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ABSTRACT

Presented herein are multiple tools for constrained motion analysis extended to different

dynamical frameworks. The Udwadia-Kalaba (UK) formalism for the constrained motion

analysis of a point mass is a well-documented and applied methodology. Here, UK

formulation is generalized to the dynamics of rigid bodies on nonlinear manifolds in the

geometric mechanics framework. This approach simultaneously treats rotational and

translational motion in a unified method without encountering singularites or

non-uniqueness, issues that would arise were attitude parameterization sets used. The

viability of this geometric mechanics UK formalism is demonstrated for the cases of fully

and underconstrained systems. The nominal UK formalism requires the complete

knowledge of the system dynamics. In the presence of unmodeled dynamics or uncertainties

in the system, the stability of the system cannot be assessed using the nominal UK

formulation. Therefore, a controller is presented that stabilizes the system under unmodeled

dynamics and external perturbations. In addition, the UK formulation has been historically

applied to systems with equality constraints. However, it has not been formulated for usage

with inequality constraints. Here, the implementation of slack and excess variables to treat

this class of constraints is presented for usage within the UK formulation for the point mass

constrained motion with inequality constraints. Also contained within is an extension of

pre-existing work which models the gravitational force acting on a rigid body from a

nonuniform gravitational field that holds for any degree and order of spherical harmonics.
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1. Introduction

Constrained motion analysis is a useful method to find control accelerations necessary

to satisfy constraints on dynamical systems. A convenient approach for dealing with the

dynamics of constrained point masses under equality constraints is Udwadia-Kalaba (UK)

formulation. Some extensions have been undertaken to apply this formulation to rigid

bodies. However, the usage of geometric mechanics as the configuration of rigid bodies

evolves on the Special Euclidean group, SE(3), has not been strictly applied to constrained

motion analysis or UK formalism. In addition, UK formulation has been well defined and

has a strong heritage of applications for handling equality constraints; however, inequality

constraints have yet to be satisfactorily modeled in that framework. Furthermore, treatment

of initial conditions and disturbances that violate constraints within UK formulation can be

analyzed using a form of feedback control.

1.1. Literature Review

A constrained motion analysis technique was proposed by Udwadia and Kalaba (1992)

to calculate the generalized accelerations needed to satisfy a set of equality constraints

acting on a system of particles using the Moorse-Penrose generalized inverse. Their method

is capable of treating all types of equality constraints as long as they are differentiable, but it

also requires the exact dynamics of the unconstrained system to be known.

UK formulation is defined for cases where the initial conditions satisfy the constraints.

However, in the case of unsatisfied constraints derived from initial conditions, different

types of stability analysis can be used to drive the system to constraint satisfaction. Among

other methods, Baumgarte’s stability analysis (Baumgarte, 1972) has frequently been used

in the literature (Cho & Udwadia, 2010; Xu & Liu, 2017). While many constrained motion

analysis problems have classically employed Lagrange multipliers for treatment of

constraints, UK formulation does not require any computation of the Lagrange multipliers,

though they can still be analytically and explicitly obtained as noted by Udwadia and Kalaba

(2008). This simplifies calculation of the required constraint accelerations significantly.
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The UK equations of constrained motion have been utilized in many applications both

on Earth and in space. A modal UK formulation extension for use in modelling the dynamics

of flexible systems under intermittent impacts was presented by Antunes et al. (2017).

Treatment of multi-link robots (Yang et al., 2019), robotic tracking control (Sun et al., 2015),

and other applications in robotics have often employed UK formulation. In Lam (2006), UK

formulation was applied to a point-mass spacecraft orbiting an oblate body in order to

maintain a circular orbit and a constant inclination. That framework was used in Cho and

Udwadia (2010) and Memon et al. (2019) to find the explicit solution to satellite formation

keeping. In Memon et al. (2019), the UK framework was applied along with Coulomb

forces to control two charged spacecraft to maintain formation in an elliptic orbit. The

results with and without the Coulomb effects were compared to those obtained by the use of

near-optimal control schemes designed to achieve the same formation. The application of

UK formulation to maintain a spacecraft stationed at an unstable Lagrange point under

perturbations from solar radiation pressure (SRP) in the Sun-Earth-spacecraft circular

restricted three body problem system was shown by Patel et al. (2019). UK formulation has

also been applied to constrain a spacecraft to hover over an asteroid (Stackhouse et al., 2019,

2020). Space related applications have also considered elements of the planar pose within

the Udwadia-Kalaba formulation for rendezvous (Pothen & Ulrich, 2019).

This approach is effective for equality constraints imposed on the system. However,

inequality constraints present a different challenge. To the author’s knowledge, no treatment

of inequality constraints has been presented in Udwadia-Kalaba formulation except for in

Yin et al. (2019), which suggested employing a diffeomorphism to transform the space

bounded by a set of inequalities into an unbounded space; however, this method is undefined

for singular inequalities. In short, it requires that pre-existing equality constraints be further

bounded by other inequality constraints. As such, these equality constraints are mapped into

a bounded space and assessed in that space. Such an approach will not work for constraints

that are purely inequality constraints. Within static optimization, inequality constraints are



3

converted to equality constraints via addition or subtraction of slack and excess variables

respectively, per Griva and Nash (2017). Furthermore, direct optimization methods can

provide another means by which the validity and optimality of the solution derived from

these methodologies may be analyzed. Many nonlinear-programming solvers are effective

for parameter optimization problems; hence, they are used to solve these optimization

problems (Liu et al., 2017; Kelly, 2016; Luenberger, 1969). However, this requires

transforming the continuous time optimization problem into a discretized parameter

optimization problem (Kelly, 2017; Hedengren et al., 2014; Fahroo & Ross, 2000).

Spacecraft and other dynamical systems often experience a coupling between their

translational and rotational motions. For the case of spacecraft, orbital and attitude motions

are often coupled due to the motion of flexible structures with many degrees of freedom,

gravity gradient forces and torques, attitude-dependent forces and torques such as

aerodynamic drag and solar-radiation pressure (SRP), and spacecraft rendezvous and

proximity operations to name but a few.

In order to account for translational and rotational couplings, dual quaternions have

been used for constrained motion analyses and optimization problems of multibody

dynamical systems (Valverde & Tsiotras, 2018). Work has also been completed using

dual-quaternions within UK formulation for spacecraft docking (Dong et al., 2018). In

addition, robotic applications not strictly related to aerospace have applied Udwadia-Kalaba

formulation to the pose of the system (Nielsen et al., 2020). A treatment of quaternions

within UK formulation was developed for control torque determination by Udwadia and

Schutte (2011). However, quaternions (and consequently dual quaternions) suffer from the

unwinding issue that contributes to an inability to differentiate quaternion representations.

A key advantage of analyzing a rigid body system in the geometric mechanics

framework is that it allows for this coupling to be accounted for while avoiding

non-uniqueness and singularities due to the use of attitude parameterization sets.

Furthermore, given the structure of elements in this framework, a single control law can be
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designed to suit the needs of the coupled system. There have been some treatments of

systems with constrained angular and translational components including vehicle trajectory

tracking (Yin et al., 2019; Sun et al., 2016). Analysis of constraint satisfaction was

conducted using Munthe-Kaas integration of members of SE(3). The analysis conducted

determined that the integrator perfectly satisfied the constraints (Müller & Terze, 2014a,

2014b).

1.2. Research Goals

The research contained here aims to address some of the areas of development outlined

above. First, derivation of a dynamic model that accounts for higher-order gravitational

terms in the roto-translational coupling is presented. Then, the Udwadia-Kalaba formulation

is generalized for use in the geometric mechanics framework for fully and underconstrained

systems on R6 and for fully constrained systems on T2SE(3). In addition, the practicality of

the methodology is extended by presenting a method for accounting for unmodeled

dynamics and off-nominal initial conditions. Finally, a novel approach for treating inequality

constraints within UK formulation is presented.
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2. Preliminaries

Extending the existing UK formulation requires a through examination of both the UK

formulation for a system of particles and a discussion of the geometric mechanics

framework. First, the classical UK formulation is presented. Then, salient details about

differential geometry are highlighted and summarized. Finally, these tools are used to

provide mathematical context for the geometric mechanics framework.

2.1. Udwadia-Kalaba Formulation

Consider a system of = particles subject to B constraints and assume that the constraints

are differentiable. Let q be a vector of generalized coordinates of = particles. Also, let

�(q, C) ∈ RB1 represent the set of all holonomic constraints and 	(q, ¤q, C) ∈ RB2 represent

the set of non-holonomic constraints (B1 + B2 = B). If � is differentiated twice and 	 once,

the constraint equation of the form presented by Udwadia and Kalaba (1992, 2008) is

obtained.

�(q, ¤q, C) ¥q = b(q, ¤q, C). (1)

Hence, in three-dimensional Euclidean space, q ∈ R3=×1, � ∈ RB×3= and b ∈ RB×1. If the

matrix " is defined as a 3= × 3= matrix with the values of the masses of the particles along

the diagonal, the constraint acceleration can be determined.

a2 = "−1�) (�"−1�) )+(b − �a), (2)

Here, a ∈ R3=×1 is the acceleration of the unconstrained system and (·)+ denotes the

pseudoinverse or the Moore-Penrose generalized inverse. UK formulation is especially

useful becase it does not require explicit determination of the Lagrange multipliers to find a

solution. However, the Lagrange multipliers can be determined within this framework and

were given by Udwadia and Kalaba (2008).

, =
(
�"−1�)

)−1
(b − �a) . (3)
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This approach to constraint motion analysis requires that the constraint is satisfied by the

initial condition. In the event that this is not the case, Baumgarte’s stability analysis

(Baumgarte, 1972) can be employed for the transient response of the system as implemented

by Cho and Udwadia (2010). Then, the general set of all constraints can be given as� ∈ RB.

When � ≠ 0, i.e. when the desired motion is not satisfied at the initial time, the constraints

can be rewritten as,

¥� + U ¤� + V� = 0, (4)

where U = diag(U1, U2 . . . UB) and V = diag(V1, V2 . . . VB). Depending on selection of U

and V, the system will be under, critically, or over damped. In the case of critically or over

damped values of U and V, the system will approach zero asymptotically, thereby satisfying

the constraint given by Φ. The methodology described here applies to a system of point

masses. This same approach is generalized to a system of rigid bodies in Chapter 4. This

extension is then used to analyze the stability of a rigid body system under disturbances and

unmodeled dynamics in Chapter 5.

2.2. Differential Geometry and Lie Groups

A manifoldM is a space with a locally Euclidean, or flat, structure. However, this may

not be the case globally. At a general point G ∈ M, there exists a tangent space denoted

TGM. The disjoint union of all tangent spaces over the manifold is the tangent bundle TM

with elements ¤G ∈ TM (Michor, 2008). Note that, by definition, the tangent bundle TM is

also a manifold. Hence, for every ¤G ∈ TM, there is also another tangent space denoted

T ¤GM. This intuition lends itself to exploration of the second-order tangent bundle denoted

as T2M. This bundle contains elements ¥G ∈ T2M that are on the tangent bundle to

TM (Suri, 2013, 2016; Dodson & Galanis, 2004).

There are several relationships betweenM, TM, and T2M that are relevant to

understanding the geometry of these manifolds. First, a push-forward is a mapping from the

tangent space of one manifold to the tangent space of another. For example, for a mapping q



7

from manifoldM to P (q :M → P), the push-forward 3q (also called the differential of

q) at G is defined as follows:

3q : TGM → Tq(G)P

SinceM and TM are both manifolds, the canonical projections cTM and cT2M are defined

as cTM : TM →M and cT2M : T2M → TM, respectively. Furthermore, using the

concept of the push-forward of the canonical projection cTM to define 3cTM , a mapping

from the tangent bundle of TM (i.e. T2M) onto the tangent bundle ofM (i.e. TM) is

obtained. In a sense, this push-forward is performing a mapping from the second-order

tangent bundle to the tangent bundle. With this intuition, it can be concluded that the push

forward of the canonical projection, 3cTM , and the canonical projection of the second-order

tangent bundle cT2M are isomorphic. These quantities are related by the isomorphism

called the canonical flip, which, while relevant, is not strictly required for the formulation

presented here. The reader is referred to Suri (2016) and Dodson and Galanis (2005) for

further details about the canonical flip isomorphism.

Next, the concept of fibers and fiber bundles is briefly introduced. Consider some

space � , a base space �, and a fiber �. The space � is called a fiber bundle if � is a bundle

that locally behaves like the product space of � × �, but may not behave so globally. Hence,

� behaves locally as the product space. This implies that there locally exists a surjective

mapping q : � → � that maps from the total space � to the base space �. Tangent bundles

are an example of fiber bundles. That is, the tangent bundle TM can be locally written as

TM =M × �1, where �1 is the fiber associated withM. If the tangent bundle locally

behaves as )M =M × �, then the tangent bundle is called a trivial fiber bundle since it

equates � = � × � locally. In this study, for the case of the manifolds, their tangent- and

second-order tangent bundles, the product space is the tangent bundle and the base space is

the base manifold. Considering second-order tangent bundles in the context of fiber bundles,
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the second-order tangent bundle can be defined locally as,

T2M = (M × �1) × �2 = TM × �2, (5)

where �2 is the fiber associated with TM. An important distinction to make is between a

direct product and a semidirect product. Consider a group G with subgroupsH and K . The

group G is isomorphic to the direct product betweenH and K (i.e. G = H ×K) if:

1) H C G and K C G,

2) H ∩K = �.

The ∩ operator indicates the intersection between two groups. In addition, the C operator

denotes a normal subgroup, which has the property that, forH which is a subgroup of G,

the subgroupH is a normal subgroup of G, (i.e. H C G) if and only if for 6 ∈ G and

ℎ ∈ H , 6ℎ6−1 ∈ H . By contrast, a group G is isomorphic to the semidirect product

between subgroupsH and K (i.e. G = H nK) if:

1) H C G,

2) H ∩K = �.

Manifolds can also be specified by the properties of the norm and inner products on these

spaces. First, a Banach manifold is a manifold endowed with a norm of its elements. A

subset of Banach manifolds are Riemannian manifolds, which are a set of smooth manifolds

with tangent spaces endowed with a smoothly varying inner product or Riemannian

metric (Absil et al., 2008). The following section illustrates how these concepts relate to

rigid body configuration and dynamics on the Special Euclidean group SE(3).

