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It is estimated that more than 55% of the world’s population live in urban 

areas today; this proportion is expected to jump to almost 70% by 2050 (United 

Nations, 2019). Presently, in North America, the population in urban areas is 

already estimated at 82% (United Nations, 2019). As the size of the urban 

population grows, the urban environment will be increasingly tasked to sustain the 

activities of a larger portion of the world’s population. The urban boundary layer 

(UBL), the portion of the atmospheric boundary layer (ABL) whose climatic 

characteristics are modified by the presence of a city (Oke, 1976), is this 

environment. However, the UBL is one of the most complex and least understood 

microclimates due to the heterogeneity of the fabric underlying it and roughness 

elements composing it, omnipresent turbulence and anthropogenic heat sources, 

among other complex processes. 

Cities of the future will have to overcome congestion, air pollution and 

increasing infrastructure cost while moving more people and goods smoothly, 

efficiently and in an eco-friendly manner. Urban air mobility (UAM), defined as a 

system that enables on-demand, highly automated, passenger- or cargo-carrying air 

transportation services (Lascara et al., 2019), is expected to be an integral 

component of achieving this new type of city (Xu, 2020). According to a Morgan 

Stanley research study, the market for autonomous urban air vehicles is expected 

to approach $1.5 trillion globally by 2040 (Morgan Stanley, 2018). This same study 

also identified more than 240 UAM vehicles currently in development. These 

development efforts include all of the major aviation manufacturers and substantial 

investments by many traditional automotive companies, along with several 

innovative and well-funded startup companies. Further, even at this nascent stage, 

there are over 50 cities around the world pioneering urban air mobility programs 

(Unmanned Airspace, 2018a, 2018b). In the United States, the Federal Aviation 

Administration (FAA) has issued Part 135 U.S. air carrier certification to Wing 

Aviation LLC, a subsidiary of Google’s parent corporation Alphabet. This was 

quickly followed by a similar issuance to UPS Flight Forward, Inc. More recently, 

Amazon Prime Air also achieved this certification. The FAA has indicated that five 

additional Part 135 air carrier certificates are under review at the time of this writing 

(Federal Aviation Administration, 2019). 

Most prospective UAM operators envision a scenario of hundreds or 

thousands of simultaneous flight operations occurring over a large metropolitan 

area within an altitude block stretching from the surface to 5,000 feet, with nominal 

cruising altitudes of 1,000 – 2,000 feet above ground level (AGL) (Embraer X, 

2020; Lascara et al., 2019; Porsche Consulting, 2018; Uber, 2016; Xu, 2020). This 

vision places these high-tempo flight operations squarely in the UBL. While 

traditional manned aircraft have quickly passed through this domain during ascent 

and descent, this is a new environment for sustained aviation operations. The 

heterogeneity of the urban fabric underlying the UBL and the roughness elements 
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within it create a unique environment with very strong gradients. Consequently, 

flight conditions can change frequently and dramatically across very short temporal 

and spatial scales. Unfortunately, the lower mass and moment of inertia, and limited 

thrust and speed of UAM vehicles increase their sensitivity to these ambient 

atmospheric conditions. Therefore, the combination of these conditions and these 

aircraft susceptibilities necessitate meteorologically resolving the urban 

environment at small scales. 

UAM vehicles face unique challenges related to weather in an urban 

operating environment. Without good weather products, aircraft may be 

unnecessarily grounded, delaying the delivery of goods and services and decreasing 

profitability. Regrettably, the staple aviation weather products for observations and 

forecasts at an airport on the outskirts of a metropolitan area do not translate well 

to the heterogeneous UBL and do not offer an appropriate spatial or temporal 

resolution for urban flight operations (Chapman, 2015; Meir et al., 2017; Napoly et 

al., 2018). Consequently, appropriate weather data for low-altitude urban airspace 

is needed and will be particularly critical for unlocking the full potential of UAM. 

Meteorological hazards of concern include wind and turbulence, temperature, 

ceiling and visibility, precipitation and icing. In addition to ensuring the safety and 

comfort of passenger-carrying aerial vehicles and the performance of cargo 

delivery aircraft, reliable weather information will be required for flight planning, 

flight authorizations, real-time adaptive trajectory planning and managing dynamic 

airspace boundaries, along with contingency planning. 

Dense atmospheric observational networks sufficient for resolving the 

inhomogeneity of the UBL using traditional meteorological sensors are most likely 

impractical due to initial installation and continuing maintenance costs. The 

National Research Council of the National Academies (Committee on Urban 

Meteorology, 2012) highlights the great potential in using non-traditional sensor 

networks for observations of the urban atmosphere. Advances in the 

miniaturization of electronics, batteries, communications and cloud-based storage, 

along with a reduction in the cost of electronics and IoT sensors, provides an 

unprecedented opportunity to create high resolution observational networks that 

deliver real-time data that can complement traditional sources of meteorological 

observations (David 2019). 

