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ABSTRACT 

The spreading of metallic powder on the printing platform is vital in most additive 

manufacturing methods, including direct laser sintering. Several processing parameters 

such as particle size, inter-particle friction, blade speed, and blade gap size affect the 

spreading process and, therefore, the final product quality. The objective of this study is 

to parametrically analyze the particle flow behavior and the effect of the aforementioned 

parameters on the spreading process using the discrete element method (DEM).  To 

effectively address the vast parameter space within computational constraints, novel 

parameter sweep algorithms based on low discrepancy sequence (LDS) are utilized in 

conjunction with parallel computing. Based on the parametric analysis, optimal material 

properties and machine setup are proposed for a higher quality spreading. Modeling 

suggests that lower friction, smaller particle size, lower blade speed, and a gap of two 

times the particle diameter result in a higher quality spreading process. In addition, a two-

parameter Weibull distribution is adopted to investigate the influence of particle size 

distribution. The result suggests that smaller particles with a narrower distribution 

produce a higher-quality flow, with a proper selection of gap. Finally, parallel computing, 

in conjunction with the LDS parameter sweep algorithm, effectively shrinks the 

parameter space and improves the overall computational efficiency.  
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1. Introduction 

Additive manufacturing has drawn a great deal of attention in recent times. Numerous 

advances in the past decade have led to additive manufacturing applications in multiple 

fields such as engineering (Tepylo et al., 2019), robotics (Manfredi et al., 2013), and 

biology (Moreno et al., 2019). One of the most significant advantages of additive 

manufacturing lies in the ability to create optimized structures (Strano et al., 2013). For 

example, in Figure 1.1, the internal structure of the additive manufactured product has 

been optimized to exhibit higher tensile strength (Yadroitsev et al., 2007). Additive 

manufacturing answers the need for higher flexibility in designing complex structures. It 

can provide not only multiple solutions but also an optimized solution for designers.  

 

Figure 1.1  Structure optimization with additive manufacturing (Yadroitsev et al., 2007). 
 

Depending upon the raw material type, additive manufacturing can be classified as 

liquid, discrete particle, and solid sheet based approaches (Vayre et al., 2012). One of the 

most typical examples of discrete particle material is metallic particles. To satisfy higher 

strength needs and reduce difficulties with oxidation, metallic particles, such as stainless 
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steel particles and titanium particles, are commonly used (Froes & Dutta, 2014; Luecke 

& Slotwinski, 2014). The general idea in metallic additive manufacturing is similar to 

manufacturing with other raw material types, which is gradually laying the material up 

and binding these layers together by sintering or melting (Harun et al., 2018). The 

performance of the final product depends on particle properties and the laying up process 

among other factors. Compared with conventional metallic manufacturing, metallic 

additive manufacturing provides more accurate control and less material waste during 

manufacturing (Watson & Taminger, 2018). Considering the specific design need or 

factors such as cost, there are many metallic raw material choices and the additive 

manufacturing techniques available for any given application (Zhang et al., 2016). Due to 

these advantages, metallic additive manufacturing is getting more attention from 

designers and is quickly becoming the next-generation technology in many industries.  

Whether metallic powder or polymeric material is used, most additive manufacturing 

involves two continuous procedures: particle spreading and particle bonding. Several 

modeling techniques such as computational fluid dynamics (CFD) modeling (Tan et al., 

2019), Finite Element Method (FEM) modeling (Schoinochoritiset al., 2016) have been 

used to describe the particle flow behavior in the additive manufacturing process. Among 

those, the Discrete Element Method (DEM) is particularly effective in modeling granular 

materials allowing a detailed investigation of ‘micro’ behavior (Shmulevich, 2010). The 

algorithm of DEM is similar to molecular dynamics, and it was first proposed to study the 

force interaction between nine circular disks under varying pressure (Cundall & Strack, 

1980). The DEM has been utilized in many applications such as simulations for rock 
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fragmentation (Camones et al., 2013), pharmaceutical mixing or segregation (Yamane, 

2004), and granular flow behavior involving heat transfer (Kruggel-Emden et al., 2006).  

Many parameters affect the particle spreading quality in metallic additive 

manufacturing processes. These parameters can come from either material property or the 

machine setup. Optimizing some of these parameters can produce higher-quality particle 

spreading, resulting in higher printing quality, which is the primary motivation for the 

modeling and parametric analysis work in this thesis. A scientifically rational parametric 

analysis requires a large number of values to support the conclusion, which leads to a too 

high computational cost. For example, varying ten values for five parameters would 

result in a parameter space of 105 variations. Therefore, an algorithmic solution for 

reducing the required number of simulations while covering the parameter space 

effectively is also considered in this work. The second motivation for this work is to 

explore the application of novel parameter sweep algorithms to the parametric analysis in 

this problem.  

The primary objectives of this thesis are the following: 

(a) Develop and model for the particle spreading process and the various parameters 

that affect it using the discrete element method.  

(b) Systematically vary parameters and analyze the DEM simulations to understand 

the influence of each parameter.  

(c) Utilize a low discrepancy sequence (LDS) algorithm for parameter sweep to 

significantly improve the efficiency of the parameter sweep. This is the first 

application of LDS to a DEM model.  

(d) Summarize and propose future work that can extend this research 



4 
 

2. Scientific Background and Literature Review 

In this chapter, general principles of metallic additive manufacturing is introduced. 

The direct laser sintering is selected to describe the manufacturing procedure more 

specifically. The modeling for simulations is firstly presented and justified for its 

effectiveness from some previous studies. Additionally, the statistical tool adopted here is 

evaluated by some relevant researches.  

2.1. Additive Manufacturing Processes 

Additive manufacturing refers to a group of technologies that enable the building up 

of 3D objects layer by layer. Due to the recent advances in 3D printing technologies and 

CAD software, additive manufacturing is more frequently used to fabricate complex 

high-end products such as aircraft engine nozzles, artificial bones and joints (Seidel et al., 

2019; Grayson et al., 2010). The term “additive” in additive manufacturing comes from 

the commonly seen laying-up procedure during the fabrication where each layer adds up 

to a three-dimensional product. Such a manufacturing process can be contrasted to 

conventional ‘subtractive’ manufacturing processes such as machining, where the final 

design is achieved by removing material. 

Traditional subtractive manufacturing usually requires a large piece of raw material 

as the basis. The general idea of subtractive manufacturing can be revealed by the name, 

which is to create some structures by removing the material in a specific area as 

determined by the computer CAD program. As readily seen in the procedure, a 

fundamental subtractive manufacturing shortage lies in the input material. On the one 

hand, depending on the final design of the product, the raw material should be large 

enough to accommodate the final design. On the other hand, it is uncommon that the 
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removed material can be recycled for another design, which leads to a colossal waste in 

the manufacturing process (Hermez et al. 2019). Another shortage of subtractive 

manufacturing lies in the limitation of final product complexity. To generate a product 

with more complex structures, most situations combine both the subtractive 

manufacturing and additive manufacturing processes, which provide intricate designs but 

lead to a higher cost (Campbell et al., 2012).   

These shortcomings have been overcome through recent developments in additive 

manufacturing. Firstly, the raw material used in additive manufacturing comes in the 

form of very fine powders or as a thin sheet. Such input material allows the 

manufacturing process to be eco-friendly by using the material as needed. The principle 

of the bonding procedure in additive manufacturing is to bond layers of input material 

according to the design. In this way, unbonded materials are commonly available to be 

recycled for another design, which greatly minimizes the waste in the manufacturing 

process. Besides, adding the material layer by layer allows for higher design flexibility at 

a reasonable cost (Hermez et al. 2019).  

Years of research in additive manufacturing have led to the development of various 

manufacturing techniques to meet different requirements. When the application does not 

require high strength or stiffness, polymeric materials such as polymeric composites are 

widely chosen as filament material. One of the advantages of polymers over metallic 

materials is that the final product's property can be relatively easily modified by changing 

the property of the input material (Yuan et al., 2019). Specific additive manufacturing 

methods are useful for a given material type. For example, selective laser sintering (SLS) 

technology is mostly used for higher strength engineering thermoplastics such as nylon 
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(Beecroft, 2016). Fused deposition modeling (FDM) is more widely used for consumer 

products using thermoplastics such as PLA and ABS (Ahn et al., 2002; Mohamad et al., 

2016; Drummer et al., 2012).  

2.2. Direct Laser Sintering 

When it comes to metallic additive manufacturing, there are various techniques to 

choose from for the particle bonding procedure. Some standard metallic additive 

manufacturing techniques include direct laser sintering (DLS), electron beam melting 

(EBM), selective laser melting (SLM), and binder jetting (Harun et al., 2018).  

Most of the difference lies in the particle bonding process. The principal of metallic 

particle bonding is either to melt the particles by providing highly concentrated energy or 

bond particles together by inserting binder material. The aforementioned three commonly 

used techniques are all based on particle melting (Harun et al., 2018). All three 

techniques require highly-concentrated energy input; however, DLS requires lesser 

energy than EBM and SLM since it does not require all metallic particles to completely 

melt to bond with neighboring particles. Instead, only a portion of the particle will melt, 

and there remains a core formed by the unmelted particle portion. This detailed process 

was described in Zhu et al. (2003) and other DLS mechanism studies. (Simchi, 2006; 

Simchi et al., 2003).  

