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ABSTRACT 

Recent years have seen an increased interest in spacecraft formation flying, with many 

applications requiring that the members of these formations maintain specific relative 

attitude configurations. One low-cost method that has been considered to accomplish this 

is the use of electrostatic torques, which are generated by charging the surfaces of 

involved spacecraft to allow interaction without physical contact. The research presented 

in this thesis analyzes a pair of cylindrical-bodied spacecraft operating in deep space. 

Specifically, the suitability of using electrostatic torques as an actuator to synchronize the 

two spacecraft's attitude responses is under consideration. The study considers a 

simplified case, wherein the two spacecraft are restricted to rotate in a single plane, as 

well as a more practical case where the two are allowed to freely rotate in three 

dimensions about their centers of mass. These cases are primarily investigated to develop 

suitable control laws to accomplish the attitude synchronization between the two 

spacecraft. Additionally, the actuator dynamics required to implement one of these 

controllers are developed and simulated, in order to investigate the practicality of using 

the controller in question. Based on the findings of this study, the system was found to be 

controllable with the presented control laws. In addition, the actuator dynamics required 

to implement one of these control laws were developed and simulations show that much 

of the control can be accomplished with small changes in the actuating spacecraft charge. 

However, with the currently-considered 3D controller in the case that was simulated, the 

required actuator dynamics are too aggressive at one point for a practical device to 

accomplish the charging. Thus, future work may consider other 3D control laws. 
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1. Introduction 

This chapter introduces the topic of relative attitude control with electrostatic torque 

as an actuator. It discusses the problem of interest for the research presented in this thesis, 

as well as the motivation driving the research to solve this problem. After this, a brief 

layout of the rest of the thesis is presented. 

1.1. Research Motivation and Problem Statement 

The problem of interest for this research is controlling the relative attitude of the 

members of a formation of spacecraft. This problem has several applications. One of the 

primary applications is in remote sensing, both of the Earth and of other celestial bodies. 

For example, NASA has been considering the development of a spacecraft formation to 

act as a long-baseline telescope for observing extrasolar bodies (NASA JPL, n.d.). On the 

other hand, Earth-observing formations can often be used for map-making or espionage 

applications. 

While it is certainly possible to control the relative attitude of member spacecraft of 

these formations through more traditional means, such as attitude control thrusters or 

reaction wheels, using electrostatic torque as an actuator offers several unique 

advantages. Electrostatic torques between formation members are created by electrically 

charging and discharging portions of the crafts’ outer surfaces based on their relative 

attitudes. The spatial relationship between the charged portions of each spacecraft’s 

surface and their centers of mass turn the natural electrical attraction or repulsion 

between the charged regions into torques. 

One of the principal advantages of this method is that using electrostatic torque 

removes the need to pack large amounts of propellant into a satellite for attitude control, 
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as thrusters would require. Additionally, since electrostatic torques are created by 

spacecraft relative state and electrostatic charge (i.e. they are not dependent on spacecraft 

angular velocity), they avoid the potential for saturation that reaction wheels struggle 

with. Electrostatic torques are also remarkably power-efficient to implement, with some 

estimates placing the required power at the Watt level (Schaub & Stevenson, 2013). 

Of course, there are some drawbacks to the technique that need to be addressed. One 

major drawback is that the control authority that electrostatic torques can exercise is 

largely dependent on the geometry of the spacecraft (or, more accurately, the locations on 

the spacecraft that can be charged and discharged and their spatial relationship to the 

craft’s center of mass). This can be mitigated, however, by designing the spacecraft with 

this actuation system in mind and ensuring that full control authority can be exercised at 

any time. Additionally, there is the drawback that, if every member of the formation 

purely uses electrostatic torques, the formation can control the relative attitude of the 

members, but cannot control the absolute attitude of the entire formation. This can be 

mitigated by selecting one spacecraft in the formation to possess a traditional attitude 

control system and use this to set its attitude. Then, the other members can control 

themselves to align with it.  

This thesis seeks to investigate the utility of electrostatic torques as an actuator to 

control the relative attitude of spacecraft formation members on a more technical level, 

evaluating potential control laws for their ability to control the relative attitude of the 

spacecraft. In order to do this, the research analyzes one potential system that this control 

system could be applied to, a pair of cylindrical spacecraft operating in deep space, far 

from the influences of celestial bodies. 
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1.2. Organization of Thesis 

With the problem thus described, Chapter 2 presents a review of the findings of 

several recent studies that have investigated attitude control problems with electrostatic 

torque actuation systems and discusses their relevance to the research presented in this 

thesis. The chapter finishes with a discussion of the novel approach of the current study 

to this problem.  

Chapter 3 then provides an overview of some physical concepts that are important to 

the development of electrostatic torque theory. These are discussed to acquaint unfamiliar 

readers with details of attitude mechanics, electrostatics, and control theory that are 

relevant to the research presented in later chapters. 

Chapter 4 presents the approach taken to analyze the use of electrostatic torques as 

relative attitude control actuators. Specifically, it provides a description of the system 

studied in this research, along with a discussion of the development of this system’s 

equations of motion. These discussions are presented for both a restricted two-

dimensional case of the system, as well as the case where the system is allowed the full 

range of three-dimensional rigid body rotations. 

Next, Chapter 5 introduces several control laws that were investigated for use in this 

system. Both the 2D and 3D Cases of the system are considered. The chapter finishes 

with a discussion of the necessary actuator dynamics required to implement one of these 

control laws for the system’s 3D Case. 

 In Chapter 6, numerical simulations of the developed theory are presented to evaluate 

the effectiveness of these different control laws and actuator dynamics for controlling the 

relative attitude of the system. These will be presented along with simulations of the 
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open-loop and equilibrium behavior of the system, in order to demonstrate system 

controller performance. 

Finally, overall conclusions from the research are drawn in Chapter 7. In addition, 

this chapter makes several recommendations for future work in the field. Some of these 

recommendations are based on limitations of the present research, while others seek to 

generalize this topic to other potential systems of application. 
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2. Review of Relevant Literature 

This chapter explores some of the research that has been done on the topic of 

electrostatic torque control for collections of spacecraft. First, one of the most important 

techniques that has been developed in the field is discussed. Afterward, a survey of this 

technique’s applications to the problem will be conducted. Finally, the novel elements of 

the present research will be discussed. 

2.1. Multi-Sphere Method for Electrostatic Modelling 

Perhaps the most significant research development in the field of electrostatic torque 

theory in recent years is the development of the Multi-Sphere Method (MSM) (Stevenson 

& Schaub, 2013). This method enables its users to model the electrostatic interactions 

between multiple electrically charged bodies of complicated geometries without using 

computationally-expensive finite element methods that can make simulation and control 

law development very difficult. The central conceit of the MSM is to approximate an 

electrically charged object as a finite collection of charge-carrying spheres whose 

locations are fixed to the object in question. As the charge distribution on the object 

evolves with time, the charges of the spheres change to continue representing the object. 

To apply the MSM to a given spacecraft geometry, the user begins with an initial 

guess as to the number of spheres necessary to approximate it and the locations in the 

geometry that those spheres occupy. Then, the electrostatic forces and torques on this 

initial model are compared to those experienced by a higher-fidelity finite element 

electrostatic model of the same geometry, and an iterative nonlinear fit algorithm is 

applied to adjust the initial model until it optimally matches the results of the higher-

fidelity model. This process is explained in more detail in (Stevenson & Schaub, 2013). 
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As mentioned above, the MSM allows for more computationally-efficient modelling 

of electrostatic torques in spacecraft attitude dynamics. This advantage allows a user to 

simulate the electrostatic forces and torques between spacecraft in real-time or faster-

than-real-time, which is not generally possible for higher-fidelity finite element methods 

(Stevenson & Schaub, 2013). An additional advantage of the MSM is its reusability. The 

MSM model of a spacecraft is made for a given geometry, not a specific spacecraft. 

Therefore, any spacecraft that uses this geometry, with the same dimensions, can utilize 

the same MSM model of any other spacecraft that uses this geometry. This means that the 

process of model creation can be performed once to model a member of a spacecraft 

formation composed of identical member craft, and that model can then be applied to 

each member of the formation. 

Throughout the original research in this thesis, the MSM model of the selected 

spacecraft geometry will be used as a starting point for developing a model of the system 

experiencing electrostatic torque. While the authors of (Stevenson & Schaub, 2013) 

prefer to express the electrostatic model in terms of voltages, as this is a more easily 

measured control variable, the analysis presented in this thesis expresses the model in 

terms of sphere charge, instead. This is done for its utility in expressing the electrostatic 

torques experienced by the system. As this thesis presents functions for the charges on 

the spacecraft as functions of system state for one of the proposed control laws (see 

Equations (42) and (43)), the corresponding voltage expressions can be determined by 

using the conversion presented in Equation (2) of (Stevenson & Schaub, 2013). However, 

examining this conversion was considered out of scope for the present research. Future 

work may consider this conversion, however. 
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2.2. Electrostatic Torque Research to Date 

Utilizing the MSM introduced above, several studies have been conducted in recent 

years to investigate the use of electrostatic torque as an actuator for spacecraft relative 

attitude control. One of the first of these was conducted by Schaub and Stevenson in 

2013, to investigate the use of electrostatic torques to detumble space debris using a 

spherical servicer craft. This analysis considers two spacecraft, a spherical servicer and a 

cylindrical debris object, operating in a single plane, with the debris constrained to rotate 

only in two dimensions. The authors develop a feedback control law, using the spacecraft 

electrostatic potential as a control variable. This study illustrates the principle that 

electrostatic torques can, in fact, be used to control the attitude of spacecraft through the 

use of feedback control theory. 

While (Schaub & Stevenson, 2013) is somewhat limited by its planar rotation 

assumption, it provides several foundational elements to the research presented in this 

thesis. Not only does it provide the core concept that electrostatic torques can be used for 

this application, it also provides the MSM model for cylindrical craft that is used in this 

study (see Section 4.1). The 2D Case of this thesis (see Section 4.1) is a direct 

generalization of (Schaub & Stevenson, 2013), for the case that both craft are identical. 

The planar rotation constraint is lifted from this system in a later study, conducted by 

Bennett and Schaub (2015). In this study, the authors thoroughly analyze the relationship 

between spacecraft separation and control authority while using electrostatic torque as an 

actuator. Additionally, this study develops the stability and equilibrium characteristics of 

the 3D generalization of the control scheme developed in (Schaub & Stevenson, 2013). 

While this generalization certainly results in a much more usable control scheme for real-
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world applications, it is not as applicable to the problem considered in this thesis, as it 

still uses the spherical servicer craft from the previous study, whose attitude cannot be 

meaningfully controlled with the electrostatic torque actuation system (Bennett & 

Schaub, 2015). 

Bennett and Schaub (2018) extend the problem from merely detumbling space debris 

to also include altering the orbit of the debris in order to either service or dispose of it. 

The study accomplishes this by considering different nominal charge values for the 

servicer spacecraft. This results in the servicer spacecraft exerting a net pull or push on 

the debris, dependent on the sign of the nominal charge. This is used to tug the debris 

from its current orbit to the desired target orbit. One of the most notable developments of 

this study was an analysis of the different steady-state attitudes of the debris object, 

depending on whether the nominal pulling or pushing configuration was used. When in 

the pulling configuration, the debris object (still modelled as a cylinder) comes to 

equilibrium with its long axis pointed along the inter-craft axis, while the pushing 

configuration results in an equilibrium condition where the debris object is oriented 

perpendicularly to the inter-craft axis (Bennett & Schaub, 2018). Owing to this discovery, 

the simulations in this thesis were conducted with nominal charges set up to create a 

pushing configuration, as this results in equilibria more useful to spacecraft formations 

with pointing applications in mind. 

Following on the concept of the electrostatic tug spacecraft, (Aslanov & Schaub, 

2019) focuses in on the utility of the pushing configuration, specifically. This study 

continues to utilize the system model of the previous studies: with a spherical servicer 

spacecraft and a cylindrical debris object. It also returns to the constrained planar rotation 
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considered by (Schaub & Stevenson, 2013). The primary concern of the study is to 

evaluate the stability of several feedback control laws that the attitude-stabilizing tug 

craft can use to constrain the attitude motion of the debris object. 

2.3. Novelty of Present Research 

As can be seen from the references discussed above, much of the current research in 

electrostatic torque actuation turns its attention to the control of space debris for servicing 

or disposal. However, the research presented in this thesis turns the developments in 

these references to a new application: namely, the relative attitude control of two 

identical spacecraft, with an eye toward one day using similar techniques on larger 

formations of spacecraft. The two identical spacecraft considered by this study are a pair 

of cylindrical spacecraft, allowing the study to leverage the MSM model for cylindrical 

spacecraft from the previous work as a starting point for the analysis.  

Additionally, this study also adds an additional factor to the system: considering 

spacecraft purpose-built to use the electrostatic actuation, being able to independently 

control the charge on differing parts of their surfaces. This study assumes that the outer 

surfaces of the spacecraft have charge-carrying regions which are separated by 

electrically insulating regions that allow the charge-carrying regions to be independently 

charged and discharged. Meanwhile, the previous studies considered a debris object 

whose entire surface was made of conducting material, meaning that the entire surface 

would hold approximately the same electrical potential.  

Finally, as stated above, this study focuses on the charge of the various chargeable 

regions as a control variable, whereas the previous research used the electrical potential 

as the control variable. This was done for the ease with which the actuator dynamics 
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could be developed from the system’s equations of motion. Additionally, using this 

control variable allows more direct actuation if the particle gun concept, as described in 

(Schaub & Stevenson, 2013), is used to conduct the charging and discharging of the 

member spacecraft.  
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3. Overview of Relevant Concepts 

This chapter discusses some of the important principles of physics and control theory 

that are used throughout the research presented in this thesis. First, some of the salient 

features of attitude mechanics are discussed, including Euler’s rigid body rotational 

kinetics equation and several attitude kinematic representations that are useful in the 

following discussions. Next, a brief primer on the relevant portions of electrostatic theory 

are presented. This is to acquaint the reader with their use in constructing expressions for 

the torques due to electrostatic interaction that are used as actuators for this research. 

Finally, various aspects of control theory that are used throughout this investigation are 

discussed. 

3.1. Attitude Mechanics 

Attitude mechanics, at its core, is the field of dynamics that concerns itself with the 

evolution of the orientation (or attitude) of objects over time, subject to the conditions 

that induce that evolution. In three-dimensional space, the attitude of an object is usually 

mathematically reckoned as a relationship between two coordinate frames.  

A coordinate frame is, in essence, a mathematical object that consists of a set of basis 

vectors that can be used to define the location of a point in the space that the problem 

takes place in. In a three-dimensional problem, such as attitude mechanics, a coordinate 

frame is a set of three linearly-independent basis vectors. While, theoretically, any type of 

coordinate system can be used to define these coordinate frames, the following 

discussions are only concerned with Cartesian three-dimensional coordinate frames. This 

type of coordinate frame can be thought of, spatially, as a set of three mutually-

perpendicular vectors originating from a single point. The simplest attitude mechanics 
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problems are concerned with modelling the time-history of the attitude between a single 

coordinate frame, defined to be fixed to a specific physical object, with respect to a 

reference coordinate frame, defined in a manner useful to the specific problem at hand. 

3.1.1. Attitude Representations 

There are several ways to mathematically represent the attitude between two 

coordinate frames. This discussion presents three of them that are of particular 

importance to the research presented in this thesis: principal rotation vectors, direction 

cosine matrices, and Euler angles. The introductions of these three concepts that follow 

assume that the problem of interest takes place in three-dimensional Cartesian space. 

The simplest of these three, conceptually, is the principal rotation vector 

representation. This representation relies on the fact that the attitude between any two 

coordinate frames can be represented as a single-axis rotation between the two of them. 

The principal rotation vector is then defined by the following relation: 

 
𝛷ሬሬ⃗ = 𝛷𝑘ሬ⃗                                                                (1) 

 
 

where 𝛷ሬሬ⃗ ∈ ℝଷ is the principal rotation vector representation, 𝛷 ∈ ℝ is the magnitude of 

that vector (referred to as the principal rotation angle), and 𝑘ሬ⃗ ∈ ℝଷ is the unit vector 

parallel to the principal rotation vector, known as the principal rotation axis. As the name 

suggests, the principal rotation axis is the unit vector that describes the spatial orientation 

of the single axis about which one of the coordinate frames in question must be revolved 

to align with the other coordinate frame. Similarly, the principal rotation angle is the 

amount by which the first coordinate frame must be revolved about the principal rotation 

axis to align the two coordinate frames. The principal rotation axis is a dimensionless 
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quantity, while the principal rotation angle (and thus, the principal rotation vector) has 

angular units, usually degrees or radians.  

The second attitude representation used in this thesis, and the most widely used one in 

it, is the direction cosine matrix (DCM). However, this is also one of the most 

complicated ones. A DCM is a 3x3 matrix whose elements are the cosines of the angles 

between each possible pair of axes between the two coordinate frames in the problem of 

interest. To illustrate this, consider a pair of coordinate frames, 𝐼መ𝐽መ𝐾෡ and 𝚤̂𝚥̂𝑘෠ . The names 

of these coordinate frames indicate the names of the axes that comprise them. For 

example, the 𝐼መ𝐽መ𝐾෡ frame is the coordinate frame whose first axis is defined by the unit 

vector 𝐼መ ∈ ℝଷ, second axis is defined by the unit vector 𝐽መ ∈ ℝଷ, and third axis is defined 

by the unit vector 𝐾෡ ∈ ℝଷ. Let the symbol ∠ denote the angle between the following two 

vectors. Then, the DCM between these two coordinate frames is defined by the 

following. 

 

𝑄௜→ூ = ቎

𝑐𝑜𝑠(∠𝐼መ𝚤̂) 𝑐𝑜𝑠(∠𝐼መ𝚥̂) 𝑐𝑜𝑠(∠𝐼መ𝑘෠)

𝑐𝑜𝑠(∠𝐽መ𝚤̂) 𝑐𝑜𝑠(∠𝐽መ𝚥̂) 𝑐𝑜𝑠(∠𝐽መ𝑘෠)

𝑐𝑜𝑠(∠𝐾෡𝚤̂) 𝑐𝑜𝑠(∠𝐾෡𝚥̂) 𝑐𝑜𝑠(∠𝐾෡𝑘෠)

቏                                (2) 

 

Not only does the DCM define the relationship between the two coordinate frames, it 

also provides a tool to convert any given vector between its expression in the two frames. 

Using the DCM defined above, a general vector 𝑣⃗ ∈ ℝଷ, expressed in the 𝚤̂𝚥̂𝑘෠  frame, can 

be converted to its equivalent expression in the 𝐼መ𝐽መ𝐾෡ frame by pre-multiplying it by the 

DCM. That is to say, 

 
𝑣⃗ூመ = 𝑄௜→ூ𝑣⃗ ప̂                                                         (3) 
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where the superscript denotes which of the two coordinate frame expressions is being 

used, based on the first axis of that coordinate frame, and the product shown is the matrix 

product. 

The final, and perhaps best-known, attitude representation used in this study is the 

Euler angle representation. This representation prescribes a series of rotations about a 

coordinate frame’s instantaneous axes that must be performed to align it with the 

reference coordinate frame. One of the most familiar of these rotation sequences is the 

sequence about the first axis, then second, then third, often referred to as the roll, pitch, 

yaw sequence or the 1-2-3 sequence, though many others exist. It is important to stress 

that these rotations are applied to the instantaneous axes of the frame. So, after the first 

rotation is applied, the second rotation is applied about the current second axis, not the 

original one. For the research presented in this thesis, the less-conventional 1-2-1 rotation 

sequence will be used, as explained in Section 4.3. 