It is also necessary to present a few qualities of Lie groups and group theory that are

also relevant to the dynamics on this manifold. A set of elements under an operation is

considered a group G if and only if:

1) The group is closed under the group operation,

2) The group operation is associative,

3) There exists an identity element,
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4) There exists an inverse element.

Lie groups G are subsets of R# such that:

1) G is a group,

2) G is a manifold,

3) The group operation and its inverse are smooth.

Lie groups are endowed with a Lie algebra. This quantity forms a basis for the tangent

space of the Lie group manifold. It also is coincident with the tangent space at the identity

of the manifold (Casado & Martínez-Rubio, 2019). These properties of Lie groups and

differential geometry form the foundation for geometric mechanics. This framework is

described in the following section and is necessary for development of the geometric

mechanics UK formulation in Chapter 4.

2.3. Rigid Body Motion in the Geometric Mechanics Framework

Rigid body configurations can be described as elements of the Special Euclidean group

SE(3), which describes both rotational and translational motion of rigid bodies in

three-dimensional space. This group is a Lie group, meaning that SE(3) is also a manifold.

Let the configuration of a rigid body 6 be described by (Sastry, 1999),

6 =


' r

01×3 1

 ∈ SE(3), (6)

where ' ∈ SO(3) is a rotation matrix from the rigid body’s body frame B to the inertial

frame N and r ∈ R3 is a position vector that points from the origin of the N frame to the

center of mass of the rigid body. If the Frobenius inner product is taken as the Riemannian

metric, it follows that SE(3) is a Riemannian manifold. This also implies that a norm,

specifically the Frobenius norm, exists on this space.

〈�, �〉� =
<∑
8=1

=∑
9=1

�8 9�8 9 = tr
(
�)�

)
(7)

‖�‖� =
√
〈�, �〉� (8)
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Therefore, SE(3) is a Banach manifold, which also follows from the fact that inner product

spaces, such as Riemannian manifolds, are subsets of normed, or Banach spaces (Biggs &

Holderbaum, 2005; Dodson & Galanis, 2004). The augmented velocity vector is given by,

V =


8

v

 ∈ R
6, (9)

where l ∈ R3 is the angular velocity and v ∈ R3 is the translational velocity of the rigid

body, both with respect to the N frame expressed in the B frame. The states of the rigid

body motion in three-dimensional space can therefore be fully described by

(6,+) ∈ SE(3) n R6. The tangent space to SE(3), denoted TSE(3), is the semidirect

product between SE(3) and R6 (i.e. TSE(3) = SE(3) n R6) and the elements of that space

are given by ¤6. Likewise, the double tangent bundle is denoted T2SE(3) and the elements of

the double tangent bundle are denoted ¥6. Furthermore, applying and simplifying the

definition of the fiber bundle, it can be said that the double tangent bundle is the semidirect

product between SE(3) and R12 (i.e. T2SE(3) = SE(3) n R12). Note that, this quantity

obeys the normal subgroup condition. Furthermore, for both the tangent and double tangent

bundle, the disjoint union, or the intersection, between the component subgroups is �4. The

rationale for these definitions becomes clearer as the dynamics on SE(3)and the structure of

their components are investigated.

The kinematics and kinetics of the rigid body’s motion are given by,

¤6 = 6V∨, (10a)

¤V = I−1ad∗VIV + I
−1(3 + u), (10b)

respectively, where g = [L) , f) ]) ∈ R6 is the augmented vector of external torques L ∈ R3

and forces f ∈ R3, and u = [u)
!
, u)

5
]) ∈ R6 is the augmented vector of control input torques

u! ∈ R3 and forces u 5 ∈ R3, all expressed in the B frame. In Equation (10b), I is the tensor
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of mass and inertia properties.

I =


� 03×3

03×3 <�3

 , (11)

In this matrix, � and < are the moment of inertia matrix and mass of the rigid body,

respectively, and �3 is the 3 × 3 identity matrix. Also, the mapping (·)∨ : R6 → se(3) is

applied to the augmented velocity vector V.

+∨ =


l× v

01×3 0

 , (12)

Note that the (·)× : R3 → so(3) operator is defined for a three-dimensional vector l.

l× =



0 −l3 l2

l3 0 −l1

−l2 l1 0


(13)

Furthermore, the co-adjoint operator ad∗V in Equation (10b) is obtained by taking the

transpose of the adjoint operator:

adV =


l× 03×3

E× l×

 (14)

That is,

ad∗V =


−l× −E×

03×3 −l×

 (15)

A final operator that is particular importance to relative configuration and velocity

determination is the linear adjoint operator given by,

Ad6 =


' 03×3

A×' '

 (16)
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The translational and rotational motions of the rigid body are obtained through simultaneous

integration of Eqs. (10a) and (10b) over time. By differentiating the kinematics in

Equation (10a) with respect to time and using the expression for kinetics in Equation (10b),

the second rate of change of 6 with respect to time can be obtained as,

¥6 = ¥60 + ¥62 ∈ T2SE(3), (17)

where

¥60 = 6
(
+∨

2 +
(
I−1 (

ad∗+ I+ + g
) )∨)

, (18)

and

¥62 = 6
(
I−1D

)∨
(19)

Applying the exponential mapping b = exp(6) |, where (·) | denotes the unwedge mapping

and is the inverse of the wedge mapping given in Equation (12), the dynamic problem on the

Lie group SE(3) as given by Equation (10) becomes a problem on the Lie algebra se(3)

associated with SE(3), i.e.,

¤b = (�6 +
1
2

adb + �1(\)ad2
b + �2(\)ad4

b)V, (20)

where b = [�) , p) ]) ∈ R6 denotes the exponential coordinates, where � ∈ R3 is the

product of eigenaxis (principal axis) and eigenangle (principal angle) of rotation, i.e.

� = \e and | |�| | = \, and p ∈ R3 represent the translational vector components. Also, in

Equation (20),

�1(\) =
2
\2 −

3
4\

cot
\

2
− 1

8
csc2 \

2
, (21)

and,

�2(\) =
1
\4 −

1
4\3 cot

\

2
− 1

8\2 csc2 \

2
. (22)
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3. Rigid Body Dynamics and Higher-Order Gravitational Models

The dynamics of the rigid-body spacecraft in an orbit around a central body are given

by Equation (10), with the properties of the spacecraft defined in the same fashion as the

properties of the rigid body. In the two-body problem, the external effect g is the augmented

vector of the gravity gradient moment and force applied to spacecraft expressed in the

spacecraft body frame, i.e. g = [L)
�
, f)
�
]) , where from Schaub and Junkins (2018),

L� =
3`
| |rB | |5

r×B�rB , (23a)

is the gravity gradient moment, and,

f� = −
`<

| |rB | |3
(
1 + 3

< | |rB | |2
[
� + 1

2
(tr(�) − 5Â)B�ÂB)�3

] )
rB , (23b)

is the gravity gradient force, where rB = ')r, the quantity ÂB = rB/| |rB | |, and ` denotes

the gravitational parameter of the central body. In Equation (23), the central body is

assumed to have a uniform gravitational field. However, to ensure that the required accuracy

is achieved, higher degree gravitational terms can be included in the model. Depending on

the application, the chosen gravitational terms have a profound impact both on results and

computation time.

The gravitational potential of a large body is given by Lemoine et al. (2013) and

Vallado (2013) in the body’s inertial frame by,

* =
`

(r · r) 1
2
+ `

(r · r) 1
2

∞∑
==1

=∑
?=0

(
'"

(r · r) 1
2

)=
%̄=? (sin \) [�̄=? cos ?q + (̄=? sin ?q], (24)

where \ is the spacecraft’s latitude and q is its longitude. The value of '" denotes the mean

radius of the body being orbited, %̄=? denotes the normalized associated Legendre functions,

and �̄=? and (̄=? are the normalized gravity coefficients. To find the acceleration caused by

the gravity in the central body’s inertial frame, differentiate* with respect to r.

a = − `r
(r · r) 3

2

1 −
∞∑
==1

=∑
?=0
(= + 1)

(
'"

(r · r) 1
2

)=
%̄=? (sin \) [�̄=? cos ?q + (̄=? sin ?q]

 (25)
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It is important to note that the longitude and latitude are derived from the position vector in

the LCF frame, but these expressions are written in the LCI frame. To find the longitude and

latitude, it is necessary to find the position vector in the LCF frame. This will be discussed

presently.

The Legendre polynomial %=, associated Legendre functions %=<, and the normalized

associated Legendre functions are given by the the following expressions respectively

(Abramowitz & Stegun, 2014):

%= (C) =
1

2==!
3=

3C=

(
C2 − 1

)=
(26a)

%=? (C) =
(
1 − C2

) ?

2 3?

3C ?
%= (C) (26b)

%̄=? (C) =

√
= + 1

2
(= − ?)!
(= + ?)!%=? (C) (26c)

It is necessary to define r3< = r + Xr where r is the vector from the central body with radius

'" to the rigid body center of mass and Xr is the position vector from the center of mass to

some differential mass element. Recalling the gravitational potential of a body and

substituting for r3<, the gravitational force per differential mass can be found.

3F6 = −
`r3<

(r3< · r3<)
3
2

(
1 −

∞∑
==1

=∑
?=0
(= + 1)

(
'"

(r3< · r3<)
1
2

)=
%̄=? (sin \) ∗ . . .

· · · ∗ [�̄=? cos ?q + (̄=? sin ?q]
)
3<

(27)

For the ease of notation, define a quantity &.

& = (= + 1) '=" %̄=? (sin \) [�̄=? cos ?q + (̄=? sin ?q] (28)

The coupling between rotational and translational motion as a point mass’s gravitational

attraction acts on a rigid body spacecraft is given by Schaub and Junkins (2018). Extensions

for higher order terms up to second degree and order have been presented (Scheeres et al.,

1998; Scheeres, 2012; Misra et al., 2016). However, those developments only go up to
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second degree and order. The following formulation can be utilized for any degree and order.

In addition, the previously computed dynamics assumed that the gravitational potential, and

more specifically the gravitational coefficients, were measured about a point coincident with

the center of the rigid body. This causes many of the first degree and order gravitational

coefficients to be zero; while this is a convenient, and justified, assumption, the following

formulation can be applied when such is not the case.

3.1. Gravitational Force

For a rigid body, the total gravitational force acting on the body is given by,

F6 =
∫
B
3F6,

where the differential gravitational force is given in Equation (27). As such, the above

expression becomes:

F6 =
∫
B

(
− `r3<
(r3< · r3<)

3
2
− . . .

· · · − `r3<
(r3< · r3<)

3
2

∞∑
==1

=∑
?=0
−(= + 1)

(
'"

(r3< · r3<)
1
2

)=
%̄=? (sin \) [�̄=? cos ?q + . . .

· · · + (̄=? sin ?q]
)
3<

To simplify computation, the integral is split into two terms:

Term 1: F61 =

∫
B
− `r3<
(r3< · r3<)

3
2
3< (29)

Term 2: F62 =

∫
B

`r3<
(r3< · r3<)

3
2

∞∑
==1

=∑
?=0
(= + 1)

(
'"

(r3< · r3<)
1
2

)=
%̄=? (sin \) ∗ . . .

· · · ∗ [�̄=? cos ?q(̄=? sin ?q]3<

(30)

Note the total gravitational force is given by the summation of the two terms.

F6 = F61 + F62 (31)
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Consider the first term to start. The quantity (r3< · r3<)−
3
2 can be approximated using a

binomial expansion for the power −3/2. Substituting r3< with r + Xr, expanding the term’s

dot product with itself, and then factoring out an (r · r)−
3
2 gives,

(r3< · r3<)−
3
2 ≈ 1

(r · r)
3
2

[
1 − 3

r · Xr
r · r −

3
2
Xr · Xr
r · r +

15
2

(
r · Xr
r · r

)2
+ . . .

]
, (32)

where only terms of up to second order terms in Xr from the binomial expansion are

retained. Substituting Equation (32) into Equation (29) gives the following:

F61 = −
`

(r · r)
3
2

∫
B
(r + Xr)

[
1 − 3

r · Xr
r · r −

3
2
Xr · Xr
r · r +

15
2

(
r · Xr
r · r

)2
)
3<

The terms are distributed and simplified, giving the final gravitational force for the first term

(Schaub & Junkins, 2018).

F61 = −
`<

(r · r)
3
2

(
1 + 3

< (r · r)

[
� + 1

2

(
tr(�) − 5r) �r

r · r

)
�3

] )
r (33)

Note that Term 1 is identical to the expression given in Equation (23b), which describes the

coupled gravitational effects of a a uniform gravitational field. Now consider Term 2. By

substituting & from Equation (28) into Equation (30), the latter term can be rewritten.

Term 2: F62 = `

∞∑
==1

=∑
?=0

∫
B

&r3<
(r3< · r3<)

=+3
2
3< (34)

Also note the change in the order of the summation and integral notation. Given that the

series summations will be finite in practical applications and the integral is finite, this

change is justified. Approximating (r3< · r3<)−
=+3

2 using a binomial expansion of the power

−=+32 and retaining second order terms simplifies the integral.

(r3< · r3<)−
=+3

2 ≈ 1

(r · r)
=+3

2

[
1 − (= + 3) r · Xr

r · r − (= + 3) Xr · Xr
2r · r + . . .

· · · + (= + 3) (= + 5) (r · Xr)2

2 (r · r)2

] (35)
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Substituting this expression into the gravitational force gives an integral in terms of r and Xr.

F62 =`

∞∑
==1

?∑
==0

&

(r · r)
=+3

2

∫
B
(r + Xr)

[
1 − (= + 3) r · Xr

r · r − (= + 3) Xr · Xr
2r · r + . . .

· · · + (= + 3) (= + 5) (r · Xr)2

2 (r · r)2

]
3<

(36)

Distributing and retaining up to second order terms in Xr gives the following:

F62 =`

∞∑
==1

=∑
?=0

&

(r · r)
=+3

2

{
r
∫
B
3< −

∫
B

(= + 3) (r · Xr) r
r · r 3< − . . .