In contrast, the mechanism of particle bonding in EBM and SLM requires particles to 

melt completely. In this case, only limited filament types are available because the 

material melting point and energy input have to be taken into account (Patterson et al., 

2017). The modeling work on this thesis corresponds to the particle spreading process in 

approaches based on the particle bed fusion (PBF) like direct laser sintering.  
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Depending on the quality requirement of the final printed product, the detailed 

process of DLS varies for different printers. For example, it has been shown that adding 

the infiltration process produces parts that have lower residual stress and a higher printing 

quality (Vayre et al., 2012).  The simplified process of DLS is illustrated in Figure 2.1.  

 

Figure 2.1 Schematic of direct laser sintering. 
 

The set-up commonly consists of two different chambers, a powder delivery chamber 

and a printing chamber (Nandy et al., 2019). Metallic powder is input in the delivery 

chamber and is continuously provided by the delivery piston during the printing process. 

At the same time, a blade moves laterally, collecting some particles to the printing 

platform. By this process, a new layer of particles is spread on the printing platform. For 

particle bonding, a laser device generates a highly-concentrated laser beam. By working 
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along with the scanning system, the laser beam can sinter powders in specific areas 

according to the CAD design. After one layer is printed, the printing platform moves 

downwards, and a new printing cycle starts until all layers are printed.  

Due to the great potential of DLS for industrial applications, many studies deal with 

the optimization of the DLS process. It has been proved that the quality of the laser 

sintering process can be optimized by controlling the laser scanning rate or input energy 

density (Han et al., 2019). But some aspects that need further attention are the influence 

of particle size distribution, particle layer thickness, etc., which can be categorized as the 

properties of the powder bed (Averardi et al., 2020).  

Experimental studies have indicated that the quality of the particle spreading directly 

influences the final printing quality. Ziegelmeier et al. (2015) studied the effect of 

particle size and particle flow behavior on the printed part quality. They picked out 

particles from specific size ranges to create different size distributions. The result 

suggested that a higher flow efficiency and packing efficiency allows for a tighter printed 

structure. The study indicated that optimum particle size distribution with higher 

flowability can create parts with lower surface roughness and less void volume as well as 

lower porosity. In addition, Lu & Reynolds (2008) studied the effect of particle printing 

layer thickness on printing integrity and accuracy in TiNiHf alloy additive manufacturing 

process. In their work, breaking strength was used for describing the printed part 

integrity. The result suggested that 35𝜇𝑚 layer thickness can achieve the best printing 

performance obtaining the highest breaking strength and the most accurate printing. The 

optimal layer thickness exists due to the balance of time for the binding process in lateral 

and vertical directions.  
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2.3. Particle Dynamics Modeling using Discrete Element Method 

Particle dynamics is a sub-discipline of mechanics and dynamics that describes and 

analyzes the behavior of individual particles in a complex system. The particle is not only 

limited to solid granular particles but also includes fluid particles with an example of 

modeling a fluidized bed (Liu et al., 2017). In general, the idea of discretization is used in 

DEM, which is similar to the principle of the Finite Element Method (FEM). In both 

cases, modeling is considered effective in studying the macroscopic behavior of the 

system. DEM is effective in modeling discrete materials such as particles, whereas FEM 

is effective for analyzing materials and structures as continuous media (Munjiza et al., 

1995). In some cases, a hybrid combination of FEM and DEM can be applied to study the 

behavior of granular structures (Azevedo & Lemos, 2006). By discretizing a complex 

system, a natural advantage of DEM comes from a detailed description of the behavior of 

the dynamical network.  

The key to a realistic simulation of particle dynamics lies in the interaction between 

individual constituents, which is the basis of DEM. The principal of DEM is to observe 

the microscopic cluster behavior by defining the interaction between the constituent 

elements in the cluster (Shmulevich, 2010). By defining the interaction between particles, 

the state variables of a particle, such as the velocity, are changed based on a contact 

model. Such a change of the velocity can be further differentiated to obtain acceleration 

and the position based on Newton’s Second Law. A general flowchart of DEM can be 

illustrated in Figure 2.2.  

In DEM, particle status is determined by the interaction between two contacting 

particles. Such an idea of interaction and such application of Newton’s Second Law is not 
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only seen in DEM. In molecular dynamics (Rapaport, 2004), the interaction between two 

particles is based on internal energy. Similar to DEM, the motion of molecules and atoms 

are updated by the integration of Newton’s Second Law among the timestep. 

Additionally, in pedestrian dynamics (Helbing & Molnár, 1995), the interaction between 

two pedestrians is defined based on some social force model, which borrows many 

algorithmic features from DEM and molecular dynamics (Wa̧s et al., 2006). Here again, 

the position of each pedestrian is achieved by the integration of Newton’s Second Law.   

 

Figure 2.2  General procedure of DEM. 
 

To describe the realistic behavior of particles in DEM, various contact models have 

been developed in the past few decades. Originally, when DEM was first proposed, the 

contact model between two individual disks is defined based only on the velocity of the 

boundary (Cundall et al., 1980). Later, contact models incorporate both force and velocity 

in the inter-particle interactions (Peng, 2014).   
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It is essential to choose a contact model based on the specific objective due to the 

sensitivity of contact models to simulation parameters. For example, the selection of soft 

deformable particles or hard rigid particles can reveal the sensitivity of the result to the 

contact models (Peng et al., 2014). Besides, there is a balance between the accuracy of 

the contact model and the computational cost. For example, a linear contact model with 

rigid interaction is computationally efficient. However, adding the cohesion or the energy 

dissipation can lead to a higher accuracy with significantly more computational cost (Di 

Renzo & Di Maio, 2004). This characteristic of the contact model has been a problem 

when performing DEM, as the balance between the accuracy and computational effort 

has to be considered to choose a proper contact model.  

Another issue is the computational cost of the simulation setup. For example, the 

value of Young’s Modulus when simulating the metallic particles can significantly 

influence the computational cost. Some previous works have also observed a significant 

increase in the computational time when using the real particle mass in DEM simulations 

(Lee et al., 2018; Lommen et al., 2014). Some previous works also manually set up the 

kinematic energy to zero so that the computational time can be reduced, obtaining an 

insensitive result even if the situation is unrealistic (Xiang et al., 2016).  In such cases, 

the compromise between accuracy and computational cost should be considered when 

designing DEM simulations.  

2.4. Particle Spreading Simulations 

The powder bed in DLS is directly formed by laying up of the metallic particles. The 

particle flow behavior which can be correlated directly with the powder bed properties 

has drawn significant attention from researchers. Metallic particle diameters can be 
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extremely small, ranging from 5𝜇𝑚-100 𝜇𝑚, and contain irregular shapes, which 

increases the difficulty in particle flow behavior studies. DEM is widely used, especially 

in particle flow behavior studies in metallic additive manufacturing.  

Haeri (2017) optimized the blade shape in particle spreading using DEM. A super-

elliptic shape was chosen as the blade profile. Solid volume fraction (𝜑௦) and surface 

roughness (𝜀) are modeled as the index of printing quality. Multi-sphere Approximation 

(MSA) was developed to generate particles for performing DEM. The results indicate 

that shorter and wider profiles lead to higher quality. Also, increasing the width of 

concave and convex blades results in opposite variations of𝜑௦. Finally, the optimized 

blade and roller were compared to spreaders at the same spreader velocity. The sensitivity 

of the optimized blade to the spreading velocity was less than the sensitivity of a roller. 

This indicates that the optimized blade leads to a higher spreading speed and a higher 

manufacturing rate.  

Nan et al. (2018) investigated the particle jamming behavior on the printing bed and 

studied the relation between empty patches in the printed bed and the location of spreader 

using DEM. In their work, all parameters used in the simulation were obtained by a series 

of experiments, including particle indentation for modulus and impact experiment for 

interfacial surface energy. The result indicated that for particles in front of the blade, 

particle motion is dominated by the shear band whose width depends on the blade speed. 

For particles under the blade, a negative velocity was observed, which was described as a 

dragging effect from the blade. The total number of pores decreased sharply with an 

increase in gap height. Additionally, the jamming frequency and jamming survival 

duration were negatively correlated with the formation of pores.  
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Parteli and Pöschel (2016) conducted DEM simulations to investigate the interaction 

between the printed part and the spreader in the particle spreading. A multi-sphere 

method was used to approximate the realistic shape of particles. Observing the force 

transmission of particle flow, they found a phenomenon that certain particles may carry 

more stress, whereas others carry much less, which was described as a force chain and 

was due to a varying distribution of cohesive forces between particles and particle shapes. 

Additionally, the result suggested that a higher spreader speed leads to higher surface 

roughness. Smaller particle sizes can lead to a higher surface roughness, which was 

explained by the tendency of smaller particles forming randomly shaped groups.  

Haeri et al. (2017) studied the relationship between the fabrication process and 

printing performance using DEM. A multi-sphere technique was used to create the 

overlap of certain spherical particles to simulate the real particle shape in their work. The 

results indicate that the roller spreader performed better than the blade due to a larger 

contacting area and less particle dragging effect. When only considering the particle 

aspect ratio𝐴௥, 𝜑௦ will reach a peak around 𝐴௥ = 1.5, whereas 𝜀 will increase 

continuously. Additionally, the higher the spreader speed, the worse the printing 

performance.  

