objects. Therefore, it requires the sensors to have the 

ability to provide an accurate position or distance to obstacles. Based on this theory, a 

monocular detection method was proposed, which could merge the approximate outline 

of obstacles from multi-scale-oriented patches (MOPS) and the spatial coordinates of 

feature points calculated by the scale-invariant feature transform (SIFT) algorithm (Lee, 

Lee, Park, Im, & Park, 2011). A quadcopter frontal obstacle detection and avoidance in a 

GPS denied environment was achieved by Saha et al. (2014). 

A bearing angle approach method was proposed by Saunders and Beard (2008). In 

this paper, the field of view (FOV) was considered as a “no obstacle” range. Thus, when 
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the obstacle can be detected within the camera FOV, the UAV will generate a maneuver 

by changing the bearing angle until the targets disappeared from the FOV.  

In this thesis, inspired by recent research from Clark (2017), a proportional navigation 

collision detection algorithm is developed, which is based on the vision information from 

a monocular camera. In this case, the guidance system can determine avoidance 

maneuvers by using standard camera hardware to measure line-of-sight angles. 

1.4. Proportional Navigation 

In this thesis, based on camera sensing, proportional navigation is implemented to 

achieve detection and avoidance. Proportional navigation, also known as Pro-Nav, is a 

guidance law that was proposed initially for missile interception. The research on 

proportional navigation can be traced back to World War II. In 1950, the first missile to 

use proportional navigation was tested successfully (Zarchan, 1994). Until now, the 

studies on proportional navigation have made great progress. There are six proportional 

navigation laws in common use including true proportional navigation (TPN), realistic 

version of true proportional navigation (RTPN), generalized proportional navigation 

(GTPN), ideal proportional navigation (IPN), pure proportional navigation (PPN) and 

optimal proportional navigation (OPN) (Li et al., 2013). 

Since the 1940s, 2D proportional navigation has been studied in a lot of literature and 

that research also achieved great success. The fundamental law was posted by 

Northwestern Polytechnical University.  
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Figure 1.4  2-D proportional navigation (Northwestern Polytechnical Univ., 2012). 
 

As shown in Figure 1.4, 𝐷 is the missile with a constant velocity 𝑉 and M is the 

target with a constant velocity 𝑉ெ.  The vector pointing from missile to target 𝑅ሬ⃗  is the 

line-of-sight vector; by defining a reference direction vector 𝐷𝐻ሬሬሬሬሬሬ⃗ , we can obtain the LOS 

angle ∠𝑞. The proportional navigation law states that a collision will occur when the 

relative velocity VR is aligned with the LOS; thus, q will remain constant throughout the 

end game (Murtaugh & Criel, 1966). 

 

 

Figure 1.5  2-D frame proportional navigation intercept scenario-1 (Clark, 2017). 
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Simulation results using proportional navigation interception laws can be seen in 

Figures 1.5 and 1.6 (Clark, 2017). Figure 1.5 displays a typical interception scenario, in 

which the UAV represents an interceptor with an initial north heading. At the same time, 

the target starts at a point one half-mile north and one mile west of the UAV with a 26.6° 

heading and the same velocity as the UAV, which can be detected as a positive LOS rate. 

The controller reacts almost immediately to drive the UAV to intercept by changing the 

heading westward to the target. 

 

 

Figure 1.6  2-D frame proportional navigation intercept scenario-2 (Clark, 2017). 
 

Another example is shown in Figure 1.6, in which the UAV is flying with the same 

initial condition; the target starts a mile and a half east of the UAV start point with the 

same constant velocity but a different -90 heading. In this case, the target is detected in a 

different direction, which provides a negative initial LOS rate. However, the UAV will 

still change heading by a negative angle to intercept with a constant LOS angle. In 

conclusion, the Pro-Nav guidance result is not affected by the bearing of the target but 

only by the sign and value of the LOS rate. 
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In the early literature, proportional navigation was divided into two basic types – pure 

proportional navigation (PPN) and true proportional navigation (TPN) (Guelman, 1976). 

The difference between the two guidance laws is that the command acceleration is 

applied along the normal vector of missile velocity and the target line-of-sight (LOS) in 

PPN and TPN, respectively. In 1976, the closed solution of the equations of motion 

according to the TPN was provided by Guelman, and it started research on the 

performance analysis of the TPN in a nonlinear framework. After this, the closed solution 

was also obtained from nonlinear equation of motion and trajectory analysis by several 

such researches by Yang et al. (1980) and Becker (1990). 

However, all of the above literature made numerous assumptions when analyzing the 

equations of motion because of the highly nonlinear nature of those equations. In order to 

make the analysis results closer to reality, Dhar and Ghose investigated the realistic 

version of true proportional navigation (RTPN) by reducing the simplifying assumption 

on the closing velocity between the missile and the interception target. 

The generalized proportional navigation (GTPN) was defined by Yang et al. (1987) 

and developed the closed form solution of equations of motion under this guidance law. 

The GTPN is a similar law as PN, but the commanded missile acceleration does not have 

to be the normal vector of LOS. In some circumstances, GTPN has a larger capture area 

and a shorter intercept time compared to TPN; therefore, GTPN can be considered as a 

better guidance law in these scenarios. 

The traditional PN laws have been widely studied and developed, but the LOS 

referenced PN law was found to be hard to achieve practically (Sakula & Mahapatra, 

1990). Therefore, a new guidance law called ideal proportional navigational (IPN) was 
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developed. In IPN, the commanded acceleration is along the normal vector of the relative 

velocity rather than the LOS vector and it is proportional to the product of the LOS rate 

and the relative velocity (Yuan & Chern, 1992). According to the closed form solution, 

IPN could be considered as the most effective guidance law out of all PN laws.  

Since the real intercept happens in a three-dimensional environment, 3D Pro-Nav has 

also been studied extensively. The 3D generalized proportional navigation was 

introduced by Yang and Yang (1996); in their work, the analytical solution was also 

derived, which solved the difficulties existing in coupled nonlinear equations. In 1995, 

Guelman et al. provided a 3D minimum energy guidance law based on the pure 

proportional navigation (PPN). In contract to missile intercept guidance, proportional 

navigation has also been studied for 3D collision avoidance. A vision aided Pro-Nav law 

was developed for micro air vehicles by Beard et al. (2007).  In their paper, the guidance 

laws were derived for both bank-to-turn and skid-to-turn equations of motion. 

1.5. Thesis Objectives and Summary  

This thesis extends the previous literature and applies the Pro-Nav to automatic 

collision avoidance based on the interception guidance law. This thesis focuses on the 

three-dimensional algorithm and designs a 3D collision avoidance system based on the 

pro-Nav law. In order to complete a 3D maneuver, a flight path selection switch was 

designed to make the UAV select vertical or lateral maneuvers to accomplish the 

avoidance. In addition, this thesis investigates the UAV performance with camera noise 

and develops a method to improve the performance. The rest of the thesis is organized as 

follows: Chapter 2 elaborates on the sensing and detection method, which includes the 

camera, UAV modeling and 3D line of sight definition. Chapter 3 describes the 3D 
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proportional navigation law and discusses the flight path selection law. This chapter also 

provides weighting function methods to generate guidance commands.  By implementing 

this method, the flight path is optimized by minimizing cost functions. Chapter 4 

provides simulation results in several scenarios by analyzing the resulting trajectories and 

some specific metrics. Chapter 5 and 6 discusses the influence of different factors on 

UAV performance, including noise in the image measurements, and then verifies the 

feasibility and robustness of the system. 
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2. Vision System and UAV Modeling 

The collision avoidance system is shown in Figure 2.1 and has four parts: aircraft, 

sensor, guidance command generator, and controllers. In this thesis, a middle-scale fixed-

wing UAV model is selected, and the 12 flight dynamics equations of motion are used to 

model non-linear, six-degree-of-freedom (DOF) UAV dynamics to calculate UAV states 

in a simulation environment. 

 

 

Figure 2.1   Diagram of collision avoidance system.   
 

2.1. UAV Model  

In this thesis, a Navion aircraft is selected as a representative medium-scale, fixed-

wing UAV model. The wingspan is 33.4 ft, the weight is 2756 lbf and the wing surface is 

184.1 ft2. According to the size of the UAV, the collision occurs when the obstacle miss 

distance is within the half wingspan. Aerodynamic data for this aircraft at sea level are 

available in (Nelson, 1998). The aircraft mass and geometric parameters are provided in 

Table 2.1.  
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Table 2.1  

UAV Model Parameters 

Parameter Value Unit 
Wingspan (𝒃𝒘ሻ 33.4 𝑓𝑡 
Wing aspect ratio (𝑨𝒘ሻ 6.06  
Chord length (𝒄𝒘ሻ 5.7 𝑓𝑡 
Wing surface area (𝑺𝒘ሻ 184.1 𝑓𝑡ଶ 
Weight (W) 2756 𝑙𝑏𝑓 

 

The UAV maneuvers are controlled by several PID controllers, which include rolling, 

pitching, heading and velocity controllers. The UAV velocity and rudder deflection are 

maintained at a trim condition and zero, respectively, during maneuvering. Rolling and 

pitching angles are controlled by rolling and pitching PID controllers to accomplish the 

guidance commands generated by the Pro-Nav guidance law to complete avoidance 

maneuvers.  