A given attitude can be expressed in any of these three representations and, if desired, 

can be converted from one to another. For the three presented here, it is easiest to convert 

between Euler angles and DCMs, which can be converted in either direction. That is to 

say, one can convert from Euler angles to DCMs, or from DCMs to Euler angles, with 

little difficulty. This conversion is accomplished by constructing the DCM that represents 

the single-axis rotation prescribed by each Euler angle and then multiplying these in 

sequence to produce the DCM representation of the full rotation. The sequence in 

question is to have the first rotation as the right-most matrix and then include the 

following ones to the left of it, in succession. Representing the 1-2-1 rotation sequence 

mentioned above as the angles 𝜓ଵ, 𝜓ଶ, and 𝜓ଷ, this is done as follows: 
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𝑄 = ൥

1 0 0
0 cos 𝜓ଷ sin 𝜓ଷ

0 −sin 𝜓ଷ cos 𝜓ଷ

൩ ൥
cos 𝜓ଶ 0 −sin 𝜓ଶ

0 1 0
sin 𝜓ଶ 0 cos 𝜓ଶ

൩ ൥

1 0 0
0 cos 𝜓ଵ sin 𝜓ଵ

0 −sin 𝜓ଵ cos 𝜓ଵ

൩ ===

൥

c 𝜓ଶ s 𝜓ଶ s 𝜓ଵ −s 𝜓ଶ c 𝜓ଵ

s 𝜓ଶ s 𝜓ଷ c 𝜓ଵ c 𝜓ଷ − c 𝜓ଶ s 𝜓ଵ s 𝜓ଷ s 𝜓ଵ c 𝜓ଷ + c 𝜓ଶ c 𝜓ଵ s 𝜓ଷ

s 𝜓ଶ c 𝜓ଷ −c 𝜓ଵ s 𝜓ଷ − c 𝜓ଶ s 𝜓ଵ c 𝜓ଷ −s 𝜓ଵ s 𝜓ଷ + c 𝜓ଶ c 𝜓ଵ c 𝜓ଷ

൩      (4) 

 
 where, for brevity, the prefix c indicates the cosine of the following angle and the prefix 

s indicates the sine of the following angle. To convert from the DCM representation to 

the Euler angle representation, it is simplest to use the above expression to derive the 

relations in terms of elements of the DCM, as follows: 

 

𝜓ଵ = −𝑡𝑎𝑛ିଵ ொభ,మ

ொభ,య
,    𝜓ଶ = 𝑐𝑜𝑠ିଵ𝑄ଵ,ଵ,    𝜓ଷ = −𝑡𝑎𝑛ିଵ ொమ,భ

ொయ,భ
                     (5) 

 

where the first subscript refers to the row index of the element of the DCM, the second 

subscript refers to the column index of the element of the DCM, and the superscript -1 

refers to the inverse of the trigonometric function to which it is attached. 

While it is a simple task to convert an attitude expressed with DCMs into the 

principal rotation vector representation, it is far more difficult to convert back from a 

principal rotation vector to a DCM. However, since the research presented below only 

requires the conversion from DCM to principal rotation vector, the conversion back is 

neglected, here. To obtain the principal rotation vector representation of an attitude from 

its DCM representation, the principal rotation angle and principal rotation axis are 

obtained separately and then combined. The formulas for these are given by (Song, Tang, 

Hong, & Hu, 2017): 

 

𝛷 = 𝑐𝑜𝑠ିଵ ቀ
௧௥(ொ)ିଵ

ଶ
ቁ,       𝑘ሬ⃗ =

(ொିொ೅)ෛ

ଶ ௦௜௡ ః
                                        (6) 



16 
 

where 𝑡𝑟(𝑄): ℝଷ௫ଷ → ℝ refers to the trace of the DCM, which is the sum of its diagonal 

terms, the superscript 𝑇 refers to the transpose of the matrix to which it is attached, and 

the    ෕: ℝଷ௫ଷ → ℝଷ operator denotes the following operation: 

 

𝑄ෘ = ቎

𝑄ଷ,ଶ

𝑄ଵ,ଷ

𝑄ଶ,ଵ

቏                                                          (7) 

 

3.1.2. Attitude Kinematics 

Out of the three attitude representations presented above, one was used in this study 

to track the evolution of the system attitude with respect to time. This is the DCM 

representation. However, before the expression for the attitude DCM’s evolution with 

respect to time (or “kinematics”) can be presented, there is one other important concept to 

discuss. This is the angular velocity vector. 

As its name suggests, angular velocity is the rotational equivalent of velocity in 

translational motion. That is to say, it defines the rate at which the attitude changes over 

time. In three-dimensional Cartesian space, the angular velocity is a vector that points in 

the direction of the axis that the rotating body is instantaneously rotating about. The 

magnitude of the angular velocity vector defines the instantaneous rate at which the 

rotating body is rotating about that axis. For the simplest case, that of constant-rate 

rotation about a single axis, the angular velocity vector is a constant vector. However, in 

more complicated cases, it can change over time due to the application of moments or 

torques to the system. This is the topic of the next section. 

At any given instant during rotational motion, the instantaneous angular velocity 

vector can be used with the current DCM of the system’s attitude to define the 
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instantaneous rate at which the DCM changes over time. Expressed mathematically, this 

defines the attitude kinematic equation of a system using the DCM attitude representation 

(Song, Tang, Hong, & Hu, 2017): 

 

𝑄̇ = 𝜔෥𝑄 = ൥

0 −𝜔ଷ 𝜔ଶ

𝜔ଷ 0 −𝜔ଵ

−𝜔ଶ 𝜔ଵ 0
൩ 𝑄                                       (8) 

 

where the dot over a symbol indicates the derivative with respect to time of the quantity 

the symbol represents, 𝜔ሬሬ⃗ = [𝜔ଵ 𝜔ଶ 𝜔ଷ]் is the angular velocity vector of the system, 

expressed in the body-fixed coordinate frame of the rotating object, and the    ෥: ℝଷ →

ℝଷ௫ଷ operator converts the three-term angular velocity vector into the skew-symmetric 

matrix shown in the equation. Note that the operators    ෥ and    ෕ denote inverse operations 

of one another. 

3.1.3. Attitude Kinetics 

Equation (8) describes how the attitude of a system evolves over time due to its 

instantaneous angular velocity vector. However, as mentioned above, the angular velocity 

vector, itself, can evolve over time. This occurs when a torque or moment is applied to 

the system. In a manner analogous to Newton’s Second Law, which describes the 

relationship between a translational force and the time-derivative of the linear momentum 

of a translating system, the net torque or moment (“moment” will be used from now on 

for simplicity) applied to the system about its center of mass can be mathematically 

equated to the time-derivative of a rotating system’s angular momentum about its center 

of mass. Mathematically, this is written in the following manner (Curtis, 2005). 

 

𝑀ሬሬ⃗ ீ = 𝐻ሬሬ⃗
̇
ீ                                                         (9) 
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where 𝑀ሬሬ⃗ ீ ∈ ℝଷ is the net moment on the rotating body about its center of mass, 

expressed in the body-fixed coordinate frame of the rotating body, 𝐻ሬሬ⃗ ீ ∈ ℝଷ is the 

angular momentum of the rotating body about its center of mass, expressed in the body-

fixed coordinate frame of the rotating body, the subscript 𝐺 clarifies that the center of 

mass is the point about which the moments and angular momentum are reckoned, and the 

dot operator is as defined above.  

To develop the relationship between the net moment and the angular velocity’s rate of 

change, the right-hand side of this equation must be expanded. This is done by taking the 

definition of the angular momentum vector of the body about its center of mass in three-

dimensional Cartesian space and differentiating with respect to time. This definition is 

given by the following (Curtis, 2005). 

 
𝐻ሬሬ⃗ ீ = 𝐼𝜔ሬሬ⃗                                                          (10) 

 

where 𝐼 ∈ ℝଷ௫ଷ is the moment of inertia tensor of the rotating body about its center of 

mass, and the product shown between it and the angular velocity vector is the matrix 

product.  

Using the transport theorem, the time derivative of angular momentum is then found 

to be the following (Curtis, 2005). 

 

𝐻ሬሬ⃗
̇
ீ = 𝐼𝜔̇ሬሬ⃗ + 𝐼𝜔ሬሬ⃗ ̇ + 𝜔ሬሬ⃗ × 𝐼𝜔ሬሬ⃗                                               (11) 

 

where the × symbol denotes the cross-product operation. However, since the bodies in 

this study are assumed to expend negligible mass during their operation, the first term of 

the right-hand side of this equation goes to zero. Substituting this expression into 
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Equation (9) and dropping the aforementioned term, the following result, known as 

Euler’s equation for rigid body rotations, is obtained. 

 
𝑀ሬሬ⃗ ீ = 𝐼𝜔ሬሬ⃗ ̇ + 𝜔ሬሬ⃗ × 𝐼𝜔ሬሬ⃗                                                  (12) 

 

Note that this expression can be generalized for cases where the moments and angular 

momentum are taken about a point other than the rotating body’s center of mass. 

However, these cases are not used in the research presented in this thesis, and so the 

equations for this case are not explored here. For a discussion of this topic, see (Curtis, 

2005). Equation (12) can be solved for the time-derivative of the angular velocity vector 

in order to obtain an expression for how the angular velocity vector evolves over time 

due to the applied moments and the current angular velocity vector, known as the kinetic 

equation of a rotating system. 

 
𝜔ሬሬ⃗ ̇ = 𝐼ିଵ൫𝑀ሬሬ⃗ ீ − 𝜔ሬሬ⃗ × 𝐼𝜔ሬሬ⃗ ൯                                             (13) 

 

where the superscript -1 refers to the matrix inverse of the matrix it is applied to. 

3.2. Electrostatics 

In order to model the generation of moments on the spacecraft in this study due to the 

use of electrostatic torques, a brief discussion of electrostatics is helpful. Of particular 

interest is the description of the forces produced by the proximity of electric charges.  

Without treating the concept at a quantum level, electrical charge is a fundamental 

property of matter that causes matter to both create and react to electric fields in space. 

The most commonly-encountered particles that carry electric charge are the subatomic 

particles known as protons (positive charge) and electrons (negative charge). Most 
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modern electrical technology operates by the movement of electrons, as carriers of 

negative electrical charge. For certain applications, such as the charging of spacecraft 

surfaces used in this research and the studies mentioned in the literature review above, 

larger, conducting objects can be charged or discharged by bombarding them with 

charged particles. The resulting balance of positively and negatively charged particles in 

the conducting object then determines the charge of the object, overall. 

When in proximity with one another, electrically charged objects exert forces on one 

another. For point-sized objects, such as single protons or electrons, this force is 

described by Coulomb’s Law, below. 

 

𝐹⃗ଵଶ =
௞಴௤భ௤మ௥̂భమ

‖௥⃗భమ‖మ
                                                      (14) 

 

Where 𝐹⃗ଵଶ ∈ ℝଷ is the vector force exerted on point charge 2 by point charge 1, 𝑟ଵଶ ∈ ℝଷ 

is the position vector of point charge 2 with respect to point charge 1, 𝑟̂ଵଶ ∈ ℝଷ is the unit 

vector parallel to the same, 𝑞ଵ ∈ ℝ and 𝑞ଶ ∈ ℝ are the electrical charges of the two point 

charges, the ‖  ‖: ℝଷ → ℝା operator denotes the magnitude of the vector it acts on, and 

𝑘஼ is Coulomb’s Constant, with value 8.99E9 
ே௠మ

஼మ
. While, in general, objects larger than 

points require a finite element summation to accurately compute the electrostatic force 

that they exert on one another, if the charged objects are sufficiently far away and they 

are symmetrically charged, the electrostatic force they exert on one another can be 

modelled as that between two point charges, located at the centers of the objects in 

question and with charge magnitude equal to the total net charge in the object. 

In the research presented in this thesis, the electrostatic forces are modeled as 

interactions between point charges due to this distance consideration. These forces then 
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create torques on the spacecraft based on the distance between the location where the 

forces are applied and the spacecraft centers of mass. This is done by the cross-product 

definition of torque. That is to say, that torque is the cross product of a force and its 

moment arm. This results in the following expression for the electrostatic torque on one 

object due to the interactions of one pair of charged regions between the two spacecraft. 

 

𝑀ሬሬ⃗ ீ = 𝑟 ଶ ×
௞಴௤భ௤మ௥̂భమ

‖௥⃗భమ‖మ
                                                 (15) 

 

where 𝑟 ଶ ∈ ℝଷ refers to the relative position vector of charged region 2 with respect to 

the center of mass of the spacecraft that it is part of. This expression can then be summed 

over every combination of charged regions across the two spacecraft to determine the 

total electrostatic torque that one spacecraft produces on the other. 

3.3. Control Theory 

Finally, as this research is fundamentally centered around the concept of controlling 

the behavior of a system, it is beneficial to include a discussion of some of the important 

concepts of control theory. Fundamentally, control theory studies the methods by which 

certain parameters of interest of a system can be brought to desired values or be kept 

within acceptable limits by acting on that system in an appropriate manner. In general, 

there are two basic methods by which to control a system, referred to as open-loop 

control and closed-loop control.  

Open-loop control is when a system is acted on to produce the desired result without 

taking into account the current state of the system in how that control effort is applied. A 

common example is a sprinkler system, in which the water flows for a specified time, 

independent of the degree of moisture of the ground that is being watered.  
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The other method is called closed-loop control, where measurements of the current 

state of the system are used to inform and modify the amount of control effort expended 

on the system. An example of this would be a human operator braking a car to come to a 

stop sign, taking into account the current distance from the stop sign and the car’s current 

velocity to know how much to depress the brake pedal. It is important to mention that 

open-loop control is different than open-loop dynamics, which is a similar term. 

However, the latter refers to the behavior of a system in the absence of a controller, as 

opposed to a system whose control does not depend on the system state. All of the control 

laws presented in this thesis are closed-loop controllers, as they depend on the current 

state of the system to modify the control effort applied to the system 

3.3.1. State-Space Modeling 

For the 2D Case of the research presented below, the system dynamics and control 

were accomplished via state-space modeling techniques, which use matrix equations to 

model systems with more than one parameter of interest. These parameters of interest are 

known as state variables, and the collection of all state variables for a system is referred 

to as the system state. Often, the system state is represented as a vector with each of the 

terms being one of the state variables. The dynamics of the system are then modeled as a 

differential matrix equation of this state vector in order to study how the system evolves 

with respect to one or more independent variables, usually including time. These 

equations can be either linear or nonlinear. 

For the nonlinear case, the state equations that describe the evolution of the system 

state are nonlinear functions of the state variables. In mathematical terms, this is often 

rendered by the following expression.  
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𝑥̇⃗ = 𝑓(𝑥⃗, 𝑡, 𝑢ሬ⃗ )                                                         (16) 
 

where 𝑥⃗ is a general state vector, 𝑢ሬ⃗  is a general vector of control inputs, 𝑓 is a vector of 

nonlinear functions of the state vector, input vector, and the independent variables (in this 

example, time is assumed to be the only independent variable, as it is in many dynamics 

applications), 𝑡 represents the time since a reference start time, and the dot operator is as 

defined above. Often, nonlinear systems are very difficult to derive control systems for. 

When possible, then, nonlinear systems are often locally approximated by related linear 

systems in order to create control laws that are valid within a neighborhood of a desired 

system state. 

Often, this desired state takes the form of an equilibrium state of the system, which is 

a state where the derivative of the state is null. That is to say, 𝑥̇⃗ = 0ሬ⃗ . Physically, this 

means that the state variables do not change without input to the system at this point. The 

system state at an equilibrium is commonly denoted 𝑥⃗௘ to distinguish it from other states. 

Since an equilibrium state is often the desired final state of a controlled system, they are 

also often used in the process of linearization, which approximates a nonlinear system 

with a linear system that makes fairly accurate predictions of behavior within a small 

neighborhood of the state about which the system was linearized.  

One common way that nonlinear systems can be linearized (which is used in this 

thesis) is to take the Jacobian of the expression for the state’s derivative with respect to 

the system state vector and use this as the linear relationship between a small deviation of 

the state from the equilibrium condition and the derivative of that small deviation. This is 

then added to the Jacobian of the state’s time derivative with respect to the input vector, 

multiplied by the input vector.  
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To give an example, consider a nonlinear system with two state variables 𝑥ଵ and 𝑥ଶ, 

two inputs 𝑢ଵ and 𝑢ଶ, and two functions of those state and input variables in the right-

hand side of Equation (16), denoted 𝑓ଵ and 𝑓ଶ. The linearized form of this system is given 

by the following equation. 

 

𝛿𝑥̇⃗ = ቎

డ௙భ

డ௫భ

డ௙భ

డ௫మ

డ௙మ

డ௫భ

డ௙మ

డ௫మ

቏ቮ

௫⃗೐

𝛿𝑥⃗ + ቎

డ௙భ

డ௨భ

డ௙భ

డ௨మ

డ௙మ

డ௨భ

డ௙మ

డ௨మ

቏ቮ

௫⃗೐

𝑢ሬ⃗ = 𝐴(𝑡)𝛿𝑥⃗ + 𝐵(𝑡)𝑢ሬ⃗                (17) 

 

 where 𝛿𝑥⃗ = 𝑥⃗ − 𝑥⃗௘. Additional details of this process can be found in Chapter 1 of (Wie, 

2008).  

Fundamentally, this linearized structure also represents the structure of a system with 

linear state equations, where the derivative of the state vector is related by multiplication 

with a matrix of values (which may be constant or vary with respect to the independent 

variable(s) only) to the current state vector. Whether the system was linear to begin with, 

or has been linearized from a nonlinear system, many well-described control laws can 

now be derived from this linear form, as functions of the matrices 𝐴(𝑡) and 𝐵(𝑡). When 

these control laws define 𝑢ሬ⃗  as a function of the state vector, the resulting control is 

closed-loop control. Otherwise, it is open-loop. Once a control law is derived for this 

linearized state equation, the control is then applied to the nonlinear system. 

3.3.2. Stability 

One final topic in control theory that must be discussed is that of stability theory. At 

its core, stability theory is concerned with whether or not a system will tend to return to 

an equilibrium condition after it has been disturbed. If a system tends to return to 

equilibrium after a disturbance, it is called a stable system. Systems that tend away from 
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the equilibrium after a disturbance are called unstable, and systems that tend to remain 

within a neighborhood of the equilibrium condition, but do not necessarily converge to 

the equilibrium, itself, are termed marginally stable. Often, in controls applications, 

stability theory is applied to the closed-loop dynamics of the system to determine whether 

the applied control law will make the system converge to its desired state. 

One of the more common methods to prove stability of the system, and the one used 

in this thesis, is known as Lyapunov’s Direct Method. This involves defining a scalar 

function of the system state, known as a Lyapunov function (often given the symbol 

𝑉(𝑥⃗)), that satisfies the following conditions: 

 
𝑉(𝑥⃗) = 0, 𝑖𝑓𝑓   𝑥⃗ = 𝑥⃗௘ 

𝑉(𝑥⃗) > 0,        𝑖𝑓𝑓   𝑥⃗ ≠ 𝑥⃗௘                                             (18) 
 

With the Lyapunov function so defined, the stability of the system can then be 

investigated by taking its time derivative. If the time derivative of the Lyapunov function 

is less than or equal to zero at all states, the system is marginally stable. If it is strictly 

less than zero at all states other than the equilibrium state, the system is locally stable. If 

neither of these conditions are met, no conclusions about stability can be drawn, and a 

different Lyapunov function must be investigated. For more details on this procedure, see 

Chapter 1 of (Wie, 2008). 
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4. System Model Development 

The next four chapters cover new research in the field of relative spacecraft attitude 

control with electrostatic torques. This chapter starts by describing the system analyzed 

for this research, a pair of cylindrical spacecraft interacting in deep space, and listing the 

assumptions that were used to analyze it. After this, the equations of motion for the 

system are developed, using two different paradigms: a case where the two spacecraft are 

assumed to rotate in a single plane, referred to as the 2D Case of the system, and a case 

where the spacecraft freely experience three-dimensional rigid body rotations about their 

centers of mass, referred to as the 3D Case of the system.  

4.1. System Description and Assumptions 

The system under consideration in this research is represented in Figure 4.1. The 

system is a pair of cylindrical spacecraft, whose centers of mass are separated by a 

distance d. The two craft are free to rotate about their centers of mass, but the nature of 

this rotation is dependent on the particular paradigm being analyzed. For the 2D Case, 

this rotation is constrained to be that about the spacecraft 𝐽መ and 𝚥̂ axes, defined below. For 

the 3D Case, the rotations are three-dimensional rigid body rotations. Using the multi-

sphere method described above in Section 2.1, the spacecraft are electrically 

approximated by three charge-carrying spheres each. For the chief, these spheres are 

called sphere 1, sphere 2, and sphere 3. For the deputy, they are referred to as sphere a, 

sphere b, and sphere c. The details of this approximation are the same as that used for the 

cylindrical deputy spacecraft analyzed in (Schaub & Stevenson, 2013). 

This analysis uses three coordinate frames to develop the dynamics of the system. For 

ease of visualization, these are shown in Figure 4.1. The 𝑋෠𝑌෠𝑍መ coordinate frame is the 
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reference frame of the system, whose 𝑋෠ axis is defined to lie along the line connecting the 

centers of mass of the two spacecraft, pointing from chief to deputy. The 𝑌෠  and 𝑍መ  axes 

are defined arbitrarily, but such that the reference frame is orthogonal and right-handed.  