Nan and Ghadiri (2019) utilized DEM to study the influence of the gap between the 

blade tip and powder bed and blade speed. The result indicated the same increasing trend 

of particle speed in their previous study (Nan et al. 2018), but a further explanation of the 

shear band was given. When increasing blade speed and decreasing the gap, the center of 

the shear band moves downward, and the width increases, affecting more particles. 

However, the shear band center position is less affected by gap height when the blade is 
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moving at a higher speed. Mass of particle flow increases with a higher blade speed, but a 

peak performance exists depending on the blade speed. Besides, a critical gap height with 

a value around particle diameter exists, cutting off particle flow, and the gap height 

should always be larger than two times of particle diameter to efficiently spread particles.  

Han et al. (2019) studied layer thickness in particle spreading with DEM. Voids on 

the printed section can be reduced by increasing layer thickness due to a better particle 

flowability. After increasing the layer thickness to a certain extent, resilience can be 

observed due to the reduced compression between the spreader and the printing bed. For 

multi-layer printing, the printing quality was improved significantly because of the spatial 

interaction between particles in different layers. However, if layer thickness goes too 

high, a short feed phenomenon resulted from insufficient particle supply occurs at the end 

of printing. Therefore, an optimum layer thickness exists to balance the printing rate and 

particle short feed.  

Lee et al. (2018) studied the particle packing density in the spreading process using 

the DEM model. A mass scaling method considering reducing the incremental time step 

was utilized to reduce actual particle mass also to improve calculation efficiency and 

accuracy. As for outputs, apparent packing density and voxel packing density were 

defined for describing packing structure. Particle size distribution tests with equal-sized, 

positively skewed distribution and Gaussian distribution was analyzed. The result 

suggested a higher fraction of smaller particles leads to higher packing density. 

Xiang et al. (2016) correlated the packing density and the coordination number with 

the particle size distribution, the layer thickness, and the compression from the spreader. 

Simulations involved three different particle size distributions with the same mean radius 
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but various layer thickness for each distribution. The result suggested outputs do not vary 

much under different size distributions. However, with a larger layer thickness, both the 

packing density and the coordination number increase with a similar trend, and mono-

size distribution produces the highest packing density and highest coordination number. 

Within the compression procedure, all the parameters tend to stabilize, which suggests 

the compression can improve the packing behavior and limit the randomness of packing.  

 Deng and Davé (2013) used a multi-sphere method in DEM to study the relationship 

between aspect ratio, particle size, surface energy, and porosity. For non-cohesive 

particles, porosity almost remains constant independent of particle size. When increasing 

surface energy, porosity increases, but the influence becomes weaker for larger particles 

due to the larger gravity. For non-cohesive particles, porosity increases due to larger 

particle size and higher surface energy. Also, for spherical non-cohesive particles, the 

coordination number decreases for higher surface energy. For spherical cohesive 

particles, the coordination number increases, indicating a lower porosity. Also, the 

porosity increases for smaller particle sizes and higher aspect ratios.  

Bai et al. (2015) studied the methodology to improve sintered part density and 

powder bed density by varying bimodal particle size distribution. The result suggested 

the existence of large particles can improve both printing bed density and printed part 

density, which guides to optimize particle size distribution width without changing the 

mean size. However, this improvement was restricted by extra-large particle forming a 

rigid skeleton. Besides, optimized bimodal size distribution can contribute to reducing the 

volume shrinkage of the printed part after sintering.  
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Karapatis et al. (1999) studied the relation of particle composition and layer density 

by controlling the fraction of different sized particles. In the research, they proposed a 

formula for estimating the preferred composition for higher density. These numerical 

values matched well not only with their experimental study but also for some previous 

studies. Additionally, the total void volume fraction in the powder bed caused by the wall 

effect can be evaluated concerning the particle radius and the layer thickness. By 

increasing the smaller particle volume within a certain fraction range, the powder bed 

density can gradually increase.  

Chen et al. (2017) simulated flow behavior in particle spreading using DEM. In their 

work, the dynamic repose angle (DRA) describing the dynamic profile of the particle pile 

was defined to indicate flow fluidity. When increasing particle surface energy density, the 

particle flow turns discontinuous and unstable, leading to some large pores on the printed 

part. A higher friction coefficient can reduce fluidity. When not considering cohesion, 

decreasing particle size can attribute to better fluidity, continuity, and stability. However, 

if cohesion exists, the decrease of particle size has a lower boundary. Additionally, the 

spreading speed and the gap size do not have a significant influence on fluidity, but 

increased blade speed and decreased gap size can significantly deteriorate flow continuity 

and stability.  

Based on these previous studies, the quality of spreading can be considered to be a 

vital factor in overall printing quality. But the limitation of these previous works is, in 

each work, only one material with fixed parameters was simulated. However, in reality, 

there are numerous choices for input material properties and process variables. Therefore, 

in this parametric analysis, instead of a single value, a small range of numerical value is 
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given to each parameter to analyze the varying trends corresponding to all parameters. 

This can be considered as a novel contribution to this work.  

Additionally, when it comes to the effect of the particle size, not only uniform 

particles but also mixed particles may play a role in the particle spreading quality. In 

reality, due to the manufacturing process, it is extremely hard to find some uniform-sized 

particles when it comes to the fine powder. The particle size distribution can have both 

positive and negative effects, as suggested in the following previous studies.  

Spierings et al. (2011) investigated the influence of the metallic particle size 

distribution in additive manufacturing. From a previous study of their own, three different 

types of particle distribution were created, including a different fraction of large particles. 

In their work, surface roughness was introduced to evaluate the performance of the 

fabrication. The result suggested that a higher fraction of large particles tend to increase 

the surface roughness of the final product, which is considered as a negative effect. 

Additionally, the mechanical properties such as the tensile strength were also 

investigated, which indicates the existence of course particles can benefit the mechanical 

properties to a varying extent depending on the layer thickness.  

Siniko et al. (2019) proved the effect of the particle size distribution of Maraging 300 

powder in Laser Powder Bed Fusion. With a sequence of preliminary analyses, two of 

three types of size distribution with a slight difference in the mean size were finally 

studied. As a result, an observation of a relatively higher porosity is presented, which is 

explained due to a narrower distribution of particles. Besides, the surface roughness of 

the top and side of the printed part was studied as well. The result indicated that a particle 

size distribution with a slightly smaller mean size tends to obtain a lower top surface 
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roughness. A remelting process with a specified layer thickness was proposed to be 

effective in lowering the surface roughness and improving the surface quality.  

Based on these previous works involved with the particle size distribution, the most 

common way of obtaining the distribution by experiments is to observe the distribution of 

particles in a 2D plane. Then the overall size distribution in 3D space can be 

approximated. Some inter-layer distributions can be lost when converting the layer 

distribution to spatial distribution, which leads to an error of analysis. Despite the 

limitation, the method is still popular among experimental studies due to the ease of 

performing particle size observation in a plain (Fang et al., 1993; Nan et al., 2018).  

Another approach for obtaining the particle size distribution is to describe the particle 

variation by some mathematical distribution models. For example, Fang et al. (1993) 

investigated the particle size distribution analytically based on the experimental data. In 

their work, the Weibull function was used for data fitting. The frequency distribution 

fitting procedure was performed by an optimization algorithm based on the direct 

searching method and then unfolded into the realistic size distribution. The result 

suggested that the proposed Weibull distribution fit the raw particle size distribution well, 

which can be a potentially substituting method for the conventional way of finding the 

particle size distribution by the 2D distribution image.  

Note that describing the particle size distribution by a mathematical distribution 

model is empirical and does not have a strong theoretical basis (Fang et al., 1993). 

However, it can be an effective way to describe particle distribution when it comes to a 

large number of samples. In such cases, the experimental procedure can be accurate but 

more time and labor-consuming compared with the analytical particle distribution study.  
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2.5. Parameter Sweep Algorithms 

Parameter sweep is a well-developed methodology that has been commonly used in 

statistical analysis. A significant application of parameter sweep algorithms is to shrink 

the original parameter space while allowing parameters to cover the entire parameter 

space efficiently. Three commonly seen are lattice-based sweep, random sweep, and low 

discrepancy sweep. The parameter coverage for a 2D parameter space is described in 

Figure 2.3. 

   

 (a)    (b)    (c) 

Figure 2.3  Parameter Sweep Coverage of (a) Lattice Space (b) Random Space (c) LDS 
Space (Chunduri et al., 2018). 
 

 Parameter coverage in a lattice-based algorithm is generally considered not efficient. 

As shown in Figure 2.3 (a), the blank part is uncovered parameter space, and each grid 

represents a set of parameters. Apparently, in any parameter sweep, there will always be 

some blank part. Therefore, efficient coverage can be described when the distances 

between any of the two neighboring grids are relatively the same (Chunduri et al., 2018). 

Additionally, lattice-based sweep doesn’t provide an automatic convergence check. To 

check the convergence of the parameter space, a comparison between the current lattice 

and its sub-lattice has to be conducted. Due to the randomness of the sub-lattice space, a 

manual convergence check is inefficient. 
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Compared with a lattice-based sweep, a random sweep usually allows an automatic 

convergence check, which can save some computational cost. However, as shown in 

Figure 2.3 (b), the coverage of the new parameter space is inefficient, which has limited 

its utilization in statistical analysis. 