· · · −
∫
B

(= + 3) r (Xr · Xr)
2r · r 3< +

∫
B

(= + 3) (= + 5) (r · Xr)2 r
2 (r · r)2

3< + . . .

· · · +
∫
B
Xr3< −

∫
B

(= + 3) (r · Xr) Xr
r · r 3<

} (37)

The second and fifth terms are zero by the definition of the center of mass
∫
B Xr3< = 0.

F62 =`

∞∑
==1

=∑
?=0

&

(r · r)
=+3

2

{
r< − (= + 3)

2r · r

∫
B

r (Xr · Xr) 3< + . . .

· · · + (= + 3) (= + 5)
2 (r · r)2

∫
B
(r · Xr)2 r3< − (= + 3)

r · r

∫
B
(Xr · r) Xr3<

} (38)

Note the vector relationship Xr (Xr · r) = Xr × (Xr × r) − (Xr · Xr) r; this can be used to

simplify the integral.

F62 =`

∞∑
==1

=∑
?=0

&

(r · r)
=+3

2

{
r< − (= + 3)

2r · r

∫
B

r (Xr · Xr) 3< + . . .

· · · + (= + 3) (= + 5)
2 (r · r)2

∫
B

r · [r × (Xr × r) + (Xr · Xr)r] r3< − . . .

· · · − (= + 3)
r · r

∫
B
[Xr × (Xr × r) + (Xr · Xr)r] 3<

} (39)

Solving the integrals yields,

F62 =`

∞∑
==1

=∑
?=0

&

(r · r)
=+3

2

{
r< − (= + 3)

4r · r tr(�)r + . . .

· · · + (= + 3) (= + 5)
2 (r · r)2

(
−r) �r + r)

1
2
tr(�)r

)
r − (= + 3)

r · r

(
−� + 1

2
tr(�)

)
r

} (40)
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To obtain the force from higher order terms, the terms can be combined.

F62 =`

∞∑
==1

=∑
?=0

&<

(r · r)
=+3

2

{
1 + (= + 3)

<r · r

(
� + = + 2

4

[
tr(�) − (= + 5) r) �r

r · r

]
�3×3

)}
r (41)

If F61 from Equation (33) and F62 from Equation (41) are substituted into Equation (31),

then the total gravitational force on the rigid body from a nonuniform gravitational field is

found.

F6 = −
`<

(r · r)
3
2

(
1 + 3

< (r · r)

[
� + 1

2

(
tr(�) − 5r) �r

r · r

)
�3

] )
r + . . .

· · · + `
∞∑
==1

=∑
?=0

< (= + 1) '=
"
%̄=? (sin \) [�̄=? cos ?q + (̄=? sin ?q]

(r · r)
=+3

2

{
1 + . . .

· · · + (= + 3)
<r · r

(
� + = + 2

4

[
tr(�) − (= + 5) r) �r

r · r

]
�3×3

) }
r

(42)

3.2. Gravity Gradient Torque

The gravitational gradient torque is given by (Schaub & Junkins, 2018).

L6 =
∫
B
Xr × 3F6 (43)

The definition for 3F6 from Equation (27) can be substituted into Equation (43).

L6 =
∫
B
Xr ×

(
− `r3<
(r3< · r3<)

3
2
− . . .

. . . + `r3<
(r3< · r3<)

3
2

∞∑
==1

=∑
?=0
(= + 1)

(
'"

(r3< · r3<)
1
2

)=
%̄=? (sin \) [�̄=? cos ?q + . . .

· · · + (̄=? sin ?q]
)
3<

(44)

The integrand is simplified and the order of the cross product is reversed.

L6 =
∫
B

(
` (r + Xr)
(r3< · r3<)

3
2
− . . .

. . . − ` (r + Xr)
(r3< · r3<)

3
2

∞∑
==1

=∑
?=0
(= + 1)

(
'"

(r3< · r3<)
1
2

)=
%̄=? (sin \) [�̄<? cos ?q + . . .

· · · + (̄=? sin ?q]
)
× Xr3<

(45)
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The cross product can be distributed and the integral separated, leaving two terms.

Term 1: L61 =

∫
B

(
` (r + Xr)
(r3< · r3<)

3
2

)
× Xr3< (46)

Term 2: L62 =

∫
B

©­«− ` (r + Xr)
(r3< · r3<)

3
2

∞∑
;=1

;∑
<=0
(; + 1)

(
'"

(r3< · r3<)
1
2

) ;
%̄;< (sin \) ∗ . . .

· · · ∗ [�̄;< cos<q + (̄;< sin<q]
)
× Xr3<

(47)

Consider Term 1. Distribute the cross product and rearrange the corresponding terms,

noting that Xr × Xr is zero, to obtain the following:

Term 1: L61 = `r ×
∫
B

Xr

(r3< · r3<)
3
2
3< (48)

As seen above, the quantity (r3< · r3<)−
3
2 can be approximated using a binomial expansion

for the power −3/2. Substituting this expansion from Equation (32) where only first order

terms in Xr are retained, the torque is given in terms of r and Xr.

L61 =
`r

(r · r)
3
2
×

∫
B
Xr

[
1 − 3

r · Xr
r · r

]
3< (49)

Note that
∫
B Xr3< = 0. Employing the same vector relationship from the gravitational force

case, −Xr (Xr · r) = −Xr × (Xr × r) + (Xr · Xr) r, the torque is simplified.

L61 =
3`r

(r · r)
5
2
×

∫
B
− (Xr × (Xr × r) + (Xr · Xr) r) 3< (50)

The second term in the integral is zero, such that only the first term remains. This term is

expanded using the (·)× mapping.

L61 =
3`r

(r · r)
5
2
×

∫
B
−Xr×Xr×3<r (51)
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Observing that the integral is defined as the moment of inertia matrix, the first term of the

gravity gradient torque is given as follows:

Term 1: L61 =
3`r

(r · r)
5
2
× �r (52)

Note that Term 1 is equivalent to Equation (23a) for a uniform gravitational field. Now

consider Term 2. This can be rewritten using the definition of &.

Term 2: L62 =

∫
B

©­«−` (r + Xr)
∞∑
==1

=∑
?=0

&

(r3< · r3<)
=+3

2

ª®¬ × Xr3< (53)

If the cross product is distributed and the appropriate cancellations and rearrangements are

taken, the torque can be rewritten.

L62 = −`r
∞∑
==1

=∑
?=0

& ×
∫
B

Xr

(r3< · r3<)
=+3

2
3< (54)

Employing the same binomial expansion as given above and substituting gives a simpler

integral.

L62 = −`r
∞∑
==1

=∑
?=0

&

(r · r)
=+3

2
×

∫
B

[
1 − (= + 3) r · Xr

r · r

]
Xr3< (55)

Simplifying and applying the vector relationship from before gives the following.

L62 = −`r
∞∑
==1

=∑
?=0

& (= + 3)
(r · r)

=+5
2
×

∫
B
−Xr × (Xr × r) + (Xr · Xr) r3< (56)

The second term in the integrand is cancelled the remaining terms are expanded.

L62 = −`r
∞∑
==1

=∑
?=0

& (= + 3)
(r · r)

=+5
2
×

∫
B
−Xr×Xr×3<r (57)

As before, the moment of inertia tensor integral appears. With this relationship, the final

form of Term 2 is obtained.

L62 = −
`r

(r · r)
5
2

∞∑
==1

=∑
?=0
(= + 1) (= + 3)

(
'"

(r · r)
1
2

)=
%̄=? (sin \) [�̄=? cos ?q + . . .

· · · + (̄=? sin ?q] × �r

(58)
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Thus, after applying the (·)× mapping, the total torque is given as follows:

L6 =
`A×

(r · r)
5
2

[
3 −

∞∑
==1

=∑
?=0
(= + 1) (= + 3)

(
'"

(r · r)
1
2

)=
%̄=? (sin \) [�̄=? cos ?q + . . .

· · · + (̄=? sin ?q]
]
�r

(59)

3.3. Longitude and Latitude Determination

The position of a spacecraft expressed in the central body’s fixed frame F is given in

terms of the magnitude of the position vector A, the latitude of the spacecraft \, and its

longitude q.

rF =



A cos \ cos q

A cos \ sin q

A sin \


(60)

This position vector rF is related to the inertial position r by the rotation matrix from N to

F denoted 'FN .

r = '−1
FNrF (61)

Expressing this matrix in this form is useful because it is directly inherited from the

properties of the celestial body. For example, in the following analyses, the central body is

taken to be the Moon. Furthermore, it is assumed it rotates simply about its third axis with

the rotational rate of the Moon about the N and F coincident third axis by the rotation

angle [ given by 'FN ([). Pre-multiplying the position vector by the rotation matrix from

the N to the F frame will give the necessary vector to find the longitude and latitude. With

the vector expressed in this frame, the longitude and latitude can be determined.

\ = arcsin
(
AF3

| |rF | |

)
, (62a)

q = arctan2

(
AF2

AF1

)
, (62b)
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Here, AF8 for 8 = 1, 2, 3 indicates the 8Cℎ component of rF and arctan2 denotes the four

quadrant inverse tangent. Recall that longitude is bounded between −180° and 180° and that

latitude is bounded between −90° and 90°.

3.4. Numerical Simulations and Discussion

To look at the effects of this formulation over the course of a lunar orbit, consider the

case of a spacecraft in lunar orbit. The violent formation of the Moon and lack of

atmosphere led to dense concentrations of mass spattered across its surface. The presence of

these mass concentrations on the Moon leads to large gravitational perturbations except at a

handful of frozen orbits (Elipe & Lara, 2003). Gravitational potential models of degree 900

and higher have been developed by Konopliv et al. (2013) and Lemoine et al. (2014, 2013)

as part of the Gravity Recovery and Interior Laboratory (GRAIL) mission. Spacecraft in

lunar orbits are primarily governed by lunar gravity, and the effects of the Earth and Sun can

be neglected while maintaining sufficient accuracy for early mission planning (Knez̆ević &

Milani, 1998). Therefore, it is assumed in numerical simulations here that the only force

acting on the rigid body is the lunar gravitational force. Apollo 16 released a small

subsatellite into a roughly circular orbit inclined at approximately 11°. After several weeks,

the spacecraft crashed into the surface due to the perturbations. Furthermore, the spacecraft

had a periselene altitude of 90km and an aposelene altitude of 130km (Bell, 2020).

Assuming all other orbital elements were zero, the spacecraft motion in lunar orbit can be

simulated. For all of the simulations presented in this thesis involving spacecraft in lunar

orbits, unless otherwise specified, the mass properties for the spacecraft are assumed to be

those of the Apollo Lunar Module from Low (1969) and Zupp (January 2013).

< = 7063 :6 � =



17058.9014 246.758867 752.478961

246.758867 18801.1275 100.330528

752.478961 100.330528 21969.674


:6 <2
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The spacecraft initial conditions are taken to start at periselene. Correspondingly, the initial

configuration and velocity of the spacecraft are given as follows:

V =



0

0

9.03813 × 10−4

0

−1.64863 × 103

0



6 =



−1 0 0 1.824 × 106

0 −0.98163 −0.19081 0

0 −0.19081 0.98163 0

0 0 0 1


Figure 3.1 shows the difference in position between different orders of spherical harmonics

in the nonuniform gravitational model and the uniform gravitational model. The main

observation is that the position changes by almost four kilometers during one orbital period.

It exhibits a periodic behavior, but examining the position alone, it is clear the effects of

such a gravitational field must be accounted for. Failure to do so is what caused the

degradation of the Apollo 16 subsatellite, prompting exploration into and discovery of lunar

mass concentrations. Figure 3.2 illustrates that the deviations in velocity are small for the

Figure 3.1 Position Comparison with Uniform Gravitational Field
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scale of orbital velocities, but not negligible.

Figure 3.2 Velocity Comparison with Uniform Gravitational Field

Figure 3.3 shows the difference in Euler angles between the different harmonic degrees

that were chosen and the uniform field. The angular changes from the nominal case are in

the neighborhood of one-twentieth of a degree, three arcmin, or 180 arcsec. These errors are

within common pointing accuracies for different spacecraft. For example, the Lunar

Reconnaissance Orbiter had several instruments, one of which was the Lunar Orbiter Laser

Altimeter (LOLA) that gathered topography data accurate to within meters (Barker et al.,

2016). Such precise measurements necessitated a pointing accuracy of 15 arcsec or slightly

over four-thousandths of a degree (Shah et al., 2010). In the case of that spacecraft, failure

to capture higher order gravitational terms could have led to science objective failures, per

Figure 3.3.
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Figure 3.3 Attitude Comparison with Uniform Gravitational Field

Similar to the Euler angles, the differences in angular velocities are seen by plotting the

comparison between the orders, as seen in Figure 3.4.

Figure 3.4 Angular Velocity Comparison with Uniform Gravitational Field
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In general, using these higher order terms provides small changes in accuracy for the

system dynamics; however, considering the disturbances seen over only one orbit period,

planning for these disturbances in coupled roto-translational motion is vital for mission

planning and spacecraft longevity.
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4. Constrained Motion Analysis in the Geometric Mechanics Framework

While the original Udwadia-Kalaba (UK) formulation was initially developed for point

masses, since it utilizes generalized accelerations, it can be extended to other systems where

accelerations occur. Here, UK formulation is generalized to constrain rigid body motion.

Within the geometric mechanics framework, there are two different spaces where

accelerations occur; these include the six-dimensional Euclidean space R6 and the double

tangent bundle of SE(3), T2SE(3). In this section, the generalization of the UK formulation

to geometric mechanics (GMUK) is presented for both of these spaces.

4.1. Constrained Motion on Six Dimensional Euclidean Space

In this section, the constraints of motion dynamics of the rigid body spacecraft are

defined and formulated in the geometric mechanics framework on R6. In the fully

constrained case, all six degrees of freedom of the spacecraft are specified by the constraints.

Therefore, the number of constraints in the system is B < 6 for underconstrained case, B = 6

for fully constrained case, and B > 6 for overconstrained cases.

4.1.1. Determination of the Constraint Equation

In general, for = rigid body spacecraft, it can be shown that the constraint equation can

be written in the form of Equation (1).