The 𝐼መ𝐽መ𝐾෡ coordinate frame is the body-fixed coordinate frame for the chief spacecraft. 

The 𝐼መ axis is defined to lie along the long axis of the spacecraft, pointing from sphere 2 to 

sphere 1. This alignment allows a convenient Euler angle attitude representation to be 

used for the 3D Case of this system: the 1-2-1 sequence introduced in Section 4.2.2. The 

𝐽መ and 𝐾෡ axes are defined to make an orthogonal right-handed coordinate frame.  

Finally, the 𝚤̂𝚥̂𝑘෠  coordinate frame is the body-fixed coordinate frame for the deputy 

spacecraft. Similarly, the 𝚤̂ axis is defined to lie along the long axis of the spacecraft, with 

the other two defined to form an orthogonal right-handed coordinate frame. For the 

special case depicted in Figure 4.1, all three coordinate frames are aligned.  

 

 

Figure 4.1 System Free-Body Diagram, All Coordinate Frames Aligned 

 
The following assumptions are used in the remainder of the study presented here:  
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1. The two spacecraft are assumed to be operating in deep space, away from the 

gravitational or magnetic influence of celestial bodies  

2. The two spacecraft maintain a fixed distance between each other in a fixed 

direction (this is possible by using thrusters, as shown in (Schaub & Stevenson, 

2013), and is taken for granted here)  

3. The charge-carrying regions on individual spacecraft are assumed to be separated 

by insulating material, so that charge does not flow between them 

4. The distance between the spacecraft is assumed to be sufficient to treat the 

interactions between charge-carrying spheres as interactions between point 

charges.  

5. The two spacecraft are assumed to be of identical construction, so that their mass 

properties and physical dimensions are considered the same for this analysis. 

 
While these assumptions will decrease the fidelity of the analysis for Earth-orbit 

applications, they are valid for deep-space interferometer applications, such as those 

proposed in (NASA JPL, n.d.). Additionally, they allow the use of a simpler model to 

develop the initial theory. In future work, higher-fidelity models will be considered to 

ensure that the conclusions made are more applicable to the real world. 

4.2. Equation of Motion Development 

In this section, the equation of motion of the system described above is developed for 

both cases of the system. That is to say, the 2D and 3D Cases outlined above. The 2D 

Case will be discussed first. 

4.2.1. 2D Case 

To represent the constrained rotation of the spacecraft for the 2D Case, a single angle 
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is used for each spacecraft. For the chief spacecraft, this angle is denoted φ ∈ [0, 2π), and 

it defines the rotation of the 𝐼መ𝐽መ𝐾෡ coordinate frame relative to the 𝑋෠𝑌෠𝑍መ coordinate frame, 

about the 𝐽መ axis. Similarly, the attitude angle for the deputy spacecraft is denoted θ ∈ [0, 

2π), and it defines the rotation of the 𝚤̂𝚥̂𝑘෠  coordinate frame with respect to the 𝑋෠𝑌෠𝑍መ 

coordinate frame, about the 𝚥̂ axis. The relative attitude between the two spacecraft is 

then defined by the angle 𝜀 = 𝜑 −  𝜃. These three angles allow us to construct 

expressions for the electrostatic torques that each spacecraft experiences. The expression 

for this torque on the deputy spacecraft, for the 2D Case, is shown below. Details of this 

derivation are given in Appendix A. 

 

𝐿஽ = 𝑘஼ ቆ
𝑞ଵ𝑞௔(𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙ଶ𝑠𝑖𝑛 𝜀)

((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଵ𝑞௖(−𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙ଶ𝑠𝑖𝑛 𝜀)

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଶ𝑞௔(𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑))ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))ଶ)ଷ/ଶ

+
𝑞ଶ𝑞௖(−𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑))ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))ଶ)ଷ/ଶ

+
𝑞ଷ𝑞௔(𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙ଶ𝑠𝑖𝑛 𝜀)

((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଷ𝑞௖(𝑙ଶ 𝑠𝑖𝑛 𝜀 − 𝑙𝑑 𝑠𝑖𝑛 𝜑)

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ
ቇ 

where 𝐿஽ ∈ ℝ is the scalar torque acting on the deputy spacecraft, 𝑑 ∈ ℝା is the 

distance between the centers of sphere 2 and sphere b as explained above, 𝑙 ∈ ℝା is the 

distance between the centers of any two adjacent spheres on the same spacecraft, 𝑘஼ is 

(19) 

 



30 
 

Coulomb's Constant, and 𝑞௡ ∈ ℝ refers to the electrical charge on sphere 𝑛 ∈

{1 2 3   𝑎 𝑏 𝑐}. A similar expression can be derived for the torque acting on the 

chief spacecraft for the 2D Case. 

 

𝐿஼ = 𝑘஼ ቆ
𝑞ଵ𝑞௔(−𝑙𝑑 sin 𝜑 + 𝑙ଶ𝑠𝑖𝑛 𝜀)

((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଵ𝑞௖(−𝑙𝑑 sin 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜀)

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଵ𝑞௕(−𝑙𝑑 sin 𝜑)

((−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଷ𝑞௕(𝑙𝑑 𝑠𝑖𝑛 𝜑)

((−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଷ𝑞௔(𝑙𝑑 sin 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜀)

((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଷ𝑞௖(𝑙𝑑 sin 𝜑 + 𝑙ଶ𝑠𝑖𝑛 𝜀)

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ
ቇ 

where 𝐿஼ ∈ ℝ.  

These torque expressions can be used to construct the system’s open loop dynamics 

for the relative attitude between the spacecraft in the 2D Case. These open loop dynamics 

are given, in state-space form, by the following equation. 

 

𝑒 = ቂ
𝜀
𝜀̇

ቃ ,     𝑒̇ = ൤
𝜀̇

𝑓(𝜀, 𝜑)
൨                                           (21) 

 

where f (ε, φ) is given by the equation which follows, on the next page. This state-space 

form is convenient for the development of the 2D Case control laws. These will be 

explored in Chapter 5. 

(20) 
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𝑓(𝜀, 𝜑) =
𝑘஼

𝐼௧
ቆ

𝑞ଵ𝑞௔(𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 2𝑙ଶ𝑠𝑖𝑛 𝜀 + 𝑙𝑑 sin 𝜑)

((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଵ𝑞௖(−𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 2𝑙ଶ𝑠𝑖𝑛 𝜀 + 𝑙𝑑 sin 𝜑)

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଶ𝑞௔(𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑))ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))ଶ)ଷ/ଶ

+
𝑞ଶ𝑞௖(−𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑))ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))ଶ)ଷ/ଶ

+
𝑞ଷ𝑞௔(𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 2𝑙ଶ𝑠𝑖𝑛 𝜀 − 𝑙𝑑 sin 𝜑)

((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଷ𝑞௖(2𝑙ଶ 𝑠𝑖𝑛 𝜀 − 𝑙𝑑 𝑠𝑖𝑛 𝜑 − 𝑙𝑑 sin (𝜀 + 𝜑))

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

−
𝑞ଵ𝑞௕(−𝑙𝑑 sin 𝜑)

((−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

−
𝑞ଷ𝑞௕(𝑙𝑑 𝑠𝑖𝑛 𝜑)

((−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ
ቇ 

where 𝐼௧ ∈ ℝା denotes the scalar moment-of-inertia of each spacecraft (recall that 

identical construction of the two craft is assumed) about their short principal axes. Note 

that these axes are parallel for the 2D Case. Details of the derivation of this equation are 

given in Appendix B. For the purposes of the 2D Case study, the chief tumble angle 𝜑 is 

considered to depend only on time and its control is not explored. 

4.2.2. 3D Case 

For the 3D Case, the spacecraft attitudes, with respect to the reference frame, are 

expressed in terms of two angles, each. The first is the first-axis rotation between the 

body-fixed frame of each spacecraft and the reference frame. For the chief spacecraft, 

this is termed α ∈ [0, 2π), while it is called β ∈ [0, 2π) for the deputy spacecraft. The 
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second angle is the second-axis rotation between the body-fixed frame of each spacecraft 

and the reference frame, executed after the first-axis rotation. This is referred to as φ ∈ [0, 

π] for the chief spacecraft and θ ∈ [0, π] for the deputy spacecraft. These angles are 

physically the same as those defined for the 2D Case, above, though the axes they are 

defined about are no longer always parallel, and their domains have changed, as a result.  

A final rotation about the first axis of each spacecraft would complete an Euler angle 

sequence of 1-2-1 for each spacecraft. But, for the purposes of this system, this final 

rotation angle is meaningless, due to the spacecrafts’ cylindrical shape. Thus, this final 

rotation is ignored. These angles are used to construct the following expression for the 

open-loop electrostatic torque on the deputy spacecraft, expressed in its body-fixed 

frame. Full details of the derivation are given in Appendix D. 

𝑀ሬሬ⃗ ஽
ை௅ = 𝑘஼ ൭

𝑞ଵ𝑞௔𝐴

൫𝑑ଶ + 2𝑙(𝑑 𝑐𝑜𝑠 𝜑 − 𝑑 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 + 𝑙 − 𝛺 − 𝛤)൯
ଷ/ଶ

+
𝑞ଷ𝑞௔𝐵ሬ⃗

൫𝑑ଶ − 2𝑙(𝑑 𝑐𝑜𝑠 𝜑 + 𝑑 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 − 𝑙 − 𝛺 − 𝛤)൯
ଷ/ଶ

+
𝑞ଶ𝑞௔𝐶

(𝑑ଶ − 2𝑙𝑑 𝑐𝑜𝑠 𝜃 + 𝑙ଶ)ଷ/ଶ
+

𝑞ଶ𝑞௖𝐹⃗

(𝑑ଶ + 2𝑙𝑑 𝑐𝑜𝑠 𝜃 + 𝑙ଶ)ଷ/ଶ

+
𝑞ଵ𝑞௖𝐷ሬሬ⃗

൫𝑑ଶ + 2𝑙(𝑑 𝑐𝑜𝑠 𝜑 + 𝑑 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 + 𝑙 + 𝛺 + 𝛤)൯
ଷ/ଶ

+
𝑞ଷ𝑞௖𝐸ሬ⃗

൫𝑑ଶ − 2𝑙(𝑑 𝑐𝑜𝑠 𝜑 − 𝑑 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 − 𝑙 + 𝛺 + 𝛤)൯
ଷ/ଶ

൱ 

𝛺 = 𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 

𝛤 = 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼 

(22) 
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where 𝑀ሬሬ⃗ ஽
ை௅ ∈ ℝଷ is the open-loop electrostatic torque on the deputy spacecraft, 𝑞௡, 𝑘஼, 𝑙, 

and 𝑑 are as defined for the 2D Case, and the vectors 𝐴, 𝐵ሬ⃗ , 𝐶, 𝐷ሬሬ⃗ , 𝐸ሬ⃗ , and 𝐹⃗ are defined by 

the following vector expressions. 

 

𝐴 = ቎

0
−𝑙 𝑠𝑖𝑛 𝜃 ൫𝑑 − 𝑙 𝑐𝑜𝑠 𝜑 + 𝑐𝑜𝑠 𝜃 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑐𝑜𝑠ଶ𝛽)൯ + 𝑙 𝑐𝑜𝑠 𝜃 𝛬

𝑙 (−𝑙 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 + 2𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽)
቏ 

𝐵ሬ⃗ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜃 ൫𝑑 + 𝑙 𝑐𝑜𝑠 𝜑 + 𝑐𝑜𝑠 𝜃 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑐𝑜𝑠ଶ𝛽)൯ − 𝑙 𝑐𝑜𝑠 𝜃 𝛬

𝑙 (𝑙 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 + 2𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽)
቏ 

𝐶 = ቎

0
−𝑙 (𝑑 𝑠𝑖𝑛 𝜃 + 𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 − 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠ଶ𝛽)

2𝑙ଶ𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽
቏ 

𝐷ሬሬ⃗ = ቎−

0
𝑙 𝑠𝑖𝑛 𝜃 ൫−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑 + 𝑐𝑜𝑠 𝜃 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑐𝑜𝑠ଶ𝛽)൯ − 𝑙 𝑐𝑜𝑠 𝜃 𝛬

𝑙 (𝑙 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 + 2𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽)
቏ 

𝐸ሬ⃗ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜃 ൫−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑 + 𝑐𝑜𝑠 𝜃 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑐𝑜𝑠ଶ𝛽)൯ + 𝑙 𝑐𝑜𝑠 𝜃 𝛬

𝑙 (−𝑙 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 + 2𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽)
቏ 

𝐹⃗ = ቎

0
−𝑙 (−𝑑 𝑠𝑖𝑛 𝜃 + 𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 − 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠ଶ𝛽)

2𝑙ଶ𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽
቏ 

𝛬 = 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 − 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼 

 
The equivalent torque on the chief spacecraft is developed by an identical method, 

which is also documented in Appendix D. The mathematical expression for this torque is 

very similar in structure, being a sum of six vectors, one for each pair of interacting 

charges between the two spacecraft. It is given by the equation which is shown on the 

following page. 
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𝑀ሬሬ⃗ ஼
ை௅ = 𝑘஼ ൭

𝑞ଵ𝑞௔𝑈ሬሬ⃗

൫𝑑ଶ + 2𝑙(𝑑 𝑐𝑜𝑠 𝜃 − 𝑑 𝑐𝑜𝑠 𝜑 − 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 + 𝑙 − 𝛺 − 𝛤)൯
ଷ/ଶ

+
𝑞ଵ𝑞௖𝑉ሬ⃗

൫𝑑ଶ − 2𝑙(𝑑 𝑐𝑜𝑠 𝜃 + 𝑑 𝑐𝑜𝑠 𝜑 − 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 − 𝑙 − 𝛺 − 𝛤)൯
ଷ/ଶ

+
𝑞ଵ𝑞௕𝑊ሬሬሬ⃗

(𝑑ଶ − 2𝑙𝑑 𝑐𝑜𝑠 𝜑 + 𝑙ଶ)ଷ/ଶ
+

𝑞ଷ𝑞௕𝑍⃗

(𝑑ଶ + 2𝑙𝑑 𝑐𝑜𝑠 𝜑 + 𝑙ଶ)ଷ/ଶ

+
𝑞ଷ𝑞௔𝑋⃗

൫𝑑ଶ + 2𝑙(𝑑 𝑐𝑜𝑠 𝜃 + 𝑑 𝑐𝑜𝑠 𝜑 + 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 + 𝑙 + 𝛺 + 𝛤)൯
ଷ/ଶ

+
𝑞ଷ𝑞௖𝑌ሬ⃗

൫𝑑ଶ − 2𝑙(𝑑 𝑐𝑜𝑠 𝜃 − 𝑑 𝑐𝑜𝑠 𝜑 + 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 − 𝑙 + 𝛺 + 𝛤)൯
ଷ/ଶ

൱ 

𝛺 = 𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 

𝛤 = 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼 
 

𝑈ሬሬ⃗ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜑 ൫−𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜑 (𝑙 + 𝑙 𝑠𝑖𝑛ଶ𝛼 + 𝑙 𝑐𝑜𝑠ଶ𝛼)൯ − 𝑙 𝑐𝑜𝑠 𝜑 𝛯

𝑙 (−𝑙 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 2𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 − 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛼)
቏ 

𝑉ሬ⃗ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜑 ൫−𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜑 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛼 + 𝑙 𝑐𝑜𝑠ଶ𝛼)൯ − 𝑙 𝑐𝑜𝑠 𝜑 𝛯

𝑙 (𝑙 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 2𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 + 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛼)
቏ 

𝑊ሬሬሬ⃗ = ቎

0
−𝑙 (−𝑑 𝑠𝑖𝑛 𝜑 + 𝑙 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜑 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛ଶ𝛼 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠ଶ𝛼)

2𝑙ଶ𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼
቏ 

𝑋⃗ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜑 ൫𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜑 (𝑙 + 𝑙 𝑠𝑖𝑛ଶ𝛼 − 𝑙 𝑐𝑜𝑠ଶ𝛼)൯ + 𝑙 𝑐𝑜𝑠 𝜑 𝛯

𝑙 (𝑙 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 2𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 + 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛼)
቏ 

𝑌ሬ⃗ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜑 ൫𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜑 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛼 + 𝑙 𝑐𝑜𝑠ଶ𝛼)൯ + 𝑙 𝑐𝑜𝑠 𝜑 𝛯

𝑙 (−𝑙 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 2𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 − 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛼)
቏ 

(23) 
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𝑍⃗ = ቎−

0
𝑙 (𝑑 𝑠𝑖𝑛 𝜑 + 𝑙 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜑 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛ଶ𝛼 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠ଶ𝛼)

2𝑙ଶ𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼
቏ 

𝛯 = 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛼 − 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 

 
Using these torques, the open loop spacecraft relative kinetics are described by the 

following. Full details of this derivation are given in Appendix E. 

 

𝜔ሬሬ⃗ ̇
஼஽ = 𝐸஼஽

் 𝐼஽
ିଵ ቀ𝑀ሬሬ⃗ ஽

ை௅  −  𝐸஼஽(𝜔ሬሬ⃗ ஼஽ + 𝜔ሬሬ⃗ ஼)෫ 𝐼஽൫𝐸஼஽(𝜔ሬሬ⃗ ஼஽ + 𝜔ሬሬ⃗ ஼)൯ቁ               −

 −𝐼஼
ିଵ൫𝑀ሬሬ⃗ ஼

ை௅  −  𝜔෥஼𝐼஼𝜔ሬሬ⃗ ஼൯                                         (24) 
 

where the subscripts 𝐶 and 𝐷 refer to the chief and deputy spacecraft, respectively, 𝐸஼஽ ∈

ℝଷ௫ଷ is the relative attitude DCM of the deputy spacecraft with respect to the chief 

spacecraft, 𝜔ሬሬ⃗ ஼஽ ∈ ℝଷ is the relative angular velocity of the deputy spacecraft with respect 

to the chief spacecraft, the    ෥ operator is as defined in Section 3.1, and 𝐼ே ∈ ℝଷ௫ଷ denotes 

the moment-of-inertia tensor of spacecraft 𝑁, calculated in its own body-fixed frame.  

Since identical construction was assumed, both moment-of-inertia tensors have the 

same value, which is as follows. 

 

𝐼ே = ൥

𝐼௔ 0 0
0 𝐼௧ 0
0 0 𝐼௧

൩                                                   (25) 

 

where 𝐼௔ ∈ ℝା is the scalar moment-of-inertia of the spacecraft about its long axis, and 𝐼௧ 

is as defined above. Since each moment-of-inertia term is calculated in the spacecraft’s 

body-fixed frame, their numerical values are identical, due to their identical construction. 

The relative attitude kinematics are represented using the error DCM defined above, with 

the kinematic equation defined, in (Galjanic & Seo, 2020), by the following expression. 
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𝐸̇஼஽ = 𝜔෥஼஽𝐸஼஽                                                      (26) 
 

Taken together, Equations (24) and (26) describe the open-loop equations of 

motion of the relative dynamics of the system in its 3D Case. These will be used with the 

controllers defined in the next chapter to derive the closed-loop dynamics of the system. 
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5. Controller Development 

With the open-loop dynamics of both cases described, this chapter presents the 

investigated control laws to derive the closed-loop dynamics of this system, in both its 

2D Case and its 3D Case. 

5.1. 2D Case 

In order to control the relative attitude of the two spacecraft for the 2D Case, two 

controllers were developed based on a linearized equation of motion and applied to the 

full equation of motion. Equation (21) was linearized by the Jacobian method about 𝑒 =

[0 0]், as the goal of this research is to synchronize the spacecraft attitude responses. 

The linearized dynamics are as follows. 

 

𝑒̇ = ൤
0 1

𝑔(𝜑) 0
൨ 𝑒 + ቈ

0
ଵ

ூ೟

቉ 𝑢(𝑡)                                           (27) 

 

where the function 𝑔(𝜑) is given by the following expression. 