Dense urban meteorological observation networks comprised of 

crowdsourced data will enable a more complete picture of actual urban weather 

conditions required by UAM. This is especially the case in urban locales where 

routine weather observations are typically scarce but ‘human sensors’ and sensors 

associated with urban infrastructure are prevalent and dense. Besides supporting 

now-casting, dense urban meteorological observation networks comprised of 

crowdsourced data have the means to provide data for numerical weather prediction 

(NWP) data assimilation and validation of micro-scale forecasts (Agüera-Pérez  et 
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al., 2014; NCEP Central Operations, 2018; Overeem et al., 2013b; Ronda et al., 

2017). Crowdsourcing can accomplish this in an effective, decentralized, 

economical and prompt manner (Frigerio et al., 2018). Hence, crowdsourced 

meteorological observation networks empower UAM by providing much needed 

data and a new class of essential weather products. 

Section two of this paper suggests potential observation sensors and 

sources. Section three builds on this and puts forth an overarching architecture for 

the complete cyber-physical system. The proposed architecture includes an 

incentive-based crowdsensing application. 

 

Crowdsourcing for Weather 

Crowdsourced Weather Data 

The idea of crowdsourcing was first introduced by Howe, who defined it as, 

“the act of taking a job traditionally performed by a designated agent (usually an 

employee) and outsourcing it to an undefined, generally large group of people in 

the form of an open call” (Howe, 2006). As the general idea of crowdsourcing has 

evolved, it is now understood to entail more than simply outsourcing a task, in this 

case the collection of data, but also the storage, quality control and utilization of 

the data (Hintz et al., 2019). However, the meteorological community itself has not 

yet reached broad consensus with respect to crowdsourcing nomenclature. The 

United Kingdom’s Met Office suggests terminology that differentiates 

crowdsourced data and citizen-science data under the following structure (Hintz et 

al., 2019): 

a) Citizen-science data: Data that is obtained from invited participants 

b) Crowdsourced data: Data obtained from a group of people without 

explicit involvement 

c) Opportunistic data: Data obtained from non-meteorological sensors 

d) Third-party data: Data collected from meteorological sensors by a 

third-party  

In contrast, the European Centre for Medium-Range Weather Forecasts 

(ECMWF) puts forth four categories within the crowdsourced moniker (Hintz et 

al., 2019): 

a) Private and third party 

b) Automated amateur weather stations 

c) Smart connected devices 

d) Human reporting 

Evident in the contrasting of these two structures is the disparity between 

the Met Office, which distinguishes between citizen-science, crowdsourced data, 

and third-party data and the ECMWF, that uses the term in a more comprehensive 

manner. In keeping with the latter usage, in this paper, crowdsourced data will be 

used as a collective term and examples are presented for each of the data categories. 
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A thorough review of early atmospheric science crowdsourcing efforts prior to 

2014 is provided by Muller et al (2015).  

In addition to the evolution of how crowdsourcing is thought about, the 

sources and availability of data have also evolved. Much of this evolution has been 

brought about by the proliferation of the Internet of Things (IoT) and smart devices. 

IoT refers to a network of Internet-connected objects and provides any-place, 

anytime connectivity and data exchange (Ashton, 2009; Evans, 2011; Smith, 2012). 

As technological infrastructure has grown, IoT data has grown in its availability, 

granularity, and coverage (David, 2019; Warren et al., 2016). 

Although the use of crowdsourcing is more prevalent in other disciplines, 

such as ecology (Dickenson et al., 2010) and astronomy (Kärnfelt, 2014), and while 

the atmospheric science community has been slower to adopt it, examples of 

utilization for environmental sensing do exist. The nature of this data can generally 

be categorized as coming from two types of sources: objective and subjective. The 

former type of data represents measured data collected from the surrounding 

physical world. The second data source type, subjective data, is often referred to as 

social weather data and is gathered from public opinions, reactions, feelings and 

feedback. Zhu et al. provides a broad review of crowdsourced social weather data 

and meteorological services (Zhu et al., 2019). 

Measured (objective) Weather Data 

Objective crowdsourced weather data can be generated by fusing 

professional weather observations, both public and private, along with 

professional-grade observations from weather-sensitive organizations in industry. 

However, crowdsourcing also enables the collection of measured data from 

objective sources that are not necessarily professional-grade weather stations. 