� ¤̄V = b, (63)

where ¤̄V = [ ¤V)
1 , . . . ,

¤V)
= ]) ∈ R6=, � ∈ RB×6= and b ∈ RB depend on the system constraints.

Taking the constraint equation, substituting for ¤̄V = ¤̄V0 + ¤̄V2 and rearranging, the constraint

equation is altered.

� ¤̄V2 = b − � ¤̄V0

This can be re-expressed as follows:

�Ī−
1
2 Ī

1
2 ¤̄V2 = b − � ¤̄V0,
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where Ī = blkdiag(I1 . . . I=). After employing the substitution H = Ī 1
2 ¤̄V2, it can be seen:

�Ī−
1
2 H = b − � ¤̄V0

To apply the properties of the Moore-Penrose generalized inverse as in Udwadia and Kalaba

(2008), it is required that:

�Ī−
1
2

(
�Ī−

1
2

)+ (
b − � ¤̄V0

)
= b − � ¤̄V0

It can be seen that the expression for H above is equivalent to,

H =

(
�Ī−

1
2

)+ (
b − � ¤̄V0

)
Relating expressions for H, the control acceleration can be found.

¤̄V2 = Ī
− 1

2

(
�Ī−

1
2

)+ (
b − � ¤̄V0

)
A symmetric form of the equation is derived by Udwadia and Kalaba (2008). Therefore, the

constraint acceleration can also be obtained similar to that in Equation (2).

¤̄V2 = Ī
−1�)

(
�Ī−1�)

)+ (
b − � ¤̄V0

)
∈ R6, (64)

Here, ¤̄V0 = [(I−1
1 ad∗V1

I1V1 + I−131)) , . . . , (I−1
= ad∗V=

I=V= + I−13=)) ]) .

4.1.2. Fully-Constrained Case

For many missions, keeping a spacecraft pointed toward the central body is important.

Many mapping and observation satellites are required to keep tremendous pointing accuracy

for efficient measurements. For example, the Lunar Reconnaissance Orbiter (LRO) was

designed to operate within a pointing accuracy of 15 arcsec or slightly over four-thousandths

of a degree (Shah et al., 2010). LRO had several instruments, one of which was the Lunar

Orbiter Laser Altimeter (LOLA) that gathered topology data accurate to within meters

(Barker et al., 2016). To accomplish this, the spacecraft had to have sufficient pointing

accuracy.
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There are three reference frames used in this analysis: the Lunar Centered Inertial

(LCI) frame N , the perifocal frame P of the desired orbit, and the spacecraft body frame B.

A graphical representation of these three frames is provided in Fig. 4.1, where the subscripts

1, 2, and 3 denote the basis vectors of each reference frame. Note that the inertial frame

need not be only around the Moon. This formulation holds for any orbit around any central

body; however, the simulations presented are for the case of a spacecraft in lunar orbit, so

the LCI frame is introduced here first.

Figure 4.1 Inertial N , Perifocal P, and Body B Reference Frames

To keep a spacecraft constrained to point toward its orbiting body, it is required for the

spacecraft body’s first axis B̂1 to point opposite the position vector r, the second axis B̂2 to

be normal to the first axis and in the orbital plane, and the third axis B̂3 to be aligned with

the angular momentum vector, as shown in Fig. 4.1. This amounts to describing the LVLH

frame with a rotation of 180° about the angular momentum vector in this frame.

Formulating this problem within the perifocal frame lends itself to accommodating

eccentric and inclined orbits.

Consider a single, fully constrained rigid body spacecraft shown in Figure 4.1 confined

to move in the orbit with its B frame coordinates always constrained to be aligned in the
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directions shown. Note that in this case, = = 1 in Equation (64). In order to formulate the

constrained motion in the GMUK framework, the desired states of a rigid body spacecraft

are fully specified by (63 , +3), where 63 denotes the desired configuration given in the form

of Equation (6) and +3 is the desired augmented velocity given in the form of Equation (9).

Both quantities are obtained by following Kepler’s laws of orbital motion. For the motion to

be completely defined, only holonomic constraints are necessary to utilize this GMUK

formulation.

Differentiating the holonomic constraint of 6 = 63 twice and using Equation (10a)

yields the following:

6V∨
2 + 6 ¤V∨ = 63V∨

2

3 + 63 ¤V
∨
3 (65)

Solving Equation (65) for ¤V, the holonomic constraint above can be written in the vector

form.

¤V =

(
6−163 (V∨

2

3 + ¤V
∨
3 ) − V∨

2
) |

(66)

Hence, in this case, � and b in Equation (63) can be obtained.

� = �6, b =
(
6−163 (V∨

2

3 + ¤V
∨
3 ) − V∨

2
) |
∈ R6 (67)

The desired configuration relative to the perifocal frame P is given in the form of

Equation (6), i.e.,

63/P =


'3/P r3/P

01×3 1

 , (68)

where, from Vallado (2013),

'3/P =



− cos 5 − sin 5 0

sin 5 − cos 5 0

0 0 1


, r3/P =

ℎ2

`(1 + 4 cos 5 ) [cos 5 , sin 5 , 0]) (69)
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Examining the rotation matrix in Equation (69), it takes the form of a negative third axis

rotation as a function of true anomaly. This is the negative rotation matrix needed to

transform from the perifocal frame to the modified LVLH frame previously described. This

points the body’s first axis opposite the position vector, as desired and seen in Figure 4.1.

Then, the desired configuration is obtained.

63 = 6P63/P , (70)

Here, 6P is comprised of the 3-1-3 Euler angle rotation matrix from the perifocal frame to

the inertial frame 'NP and the relative position. Note that since both frames’ origins are at

the center of mass of the orbited body, the relative position vector is 0 and therefore

r3 = 'NPr3/P . Examining Equation (69), it can be seen that an eccentricity of zero will

reduce the desired position in the perifocal frame to being on a circle. Furthermore,

examining the definition of 6P , if the inclination is zero, and maintaining the circularity

condition, 6P is equivalent to the inertial frame with a third axis rotation. Once again

considering the constraint 6 = 63 = 6P63/P , finding the values of V3 and ¤V3 requires

determination of V3/P and ¤V3/P . Relative to the P frame, the spacecraft is spinning about

its third axis at a rate equal to ¤5 , and there is no other angular velocity. In addition, the

translational velocity in the perifocal frame is given by v3/P . In order to express this value

as a member of V3/P , this velocity relative to the perifocal frame must be expressed in the

spacecraft body frame B. Therefore, the desired velocity relative to the P frame can be

determined.

V3/P =


l3/P

')
3/Pv3/P ,

 , (71)

Note that l3/P = [0, 0, ¤5 ]) and the rate of change of true anomaly 5 is given as follows:

¤5 = `2

ℎ3 (1 + 4 cos 5 )2
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Then, Equation (71) is differentiated with respect to time.

¤V3/P =


¤l3/P

')
3/P ¤vP + '

)
3/Pl

×
3/Pv3/P

 , (72)

Here ¤l3/P = [0, 0, ¥5 ]) ,

¥5 = −2`4

ℎ6 (1 + 4 cos 5 )34 sin 5 ,

and,

¤v3/P = −
`3

ℎ4 (1 + 4 cos 5 )2 [cos 5 , sin 5 , 0])

It is necessary to find the value of ¤V3 from the above relations, which is given by the

derivative of the relative velocity expression.

V
3
= V3/P + Ad6−1

3/P
VP , (73)

¤V
3
= ¤V3/P − Ad6−1

3/P
¤VP + adV3/PAd6−1

3/P
VP (74)

Then, the constraint translational and rotational control accelerations a2 required to maintain

the desired motion for this fully-constrained scenario are obtained using Equations (64),

(67), (70), (73), and (74).

It is important to highlight that this formulation requires determination of the true

anomaly as a function of time. Given the semimajor axis for the elliptical orbit, the mean

motion can be determined.

=<< =

√
`

03 (75)

From the expression for mean motion, the mean anomaly " is obtained

" = =<<C (76)

The mean anomaly is related to the eccentric anomaly � by Kepler’s equation.

" = � − 4 sin � (77)
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This requires a numerical method to solve for � , such as the Newton-Raphson method.

Finally, the eccentric anomaly is related to the true anomaly, thereby relating time to true

anomaly.

5 = 2 arctan

(
tan

(
�

2

)√
1 + 4
1 − 4

)
(78)

4.1.3. Underconstrained Case

For the underconstrained, elliptical, inclined orbit case (UCEI), choosing the

constraints becomes somewhat more difficult than the fully constrained system. It is

convenient when all the motion is fixed in one orientation with respect to one reference

frame. However, if motion is constrained in more than one reference frame, there may be a

components of the motion that are constrained in two different reference frames. For

example, consider a spacecraft free to rotate around its first body axis B1; it is still required

to rotate around the perifocal frame’s third axis %̂3 at an angular speed equal to the rate of

change of the true anomaly. The third axis constraint cannot be imposed on the body’s

angular velocity as the rotation about the B1 axis will change how the spacecraft is oriented

with respect to the perifocal frame. In the fully constrained case, such issues could be

neglected as the perifocal frame was stationary, thus Equation (73) and (74) could be

simplified to the relative velocities. Consider the case of two rigid bodies with

configurations 61 and 62 and velocities V1 and V2. Employing Equation (73), expanding in

terms of the velocity vector, and combining yields the following:
l1

v1

 =


l1/2 + ')1 '2l2

v1/2 − (r1 − r2)×')1 '2l2 + ')1 '2v2


The important factor to consider is that the coupling that makes the usage of geometric

mechanics beneficial has the consequence that underconstraining the system becomes more

difficult. Therefore, the constraints must be posed in a reference frame such that the degrees

of freedom do not exhibit constraint coupling.
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Let the modified LVLH frame, which was the desired body frame in the fully

constrained case, be denoted by the L frame. Assume there is a fully constrained virtual

spacecraft given by the configuration 6L with velocity VL in this frame.

VL = VL/P + Ad6−1
L/P

VP

Also assume the virtual spacecraft and the actual spacecraft have identical mass properties

and initial conditions. Hence, the velocity of the real spacecraft in B with respect to the

virtual spacecraft described in the L frame is desired to be VB/L = [l 5 , 0, 0, 0, 0, 0]) ,

where the subscript 5 denotes the free motion. Since the motion of the real spacecraft is

constrained relative to the virtual spacecraft and the virtual spacecraft is constrained relative

to the perifocal-and by extension the inertial frames-the UK formulation must be applied to

two rigid bodies. These two rigid bodies are the virtual fully constrained and actual

underconstrained spacecraft. This is an effective approach to mitigating the problems

caused by dynamical constraint coupling.

Consider forming the constraints on these two rigid bodies. It is desired for the virtual

spacecraft to travel in a prescribed orbit described in the P frame. In addition, it is desired

for the relative motion of the actual spacecraft about its B1 axis with respect to the L1 frame

to be left free; all other relative accelerations are zero. Choosing this constraint definition is

convenient as the relative position is zero and the relative attitude will always be a first axis

rotation. As such, the relative acceleration ¤VB/L is defined using Equation (74).

¤VB/L = ¤VB + adVB/LAd6−1
B/L

VL − Ad6−1
B/L
¤VL

Note that this approach works because the motion of the spacecraft in the B frame is free to

rotate about the first axis of the L frame and has zero motion about the other L frame axes.

Removing this condition may cause additional coupling which may require a different

formulation. However, for most pointing purposes, releasing one degree of freedom is the

most likely the case. Multiple unconstrained degrees of freedom would often signal larger
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translational and rotational motions that are beyond the purview of this discussion. To

simplify notation, the quantity ( is defined as ( = [05×1 �5], and the two constraints are

expressed in the form of Equations (63) and (64).

� =


�6 06

−(Ad6−1
B/L

(

 b =


(
6−1
L 63 (V

∨2

3
+ ¤V∨

3
) − V∨2

L

) |
(

(
¤VB/L − adVB/LAd6−1

B/L
VL

)


¤̄+ =


¤VL

¤VB

 Ī =


IL 06×6

06×6 IB


4.2. Constrained Motion on Double Tangent Bundles

The preceding development illustrates how the GMUK can be applied to fully and

underconstrained systems as the system parameters evolve as elements of R6. The geometric

mechanics framework permits definition of accelerations both on R6 and on the double

tangent bundle T2SE(3). By the definition of a manifold, the double tangent bundle of the

base manifold is also a manifold. Taking the base manifold to be SE(3), elements of the

double tangent bundle T2SE(3) are the set of all accelerations ¥6. Constraints on the double

tangent bundle adopt the form,

� ¥̄6� = �, (79)

where ¥̄6 = blkdiag ( ¥61, . . . ¥6=) representing = rigid bodies. Furthermore, � ∈ R<×4=,

� ∈ R4=×?, and � ∈ R<×?. A matrix Ĩ can be defined.

Ĩ = blkdiag (�1, <1 . . . �=, <=) ∈ R4=×4=,

and recalling ¥6 = ¥62 + ¥60, the constraint equation can be rewritten following the process of

(Udwadia & Kalaba, 2008).

�Ĩ−
1
4 Ĩ

1
4 ¥62 Ĩ

1
4 Ĩ−

1
4� = � − � ¥̄60�
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The term H = Ĩ
1
4 ¥62 Ĩ

1
4 can be defined such that �Ĩ− 1

4 HĨ−
1
4� = � − � ¥̄60�. Applying the

property of the Moore-Penrose inverse yields,

�Ĩ−
1
4

(
�Ĩ−

1
4

)+ (
� − � ¥̄60�

) (
Ĩ−

1
4�

)+
Ĩ−

1
4� = � − � ¥̄60�

By examination, it can also be seen that H =
(
�Ĩ−

1
4

)+ (
� − � ¥̄60�

) (
Ĩ−

1
4�

)+
. If the

expressions for H are equated, ¥62 can be obtained.