The guidance and control system is designed to generate two uncoupled avoidance 

maneuvers: vertical maneuvers and lateral maneuvers. The vertical avoidance is 

accomplished by pitching the UAV to change the vertical flight path angle, and lateral 

avoidance is performed using a bank-to-turn maneuver generated by a heading change. 

The bank-to-turn maneuver, also known as a banking turn, is a fundamental motion for 

fixed-wing aircraft. As shown in Figure 2.2, turning is started by inclining the wings to 

let the aircraft roll. Therefore, the unopposed component of the lift will generate a side 

force perpendicular to the flight path, which will make the aircraft change its heading. In 

UAV simulation model, the UAV rudder is fixed to ensure the heading change is only 

generated by the bank-to-turn maneuver. 
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Figure 2.2  Aircraft bank-to-turn maneuver (NASA Glenn Research Center, 2015). 
 

The commanded roll change ∆𝜙 is proportional to the commanded heading 

change ∆𝜓 , and ∆𝜙 can be expressed in Equation (1): 

∆𝜙 ൌ 𝐾థ  ∆𝜓 ሺ1ሻ                   

𝐾థ is a proportional gain, which can convert the commanded heading change 

∆𝜓 to a commanded roll angle change ∆𝜙. Then, the roll PID controller output 

will command the aileron actuator to generate a deflection, which is shown in Figure 2.3. 

 

 

Figure 2.3  Diagram of Bank-to-turn control method for lateral UAV maneuvers. 
 

The pitching maneuver is accomplished by changing the vertical flight path angle 𝛤,  

which can be expressed as: 

𝛤 ൌ 𝜃/ െ α ሺ2ሻ 
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𝛼 is the UAV angle of attack (AOA); thus, the vertical flight path angle can be 

represented by the difference between the UAV pitch angle and AOA.  

 

 

Figure 2.4  Diagram of vertical maneuver control method for UAV simulations. 
 

Then, the pitch PID controller output will command the elevator actuator to generate a 

deflection, which is shown in Figure 2.4. 

2.2. Camera Model 

In this thesis, a monocular camera with [-30, 30] field of view and 1280 x 1280 

pixel resolution is selected and modeled.  Compared to other vision devices like stereo 

cameras, the monocular camera has a simpler structure, which means it can provide the 

necessary information while saving cost. Besides, the measurement range of stereo is 

limited by the distance between two cameras; this shortcoming does not exist in 

monocular applications. Those advantages make monocular vision a suitable choice for 

small to middle scale UAV applications. However, monocular vision also has a big 

limitation in that it cannot resolve range information. A monocular camera lacks the 

ability to locate the exact position and determine the real size of targets. Therefore, a 

proportional navigation algorithm (Pro-Nav) was developed that only uses the line of 

sight (LOS) angles, which can be measured using monocular vision and line of sight 

rates, rather than the 3D target location, to accomplish the avoidance. 
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Figure 2.5  Camera mapping model (CSDN, n.d.). 
 

2.3. Coordinate Transformation 

The LOS vector is defined as the vector pointing from the UAV center of mass to the 

target in the inertial (NED) frame, which can be expressed as: 

𝐿𝑂𝑆 ൌ 𝑟
ா െ 𝑟

ா ൌ 
𝑋
𝑌
𝑍መ
൩ ሺ3ሻ 

in which 𝑟
ா and 𝑟

ா are the target and UAV positions in the NED frame and, 𝑋, 𝑌 and 𝑍መ 

are the projections of the LOS vector on the north, east, and Z axes.  It is imperative to 

convert all the calculations to the inertial frame, because all measurements need to be in a 

common reference frame in order to compute LOS rates.  

According to the relationship between the coordinates mentioned above, the back-

projecting method can be utilized to map the targets from the pixel frame to the NED 

frame. The mapping starts from the pixel frame, where the obstacle information is 

captured. 
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As shown in Figure 2.6, ሺ𝑢, 𝑣ሻ  are the pixel frame coordinates, whose origin 𝑂௨௩, is 

located at the left top corner, and ሺ𝑥, 𝑦ሻ  are the image frame coordinates, whose origin 𝑂 

is located at the center of the image plane. 

 

 

Figure 2.6  Target location in the pixel and image frames (CSDN, n.d.). 
 

The transformation from pixel to image coordinates can be expressed as: 

൞
𝑢 ൌ

𝑥
𝑑𝑥

 𝑢;

𝑣 ൌ
𝑦
𝑑𝑦

 𝑣;
ሺ4ሻ 

where 1 𝑝𝑖𝑥𝑒𝑙 ൌ 𝑑𝑥 𝑚𝑚. This result in the following transformation: 

ቈ
𝑥
𝑦
1
 ൌ K ቈ

𝑢
𝑣
1
 ൌ  

⎣
⎢
⎢
⎢
⎡

1
𝑑𝑥

0 𝑢

0
1
𝑑𝑦

𝑣

0 0 1 ⎦
⎥
⎥
⎥
⎤
ିଵ

ቈ
𝑢
𝑣
1
 ሺ5ሻ 

In equation (5), K is defined as the intrinsic calibration matrix to transform the 

coordinates from the pixel frame into the image frame. 
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Figure 2.7  Target location in the image and camera frames (CSDN, n.d.). 
 

Figure 2.7 shows the calibration from the image frame into the camera frame. 

ሺ𝑋 ,𝑌 ,𝑍ሻ  represents the target with respect to the camera frame, the origin of which is 

the optical center. The triangles constituted by the target points, image plane and optical 

center comply with the similar triangle theorem, which results in: 

𝐴𝐵
𝑜𝐶

ൌ
𝐴𝑂
𝑜𝑂

ൌ
𝑃𝐵
𝑝𝐶

ൌ
𝑋
𝑥
ൌ
𝑍
𝑓
ൌ
𝑌
𝑦

ሺ6ሻ 

𝑥 ൌ 𝑓
𝑋
𝑍

 , 𝑦 ൌ 𝑓
𝑌
𝑍

ሺ7ሻ 

where 𝑓 is the focal distance. Assuming the unknown value 𝑍 as 1, the following 

physical relationship is obtained: 

𝑅ூ
 ቈ
𝑥
𝑦
1
  ൌ 

𝑓 0 0
0 𝑓 0
0 0 1

൩

ିଵ

ቈ
𝑥
𝑦
1
 ሺ8ሻ 

Finally, the LOS vector can be mapped into the inertial frame as: 


𝑋
𝑌
𝑍መ
൩=ሾ𝐷𝐶𝑀ሿିଵ𝑅

𝑅ூ
𝐾 ቈ

𝑢
𝑣
1
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ൌ ሾ𝐷𝐶𝑀ሿିଵ 
0 1 0
0 0 െ1
1 0 0

൩ 
𝑓 0 0
0 𝑓 0
0 0 1

൩

ିଵ

 

⎣
⎢
⎢
⎢
⎡

1
𝑑𝑥

0 𝑢

0
1
𝑑𝑦

𝑣

0 0 1 ⎦
⎥
⎥
⎥
⎤
ିଵ

ቈ
𝑢
𝑣
1
 ሺ9ሻ 

𝑅
 is the transformation matrix from camera to body-fixed axes. In this thesis, the 

camera is aligned with the body-fixed axes, so the transformation simply reorders the 

coordinate axes. ሾ𝐷𝐶𝑀ሿ is the commonly known Direction Cosine Matrix that defines the 

transformation from the inertial to the body-fixed frame: 

ሾ𝐷𝐶𝑀ሿ ൌ 
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 െ𝑠𝑖𝑛𝜃

െ𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓  𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓  𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓  𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 െ𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓  𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

൩ 

where 𝜙, 𝜓, 𝜃 represent the UAV roll, yaw and pitch angles. Without loss of generality, 

𝑋 is assumed to be 1 to rescale the LOS vector; then we can obtain the LOS direction 

vector: 

𝑙𝑜𝑠 ൌ

⎣
⎢
⎢
⎢
⎡
1
𝑌

𝑋
𝑍መ

𝑋⎦
⎥
⎥
⎥
⎤

ൌ 
𝑥ො
𝑦ො
�̂�
൩ ሺ10ሻ 

2.4. Line of Sight Vector 

For implementing the Pro-Nav law in a 3D environment, the LOS angles must be 

computed in the same reference frame. Therefore, a frame called the vehicle frame is 

defined to achieve that. As shown in Figure 2.8, the vehicle frame, whose axes are 

denoted by (Xv, Yv, Zv), is oriented identically to the inertial frame, but its origin is at 

the vehicle center of mass (Beard et al., 2007). 
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Figure 2.8  Vehicle frame and body frame (Beard et al., 2007). 
 