 

𝑔(𝜑) =
௞಴

ூ೟
ቆ

௤భ,೐௤ೌ,೐൫଺௟మ௦௜௡మఝିଶ௟మା௟ௗ ௖௢௦ ఝ൯

ௗయ
+

௤భ,೐௤೎,೐൫ଶ௟మି௟ௗ ௖௢௦ ఝ ൯

((ௗିଶ௟ ௖௢௦ ఝ)మା(ିଶ௟ ௦௜௡ ఝ)మ)య/మ
+

                         + 
௤మ,೐௤ೌ,೐(௟ௗ ௖௢௦ ఝ ൫(ௗି௟ ௖௢௦ ఝ)మା(ି௟ ௦௜௡ ఝ)మ൯

య/మ
)

((ௗି௟ ௖௢௦ ఝ)మା(ି௟ ௦௜௡ ఝ)మ)య
−

                         −
ଷ ௤మ,೐௤ೌ,೐ ௟మௗమ ௦௜௡మఝ ൫(ௗି௟ ௖௢௦ ఝ)మା(ି௟ ௦௜௡ ఝ)మ൯

భ/మ

((ௗି௟ ௖௢௦ ఝ)మା(ି௟ ௦௜௡ ఝ)మ)య
+

                         +
௤మ,೐௤೎,೐(ି௟ௗ ௖௢௦ ఝ ൫(ௗା௟ ௖௢௦ ఝ)మା(ି௟ ௦௜௡ ఝ)మ൯

య/మ
)

((ௗା௟ ௖௢௦ ఝ)మା(ି௟ ௦௜௡ ఝ)మ)య
+

                         +
ଷ௤మ,೐௤೎,೐ ௟మௗమ௦௜௡మఝ ൫(ௗା௟ ௖௢௦ ఝ)మା(ି௟ ௦௜௡ ఝ)మ൯

భ/మ

((ௗା௟ ௖௢௦ ఝ)మା(ି௟ ௦௜௡ ఝ)మ)య
+

௤య,೐௤ೌ,೐(௟ௗ ௖௢௦ ఝାଶ௟మ)

((ௗାଶ௟ ௖௢௦ ఝ)మା(ଶ௟ ௦௜௡ ఝ)మ)య/మ
+

                         +
௤య,೐௤೎,೐(଺௟మ௦௜௡మఝାଶ௟మି௟ௗ ௖௢௦ ఝ)

ௗయ
ቇl 



38 
 

and 𝑞௡௘ ∈ ℝ indicates the equilibrium charge on sphere  𝑛 ∈ {1 2 3   𝑎 𝑏 𝑐}. The 

pseudo-input signal 𝑢 ∈ ℝ represents the torque experienced by the system due to 

manipulating the charges on the spacecraft. Details of this linearization are given in 

Appendix C.  

For the first controller, it is designed to have the structure 𝑢(𝑡) = −𝐾𝑒, where 𝐾 ∈

ℝଶ is a row vector of gains. 𝐾 is designed based on the minimum control energy 

approach, using a modified controllability Grammian function, similar to what is shown 

in (Desoer & Callier, 1990). For the normal Grammian, see (Hespanha, 2009). 

 

𝐻ఊ(𝑡଴, 𝑡ଵ) = ∫ 𝛩(𝑡଴, 𝜏)𝐵(𝜏)𝐵்(𝜏)𝛩்(𝑡଴, 𝜏)𝑒ିସఊ(ఛି௧బ)𝑑𝜏
௧భ

௧బ
                  (28) 

 

where [𝑡଴, 𝑡ଵ] defines the time interval of interest, 𝛩(𝑡଴, 𝜏) is the linearized system’s 

state transition matrix, 𝐵(𝜏) is the linearized system’s input-coupling matrix, and 𝛾 

defines the rate of decay for the linearized system response, which, in the 2D Case study, 

was tuned to provide the smallest error in the steady state (see Chapter 6).  

It can be seen that, at 𝛾 = 0, 𝐻ఊ is the controllability Grammian for the system (Rugh, 

1996). 𝐾 was then proposed as 𝐾 = 𝐵்𝐻ఊ
ିଵ(𝑡଴, 𝑡ଵ). The stability for this controller can be 

proven, by noticing that 𝜉 = 𝑒, 𝑡 = 𝑡଴, and 𝛥 = 𝑡ଵ − 𝑡଴ in (Desoer & Callier, 1990), 

using the following Lyapunov function. 

 
𝑉(𝜉) = 𝜉்𝐻ఊ

ିଵ(𝑡଴, 𝑡ଵ)𝜉                                             (29) 

 
𝑉̇ ≤ −2𝛾𝜉்𝐻ఊ

ିଵ(𝑡଴, 𝑡ଵ)𝜉 ≤ −2𝛾ℎெ
ିଵ‖𝜉‖ଶ                               (30) 

 
where 𝛥 ∈ ℝା is the length of the interval of interest, 𝜉 ∈ ℝ௡ is the state vector of a 

general system under control by this controller, and ℎெ > 0 ∈ ℝ satisfies 𝐻଴(𝑡଴, 𝑡ଵ) ≤
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ℎெ𝐼௡௫௡, where 𝐼௡௫௡ is an identity matrix.  

Using this Lyapunov function and its derivative, the following inequality can be 

constructed by simple division. 

 
௏̇

௏
≤ −2𝛾

௛೘

௛ಾ
𝑒𝑥𝑝(−4𝛾𝛥)                                            (31) 

 

where ℎ௠ > 0 ∈ ℝ satisfies ℎ௠ ≤ ℎெ and ℎ௠𝐼௡௫௡ ≤ 𝐻଴(𝑡଴, 𝑡ଵ). From Equation (31), 

𝑉(𝜉) can be shown to decay exponentially. Therefore, the controller is stable. The more 

detailed version of the proof follows the same steps as in (Desoer and Callier, 1990) with 

𝜉 =  𝑒, 𝑡 = 𝑡଴, and 𝛥 = 𝑡ଵ − 𝑡଴. 

The second controller developed for the 2D Case is a time-periodic LQR controller, 

since some of the simulations conducted (see Chapter 6) used a time-periodic chief 

tumble angle 𝜑. The time-periodic LQR controller is designed to minimize the following 

state and input cost function. 

 

𝐶 =
ଵ

ଶ
∫ (𝑒்(𝑡)𝑄(𝑡) 𝑒(𝑡) + 𝑢(𝑡)𝑅(𝑡)𝑢(𝑡))𝑑𝑡

ஶ

଴
                              (32) 

 

where 𝑄(𝑡) ≥ 0 ∈ ℝଶ௫ଶ and 𝑅(𝑡) > 0 ∈ ℝ are weighting matrices with the same period 

as the open-loop system. The controller is designed by solving the periodic Algebraic 

Riccati Equation, which is given by the following. 

 
−(𝐴்(𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐴(𝑡) + 𝑄(𝑡)) + 𝑃(𝑡)𝐵(𝑡)𝑅ିଵ(𝑡)𝐵்(𝑡)𝑃(𝑡) = 0           (33) 

 

This equation is solved for 𝑃(𝑡) ∈ ℝଶ௫ଶ. This is then used to construct the feedback 

control signal presented on the following page. It is important to note that this feedback 

control signal is essentially a state-feedback controller with time-periodic gain. 
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𝑢(𝑡) = −𝑅ିଵ(𝑡)𝐵்(𝑡)𝑃(𝑡)𝑒(𝑡)                                         (34) 
 

The results of these two controllers are simulated in Chapter 6, below. In addition, 

their performance is compared, in order to determine which is more effective at effecting 

the control of the 2D Case system. 

5.2. 3D Case 

In order to accomplish the control of the relative attitude between the two satellites 

for the 3D Case, the nonlinear swarm controller proposed in (Song, Tang, Hong, & Hu, 

2017) is used. Similar to the 2D Case, this controller is applied to the motion of the 

deputy spacecraft as a pseudo-input signal. Meanwhile, the attitude of the chief spacecraft 

is assumed to be controlled by a separate system, to maintain the motions specified in 

Chapter 6, below.  

The control law for this controller is given in (Song, Tang, Hong, & Hu, 2017) by the 

following mathematical expression. 

 
𝜔ሬሬ⃗ ஽ = 𝜔ሬሬ⃗ ஽

ௗ + ℎ′(𝛷஼஽)𝑘ሬ⃗ ஼஽                                               (35) 
 

where 𝜔ሬሬ⃗ ஽
ௗ ∈ ℝଷ is the desired angular velocity of the deputy spacecraft observed from the 

inertial reference frame and expressed in the deputy’s body-fixed frame, 𝛷஼஽ ∈ [0, 𝜋] is 

the principal rotation angle between the deputy spacecraft’s attitude and the chief 

spacecraft’s attitude, 𝑘ሬ⃗ ஼஽ ∈ ℝଷ is the principal rotation axis between the deputy 

spacecraft’s attitude and the chief spacecraft’s attitude, and ℎ(∙): [0, 𝜋] → ℝା defines a 

potential function satisfying the following assumptions: ℎ must be twice continuously 

differentiable on [0, 𝜋], ℎ(0) = ℎ′(0) = 0, and ℎ′ > 0 on (0, 𝜋) .  

For the purposes of this investigation, a modified form of the second ℎ suggested by 
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(Song, Tang, Hong, & Hu, 2017) was used. Namely, ℎ(𝛷஼஽) = 0.8𝑠𝑖𝑛ଶ(𝛷஼஽
ଶ ). By using 

this control law with Euler’s Equation for the motion of rigid bodies, Equation (12), the 

following expression was found for the control torque that this law exerts. Full details of 

this derivation are provided in Appendix F. 

 

𝑀ሬሬ⃗ ஽
஼௅ = 𝐼஽ ቀ𝜔ሬሬ⃗ ̇

஼ + 𝛷̇஼஽ℎ′′(𝛷஼஽)𝑘ሬ⃗ ஼஽ + ℎ′(𝛷஼஽)𝑘ሬ⃗
̇
஼஽ቁ                                    +

+൫𝜔ሬሬ⃗ ஼ + ℎ′(𝛷஼஽)𝑘ሬ⃗ ஼஽൯ × 𝐼஽൫𝜔ሬሬ⃗ ஼ + ℎ′(𝛷஼஽)𝑘ሬ⃗ ஼஽൯                       (36) 

 
where 𝑀ሬሬ⃗ ஽

஼௅ ∈ ℝଷ denotes the control moment on the deputy spacecraft, expressed in its 

body-fixed frame. This control torque is applied to the system to create the closed-loop 

equations of motion that follow. 

 

𝜔ሬሬ⃗ ̇
஼஽ = 𝐸஼஽

் 𝐼஽
ିଵ ቀ𝑀ሬሬ⃗ ஽

஼௅ + 𝑀ሬሬ⃗ ஽
ை௅ − 𝐸஼஽(𝜔ሬሬ⃗ ஼஽ + 𝜔ሬሬ⃗ ஼)෫ 𝐼஽൫𝐸஼஽(𝜔ሬሬ⃗ ஼஽ + 𝜔ሬሬ⃗ ஼)൯ቁ               −

−𝐼஼
ିଵ൫𝑀ሬሬ⃗ ஼

ை௅  −  𝜔෥஼𝐼஼𝜔ሬሬ⃗ ஼൯                                                 (37) 

 
𝐸̇஼஽ = 𝜔෥஼஽𝐸஼஽                                                    (38) 

 
This controller can be shown to stabilize the system by the following, which is 

adapted from the proof offered in (Song, Tang, Hong, & Hu, 2017), for the case of two 

spacecraft. We begin by defining the following function. 

 
𝑉(𝐸஼஽) = ℎ(𝛷஼஽)                                                 (39) 

 

The upper-right Dini time-derivative of this equation is then taken, and can be expressed 

as the following. 

𝐷ା𝑉(𝐸஼஽) = −2ℎ′(𝛷஼஽)ଶ𝑘ሬ⃗ ஼஽
் 𝑘ሬ⃗ ஼஽                                    (40) 
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Note that this expression is a simplification of the corresponding expression in the 

reference, made for the system under consideration in this study. The function 𝑉(𝐸஼஽) 

can be considered a Lyapunov candidate function for this system, as one of the 

assumptions listed above for ℎ is that ℎ′ > 0 on (0, 𝜋), and another is that ℎ(0) =

ℎ′(0) = 0. This implies that 𝑉(𝐸஼஽) > 0 for 𝛷஼஽ ≠ 0 and 𝑉(𝐸஼஽) = 0 for 𝛷஼஽ = 0. 

Additionally, by Equation (40), and the assumption on ℎ′, 𝐷ା𝑉(𝐸஼஽) < 0 for 𝛷஼஽ ≠ 0, 

and 𝐷ା𝑉(𝐸஼஽) = 0 for 𝛷஼஽ = 0. Therefore, this Lyapunov function can be used to 

conclude that the closed-loop system is stable with respect to 𝛷஼஽ = 0, which is the state 

of the two spacecraft being aligned. 

5.2.1. Actuator Dynamics 

As the previous sections use pseudo-input control vectors to model the closed-loop 

dynamics, this section details the necessary actuator response required to generate the 

control signal given in Equation (36). This is accomplished by means of a dynamic 

inversion, whereby the expression for electrostatic torque on the deputy spacecraft, 

Equation (22), is equated to the control torque expression, Equation (36), and the result is 

solved for the electrostatic charges, 𝑞௡. That is to say, the following equation is made. 

 
𝑀ሬሬ⃗ ஽

ை௅ = 𝑀ሬሬ⃗ ஽
஼௅                                                        (41) 
 

However, careful readers will note that this vector expression results in a system of 

three equations with six unknowns. In order to facilitate solving for these unknowns, an 

additional constraint is introduced to the system. Namely, the electrostatic charges on the 

chief spacecraft are assumed to be held fixed at a nominal value, with the deputy 

spacecraft charges remaining variable, to accomplish control over the deputy’s attitude. 
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Given this new constraint, Equation (41) is solved for the charges on the deputy 

spacecraft, (𝑞௔, 𝑞௕, and 𝑞௖) and the results, as functions of system state, are shown below. 

Full details of this derivation are given in Appendix G. 

 

𝑞௔ =
ఒெሬሬ⃗ ವ,మ

಴ಽ ିఞெሬሬ⃗ ವ,య
಴ಽ

ఎఒିఞఓ
                                                    (42) 

 

𝑞௕  𝑓𝑟𝑒𝑒 

 

𝑞௖ =
ఎெሬሬ⃗ ವ,య

಴ಽ ିఓெሬሬ⃗ ವ,మ
಴ಽ

ఎఒିఞఓ
                                                     (43) 

 

where the subscripts 2 and 3 denote the 2nd and 3rd terms of the vectors to which they are 

attached, and the following expressions define the other variables. 

 

𝜆 =
௤భ௟ (௟ ௖௢௦ ఉ ௦௜௡ ఝ ௦௜௡ ఈାଶ௟ ௦௜௡ ఏ ௦௜௡ ఉ ௖௢௦ ఉା௟ ௦௜௡ ఝ ௖௢௦ ఈ ௦௜௡ ఉ)

൫ௗమାଶ௟(ௗ ௖௢௦ ఝାௗ ௖௢௦ ఏା௟ ௖௢௦ ఏ ௖௢௦ ఝା௟ାఆା௰)൯
య/మ +

+
௤య௟ (ି௟ ௖௢௦ ఉ ௦௜௡ ఝ ௦௜௡ ఈାଶ௟ ௦௜௡ ఏ ௦௜௡ ఉ ௖௢௦ ఉି௟ ௦௜௡ ఝ ௖௢௦ ఈ ௦௜௡ ఉ)

൫ௗమିଶ௟(ௗ ௖௢௦ ఝିௗ ௖௢௦ ఏା௟ ௖௢௦ ఏ ௖௢௦ ఝି௟ାఆା௰)൯
య/మ +

ଶ௤మ௟మ௦௜௡ ఏ ௦௜௡ ఉ ௖௢௦ ఉ

(ௗమାଶ௟ௗ ௖௢௦ ఏା௟మ)య/మ
l 

 

𝜒 =
ି௤భ௟  ௦௜௡ ఏ ቀିௗା௟ ௖௢௦ ఝା௖௢௦ ఏ (௟ି௟ ௦௜௡మఉା௟ ௖௢௦మఉ)ቁି௟ ௖௢௦ ఏ ௸

൫ௗమାଶ௟(ௗ ௖௢௦ ఝାௗ ௖௢௦ ఏା௟ ௖௢௦ ఏ ௖௢௦ ఝା௟ାఆା௰)൯
య/మ −

−
௤య௟ ௦௜௡ ఏ ቀିௗି௟ ௖௢௦ ఝା௖௢௦ ఏ (௟ି௟ ௦௜௡మఉା௟ ௖௢௦మఉ)ቁା௟ ௖௢௦ ఏ ௸

൫ௗమିଶ௟(ௗ ௖௢௦ ఝିௗ ௖௢௦ ఏା௟ ௖௢௦ ఏ ௖௢௦ ఝି௟ାఆା௰)൯
య/మ −

−
௤మ௟ (ିௗ ௦௜௡ ఏା௟ ௖௢௦ ఏ ௦௜௡ ఏି௟ ௦௜௡ ఏ ௖௢௦ ఏ ௦௜௡మఉା௟ ௦௜௡ ఏ ௖௢௦ ఏ ௖௢௦మఉ)

(ௗమାଶ௟ௗ ௖௢௦ ఏା௟మ)య/మ
l 

 

𝜂 =
ି௤భ௟ ௦௜௡ ఏ ቀௗି௟ ௖௢௦ ఝା௖௢௦ ఏ (௟ି௟ ௦௜௡మఉା௟ ௖௢௦మఉ)ቁା௟ ௖௢௦ ఏ ௸

൫ௗమାଶ௟(ௗ ௖௢௦ ఝିௗ ௖௢௦ ఏି௟ ௖௢௦ ఏ ௖௢௦ ఝା௟ିఆି௰)൯
య/మ −

−
௤య௟  ௦௜௡ ఏ ቀௗା௟ ௖௢௦ ఝା௖௢௦ ఏ (௟ି௟ ௦௜௡మఉା௟ ௖௢௦మఉ)ቁି௟ ௖௢௦ ఏ ௸

൫ௗమିଶ௟(ௗ ௖௢௦ ఝାௗ ௖௢௦ ఏି௟ ௖௢௦ ఏ ௖௢௦ ఝି௟ିఆି௰)൯
య/మ −

−
௤మ௟ (ௗ ௦௜௡ ఏା௟ ௖௢௦ ఏ ௦௜௡ ఏି௟ ௦௜௡ ఏ ௖௢௦ ఏ ௦௜௡మఉା௟ ௦௜௡ ఏ ௖௢௦ ఏ ௖௢௦మఉ)

(ௗమିଶ௟ௗ ௖௢௦ ఏା௟మ)య/మ
l 
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𝜇 =
௤భ௟  (ି௟ ௖௢௦ ఉ ௦௜௡ ఝ ௦௜௡ ఈାଶ௟ ௦௜௡ ఏ ௦௜௡ ఉ ௖௢௦ ఉି௟ ௦௜௡ ఝ ௖௢௦ ఈ ௦௜௡ ఉ)

൫ௗమାଶ௟(ௗ ௖௢௦ ఝିௗ ௖௢௦ ఏି௟ ௖௢௦ ఏ ௖௢௦ ఝା௟ିఆି௰)൯
య/మ +

+
௤య௟  (௟ ௖௢௦ ఉ ௦௜௡ ఝ ௦௜௡ ఈାଶ௟ ௦௜௡ ఏ ௦௜௡ ఉ ௖௢௦ ఉା௟ ௦௜௡ ఝ ௖௢௦ ఈ ௦௜௡ ఉ)

൫ௗమିଶ௟(ௗ ௖௢௦ ఝାௗ ௖௢௦ ఏି௟ ௖௢௦ ఏ ௖௢௦ ఝି௟ିఆି௰)൯
య/మ +

+
ଶ௤మଶ௟మ௦௜௡ ఏ ௦௜௡ ఉ ௖௢௦ ఉ

(ௗమିଶ௟ௗ ௖௢௦ ఏା௟మ)య/మ
l 

 
In the above solution, it is notable that the value for the middle charge, 𝑞௕, does not 

have an expression associated with it. This is due to the fact that this sphere is centered at 

the deputy’s center of mass and, therefore, cannot contribute to any torque about the 

center of mass. Close inspection of Equation (22) confirms this, as the term does not 

appear in that equation. In order to determine the practicality of the functions for the 

other two charges, they are simulated numerically and the results are discussed in Chapter 

6, below. 
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6. Numerical Simulations 

This chapter presents numerical simulations of several important equations presented 

above, to observe the behavior of the system. The geometric parameters for these 

simulations were taken from the system considered in (Schaub & Stevenson, 2013). That 

is, 𝑑 = 15 m, 𝑙 = 1.1569 m, 𝐼௔ = 29.45 kgmଶ, and 𝐼௧ = 191.4 kgmଶ. The equilibrium 

charge of each sphere was arbitrarily set to 1 mC. 