Compared with the other two, Low Discrepancy Sweep (LDS) has shown great 

potential in reducing parameter space. The discrepancy is a term used for describing the 

cumulative deviation between current parameter distribution and ideally uniform 

parameter distribution. LDS has been commonly used due to the more efficient parameter 

coverage and the ability to automatically check convergence. This increases the 

computational efficiency of the algorithm. LDS has been used for many applications, 

such as the boost of the Monte Carlo method (Tuffin, 1996) and a stochastic optimization 

algorithm (Yang et al., 2015).  

Chunduri et al. (2018) applied LDS in studying pedestrian infection behavior. A 

conventional lattice-based algorithm was compared with the LDS algorithm. The 

convergence in lattice parameter space was checked by manually comparing sub-lattice 

parameter space, whereas, in LDS, the convergence of pedestrian infection was checked 

by automatically comparing statistical parameters. Skewness and kurtosis were used for 

checking convergence. The result suggested that LDS can cover parameter space more 

efficiently and can significantly reduce the number of simulations to cover the parameter 

space.  

Braaten and Weller (1979) firstly proposed a scrambled Halton sequence and utilized 

the new sequence for multi-dimensional integration. In their work, a strong correlation 

was observed when using the Halton sequence in a higher dimension, which was 
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described as due to the monotonically increasing numbers used for generating the 

sequence. The overall discrepancy of the scrambled sequence was much lower than the 

original Halton sequence. When applied in an integral calculation, the scrambled 

sequence shows a much faster convergence rate compared with traditional Monte Carlo 

calculation and produced much lower fluctuation in the integration error than the Halton 

sequence. 

Rubio et al. (2015) applied the parameter sweep into an iterative optimization 

algorithm to simulate and find out the best energy distribution on an energetic island. In 

their work, two parameters were defined to describe the performance of the energy 

distribution, and the criteria for stopping algorithms were defined when two indicators go 

into an acceptable range.  The original parameter space was randomly created, going 

through a sequence of optimizing algorithms. During each stage of the optimization, the 

parameter set value changes, leading to a reshape of parameter space and generating new 

simulation models. The result suggested the great effectiveness of parameter space in 

finding neighboring parameter values through the iterative steps of the optimization 

algorithm.  

Kiss et al. (2010) utilized parameter sweep in recognizing carbohydrate for biological 

molecules. In their work, a user-friendly recognizing algorithm that contains parameter 

sweep was proposed. The algorithm combined parallel computing in molecular dynamics 

combined with a pre-defined parameter sweep aimed to process a large number of input 

files. Compared with the conventional method of recognizing large and complex bio-

molecules requiring weeks up to months, parameter sweep, along with parallel 



22 
 

computing, allows run similar-sized jobs in 24-36 hours, which is a significant 

improvement.  

Srinivasan (2002) compared the application of the Monte Carlo and the Quasi-Monte 

Carlo using various sequences, including low discrepancy sequences such as the Halton 

Sequence and the scrambled Halton sequence. It was stated that the convergence rate of 

the Quasi-Monte Carlo had been greatly improved with the utilization of the LDS due to 

the uniformity of QMC with LDS rather than the randomness of MC. The parallelization 

of QMC was studied to investigate the effect of various sequences. LDS was confirmed 

to have a good performance in low dimensions. However, when it comes to high 

dimensions, the performance of QMC can largely depend on the choice of the sequence. 

Certain sequences have poor performance in high dimensions with larger data space. 

However, such data distribution problems can be avoided by proper projections.  

In this thesis, we combine aspects of low discrepancy parameter sweeps with the 

DEM model of particle spreading process to fundamentally understand the factors 

affecting the quality of the powder flow behavior in additive manufacturing.   
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3. Methodology 

The flow behavior during the particle spreading can be difficult to fully investigate 

through experiments. The computational modeling using DEM is capable of detailed 

analysis of the complex interaction between particles in additive manufacturing. This 

parametric analysis focuses on the particle flow simulation in the context of additive 

manufacturing.   

3.1. Contact Model 

A variety of contact models have been proposed to mimic the realistic interactions 

between particles, ranging from small powders (Pantaleev et al., 2017) to larger granular 

objects such as rock (Jiang et al., 2015). A general classification of such models is based 

on the deformability of particles (Peng, 2014). A more detailed classification can be 

made based on the characteristic of the interaction of the particle property. For example, 

the microscopic cohesion effect concerning Van Der Waal force can be separately 

specified or combined to get into the most realistic particle interaction (Abbasfard et al., 

2016; Gan et al., 2016) 

In this work, the Hertz-Mindlin contact model is utilized to simulate the particle 

interaction. Hertz-Mindlin contact model is widely used for particle dynamics 

simulations for applications such as stress field description (Langston et al., 1994) and 

rotating drum simulation (Cheong et al., 2014).  It is considered as a non-linear contact 

model that produces an accurate interaction between particles with an acceptable 

computational cost. Another commonly used contact model with the Hertz-Mindlin 

contact model is the Johnson-Kendal-Robert (JKR) cohesive model (Johnson et al., 

1971). In such a model, the normal force between two particles is reduced by the Van Der 
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Waal force, which results in an energy transmission from kinematic energy to the particle 

elastic energy (Chen & Elliott, 2020). To consider the particle cohesion, the JKR contact 

model can be ported into the Hertz-Mindlin contact model. The behavior of smaller 

particles can be affected (Han et al. 2019; Nan et al., 2018).  

In the Hertz-Mindlin contact model, the interactive force between any two contacting 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒௜ and 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒௝ can be calculated based on Equation 1 (Kloss et al., 2012).  

 𝐹௜௝ = ቀ𝐾௡𝛿𝑛௜௝ −  𝛾௡𝑣௡೔ೕ
ቁ + ቀ𝐾௧𝛿𝑡௜௝ −  𝛾௧𝑣௧೔ೕ

ቁ (1) 

 

The total force between two particles is resolved into two directions, one normal to the 

line between two particle centers denoted by 𝐹௡ and one tangential to the line denoted by 

𝐹௧.  In both two directions, the damping effect and elastic effect are considered. The 

elastic effect is described by elastic coefficients 𝐾௡ and 𝐾௧ with overlapping in two 

directions 𝛿𝑛௜௝ and𝛿𝑡௜௝. Similarly, the damping effect is described by damping 

coefficients 𝛾௡ and 𝛾௧ with relative velocity in two directions 𝑣௡೔ೕ
.and 𝑣௧೔ೕ

. Firstly, the 

material parameters used in the contact model can be calculated from realistic 

engineering parameters from Equation 2 to Equation 6.  

 
𝐸∗ =

𝐸଴

2(1 − 𝜈଴)ଶ
 (2) 

 

 
𝐺∗ =

𝐸଴

4(2 − 𝜈଴)(1 + 𝜈଴)
 (3) 

 

 
𝑅∗ =

𝑅ଵ𝑅ଶ

𝑅ଵ + 𝑅ଶ
 (4) 
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 𝑚∗ =
𝑚ଵ𝑚ଶ

𝑚ଵ + 𝑚ଶ
 (5) 

 

 
β =

ln (𝑒)

ඥ𝑙𝑛ଶ(𝑒) + 𝜋ଶ
 (6) 

 

Whereas, 𝑅ଵ, 𝑅ଶ,  𝑚ଵ, 𝑚ଶ denote the mass and radius of the two contacting particles. 𝐸଴ 

𝐺଴ 𝜈଴ denote the realistic Young’s Modulus, Shear Modulus, and Poisson’s Ratio. 𝐸∗𝐺∗ 

𝑅∗𝑚∗denotes each equivalent parameter correspondingly. β is a coefficient related to the 

restitution coefficient 𝑒.  

Further, the stiffness in the normal direction 𝑆௡and the stiffness in the tangential 

direction 𝑆௧ can be obtained from Equation 7 and Equation 8, 

 𝑆௡ = 2𝐸∗ඥ𝑅∗𝛿௡ (7) 
 

 𝑆௧ = 8𝐺∗ඥ𝑅∗𝛿௡ (8) 
 

where 𝛿௡ denotes the overlapping between two particles in a normal direction.   

Lastly, the elastic coefficient and the damping coefficient can be calculated from 

Equation 9 to Equation 12. 

 
𝑘௡ =

4

3
𝐸∗ඥ𝑅∗𝛿௡ (9) 

 

 

𝛾௡ = −2ඨ
5

6
𝛽ඥ𝑆௡𝑚∗ ≥ 0 (10) 

 

 𝑘௧ = 8𝐺∗ඥ𝑅∗𝛿௡ (11) 
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𝛾௧ = −2ඨ
5

6
𝛽ඥ𝑆௧𝑚∗ ≥ 0 (12) 

 

The contact model applied in this work can be demonstrated in Figure 3.1. The 

sliding friction is included in the tangential direction, which is one of the reasons for a 

relatively more accurate result compared with some linear contact models but can 

increase the computational cost as a side effect. The sliding coefficient is applied to 

truncate the tangential overlapping 𝛿𝑡௜௝ by Equation 13.  