Then, the 3D LOS angle can also be decomposed into the two projection planes to 

yield a horizontal LOS angle 𝜒 and a vertical LOS angle 𝛾, which can be derived as 

follows: 

𝜒 ൌ tanିଵ ൬
𝑦ො
𝑥ො
൰ ሺ11ሻ  

𝛾 ൌ tanିଵ ൬
�̂�
𝑥ො
൰ ሺ12ሻ 

Assuming the sideslip is approximately equal to 0, the projection of the angle 

between 𝑋௩ and 𝑋 on ሺ𝑋௩ ,𝑌௩ሻ  coordinates can represent the UAV heading angle 𝜓, and 

the projection of the angle between 𝑋௩ and 𝑋 on ሺ𝑋௩,𝑍௩ሻ can represent the UAV vertical 

flight path angle Γ. 

The lateral and longitudinal LOS rates can be estimated as follows: 

𝜒ሶሺ𝑡ሻ ൌ
𝜒ሺ𝑡ሻ െ 𝜒ሺ𝑡ିଵሻ

∆𝑡
ሺ13ሻ 

𝛾ሶሺ𝑡ሻ ൌ
𝛾ሺ𝑡ሻ െ 𝛾ሺ𝑡ିଵሻ

∆𝑡
ሺ14ሻ 

where ∆𝑡 is the image sampling step. 
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Equations (13) and (14) provide the basis for an ideal vision-based pro-Nav intercept 

law, in which an interceptor will try to collide with a target with a constant velocity and 

heading angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

3.  Proportional Navigation Law – Weighting Function Approach 

2D Pro-Nav guidance laws are be reversely applied to avoid collisions by detecting 

the impact threat and deriving commands away from the ideal interception command. To 

achieve autonomous collision avoidance, the system needs to satisfy the following 

properties: 

1. Being able to detect the collisions. 

2. The guidance should consider every target that is a potential collision threat. 

3. Have the ability to determine the maneuver type: lateral or longitudinal. 

3.1. Flight Path Selection 

To complete a collision avoidance maneuver, a very important step is flight path 

selection. In other words, the CAS has to determine whether a lateral or vertical 

maneuver should be performed. Based on the two kinds of LOS projected angles, we can 

also decouple a 3D maneuver into two 2D maneuvers with respect to the 𝜓 and Γ angles, 

which are rolling maneuvers and pitching maneuvers. 

 

 

Figure 3.1  Typical building obstacles in urban environments (‘Tower’, n.d.). 
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Figure 3.1 shows two typical scenarios in urban environments respectively.  The left 

side of Figure 3.1 represents a “tower” and the right side represents a “bridge”.  In both 

cases, the object is represented in terms of a number of discrete feature points as might be 

identified in the image plane. It can be noticed that the sum of horizontal LOS angles of 

the feature points is less than the sum of vertical LOS angles ( ∑ 𝝌𝒊 ൏ ∑ 𝜸𝒊
𝑵
𝒊

𝑵
𝒊  ) for the 

tower; in other words, it is “tall” which suggests that a lateral avoidance maneuver would 

be optimal. For the bridge, the sum of horizontal LOS angles is greater than the sum of 

vertical LOS angles ( ∑ 𝝌𝒊  ∑ 𝜸𝒊
𝑵
𝒊

𝑵
𝒊  ) suggesting that a vertical maneuver would be a 

better option. In a real 3D urban environment, UAVs should try to avoid obstacles with a 

safety margin; we do not want to be too close for an optimal trajectory and minimum 

energy cost.  Therefore, Figure 3.2 provides the ideal avoidance maneuvers for these 

scenarios. 

 

 

Figure 3.2  Ideal optimal Pro-Nav avoidance trajectories. 

 
Figure 3.2 provides the optimal trajectories, in which the UAV bypasses the tower 

from one side and crosses the bridge from above. Thus, those two scenarios provide a 
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logic that, if ∑ 𝝌𝒊 ൏ ∑ 𝜸𝒊
𝑵
𝒊

𝑵
𝒊  the UAV will perform a lateral maneuver to bypass 

obstacles; on the other hand, if ∑ 𝝌𝒊  ∑ 𝜸𝒊
𝑵
𝒊

𝑵
𝒊  the UAV will generate a vertical maneuver 

to cross the obstacles.  The basic concept of this last result is decomposing a complex 3D 

maneuver into two 2D maneuvers, which also conforms to the 3D Pro-Nav logic to 

decompose the 3D scenario into two 2D scenarios. 

3.2. 3D Pro-Nav Law 

To apply the 2D equation to a 3D environment, a 3D maneuver has to be regarded as 

a composition of Pro-Nav guidance laws in maneuvers on different planes. In other 

words, a 3D command angle also needs to be decomposed to multiple projection angles 

on the planes similar to the LOS angles. Thus, in this thesis, a 3D maneuver command is 

orthogonally projected onto the ሺ𝑋௩,𝑌௩ሻ and ሺ𝑋௩,𝑍௩ሻ planes to become 𝜓 and 𝛤. 

Then expanding the Pro-Nav law to the 3D environment to generate commanded heading 

and vertical flight path angles, we obtain: 

ψሶ ୡ୭୫ ൌ Nୌχሶ ሺ15ሻ 

Γሶୡ୭୫ ൌ Nγሶ ሺ16ሻ 

where ψୡ୭୫ and Γୡ୭୫ represent the ideal interception commanded heading angle and 

flight path angle. The proportional gains Nୌ and N are constants that can be tuned to 

achieve an optimal intercept trajectory.  

∆𝜓 ൌ 𝑁ு𝜒ሶ𝛥𝑡 ሺ17ሻ 

∆𝛤 ൌ 𝑁𝛾ሶ𝛥𝑡 ሺ18ሻ 

According to Equations (15) and (16), the commanded angle change within a time 

step is provided in Equations (17) and (18). The time step Δt represents the sample step, 

or frame rate, of the camera sensor. 
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Recall the baseline Pro-Nav guidance law defined previously. Substituting Equation 

(1) into Equation (17) simplifies the control law further, resulting in: 

∆𝜙 ൌ 𝐾థ 𝑁ு𝜒ሶ𝛥𝑡 ሺ19ሻ 

∆𝛤 ൌ 𝑁𝛾ሶ𝛥𝑡 ሺ20ሻ 

Equations (19) and (20) show that the Pro-Nav intercept commands for a fixed-wing 

UAV can be executed by rolling and pitching maneuvers; the command angles are 

proportional to the lateral and vertical LOS angles respectively. Rolling and pitching 

maneuvers are independent with each other at least to first order, such that when the 

target and UAV are in the same plane, only one maneuver is needed, which can greatly 

reduce calculation and energy cost. 

3.3. Collision Avoidance: Weighting Function Method 

The last section provides the baseline guidance law for the Pro-Nav interception. 

While forcing a UAV to intercept a target is not the goal of this work, knowledge of the 

optimal intercept angles provides information that can be used for collision avoidance. 

For example, when the UAV is on a collision course, the LOS rates to the target should 

be zero; meanwhile the ideal intercept command angle should be also zero. Therefore, 

computing the intercept angles provides knowledge of maneuvers that will result in a 

collision.  The entire UAV trajectory includes two main components – avoiding obstacles 

and approaching a desired waypoint. Thus, the overall guidance law needs to balance the 

maneuver between avoiding multiple collision threats while still achieving the mission 

goal. 

To consider all the potential collision threats and the desired waypoint to obtain an 

optimal trajectory, a cost function approach is implemented that consists of every target 
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(waypoint and obstacles). These targets are given different weights based on the Pro-Nav 

factors, LOS rates and Pro-Nav constants.  

Before deriving the cost function, the collision requirements are modified to account 

for uncertainty in the LOS rates.  Define a threshold 𝜖  0,  with  𝜖 chosen to be a very 

small value, and 𝜒ሶ and 𝛾ሶ  are the obstacles’ LOS rates with respect to the UAV.  

According to the Pro-Nav law, a collision is likely to occur when both |𝜒ሶ | and |𝛾ሶ  |< 𝜖. 