Consideration of this measurement strategy lowers the cost of data acquisition and 

increases the coverage and spatial resolution of observations. This data is especially 

beneficial when accompanied by geotemporal tags. 

A smartphone has a number of embedded sensors conducive to providing 

meteorological insight and it is projected that there are more than six billion 

smartphones carried by the public worldwide (Price et al., 2018). Potential weather 

parameters that could be gathered from smartphones include temperature, pressure, 

relative humidity, and light intensity and each of these observations can easily be 

tagged with a high-precision geotemporal tag (Kim et al., 2016; Overeem et al., 

2013b; Sosko & Dalyot, 2017). Further, accelerometers embedded in smartphones 

have the ability to detect continuous motion that could signify the phone’s 

movement outdoors, thus improving the validity of the environmental sensor 

(Niforatos et al., 2017). 

Temperature sensors are placed in phones to prevent damage during battery 

recharging. These battery temperature readings have been correlated to ambient 

temperature with a straightforward heat transfer model to estimate urban canopy 
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layer temperatures across a wide range of climate zones and, within each, a variety 

of urban microclimates (Overeem et al., 2013b). Chau (2019) improved upon this 

correlation using two linear regression models for phones found in and out of 

pocket. Over 10 million such readings over the course of two years were compared 

to sparsely spaced World Meteorological Organization (WMO) and private weather 

stations by Droste et al. (2017) who showed that distinct local climate zones (LCZs) 

can be identified using this strategy. Sosko and Dalyot (2017) extended the promise 

of modern mobile devices to provide authoritative weather data to include, in 

addition to temperature, relative humidity.  

Smartphones come equipped with relatively accurate pressure sensors in 

order to assist with improved navigation inside buildings and altimetry. 

Smartphone pressure measurements are plagued by fewer observational issues than 

those associated with temperature and relative humidity because such 

measurements are valid both within and outside of structures and are not impacted 

by the underlying UBL surface fabric (Mass & Madaus, 2014). Kim et al. (2015, 

2016) showed that pressure readings obtained by smartphones can be on par with 

observations from South Korea’s national automatic weather station network. 

While a number of investigators have shown the utility of pressure observations 

from smartphones (Hintz et al., 2019; McNicholas & Mass, 2018; Price et al., 

2018), Madaus et al. (2014, 2017) has demonstrated how exploiting such 

observations from loosely-regulated networks can improve the forecasting and 

analysis of short-term, high-impact weather events. 

Mobility potentially improves the efficiency of a sensor and most modern 

vehicles have atmospheric pressure and temperature sensors for use in engine 

management computers. When compared to research grade weather stations, while 

pressure observations were less well matched, temperature measurements have 

shown consistent agreement across a variety of makes and models of vehicles 

(Anderson et al., 2012). In addition to direct sensors, ambient conditions can be 

gleaned from headlight status, fog light setting, antilock brake system (ABS) 

activation, braking intensity, along with vehicle velocity and acceleration values 

(Mahoney & O’Sullivan, 2013). Rabiei et al. (2013) demonstrated a direct link 

between the speed of wiper blades and rainfall intensity. The utilization of ground 

vehicles equipped with weather sensors, along with smartphone front view video 

(Aihara et al., 2016), has already been proposed to reduce the impact of adverse 

weather on surface transportation systems (Dey et al., 2015; Mahoney & 

O’Sullivan, 2013). It is presumed that as surface transportation systems continue to 

evolve and become more automated, in the same manner as UAM systems, that the 

number of environmental sensors on vehicles, both surface and aerial, will continue 

to increase and be available for incorporation into a meteorological network. 

The more substantive infrastructure associated with urban areas, especially 

in burgeoning smart cities, provide unique opportunities for the creation of dense 
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observational networks. Dense networks, even when composed of a large set of 

basic stations with inferior performance, have been shown to outperform a smaller 

number of high-quality data stations (Agüera-Pérez et al., 2014). Infrastructure 

associated with air pollution monitoring is already intended for environmental 

monitoring and is a ready candidate for the enhancement of any broader 

meteorological observation network (Kumar et al., 2015; Moltchanov et al., 2015). 

However, infrastructure whose primary purpose is not associated with 

environmental monitoring, such as surveillance cameras, can also be employed. For 

example, surveillance cameras, that are prevalent across urban areas, have been 

shown to be effective for monitoring visibility (Wong et al., 2007, 2009). 