 𝐹௧ ≤ 𝜇𝐹௡ (13) 
 

 

Figure 3.1  Hertz-Mindlin contact model. 
 

3.2. DEM Simulation Setup 

The DEM simulation software used in this work is called LIGGGHTS 

(LAMMPS Improved for General Granular and Granular Heat Transfer Simulations) 
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(Kloss et al., 2012). LIGGHTS adapts the LAMMPS molecular dynamics algorithms 

(Plimpton, 1995) to DEM modeling of granular solids. Also, similar to LAMMPS, 

LIGGGHTS is capable of coupling with visualization software such as Paraview and 

VTK, which can provide a straightforward macroscopic observation of the simulation. In 

this work, Paraview (Ahrens et al., 2005) is coupled with LIGGGHTS for the post-

processing of the simulation data.  

To describe details of DEM in this work, a flowchart is provided in Figure 3.2. At the 

beginning of the simulation, a certain number of particles with specific material 

parameters are inserted. The contact criterion is defined as: when the distance of two 

particle centers is less than the summation of two particle radius, there is contact between 

two particles. Both the position and the velocity of each particle are obtained to compare 

with the criterion. When the criterion is not reached, namely, when there is no contact 

between two particles, the motion of each particle is only based on the gravity and can be 

derived by Newton’s Second Law. Thus, the updated position of two particles is provided 

with a timestep.  

 

Figure 3.2  DEM flowchart. 
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When two particles are contacting, the DEM algorithm calculates the inter-particle 

forces based on the contact model. If there is contact between two particles, both the 

elastic force and the damping force are calculated based on particle property, as shown in 

Equations 2 - 12. The tangential contact force can be obtained from the normal contact 

force and a truncated friction coefficient. The effect of gravity is included, and the 

acceleration for each particle is evaluated using Newton’s Second Law. This is followed 

by integration with a small timestep to determine updated velocities and the updated 

positions of two contacting particles.  

To replicate the realistic particle spreading process, a rectangular geometry is inserted 

into the simulation box to mimic a blade spreader carrying some particles with varying 

speed from left to right. Figure 3.3 shows a partial magnification of the blade tip area. 

Some particles are accumulated in front of the blade. A gap allowing particles to go 

through is defined with the distance between the blade tip and the printing bed. The gap 

distance is one of the parameters studied in this parametric analysis. In this figure, a post-

processing area is defined as well, which will be described in detail later.  

 

Figure 3.3  Blade tip area. 
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In this parametric analysis, in addition to the gap size, the inter-particle friction, the 

particle diameter, and the blade speed are also investigated. All parameters used in the 

DEM simulation are listed in Table 3.1. 

Table 3.1  

Simulation parameters. 

Parameters Value 
Particle diameter, D (mm) 1, 1.5, 2, 2.5, 3 
Particle density, ρ (kg 𝑚ଷ⁄ ) 7980 
Young’s modulus, E (GPa) 2.1 
Effective Young’s modulus, E (MPa) 21 
Poison ratio, 𝜐 0.3 
Friction coefficient 0.1, 0.15, 0.2, 0.25, 0.3 
Restitution coefficient 0.4, 0.45, 0.5, 0.55, 0.6 
Gap size(mm) 1, 2, 3, 4, 5 
Blade speed(m/s) 1.2, 1.3, 1.4, 1.5, 1.6 

 

The average parameter values are obtained from a previous study (Nan & Ghadiri, 

2019) using similar material. For example, for the four parameters studied in this work, a 

range is adopted rather than a single numerical value compared with previous studies. 

The modification aims to adjust the DEM simulation to this parametric analysis. In 

previous works (Nan & Ghadiri, 2019; Nan et al., 2018; Parteli & Pöschel, 2016), only 

fixed material with certain fixed parameters were used to investigate the flow behavior. 

However, in reality, the material property can vary with the filament type. Even for the 

same type of material from different manufacturers, the material property may vary as 

well. Thus, the variables in this work are given a small range based on the realistic value.  

One thing to notice is that Young’s Modulus used in this work is called the effective 

Young’s Modulus which is two-order lower than the realistic modulus. This modification 

is to reduce the computational cost. A solution to properly balancing the simulation 
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accuracy and the computational cost is to reduce the order of the Young’s Modulus 

within 10ଶ(Parteli et al., 2016). A more detailed discussion about such compensation is 

presented later in Section 5.1. 

The focus of the thesis is to investigate the flow behavior in front of the blade or near 

the gap. A post-processing area in front of the blade, as shown in Figure 3.3, is identified 

as a representative post-processing area for this purpose. Nan & Ghadiri (2019) used a 

similar post-processing region for analyzing flow behavior.  

The particle flow should be smooth and stable to produce a higher printing quality. 

This can be correlated to the distribution of the particle velocity of all collected particles 

in front of the blade. To be specific, a smooth variation of the velocity distribution along 

the direction of motion of the blade can indicate a smooth and stable particle flow. The 

output of the LIGGGHTS DEM simulation can be post-processed to obtain the resolved 

velocity of each particle along with detailed location coordinates. Defining the direction 

of blade motion as the x-direction and z-direction is perpendicular to the powder bed, the 

velocity of a particle in the x-direction is denoted by𝑣௫. The 𝑣௫ distribution among z-

direction is described for the judgment of the particle flow smoothness.  

Smooth distribution of 𝑣௫ among different layers of particles is desired (Nan & 

Ghadiri, 2019). Note that the particle size and the height H of each layer to the blade tip 

are parametric variables in this study. Therefore, the layer location is defined by the 

average particle diameter D, which is defined as the relative height H/D. The distribution 

of particle speed 𝑣௫ among the particles at a given height is chosen as the indicator of the 

particle flow smoothness. As shown in Figure 3.4, the dimension of the post-processing 

area is defined based on the particle diameter. The absolute dimension of the area can 
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change with varying particle size. However, by defining the relative height, the 𝑣௫ 

parameter is standardized.  

 

Figure 3.4  Post-processing area dimensions. 
 

 

Figure 3.5  Initial setup of DEM simulation. 
 

In all simulations, at the beginning of the simulation, particles are inserted into the 

insertion box which is located at the top of the simulation box. After particle insertion, all 

particles fall freely into the simulation box due to the effect of gravity.  At the end of this 

step, particles form a pile with some random shapes depending on the particle number 
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and the particle size, as shown in an example simulation setup in Figure 3.5. This is not 

the same as the flat distribution of particles before the spreading procedure (Nandy et al., 

2019). However, such two initial distributions share the same moment that particles 

interact with the blade forming a triangular pile in front of the blade. Therefore, in this 

work, only the interacting moment is considered to replicate the realistic spreading 

regardless of the original distribution of particles. This simplification aims to reduce the 

number of particles as many as possible, controlling the computational cost in an 

acceptable range. The flow behavior analysis in this work occurs in the middle of 

spreading, which guarantees full contact of the blade and particles, so that makes the flow 

behavior approach the realistic spreading.  

A mathematical distribution model is used in this work to describe the particle size 

distribution.  Numerous distribution models are used for describing the particle size 

variation. Applying the mathematical distribution models is considered to be an effective 

method for describing various-sized particles in the following studies.  

Shirazi & Boersma (1984) and Buchan & Buchan (1989) used Gaussian distribution 

and lognormal distribution to describe the particle size distribution of the soil sample 

composed of clay, sand, and other textures. Similarly, a modified lognormal distribution 

was proposed by Wagner & Ding (1994) for evaluating the soil particle size distribution. 

Hartmann et al. (1988) applied log-hyperbolic distribution to investigate the particle size 

sorting and distribution. Pinnick et al. (2007; 1985) described the size distribution of dust 

particles that are generated by vehicles in traffic using bimodal distribution. In addition to 

microscopic particles, Kittleman (1964) used Rosin’s distribution to fit the size 

distribution of rocks.  
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In this work, Weibull distribution is chosen due to its natural simplicity and 

versatility. The prototype of Weibull distribution was performed by Rossin & Rammler 

(1933) to describe the size distribution of the powdered coal. However, Weibull 

distribution was proposed officially later in Weibull (1951) to characterize the 

fragmentation of materials. It is believed that Weibull distribution and its integral form, 

namely, Rossin-Rammler distribution, are capable of quantitatively describing the size 

distribution of fragmentation among materials (Zobeck et al., 1999).    

In previous studies, Weibull distribution has been widely used for characterizing the 

particle size distribution. For example, Wohletz et al. (1989) used Weibull distribution to 

describe the particle size distribution of volcanic ash. Boadu & Long (1994) used the 

Weibull distribution to describe the size distribution of broken rocks. A similar approach 

was used by Froehlich & Benson (1996), when studying the size distribution of dumped 

rocks. Additionally, Weibull distribution was applied to investigate the size distribution 

of the crushed ice particles (Tuhkuri, 1994).  

The cumulative density function of particle size is an effective parameter for 

describing the distribution. Based on the relationship between the cumulative density 

function and the probability density function, most cumulative density functions are 

derived from the integral. An advantage of Weibull distribution is that the cumulative 

density function of the can be directly obtained from the self-defined parameters.  