To derive the UAV guidance commands to avoid each collision threat while 

approaching the desired waypoint along an optimal trajectory, the baseline guidance law 

is applied in an optimization based approach as follows: 

∆𝜙 ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ሺ𝐽ଵሺ∆𝜙,𝜒௪ሶ ,𝜒పሻሻሶ ሺ21ሻ 

∆𝛤 ൌ 𝑎𝑟𝑔𝑚𝑖𝑛ሺ𝐽ଶሺ∆𝛤, 𝛾௪ሶ , 𝛾పሻሻሶ ሺ22ሻ 

where  𝜒௪ሶ  and 𝛾௪ሶ  are the LOS rates to the goal waypoint. ሼ𝜒పሶ ሽୀଵ
ே  and ሼ𝛾పሶ ሽୀଵ

ே  are 

the LOS rates to each collision threat. 

 Then the lateral and vertical maneuver cost functions are defined as: 

𝐽ଵ ൌ 𝑊௪ு൫𝛥𝜙 െ 𝑁ு𝜒௪𝛥ሶ 𝑡൯
ଶ
𝑊ு𝑓൫𝛥𝜙,  𝜒௪ప,𝛥ሶ 𝑡൯

ଶ
ே



ሺ23ሻ 

𝐽ଶ ൌ 𝑊௪൫𝛥𝛤 െ 𝑁ு𝛾௪𝛥ሶ 𝑡൯
ଶ
𝑊𝑓൫𝛥𝛤,  𝛾௪ప,𝛥ሶ 𝑡൯

ଶ
ே



ሺ24ሻ 

In these cost functions,  

𝑊௪ு ,𝑊௪  0 ሺ25ሻ 

⎩
⎪
⎨

⎪
⎧ 𝑊ு  0,   𝜒ሶ  𝜖 ∪  𝛾ሶ    𝜖 ∪𝜒 ൏𝛾

ே



ே



     𝑊ு ൌ 0,    𝜒ሶ  𝜖 ∩  𝛾ሶ   𝜖 ∩𝜒 ൏𝛾

ே



ே



ሺ26ሻ 
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⎩
⎪
⎨

⎪
⎧ 𝑊  0,   𝜒ሶ  𝜖 ∪  𝛾ሶ    𝜖 ∪𝜒 𝛾

ே



ே



     𝑊 ൌ 0,    𝜒ሶ  𝜖 ∩  𝛾ሶ   𝜖 ∩𝜒 𝛾

ே



ே



ሺ27ሻ 

 
Equation (23) and (24) are lateral and vertical weighting functions, respectively, and 

are minimized independently. The goal is to compute 𝛥𝜙 and 𝛥𝛤 in a specific 

range by minimizing  𝐽ଵ and 𝐽ଶ, thus providing an optimal trajectory.  In this thesis,  𝐽ଵ 

and 𝐽ଶ are minimized in Matlab by using the function ‘fminbnd’. This function can find 

the minimum of a single-variable function on a fixed interval. For example, x = 

fminbnd(fun,x1,x2), where x is the command angle, ‘fun’ is the weighting function and 

x1, x2 are the design range of the command angle. The two parts of the cost function 

represent approaching the waypoint and avoiding obstacles by approaching zero 

respectively to result a minimum value of 𝐽. Therefore, setting and tuning different 

weighting values like 𝑊௪ and 𝑊  can balance the maneuver between collision 

avoidance and waypoint navigation. 

In this thesis, the waypoint navigation has a fixed format. For example, when 𝛥𝜙 

is closer to the ideal waypoint interception command 𝑁ு𝜒௪𝛥ሶ 𝑡, the first part of the 

weighting function approaches zero, which means the UAV is on the proper heading to 

the waypoint, and similarly for the vertical case. On the other hand, several different 

forms for the avoidance term were considered in this work. 

Both 𝛥𝜙 and 𝛥𝛤 are computed at each time step, but obstacle information is 

only included for one or the other based on the maneuver type. Since the UAV should 

approach the waypoint throughout the trajectory, the weights  𝑊௪ு and 𝑊௪  should 
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always be greater than zero. Then, recalling the flight path selection logic mentioned in 

the previous chapter, if a pitching maneuver is expected, the weight of the vertical 

avoidance components should be greater than zero and the lateral avoidance component 

should be equal to zero. On the contrary, the opposite series occurs when a lateral 

maneuver is expected.  When  ∑ 𝜒 ൌ ∑ 𝛾
ே


ே
  , the equations are determined by 

comparing the vertical maneuver trajectory and the lateral maneuver trajectory in a single 

point scenario, which will be discussed in the next chapter. 

In order to study the application and performance of the guidance law for collision 

avoidance, two different types of weighting functions are developed and implemented. 

The specific formulas are developed in the next section. 

3.4. Inversion Weighting Function  

The inversion weighting cost functions for lateral and vertical guidance are defined 

as: 

𝐽ଵሺ𝛥𝜙ሻ ൌ 𝑊௪ு൫𝛥𝜙 െ 𝑁௪ு𝜒௪𝛥ሶ 𝑡൯
ଶ
𝑊ு

1

൫𝛥𝜙 െ 𝑁ு𝜒ప𝛥ሶ 𝑡൯
ଶ

ே



𝐽ଶሺ𝛥𝛤ሻ ൌ 𝑊௪൫𝛥𝛤 െ 𝑁௪𝛾௪𝛥ሶ 𝑡൯
ଶ
𝑊

1

൫𝛥𝛤 െ 𝑁𝛾ప𝛥ሶ 𝑡൯
ଶ

ே
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In Equation (28), the first term in the cost functions encourages guidance angles 𝛥𝜙 

and 𝛥𝛤  to approach a goal waypoint, ൫𝛥𝜙 െ 𝑁ு𝜒ప𝛥ሶ 𝑡൯
ଶ
 and ൫𝛥𝛤 െ

𝑁ு𝛾ప𝛥ሶ 𝑡൯
ଶ
 represent approaching obstacles in two directions, where  𝑁ு𝜒𝛥ሶ 𝑡  and 

𝑁𝛾𝛥ሶ 𝑡 are the ideal command angles to intercept the obstacles. In this case, those 

two terms are implemented in the denominator, which means the second term  of the 

weighting function is repulsive to angles that would result in collisions. In this manner, 
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the weighting function achieves a balance between waypoint following and collision 

avoidance maneuvers to obtain an optimal trajectory.   

3.5. Virtual Point Weighting Function 

An alternative virtual point approach was developed: 

𝐽ଵሺ𝛥𝜙ሻ ൌ 𝑊௪ு൫𝛥𝜙 െ 𝑁௪ு𝜒௪𝛥ሶ 𝑡൯
ଶ
𝑊ு൫𝛥𝜙 െ 𝑁ு𝜒௩ప𝛥ሶ 𝑡൯

ଶ
ே



𝐽ଶሺ𝛥𝛤ሻ ൌ 𝑊௪൫𝛥𝛤 െ 𝑁ு𝛾௪𝛥ሶ 𝑡൯
ଶ
𝑊൫𝛥𝛤 െ 𝑁ு𝛾௩ప𝛥ሶ 𝑡൯

ଶ
ே
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In contrast to the inversion method, virtual point uses a direct method to balance the 

waypoint following and obstacle avoidance maneuvers. Recalling the definition of the 

direction LOS vector, a virtual direction LOS vector is defined with a miss distance on 

the 𝑦ො and �̂� components, which is expressed in equation (30). 

los ൌ 
𝑥ො

𝑦ො  𝑀௬

�̂�  𝑀

 ൌ 
𝑥ො
𝑦ො
𝑦ො
 ሺ30ሻ 

Then the virtual LOS vector can provide virtual LOS rates 𝜒௩ሶ  and 𝛾௩ሶ , similar to 𝛥𝜙 

and 𝛥𝛤 ; both the virtual LOS rates, 𝜒௩ሶ  and 𝛾௩ሶ , are computed at each time step. The 

terms ൫𝛥𝜙 െ 𝑁ு𝜒௩𝛥ሶ 𝑡൯
ଶ
 and ൫𝛥𝛤 െ 𝑁ு𝛾௩𝛥ሶ 𝑡൯

ଶ
 represent approaching a virtual 

waypoint, which is equivalent to an obstacle avoidance maneuver.  Therefore, this kind of 

cost function achieves a balance between the two intercept maneuvers for waypoint and 

virtual obstacles.  
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4. SIMULATION RESULTS 

The basic logic of avoidance and the weighting function approach have already been 

derived in the previous chapters. Several different scenarios are implemented in 

simulation in this chapter to investigate the feasibility and robustness of this guidance and 

control law. 

MATLAB/Simulink is the elemental simulation environment in which the research is 

implemented in this thesis. The entire UAV model and guidance avoidance system are 

mostly modeled by Simulink blocks, cooperated with MATLAB coding functions, and 

called in Simulink.  