¥62 = Ĩ−
1
4

(
�Ĩ−

1
4

)+ (
� − � ¥̄60�

) (
Ĩ−

1
4�

)+
Ĩ−

1
4 (80)

4.3. Numerical Simulations and Discussion

For the numerical simulations included here, the dynamic model for the forces and

torque are given by Equations (23b) and (23a) respectively, assuming the gravitational field

is uniform. In addition, the mass properties of the spacecraft in question are the same as

those defined in Section 3.4. The initial conditions for the spacecraft for all fully and

underconstrained cases are given as follows:

V =



0

0

4.23818 × 10−4

0

−1.35622 × 103

0



6 =



−1 0 0 3.20 × 106

0 −0.81915 −0.57358 0

0 −0.57358 0.81915 0

0 0 0 1


4.3.1. Fully Constrained Results on Six-Dimensional Euclidean Space

First, consider a spacecraft that is fully constrained. The chosen desired orbits fall into

two classes, each of which is discussed separately. The orbit can either be circular and

non-inclined, or eccentric and inclined. Parabolic and hyperbolic orbits are not considered

here; however, few-if any-changes are needed to apply this formulation to those cases.
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4.3.1.1. Circular Non-Inclined Orbit

For the case where the reference orbit is fully constrained, circular, and non-inclined

(FCCN), assuming the initial conditions satisfy the constraint, and taking the central body to

have a uniform gravitational potential, intuition would suggest that there would be little to

no control inputs necessary to satisfy the UK formulation. For the following results, a

semi-major axis of 4000km and an eccentricity of zero were selected with all remaining

orbital element equal to 0°. In addition, the results show the motion of the spacecraft over

one orbital period. Applying Equations (69) and (71), initial conditions that satisfy the

constraints can be specified. Once again, under no external perturbations for this type of

orbit, the spacecraft is expected to have a bounded orbit and should require little to no

control to maintain this motion.

Figure 4.2 illustrates the position of the spacecraft in the LCI frame. In the

non-inclined, circular case, is is expected that the spacecraft should behave in a perfectly

sinusoidal fashion in the N1 and N2 axes whereas there should be no motion in the N3 axes.

Examination of Figure 4.2 confirms this behavior. As with the case of the position

Figure 4.2 FCCN Position
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components, the spacecraft velocities in the N1 and N2 axes are expected to oscillate in a

sinusoidal fashion over one period of the orbit and there should be no velocity in theN1 axis.

Such behavior is seen in Figure 4.3.

Figure 4.3 FCCN Velocity

If the spacecraft is constrained to point toward the body in a circular orbit, then the

spacecraft should rotate about its B3 axis at the same rate as the mean motion of the

spacecraft motion about the central body; this rate is identical to the rate of change of true

anomaly for a circular orbit. This would suggest that only the yaw angle among the

yaw-pitch-roll Euler angle set will change, and it will change linearly. Figure 4.4 displays the

expected behavior. Recalling that the spacecraft should rotate about only its third axis with a

constant angular velocity equal to the mean motion of the orbit, it is expected that the angular

velocities about the remaining axes are zero. Figure 4.5 illustrates that the only nonzero

angular velocity is that about B3 and is equal to the mean motion of the chosen orbit.

In the case of a uniform gravitational field acting on a point mass spacecraft, the

required control inputs are expected to be exactly zero. However, treating the spacecraft as a

rigid body, the dynamical model applied in these simulations given by Equation 25 accounts
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Figure 4.4 FCCN Euler Angles

for coupling between translational and rotational motion. As a result, the translational

control inputs will be very small, but nonzero. This behavior is seen in Figure 4.6. In

addition, these forces are functionally constant since the magnitude of this coupled force

Figure 4.5 FCCN Body Rotation Rate
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does not change in the case of the circular orbit and the spacecraft is rotating such that it is

pointed toward the central body with the same orientation for the entire orbit.

Figure 4.6 FCCN Translation Control

Similar to the translational control inputs, it is assumed that gravity gradient torque is

also acting on the rigid body spacecraft. Hence, as seen in Figure 4.7, the rotational control

inputs are small and nonzero. Furthermore, these control inputs are functionally constant

because the circular orbit will not alter the magnitude of the gravity gradient torque.

4.3.1.2. Eccentric and Inclined Orbit

In the following numerical simulations, the rigid body spacecraft is considered in a

lunar orbit with the following orbital elements:

0 = 4000 km, 4 = 0.2, 8 = 35°, l = 0°, Ω = 0°

It is noted that this fully constrained elliptical inclined (FCEI) case can be applied for any

elliptical orbit. The desired position of the mass center of the spacecraft r3 and its desired

attitude '3 are obtained through Equation (70) and the conversion of the rotation matrix '3

to the 3-2-1 Euler angle set is used to present the attitude results. The Euler angles are
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Figure 4.7 FCCN Rotational Control

determined from the direction cosine matrix '3 contained within 63 at each time step. Also,

the angular 83 and translational v3 velocities are partitions of the augmented velocity V3 in

Equation (73).

Figure 4.8 shows the selenocentric position of the spacecraft and its components in the

inertial frame. With the inclined, eccentric orbit, it is expected for the system to still display

periodicity with sinusoidal time histories. This agrees with the results shown in Figure 4.8.

Figure 4.9 shows the velocity in the LCI frame. Like the position, the velocity displays the

sinusoidal, periodic behavior expected from a bounded orbit of this type.

Figure 4.10 shows the Euler angle representation of the attitude of spacecraft relative to the

LCI frame. The discontinuities, namely in the roll and yaw angles, are due to the bounding

of these angles between 0° and 360°. Note that those angles do not vary linearly with time,

indicating the fact that the desired orbit is inclined and eccentric.

The angular velocity of the spacecraft about the spacecraft B axes is shown in

Figure 4.11. Recalling the nonlinear variation in the Euler angles, this behavior is once more

verified by the fact that the angular velocity about the B3 axis (given by l3) is not constant
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Figure 4.8 FCEI Position

and varies over the orbit, indicating the varying speed of the spacecraft over the eccentric

orbit in accordance with Kepler’s second law. Note that the angular velocities about the B1

and B2 are zero to within working numerical precision (nonzero angular velocities on the

Figure 4.9 FCEI Velocity
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Figure 4.10 FCEI Euler Angles

order of 10−16 rad/s were observed). This is expected given that the initial conditions satisfy

the constraint, meaning the only rotation needed to satisfy the attitude constraints are

rotations about the B3 axis. The Euler angles illustrate the fact that there is some initial

attitude that ensures the spacecraft is aligned with the selected modified LVLH frame. As

the motion occurs in a plane, and the attitude is parallel to the plane, the rotation about the

B3 axis will affect all three angles with respect to the LCI frame, but will only change one

angle relative to the P perifocal frame, which is what is observed in the angular velocities.

The translational inputs for the spacecraft obtained from Equation (64) are seen in

Figure 4.12 . The translational control inputs exhibit periodicity. These inputs will cancel

out the coupled forces that act on the spacecraft. Note that the minimum control input

magnitude occurs at half the orbital period. Alternatively, given that the initial conditions

place the spacecraft at periselene, the minimum control acceleration magnitude occurs at

aposelene. This makes sense because the perturbing term from the coupled dynamics varies

as | |r| |−5.
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Figure 4.11 FCEI Angular Velocities

Figure 4.12 FCEI Translational Control Inputs

Finally, Figure 4.13 illustrates the rotational control inputs. As mentioned before, these

are required to cancel out the gravity gradient torques. However, there is also an additional

effect that is relevant to note; for the rotational control about the B3 axis, it is important to
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show that the control input works to slow down the angular rotation in the first quarter of the

orbit, and then varies almost linearly for the next half orbit, and then works to increase the

rotation rate of the spacecraft. This is a result of Kepler’s second law; that is, as the

spacecraft leaves periselene, it moves slower and therefore must change its rotation rate to

compensate for the change in velocity, thereby remaining pointed opposite its position vector.

Furthermore, as the spacecraft leaves aposelene and approaches periselene, it must increase

its angular rotation rate to compensate for the increase in its translational orbital velocity.

4.3.2. Fully Constrained Results on Double Tangent Bundles

Now, for the same scenario as that presented for treatment on R6, the same simulation

can be prepared on the double tangent bundle to compare the equivalence of constraint

acceleration determination on R6 and T2SE(3). It is expected that the fully constrained

results on R6 should be identical to the fully constrained, elliptical, inclined formulation on

the double tangent bundle manifold (FCEIM).

Figure 4.14 illustrates the difference between the treatment on R6 and T2SE(3). The

difference in position is on the scale of millimeters between these approaches. This is a

Figure 4.13 FCEI Rotational Control Inputs
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Figure 4.14 FCEIM Position

desirable result because it illustrates the equivalency between formulation on T2SE(3) and

R6. A difference of only a few millimeters on the scale of thousands of kilometers for an

orbit is negligible. The results on the Euclidean space are denoted by a black dashed line.

Figure 4.15 FCEIM Velocity
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Figure 4.16 FCEIM Attitude

The difference between the velocities as seen in Figure 4.15 is small enough to be negligible.

The difference in Euler angles is also irrelevant, which is illustrated in Figure 4.16.

Figure 4.17 FCEIM Body Rotation Rate
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Figure 4.18 FCEIM Translational Control

The differences in angular velocities are seen in Figure 4.17. These responses are identical

to within 10−16deg/s. The differences in translational control inputs are once again

negligibly small in Figure 4.18.

Figure 4.19 FCEIM Rotational Control
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Finally, the rotational control inputs are functionally identical, per Figure 4.19.

In short, the treatment of fully constrained rigid bodies can be equivalently computed

on R6 and T2SE(3). Treatment of underconstrained systems on T2SE(3) was not conducted,

but the fundamental equation Equation(80) remains unchanged. Future work can examine

the analysis of underconstrained systems on T2SE(3). In addition, the higher order terms

presented in Section 3 can be incorporated into the dynamic model to increase the accuracy

of the control acceleration determination.

4.3.3. Underconstrained Results on Six Dimensional Euclidean Space

The results for the underconstrained case are discussed below for a spacecraft that is

assumed to rotate freely about its B1 axis. The motion is first propagated by assuming there

are no torques acting on the spacecraft except for those from the gravity gradient. Since these

deviations are small, the underconstrained case and the fully constrained case are plotted on

the same figure to illustrate the comparison. The fully constrained case is denoted by a black

solid line. The position and velocity of the spacecraft for the underconstrained case are

given by Figures 4.20 and 4.21 respectively. This motion is not expected to change from the

Figure 4.20 UCEI Position
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Figure 4.21 UCEI Velocity

fully constrained case as the translational components of the constraints are identical.

Figure 4.22 UCEI Euler Angles

Figure 4.22 illustrates the Euler angle attitude representation of the spacecraft with respect

to time. Examining the roll angle, it can be seen that the deviation from this angle is very
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Figure 4.23 UCEI Angular Velocity

small. The discontinuity exaggerates the nature of these angles, but the gravity gradient

perturbs the angle only slightly, while the other angles do not show any deviation. Small

changes in angular velocity about the B1 axis are expected and observed in Figure 4.23.

Figure 4.24 UCEI Translational Control
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The translational control inputs are given by Figure 4.24. Note these controls are

identical to fully constrained case’s inputs, as expected since only the rotational motion was

freed. Figure 4.25 illustrates the rotational control inputs. Note that the rotational control

input about the B1 axis is non-zero. While the spacecraft is free to rotate around that axis, it

must still satisfy the appropriate constraints between it and the virtual, fully constrained

spacecraft. In fact, it requires more control input to free this axis when compared with the

fully constrained case. As the spacecraft rotates, the gravitational gradient forces acting on

it will change. As such, small angular changes and displacements may cause more

exaggerated effects in the control inputs. And for control on the scale of 10−9, such small

changes are very pronounced. To get a better intuition for the effects of underconstraining

the system, a larger, more noticeable torque is applied to the system.

Figure 4.25 UCEI Rotational Control

4.3.3.1. Additional Sinusoidal Input

Now, a sinusoidal input torque of the form LB = [0.005 sin 5 , 0, 0]) is included to

exaggerate the effects of the UK underconstrained, elliptical, inclined orbit with the
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sinusoidal input (UCEIS). These results are plotted as a comparison between the fully and

underconstrained cases including the sinusoidal torque about the first axis B1.

The position and velocity in this underconstrained case are expected to be identical to

those of the fully constrained case. Examination of Figure 4.26 shows the positions are the

same in the under and fully constrained cases. Furthermore, Figure 4.27 shows that the

inertial velocities are also the same.

Figure 4.26 UCEIS Position

Figure 4.28 illustrates the Euler angles in the underconstrained case with the sinusoidal

torque. Examining the roll angle, it is seen to vary over time, with the largest angular motion

occurring between 5 = 90° and 270°. This appears due to the fact that the sinusoidal input

is largest in this range, causing the motion to increase. It does not vary linearly, per the

sinusoidal nature of the torque, especially between one-fourth and three-fourths of the

orbital period. Similarly, the pitch and yaw angles change in time, but are identical to their

counterparts in the fully constrained case.

The angular velocities in Figure 4.29 exhibit a periodic behavior, with the angular

velocity about the B axis behaving as a sine function, which follows from the nature of the

torque. Furthermore, examining the angular velocities about the B2 and B3 axes, note the
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Figure 4.27 UCEIS Velocity

Figure 4.28 UCEIS Euler Angles

increase in frequency for the range of true anomalies 5 ∈ [90°, 270°]. This region occurs

during the period where the torque changes from increasing to decreasing. As such, the

torque is actively countering the motion of the spacecraft. As the L frame must rotate with

the rate of change of true anomaly of the orbit, when the spacecraft is between −90° and 90°,
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the torque is working with the motion of the spacecraft around the orbit. However, as the

torque works opposite the motion of the orbit, more adjustments are needed to keep the B1

axis appropriately positioned when the angular velocities are higher. Also note that in this

region of increased frequency the angular velocity l2 is phase shifted by one fourth the

period of the increased range from l3. This intuitively makes sense as there are control

torques about the B2 and B3 axes that are designed to keep the B1 axis pointed opposite its

position vector. This is the constraint that is treated by the virtual spacecraft. The impressed

torque is a sine function and the first axis rotation ensures that the other angular velocities

must combine to satisfy the B1 pointing constraint.

Figure 4.29 UCEIS Angular Velocity

The translational control inputs are nearly identical between the fully and

underconstrained cases. As seen in Figure 4.30, the only acceleration that deviates from the

fully constrained case are the translational control inputs from the spacecraft first body axis.

However, the differences between these quantities are on the order of 10−7</B2.