To be more specific, the number of particles that are larger than size x per unit 

volume can be evaluated by Equation 14 (Fang et al., 1993). In the equation, N denotes 

the total number of particles per unit volume, whereas 𝛼, 𝛽, 𝛾 are adjustable parameters 

controlling the shape of the Weibull distribution and can be determined directly by data 
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fitting, which should be easier than fitting the integral form of cumulative density 

function in other distribution models.  

 
𝑁வ = 𝑁 ∗ exp [−

(𝑥 − 𝛼)ఉ

𝛾
] (14) 

 

Another reason for the Weibull distribution being commonly used for describing the 

particle size distribution lies in the data fitting. Generally, it is feasible to apply other 

mathematical models such as lognormal distribution and normal phi distribution. 

However, such models require a logarithm conversion from the actual particle size, which 

could be a source of errors in describing the realistic size distribution.  

 

Figure 3.6  Realistic particle size distribution (Nan & Ghadiri, 2019). 
 

In this work, the Weibull distribution parameters are obtained from a previous study 

(Nan & Ghadiri, 2019). In their work, the actual particle size distribution is obtained by 

observation of SEM, which gives the result shown in Figure 3.6. In such distribution, a 

data fitting procedure is performed to calculate the Weibull distribution parameters to 

mathematically describe the particle size distribution. The probability density function 

and the cumulative density function achieved by data fitting are shown in Figure 3.7.  
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Figure 3.7  Numerical distribution function of the particle size. 
 

Unfortunately, the particle size distribution function of LIGGGHTS is no longer 

available in the current version. Due to this limitation, a sequence of featured data points 

in the size distribution has to be provided. Considering the limitations of particle insertion 

and the probability density function, five featured particle diameters are chosen, and each 

corresponding fraction is obtained from the Weibull parameters. As done in the case of 

uniform particle size, the particle diameter is scaled up to make the simulation more 

computationally effective and comparable with other simulations in this work.   

Note that the sample space given by the previous study can be described based on the 

particle size variation, which means the largest particle diameter is around two times the 

smallest particle diameter and is considered as a wide distribution. In this way, two kinds 

of particle distribution are used for given particle size. The first strategy is to use the 

same numerical relationship between the largest and the smallest particles to make this 

work comparable with the previous work (Nan et al., 2019), giving the same mean 

particle size. Then, the Weibull distribution is further modified into a narrower 
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distribution to indicate a higher quality metallic powder. Detailed distribution is defined 

in Section 4.6.  

Additionally, to further investigate the relationship between the particle size 

distribution and the gap size, simulations are performed with a fixed gap size and with 

varying gap sizes for each case. The particle size and the gap size for simulations are 

given in Table 3.2 and Table 3.3. Detailed reasons for selecting these values will be 

discussed in Chapter 5.  

 

Table 3.2 

Particle diameters in strategy 1 with (a) uniform (b) varying gap size. 

Fraction 
(%) 

Particle Diameter(mm) 
1mm 1.5mm 2mm 2.5mm 3mm 

4.44 0.7 1.1 1.4 1.7 2 
22.76 0.85 1.3 1.7 2.1 2.5 
40.78 1 1.5 2 2.5 3 
26.91 1.15 1.7 2.3 2.9 3.5 
5.11 1.3 1.9 2.6 3.3 4 

Gap(a)(mm) 5 
Gap(b)(mm) 2 3 4 5  

 

Table 3.3 

Particle diameters in strategy 2 with (a) uniform (b) varying gap size. 

Fraction 
(%) 

Particle Diameter(mm) 
1mm 1.5mm 2mm 2.5mm 3mm 

4.44 0.8 1.3 1.8 2.3 2.8 
22.76 0.9 1.4 1.9 2.4 2.9 
40.78 1 1.5 2 2.5 3 
26.91 1.1 1.6 2.1 2.6 3.1 
5.11 1.2 1.7 2.2 2.7 3.2 

Gap(a)(mm) 5mm 
Gap(b)(mm) 2 3 4 5  
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The same procedure, as illustrated before, is utilized for post-processing. However, 

since the analysis is based on the uniform particle diameter, the selection of the average 

particle diameter is crucial. A general solution is adopted in this work, which is based on 

the cumulative density function of the particle size distribution. When translating the 

cumulative density function into the particle size distribution, for example, 𝐷ଽ଴ denotes 

that 90% of particles’ diameter is smaller than𝐷ଽ଴. Therefore, considering the cumulative 

density function as shown in Figure 3.7 (b), 𝐷଼ହ is used for the post-processing, which 

happens to be the fourth featured diameter.  

3.3. Parameter Sweep 

To understand the effect of different parameters of the particle flow process, the 

parameter space is further expanded. Both lattice-based parameter sweep and LDS 

parameter sweep are conducted to compare the convergence rate and the computational 

efficiency of the parameter sweep algorithm. The lattice-based sweep is performed within 

the same numerical value range but giving varying intervals to create different lattice 

parameter space. The detailed parameter space is listed in Table 3.4. 

 

Table 3.4 

Lattice-based parameter space simulation parameters. 

Parameter Range Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 
Friction 0.1-0.3 5(0.045) 6(0.036) 7(0.03) 9(0.0225) 10(0.02) 
Particle 
size(mm) 

1-3 5(0.45) 6(0.36) 7(0.3) 9(0.225) 10(0.2) 

Gap 
size(mm) 

1-5 5(0.9) 6(0.72) 7(0.6) 9(0.45) 10(0.4) 

Blade 
speed(m/s) 

1-5 5(0.1125) 6(0.09) 7(0.07) 9(0.05625) 10(0.05) 

Number of grid 625 1,296 2,401 6,561 10,000 
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Although simple to understand, lattice-based parameter sweep is computationally 

inefficient and requires significant computational effort. One of the common solutions to 

this problem is to run all simulations in parallel rather than in serial. To be more specific, 

tasks can be divided into several sections and are assigned to a certain number of 

processors depending on the job size and system utilization.    

 

Figure 3.8  Conventional parallel computing task assignment (Tang, 2011). 
 

Despite the improvement of the computing efficiency compared with serial 

computing, running jobs in parallel usually produces computational waste commonly due 

to the inactive processor, as shown in Figure 3.8. In other words, improper task 

assignments may lead to a different time for each processor to finish its section. But the 

total time needed for completing the task depends on the processor which is running the 

longest job. Therefore, the common situation is that one or two processors are still 

running the task, but the other processors may have finished their assigned tasks going 

into the inactive status and resulting in computational waste.  

To optimize the simulation task assignment, a parallel computing tool called the GNU 

parallel is applied in this work. It is considered a powerful shell tool for processing a 
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large-sized job. The basic application of the GNU parallel lies in processing multiple 

tasks on multiple processors at the same time, which can be done by conventional parallel 

computing as well. However, a more flexible task assignment control of the GNU parallel 

is better than the other conventional parallel computing tools. For example, a 

computational space for running a large job can be limited as desired based on the system 

and the current computing resource distribution, which may provide an optimized 

utilization of the computing space to satisfy various conditions.  

 

Figure 3.9  GNU parallel computing task assignment (Tang, 2011). 
 

The greatest advantage of the GNU parallel is that it provides a smart solution to 

assigning tasks into multiple processors, as shown in Figure 3.9. Compared with 

traditional parallel computing tools assigning all tasks at one step, the GNU parallel will 

gradually assign tasks to processors one by one. With that being said, another task 

assignment is triggered after one job is done. The most direct result of this smart 

assignment is that the task distribution on each processor is changed, which reduces the 

time waste due to inactive CPUs.  
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In this work, the GNU parallel is applied in both lattice-based parameter space and 

LDS parameter space to obtain optimized parallel computing and to reduce the time cost 

for running all simulations. Specifically, several LIGGGHTS script files containing 

various parameter values are generated and assigned to the requested number of 

processors with the optimization from the GNU parallel, as shown in Figure 3.10.  

 

Figure 3.10  Task assignment of DEM simulation. 
 

 

  

Figure 3.11  Data distribution of (a) Halton sequence (b) scrambled Halton sequence in 7th 
and 8th-dimensional system (Braaten & Weller, 1979). 
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Similarly, the parameter space is expanded for the LDS parameter sweep as well. 

However, instead of using equally-spaced values for each parameter, the LDS parameter 

sweep is generated as several mathematical sequences that are widely confirmed to have 

efficient parameter coverage (Schmid & Uhl, 2001; Kolenikov, 2012; Morokoff & 

Caflisch, 1994). However, each sequence may have various properties, and the choice of 

the sequence for generating the LDS parameter space can depend on the specific need of 

the research.  

In this work, the scrambled Halton sequence, an evolution of the Halton sequence, is 

applied and is adjusted to the current parameter space. The sequences use coprime 

numbers as base numbers to generate points in the range [0, 1]. Compared with other 

sequences, the Halton sequence allows easier parameter addition for later work and avoid 

computational waste (Chunduri et al., 2018). Moreover, these sequences were shown to 

be effective in a lower-dimensional system (Kolenikov, 2012; Kocis & Whiten, 1997).  

 The only reason for choosing scrambled Halton sequence is, when it comes to a 

higher dimensional system, the Halton sequence presents a strong linear correlation 

between points that produce inefficient point distribution in high-dimensional space 

(Braaten & Weller, 1979). The scrambled Halton sequence introduces a permutation 

function to scramble the sequence to efficiently generate data points in a higher-

dimensional system. Figure 3.11 shows 100 data distribution in the two sequences for a 

7th and 8th-dimension. A strong correlation of points can be observed in Figure 3.11 (a). 