 

 

Figure 4.1  Diagram of overall Simulink block configuration. 
 

As shown in Figure 4.1, the UAV is simulated as a 6-dof rigid body and modeled in 

the UAV dynamics block. The rest of the system is modeled in other main blocks, such as 

the guidance block, PID controller blocks, and target generating blocks. 

The UAV dynamics are modeled using a component build-up method.  The UAV 

dynamics simulation block is shown in Figure 4.2, which includes all coefficients to 

calculate aerodynamics and 12 aircraft rigid body equations of motion to calculate 
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translational velocity, angular velocity, attitude (roll, pitch and yaw angles), and inertial 

position. Although the true UAV dynamics are much more complex, with nonlinear 

aerodynamic coefficients, the equations of motion employed here are commonly used to 

model flight dynamics. 

 

 

Figure 4.2  Diagram of UAV dynamics block. 
 

4.1. Inversion Weighting Function Simulation Results 

In order to have intuitive comparisons of control effort and verify the robustness of 

the guidance law with the inversion weighting functions, the same UAV initial trim 

condition, which starts from (0,0,1000) with 0 heading and constant velocity 𝑉=176ft/s 

is implemented in all scenarios. The variables in the weighting functions are provided in 

Table 4.2. 
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Table 4.1   

Coefficients in weighting function 

Variables Value 
𝑾𝒘𝒑𝑯 1 
𝑾𝒐𝒃𝑯 0.4 
𝑾𝒘𝒑𝑽 1 
𝑾𝒐𝒃𝑽 0.3 
𝑵𝒘𝒑𝑯 250 
𝑵𝒐𝒃𝑯 9000000 
𝑵𝒘𝒑𝑽 180 
𝑵𝒐𝒃𝑽 90000000 

 

The UAV performance is evaluated by three metrics: minimum miss distance, time 

difference and control energy. The minimum miss distance represents the minimum 

distance between the UAV and obstacle and the time difference represents the difference 

between the time required to fly to the desired waypoint with and without obstacles. 

According to the UAV size, the minimum miss distance should be at least greater than 

the half wingspan 16.7 ft to ensure a safe flight trajectory without impact. The control 

energy is a nondimensional value, which can be expressed in Equation (31): 

𝐸 ൌ𝛿ଶ 𝛿ଶ 𝛿ଶ 𝛿்
ଶ ሺ31ሻ 

where 𝛿, 𝛿, 𝛿 are elevator, aileron, and rudder deflection in every time step, 𝛿் is the 

thrust change. Therefore, the three metrics of the UAV performance can be evaluated by 

analyzing the trajectory and energy cost. 

4.1.1. Scenario 1: Stationary Obstacle 

The static obstacle is set as a point which is located at (5280,0,1000). The trajectory 

for vertical and lateral maneuvers are provided in Figure 4.3.  
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Figure 4.3  Stationary obstacle simulation: avoidance trajectories. 
 

The metrics of the trajectories when the UAV is performing vertical and lateral 

maneuvers are shown in Table 4.2. The table shows that the vertical maneuver results in a 

trajectory with a lower minimum miss distance and less control energy cost. Therefore, 

the weighting function will generate a vertical maneuver command when  ∑ 𝜒 ൌ ∑ 𝛾
ே


ே
 . 

 
Table 4.2 

Metrics for the single point obstacle scenario trajectories 

Metrics Vertical Maneuver Lateral Maneuver Unit 
Min Miss Distance 40.08 82.6 ft 
Control Energy 4.4944 7.0595  
Time difference -0.43 0.11 sec 

 

4.1.2. Scenario 2: Moving Obstacles 

In this scenario, the obstacle flies starting from a position of (5280, 2640, 1000) with 

-𝜋 heading and constant velocity 0.5𝑉.  Therefore, if no avoidance maneuver is 

performed, a collision will occur at the position (0, 2640, 1000) in the NED frame .  
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The vertical LOS rates and command angle 𝛥𝛤 are shown in Figure 4.5. 

According to Figure 4.5, with the LOS rate lower than the threshold value, the command 

angle is generated and has a rapid change at the beginning to guide the UAV to avoid the 

obstacle; then the command plot will tend to be flat to guide the UAV to approach the 

waypoint. 

 

 

Figure 4.4  LOS rate and command angle in single moving obstacle scenario. 
 

The UAV avoidance maneuver is shown in Figure 4.5. This figure, which represents a 

3D view, top view, and side view of the trajectory, verifies the 3D flight path selection 

logic. After the obstacle is detected, a pitch-up command is generated, followed by a 

pitch-down command after the obstacle is out of the camera field of view.  

Table 4.3 provides several metrics, including the minimum miss distance of 39.9 ft. 

The miss distance, which is greater than 20 ft, can be considered as a safe range 

depending on the size of the UAV. It is also worth mentioning that all the metrics depend 

on the coefficients in the weighting functions; these effects will be discussed in the next 

chapter. 
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Figure 4.5  Single moving obstacle simulation: avoidance trajectory. 
 

Table 4.3  

Metrics for the single moving obstacle scenario 

Metrics Value Unit 
Min Miss Distance 39.9 ft 
Control Energy 4.48  
Time Difference -0.43 sec 

 

The next section discusses the feasibility of the weighting function approach when 

dealing with multiple obstacles. In Figure 4.6, the first obstacle flies starting from a 

position of (5280, 2640, 1000) with -180 heading and constant velocity 0.5𝑉; the 
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second obstacle flies starting from (5280, 10560, 1000) with -180 heading and constant 

velocity 0.5𝑉. Thus, if no avoidance maneuver is performed, a collision will occur at (0, 

2640, 1000).  

 

 

 

Figure 4.6 Multiple obstacle simulation trajectory 
 

Figure 4.6 shows that the guidance and control law is capable of avoiding multiple 

obstacles and following the flight path selection logic. By analyzing the metrics in Table 

4.4, the control law generates a similar trajectory with the same miss distance and control 

energy compared to the single obstacle scenario. When the two targets are in the same 

horizontal plane, the UAV can bypass both with the same flight path and energy cost 

because, when the first target has been avoided, the second obstacle is no longer a 
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collision threat. At this point, there is no need to perform an avoidance maneuver for the 

second obstacle, which shows that the weighting function method can optimize control 

energy cost while considering all targets. 

 
Table 4.4  

Metrics for the multiple moving obstacle scenario 

Metrics Value Unit 
Min Miss Distance 39.9 ft 
Control Energy 4.48  
Time Difference -0.43 sec 

 

4.1.3. Static Obstacles 

The initial implementation of the inversion weighting functions verifies the avoidance 

capability for single and multiple moving obstacles. This chapter will further investigate 

the effort in more complex static obstacle scenarios. In contrast to the high velocity, 

smaller size dynamic obstacles, static obstacles have zero speed and can be quite large, 

which means they might be detected by a vision system as a large quantity of feature 

points rather than a single point. Static obstacles can represent typical landmarks in real 

urban environments. Thus, these cases may provide more challenges to the collision 

avoidance system but also represent realistic scenarios where the CAS is implemented in 

real urban environments. 
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                              Figure 4.7  Static urban obstacle simulation trajectories. 

 
Figure 4.7 models the static “bridge” and “tower” scenarios respectively. The 

“bridge” is composed of 128 feature points from -800ft to 800ft in the east direction at 

1000ft altitude, and the “tower” is composed of 128 feature points from 800ft to 1200ft 

altitude at 6000ft north location.  Figure 4.7 shows that the UAV accomplishes obstacle 

avoidance maneuvers (vertical and lateral maneuvers) respectively with different obstacle 

shapes and sizes while demonstrating automatic flight path selection.  Table 4.5 shows 

the metrics for those two scenarios; both two maneuvers obtained a safe minimum miss 

distance within a short total time of around 30 sec. 

 
 Table 4.5 

 Metrics for the static urban obstacle scenarios 

Metrics Bridge Tower Unit 
Min Miss Distance 44.7 197.6 ft 
Control Energy 5.4671 21.4505  
Time Difference -0.48 -0.32 Sec 

 

4.1.4. Complex Scenarios and Combination Obstacle  

To further verify obstacle avoidance capabilities, more complex scenarios are 

implemented to represent more realistic urban obstacles. The first scenario, which 
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represents a combination of the tower and bridge obstacles, confirms the reliability of the 

flight path selection logic. The simulation trajectory is shown in Figure 4.8, which 

illustrates a successful avoidance trajectory with a pitch maneuver followed by a roll 

maneuver.  The control inputs and Euler angles are shown in Figures 4.9 and 4.10. 

 

 

 

Figure 4.8  Complex obstacle simulation trajectory. 