Commercial microwave links (CMLs) transmit and receive microwave 

signals through the atmosphere and are widely deployed in telecommunications 

networks. Atmospheric conditions and weather phenomenon interfere with the 

propagation of these electromagnetic waves and hence CMLs can serve as a 

valuable real-time weather forecasting tool (Alpert et al., 2016; David & Gao, 2017; 

Gosset et al., 2016; Overeem et al., 2013a). Messer et al. (2006) first demonstrated 

that CML signal attenuation can be used to estimate rainfall and subsequent 

investigations have continued to develop this potential (Berne & Uijlenhoet, 2007; 

Chwala et al., 2012; Fencl et al., 2015; Leijnse, 2007a/2007b; Overeem et al., 2011; 

Zinevich et al., 2010). When CMLs are brought together into a network, high spatial 

and temporal precipitation maps can be developed that are superior to those 

commonly provided by standard weather services (Biachi et al., 2013; Fencl et al., 

2017; Haese et al., 2017; Liberman et al., 2014; Sendik & Messer, 2015; Troemel 

et al., 2014;Uijenhoet et al., 2018; Zinevich et al., 2008). In addition to identifying 

temperature inversions (David & Gao, 2016), propagation delays between CMLs 

caused by atmospheric moisture have also been used to detect and monitor fog 

(Chwala et al., 2014; David, 2018; David & Gao, 2018; David et al., 2009; 

Kawamura er at., 2017). 

A growing number of individuals own personal weather stations (PWS; Bell 

et al., 2013) and the quantity of PWSs tend to be greater in heavily populated 

locales, such as cities (Vos et al., 2018). An increasing number of these weather 

stations are enabled to share real-time measurements with online platforms 

(Gharesifard & When, 2016). Examples of online platforms include Weather 

Underground (wunderground.com), the Weather Observation Website 

(www.netoffice.gov.uk), and the Citizen Weather Observer Program (xwqa.com). 

PWS data has been employed successfully in a number of urban investigations. 

Temperature observations have been garnered from PWSs for Urban Heat Island 

investigations (Chapman et al., 2017; Meier et al., 2017; Steeneveld et al., 2011; 

Wolters & Bransma, 2012). Intra and inter LCZ variability of air temperature was 

investigated using PWS data by Fenner et al. (2017). PWS acquired rainfall data 

has exhibited a superior resolution and quality of measurement than real-time 

6

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 7 [2020], Iss. 4, Art. 11

https://commons.erau.edu/ijaaa/vol7/iss4/11
DOI: https://doi.org/10.15394/ijaaa.2020.1540



 

unadjusted radar products (Vos et al., 2017). The incorporation of PWS data, 

amongst other unconventional data, has also been shown to improve the forecasting 

of convection (Gasperoni et al., 2018; Madaus et al., 2014; Sobash & Stensrud, 

2015). 

Efforts to achieve high resolution spatial and temporal observations for 

UAM must necessarily include consideration of the vertical dimension. UAM 

vehicles in flight make for an excellent sensor platform and will be readily available 

for making observations aloft. Combining aerial vehicle hosted sensors with 

surface-based IoT observational networks (Chapman & Bell, 2018) will allow for 

the realization of true three-dimensional observational networks. The use of 

crowdsourced air traffic control data for upper air meteorological monitoring has 

been demonstrated (Trub et al., 2018). Trub et al. inferred high quality wind 

velocity, temperature and pressure data, suitable for assimilation into numerical 

weather models, from continuously transmitted Secondary Surveillance Radar 

Mode S and ADS-B transponder signals crowdsourced from over 15 billion 

transponder messages. In addition, unmanned aerial vehicles themselves have been 

shown to be effective in persistent IoT monitoring of the near-surface environment 

(Cheng et al., 2013; Hernández-Vega  et al., 2018; Rossi et al., 2018). 

Social (subjective) Weather Data 

Social weather data can be acquired via deliberate observation or 

inadvertently during daily life (Zhu t al., 2019). The multimodal nature of social 

weather data creates a rich tapestry of heterogeneous data stemming from texts, 

images, opinions, and behavioral information. Rossi et al. shows that people’s 

attitude toward meteorological phenomenon can be mined from social networks 

(Rossi et al., 2018). Surface transportation research has used crowdsourced data to 

model and predict traffic speed by extracting weather events from Twitter (Lin et 

al., 2015) and Lu et al. (2018) extracted temporal, spatial, and meteorological 

features from social media to create a city-level traffic awareness alerting model 

that negates the need to fuse data from physical sensors operated by disparate 

government entities. Morita et al. (2018) developed a system that can collect, 

analyze and deem the location and severity of a disaster in real time based on 

information posted to social media. Geo-tagged pictures from web images have also 

been mined to extract snow-related information in inaccessible or mountainous 

regions (Guiliani et al., 2016). 