6.1. 2D Case 

The following simulations address the system in its 2D Case. These simulations will 

examine the open-loop and closed-loop dynamics of the 2D Case system. Most 

importantly, the behavior of the two controllers will be compared. 

6.1.1. Open-Loop Dynamics 

Equation (21) was simulated to observe the natural, open-loop, behavior of the 

system. This system was simulated for 100 s with an initial state vector of  𝑒 =

[20 (degree), 20 (degree/sec)]். The chief spacecraft was arbitrarily assumed to rotate 

at 𝜑̇ = 10 deg/sec. The response of the system is shown in Figure 6.1, below. 

 

 

Figure 6.1 Open-Loop System Response for 2D Case 
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It can be plainly seen from Figure 6.1 that the relative attitude of the two spacecraft is 

naturally far from zero and fluctuates periodically. This contrasts with the behavior of the 

closed-loop system. This will be presented in the following sections. 

6.1.2. Grammian Controller 

Using 𝛾 = 10 in Equation (28), the gain matrix for the controller became 𝐾 =

[192.2959, 19.9667]. The response of the closed-loop system using this controller is 

shown in Figure 6.2. 

 

 

Figure 6.2 Closed-Loop System Response for 2D Case and Grammian Controller 
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It can be seen in Figure 6.2 that the relative attitude response remains very near to 

zero under this controller. However, there is still some oscillation about the equilibrium 

condition. This is due to the continued rotation of the two spacecraft, which, as 

mentioned previously, was set to 𝜑̇ = 10 deg/sec.  

A numerical simulation was also conducted with the chief angle 𝜑 oscillating about 

𝜑 = 90 deg. The exact function used to simulate the angle’s behavior was 𝜑(𝑡) =

గ

ଵ଼଴
𝑐𝑜𝑠(2𝜋𝑡) +

గ

ଶ
. The mechanism driving this 𝜑 behavior was not explored, but was 

assumed to be a reaction wheel or similar device onboard the chief spacecraft. Using this 

configuration and the grammian approach with 𝛾 = 10, the gain matrix was found to be 

𝐾 = [192.4860, 19.9667]. The response of the system is shown in Figure 6.3. 

 

 

Figure 6.3 Grammian-Controlled Response with Oscillating 𝜑 for 2D Case 
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 It can be seen from Figure 6.3 that, in the absence of wide variations in 𝜑, the 

closed-loop system is very well-behaved. The values for both 𝜀 and 𝜀̇ are brought near to 

zero and remain there with little variation. However, it is important to note the presence 

of steady-state error in the relative angle. The value settles at 𝜀 = −0.1439 deg. Though 

this may not appear to be a large error, for some pointing applications it is significant.  

 6.1.3. Time-Varying LQR Controller 

 For simplicity, constants were used for the weighting matrices for the LQR 

controller. The system under consideration was simulated, with linearly varying 𝜑 (𝜑̇ =

10 deg/sec), using the LQR controller with weighting matrices 𝑄 = ቂ
100 1

1 100
ቃ and 

𝑅 = 0.001. The initial conditions were set to be identical to those in the grammian 

controller simulations, in order to compare the two. The results are shown in Figure 6.4.  

 

 

Figure 6.4 System Response for LQR Controller and Linearly Varying φ for 2D Case 
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It can be seen from Figure 6.4 that the time-varying LQR controller drives the relative 

angle to a small oscillation in the steady-state, like the grammian control in Figure 6.2. 

However, the amplitude of this oscillation is visibly smaller. A direct numerical 

comparison between these responses is given in Table 6.1. 

Additionally, the response for the system with oscillating 𝜑 angle was simulated 

under the influence of the time-varying LQR controller given above. This was done in 

order to compare with the grammian control with oscillating 𝜑. The response is shown in 

Figure 6.5. 

 

 

Figure 6.5 Simulation for Time-Varying LQR Controller and Oscillating φ for 2D Case 



50 
 

Table 6.1  

Comparison of Relative Angle 𝜀 Responses Between Grammian Control and Time-
Varying LQR Control for 2D Case 
 

φ 
Behavior 

Response Property Grammian 
Controller 

Time-Varying LQR 
Controller 

Linear Max. Overshoot (deg) 0.926 N/A 

Avg. Steady-State Error (deg) 0 0 

Steady-State Oscillation 
Amplitude (deg) 

0.144 0.08627 

Steady-State Oscillation 
Frequency (Hz) 

0.0277 0.0278 

Oscillating Max. Overshoot (deg) 0.9288 N/A 

Avg. Steady-State Error (deg) -0.1439 -0.08747 

Steady-State Oscillation 
Amplitude (deg) 

0 0 

 

Figure 6.5 shows near-identical transient behavior to Figure 6.4. The most notable 

difference is the long-term behavior of the relative angle, which shows a constant steady-

state. This is similar to the behavior of the system under the influence of the grammian 

control law as shown in Figure 6.3, except that the steady-state error is far lower. A 

numerical comparison of these behaviors is given in Table 6.1. Additionally, the 

behaviors are plotted together in Figure 6.6. 

Overall, Table 6.1 shows superior performance for the system under influence of the 

time-varying LQR controller. For the linearly varying 𝜑 angle responses, it shows a 

lower oscillation amplitude in the steady state and, for both 𝜑 behaviors, shows no 

overshoot in the response. The steady-state error for the oscillating 𝜑 angle case is lower 

for the time-varying LQR controller, as well. Most likely, these discrepancies are due to 

the fact that the time-varying LQR controller was designed to minimize the controller 
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energy. With this strategy in mind, the controller would logically reduce oscillation 

amplitude and avoid overshoot, if possible. Meanwhile, the Grammian controller was 

designed using an arbitrary decay rate, which did not take these parameters into 

consideration. However, the major shortfall of the time-varying LQR controller is that the 

structure detailed above applies to periodic systems only, whereas the Grammian-based 

controller is capable of controlling the system with arbitrary 𝜑 behavior. If future study 

of this system’s 2D Case is conducted for periodic cases only, the time-varying LQR 

controller is likely to be the best approach. Otherwise, the Grammian controller is 

recommended. 

 

 

Figure 6.6 Comparison of Time-Varying LQR and Grammian Controllers by Relative 
Angle 𝜀 Behavior for the 2D Case. 
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6.2. 3D Case 

The following simulations address the system in its 3D Case. They examine 

numerous behaviors of the system, including open-loop dynamics, equilibrium behavior, 

closed-loop dynamics, and actuator dynamics. 

6.2.1. Open-Loop Dynamics 

By using Equations (24), and (26), the natural, open-loop, motion of the 3D Case of 

the system is simulated. Several open-loop motion simulations will be presented to show 

different aspects of the open-loop behavior. 

In the first, the spacecraft are set to start as shown in Figure 4.1 and experience single 

axis rotations of equal speed. The first case is motion only about the spacecraft 𝐼መ and 𝚤̂ 

axes. The initial angular velocity is set to 10 deg/sec. The results are shown in Figure 6.7. 

 

 

Figure 6.7 Open-Loop First Axis Rotation Simulation for 3D Case 
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As expected, both spacecraft first axis angles, 𝛼 and 𝛽, show constant increase 

behavior, while the second axis angles are still. The spacecraft do not interact, because in 

this configuration (like in Figure 4.1), their long axes are aligned and no moments are 

produced due to the electrostatic charges.  

The second case is rotation only about the spacecraft 𝐽መ and 𝚥̂ axes, with the same 

starting orientation as in the previous case. The initial angular velocity for both craft is set 

to 10 deg/sec and the results are shown in Figure 6.8. 

 

 

Figure 6.8 Open-Loop Second Axis Rotation Simulation for 3D Case 
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Initially, Figure 6.8 shows the system behaving as expected, with the second-axis 

angles evolving with time, subject to disturbance by the electrostatic torque, while the 

first-axis angles remain constant (the switching behavior shown is an artifact of the 

attitude coordinate system). However, at approximately 75 seconds into the simulation, 

the small differences in the attitudes of the two spacecraft allow the electrostatic torque to 

induce a change in their motion. 

Finally, a more interesting set of initial conditions are used for the final simulation. 

This is with the chief spacecraft beginning with 𝜑 =
గ

ଶ
 and 𝛼 = 0 and the deputy 

beginning at 𝜃 =
గ

ଶ
 and 𝛽 =

గ

ଶ
. This initial condition is shown in Figure 6.9, for ease of 

visualization. The chief’s initial angular velocity is set to 𝜔ሬሬ⃗ ஼଴ = [0 10 0]் deg/sec 

and the deputy’s is set to 𝜔ሬሬ⃗ ஽଴ = [0 30 0]் deg/sec. The results are shown in Figure 

6.10. 

 

 

Figure 6.9 Open-Loop Perpendicular Initial Condition 
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Figure 6.10 Open-Loop Perpendicular Simulation for 3D Case 

 

Figure 6.10 shows some very interesting behavior. Initially, the deputy spins about its 

𝚥̂ axis purely, but around 90 seconds, it begins to develop a slight motion about the 

reference 𝑋෠ axis, which is visible in the 𝛽 plot. Prior to this, the 𝛽 variations on the plot 

were artifacts of the attitude representation, as mentioned previously. The chief 

spacecraft shows more interesting dynamics, overall. Due to electrostatic interactions 

with the spinning deputy, its motion shows oscillation, rather than simple spinning. This 

occurs fairly consistently until about 90 seconds, at which point interactions with the 
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deputy induce motion in the chief’s 𝛼 response, which leads to corresponding changes in 

the chief’s 𝜑 response. 

6.2.2. Equilibrium States 

Using Equation (24), several equilibrium states have been found for this system. 

Here, we will present two cases. In the first case, the two spacecraft have initial attitude 

[𝛼 𝜑]் = ൣ0
గ

ସ
൧

்
 radians and [𝛽 𝜃]் = ൣ0

గ

ସ
൧

்
 radians, and are set to rotate 

together about the 𝑍መ  axis with an angular speed of 10 deg/sec. 

 

 

Figure 6.11 First Equilibrium State 

 

As can be seen from Figure 6.11, the two spacecraft’s attitudes oscillate with an 

identical pattern. This shows that, with this starting state, they maintain the same relative 

attitude and relative angular velocity. Therefore, the relative system experiences an 

equilibrium here. 

The second equilibrium state that will be presented is with the two spacecraft at 

starting attitudes [𝛼 𝜑]் = ൣ0
గ

ଷ
൧

்
 radians and [𝛽 𝜃]் = ൣ0

గ

ଷ
൧

்
 radians. Their 
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initial angular velocities are both 30 deg/sec about the 𝑋෠ axis. 

 

 

Figure 6.12 Second Equilibrium State 

 

While the equilibrium condition shown in Figure 6.12 is certainly more chaotic for 

the individual spacecraft than the previous one, the point must be made again that their 

behavior is identical, which therefore shows that the relative system experiences 

equilibrium at this condition. Note that, for this equilibrium plot, all the lines represent a 

single simulation case. Horizontal lines showing the first-axis rotation angles crossing 

180 degrees have been removed for clarity. 

6.2.3. Closed-Loop Behavior 

The closed-loop system is here simulated for a simple case, with the attitude of the 

chief held fixed at [𝛼 𝜑]் = ൣ0
గ

ଶ
൧

்
. This attitude is assumed to be maintained by a 

traditional attitude control system, using either reaction wheels or attitude thrusters. 

Meanwhile, the deputy spacecraft is simulated with the controller mentioned above. The 

simulation is conducted with the deputy spacecraft having an initial attitude vector of 
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[𝛽 𝜃]் = ቂ
ିହగ

ଽ

గ

ସ
ቃ

்

 radians, and an initial angular velocity of 𝜔ሬሬ⃗ ஼஽ = ൣ0
గ

ଷ଺

గ

ଷ଺
൧

்
 

radians per second. The geometric parameters and equilibrium charges for this simulation 

are the same as those used above. The nonlinear controller given in Equation (36) is 

applied to the system, using the ℎ function ℎ(𝛷஼஽) = 0.8𝑠𝑖𝑛ଶ(𝛷஼஽
ଶ ). The resulting 

simulation output is shown in Figure 6.14. 

6.2.4. Actuator Dynamics 

Finally, the actuator dynamics for the closed-loop simulation presented above were 

simulated. This was done by taking the state history from the above simulation and using 

it as input to Equations (42) and (43) to plot the required electrostatic charges to achieve 

the control torques that created that state trajectory presented above. For this simulation, 

the electrostatic charges on the chief spacecraft, as well as the free electrostatic charge on 

the deputy spacecraft (𝑞௕), were set to the usual value of 1 mC. The results of this 

simulation are presented in Figure 6.13. 

 

 

Figure 6.13 Charge History of Sphere a and Sphere c for Closed-Loop 3D Case 
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Figure 6.14 Closed-Loop Simulation for 3D Case 
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Figure 6.13 shows that, overall, the responses of the two charges for this case are very 

similar. However, a closer inspection of the plots will reveal a few salient differences. 

First, sphere c shows a much flatter curve at the beginning of the simulation than sphere a 

does, while sphere a has flatter post-spike behavior than sphere c does. Additionally, 

while the difference in each sphere’s positive spike, at about 7.6 sec, is quite small, the 

difference in their negative spikes, at about 7.9 sec, is a bit larger. Sphere c reaches about 

-0.405 C at the bottom of its negative spike, while sphere a reaches only -0.395 C. It is 

worth noting from both plots that the majority of the control effort is spent in a very small 

time interval, in the two seconds containing the spikes, with the rest of the simulation 

having much more moderate changes in the required charge dynamics. Comparing with 

Figure 6.14, this seems to be associated with arresting the initial overshoot of the 𝜃 angle 

of the deputy spacecraft. After this point, the spacecraft control is accomplished with far 

smaller charge values and far less variation in them, with the charges eventually settling 

close to their equilibrium value of 1 mC. 

To determine the practicality of these actuator dynamics, it is most important to 

analyze the greatest change in the required charge in the lowest time. That is to say, the 

spikes at 7.5 s to 8 s. To achieve the large drop in charge required of sphere a, the charge 

must change at a rate of -2.9878 
஼

௦
, or -2.9878 A. Sphere c requires a charge change rate 

of -3.0655 A. Considering the actuation system to be a beam of charged particles, as in 

(Schaub & Stevenson, 2013), this may be unattainable. High-powered laboratory-grade 

electron guns can achieve this level of power, but the size and complexity of these 

devices make them unusable for this application (Pikin, Beebe, & Raparia, 2013). Most 

more compact electron guns have emission currents in the range of a few hundred mA 
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(Lee, Kim, Ghergherehchi, et al., 2014). However, another method to impart the 

necessary charges, a less aggressive control law, or more optimal initial conditions for the 

case may ameliorate this problem. 
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7. Conclusion and Future Work 

The information presented in this thesis show that the system under consideration, 

under the given assumptions, is controllable. A collection of several different control 

laws has been presented, both for the case when the spacecraft rotations are constrained 

to the plane of the two craft, and for the case when they are allowed to freely rotate in 

three dimensions. The controllers demonstrate that stabilization of the system can be 

achieved in reasonable times, with the longest taking about two minutes. While 

performance of these controllers is not yet optimal, their utility toward stabilizing the 

system is well demonstrated. Finally, analysis was shown to demonstrate one of the 

practical requirements of one of these controllers for use by determining the dynamics 

that the controller would require of the system’s actuators: the surface charges of the 

discretized regions of the spacecraft’s outer surface.  

This analysis shows that, overall, the charges required to implement this control law 

are not exceptionally large for most of the simulation presented; mostly varying in a 

small neighborhood of the equilibrium charge values. However, the nimble dynamics 

required in earlier portions of the flight merit further investigation before this control 

system can be implemented on a real-world system, as the required beam current for 

charging with electron beams is currently too high.  

Future work may also consider optimizing the performance of the presented 

controllers, or finding others whose performance is naturally better for this system, 

requiring less aggressive actuator dynamics. Additionally, further studies may wish to 

extend this research into the case where a larger formation of spacecraft is investigated, 

making fuller use of the swarm-controller introduced for the 3D Case, or finding a 
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higher-performing controller for this expanded system. Finally, when the attitude control 

system is more mature, future work should investigate the coupling effects between 

translational and rotational motion control using the electrostatic actuator, allowing all six 

degrees of freedom of each spacecraft to be controlled for a large formation. 
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APPENDIX A – DERIVATION OF TORQUE EXPRESSIONS FOR 2D CASE 

In order to derive the total electrostatic torque on one of the spacecraft in this study, 

we must start from Equation (15), the expression for the electrostatic torque about one 

body due to the interactions between a charged region on it and another charged region 

off of it. This equation is reproduced here for convenience. 

 

𝑀ሬሬ⃗ ீ = 𝑟 ଶ ×
𝑘஼𝑞ଵ𝑞ଶ𝑟̂ଵଶ

‖𝑟ଵଶ‖ଶ
 

 

Note that, in this equation, 1 and 2 do not yet refer to the charged regions in our particular 

system, but instead refer to two general electrostatically-charged regions that are 

interacting, with G denoting the center of mass of the rotating body. In order to use this 

equation for this system, it must be summed, twice, over the set of electrostatically 

charged interacting regions in the system. For instance, for the deputy spacecraft, the 

regions indicated as 1 in Equation (15) are the spheres on the chief spacecraft and the 

regions indicated as 2 are the spheres on the deputy spacecraft. Also, G is the center of 

sphere b for the deputy.  

Taking this double-sum, the following equation results. 

 
𝑀ሬሬ⃗ ஽ = 𝑘஼ ∑ 𝑞௡

௖
௡ୀ௔ ∑

௤ೡ

ฮ௥⃗ೡ,೙ฮ
య 𝑟௕,௡

ଷ
௩ୀଵ × 𝑟௩,௡                               (44) 

 

where 𝑛 ∈ {𝑎 𝑏 𝑐} is the set of spheres on the deputy spacecraft, 𝑣 ∈ {1 2 3} is 

the set of spheres on the chief spacecraft, and the vectors follow the conventions 

established in Chapter 3. Once this equation is expanded, the following expression 

results. 
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𝑀ሬሬ⃗ ஽ = 𝑘஼ ൬
௤భ௤ೌ൫௥್⃗,ೌ×௥⃗భ,ೌ൯

ฮ௥⃗భ,ೌฮ
య +

௤భ௤್൫௥್⃗,್×௥⃗భ,್൯

ฮ௥⃗భ,್ฮ
య +

௤భ௤೎൫௥್⃗,೎×௥⃗భ,೎൯

ฮ௥⃗భ,೎ฮ
య +

௤మ௤ೌ൫௥್⃗,ೌ×௥⃗మ,ೌ൯

ฮ௥⃗మ,ೌฮ
య                      +

+
௤మ௤್൫௥್⃗,್×௥⃗మ,್൯

ฮ௥⃗మ,್ฮ
య +

௤మ௤೎൫௥್⃗,೎×௥⃗మ,೎൯

ฮ௥⃗మ,೎ฮ
య +

௤య௤ೌ൫௥್⃗,ೌ×௥⃗య,ೌ൯

ฮ௥⃗య,ೌฮ
య +

௤య௤್൫௥್⃗,್×௥⃗య,್൯

ฮ௥⃗య,್ฮ
య +

௤య௤೎൫௥್⃗,೎×௥⃗య,೎൯

ฮ௥⃗య,೎ฮ
య ൰ (45) 

 

Take note that, in this equation, the terms involving sphere b will go to zero, since 

𝑟௕,௕ is the zero vector. Taking this into account, the following terms remain. 

 

𝑀ሬሬ⃗ ஽ = 𝑘஼ ൬
௤భ௤ೌ൫௥್⃗,ೌ×௥⃗భ,ೌ൯

ฮ௥⃗భ,ೌฮ
య +

௤భ௤೎൫௥್⃗,೎×௥⃗భ,೎൯

ฮ௥⃗భ,೎ฮ
య +

௤మ௤ೌ൫௥್⃗,ೌ×௥⃗మ,ೌ൯

ฮ௥⃗మ,ೌฮ
య +

௤మ௤೎൫௥್⃗,೎×௥⃗మ,೎൯

ฮ௥⃗మ,೎ฮ
య            +

+
௤య௤ೌ൫௥್⃗,ೌ×௥⃗య,ೌ൯

ฮ௥⃗య,ೌฮ
య +

௤య௤೎൫௥್⃗,೎×௥⃗య,೎൯

ฮ௥⃗య,೎ฮ
య ൰                                (46) 

 

Thus, constructing the torque expression becomes a simple matter of evaluating the 

position vector expressions in Equation (46). This requires expressions for the relative 

position vectors between the spheres. Taken in reference coordinates and using the 

kinematic angles 𝜃 and 𝜑, the position of each sphere relative to sphere 2 is given by the 

following. 