 
The metrics are shown in Table 4.6; the results show that the flight has a safe 

minimum miss distance greater than the half wingspan and a flight time shorter than the 

no obstacle case. The control energy has a significant increase compared to the simple 

static obstacle scenario, which might be caused by the altitude increase in the maneuver. 

 



42 
 

 

Figure 4.9  UAV control inputs for the complex scenario. 

 

 

Figure 4.10  UAV Euler angles for the complex scenario. 
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Table 4.6  

Metrics for the combined obstacle scenario 

Metrics Value Unit 
Min Miss Distance 35.9 ft 
Control Energy 75.081  
Time Difference -1.78 sec 

 

It is worth mentioning that, according to the top and side views in Figure 4.8 b and c, 

the two different maneuvers are completed separately and independently. The overall 

trajectory can be regarded as a 2D maneuver in each view plane; thus, when a target is 

detected, the avoidance maneuver type is chosen based on the shape of the obstacles, 

which further confirms the feasibility and reliability of the flight path selection logic. 

The second scenario further confirms the robustness of the weighting function 

method. This case includes multiple “towers” to simulate a curved street between two 

walls of an urban canyon.  

In this scenario, the UAV is flying towards a different waypoint, which is located at 

(9000, -1500, 1000) in the NED frame. Therefore, to approach the waypoint, a left turn, 

or negative roll is required. The UAV must also avoid the simulated buildings in the 

urban canyon, representing a challenging scenario. In this case, the UAV selects a 

trajectory to pass through the curved urban canyon by performing lateral rolling 

maneuvers, as shown in Figure 4.11. 
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Figure 4.11  Urban canyon obstacle simulation trajectory. 
 

Table 4.7 presents a sufficient miss distance to obstacles to ensure a flight trajectory 

in the middle of the curved urban canyon. However, due to the more aggressive 

maneuver and larger quantity of feature points, the control energy and total flight time 

have substantially increased compared to simpler scenarios. 

 
Table 4.7  

Metrics for the urban canyon obstacle scenario 

Metrics Value Unit 
Min Miss Distance 157.6589 ft 
Control Energy 134.8507  
Time Difference -0.08 sec 

 

In conclusion, the system using the inversion weighting function can select an 

appropriate flight path according to different types of obstacles. This CAS system has 

feasibility and robustness when the UAV is facing complex obstacle environments. 

4.2. Virtual Point Weighting Function Simulation Results 

Since the inversion weighting functions’ feasibility and robustness have been 

verified, this section will discuss the same properties by simulating the same scenarios for 
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the virtual point approach. The coefficients selected for the virtual point method are 

shown in Table 4.8. 

 
Table 4.8  

Coefficients for virtual point weighting function 

Variables Value 
𝑾𝒘𝒑𝑯 1 
𝑾𝒐𝒃𝑯 0.4 
𝑾𝒘𝒑𝑽 1 
𝑾𝒐𝒃𝑽 0.8 
𝑵𝒘𝒑𝑯 250 
𝑵𝒐𝒃𝑯 70000 
𝑵𝒘𝒑𝑽 180 
𝑵𝒐𝒃𝑽 8000 

 
 

 

Figure 4.12 Stationary obstacle avoidance trajectory for virtual point method 
 

A static obstacle is first set as a point which is located at (5280, 0, 1000).  The 

trajectories for vertical and lateral maneuvers are provided in Figure 4.12. The metrics of 

the trajectories when the UAV is performing vertical and lateral maneuvers are shown in 

Table 4.9. The table shows that the vertical maneuver results in a trajectory with a shorter 

minimum miss distance, less control energy cost and shorter time to finish the flight. 
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Therefore, the weighting function will generate a vertical maneuver command when  

∑ 𝜒 ൌ ∑ 𝛾
ே


ே
 . 

 
Table 4.9 

Virtual point method: Metrics for the single point obstacle scenario trajectory 

Metrics Vertical Maneuver Lateral Maneuver Unit 
Min Miss Distance 29.7 44.01 ft 
Control Energy 2.4062 3.02  
Time difference -0.33 0.05 sec 

 

4.2.1. Moving Obstacles 

As shown in Figures 4.13 and 4.14, the obstacles start from (5280, 2640, 1000) and 

(5280, 10560, 1000) with -180o heading and constant velocity 0.5𝑉. Similar to using 

inversion weighting functions, implementing virtual point weighting functions can also 

result in an ideal trend of avoidance, which is a similar pitch-up and pitch-down 

maneuver in the North-Down plane only.  This trajectory is shown in Figure 4.13, which 

shows the system reaction of multiple obstacles. Therefore, the avoidance ability and 

flight path selection ability for the virtual point weighting function are verified. 

 

 

Figure 4.13  Single moving obstacle simulation trajectories for virtual point weighting 
function. 
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Figure 4.14  Multiple moving obstacle simulation trajectory for virtual point weighting 
function. 

 

Table 4.10 provides several metrics for this scenario, including a 21.5 ft minimum 

miss distance. Compared with the same scenarios in the previous chapter, the UAV 

avoids the same obstacle with smaller miss distance and less energy cost but a longer 

maneuver time.  

 
Table 4.10  

Metrics for moving obstacle scenario, virtual point method 

Metrics Single  Multiple Unit 
Min Miss Distance 21.7 21.7 ft 
Control Energy 1.3556 1.3556  
Time Difference -0.2 -0.24 sec 

 

The vertical LOS rates and command angle 𝛥𝛤 are shown in Figure 4.15. The 

command angle is also generated since the beginning and increases when the UAV gets 

closer to the obstacle, then decreases to drive the UAV to approach the waypoint. 

Compared to the inversion weighting function, the virtual point method reacts slower 

than the inversion method and results in a smoother command angle plot, which does not 

have a significant change. 
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Figure 4.15  LOS rate and command angle in single moving obstacle scenario for virtual 
point method. 
 

4.2.2. Static Obstacles 

After verifying avoidance for small moving obstacles, the virtual point function 

method is applied to more complex static obstacles. Virtual point simulation trajectories 

for the bridge and tower obstacles are shown in Figure 4.16. 

 

 

Figure 4.16  Static obstacle simulation trajectories for virtual point functions. 
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Similar to use the inversion functions, the UAV avoids the “bridge” with a pitching 

maneuver and avoids the “tower” by rolling. This means that the virtual point weighting 

functions completed with flight path selection have the ability to avoid obstacles with 

different shapes and sizes while selecting lateral or vertical flight maneuvers 

automatically.  

 
Table 4.11  

Metrics for the static obstacle scenarios using virtual point method 

Metrics Bridge Tower Unit 
Min Miss Distance 43.5 91.5 ft 
Control Energy 5.94 9.59  
Time Difference -0.52 0.12 sec 

 

As shown in Table 4.11, for each obstacle, the virtual point functions provide 

trajectories with a safe miss distance. Compared with the inversion function simulation 

results, the trajectory with the “bridge” obstacle is finished with a smaller miss distance 

and a shorter maneuver time but require a little more energy cost; the trajectory with the 

“tower” obstacle is finished with a much smaller miss distance and a shorter maneuver 

time and requires much less energy cost. These results imply that the virtual point 

functions provide more optimal trajectories than the inversion method. 

4.2.3. Complex Scenarios and Combination Obstacles of Virtual Point Function 

In order to further verify the feasibility and robustness of the virtual point method, the 

same complex scenarios are implemented to represent more realistic urban obstacles.  In 

this case, the combined “tower” and “bridge” obstacle scenario is considered. 
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Figure 4.17  Complex obstacles simulation trajectory for virtual point functions. 
 

The scenario with the combined tower and bridge confirms the reliability of the flight 

path selection ability of the virtual point functions. A successful simulation trajectory is 

provided in Figure 4.17. The UAV control inputs and Euler angles are shown in Figures 

4.18 and 4.19, further confirming the flight trajectory.  Compared to the inversion 

weighting function, the virtual point weighting function results in smoother plots for 

thrust and elevator deflection, which shows the reaction delay for the virtual point 

method. 
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Figure 4.18  UAV control inputs in the complex scenario for virtual point method. 
 

 

Figure 4.19  UAV Euler angles for the complex scenario for virtual point method. 
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Table 4.12  

Metrics for the combined obstacles scenario 

Metrics Bridge Unit 
Min Miss Distance 28.93 Ft 
Control Energy 6.26  
Time Difference -0.34 Sec 

  

As shown in Table 4.12, the minimum miss distance is 28.93 ft, which is greater than 

the 0.5 wingspan; thus, the avoidance is safe and successful.  According to the top view 

and side view, the 3D trajectory is completely decoupled into a pitching maneuver and 

rolling maneuver by projecting onto North-Down and North-East planes, respectively. 