The rotational control inputs are prime examples of the effects of freeing a degree of

freedom. Note in Figure 4.31, the underconstrained control accelerations about the B1 axis
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Figure 4.30 UCEIS Translational Control

is noticeably smaller than the fully constrained case. In fact, its deviations are small enough

to be accounting for the gravity gradient torques acting on the system, similar to what was

seen in Figure 4.25. However, it can be seen that the B2 and B3 underconstrained control

Figure 4.31 UCEIS Rotational Control
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accelerations are larger than those from the fully constrained case. This is due to the fact

that the spacecraft must keep its first axis pointed opposite the position vector. This means

that relative to the perifocal frame, the spacecraft must still spin about the %̂3 axis. However,

if the spacecraft has an angular displacement about the B1 axis, then the corresponding

angular velocities about B2 and B3 must compensate to form the net rotation about the %̂3

axis and keep the first axis accurately pointed. This phenomenon is an example of constraint

coupling and appears in the rotational control inputs.
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5. Unmodeled Dynamics and Disturbances Within UK Formulation

Recall UK formulation requires that the initial conditions satisfy the constraints.

Furthermore, the approach also specifies a set of modeled dynamics; it is from these

modeled dynamics that the UK control accelerations are derived. If the initial conditions do

not satisfy the constraints or there are unmodeled dynamics in the system, we require

adjustments to the UK formulation. Two different cases that may disturb the system under

the UK formulation are presented. Usage of a Morse-Lyapunov based controller using

backstepping will display how these uncertainties can be handled in the system and UK

formalism.

5.1. Disturbed Initial Conditions in UK Formulation

Here, the controller developed by Nazari et al. (2018) is utilized, but modified to

capture error dynamics and provide tracking control. An integral term is also added to

mitigate steady-state error in the response. The proposed controller is written here.

D = −I 1 ¤; −
(
ad∗VIV − ad

∗
V=
IV=

)
− I 2k − I^ [01×3, �

)
r �

)
']) − :3I

∫ C

0
k3g (81)

The following definitions are necessary:

k = �V +  1; (�6) (82)

; (�6) = [B) (�'), �)r ]) (83)

B(�') =
3∑
8=1

08

(
�)'e8

)×
e8 (84)

�' = '
)
= ' �r = r − r= �V = V − V=,

Here, the subscript "n" denotes nominal motion. In Equation (82),

 1 = blkdiag(:11�3, :12�3) > 0 with :12 ≠ 1, e8 for 8 = 1, 2, 3 are the vectors that span the

natural basis in R3, � = diag(01, 02, 03) with 01 > 02 > 03 ≥ 1,  2 = blkdiag(:21, :22) is
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a positive definite matrix, and ^ is a scalar value. Define a candidate Lyapunov function as,

+ = +1 ++2(�') > 0, ∀ (�6, �V) ≠ (�, 0), (85)

where +1 is,

+1 = k
)%k + ^ (1 − :12) �)r %22�r, (86a)

for % = blkdiag(%11, %22) > 0 and,

+2(�') = :3tr(� − ��'), (86b)

with :3 > 0. Note that if k goes to zero, it may not necessarily guarantee that the errors will

go to zero. As such, some quadratic Lyapunov function of only the errors in ; (�6) and �V

will only be positive semidefinite. To counteract this, the positive semidefinite Morse

function +2 is added to the positive definite quadratic function +1 to form a total positive

definite Lyapunov function + . The Morse function +2 will vanish only when �' = �3. To

prove stability, differentiate + .

Starting with +1, note,

¤+1 = 2
(
k)% ¤k + ^(1 − :12)�)r %22 ¤�r

)
,

where,

¤k = − 2k − ^ [01×3, �
)
r �

)
']) (87)

Substituting Equation (87) into the equation for ¤+1 yields the final form of this derivative.

¤+1 = 2
(
−k)% 2k − k)%^ [01×3, �

)
r �

)
']) + ^(1 − :12)�)r %22 ¤�r

)
By examining the second term )2 in the expression for ¤+1, the definitions for k and % can be

expanded.

)2 =


�8 + :11B(�')

�v + :12�r


) 
%11 0

0 %22

 ^


0

�'�r


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The second term can be simplified.

)2 = −^�)r (1 − :12) %22�'�r

The third term )3 can be simplified by finding the derivative for ¤�r = �'�v. Furthermore

using the backstepping technique employed by Nazari et al. (2018) and Khalil (2002),

assume the system can be stabilized from a state feedback control law of the following form:

�V = −; (�6) (88)

Expanding Equation (88) it can be shown that that �v = −�r; hence, the third term can be

rewritten.

)3 = −^(1 − :12)�)r %22�'�r

Substituting )2 and )3 into the expression for ¤+1, these terms cancel and the total derivative

¤+1 is obtained.

¤+1 = −2k)% 2k < 0 ∀(�6, �V) ≠ (�, 0)

To find 3+2, differentiate Equation (86b).

3+2 = −:3tr(��A�×8)3C

From the backstepping technique, �8 = −B(�'); as such, 3+2 can be simplified.

3+2 = :3tr(��A B(�')×)3C

It was shown by Nazari et al. (2018) that:

tr(��A B(�')×) = −B) (�')B(�')

The final expression for ¤+2 can be obtained with this simplification.

¤+2 = −:3B
) (�')B(�') ≤ 0 ∀(�6, �V) ≠ (�, 0),
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is negative semidefinite, vanishing at �' = �3 as well as the cases �' = diag(1,−1,−1),

diag(−1, 1,−1), and diag(−1,−1, 1). As noted by Nazari et al. (2018), these are saddle

equilibria, and these critical points are isolated where the stable manifolds of these

equilibria have zero measure in TSE(3). For the total derivative of the Lyapunov function,

¤+ = −:3B
) (�')B(�') − 2k)% 2k, (89)

the equilibrium state (�∗6, �∗V) = (�, 0) is almost globally asymptotically stable. This means

that, when this controller is applied in addition to the UK formulation, it will drive the fully

constrained closed loop (FCCL) system with disturbed states to the constrained desired state.

Presented here are some transient response results using the controller within the context of

UK formulation with disturbed initial conditions. The gains are chosen as follows:

:11 = 0.099999 :12 = 0.99999

:21 = 1.1 :22 = diag(0.05, 0.05, 1) × 10−5

^ = 0.0002 � = diag(3, 2, 1) :3 = 1000

The disturbed initial conditions are given as follows:

V =



0.05000

0.07000

0.01044

−5.69501 × 102

−1.17817 × 103

328.89840



6 =



−0.88728 0.35421 −0.29541 3.201 × 106

−0.25042 −0.90782 −0.33637 163.150

−0.38733 −0.22448 0.89420 4997.447

0 0 0 1


Figure 5.1 shows the transient response of the position. The dashed black line illustrates the

trajectory and time history of the states with initial conditions that satisfy the constraints.

Note that the color lines converge to the dashed line, indicating that the Morse-Lyapunov
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Figure 5.1 FCCL Position

based controller drives the system to the desired trajectory. Note that the period of the

spacecraft’s orbit is on the scale of 22,000 seconds, so these results illustrate a small fraction

of the total orbit. Figure 5.2. The velocity is seen to overshoot the correct trajectory slightly

Figure 5.2 FCCL Velocity
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Figure 5.3 FCCL Attitude

at the beginning of the timespan, but also eventually converges to the nominal case. All the

angular quantities converge in a robust manner with respect to the gains. The values of these

gains can be altered somewhat drastically and will still converge. The angular velocities

Figure 5.4 FCCL Angular Velocity
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Figure 5.5 FCCL Translational Control

converge to the original fully constrained response in Figure 5.4. Figure 5.5 illustrates the

control inputs using the controller. They eventually converge to the nominal case control as

the Morse-Lyapunov controller approaches zero. The rotational control inputs in Figure 5.6

Figure 5.6 FCCL Rotational Control
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Figure 5.7 FCCL Translational Morse-Lyapunov Control

are seen to converge to the original case denoted by the dashed line. Given that the

Morse-Lyapunov based controller using backstepping was applied to the system in addition

to the UK control acceleration, this control input can be analyzed on its own to see how it

contributes to the overall dynamics and control. From Figures 5.7 and 5.8, it can be seen

that the Morse-Lyapunov based control inputs approach zero. This follows from the fact that

the M-L controller is a tracking controller that will go to zero as the constraint is satisfied.

Analysis of the steady state can illustrate how close to the desired configuration the

Morse-Lyapunov based controller can drive the rigid body, per Figures 5.9 and 5.10. It can

be seen that the total rotational control inputs are extremely close to the nominal UK inputs,

indicating the M-L controller has worked properly. For the translational control inputs, there

are some larger errors. Preliminary investigation of these errors prompted the inclusion of

the integral term which improved the response to the included results. Further tuning of the

gains could lead to better response characteristics and less steady state error.
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Figure 5.8 FCCL Rotational Morse-Lyapunov Control

Figure 5.9 FCCL Translational Control Error

5.2. Robust Control with Unmodeled Dynamics

Now, consider the case where there are unmodeled dynamics acting on the system. The

UK formulation finds the constraint acceleration under the modeled dynamics; however, if
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Figure 5.10 FCCL Rotational Control Error

there are other unmodeled dynamics, they will still affect the states of the system. As such,

the UK formulation may violate the constraints if these unmodeled disturbances are

substantial enough. To counter this problem, an extension of the Morse-Lyapunov based

controller in Equation (81) is proposed that will manage these constraints. Assume the

dynamics of the system are modeled as in Equations (23b) and (23a), but the spacecraft is

affected by higher order gravitational terms. Examination of Equation (42) shows that the

maximum quantity of the higher order gravitational terms is some constant times | |r| |−4 for

spacecraft of degree and order two. A known upper bound that varies with r can be specified

such that this controller will capture external perturbations from the higher order terms.

D = −I 1 ¤; −
(
ad∗VIV − ad

∗
V=
IV=

)
− I 2k − I^ [01×3, �

)
r �

)
']) − :3I

∫ C

0
k3g − ^2I

| |r| |4
O (90)

Here O is a six by one vector of ones. To analyze the performance of this controller, all the

gains are chosen as in Section 5.1, and ^2 = −39/2. This is a very conservative estimate

based on the values of the second order gravitational constants (Misra et al., 2016).
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Figure 5.11 Position Under Unmodeled Dynamics

Figure 5.11 shows that the position difference between the unperturbed and the

perturbed orbits is approximately one meter in the largest axis. In all results, the black,

dashed line represents the results with no unmodeled dynamics and the colored lines

indicate the response under the unmodeled dynamics. The difference in the velocities is

almost negligibly small, on the scale of millimeters per second.

Figure 5.12 Velocity Under Unmodeled Dynamics

Figure 5.13 illustrates how the difference in Euler angles is also negligible.
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Figure 5.13 Attitude Under Unmodeled Dynamics

As with the other states, the angular velocity differences in Figure 5.14 are very small and

and converge to zero, illustrating the controller is working.

Figure 5.14 Angular Velocity Under Unmodeled Dynamics
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Figure 5.15 UK Translational Control Under Unmodeled Dynamics

Figure 5.15 illustrates the control from the UK formulation in the perturbed and unperturbed

case, whereas Figure 5.16 illustrates the Morse-Lyapunov based controller input. The

differences in Figure 5.15 are due to the upperbound of the perturbations seen in

Equation (90).

Figure 5.16 M-L Translational Control Under Unmodeled Dynamics



71

Figure 5.17 UK Rotational Control Under Unmodeled Dynamics

In a similar sense, Figure 5.18 illustrates the control input from the Morse-Lyapunov based

controller, whereas Figure 5.17 illustrates the control from the UK formulation both in the

perturbed and unperturbed case. The differences seen in Figure 5.17 are due to the influence

of the upperbound of the perturbations seen in Equation (90).

Figure 5.18 M-L Rotational Control Under Unmodeled Dynamics
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6. Inequality Constraints Within UK Formulation

Udwadia-Kalaba formulation has been used and defined extensively for equality

constraints. However, treatment of inequality constraints has not yet been extended to UK

formulation. As such, optimality conditions of inequality constraints are discussed and a

new approach to treating these inequalities within UK formulation is proposed.

6.1. Karush-Kuhn-Tucker Conditions

When inequality constraints are added to an optimization problem, several optimality

conditions called the Karush-Kuhn-Tucker (KKT) conditions must be satisfied (Kuhn &

Tucker, 1951). Assume a general optimization problem.

minimize J (x)
subject to: d(x) = 0

g(x) ≤ 0

where x is the set of decision variables and J is a scalar cost function. The Hamiltonian

function for a general problem of this form can be define.

H(x, -, ,) = J (x) + -)g(x) + ,)d(x) (91)

For dynamic systems, the dynamics are imposed in equality constraints d(x) = f (x, u, C) − ¤x.

As a result, the Lagrangian can be defined.

L(x, -, ,) = J (x) + -)g(x) + ,) (f (x, u, C) − ¤x) (92)

The four KKT conditions are given below. Note x∗ denotes an optimal set of decision

variables or parameters.

Table 6.1
KKT Conditions for Parameter Optimization Problems

Stationarity Condition: Jx(x∗) + `)gx(x∗) + ,)dx(x∗) = 0
Primal Feasibility: d(x∗) = 0

g(x∗) ≤ 0
Dual Feasibility: - ≥ 0
Complementary Slackness: -)g(x∗) = 0
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These conditions can be enforced in indirect optimization problems. If more direct

methods are used, these conditions can be checked to see if an optimal solution has been

determined. As has been alluded to, two different types of optimization problems exist:

direct and indirect methods. In general terms, indirect optimization problems determine

optimality conditions and then discretize the timespan. By comparison, direct optimization

problems discretize the timespan and then apply the dynamics and optimality conditions at

each discretized time point, or collocation point. Two of the most salient conditions in

assessing optimality are the dual feasibility and complementary slackness conditions. The

dual feasibility condition can be checked with relative ease. The complementary slackness

condition, however, provides excellent insight into the nature of the system. Assuming an

optimal solution x∗ has been found, if the 9 Cℎ inequality given by 6 9 (x∗) is binding (or

active), then 6 9 (x∗) = 0. This means x∗ is on an outermost boundary of the feasible region.