 

𝑟ଵ = ൥
𝑙 𝑐𝑜𝑠 𝜑

0
𝑙 𝑠𝑖𝑛 𝜑 

൩ , 𝑟ଶ = ൥
0
0
0

൩ , 𝑟ଷ = ൥
−𝑙 𝑐𝑜𝑠 𝜑

0
−𝑙 𝑠𝑖𝑛 𝜑 

൩ 

𝑟௔ = ൥
𝑑 + 𝑙 𝑐𝑜𝑠 𝜃

0
𝑙 𝑠𝑖𝑛 𝜃

൩ , 𝑟௕ = ൥
𝑑
0
0

൩ , 𝑟௖ = ൥
𝑑 − 𝑙 𝑐𝑜𝑠 𝜃

0
−𝑙 𝑠𝑖𝑛 𝜃

൩                             (47) 

 
Verifying these position vectors is left as an exercise for the reader. The relative 

position vectors between the charge-carrying spheres are then constructed by subtraction: 

 

𝑟ଵ,௔ = ൥
𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑

0
𝑙 𝑠𝑖𝑛 𝜃 − 𝑙 𝑠𝑖𝑛 𝜑

൩ , 𝑟ଵ,௖ = ൥
𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑

0
−𝑙 𝑠𝑖𝑛 𝜃 − 𝑙 𝑠𝑖𝑛 𝜑

൩ 
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𝑟ଷ,௔ = ൥
𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑

0
𝑙 𝑠𝑖𝑛 𝜃 + 𝑙 𝑠𝑖𝑛 𝜑

൩ , 𝑟ଷ,௖ = ൥
𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑

0
−𝑙 𝑠𝑖𝑛 𝜃 + 𝑙 𝑠𝑖𝑛 𝜑

൩ 

𝑟ଶ,௔ = ൥
𝑑 + 𝑙 𝑐𝑜𝑠 𝜃

0
𝑙 𝑠𝑖𝑛 𝜃

൩ , 𝑟ଶ,௖ = ൥
𝑑 − 𝑙 𝑐𝑜𝑠 𝜃

0
−𝑙 𝑠𝑖𝑛 𝜃

൩ , 𝑟௕,௔ = ൥
𝑙 𝑐𝑜𝑠 𝜃

0
𝑙 𝑠𝑖𝑛 𝜃

൩ 

𝑟௕,௖ = ൥
−𝑙 𝑐𝑜𝑠 𝜃

0
−𝑙 𝑠𝑖𝑛 𝜃

൩                                                (48) 

 
Note that, not all relative position vectors were necessary to construct; only those that 

appear in Equation (46). Two operations must be conducted with these position vectors: 

certain ones’ magnitudes must be computed and the cross products of certain pairs must 

be computed. First, we will compute the magnitudes, shown below. 

 

ฮ𝑟ଵ,௔ฮ = ඥ(𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 𝜃 − 𝑙 𝑠𝑖𝑛 𝜑)ଶ 

ฮ𝑟ଶ,௔ฮ = ඥ(𝑑 − 𝑙 𝑐𝑜𝑠 𝜃)ଶ + (−𝑙 𝑠𝑖𝑛 𝜃)ଶ 

ฮ𝑟ଷ,௔ฮ = ඥ(𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 𝜃 + 𝑙 𝑠𝑖𝑛 𝜑)ଶ 

ฮ𝑟ଵ,௖ฮ = ඥ(𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜃 − 𝑙 𝑠𝑖𝑛 𝜑)ଶ 

ฮ𝑟ଶ,௖ฮ = ඥ(𝑑 − 𝑙 𝑐𝑜𝑠 𝜃)ଶ + (−𝑙 𝑠𝑖𝑛 𝜃)ଶ 

ฮ𝑟ଷ,௖ฮ = ඥ(𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜃 + 𝑙 𝑠𝑖𝑛 𝜑)ଶ                (49) 

 
Note that, since vector magnitudes are invariant under frame transformation, taking 

the magnitudes from the vectors’ reference frame expressions is valid for our purposes. 

Similarly, the reference frame expression can be used for the cross products to construct a 

body-fixed frame torque expression in the special case represented by this system. Since 

the 𝑌෠ , 𝐽መ, and 𝚥̂ vectors are always parallel for the 2D Case, and noting that all of the 
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relative position vectors have zero second-axis component, all cross products will result 

in vectors whose only nonzero component is the second-axis component. Since the 

second axes of all three coordinate frames in this study are assumed to align for the 2D 

Case, these cross products are valid for any of these frames. Thus, the cross products are 

evaluated to be the following, using the substitution 𝜀 = 𝜃 − 𝜑. 

 
𝑟௕,௔ × 𝑟ଵ,௔ =

൥
0

𝑑𝑙 𝑠𝑖𝑛 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 + 𝑙ଶ𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜑
0

൩ =

൥
0

𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙ଶ𝑠𝑖𝑛 𝜀
0

൩  

 
𝑟௕,௔ × 𝑟ଷ,௔ =

൥
0

𝑑𝑙 𝑠𝑖𝑛 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑙ଶ𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜑
0

൩ =

൥
0

𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙ଶ𝑠𝑖𝑛 𝜀
0

൩  

 

𝑟௕,௔ × 𝑟ଶ,௔ = ൥
0

𝑑𝑙 𝑠𝑖𝑛 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
0

൩ = ൥
0

𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑)
0

൩ 

 
𝑟௕,௖ × 𝑟ଵ,௖ =

൥
0

−𝑑𝑙 𝑠𝑖𝑛 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑙ଶ𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜑
0

൩ =

൥
0

−𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙ଶ𝑠𝑖𝑛 𝜀
0

൩  
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𝑟௕,௖ × 𝑟ଷ,௖ =

൥
0

−𝑑𝑙 𝑠𝑖𝑛 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 + 𝑙ଶ𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜑
0

൩ =

൥
0

−𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙ଶ𝑠𝑖𝑛 𝜀
0

൩  

 

𝑟௕,௖ × 𝑟ଶ,௖ = ൥
0

−𝑑𝑙 𝑠𝑖𝑛 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 − 𝑙ଶ𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
0

൩ = ൥−
0

𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑)
0

൩    (50) 

 
With these terms computed, the final electrostatic torque expression for the deputy 

spacecraft is found by substituting Equations (49) and (50) into Equation (46). This 

results in Equation (19) from the main thesis. Treating the single nonzero component of 

the vector torque as a scalar, it is denoted 𝐿஽. 

To derive the equivalent equation for the chief spacecraft, it is necessary to reverse 

the double-sum in Equation (44), this time treating the spheres of the deputy spacecraft as 

the first interacting object and the spheres of the chief as the second interacting object. 

This is given by the following expression. 

 
𝑀ሬሬ⃗ ஼ = 𝑘஼ ∑ 𝑞௩

ଷ
௩ୀଵ ∑

௤೙

ฮ௥⃗೙,ೡฮ
య 𝑟ଶ,௩

௖
௡ୀ௔ × 𝑟௡,௩                              (51) 

 
Which, when expanded, gives the following expression. 

 

𝑀ሬሬ⃗ ஼ = 𝑘஼ ൬
௤భ௤ೌ൫௥⃗మ,భ×௥⃗ೌ ,భ൯

ฮ௥⃗ೌ ,భฮ
య +

௤భ௤್൫௥⃗మ,భ×௥್⃗,భ൯

ฮ௥್⃗,భฮ
య +

௤భ௤೎൫௥⃗మ,భ×௥⃗೎,భ൯

ฮ௥⃗೎,భฮ
య +

௤మ௤ೌ൫௥⃗మ,మ×௥⃗ೌ ,మ൯

ฮ௥⃗ೌ ,మฮ
య                  +

+
௤మ௤್൫௥⃗మ,మ×௥್⃗,మ൯

ฮ௥್⃗,మฮ
య +

௤మ௤೎൫௥⃗మ,మ×௥⃗೎,మ൯

ฮ௥⃗೎,మฮ
య +

௤య௤ೌ൫௥⃗మ,య×௥⃗ೌ ,య൯

ฮ௥⃗ೌ ,యฮ
య +

௤య௤್൫௥⃗మ,య×௥್⃗,య൯

ฮ௥್⃗,యฮ
య +

௤య௤೎൫௥⃗మ,య×௥⃗೎,య൯

ฮ௥⃗೎,యฮ
య ൰   (52) 
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Like its deputy counterpart, several terms in this equation go to zero, due to the 

presence of the zero vector 𝑟ଶ,ଶ. Removing these, we are left with: 

 

𝑀ሬሬ⃗ ஼ = 𝑘஼ ൬
௤భ௤ೌ൫௥⃗మ,భ×௥⃗ೌ ,భ൯

ฮ௥⃗ೌ ,భฮ
య +

௤భ௤್൫௥⃗మ,భ×௥್⃗,భ൯

ฮ௥್⃗,భฮ
య +

௤భ௤೎൫௥⃗మ,భ×௥⃗೎,భ൯

ฮ௥⃗೎,భฮ
య +

௤య௤ೌ൫௥⃗మ,య×௥⃗ೌ ,య൯

ฮ௥⃗ೌ ,యฮ
య                  +

+
௤య௤್൫௥⃗మ,య×௥್⃗,య൯

ฮ௥್⃗,యฮ
య +

௤య௤೎൫௥⃗మ,య×௥⃗೎,య൯

ฮ௥⃗೎,యฮ
య ൰                                         (53) 

 
To finish deriving the chief spacecraft’s electrostatic torque expression, we must, 

once again, evaluate these position vector expressions. These can be done using the same 

vectors presented in Equation (47). The required relative position vectors can then be 

constructed by subtraction, as before. 

 

𝑟௔,ଵ = ൥
−𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑

0
−𝑙 𝑠𝑖𝑛 𝜃 + 𝑙 𝑠𝑖𝑛 𝜑

൩ , 𝑟௖,ଵ = ൥
−𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑

0
𝑙 𝑠𝑖𝑛 𝜃 + 𝑙 𝑠𝑖𝑛 𝜑

൩ 

𝑟௔,ଷ = ൥
−𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑

0
−𝑙 𝑠𝑖𝑛 𝜃 − 𝑙 𝑠𝑖𝑛 𝜑

൩ , 𝑟௖,ଷ = ൥
−𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑

0
𝑙 𝑠𝑖𝑛 𝜃 − 𝑙 𝑠𝑖𝑛 𝜑

൩ 

𝑟௕,ଵ = ൥
−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑

0
𝑙 𝑠𝑖𝑛 𝜑

൩ , 𝑟௕,ଷ = ൥
−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑

0
−𝑙 𝑠𝑖𝑛 𝜑

൩ , 𝑟ଶ,ଵ = ൥
𝑙 𝑐𝑜𝑠 𝜑

0
𝑙 𝑠𝑖𝑛 𝜑

൩ 

𝑟ଶ,ଷ = ൥
−𝑙 𝑐𝑜𝑠 𝜑

0
−𝑙 𝑠𝑖𝑛 𝜑

൩                                               (54) 

 
For evaluating the required vector magnitudes, there is a bit of material that we can 

reuse from the deputy derivation. Namely, since the vectors 𝑟௔,ଵ, 𝑟௖,ଵ, 𝑟௔,ଷ, and 𝑟௖,ଷ are the 

exact negatives of vectors 𝑟ଵ,௔, 𝑟ଵ,௖, 𝑟ଷ,௔, and 𝑟ଷ,௖, respectively, the magnitude expressions 

of the latter may be used in place of those of the former. This is because vector 
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magnitude is independent of vector orientation. Thus, the remaining magnitudes to 

compute can be evaluated as the following. 

 

ฮ𝑟௕,ଵฮ = ඥ(−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 𝜑)ଶ 

ฮ𝑟௕,ଷฮ = ඥ(−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ                              (55) 

 
Finally, the cross product terms must be computed. For the same reason as described 

above for the deputy spacecraft, this can be done on with the vectors as they are, without 

transformation. The resulting terms are as follows. 

 
𝑟ଶ,ଵ × 𝑟௔,ଵ =

൥
0

−𝑙𝑑 sin 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 + 𝑙ଶ𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜃 − 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑
0

൩ =

൥
0

−𝑙𝑑 sin 𝜑 + 𝑙ଶ𝑠𝑖𝑛 𝜀
0

൩  

 

 
𝑟ଶ,ଵ × 𝑟௖,ଵ =

൥
0

−𝑙𝑑 sin 𝜑 + 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 − 𝑙ଶ𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜃 − 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑
0

൩ =

൥
0

−𝑙𝑑 sin 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜀
0

൩  

 

 

𝑟ଶ,ଵ × 𝑟௕,ଵ = ൥
0

−𝑙𝑑 sin 𝜑 + 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑
0

൩ = ൥
0

−𝑙𝑑 sin 𝜑
0

൩ 
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𝑟ଶ,ଷ × 𝑟௔,ଷ =

൥
0

𝑙𝑑 sin 𝜑 + 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 − 𝑙ଶ𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜃 − 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑
0

൩ =

൥
0

𝑙𝑑 sin 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜀
0

൩  

 

 
𝑟ଶ,ଷ × 𝑟௖,ଷ =

൥
0

𝑙𝑑 sin 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃 + 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 + 𝑙ଶ𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜃 − 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑
0

൩ =

൥
0

𝑙𝑑 sin 𝜑 + 𝑙ଶ𝑠𝑖𝑛 𝜀
0

൩  

 

 

𝑟ଶ,ଷ × 𝑟௕,ଷ = ൥
0

𝑙𝑑 sin 𝜑 + 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 − 𝑙ଶ𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑
0

൩ = ൥
0

𝑙𝑑 sin 𝜑
0

൩          (56) 

 
Finally, Equations (49), (55), and (56) are substituted into Equation (53) to derive the 

electrostatic torque expression for the chief spacecraft, given as Equation (20) in the main 

draft. Treating the single nonzero component of the vector torque as a scalar, it is denoted 

𝐿஼. 
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APPENDIX B – DERIVATION OF OPEN-LOOP DYNAMICS FOR 2D CASE 

Using the electrostatic torque expressions derived in Appendix A, it is now a simple 

matter to derive the open-loop dynamics of the 2D Case system. Taking the nonzero 

components of the torque vectors 𝑀ሬሬ⃗ ஽ and 𝑀ሬሬ⃗ ஼ as 𝐿஽ and 𝐿஼, respectively, the dynamics of 

the two spacecraft, rotating in a single plane, can be written as the following. 

 
𝐿஽ = 𝐼௧𝜃̈,      𝐿஼ = 𝐼௧𝜑̈                                                (57) 

 
recalling that the two spacecraft’s moments-of-inertia are identical, due to the assumption 

of identical construction. Additionally, note that, since the coordinate frame axes 𝑌෠ , 𝐽መ, 

and 𝚥̂ (which these equations are taken about) are always parallel for the 2D Case. This 

means that these equations can be added and subtracted directly.  

Since it is desired to obtain an expression for the open-loop dynamics in terms of the 

relative attitude angle 𝜀 = 𝜃 − 𝜑, this is a useful property. Taking the time derivative of 𝜀 

twice, we observe that 𝜀̈ = 𝜃̈ − 𝜑̈. Therefore, by rearranging Equation (57) and 

subtracting, the following results. 

 

𝜀̈ =
௅ವି௅಴

ூ೟
                                                           (58) 

 
To fully capture the system dynamics, they can be modelled in nonlinear state-space 

form as the following. 

 

𝑒 = ቂ
𝜀
𝜀̇

ቃ , 𝑒̇ = ቈ
𝜀̇

௅ವି௅಴

ூ೟

቉ = ൤
𝜀̇

𝑓(𝜀, 𝜑)
൨                                        (59) 

 
To fully expand this equation, Equations (19) and (20) must be substituted into 



75 
 

this state-space model. This results in the following expression. 

 

𝑓(𝜀, 𝜑) =
𝑘஼

𝐼௧
ቆ

𝑞ଵ𝑞௔(𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 2𝑙ଶ𝑠𝑖𝑛 𝜀 + 𝑙𝑑 sin 𝜑)

((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଵ𝑞௖(−𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 2𝑙ଶ𝑠𝑖𝑛 𝜀 + 𝑙𝑑 sin 𝜑)

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଶ𝑞௔(𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑))ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))ଶ)ଷ/ଶ

+
𝑞ଶ𝑞௖(−𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))

((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑))ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))ଶ)ଷ/ଶ

+
𝑞ଷ𝑞௔(𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 2𝑙ଶ𝑠𝑖𝑛 𝜀 − 𝑙𝑑 sin 𝜑)

((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଷ𝑞௖(2𝑙ଶ 𝑠𝑖𝑛 𝜀 − 𝑙𝑑 𝑠𝑖𝑛 𝜑 − 𝑙𝑑 sin (𝜀 + 𝜑))

((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

−
𝑞ଵ𝑞௕(−𝑙𝑑 sin 𝜑)

((−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

−
𝑞ଷ𝑞௕(𝑙𝑑 𝑠𝑖𝑛 𝜑)

((−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ
ቇ 

 
Which is Equation (21) from the main thesis.  
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APPENDIX C – LINEARIZATION OF OPEN-LOOP DYNAMICS FOR 2D CASE 

The first step of using the controllers presented in this thesis for the 2D Case is to 

linearize the open-loop dynamics of the system. As described in Chapter 3, this is done 

by taking the Jacobian of the nonlinear state-space equation about the equilibrium point 

𝑒௘ = [0 0]்  and substituting the result into Equation (17). We start with the following 

definition. 

 

𝑓(𝑒) = ൤
𝜀̇

𝑓(𝜀, 𝜑)
൨                                                (60) 

 
The Jacobian is then comprised of four partial derivatives, evaluated about the 

equilibrium state. These are the following. 

 
డ௙భ

డఌ
= 0,    

డ௙భ

డఌ̇
= 1,    

డ௙మ

డఌ
= 𝑔(𝜑),    

డ௙మ

డఌ̇
= 0                          (61) 

 
Where the third partial derivative is given by the following. 