Although both types of maneuver can drive the UAV to avoid the combined obstacle, in 

contrast to the inversion function simulation trajectory, there is no spike in the virtual 

point function simulation trajectory, especially on the North-East projection. Using the 

inversion functions, the UAV has a tendency to maneuver back to the waypoint altitude 

after avoiding the first “building”, which does not occur in the inversion method 

simulation result. Thus, the second type of weighting function is more conducive 

smoother trajectories. 

 

 

Figure 4.20  Curved urban canyon simulation trajectories for virtual point functions. 
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The last scenario implemented for the virtual point functions is the same curved urban 

canyon path. As shown in Figure 4.20, like the inversion function simulation result, the 

UAV opportunely avoids the obstacles on the sides of the path and approaches the 

waypoint. 

The metrics for this scenario are shown in Table 4.13. Compared with the inversion 

function simulation results, virtual point functions generate a very similar trajectory. The 

miss distance and the total time in the two scenarios are basically the same, while the 

virtual point functions can reduce the control energy cost by approximately 12%. 

 
Table 4.13  

Metrics for the virtual point functions, urban canyon obstacle scenario 

Metrics Value Unit 
Min Miss Distance 156.85 ft 
Control Energy 117.83  
Time Difference -0.11 sec 

  

4.3. Comparison Conclusion 

After implementing six different scenarios using both the inversion and virtual point 

weighting functions, the commands of the two different methods in a single moving 

obstacle scenario are shown in Figure 4.21. The trajectory metrics of each case are 

collected in the Table 4.14. 
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Figure 4.21  Command for inversion and virtual point functions in single moving 
obstacle scenario. 
 

Table 4.14  

Trajectory metrics for each obstacle scenario for inversion and virtual point method 

 Min Miss Distance 
(ft) 

Control Energy (ft) Time Difference (ft) 

 Inv Vir Inv Vir Inv Vir 
Moving 39. 9 21.7 4.48 1 .35 -0.43 -0.24 
Bridge 44.7 43.5 5.46 5.94 -0.48 -0.52 
Tower 198 91.5  21.5 9.59 0.32 0.12 
Complex 
Obstacle 

35.9 28.93 75.08 6.26 -1.78 -0.38 

Curved 
Urban 
Canyon 

157.66 156.85 134.85 117.83 -0.08 -0.11 

 

Then we can draw the following conclusions for the properties of the functions: 

1. Both weighting functions are capable of making the UAV avoid both moving and 

static obstacles successfully.  
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2. Both weighting functions have similar control effort when the UAV is 

maneuvering in a narrow space. 

3. Both weighting functions are verified to be robust and feasible to avoid obstacles 

of different sizes with autonomic flight path selection. For the complex scenario, 

both weighting functions result in a safe minimum miss distance; the inversion 

method has better performance in terms of flight time, but virtual point method 

results in much less control energy. 

4. For vertical maneuvers, both weighting functions result in a similar performance 

in the bridge scenario. However, although the virtual point method results in a 

longer flight time, this method can reduce 46% of miss distance and 69% control 

energy in moving scenarios.  For lateral maneuvers, the virtual point method can 

reduce 53% of miss distance, 56% control energy cost and shorter flight time in 

the tower obstacle. 

5. In general, on the one hand, inversion weighting functions react faster and result 

in more aggressive maneuvers with larger miss distances and more control energy 

in most cases. On the other hand, virtual point functions react slower than the 

inversion method and result in smoother trajectories with smaller miss distances 

and less energy cost. 

6.  Although the virtual method results in several slower flights, the time differences 

between the flights are very small. Therefore, the virtual point method can 

generate more optimal trajectories. 
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5. PERFORMANCE ANALYSIS  

The previous chapter has verified that the vision based Pro-Nav algorithm using both 

the inversion and virtual point weighting functions can guide the UAV to accomplish 

successful avoidances. However, in these scenarios, the coefficients in these functions 

were selected with minimal tuning. In real implementations, the weighting functions need 

to be tuned based on UAV size, velocity, and flight environment. In addition, to achieve 

the optimal maneuvers, the simulations were completed in an ideal environment without 

noise in the camera measurements. Thus, this chapter will discuss how the coefficients 

affect the performance of both types of weighting functions and investigate system 

performance with camera noise. 

5.1. Weighting Coefficients Analysis 

 

 

Figure 5.1  Trajectories for different weighting coefficients in the inversion functions. 
 

To investigate the effects of varying the weighting coefficients in the inversion 

weighting functions, the single moving obstacle scenario is implemented.  The effects of 

the weighting coefficients on the trajectories are shown in Figure 5.1. The left figure 

shows the effect of varying the avoidance weighting coefficients 𝑊; the right figure  
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shows the effect of varying the waypoint guidance coefficient 𝑊௪.  The metrics for the 

resulting trajectories are provided in Table 5.1.  

 
Table 5.1  

Metrics for the single moving obstacle scenario using the inversion weighting function 

 𝑾𝒘𝒑𝑽=1；𝑵𝒘𝒑𝑽=180; 
𝑵𝒐𝒃𝑽=90000000 

𝑾𝒐𝒃𝑽=1；𝑵𝒘𝒑𝑽=180; 
𝑵𝒐𝒃𝑽=90000000 

 

Metrics 𝑾𝒐𝒃𝑽=0.1 𝑾𝒐𝒃𝑽=0.5 𝑾𝒐𝒃𝑽=1 𝑾𝒘𝒑𝑽=0.1 𝑾𝒘𝒑𝑽=0.5 𝑾𝒘𝒑𝑽=1 Unit 
Min 
Miss 
Distance 

28.2 43.62 51.39 117.1 61.2056 51.39 ft 

Control 
Energy 

2.7047 5.3033 7.396 99.227 35.3456 7.396  

Total 
Time 

-0.3 -0.48 -0.57 -1.93 -0.69 -0.57 sec 

 

According to the results in Figure 5.1 and Table 5.1,  when 𝑊௪ is increased, the 

UAV will have a stronger tendency to approach the waypoint, which will result in a 

smaller miss distance, less control energy and more maneuver time; conversely, increased 

𝑊 will result in more significant avoidance maneuvers, higher control energy and less 

maneuver time.  

 

 

Figure 5.2  Trajectories for different weighting coefficients in the virtual functions. 
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The same law can be verified in the virtual point functions. As shown in Figure 5.2 

and Table 5.2, greater 𝑊௪ can increase the effect of approaching the waypoint and 

decrease the effect of avoiding obstacles; the effects of varying 𝑊 are just the 

opposite. 

 
Table 5.2  

Metrics for the single moving obstacle scenario using the virtual point function 

 𝑾𝒘𝒑𝑽=1；𝑵𝒘𝒑𝑽=180; 
𝑵𝒐𝒃𝑽=8000 

𝑾𝒐𝒃𝑽=0.5；𝑵𝒘𝒑𝑽=180; 
𝑵𝒐𝒃𝑽=8000 

 

Metrics 𝑾𝒐𝒃𝑽=0.1 𝑾𝒐𝒃𝑽=0.5 𝑾𝒐𝒃𝑽=1 𝑾𝒘𝒑𝑽=0.1 𝑾𝒘𝒑𝑽=0.5 𝑾𝒘𝒑𝑽=0.9 Unit 
Min 
Miss 
Distance 

9.78 18.31 24.21 30.59 27.07 21.85 ft 

Control 
Energy 

0.201 0.9394 1.6899 3.0917 2.1467 1.3582  

Total 
Time 

-0.08 -0.2 -0.27 -0.36 -0.3 -0.24 sec 

 

The metrics in Table 5.2 more clearly show the trends. Compared with the inversion 

functions, changing weighting coefficients has a similar influence on miss distance, 

energy cost and maneuvering time, but the overall effect is less for the virtual point 

approach.  

5.2. Noise Analysis 

Take the inversion weighting function as an example and the single moving obstacle 

scenario. In order to investigate the effect of noise on the system performance for vertical 

maneuvers, Gaussian noise with zero mean and 1 pixel standard deviation was applied on 

the pixel frame Y axis.  
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Figure 5.3  Simulated trajectory for inversion weighting function with 1 pixel SD noise. 
 

As shown in Figure 5.3, the UAV does not maneuver to avoid the moving obstacle. 

The altitude change in Figure 5.3 shows that the UAV continues to fly at the trim altitude 

and does not maneuver to avoid the obstacle. 

 

 

Figure 5.4  Vertical LOS rate with 1 pixel SD noise. 
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The vertical LOS rate (𝛾ሶ ) is provided in Figure 5.4. It is obvious that the random 

noise in the pixel frame generates high frequency noise in the LOS rate, which results in 

the LOS rate being greater than the Pro-Nav threshold value at every time step; therefore, 

even though the obstacle poses a collision risk, the LOS rate cannot be calculated with 

sufficient accuracy to generate an avoidance command. 