Although 100 data points are insufficient for any parametric analysis, the linear 

correlation still exists, which makes scrambled Halton sequence more suitable to this 

work compared with the original Halton sequence.  
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Four parameters are studied in this work, generating a 4-dimensional parameter 

space. Since the scrambled Halton sequence only generates data points in the interval of 0 

to 1, each parameter value has to be scaled to fit in the current parameter space, making it 

comparable with the lattice-based parameter sweep. The parameter value is scaled in such 

a way: Supposing the lower limit and the upper limit of the lattice-based parameter range 

are denoted by A and B, and the corresponding data point generated by the Scrambled 

Halton Sequence is X (0<X<1). Then, the scaled parameter value fit in [A, B] is𝐴 +

𝑋(𝐵 − 𝐴).  

Compared with the post-processing procedure in the first part of this parametric 

analysis, instead of investigating the velocity distribution of particles in front of the 

blade, a new post-processing area is defined for parameter sweep, and a new parameter is 

introduced to describe the performance of the particle spreading, which makes the result 

of the parameter sweep more visible and quantifiable.  

 

Figure 3.12  Post-processing area for parameter sweep. 
 

In this parameter sweep section, instead of studying the area in front of the blade, a 

post-processing area under the blade is defined, as shown in Figure 3.12. The area is 
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defined as a rectangle with the same height as the current gap size of each simulation and 

the same width as the blade thickness. Besides, the depth of the post-processing area is 

the same as the blade width.  

The newly defined parameter is called the mass flow rate, denoted by MFR. In 

general, it is a parameter describing how many particles are going through the gap. There 

is no doubt that a higher MFR should be expected in the particle spreading so that a 

higher manufacturing rate can be achieved. Based on some of the previous studies (Nan 

& Ghadiri, 2019; Chen et al. 2017), there are different ways to define the MFR, either by 

the particle volume or by the particle mass. In this work, mass-based MFR is adopted as 

the indicating parameter for the parameter sweep.  

In each simulation, MFR can be calculated using Equation 15. To be specific, the 

mass of the ideal flow can be calculated by Equation 16, where w and h denote the width 

of the blade and the gap size correspondingly. 𝜌 is the particle density, and v is the 

current blade speed. The mass of n particles under the blade is obtained using Equation 

17, where 𝑚௜ denotes the mass of 𝑖௧௛ particle. 

 
𝑀𝐹𝑅 =

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑓𝑙𝑜𝑤 𝑢𝑛𝑑𝑒𝑟 𝑏𝑙𝑎𝑑𝑒

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑖𝑑𝑒𝑎𝑙 𝑓𝑙𝑜𝑤 𝑢𝑛𝑑𝑒𝑟 𝑏𝑙𝑎𝑑𝑒
 (15) 

 

 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑖𝑑𝑒𝑎𝑙 𝑓𝑙𝑜𝑤 = 𝑤 ∗ ℎ ∗ 𝑣 ∗ 𝜌  (16) 
 

 
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑓𝑙𝑜𝑤 = ෍ 𝑚௜

௡

௜ୀଵ

 (17) 

 

Note that instead of using the thickness of the blade as the x-dimension of the post-

processing area, the blade moving speed is adopted since the blade speed is a varying 
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parameter in this work, and the blade speed will have a certain influence on the flow 

behavior, which uses the same idea of the relative height from the first part of this work. 

By including the blade speed in the volume of the post-processing area, all cases are 

standardized and comparable with each other, and MFR can be considered as a transient 

parameter related to the blade motion. 

MFR is used for checking the convergence of the parameter sweep. To describe each 

parameter space more comprehensively, mean, standard deviation, skewness, and 

kurtosis are calculated in each parameter space based on Equation 18 to Equation 21.  

 
Mean: 𝑥̅ =

∑ 𝑀𝐹𝑅௜
ே
௜ୀଵ

𝑁
 (18) 

 

 

Standard Deviation: S =  ඨ
∑ (𝑀𝐹𝑅௜ − 𝑥̅)ଶே

௜ୀଵ

𝑁
 (19) 

 

 
Skewness: Skewness =  

3 ∗ (𝑥̅ − 𝑚𝑒𝑑𝑖𝑎𝑛)

𝑆
 (20) 

 

 
Kurtosis: Kurtosis =

∑ (𝑀𝐹𝑅௜ − 𝑥̅)ସே
௜ୀଵ

𝑁𝑆ସ
 (21) 

 

Here N denotes the total number of simulations included for current parameter space. 

The criterion is defined based on the relative change compared with the previous 

parameter space. The criterion for convergence is that the relative change of any one of 

the above statistical parameters in two continuous parameter space is within an 

acceptable range.  
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Figure 3.13  Lattice-based parameter space convergence checking algorithm. 
 

The convergence analysis can be illustrated by a flowchart in Figure 3.13. In lattice-

based parameter space, input files for DEM simulation are generated in certain sequences 

and are assigned to the processors running through GNU parallel computing, and 

independent simulation outputs are obtained. Then the data is processed to obtain MFR 

and further other statistical measures. For checking convergence, all statistics for current 

parameter space are compared with all statistics in sub-lattice obtained by following the 

same procedure. If it is not converged, a new lattice space is generated, and the procedure 

is repeated.  

A key shortcoming of the lattice-based parameter sweep relates to convergence 

checking. The lattice parameter sweep algorithm does not permit efficient initialization or 

convergence check.  For example, if the lattice size is too large, it may not describe the 

parameter space efficiently. If the meshing is too fine, the original parameter space may 

have already converged for a long time. Therefore, a significant computational effort is 

required for initialization and convergence estimation.  
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Figure 3.14  LDS parameter space convergence checking algorithm. 
 

On the contrary, LDS convergence checking is an automatic procedure compared 

with the lattice-based parameter sweep. The convergence checking algorithm is described 

in Figure 3.14. Given a certain amount of input files for DEM simulations, all 

independent results are processed to get MFR for each parameter. Compared with a 

lattice-based sweep that is starting with the entire parameter space, LDS sweep starts with 

a small portion of data getting an MFR data source. All statistical measures are calculated 

at first and are compared as a base for the following LDS parameter space until the 

convergence criterion is reached.  

The automation of LDS convergence checking lies in the generation of the new 

parameter space. Specifically, instead of generating a sub-lattice space with new 

parameters, LDS convergence checking generates a new parameter space based on the 

existing data by expanding the current parameter space step by step. Through this 

approach, the need for simulations for sub-lattice space is eliminated, and the influence of 
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improper selection on the first parameter space is more balanced than the lattice-based 

parameter sweep.  
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4. Results 

In this chapter, the influence of the inter-particle friction, the particle size, the gap 

size, and the blade speed are analyzed and discussed at first. The effectiveness of the 

parameter sweep algorithm is validated in the latter part of this chapter.  

4.1. Parametric Analysis in Particle Spreading 

The dynamics of the particle spreading process is analyzed using the velocity 

distribution along with different layers on the printing bed. Although simulations are 

different from each other with various parameter values, the differences are not at a scale 

that can be captured through visualization. An example simulation in Figure 4.1 can 

directly demonstrate the particle behavior and the interaction between particles and the 

blade. The entire simulation is animated by linking a certain number of continuous 

snapshots based on the timestep. 

 

Figure 4.1  Particle behavior during DEM simulation. 
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Despite macroscopic similarities in the visualization of particle behavior, the particle 

velocity distribution can vary greatly with different parameter values. To further elucidate 

the ideal velocity distribution, two example curves from the later analysis are given in 

Figure 4.2. A smooth increase in 𝑣௫ in different layers, as shown in Figure 4.2 (a), can be 

considered as an ideal flow, which is observed from visualization, providing a higher 

particle spreading quality with an even layer of particles distributed on the printing bed. 

Such an ideal flow is clearly differentiated from the flow of a uniform 𝑣௫ distribution, as 

shown in Figure 4.2 (b), whose visualization is shown in Figure 4.2 (d).  

Two typical undesired  𝑣௫ distributions are presented Figure 4.2 (b) and (c). One is 

the uniform distribution corresponding to an inefficient spreading resulted from, e.g., a 

large gap with small particles. From the visualization, the blade moves towards the 

surface of the particle pile, and clogging is found at the blade tip, as shown in Figure 4.2 

(e), leading to an uneven distribution of particles. In reality, such an uneven distribution 

requires varying levels of energy in the particle bonding during sintering, which can 

create voids and pores in the final product (Han et al., 2019). Another possible reason for 

such a uniform 𝑣௫ distribution may come from the high blade speed. A similar 

observation is also presented in previous work (Nan et al., 2018). Figure 4.2 (c) and (f) 

show another kind of undesired 𝑣௫ distribution. This highly fluctuating 𝑣௫ distribution 

results in a messy and unstable particle flow and may lead to defects in the final product.   

Note that Sections 4.2-4.5 consider uniform particle size distribution. While particle 

sizes can vary within a given sample, the uniform particle size is utilized in the initial 

analysis to understand the effect of various parameters. In Section 4.6, the effect of 

particle size variation is considered by using Weibull distribution, as discussed in chapter. 
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In addition, to study the influence of the restitution coefficient, simulations include five 

different values listed in Table 3.1 are conducted. The result suggests a neglectable effect 

on the flow behavior.   