In addition to mining popular social networks, an assortment of apps have 

been developed to more directly acquire social weather data. Social.Water is a 

software package developed for hydrological measurements that collects, parses, 

and categorizes text messages sent to a dedicated phone number Fienen & Lowry, 

(2012). Niforatos et al. (2017) developed a crowdsourcing weather app that both 

samples smartphones’ built-in sensors and allows for users to enter their own 

estimates of current and future weather conditions. The NoiseSpy (Kanjo, 2010), 
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NoiseMap (Schweizer et al., 2012) and Ear-Phone (Rana et al., 2010) apps have 

enabled the mapping of sound levels to characterize urban noise pollution. The 

Mobile Application for Emergency Response and Support (MAppERS) enables 

those impacted by floodwaters to provide their location and status to authorities, 

along with snapshots that can be directly analyzed in support of the decision-

making process during the crisis (Frigerio et al., 2018). Using a low-cost, mass-

producible iPhone add-on, the Spectropolarimeter for Planetary Exploration 

(SPEX) for iPhone (iSPEX), Snik et al. (2014) formed an atmospheric measurement 

network that permitted users to measure optical thickness to access the impact of 

aerosols on health, climate and air traffic. The AirTick mobile app has been 

developed to turn any smartphone camera into an air quality sensor that uses image 

analytics and deep learning techniques to supplement air quality monitoring (Pan 

et al., 2017). In the United States, the National Oceanic and Atmospheric 

Administration’s (NOAA) Severe Storms Laboratory initiated the social 

crowdsourcing project, Meteorological Phenomena Identification Near the Ground 

(mPING). Any member of the public, without registration, can submit a weather 

report and the initiative has shown the capability to provide consistent and accurate 

observational data (Elmore et al., 2014). Crowdsourced social weather data fuses a 

large heterogeneous dataset. However, the associated subjective opinions and 

individual participation ultimately provides large-scale, high-density information 

(Zhu et al., 2019). The gathering of such data by fixed ground-based sensors 

deployed over the same geographical area would be cost-prohibitive and 

impractical (Strangeways, 2018). 

 

Real-Time Urban Observations for Aviation via Crowdsensing 

Pervasive deployment of IoT devices has enabled the implementation of a 

new form of crowdsourcing application: crowdsensing (Ganti et al., 2011). In 

crowdsensing, the sensed data from various stationary and mobile IoT sources, both 

of which would be present in a UAM application, are automatically but strategically 

connected. The crowdsensing participants, which can be both users and sensor-

equipped devices, are generally required to complete tasks according to an 

intentionally chosen strategy. Further, the manner in which the mobile sources in 

the crowdsourcing application participate must be deliberately specified. 

Real-time urban meteorological observations, and in particular those for 

enabling UAM, can benefit greatly from advances in crowdsensing technologies. 

To the best of our knowledge, there is no crowdsensing solution designed for UAM 

weather forecasting and operations. However, solutions developed for other 

applications, with mobile elements present, provide valuable lessons. Using the key 

insights from these applications, we present a data collection framework and an 

incentive-based crowdsensing application for real-time urban observations in this 

section. The goal of the framework is to capture high-resolution spatial and 

8

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 7 [2020], Iss. 4, Art. 11

https://commons.erau.edu/ijaaa/vol7/iss4/11
DOI: https://doi.org/10.15394/ijaaa.2020.1540



 

temporal meteorological data for the creation, reporting and validation of weather 

forecasting products in support of UAM. 

In the following subsections, we first present the overarching architecture 

of the cyber-physical system and then present the main components of the 

incentive-based crowdsensing application and list the important design 

considerations. 

System Architecture 

The common methodology used to describe the architecture of a network-

based solution is to detail the network layers and the corresponding services found 

in each of these layers. This section presents a four-layer architecture (Figure 1) 

similar to the architectural layers for mobile crowdsensing systems by Capponi et 

al. (2019). 

 

Figure 1 
 

Real-Time Urban Observation System Architecture. 

 

 
 

Physical Sensing Layer 

The physical sensing layer includes all of the data sensing elements that 

would be used in our solution as data collection participants. A data collector can 

be a single IoT device such as a temperature sensor with a controller or an 

unmanned aerial vehicle with numerous onboard sensors. The network elements at 

this layer will form the endpoints of our data collection network and sense data 

according to their capabilities and the sensing strategies. In networking 

terminology, the physical sensing layer includes only the devices and their physical 

communication, such as the wireless connection among sensors. The sensing 

strategies, such as periodic data collection, are implemented on the upper layers. 