To improve the UAV performance when the camera measurements have noise, a first 

order low pass filter is implemented to filter the high frequency noise in the measured 

LOS angle. The LPF is defined as in equation (32): 

𝐺ሺ𝑠ሻ ൌ
0.2

𝑠  0.2
ሺ32ሻ 

 

 

Figure 5.5  Filtered vertical LOS rate. 
 

The filtered LOS rate is provided in Figure 5.5. According to Figure 5.5, the noise 

with frequency greater than the cut-off frequency of 50Hz is filtered from the LOS rate 
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signal. Based on this filtered LOS rate, the simulated UAV trajectory is generated as 

shown in Figure 5.6. 

 

  

Figure 5.6  Simulated trajectory with filtered LOS rates. 
 

Figure 5.6 provides the UAV trajectory using the first order filter. In the figure, the 

UAV accomplishes an avoidance maneuver by pitching to climb out of the collision path. 

According to Table 5.3, the UAV is able to successfully finish the avoidance maneuver. 

The LPF is therefore able to mitigate noise to ensure the normal operation of the collision 

avoidance system, but the minimum miss distance is less than the ideal noise-free case, 

and the control energy cost is also higher than the ideal case.  

 
Table 5.3  

Metrics for the single moving obstacle scenario with and without noise 

Metrics With Noise Without Noise Unit 
Min Miss 
Distance 

26.59 39.9 ft 

Control Energy 2.018 4.48  
Total Time -0.29 -0.43 sec 
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Since the LPF was shown to improve the system performance when the camera 

measurements have noise with a standard Gaussian distribution with 1 pixel standard 

deviation, the performance of the LPF is studied for varying noise levels.  

 

 

Figure 5.7  Multiple noise variance simulation trajectories with filtered LOS rate. 
 

As shown in Figure 5.7, as the variance increases from 1 to 6 pixels, the UAV trajectories 

also change. In each case, the UAV can complete the avoidance maneuver by changing 

the pitch angle in a similar manner to the ideal scenario. 

 
Table 5.4  

Metrics for the single moving obstacle scenario with different noise levels 

Metrics       Unit 
Variance 1 2 3 4 5 6 ft 
Min 
Miss 
Distance 

26.59 28.63 41.96 18.98 33.0 27.65  

Control 
Energy 

2.0079 3.46 6.5043 3.2872 3.7518 2.866 sec 
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The basic metrics for the simulation results are shown in Table 6.2. The minimum 

miss distances are controlled within the range of 18 ft to 33 ft, which can be considered 

as a safe range for the UAV in this scenario. Therefore, the LPF implemented in the 

single moving obstacle scenario was verified to be effective in improving the UAV 

performance when the camera has different levels of Gaussian noise. 

To investigate the system performance on lateral maneuvers, the scenario “Tower” is 

implemented and Gaussian noise with zero mean and 1 pixel standard deviation was 

applied on the pixel frame X axis. To improve the UAV performance when the camera 

has noise, the first order LPF shown in equation (26) is implemented to filter the high 

frequency noise in the lateral LOS angle (𝜆).  

 

 

Figure 5.8  Tower obstacle simulation trajectory with 1 pixel SD noise. 
 

Figure 5.8 provides the UAV trajectory using the first order filter. In the figure, the 

UAV accomplishes lateral avoidance maneuver by rolling. According to Table 5.5, the 

miss distance has a significant increase compared with the case where no filter is 

implemented. The UAV is able to finish a successful avoidance maneuver. 
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Table 5.5  

Metrics for the tower obstacle scenario with 1 pixel noise 

 Without 
filter 

With 
filter 

Unit 

Variance 1 1 ft 
Min 
Miss 
Distance 

4.85 65.92  

Control 
Energy 

0.0242 8.5599 Sec 

 

Figure 5.9 provides the UAV trajectory using the first order filter. In the figure, the 

UAV accomplishes the avoidance maneuver by pitching and rolling. According to Table 

5.6, the miss distance also has a significant increase compared with the case where no 

filter is implemented. The miss distance after using the filter is greater than half of the 

UAV wingspan, which means the UAV is able to finish a safe avoidance maneuver. This 

simulation results show that the LPF is able to ensure the normal operation of the 

collision avoidance system.  

 

   

Figure 5.9  Complex obstacle simulation trajectory with 1 pixel SD noise. 

 



65 
 

Table 5.6  

Metrics for the complex obstacle scenario with 1 pixel noise 

 Without 
filter 

With 
filter 

Unit 

Variance 1 1 ft 
Min 
Miss 
Distance 

6.7853 22.0806  

Control 
Energy 

1.2558 3.951 Sec 

 

According to the simulation results in this chapter, the guidance system is easily 

affected by high frequency noise, which can result in LOS rates that do not generate 

avoidance commands. For several specific scenarios, avoidance maneuvers were 

accomplished when the camera has noise with variance between 1 to 6 pixels after 

implementing a first order Low pass filter on the LOS angle measurements. This means 

the failures caused by vision noise within a specific range of variance can be reduced or 

eliminated by the LPF for several scenarios, but further simulation and tuning might be 

required.  
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6. CONCLUSION 

This thesis has developed a 3D collision avoidance system based on the proportional 

navigation law. By implementing this avoidance law, the UAV is capable of avoiding 

single or multiple moving or static obstacles of different sizes automatically while 

approaching a designated waypoint. 

The Pro-Nav law is first applied in collision detection by using a line of sight rate 

threshold value. According to the definition of the basic Pro-Nav guidance law, any 

obstacle that causes the absolute value of the LOS rate to be less than a defined threshold 

is considered as a potential collision threat. Meanwhile, a flight path selection logic is 

applied to decide the maneuver type. In general, if the obstacle LOS angles satisfy 

∑ 𝝌𝒊 ൏ ∑ 𝜸𝒊
𝑵
𝒊

𝑵
𝒊  , the UAV will perform a lateral maneuver to bypass obstacles; on the 

other hand, if ∑ 𝝌𝒊  ∑ 𝜸𝒊
𝑵
𝒊

𝑵
𝒊  , the UAV will generate a vertical maneuver to cross the 

obstacles. Therefore, the collision avoidance system achieves lateral or vertical avoidance 

maneuvers for 3D obstacles. 

The maneuver guidance command is generated by a weighting function method. This 

thesis has developed two types of functions – an inversion weighting function and a 

virtual point weighting function.  Both weighting functions can balance the maneuver 

between approaching a desired waypoint and avoiding the obstacles. 

Several scenarios are simulated to investigate the feasibility and performance of the 

weighting functions. According to the simulation results, both weighting functions are 

capable of making the UAV avoid both moving and static obstacles successfully.  Both 

weighting functions have similar control effort when the UAV is maneuvering in a 

narrow space; both weighting functions are verified to be robust and feasible to avoid 
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obstacles of different sizes with automatic flight path selection. In general, the virtual 

point method was found to have significant advantages for lateral maneuvers and results 

in more optimal trajectories. 

In addition, the UAV performance with camera pixel noise has been studied. 

According to the results, the high frequency noise will interfere with the calculation of 

the LOS rates, which can in turn lead to ignoring obstacle collision threats.  A low pass 

filter (LPF) was applied to the measured LOS angles to address this issue, and it was 

verified that this filtering is able to reduce or eliminate failures caused by camera pixel 

noise within 6 pixel variance. 

Future work for this collision avoidance system should be focused on flight test 

implementation and more complex 3D simulation scenarios. For simulation, virtual 

reality software, such as MetaVR Virtual Scene Generation, can be applied to provide 

more complex obstacle environments, which can also be coupled to image processing 

algorithms.  In addition, the LPF can be further studied and the weighting functions can 

be further tuned to fit more complex camera noise scenarios or more complex filtering 

approaches such as the Kalman filter can be used instead of the LPF; these might 

improve the performance for higher noise levels.  Different types of weighting functions 

can also potentially be developed for more optimal trajectories. Other performance 

metrics can be considered that include effects such as actuator saturation. Actuator 

saturation can be indirectly addressed in the guidance cost functions by enforcing upper 

and lower limits on the guidance angles based on actuator limitations; for example, 

aileron limits would lead to a maximum roll angle; elevator and thrust limits would lead 

to a maximum pitch angle. 
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The ultimate objective would be the implementation of this collision avoidance 

system, including a camera sensor and image processing algorithms, in UAV flight tests 

to prove the feasibility of the system in a real 3D environment. Therefore, real-time 

implementation would require alternative optimization tools that run faster than the 

MATLAB function. 
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