 

𝑔(𝜑) =
௞಴

ூ೟
ቀ

௤భ,೐௤ೌ,೐(஽భேᇱభିேభ஽ᇱభ)

((ௗା௟ ௖௢௦ (ఌାఝ)ି௟ ௖௢௦ ఝ)మା(௟ ௦௜௡ (ఌାఝ)ି௟ ௦௜௡ ఝ)మ)య
                                                   +

+
௤భ,೐௤೎,೐(஽మேᇱమିேమ஽ᇱమ)

((ௗି௟ ௖௢௦ (ఌାఝ)ି௟ ௖௢௦ ఝ)మା(ି௟ ௦௜௡ (ఌାఝ)ି௟ ௦௜௡ ఝ)మ)య
+

௤మ,೐௤ೌ,೐(஽యேᇱయିேయ஽ᇱయ)

((ௗି௟ ௖௢௦ (ఌାఝ))మା(ି௟ ௦௜௡ (ఌାఝ))మ)య
+

+
௤మ,೐௤೎,೐(஽రேᇱరିேర஽ᇱర)

((ௗା௟ ௖௢௦ (ఌାఝ))మା(ି௟ ௦௜௡ (ఌାఝ))మ)య
+

௤య,೐௤ೌ,೐(஽ఱேᇱఱିேఱ஽ᇱఱ)

((ௗା௟ ௖௢௦ (ఌାఝ)ା௟ ௖௢௦ ఝ)మା(௟ ௦௜௡ (ఌାఝ)ା௟ ௦௜௡ ఝ)మ)య
+

+
௤య,೐௤೎,೐(஽లேᇱలିேల஽ᇱల)

((ௗି௟ ௖௢௦ (ఌାఝ)ା௟ ௖௢௦ ఝ)మା(ି௟ ௦௜௡ (ఌାఝ)ା௟ ௦௜௡ ఝ)మ)య
+

௤భ,೐௤್,೐(஽ళேᇱళିேళ஽ᇱళ)

((ିௗା௟ ௖௢௦ ఝ)మା(௟ ௦௜௡ ఝ)మ)య
+

+
௤య௤್(஽ఴேᇱఴିேఴ஽ᇱఴ)

((ିௗି௟ ௖௢௦ ఝ)మା(ି௟ ௦௜௡ ఝ)మ)య
ቁቚ

ఌୀ଴
                                                               (62) 

 
Where the N and D terms are defined by the following. 
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𝑁ଵ = 𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 2𝑙ଶ𝑠𝑖𝑛 𝜀 + 𝑙𝑑 sin 𝜑 

𝑁′ଵ = 𝑑𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 2𝑙ଶ𝑐𝑜𝑠 𝜀 

 
𝐷ଵ = ((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ 

𝐷′ଵ = 3 ඥ𝐷ଵ
య ൫(𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑)𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑)

− (𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑) 𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) ൯ 

 
𝑁ଶ = −𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 2𝑙ଶ𝑠𝑖𝑛 𝜀 + 𝑙𝑑 sin 𝜑 

𝑁′ଶ = −𝑙𝑑 𝑐𝑜𝑠 (𝜀 + 𝜑) + 2 𝑙ଶ𝑐𝑜𝑠 𝜀 

 
𝐷ଶ = ((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ 

𝐷ᇱ
ଶ = 3ඥ𝐷ଶ

య ൫(𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) − 𝑙 𝑐𝑜𝑠 𝜑) 𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑)

− (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − 𝑙 𝑠𝑖𝑛 𝜑) 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑)൯ 

 
𝑁ଷ = 𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) 

𝑁′ଷ = 𝑙𝑑 𝑐𝑜𝑠 (𝜀 + 𝜑) 

 
𝐷ଷ = ((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑))ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))ଶ)ଷ/ଶ 

𝐷′ଷ = 3ඥ𝐷ଷ
య ൫(𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑)) 𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑)) 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑)൯ 

 
𝑁ସ = −𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) 

𝑁′ସ = −𝑙𝑑 𝑐𝑜𝑠 (𝜀 + 𝜑) 

 
𝐷ସ = ((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑))ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑))ଶ)ଷ/ଶ 

𝐷′ସ = 3ඥ𝐷ସ
య (−(𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑)) 𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) − (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑)) 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑)) 
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𝑁ହ = 𝑑𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 2𝑙ଶ𝑠𝑖𝑛 𝜀 − 𝑙𝑑 sin 𝜑 

𝑁′ହ = 𝑙𝑑 𝑐𝑜𝑠 (𝜀 + 𝜑) + 2 𝑙ଶ𝑐𝑜𝑠 𝜀 

 
𝐷ହ = ((𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ 

𝐷′ହ = 3ඥ𝐷ହ
య (−(𝑑 + 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑) 𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑)

+ (𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑) 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑)) 

 
𝑁଺ = 2𝑙ଶ 𝑠𝑖𝑛 𝜀 − 𝑙𝑑 𝑠𝑖𝑛 𝜑 − 𝑙𝑑 sin (𝜀 + 𝜑) 

𝑁′଺ = 2 𝑙ଶ𝑐𝑜𝑠 𝜀 − 𝑙𝑑 𝑐𝑜𝑠 (𝜀 + 𝜑) 

 
𝐷଺ = ((𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ 

𝐷′଺ = 3ඥ𝐷଺
య ൫(𝑑 − 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑) + 𝑙 𝑐𝑜𝑠 𝜑) 𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑)

− (−𝑙 𝑠𝑖𝑛 (𝜀 + 𝜑) + 𝑙 𝑠𝑖𝑛 𝜑) 𝑙 𝑐𝑜𝑠 (𝜀 + 𝜑)൯ 

 
𝑁଻ = 𝑙𝑑 sin 𝜑 

𝑁′଻ = 0 

 
𝐷଻ = ((−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ 

𝐷′଻ = 0 

 
𝑁଼ = −𝑙𝑑 𝑠𝑖𝑛 𝜑 

𝑁′଼ = 0 

 
𝐷଼ = ((−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ 

𝐷′଼ = 0 

 
Substituting and evaluating the derivatives results in the following, which is Equation 
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(27) from the main thesis. 

 

𝑔(𝜑) =
𝑘஼

𝐼௧
ቆ

𝑞ଵ,௘𝑞௔,௘(6𝑙ଶ𝑠𝑖𝑛ଶ𝜑 − 2𝑙ଶ + 𝑙𝑑 𝑐𝑜𝑠 𝜑)

𝑑ଷ

+
𝑞ଵ,௘𝑞௖,௘(2𝑙ଶ − 𝑙𝑑 𝑐𝑜𝑠 𝜑 )

((𝑑 − 2𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−2𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଶ,௘𝑞௔,௘(𝑙𝑑 𝑐𝑜𝑠 𝜑 ((𝑑 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ)

((𝑑 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ

−
3 𝑞ଶ,௘𝑞௔,௘  𝑙ଶ𝑑ଶ 𝑠𝑖𝑛ଶ𝜑 ((𝑑 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଵ/ଶ

((𝑑 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ

+
𝑞ଶ,௘𝑞௖,௘(−𝑙𝑑 𝑐𝑜𝑠 𝜑 ((𝑑 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ)

((𝑑 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ

+
3𝑞ଶ,௘𝑞௖,௘  𝑙ଶ𝑑ଶ𝑠𝑖𝑛ଶ𝜑 ((𝑑 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଵ/ଶ

((𝑑 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ

+
𝑞ଷ,௘𝑞௔,௘(𝑙𝑑 𝑐𝑜𝑠 𝜑 + 2𝑙ଶ)

((𝑑 + 2𝑙 𝑐𝑜𝑠 𝜑)ଶ + (2𝑙 𝑠𝑖𝑛 𝜑)ଶ)ଷ/ଶ

+
𝑞ଷ,௘𝑞௖,௘(6𝑙ଶ𝑠𝑖𝑛ଶ𝜑 + 2𝑙ଶ − 𝑙𝑑 𝑐𝑜𝑠 𝜑)

𝑑ଷ
ቇ 
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APPENDIX D – DERIVATION OF TORQUE EXPRESSIONS FOR 3D CASE 

The electrostatic torque expressions for the 3D Case, like the 2D Case, are derived 

using Equation (15), under double-sums to include the interactions of each pair of 

charged regions. However, in this Case, the dimensionality of the position vectors is 

different, owing to the higher dimensionality of the system. 

Starting with the torque experienced by the deputy spacecraft, we begin with 

Equation (44), the double-sum of Equation (15) that was introduced in Appendix A, 

reproduced here for convenience. 

 

𝑀ሬሬ⃗ ஽ = 𝑘஼ ෍ 𝑞௡

௖

௡ୀ௔

෍
𝑞௩

ฮ𝑟௩,௡ฮ
ଷ 𝑟௕,௡

ଷ

௩ୀଵ

× 𝑟௩,௡ 

 
where all symbols are as defined above. As shown before, expanding this double-sum 

fully results in the following expression. 

 

𝑀ሬሬ⃗ ஽ = 𝑘஼ ൭
𝑞ଵ𝑞௔൫𝑟௕,௔ × 𝑟ଵ,௔൯

ฮ𝑟ଵ,௔ฮ
ଷ +

𝑞ଵ𝑞௕൫𝑟௕,௕ × 𝑟ଵ,௕൯

ฮ𝑟ଵ,௕ฮ
ଷ +

𝑞ଵ𝑞௖൫𝑟௕,௖ × 𝑟ଵ,௖൯

ฮ𝑟ଵ,௖ฮ
ଷ +

𝑞ଶ𝑞௔൫𝑟௕,௔ × 𝑟ଶ,௔൯

ฮ𝑟ଶ,௔ฮ
ଷ

+
𝑞ଶ𝑞௕൫𝑟௕,௕ × 𝑟ଶ,௕൯

ฮ𝑟ଶ,௕ฮ
ଷ +

𝑞ଶ𝑞௖൫𝑟௕,௖ × 𝑟ଶ,௖൯

ฮ𝑟ଶ,௖ฮ
ଷ +

𝑞ଷ𝑞௔൫𝑟௕,௔ × 𝑟ଷ,௔൯

ฮ𝑟ଷ,௔ฮ
ଷ

+
𝑞ଷ𝑞௕൫𝑟௕,௕ × 𝑟ଷ,௕൯

ฮ𝑟ଷ,௕ฮ
ଷ +

𝑞ଷ𝑞௖൫𝑟௕,௖ × 𝑟ଷ,௖൯

ฮ𝑟ଷ,௖ฮ
ଷ ൱ 

 
Note, however, that all three terms involving 𝑞௕ will drop from this equation, as for 

the 2D Case. This is because the 𝑟௕,௕ vector in the cross product in each is the vector from 

the center of sphere b to the center of sphere b, also known as the zero vector. This results 

in each of these terms evaluating to zero. Thus, the remaining terms are the same as for 
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the 2D Case, as shown below. 

 

𝑀ሬሬ⃗ ஽ = 𝑘஼ ൭
𝑞ଵ𝑞௔൫𝑟௕,௔ × 𝑟ଵ,௔൯

ฮ𝑟ଵ,௔ฮ
ଷ +

𝑞ଵ𝑞௖൫𝑟௕,௖ × 𝑟ଵ,௖൯

ฮ𝑟ଵ,௖ฮ
ଷ +

𝑞ଶ𝑞௔൫𝑟௕,௔ × 𝑟ଶ,௔൯

ฮ𝑟ଶ,௔ฮ
ଷ +

𝑞ଶ𝑞௖൫𝑟௕,௖ × 𝑟ଶ,௖൯

ฮ𝑟ଶ,௖ฮ
ଷ

+
𝑞ଷ𝑞௔൫𝑟௕,௔ × 𝑟ଷ,௔൯

ฮ𝑟ଷ,௔ฮ
ଷ +

𝑞ଷ𝑞௖൫𝑟௕,௖ × 𝑟ଷ,௖൯

ฮ𝑟ଷ,௖ฮ
ଷ ൱ 

 
Thus, the derivation becomes a matter of evaluating the vector operations in this 

equation from here on. Given the 1-2-1 Euler angle sequence used in this study, with the 

third angle dropped due to the cylindrical shapes of the spacecraft (see Section 4.2.2 for 

details), the six position vectors of the charged regions on the spacecraft, reckoned from 

the center of sphere 2 in reference coordinates, are as follows. 

 

𝑟ଵ = ൥

𝑙 𝑐𝑜𝑠 𝜑
𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ , 𝑟ଶ = ൥
0
0
0

൩ , 𝑟ଷ = ൥

−𝑙 𝑐𝑜𝑠 𝜑
−𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
−𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ 

𝑟௔ = ൥
𝑑 + 𝑙 𝑐𝑜𝑠 𝜃

𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽
𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽

൩ , 𝑟௕ = ൥
𝑑
0
0

൩ , 𝑟௖ = ൥
𝑑 − 𝑙 𝑐𝑜𝑠 𝜃

−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽
−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽

൩                    (63) 

 
Verification of these position vectors is left as an exercise to the reader. Using these 

six position vectors, the relative position vector of each charged region from each other 

one (that is used in the torque expression) is easily constructed by subtracting one from 

the other. 

 

𝑟ଵ,௔ = ൥

𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑
𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ , 𝑟ଵ,௖ = ൥

𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑
−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ 
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𝑟ଷ,௔ = ൥

𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑
𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ , 𝑟ଷ,௖ = ൥

𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑
−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ 

𝑟ଶ,௔ = ൥
𝑑 + 𝑙 𝑐𝑜𝑠 𝜃

𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽
𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽

൩ , 𝑟ଶ,௖ = ൥
𝑑 − 𝑙 𝑐𝑜𝑠 𝜃

−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽
−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽

൩ , 𝑟௕,௔ = ൥
𝑙 𝑐𝑜𝑠 𝜃

𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽
𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽

൩ 

𝑟௕,௖ = ൥
−𝑙 𝑐𝑜𝑠 𝜃

−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽
−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽

൩                                              (64) 

 
Since the magnitudes of vectors are invariant under pure rotation, the magnitudes of 

these vectors can be taken prior to transformation into the deputy spacecraft’s body-fixed 

frame. This will result in simpler expressions than if they had been taken after 

transformation. The resulting vector magnitudes, for the relevant vectors, are presented 

below. 

 
ฮ𝑟ଵ,௔ฮ = ((𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)ଶ

+ (𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)ଶ)ଵ/ଶ 

ฮ𝑟ଵ,௔ฮ = ඥ𝑑ଶ + 2𝑙(𝑑 𝑐𝑜𝑠 𝜑 − 𝑑 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 + 𝑙 − 𝛺 − 𝛤) 

 
ฮ𝑟ଵ,௖ฮ = ((𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)ଶ

+ (−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)ଶ)ଵ/ଶ 

ฮ𝑟ଵ,௖ฮ = ඥ𝑑ଶ + 2𝑙(𝑑 𝑐𝑜𝑠 𝜑 + 𝑑 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 + 𝑙 + 𝛺 + 𝛤) 

 
ฮ𝑟ଷ,௔ฮ = ((𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)ଶ

+ (𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)ଶ)ଵ/ଶ 

ฮ𝑟ଷ,௔ฮ = ඥ𝑑ଶ − 2𝑙(𝑑 𝑐𝑜𝑠 𝜑 + 𝑑 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 − 𝑙 − 𝛺 − 𝛤) 
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ฮ𝑟ଷ,௖ฮ = ((𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)ଶ

+ (−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)ଶ)ଵ/ଶ 

ฮ𝑟ଷ,௖ฮ = ඥ𝑑ଶ − 2𝑙(𝑑 𝑐𝑜𝑠 𝜑 − 𝑑 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑 − 𝑙 + 𝛺 + 𝛤) 

 

ฮ𝑟ଶ,௔ฮ = ඥ(𝑑 + 𝑙 𝑐𝑜𝑠 𝜃)ଶ + (𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽)ଶ + (𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽)ଶ 

ฮ𝑟ଶ,௔ฮ = ඥ𝑑ଶ − 2 𝑙𝑑 𝑐𝑜𝑠 𝜃 + 𝑙ଶ 

 

ฮ𝑟ଶ,௖ฮ = ඥ(𝑑 − 𝑙 𝑐𝑜𝑠 𝜃)ଶ + (−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽)ଶ + (−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽)ଶ 

ฮ𝑟ଶ,௖ฮ = ඥ𝑑ଶ + 2 𝑙𝑑 𝑐𝑜𝑠 𝜃 + 𝑙ଶ 

 
𝛺 = 𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 

𝛤 = 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼                                        (65) 

Finally, the cross-product terms in the torque expression must be computed. In order 

to do this, the vectors must be converted into the deputy spacecraft’s body-fixed frame 

and the relevant cross-products must be evaluated. To accomplish the conversion from 

reference to body-fixed coordinates, the general DCM for the deputy’s attitude with 

respect to the reference frame must be determined. Using the 1-2-1 Euler angles for the 

deputy spacecraft and Equation (4), this DCM can be determined to be the following. 

 

𝑄஽ = ൥
cos 𝜃 0 −sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

൩ ൥

1 0 0
0 cos 𝛽 sin 𝛽
0 −sin 𝛽 cos 𝛽

൩ ===========

൥

cos 𝜃 sin 𝜃 sin 𝛽 −sin 𝜃 cos 𝛽
0 cos 𝛽 sin 𝛽

sin 𝜃 −cos 𝜃 sin 𝛽 cos 𝜃 cos 𝛽
൩                                 (66) 
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Using this DCM, the vectors in Equation (64) can be converted to the deputy’s body-

fixed frame as follows. 

 

𝑄஽𝑟ଵ,௔ = ቎

𝑐𝑜𝑠 𝜃 (𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑) − sin 𝜃 cos 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

cos 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + sin 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

sin 𝜃(𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑) + cos 𝜃 cos 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)
቏

+ ൥
sin 𝜃 sin 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

0
−cos 𝜃 sin 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

൩ 

𝑄஽𝑟ଵ,௖

= ቎

𝑐𝑜𝑠 𝜃 (𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑) − sin 𝜃 cos 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

cos 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + sin 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

sin 𝜃(𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑) + cos 𝜃 cos 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)
቏

+ ൥
sin 𝜃 sin 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

0
−cos 𝜃 sin 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

൩ 

 

𝑄஽𝑟ଷ,௔ = ቎

𝑐𝑜𝑠 𝜃 (𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑) − sin 𝜃 cos 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

cos 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + sin 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

sin 𝜃(𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑) + cos 𝜃 cos 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)
቏

+ ൥
sin 𝜃 sin 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

0
−cos 𝜃 sin 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

൩ 

 
𝑄஽𝑟ଷ,௖

= ቎

𝑐𝑜𝑠 𝜃 (𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑) − sin 𝜃 cos 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

cos 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + sin 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

sin 𝜃(𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑) + cos 𝜃 cos 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)
቏

+ ൥
sin 𝜃 sin 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

0
−cos 𝜃 sin 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

൩ 
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𝑄஽𝑟ଶ,௔

= ቎

cos 𝜃(𝑑 + 𝑙 𝑐𝑜𝑠 𝜃) + sin 𝜃 sin 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽) − sin 𝜃 cos 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽)

cos 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽) + sin 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽)

sin 𝜃(𝑑 + 𝑙 𝑐𝑜𝑠 𝜃) − cos 𝜃 sin 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽) + cos 𝜃 cos 𝛽(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽)
቏ 

 
𝑄஽𝑟ଶ,௖

= ቎

cos 𝜃(𝑑 − 𝑙 𝑐𝑜𝑠 𝜃) + sin 𝜃 sin 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽) − sin 𝜃 cos 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽)

cos 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽) + sin 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽)

sin 𝜃(𝑑 − 𝑙 𝑐𝑜𝑠 𝜃) − cos 𝜃 sin 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽) + cos 𝜃 cos 𝛽(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽)
቏ 

 

𝑄஽𝑟௕,௔ = ൥
𝑙
0
0

൩ , 𝑄஽𝑟௕,௖ = ൥
−𝑙
0
0

൩                                         (67) 

 
Note that, for 𝑟ଵ,௔, 𝑟ଵ,௖, 𝑟ଷ,௔, and 𝑟ଷ,௖, the vectors were only presented as a sum of 

vectors to accommodate them on the page without decreasing the font size to unreadable 

levels. Using these vectors’ deputy frame expressions, the cross-product terms are then 

computed as follows. 

 

𝑟௕,௔ × 𝑟ଵ,௔ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜃 ൫𝑑 − 𝑙 𝑐𝑜𝑠 𝜑 + 𝑐𝑜𝑠 𝜃 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑐𝑜𝑠ଶ𝛽)൯ + 𝑙 𝑐𝑜𝑠 𝜃 𝛬

𝑙 (−𝑙 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 + 2𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽)
቏ 

𝑟௕,௔ × 𝑟ଷ,௔ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜃 ൫𝑑 + 𝑙 𝑐𝑜𝑠 𝜑 + 𝑐𝑜𝑠 𝜃 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑐𝑜𝑠ଶ𝛽)൯ − 𝑙 𝑐𝑜𝑠 𝜃 𝛬

𝑙 (𝑙 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 + 2𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽)
቏ 

𝑟௕,௔ × 𝑟ଶ,௔ = ቎

0
−𝑙 (𝑑 𝑠𝑖𝑛 𝜃 + 𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 − 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠ଶ𝛽)

2𝑙ଶ𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽
቏ 

𝑟௕,௖ × 𝑟ଵ,௖ = ቎−

0
𝑙 𝑠𝑖𝑛 𝜃 ൫−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑 + 𝑐𝑜𝑠 𝜃 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑐𝑜𝑠ଶ𝛽)൯ − 𝑙 𝑐𝑜𝑠 𝜃 𝛬

𝑙 (𝑙 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 + 2𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽)
቏ 
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𝑟௕,௖ × 𝑟ଷ,௖ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜃 ൫−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑 + 𝑐𝑜𝑠 𝜃 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑐𝑜𝑠ଶ𝛽)൯ + 𝑙 𝑐𝑜𝑠 𝜃 𝛬

𝑙 (−𝑙 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 + 2𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽)
቏ 

𝑟௕,௖ × 𝑟ଶ,௖

= ቎

0
−𝑙 (−𝑑 𝑠𝑖𝑛 𝜃 + 𝑙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 − 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛ଶ𝛽 + 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠ଶ𝛽)

2𝑙ଶ𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽
቏ 

𝛬 = 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 − 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼                         (68) 

 
Substituting Equations (65) and (68) into the torque expression then yields the 

electrostatic torque on the deputy, presented in the main thesis as Equation (22). 

To derive the corresponding expression for the chief spacecraft follows a very similar 

path. As with the 2D Case, the torque expression is given by the following double-sum, 

Equation (51), reproduced here for convenience. 

 

𝑀ሬሬ⃗ ஼ = 𝑘஼ ෍ 𝑞௩

ଷ

௩ୀଵ

෍
𝑞௡

ฮ𝑟௡,௩ฮ
ଷ 𝑟ଶ,௩

௖

௡ୀ௔

× 𝑟௡,௩ 

 
Similar to how the deputy derivation was conducted, we start with the expansion of 

this equation, given below. 