Some examples of possible data collectors are: 

• Incentive-Based Crowdsensing ApplicationApplication Layer

• Data Storage & Management

• Initial Data Analysis
Data Layer

• Urban Communication Technologies

• Data Sensing Mode Control

Network and 
Communications Layer

• Data Collection Network Elements
(IoT, UAVs, Smart Phones, Weather Stations, etc.)Physical Sensing Layer
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• Professional/Commercial Grade Weather Stations: Several weather 

sensitive industries site a variety of weather sensors. Further, several companies, 

such as Uber, have indicated that they plan on siting weather instrumentation at 

every vertiport and at select locations along common flight routes. 

• Amateur/Personal Weather Stations: An increasing number of these 

weather stations are enabled to share real-time measurements online. 

• Aerial Vehicles: Much like current traditional manned aircraft, urban 

aerial vehicles will be equipped with onboard weather sensing capabilities. 

• IoT: All IoT devices with sensors that are connected to the urban network, 

especially in burgeoning smart cities. These can include: light sensors, temperature 

sensors, wind sensors, acoustic sensors, video cameras, etc. 

• Ground Vehicles: Both traditional ground vehicles and burgeoning 

autonomous vehicles are equipped with numerous sensors that can be used for data 

collection in the urban network. 

• Personal Devices: Human participants can choose to use their personal 

mobile devices or wearable devices for data collection by either recording their own 

observations manually or through an application running in the background that 

records and transmits sensor readings. 

• Government meteorological infrastructure: This can include sensing 

elements for air pollution monitoring or transportation systems. 

These network elements will each be used in different roles for data 

collection based on their properties in the system. For instance, while the typical 

role of a device is simply data collection, devices with suitable telecommunication 

capabilities can be used for both data collection and relay and in that serve as a 

central unit of a small data collection cluster. Additionally, while some of the 

devices are expected to be functional all of the time, such as stationary weather 

observation stations, others will be used dynamically based on the system 

requirements. 

Network and Communications Layer 

The network and communications layer includes the technology that 

provides connectivity among the disparate network elements in the physical sensing 

layer. Hence, this layer is the glue that holds the entirety of the system together. All 

existing and expected urban telecommunication technologies are utilized in this 

layer. These include both wireless (Wi-Fi, LTE, 5G, Bluetooth, etc.) and wired 

(Cable, DSL, FTTH, etc.) technologies. Advantages and disadvantages include: 

• Wi-Fi: Wi-Fi is the most common form of wireless technology used by 

urban crowdsensing participants. It also has a cost advantage compared to most 

other wireless technologies. However, its main disadvantage is its limited mobile 

connectivity. Therefore, Wi-Fi can be considered as a location-based option for the 

data collection in our application. 
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• LTE: Cellular connectivity is one of the critical components of any mobile 

crowdsensing solution in an urban environment. Both the users of mobile devices 

and the aerial vehicles leverage the opportunities provided by cellular connectivity. 

Current 4G and LTE solutions provide reasonably good data rate and delay 

performance for data collection. 

• 5G: 5G is expected to provide longer transmission ranges and support 

software defined networking applications. Both of these features will extend the 

capabilities of crowdsensing applications in an urban environment. 

• Bluetooth: Bluetooth is a potentially good candidate for limited distance, 

energy-efficient data collection, particularly to dump data to a data collection point 

when other options are not available. 

• Other wireless technologies: There are wireless technologies that use 

different frequencies other than the traditional options. For example, optical lasers 

or millimeter wave wireless communications have started to be used in several 

urban applications for data transmission. 

• Wired networks: A multitude of various data collection sensors are 

anticipated to be incorporated into future smart cities. Additionally, data collected 

by wireless networks will be transferred to cloud data centers mostly by using the 

wired infrastructure. 

In addition to the abovementioned technologies, the proposed system 

architecture allows incorporation of ad-hoc networking solutions as well. For 

instance, an unmanned aircraft (UA) swarm or a surface autonomous vehicle (AV) 

platoon can be disconnected from the overall system for some time and then dump 

timestamped data to the network when they reconnect.  

The network and communications layer must offer network and sensing 

configuration capabilities. For example, an important consideration for real-time 

urban meteorological observations is the execution time of the sensing activity. One 

possible implementation strategy is synchronous sensing, where the sensed data is 

transmitted to the corresponding data center in real-time. This is in contrast to 

asynchronous sensing where the collected data is time-stamped and later 

transmitted according to a predefined plan. While synchronous sensing may seem 

to be ideal, it may require a large investment in terms of connectivity and 

communication technologies. Consequently, the selection of synchronous or 

asynchronous sensing must take into account the meteorological observation 

network’s sensitivity to real-time requirements. 