Hence, the Lagrange multiplier ` 9 associated with that inequality constraint will be larger

than zero. If, however, the inequality is not binding (or inactive), then 6 9 (x∗) ≠ 0,

necessitating that ` 9 = 0 in order to satisfy the complementary slackness condition.

6.2. Pontryagin’s Minimum Principle

Pontryagin’s Minimum Principle states that the Hamiltonian at the optimal control

input must be less than or equal to the Hamiltonian for all other admissible

controls (Pontryagin & Neustadt, 1986). In other words,

H(x∗, u∗, ,∗, -∗, C) ≤ H (x∗, u, ,∗, -∗, C), (93)

for all admissible u. It can be shown that under minimum-time control (meaning the cost

function is some function of time), the optimal control adopts the form of a bang-bang

controller (Lewis et al., 2012).

6.3. Slack and Excess Variables

In many canonical forms of static optimization for linear and nonlinear programs,

inequality constraints are transformed into equality constraints via introduction of a slack or
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excess variable (Griva & Nash, 2017). For example, the inequality G ≥ 5 would become

G − 4 = 5 and the inequality G ≤ 6 would become G + B = 6, where B and 4 are the slack and

excess variables respectively.

6.3.1. Less Than Inequality Constraint

Consider an inequality where it is desired for the function ℎ(q, ¤q, C) to be less than or

equal to zero ℎ(q, ¤q, C) ≤ 0. Recall @, ¤@, and ¥@ are the generalized positions, velocities, and

accelerations of the system of particles in Equation (1) for usage within UK formulation.

This inequality can be rewritten as an equality constraint with a slack variable, a method

used often in static optimization programs per Griva and Nash (2017).

ℎ(q, ¤q, C) + B = 0 (94)

Note B is a function of time. However, B must be greater than or equal to zero. Therefore, B

is selected in the form of B = @2 to yield the equality constraint and its derivatives

ℎ(q, ¤q, C) + @2 = 0 (95a)

¤ℎ(q, ¤q, C) + 2@ ¤@ = 0 (95b)

¥ℎ(q, ¤q, C) + 2(@ ¥@ + ¤@2) = 0 (95c)

For this purpose, a new variable @ has been introduced to the system and must be appended

to the q vector.

6.3.2. Greater Than Inequality Constraints

Consider an inequality where it is desired for the function ℎ(q, ¤q, C) to be greater than

or equal to zero ℎ(q, ¤q, C) ≥ 0. This inequality can be rewritten as an equality constraint

with an excess variable (Griva & Nash, 2017).

ℎ(q, ¤q, C) − 4 = 0 (96)

Note 4 is a function of time. Similarly, 4 must be greater than or equal to zero. Therefore, 4
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is selected to be in the form of 4 = ?2 to yield the equality constraint and its derivatives.

ℎ(q, ¤q, C) − ?2 = 0 (97a)

¤ℎ(q, ¤q, C) − 2? ¤? = 0 (97b)

¥ℎ(q, ¤q, C) − 2(? ¥? + ¤?2) = 0 (97c)

For this purpose, a new variable ? has been introduced to the system and must be appended

to the q vector.

6.3.3. Slack Dynamics Specification

Note that the values of ¤@ and ¤? are required to propagate the motion of the system and

form the constraints. One approach to determining these quantities is by rearranging

Equations (95b) and (97b). However, if the chosen initial conditions are such that the

constraint is active ℎ(q0, ¤q0, C0) = 0, Equations (95b) and (97b) have a singularity. In fact,

choosing the slack and excess dynamics in this fashion will prohibit the system from having

truly active inequality constraints, but the response will converge to a minimum control if

one exists. However, tying the slack and excess dynamics to the physical dynamics ensures

that the system will not converge to a false minimum, which may occur if the slack and

excess dynamics are constrained to obey some function of time. As such, just as there exists

an optimal x∗, there are optimal slack and excess variables.

6.4. Direct Optimization of Dynamical System Trajectories

Using a direct optimization scheme, the minimum control needed to satisfy a constraint

can be determined. The finer details of the method are outlined by Hedengren et al. (2014),

but the key points are presented here. Direct optimization methods discretize the timespan

into collocation points such that a parameter optimization problem can be solved. To get the

time history curve to match the motion of the system, interpolation between the collocation

points is conducted. The optimization methodology presented here uses Lobatto Quadrature

and orthogonal collocation to discretize the timespan. Within Lobatto Quadrature, the
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interval along which the Lobatto function is defined is [−1, 1]. The collocation points are

the first (= − 1) roots of the function %′
=−1, where %= is the Legendre polynomial of degree =.

Here, = is the chosen number of collocation points, including the first and last values on the

interval. The timespan can then be scaled to fit along [0, 1], from which the collocation

points can be tied together. Scaling this up to some maximum time is a simple

multiplication of the elements of the timespan.

This collocation method functionally converts the infinite parameter continuous time

problem into a finite parameter problem. However, the dynamics still have yet to be imposed

as constraints on the system. In Hedengren et al. (2014), the process of translating a system

of differential equations into a differential algebraic equation is detailed. This converts a

continuous-time trajectory optimization problem into a parameter optimization problem,

which nonlinear-program (NLP) solvers can accommodate fairly well (Kelly, 2016; Liu et

al., 2017; Kelly, 2017). This is done by relating the derivatives of the states ¤G at each

collocation point to the difference between the state G and the initial condition. Using the

same definition of = as in the Lobatto Quadrature (= is number of discrete times, or

collocation points, including the outer bounds), the differential algebraic equation (DAE)

can be expressed as follows:

C='(=−1)×(=−1)



¤G1

¤G2

...

¤G=−1


=



G1

G2

...

G=−1


−



G0

G0

...

G0


(98)

Assume an interpolation of the state G between collocation points by an (= − 1)Cℎ degree

polynomial.

G(C) = 00 + 01C + 02C
2 + · · · + 0=C=−2 =

=∑
8=1

08C
=−8 (99)
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The relationship between the derivative and its corresponding state at each collocation point

can be determined.

C='(=−1)×(=−1) = %
−1, (100)

Here, the matrix % is required.

% =



1 2C1 3C21 . . . (= − 1)C=−2
1

1 2C2 3C22 . . . (= − 1)C=−2
2

...
...

...
...

...

1 2C=−1 3C2
=−1 . . . (= − 1)C=−2

=−1





C1 C21 . . . C=−1
1

C2 C22 . . . C=−1
2

...
...

...
...

C= C2= . . . C=−1
=−1



−1

With these definitions, the optimization problem can be expressed in a form that a NLP

solver can understand. The following notation is consistent with that used in Matlab’s NLP

solver, fmincon. This is a general formulation of a parameter optimization problem, as

opposed to a continuous time trajectory optimization problem.

minimize J =
∫ C 5

C0
u)"−1u3C

subject to: �̄4@x = b̄4@
�̄x ≤ b̄
2̄4@ (x) = 0
2̄(x) ≤ 0
¯;1 ≤ x ≤ D̄1

In the continuous case as derived in the UK formulation, the constraints were represented by

a matrix � multiplied by the vector of second derivatives, whose product was equal to a

vector b. This expression is somewhat different from that expressed above. The quantity J

is a scalar cost function the solver will try to minimize. The vector x is a vector of

parameters or decision variables that the NLP solver will vary. In the case of dynamic

systems, the vector will be comprised of the positions, velocities, accelerations, and control

inputs at each time step. So, if the system is described in R3 and there are = collocation

points, x will at least have (3) (4) (= − 1) decision variables, depending on the nature of the
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control inputs; all other matrices and vectors will be sized accordingly. �̄4@ is the matrix of

values representing the left hand side of linear equality constraints on the vector x, whereas

b̄4@ is the vector representing the right hand side of that equality. The same applies for �̄

and 1̄, except for linear inequalities. The vectors 2̄4@ and 2̄ are nonlinear equality and

inequality constraints respectively.

6.5. Numerical Simulation Results and Discussion

Two different examples that the inequality constraint formulation can be applied to are

presented here. One methodology looks at a simple spring-mass damper. This case is

relevant and lends itself to an intuitive dynamic behavior. This makes analyzing the

optimality and system behavior easier. The second case is focused on trajectory maintenance

for a spacecraft that is allowed to drift a certain difference from a reference trajectory.

6.5.1. Spring-Mass-Damper Example

Consider the simple dynamic system of a spring-mass-damper.

< ¥G + 1 ¤G + :G = 0

Here, the constants are chosen to be < = 2kg, 1 = 5Ns/m, : = 10N/m. As such, there are

several different cases of inequalities that can exist. These are explored here.

6.5.1.1. Greater Than Inequality

Consider the case of a greater than (GT) inequality constraint that requires the mass

displacement G ≥ 5. Figures 6.1 through 6.6 illustrate the results of the UK formulation

with the modified excess variable constraints. The physical displacement of the mass over

time is given by the blue line in Figure 6.1 and the red line represents the value of the

constraint. As the constraint was formatted as G − 4 = G − ?2 = 5, it would be expected that

this should hold for all time, a fact confirmed by the red line in Figure 6.1. As is expected,

the system’s physical displacement converges to the equilibrium state within the admissible

region that corresponds to the minimum required constraint force. The physical velocity of

the mass is given by Figure 6.2. Note the velocity converges to a final steady state of zero.
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Figure 6.1 GT SMD Position Figure 6.2 GT SMD Velocity

The blue line in Figure 6.3 represents the control acceleration acting on the mass to

satisfy the constraint. This converges to the expected acceleration needed to keep the mass

at G = 5. Furthermore, within the context of Pontryagin’s Minimum Principle, it can be seen

that the control acceleration impulsively increases whenever the constraint is about to

become active. This acts in a fashion similar to a bang-bang controller, suggesting that for

that one instance of constraint activation, the formulation is solving a minimum-time

optimization problem that results in a bang-bang-like control. The restoring forces of the

spring and damper return the mass to a point where the constraint may become active again,

leading to another impulsive, minimum time control. Figure 6.4 illustrates the control effort

of this approach. It confirms what was seen in Figure 6.3; since the control effort has a

constant slope, the control acceleration is a constant.

Figure 6.5 illustrates the Lagrange multipliers associated with the equality constraint

that was formed from the inequality constraint. Assessing the complementary slackness

KKT condition, it can be seen that the product of the Lagrange multipliers and the constraint

value (given in Figure 6.6 by the green line) is initially larger than zero, but approaches zero

as time goes to infinity, suggesting the transient behavior is not optimal, but the steady state

is. This is further verified by examination of the primal feasibility condition, which states

that for inequality constraints, g(x∗) ≤ 0. In the steady state case, the inequality converges

to zero, indicating that the steady state is optimal.



80

Figure 6.3 GT SMD Control Acceleration Figure 6.4 GT SMD Control Effort

Figure 6.5 GT SMD Lagrange Multipliers Figure 6.6 GT SMD KKT Conditions

6.5.1.2. Less Than Inequality

Consider a less than (LT) inequality problem where it is desired to keep G ≤ 1. The

results of the simulation using the slack variable transformation can be found in Figures 6.7

through 6.12. Note the mass’s physical displacement in Figure 6.7 reaches the upper limit

(G = 1) but does not exceed it. The system then proceeds to the equilibrium condition where

the minimum control acceleration is needed, which in the case of a spring mass damper, is

at zero displacement and velocity, permitting the control acceleration to be zero. The result

from the position response is validated in Figures 6.8 through 6.10 which show the mass’s

velocity, control acceleration, and control effort. The mass’s velocity goes to zero, as does

the control acceleration. Furthermore, the control effort becomes horizontal, indicating no
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additional control has been applied to the system. These observations show that the slack

and excess variable formulation can cause a system to converge to a natural minimum

control if selection of the slack and excess dynamics is done carefully.

Figure 6.7 LT SMD Position Figure 6.8 LT SMD Velocity

It is also relevant to note that the control acceleration also behaves similar to the

greater-than inequality case, where a bang-bang-like control satisfies the constraint.

Figure 6.9 LT SMD Control Acceleration Figure 6.10 LT SMD Control Effort

Figures 6.11 and 6.12 illustrate the Lagrange multipliers associated with the constraint

and the KKT complementary slackness condition. Once again, examining the primal

feasibility condition in Figure 6.12, it would appear that the time history is optimal because

the inequality is negative semidefinite for the whole time history. However, note that the

product of the constraint value and the Lagrange multipliers goes to zero only at the steady
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state. Similar to the greater-than inequality case, the transient behavior appears to be

sub-optimal from a minimal control perspective, but the steady state solution is optimal.

Figure 6.11 LT SMD Lagrange Multipliers Figure 6.12 LT SMD KKT Conditions

6.5.1.3. Bounding Constraints

For the case of bounding inequalities (BI), the data can be analyzed in the same manner

as for the individual greater than and less than inequalities. For this problem, the constraints

are formatted such that 1 ≤ G ≤ 2. Initial conditions are specifically chosen for this

simulation such that both constraints would be active at some point in the timespan.

Examination of Figure 6.13 shows that the mass displacements reaches the upper

bound, but does not exceed it. Furthermore, the mass displacement then falls and converges

to an admissible point with minimal necessary control. Figure 6.14 illustrates the velocity of

the mass. As the timespan goes to infinity, the mass velocity converges to zero.

It can be seen that the control acceleration counters the motion of the mass when it

appears a constraint would be active. It is also important to note that the control acceleration

converges to a constant value. Applying Newton’s second law, it can be confirmed that for

the spring and damping coefficients, such an acceleration will ensure the system is static.

The control effort confirms the information about the mass’s displacement as its steady state

slope is a constant, just as the control acceleration in the steady state is constant.
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Figure 6.13 BI SMD Position Figure 6.14 BI SMD Velocity

Figure 6.15 BI SMD Control Acceleration Figure 6.16 BI SMD Control Effort

Figure 6.17 shows the Lagrange multipliers for each inequality.

Figure 6.17 BI SMD Lagrange Multipliers
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The complementary slackness condition for the less than and greater than inequalities can be

assessed for optimality by examining Figures 6.18 and 6.19 respectively.

Figure 6.18 BI SMD-LT KKT Conditions Figure 6.19 BI SMD-GT KKT Conditions

It is important to note that in Figures 6.18 and 6.19, the complementary slackness condition

is not obeyed, but the primal feasibility condition is satisfied. The product between the

Lagrange multiplier ` and the value of the inequality constraint should be zero if an optimal

solution is achieved. Once again, this suggests that the solution is suboptimal in the

transient case.