 

𝑀ሬሬ⃗ ஼ = 𝑘஼ ൭
𝑞ଵ𝑞௔൫𝑟ଶ,ଵ × 𝑟௔,ଵ൯

ฮ𝑟௔,ଵฮ
ଷ +

𝑞ଵ𝑞௕൫𝑟ଶ,ଵ × 𝑟௕,ଵ൯

ฮ𝑟௕,ଵฮ
ଷ +

𝑞ଵ𝑞௖൫𝑟ଶ,ଵ × 𝑟௖,ଵ൯

ฮ𝑟௖,ଵฮ
ଷ +

𝑞ଶ𝑞௔൫𝑟ଶ,ଶ × 𝑟௔,ଶ൯

ฮ𝑟௔,ଶฮ
ଷ

+
𝑞ଶ𝑞௕൫𝑟ଶ,ଶ × 𝑟௕,ଶ൯

ฮ𝑟௕,ଶฮ
ଷ +

𝑞ଶ𝑞௖൫𝑟ଶ,ଶ × 𝑟௖,ଶ൯

ฮ𝑟௖,ଶฮ
ଷ +

𝑞ଷ𝑞௔൫𝑟ଶ,ଷ × 𝑟௔,ଷ൯

ฮ𝑟௔,ଷฮ
ଷ

+
𝑞ଷ𝑞௕൫𝑟ଶ,ଷ × 𝑟௕,ଷ൯

ฮ𝑟௕,ଷฮ
ଷ +

𝑞ଷ𝑞௖൫𝑟ଶ,ଷ × 𝑟௖,ଷ൯

ฮ𝑟௖,ଷฮ
ଷ ൱ 
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Like its deputy spacecraft counterpart, three of the terms from this expression go to 

zero. These are the terms that involve 𝑞ଶ, as the 𝑟ଶ,ଶ vector is the zero vector. Therefore, 

the remaining terms are the following, like in the 2D Case. 

 

𝑀ሬሬ⃗ ஼ = 𝑘஼ ൭
𝑞ଵ𝑞௔൫𝑟ଶ,ଵ × 𝑟௔,ଵ൯

ฮ𝑟௔,ଵฮ
ଷ +

𝑞ଵ𝑞௕൫𝑟ଶ,ଵ × 𝑟௕,ଵ൯

ฮ𝑟௕,ଵฮ
ଷ +

𝑞ଵ𝑞௖൫𝑟ଶ,ଵ × 𝑟௖,ଵ൯

ฮ𝑟௖,ଵฮ
ଷ +

𝑞ଷ𝑞௔൫𝑟ଶ,ଷ × 𝑟௔,ଷ൯

ฮ𝑟௔,ଷฮ
ଷ

+
𝑞ଷ𝑞௕൫𝑟ଶ,ଷ × 𝑟௕,ଷ൯

ฮ𝑟௕,ଷฮ
ଷ +

𝑞ଷ𝑞௖൫𝑟ଶ,ଷ × 𝑟௖,ଷ൯

ฮ𝑟௖,ଷฮ
ଷ ൱ 

 
Using the general position vectors in Equation (63), the required relative position 

vectors are, like their deputy counterparts, constructed by subtraction. 

 

𝑟௔,ଵ = ൥

−𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑
−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ , 𝑟௖,ଵ = ൥

−𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑
𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ 

𝑟௔,ଷ = ൥

−𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑
−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ , 𝑟௖,ଷ = ൥

−𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑
𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ 

𝑟௕,ଵ = ൥

−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑
𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ , 𝑟௕,ଷ = ൥

−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑
−𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
−𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ , 𝑟ଶ,ଵ = ൥

𝑙 𝑐𝑜𝑠 𝜑
𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩ 

𝑟ଶ,ଷ = ൥

−𝑙 𝑐𝑜𝑠 𝜑
−𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼
−𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼

൩                                              (69) 

 
Next, as before, we take the vector magnitudes that are needed in the denominator of 

the terms in the torque expression. Luckily, since four of these vectors, 𝑟௔,ଵ, 𝑟௖,ଵ, 𝑟௔,ଷ, and 

𝑟௖,ଷ, are negatives of four vectors from the deputy derivation (𝑟ଵ,௔, 𝑟ଵ,௖, 𝑟ଷ,௔, and 𝑟ଷ,௖, 

respectively), the magnitudes of these from the deputy case can be used, as vector 
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magnitudes are independent of vector orientation. The remaining magnitudes are as 

follows. 

 

ฮ𝑟௕,ଵฮ = ඥ(−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)ଶ + (𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)ଶ 

ฮ𝑟௕,ଵฮ = ඥ𝑑ଶ − 2𝑙𝑑 𝑐𝑜𝑠 𝜑 + 𝑙ଶ 

 

ฮ𝑟௕,ଷฮ = ඥ(−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)ଶ + (−𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)ଶ 

ฮ𝑟௕,ଷฮ = ඥ𝑑ଶ + 2𝑙𝑑 𝑐𝑜𝑠 𝜑 + 𝑙ଶ                                        (70) 

 
With these magnitudes computed, the vectors of Equation (69) must be converted to 

the chief’s body-fixed frame, as the deputy’s vectors needed to be converted for it. To 

accomplish this conversion, the chief spacecraft’s general attitude DCM is constructed 

similarly to how the deputy’s was. 

 

𝑄஼ = ൥
cos 𝜑 0 −sin 𝜑

0 1 0
sin 𝜑 0 cos 𝜑

൩ ൥
1 0 0
0 cos 𝛼 sin 𝛼
0 −sin 𝛼 cos 𝛼

൩ == =======

൥

cos 𝜑 sin 𝜑 sin 𝛼 −sin 𝜑 cos 𝛼
0 cos 𝛼 sin 𝛼

sin 𝜑 −cos 𝜑 sin 𝛼 cos 𝜑 cos 𝛼
൩                             (71) 

 
The transformed relative position vectors are then found to be given by the following: 

 
𝑄஼𝑟௔,ଵ

= ቎

cos 𝜑 (−𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑) − sin 𝜑 cos 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

cos 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + sin 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

sin 𝜑(−𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑) + cos 𝜑 cos 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)
቏

+ ൥
sin 𝜑 sin 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

0
−cos 𝜑 sin 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

൩ 
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𝑄஼𝑟௖,ଵ

= ቎

𝑐𝑜𝑠 𝜑 (−𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑) − sin 𝜑 cos 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

cos 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + sin 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

sin 𝜑(−𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑙 𝑐𝑜𝑠 𝜑) + cos 𝜑 cos 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)
቏

+ ൥
sin 𝜑 sin 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

0
−cos 𝜑 sin 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

൩ 

 
𝑄஼𝑟௔,ଷ

= ቎

𝑐𝑜𝑠 𝜑 (−𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑) − sin 𝜑 cos 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

cos 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + sin 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

sin 𝜑(−𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑) + cos 𝜑 cos 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)
቏

+ ൥
sin 𝜑 sin 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

0
−cos 𝜑 sin 𝛼(−𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

൩ 

 
𝑄஼𝑟௖,ଷ

= ቎

𝑐𝑜𝑠 𝜑 (−𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑) − sin 𝜑 cos 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

cos 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + sin 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

sin 𝜑(−𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜑) + cos 𝜑 cos 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)
቏

+ ൥
sin 𝜑 sin 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

0
−cos 𝜑 sin 𝛼(𝑙 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 − 𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼)

൩ 

 
𝑄஼𝑟௕,ଵ

= ቎

cos 𝜑(−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑) + sin 𝜑 sin 𝛼(𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) − sin 𝜑 cos 𝛼(𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

cos 𝛼(𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + sin 𝛼(𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

sin 𝜑(−𝑑 + 𝑙 𝑐𝑜𝑠 𝜑) − cos 𝜑 sin 𝛼(𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + cos 𝜑 cos 𝛼(𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)
቏ 

 
𝑄஼𝑟௕,ଷ

= ቎

cos 𝜑(−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑) + sin 𝜑 sin 𝛼(−𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) − sin 𝜑 cos 𝛼(−𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

cos 𝛼(−𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + sin 𝛼(−𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)

sin 𝜑(−𝑑 − 𝑙 𝑐𝑜𝑠 𝜑) − cos 𝜑 sin 𝛼(−𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼) + cos 𝜑 cos 𝛼(−𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝛼)
቏ 
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𝑄஼𝑟ଶ,ଵ = ൥
𝑙
0
0

൩ , 𝑄஼𝑟ଶ,ଷ = ൥
−𝑙
0
0

൩                                        (72) 

 
With these vectors transformed, their necessary cross products can be taken, resulting 

in the following expressions. 

 

𝑟ଶ,ଵ × 𝑟௔,ଵ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜑 ൫−𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜑 (𝑙 + 𝑙 𝑠𝑖𝑛ଶ𝛼 + 𝑙 𝑐𝑜𝑠ଶ𝛼)൯ − 𝑙 𝑐𝑜𝑠 𝜑 𝛯

𝑙 (−𝑙 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 2𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 − 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛼)
቏ 

𝑟ଶ,ଵ × 𝑟௖,ଵ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜑 ൫−𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜑 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛼 + 𝑙 𝑐𝑜𝑠ଶ𝛼)൯ − 𝑙 𝑐𝑜𝑠 𝜑 𝛯

𝑙 (𝑙 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 2𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 + 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛼)
቏ 

𝑟ଶ,ଵ × 𝑟௕,ଵ

= ቎

0
−𝑙 (−𝑑 𝑠𝑖𝑛 𝜑 + 𝑙 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜑 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛ଶ𝛼 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠ଶ𝛼)

2𝑙ଶ𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼
቏ 

𝑟ଶ,ଷ × 𝑟௔,ଷ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜑 ൫𝑑 + 𝑙 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜑 (𝑙 + 𝑙 𝑠𝑖𝑛ଶ𝛼 − 𝑙 𝑐𝑜𝑠ଶ𝛼)൯ + 𝑙 𝑐𝑜𝑠 𝜑 𝛯

𝑙 (𝑙 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 2𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 + 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛼)
቏ 

𝑟ଶ,ଷ × 𝑟௖,ଷ = ቎

0
−𝑙 𝑠𝑖𝑛 𝜑 ൫𝑑 − 𝑙 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 𝜑 (𝑙 − 𝑙 𝑠𝑖𝑛ଶ𝛼 + 𝑙 𝑐𝑜𝑠ଶ𝛼)൯ + 𝑙 𝑐𝑜𝑠 𝜑 𝛯

𝑙 (−𝑙 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 + 2𝑙 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼 − 𝑙 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛼)
቏ 

𝑟ଶ,ଷ × 𝑟௕,ଷ

= ቎−

0
𝑙 (𝑑 𝑠𝑖𝑛 𝜑 + 𝑙 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜑 − 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛ଶ𝛼 + 𝑙 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠ଶ𝛼)

2𝑙ଶ𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛼
቏ 

𝛯 = 𝑠𝑖𝑛 𝛽 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛼 − 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽                               (73) 

 
Finally, as before, substitution of Equations (70) and (73) into the torque expression 

results in the chief electrostatic torque, presented in the main thesis as Equation (23). 
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APPENDIX E – DERIVATION OF OPEN-LOOP KINETIC EQUATION FOR 3D 

CASE 

With the electrostatic torque expressions defined, deriving the open-loop dynamics of 

the 3D Case is a simple matter. Using Equation (13) for the kinetic equations of the two 

spacecraft, we begin with the following equations. Note that the subscripts on the 

moment of inertia terms indicate the spacecraft whose body-fixed frame they were 

calculated in. Due to the assumption of identical construction, their numerical values are 

the same. 

 
𝜔ሬሬ⃗ ̇

஽ = 𝐼஽
ିଵ൫𝑀ሬሬ⃗ ஽ − 𝜔ሬሬ⃗ ஽ × 𝐼஽𝜔ሬሬ⃗ ஽൯ 

𝜔ሬሬ⃗ ̇
஼ = 𝐼஼

ିଵ൫𝑀ሬሬ⃗ ஼ − 𝜔ሬሬ⃗ ஼ × 𝐼஼𝜔ሬሬ⃗ ஼൯                                          (74) 

 
It is desired to obtain the kinetic equation for the relative system in terms of the 

relative angular velocity of the deputy spacecraft with respect to the chief spacecraft. 

That is to say, in terms of  𝜔ሬሬ⃗ ஼஽ = 𝜔ሬሬ⃗ ஽ − 𝜔ሬሬ⃗ ஼. Taking the derivative of this angular velocity 

with respect to time, the following results: 𝜔ሬሬ⃗ ̇
஼஽ = 𝜔ሬሬ⃗ ̇

஽ − 𝜔ሬሬ⃗ ̇
஼. Thus, in principle, the 

derivative of the relative angular velocity is the difference of the derivatives of the two 

spacecraft angular velocities. However, this cannot be computed by simply subtracting 

the spacecraft kinetic equations. This is because the two angular velocities are expressed 

in their respective spacecraft’s body-fixed frames. Thus, they must be resolved into a 

single frame to conduct this subtraction. For computational simplicity, the chief 

spacecraft’s frame was selected to be the common frame. To transform the derivative of 

the deputy’s angular velocity into the chief’s body-fixed frame, the DCM of the relative 

attitude of the deputy with respect to the chief is used. That is to say, 𝐸஼஽ = 𝑄஽𝑄஼
். This 
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is used to transform the deputy’s equation, resulting in the following expression. 

 
𝐸஼஽

் 𝜔ሬሬ⃗ ̇
஽ = 𝐸஼஽

் 𝐼஽
ିଵ൫𝑀ሬሬ⃗ ஽ − 𝜔ሬሬ⃗ ஽ × 𝐼஽𝜔ሬሬ⃗ ஽൯                                (75) 

 
Then, the chief kinetic equation is subtracted from this to construct the relative 

system kinetic equation, as follows. 

 
𝜔ሬሬ⃗ ̇

஼஽ = 𝐸஼஽
் 𝐼஽

ିଵ൫𝑀ሬሬ⃗ ஽ − 𝜔ሬሬ⃗ ஽ × 𝐼஽𝜔ሬሬ⃗ ஽൯ − 𝐼஼
ିଵ൫𝑀ሬሬ⃗ ஼ − 𝜔ሬሬ⃗ ஼ × 𝐼஼𝜔ሬሬ⃗ ஼൯              (76) 

 
Next, 𝜔ሬሬ⃗ ஽ is expressed as a function of the relative angular velocity and the chief 

angular velocity, taking frames into account. This substitution is given by 𝜔ሬሬ⃗ ஽ =

𝐸஼஽(𝜔ሬሬ⃗ ஼஽ + 𝜔ሬሬ⃗ ஼). Applying this to Equation (76) results in the following. 

 

𝜔ሬሬ⃗ ̇
஼஽ = 𝐸஼஽

் 𝐼஽
ିଵ ቀ𝑀ሬሬ⃗ ஽ − 𝐸஼஽(𝜔ሬሬ⃗ ஼஽ + 𝜔ሬሬ⃗ ஼) × 𝐼஽𝐸஼஽(𝜔ሬሬ⃗ ஼஽ + 𝜔ሬሬ⃗ ஼)ቁ                   −

−𝐼஼
ିଵ൫𝑀ሬሬ⃗ ஼ − 𝜔ሬሬ⃗ ஼ × 𝐼஼𝜔ሬሬ⃗ ஼൯                                          (77) 

  
Finally, the cross products are resolved into matrix products using the skew-

symmetric operator introduced in the main thesis, resulting in the final relative system 

kinetic equation. Note that this equation can be closed-loop or open-loop, depending on 

whether the torque terms consist only of open-loop torques, or of open- and closed-loop 

torques. This is Equation (24) from the main thesis. 

 

𝜔ሬሬ⃗ ̇
஼஽ = 𝐸஼஽

் 𝐼஽
ିଵ ቀ𝑀ሬሬ⃗ ஽ − 𝐸஼஽(𝜔ሬሬ⃗ ஼஽ + 𝜔ሬሬ⃗ ஼)෫ 𝐼஽൫𝐸஼஽(𝜔ሬሬ⃗ ஼஽ + 𝜔ሬሬ⃗ ஼)൯ቁ − 𝐼஼

ିଵ൫𝑀ሬሬ⃗ ஼ − 𝜔෥஼𝐼஼𝜔ሬሬ⃗ ஼൯ 
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APPENDIX F – DERIVATION OF CONTROL TORQUE EXPRESSION FOR 3D 

CASE 

This Appendix will derive the control torque expression, presented in the main thesis 

as Equation (36), from the control law, presented in the main thesis as Equation (35). 

Thus, the control law is reprinted here for convenience. 

 
𝜔ሬሬ⃗ ஽ = 𝜔ሬሬ⃗ ஽

ௗ + ℎ′(𝛷஼஽)𝑘ሬ⃗ ஼஽ 

 
This control law is unlike most; it specifies an angular velocity to follow, not the 

torque that must be used to create it. So, a torque expression was generated from it by 

using Euler’s equation for rigid body rotations, Equation (12), which is reprinted below 

for convenience. 

 
𝑀ሬሬ⃗ ீ = 𝐼𝜔ሬሬ⃗ ̇ + 𝜔ሬሬ⃗ × 𝐼𝜔ሬሬ⃗  

 

In order to input the control law into Euler’s equation, its derivative must be taken 

and the desired angular velocity 𝜔ሬሬ⃗ ஽
ௗ  must be defined. The second task is the simpler one. 

For the purposes of this research, it is desired to make the deputy spacecraft track the 

motion of the chief spacecraft. Therefore, the desired angular velocity is the angular 

velocity of the chief, 𝜔ሬሬ⃗ ஼. Making this substitution results in the following. 

 
𝜔ሬሬ⃗ ஽ = 𝜔ሬሬ⃗ ஼ + ℎ′(𝛷஼஽)𝑘ሬ⃗ ஼஽ 

 
Which is then differentiated with respect to time, resulting in the following. 

 

𝜔ሬሬ⃗ ̇
஽ = 𝜔ሬሬ⃗ ̇

஼ + 𝛷̇஼஽ℎ′′(𝛷஼஽)𝑘ሬ⃗ ஼஽ + ℎ′(𝛷஼஽)𝑘ሬ⃗
̇
஼஽ 
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Finally, substituting this derivative and the original control law into Euler’s equation 

results in the control torque expression for this controller, as presented in the main thesis. 

 

𝑀ሬሬ⃗ ஽
஼௅ = 𝐼஽ ቀ𝜔ሬሬ⃗ ̇

஼ + 𝛷̇஼஽ℎ′′(𝛷஼஽)𝑘ሬ⃗ ஼஽ + ℎ′(𝛷஼஽)𝑘ሬ⃗
̇
஼஽ቁ

+ ൫𝜔ሬሬ⃗ ஼ + ℎ′(𝛷஼஽)𝑘ሬ⃗ ஼஽൯ × 𝐼஽൫𝜔ሬሬ⃗ ஼ + ℎ′(𝛷஼஽)𝑘ሬ⃗ ஼஽൯ 
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APPENDIX G – DERIVATION OF ACTUATOR DYNAMICS SOLUTION FOR 3D 

CASE 

As stated in the main thesis, the actuator dynamics solution was created by equating 

the electrostatic torque expression for the deputy spacecraft to the control torque 

expression and solving for the charges 𝑞௔ and 𝑞௖. This was done under the constraint of 

assuming the chief spacecraft charges 𝑞ଵ, 𝑞ଶ, and 𝑞ଷ to be constant. Under these 

circumstances, the equation becomes a linear system of equations, expressed in matrix 

form, of the deputy charges. This is expressed as the following. 

 

ቂ
𝜂 𝜒
𝜇 𝜆ቃ ቂ

𝑞௔

𝑞௖
ቃ = ቈ

𝑀ሬሬ⃗ ஽,ଶ
஼௅

𝑀ሬሬ⃗ ஽,ଷ
஼௅

቉ 

 
where 𝜂, 𝜒, 𝜇, and 𝜆 are as defined in the main thesis. Approaching this with the well-

described theory of linear systems of equations, one must merely pre-multiply the 

equation by the inverse of the 2x2 matrix on the left to solve it. This results in the 

following expression. 

 

ቂ
𝑞௔

𝑞௖
ቃ =

1

𝜂𝜆 − 𝜇𝜒
൤

𝜆 −𝜒
−𝜇 𝜂

൨ ቈ
𝑀ሬሬ⃗ ஽,ଶ

஼௅

𝑀ሬሬ⃗ ஽,ଷ
஼௅

቉ 

 
When multiplied out into scalar equations, this results in the solution presented in the 

main thesis as Equations (42) and (43). 
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