Data Layer 

The data layer undertakes the storage, management and initial analysis of 

the vast amount of data collected by the observation system. The data collected by 

the network of sensing elements must be stored and processed to be used by the 

crowdsensing applications. For the storage and management of the data, there are 

database solutions, which can be implemented by using a central server or a 
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distributed solution making use of recent edge computing solutions. The traditional 

crowdsensing approaches generally use a single location for data processing as it 

provides options to process data using large computational resources. However, 

some applications have less strict requirements for data preprocessing. 

Additionally, recent advances in edge computing provide more powerful 

distributed solutions. In our framework, we envision a single data processing 

location with possible extension to a distributed solution. The single location will 

provide a central control over the data collection strategy in the first stages of the 

design. 

The data layer also includes the management and initial analysis of the 

collected data. The initial data quality check is done in this layer to remove noise. 

The data check and filtering allow the crowdsensing application to receive only 

filtered, high quality data. Additionally, machine learning-based methods can be 

embedded in the data layer to both detect anomalies and make predictions by using 

the real-time data flow. 

Application Layer 

The application layer is where all of the crowdsensing mechanisms are 

implemented and executed. The implementation includes the overall crowdsensing 

strategy and the network element configuration. 

The crowdsensing strategy will be implemented by considering two types 

of users (or autonomous agents), data contributors and data collectors. The main 

challenges of crowdsensing applications are the recruitment of the contributors, 

selection among these and task assignment according to a certain crowdsensing 

campaign. Addressing the details of these aspects for our proposed application is 

given in the following section. 

Incentive-Based Crowdsensing Application 

Incentive mechanisms play an important role in crowdsensing solutions. 

These mechanisms use different forms of incentives or rewards to increase the 

number of participants and select participants based on the requirements of the 

applications (Ota et al., 2018; Sun, 2013; Zhang et al., 2016). The UAM 

meteorological application that we consider in this paper requires a large number 

of participants for fine-grained data. Additionally, the selection of these participants 

for data collection depends on their location at the intended data collection time. 

The participants in the meteorological application can be various weather 

sensors, devices with embedded sensors, along with human sensors. If these sensors 

participate in the meteorological data collection, it will be possible to identify fine-

grained weather data. However, the data collectors would need a motive to 

participate in the crowdsensing system since it may also entail some minor 

disadvantages. For instance, if the data collection is an additional task for the 

sensor’s regular sensing plan, it will require extra power consumption for 
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observation and data transmission. Hence, a well-designed incentive mechanism 

will be of significant benefit for this meteorological application. 

Crowdsensing Application 

The main components of our incentive-based crowdsensing application are 

as follows: 

• Task advertisement: The data collection tasks will be advertised to all 

potential participants. These tasks will have an incentive associated with them, 

which can be static or dynamic based on the needs of the system at the time.  

• Participant selection: The participant selection for a specific task will 

depend on the current state of the system and the nature of the task. For instance, 

the spatial coverage, the mobility of the participant and the variability of its 

collected data will influence the selection. 

• Task assignment: Once the participants are selected for task execution, 

the system will assign tasks with certain incentive values. 

• Task execution: The participants for task execution can be the users of 

mobile devices or smart agents running on various devices or vehicles. Our 

application will allow both of these task execution types. 

• Incentivizing: The participants will be rewarded as they execute tasks. 

Continually, the incentives and reputations of the users will be updated according 

to the state of the system.  

The incentive-based crowdsensing application uses advertisements to 

recruit users or devices. An important parameter for the incentive mechanism is the 

form of the incentives. Since fine resolution environmental insight is invaluable for 

various smart city applications, a good example of an incentive is a discount to a 

subscription service that brings together weather data from a number of 

participants. In this scheme, participants would become members of a system from 

which they get service from and would do so at a discounted price. Simultaneously, 

they would also improve the same service as they collect and share data. 

Following the recruitment of participants, the application selects users 

among the participants based on the particular goal at that point in time. The system 

assigns tasks to the selected participants and their data is contributed to the system. 

The collected data is invaluable since, in addition to ensuring the safety and comfort 

of passenger-carrying aerial vehicles and the performance of cargo delivery aircraft, 

it will be required for flight planning, flight authorizations, real-time adaptive 

trajectory planning and managing dynamic airspace boundaries, along with 

contingency planning. 

Incentivizing Strategy 

The strategy for the distribution of incentives is critical for the proposed 

crowdsensing application since it will play an important role in the recruitment and 

selection of participants. There are two main methods of distributing the incentives 

in crowdsensing applications. In dynamic incentive distribution strategies, the 
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incentives are updated during the operation (Lou et al., 2014; Yang et al., 2012). 