6.5.1.4. Direct Optimization Results

Once again consider the spring-mass-damper system. This is a one-dimensional

system with one possible control input that is being optimized by minimizing the Gaussian.

As such, if there are = total collocation points, then x adopts a specific form.

x =
[
G1 . . . G= ¤G1 . . . ¤G= ¥G1 . . . ¥G= D1 . . . D=

])
Here, G=, ¤G=, ¥G=, and D= are the position, velocity, acceleration, and control input at the

collocation point corresponding to C=. This lends itself to formulation for the equality and

inequality constraints described above.
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�̄4@ =



−�=−1 C=' 0=−1 0=−1

0=−1 −�=−1 C=' 0=−1

:
<
�=−1

1
<
�=−1 �=−1 − 1

<
�=−1


b̄4@ =



−G0&=−1×1

−¤G0&=−1×1

0=−1×1


These quantities require definition of a quantity &U×V which denotes an U × V matrix of

ones. The first row relates the velocity to position, and the second row relates the velocity to

acceleration with the differential algebraic equations. The third row is the kinetic equation

of motion. Here, the results from the direct optimization of the spring-mass-damper system

under inequality constraints are presented and compared with the slack and excess variable

formulation.

Inequality constraints bounding the position at each collocation point between G = 1

and G = 2 are described by the �̄ and 1̄ matrices which are defined for the

spring-mass-damper problem as follows:

�̄ =


−�A1 03×(A−1)

�A−1 03×(A−1)

 1̄ =


−1

2


Functionally, setting an upper and lower bound on the position would accomplish the same

goal as these two inequality constraints. In addition, there are no nonlinear constraints in

this example, so those values are neglected. The continuous time optimal control problem

can be now solved by as a parameter optimization problem by a NLP solver.

The following numerical simulations adopt a maximum time of thirty seconds and the

timespan is discretized into five collocation points. The results from this optimization and

their comparison with the proposed method utilizing slack variables can be seen in Figures

6.20 through 6.27. The optimal position time history determined from the direct

optimization can be seen in Figure 6.20. Of specific importance is the the initial

displacement. Both started from the same initial conditions. However, when using the direct

optimization scheme and interpolating, the system displacement was forced to a minimum
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faster. They both converge to the same steady state. Similar to the position response, the

direct optimization scheme illustrates that both treatments of inequality constraints converge

to the same steady state that matches intuition about the system dynamics.

Figure 6.20 Optimal Position Comparison Figure 6.21 Optimal Velocity Comparison

The control accelerations capture the steady state dynamics. The initial acceleration is

assumed to be zero, which can bee seen in the interpolation in Figure 6.22. Examination of

Figure 6.23 proves the slack variable approach is greater than the optimal solution derived

from the direct optimization method. This is attributable to the singularity issue noted in the

formulation of the slack variable approach. As ? and @ can never be zero exactly, the

formulation will keep the displacement of the mass away from the active constraint limits.

This explains the damped, oscillatory behavior for this system.

Figure 6.22 Optimal Control Comparison Figure 6.23 Optimal Ctrl. Eff. Comparison
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The Lagrange multipliers for each constraint can be seen in Figures 6.24 and 6.25. The

less than inequality Lagrange multipliers converge to zero, which makes sense because the

less than inequality is not active. However, the determination of the Lagrange multipliers in

the greater than case is not very consistent with those from the UK formulation. Such a

difference prompts brief investigation into how the Lagrange multipliers are determined by

NLP solvers. Some will choose fixed estimates of the Lagrange multipliers, whereas others

will apply more adaptive methods (Liu et al., 2017; Betts, 1998). However, it has been noted

with Matlab and fmincon specifically that determination of the Lagrange multipliers may not

be accurate (Nocedal & Wright, 2006). Furthermore, increasing the number of collocation

points too much leads to near singular collocation matrices. Such collocation matrices cause

problems in determination of the Jacobians and Hessian matrices that in turn lead to fatal

errors in Lagrange multiplier determination (Nocedal & Wright, 2006). In summary, the use

of some Lagrangian-based optimization solvers can result in inaccurate Lagrange

multipliers (Fahroo & Ross, 2000). The development shown here does not rely on the

determination of the Lagrange multipliers and carries the advantages of the UK technique.

Figure 6.24 GT Lagrange Mult. Comp. Figure 6.25 LT Lagrange Mult. Comp.

Figures 6.26 and 6.27 show the complimentary slackness condition for these

inequalities. It shows that the direct method obeys the primal feasibility, dual feasibility, and

complimentary slackness conditions. As previously discussed, the UK formulation with
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slack and excess appears not to satisfy the dual feasibility and complementary slackness

conditions.

Figure 6.26 LT KKT Cond. Comp. Figure 6.27 GT KKT Cond. Comp.

6.5.2. Trajectory Maintenance Example

Assume a reference trajectory exists that is defined by a time history of the position,

velocity, and acceleration of a spacecraft given by rA , ¤rA , and ¥rA respectively. The actual

position and velocity of the spacecraft are given by r and ¤r. As such, the error in both of

these quantities can be defined.

r4 = r − rA ¤r4 = ¤r − ¤rA

Let the magnitude of the error in the position and velocity vectors be confined to be less

than some time-varying values X(C) and W(C), respectively. Therefore, two constraints are

possible.

61(q, ¤q, C) = | |r4 | | − X(C) ≤ 0 (101)

61(q, ¤q, C) = | |r4 | | − X(C) + @2
1 = 0

62(q, ¤q, C) = | | ¤r4 | | − W(C) ≤ 0 (102)

62(q, ¤q, C) = | | ¤r4 | | − W(C) + ¤@2
2 = 0
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Note the values for the magnitude of r4 and ¤r4 are required.

| |r4 | | =
√
(G − GA)2 + (H − HA)2 + (I − IA)2 (103)

| | ¤r4 | | =
√
( ¤G − ¤GA)2 + ( ¤H − ¤HA)2 + ( ¤I − ¤IA)2 (104)

Differentiating Equations (101) and (102) twice and once respectively yields the following:

¥61 =
(G − GA) ( ¥G − ¥GA) + ( ¤G − ¤GA)2 + (H − HA) ( ¥H − ¥HA) + ( ¤H − ¤HA)2√

(G − GA)2 + (H − HA)2 + (I − IA)2
+ . . .

· · · + ( ¤I − ¤IA) ( ¥I − ¥IA) + ( ¤I − ¤IA)2√
(G − GA)2 + (H − HA)2 + (I − IA)2

− . . .

· · · − [(G − GA) ( ¤G − ¤GA) + (H − HA) ( ¤H − ¤HA) + (I − IA) ( ¤I − ¤IA)]
2

[(G − GA)2 + (H − HA)2 + (I − IA)2]
3
2

− . . .

· · · − ¥X(C) + 2(@1 ¥@1 + ¤@2
1)

(105)

¤62 =
( ¤G − ¤GA) ( ¥G − ¥GA) + ( ¤H − ¤HA) ( ¥H − ¥HA) + ( ¤I − ¤IA) ( ¥I − ¥IA)√

( ¤G − ¤GA)2 + ( ¤H − ¤HA)2 + ( ¤I − ¤IA)2
− ¤W(C) + 2 ¤@2 ¥@2 (106)

Expressing these constraints in the format given by Equation (1) yields the following:

�1 =

[
G−GA
| |r4 | |

H−HA
| |r4 | |

I−IA
| |r4 | | 2@1

]
(107)

11 =
¥GA (G − GA) − ( ¤G − ¤GA)2 + ¥HA (H − HA) − ( ¤H − ¤HA)2 + ¥IA (I − IA) − ( ¤I − ¤IA)2

| |r4 | |
+ . . .

· · · + [(G − GA) ( ¤G − ¤GA) + (H − HA) ( ¤H − ¤HA) + (I − IA) ( ¤I − ¤IA)]
2

| |r4 | |3
+ ¥X(C) − 2 ¤@2

1

(108a)

or,

11 =
¥r)A r4 − ¤r)4 ¤r4
| |r4 | |

+
(¤r)4 r4)2

| |r4 | |3
+ ¥X(C) − 2 ¤@2

1 (108b)
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Similarly, for Equation (106),

�2 =

[
¤G−¤GA
| |r4 | |

¤H−¤HA
| |r4 | |

¤I−¤IA
| |r4 | | 2 ¤@2

]
(109)

12 =
¥GA ( ¤G − ¤GA) + ¥HA ( ¤H − ¤HA) + ¥IA ( ¤I − ¤IA)

| | ¤r4 | |
+ ¤W(C) (110a)

or

12 =
¥r)A ¤r4
| | ¤r4 | |

+ ¤W(C) (110b)

The reference trajectory for the lunar mass concentration problem is developed by

integrating the simple two-body problem around the Moon. Both orbits have approximately

an 11° inclination as this is not a frozen orbit and has historically displayed appreciable

perturbations from nonuniform lunar gravity. The simulation then employed a more

advanced gravity model for use with the UK Formulation. The GRAIL mission studied

lunar gravity and developed very accurate gravity models that included as many as 1200

degrees (Lemoine et al., 2013, 2014). The synthesized data for this model can be obtained

and utilized. For the sake of this analysis, a model up to degree 660 was selected (Konopliv

et al., 2013). The point mass spacecraft was chosen to have a mass of 300kg.

Figure 6.28 Trajectory Maintenance - Orbit Comparison

Figure 6.28 illustrates the comparison between the reference and UK trajectory. Figure

6.29 illustrates the position error for the lunar orbit simulation with the detailed gravity

model.
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Figure 6.29 Trajectory Maintenance - Position Error from Reference Orbit

Figures 6.30 and 6.31 show the relative motion of the spacecraft around the reference

trajectory and adherence to the constraint, respectively. Once again, it can be seen that the

dynamic behavior obeys the constraint.

Figure 6.30 Trajectory Maintenance - Relative Motion About Reference Trajectory

Figures 6.32, 6.33, and 6.34 illustrate the velocity error, control acceleration, and

control effort per unit mass of the spacecraft respectively.
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Figure 6.31 Trajectory Maintenance - Position Error Magnitude

Figure 6.32 Trajectory Maintenance - Velocity Error
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Figure 6.33 Maintenance - Control Figure 6.34 Maintenance - Control Effort

Relevant to this discussion is the nature of the control that acts to keep the spacecraft within

a certain radius of the reference trajectory. The spacecraft appears to impulsively apply

control to keep it within the acceptable error sphere, which exhibits the same bang-bang-like

control seen in the spring-mass-damper example. In general, this gives credence to the fact

that the formulation obeys the dynamical nature of these optimal control problems at short

intervals, even if they are not optimal from a control sense in the global case.

There is one caveat to using this methodology. The velocity is allowed to increase in an

unbounded fashion because there are no constraints on the velocity. For longer simulations,

the constraints begin to be violated. It is believed that these errors originate from this free

velocity motion. Figure 6.32 illustrates the erratic behavior in changes in velocity as time

progresses. As these changes increase, it may be more difficult to successfully counter the

position when the velocity is not monitored. Future work could include an analysis which

would consider both a constraint on position and velocity error.
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7. Conclusion and Future Work

Within this thesis, multiple tools for usage in constrained motion analysis have been

presented. In Chapter 3, a dynamical formalism for the effects of nonuniform gravitational

fields on rigid body spacecraft was generalized and presented for future use. The treatment

of constrained motion within the geometric mechanics framework was defined using

Udwadia-Kalaba formulation. This geometric mechanics Udwadia-Kalaba formalism

(GMUK) was provided on six-dimensional Euclidean space R6 for fully and

underconstrained systems of rigid bodies as well as on the double tangent

bundle T2SE(3) for the fully constrained case in Chapter 4.

Chapter 5 explored treatment of perturbations and disturbances within the UK

formulation. A Morse-Lyapunov based controller utilizing a backstepping technique was

extended to ensure the almost global asymptotic stability of the system under disturbed

initial conditions. This same controller was further manipulated to accommodate a set of

disturbances. It was shown that the Morse-Lyapunov based backstepping tracking control

technique introduced here was capable of treating external disturbances and perturbations in

the system while the constraint acceleration for the nominal system was obtained using the

UK formulation. In Chapter 6, a novel approach for incorporating inequality constraints

within UK formulation based on implementation of slack and excess variables was

presented and applied to two different systems. The optimality of this approach was

assessed using analytical and numerical analyses.

7.1. Future Work

As future work, there are several areas of the included development that can be further

explored. First, modeling of underconstrained systems on T2SE(3) requires simulation

based on the formulation presented herein. Furthermore, more complex constraints should

be explored and analyzed to better understand how robust the GMUK development is. In

addition, the application presented here was focused on elliptical and circular orbits. Using

this analysis for parabolic and hyperbolic orbits is expected to require little to no changes to
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the formulation; however, no simulations have been run with these conditions. Within the

usage of the Morse-Lyapunov based controller, more work can be done to tune the gains to

get a more desirable response; however, proof of the almost global asymptotic stability

remains despite the values of the gains detailed here. In addition, the implementation of

more higher order terms as detailed in Chapter 3 can be applied to add additional accuracy

to the dynamical model or perturbations acting on the system. The development of the

inequality constraint conversion to equality constraints would benefit from more rigorous

testing and analysis. The specification of the slack and excess dynamics should be of

paramount importance, as accurately determining an approach for modeling these dynamics

may further confirm the validity of this methodology.

Finally, a key area for development, both within constrained motion and geometric

mechanics, is trajectory optimization within said framework. There are two primary areas

that should be explored. First, at some point, both in direct and indirect trajectory

optimization, it will be required to compute the Hessian of a matrix with respect to another

matrix. The literature is somewhat unclear on how to approach this. Secondarily, analysis of

constrained optimization on matrix manifolds has yet to be fully developed. Optimization

algorithms do exist for matrix manifolds; however, traditional constrained optimization

methods, such as reduced gradient based algorithms, have not yet been formed on matrix

manifolds. Successful solutions to these issues will enable the development of optimization

schemes for rigid body motion on SE(3). Potential applications include trajectory

optimization of rigid-body spacecraft during lunar or Martian landing.
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