Alternatively, static incentive distribution strategies distribute incentives offline 

before the operation and do not update them during the course of the operation 

(Tsujimori et al., 2013). Since the spatial and temporal requirements for 

meteorological data collection may change frequently, a dynamic strategy is more 

appropriate for this application. With this dynamic strategy, there are two important 

requirements that are central to its design: 

• Data type, quality and quantity: The data of greatest interest in our 

application is data that addresses wind, turbulence, temperature, ceiling, visibility, 

precipitation and icing. Therefore, the tasks for the crowdsensing application will 

be the collection of these data types.  

• Resource management: Participant recruitment and maintenance are 

fundamental challenges in collecting sufficient data for crowdsensing applications. 

While a higher number of participants are preferred for coverage, the cost 

associated with each participant must be taken into account. 

These requirements shape the characteristics of the incentivizing strategy. 

Even though we would like to collect all available data for the most extensive 

spatial coverage, the application is unable to blindly accept every data point from 

all participants. Consequently, a reputation-based method must be incorporated into 

the strategy in order to assess the quality of the collected data by different 

participants. In addition, an optimization mechanism is required to keep a certain 

number of participants in the system for a given spatial coverage of the three-

dimensional urban environment, while staying in budget. 

To satisfy the requirements of our crowdsensing application, we employ 

“Game Theory” when designing our incentive mechanism. Game Theory is a 

theoretical framework to conceive situations among competing players and produce 

optimal decision-making of independent and competing actors in a strategic setting 

(Ross, 2019). It is considered one of the most important analytical tools for studying 

systems, where a participant’s best course of action for their own good is dependent 

upon their expectations about the other participants’ actions. Therefore, it is an 

invaluable tool for crowdsensing systems with incentive mechanisms, particularly 

for applications with strategic interactions among multiple decision-makers 

(Osborne & Rubinstein, 1994). 

We use Game Theory to model the strategic interactions among the data 

collectors and the generation of an optimal configuration for the system’s overall 

gain. This approach provides the theoretical framework for the strategy so that the 

dynamics of incentive advertisement and task assignment ends with a stable 

assignment for participants. The incentive mechanism is modeled as a “game” (per 

its definition in Game Theory) in which the participants are the players and the 

participants’ trajectories, or their sensing times if they are stationary, are the 

strategies. In this game, we assume that the participants are individually rational in 
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terms of data collection and act in their own interests. We would like to use these 

participants’ data according to the system’s spatial and temporal needs. Therefore, 

our system advertises incentives for executing sensing tasks and the value of a 

particular incentive is determined by the location and time. The participants decide 

whether to execute the sensing task or not based on the incentives. When a mobile 

participant is not satisfied with the current incentive at a location, it can check for 

other available nearby advertisements. If executing a sensing task in another 

location has a better incentive, then the participant can choose to move to that 

location. If the participant is stationary and the incentive is not satisfactory, it can 

choose to wait for another time. 

Implementation Plan 

The proposed network architecture, network elements and crowdsensing 

application, offer a real-time urban meteorological observation solution that can be 

used for granular meteorological data collection. Future work includes a plan to 

implement and evaluate the application in two phases. The first phase consists of 

setting up an experimental design containing a small number of different data 

collectors, such as smart phones and UAVs with hosted sensors. The primary goal 

of this phase is the proof-of-concept implementation that shows the roles of 

different network layers and the functioning of the data collection mechanism in a 

real-life setting. 

Following the initial experiment, the application and the network 

architecture will be implemented in simulation, using realistic network 

communication and urban mobility components (Compere et al., 2019). The 

simulation will afford us the opportunity to test a multitude of what-if scenarios in 

an environment with a large number of crowdsensing participants. This is critical 

in order to evaluate the performance of the approach in a dense network. 

Additionally, we plan to implement a hybrid testbed-simulation approach to 

combine the real-life conditions of the testbed environment with the enhanced 

modeling capabilities of the simulation environment.  

 

Conclusion 

UAM is expected to be an integral component of future cities. However, 

this is a new environment for sustained flight operations. Without the availability 

of good weather products appropriate for this domain, safety will be jeopardized, 

thus decreasing public confidence, and the delivery of goods and services will be 

disrupted, thus decreasing profitability. The spatially and temporally dynamic 

environment of the UBL necessitates fine resolution meteorological observations. 

The requisite number of sensors to accomplish this makes a traditional observation 

network implausible in terms of installation and continuing maintenance costs. 

While crowdsensing offers numerous opportunities in the urban environment for 

the collection and real-time reporting of data, it has not yet been thoroughly 
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explored for obtaining high-quality meteorological data for this purpose. In this 

paper, we introduce an overarching architecture for a cyber-physical urban 

meteorological observational system and an incentive-based crowdsensing 

application that is designed on top of this architecture for dynamic data collection 

in support of urban aviation operations. 
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