 

(a) (b) 

 

 

(c) (d)                  

Figure 4.2  Examples of 𝑣௫ distribution and visualization for (a)(d) ideal spreading  
(b)(e) inefficient spreading (c)(f) unstable spreading. 
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                             (e)                                                                 (f) 

Figure 4.2  Examples of 𝑣௫ distribution and visualization for (a)(d) ideal spreading  
(b)(e) inefficient spreading (c)(f) unstable spreading. 
 

4.2. The Effect of Particle Size 

Firstly, the effect of the particle size is analyzed. In this analysis, all four parameters 

(particle size, friction, gap size, and blade speed, parameter values listed in table 3.1) are 

compared to understand the effect of particle size in the parameter space, and some 

correlation between parameters are considered. Such comparison is employed to later 

analysis part as well.  

 

(a) 

Figure 4.3  Different particle size with friction of (a) 0.1 (b) 0.2 (c) 0.3. 
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(b) 

 

(c) 

Figure 4.3  Different particle size with friction of (a) 0.1 (b) 0.2 (c) 0.3. 
 

Comparing the curves at low friction in Figure 4.3 (a), it can be observed that smaller 

particles tend to have a smoother 𝑣௫ distribution among layers (e.g., 2mm). Larger 

particles (2.5mm & 3mm) tend to have higher velocity fluctuations. Smaller particle 

sizes, including 1mm and 1.5mm particles, tend to have uniform velocity distribution, 

which can be explained by the large gap from the visualization and can be verified in the 

later gap size analysis (Section 4.3).  Comparing the three plots, it can be noted that 

increasing the friction does have some influence on small particles (e.g., 2mm particle), 
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but it does not change the overall trend. The effect of particle size is more dominant than 

the effect of the friction, which can be verified in the friction analysis (Section 4.5).  

The variation of the blade speed with particle size is shown in Figure 4.4. Middle-

sized particles tend to have smoother velocity distribution (e.g., 2mm and 2.5 mm in 

Figure 4.4 (a)). A similar result is observed in previous analyses with various inter-

particle friction. The reason for this behavior can be concluded from the relative size of 

gap and particle diameter, which will be further verified in Section 4.3.  

 

(a) 

 

(b) 

Figure 4.4  Different particle size with blade speed of (a) 1.2 (b) 1.4 (c) 1.6 m/s. 
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(c) 

Figure 4.4  Different particle size with blade speed of (a) 1.2 (b) 1.4 (c) 1.6 m/s.  
 

The particle velocity distribution is more uniform at higher blade speed, as shown in 

Figure 4.4 (c). As mentioned before, such particle behavior may due to the fact that all 

layers of particles tend to move with the blade instead of going through the gap, which is 

unwanted and produces inefficient spreading flow.  

The variation of particle size with different gap sizes is shown in Figure 4.5. The 

velocity distribution of larger particles can fluctuate (e.g., 3mm particles in Figure 4.5 

(c)). The velocity distribution of smaller particles can be either fluctuating or uniform 

depending on the gap size for the corresponding particle size. Comparing the three plots 

in Figure 4.5, the trends are not very clear because, in some cases, the gap is equal to or 

smaller than particle diameter (e.g., in Figure 4.5 (a) and some cases in Figure 4.5 (c)).  

The data in these unrealistic cases are plotted only for consistency in the lattice parameter 

space. When the gap is 3mm, 1.5mm particles can create ideal flow compared with 

others, and this double sizing relation is exactly the same as before when the gap is 4mm 

with 2mm particles. This observation indicates that only a perfect match of the gap size 
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and the particle size can create ideal flows. Such perfect matching was also observed in a 

previous study (Nan & Ghadiri, 2019). However, such a relationship is not very clear in 

Figure 4.5 (c), when the gap is 5mm with 2.5mm particles. Therefore, it is surmised that 

the generation of an ideal flow not only depends on the particle size matching with the 

gap but also depends on the particle size itself. In other words, the particle size is more 

significant than the gap size in determining the particle spreading.  

 

(a) 

 

(b) 

Figure 4.5  Different particle size with gap size of (a) 1 (b) 3 (c) 5 mm. 
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(c) 

Figure 4.5  Different particle size with gap size of (a) 1 (b) 3 (c) 5 mm. 
 

4.3. The Effect of Gap Size 

As indicated in the previous analysis, a size matching between the particle and the 

gap can produce a more ideal flow. Therefore, the effect of the gap size is analyzed next. 

 

(a) 

Figure 4.6  Different gap size with friction of (a) 0.1 (b) 0.2 (c) 0.3. 
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(b) 

 

(c) 

Figure 4.6  Different gap size with friction of (a) 0.1 (b) 0.2 (c) 0.3. 
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the particle size analysis, comparing Figure 4.6 (a), (b), and (c), increasing friction 

doesn’t change the overall trend of each curve much. However, higher friction can create 

more fluctuation even for the ideal 2mm particle and 4mm gap, which reduces the overall 

spreading quality.  

 

(a) 

 

 

(b) 

Figure 4.7  Different gap size with blade speed of (a) 1.2 (b) 1.4 (c) 1.6 m/s. 
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(c) 

Figure 4.7  Different gap size with blade speed of(a) 1.2 (b) 1.4 (c) 1.6m/s. 
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Comparing Figure 4.8 (a) (b) (c), the particle size is considered to have a stronger 

effect on the flow behavior because of the fact that, for larger particles, even though the 

gap is twice the size for the current particle diameter, velocity can still fluctuate layer by 

layer. This indicates that the particle size is a dominant factor. As reflected in the 

previous particle diameter analysis, smaller particles tend to produce an ideal flow.  

 

(a) 

 

 

(b) 

Figure 4.8  Different gap size with particle size of (a) 1 (b) 2 (c) 3 mm. 
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(c) 

Figure 4.8  Different gap size with particle size of (a)1 (b)2 (c)3 mm. 
 

4.4. The Effect of Blade Speed 

Generally, a higher blade speed produces a uniform velocity distribution resulting in 

an inefficient spreading flow. In this section, the effect of the blade speed is analyzed in 

detail.  

 

(a) 
Figure 4.9  Different blade speed with particle size of (a) 1 (b) 2 (c) 3 mm. 

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6

Vx

H/D

Friction:0.2 D:3mm Blade:1.2m/s

1mm 2mm 3mm 4mm 5mm

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6

Vx

H/D

Friction:0.2 D:1mm Gap:4mm

1.2m/s 1.3m/s 1.4m/s 1.5m/s 1.6m/s



62 
 

 

 

(b) 

 

(c) 

Figure 4.9  Different blade speed with particle size of (a) 1 (b) 2 (c) 3 mm. 
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particles and the blade is automatically defined as rigid in simulations. Figure 4.9 shows 

that rigid interaction does not produce unrealistic flow behavior.  

Comparing Figure 4.9 (a) (b) (c), varying the particle size does change the trends. 

Again, it is found that the particle size has a more dominant effect than the blade speed.  

 

(a) 

 

 

(b) 

Figure 4.10  Different blade speed with gap size of (a) 2 (b) 4 (c) 5 mm. 
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(c) 

Figure 4.10  Different blade speed with gap size of (a) 2 (b) 4 (c) 5 mm. 
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(a)(b)(c)). Varying friction doesn’t change curve trends very much. Therefore, friction is 

considered to be less dominant compared with the gap size in influencing spreading.  

 

(a) 

 

(b) 

 

(c) 
Figure 4.11  Different blade speed with friction of (a) 0.1 (b) 0.2 (c) 0.3. 
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4.5. The Effect of Inter-particle Friction 

Figure 4.12 analyzes the interaction between blade speed and friction coefficient. The 

lower friction coefficient and low blade speed tend to produce a smoother flow (e.g., 

friction 0.1 and 0.15 in Figure 4.12 (a)). Increasing the blade speed makes the velocity 

distribution more uniform, which is the same as the observation in Section 4.4 and is 

undesired. Higher friction case (0.3) is especially sensitive to the higher speed, as the 

shape variation indicated in Figure 4.12 (a) and (c). 

    

   (a) 

 

   (b) 

Figure 4.12  Different friction with blade speed of (a) 1.2 (b) 1.4 (c) 1.6 m/s. 

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6

Vx

H/D

Gap:4mm D:1mm Blade:1.2m/s

Fric0.1 Fric0.15 Fric0.2 Fric0.25 Fric0.3

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6

Vx

H/D

Gap:4mm D:1mm Blade:1.4m/s

Fric0.1 Fric0.15 Fric0.2 Fric0.25 Fric0.3



67 
 

 

(c) 

Figure 4.12  Different friction with blade speed of (a) 1.2 (b) 1.4 (c) 1.6 m/s. 
 

As for the friction vs. the gap size described in Figure 4.13, the friction has a limited 

effect on the spreading process compared with the gap size because increasing the gap 

size has a great effect on the curve trends in Figure 4.13 (a) (b) and (c). Note that the 

effect of the gap size is found to be greater than that of the blade speed in Section 4.1.2.  

Here, it is found that the effect of the blade speed is greater than friction.  
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Figure 4.13  Different friction with gap size of (a) 1 (b) 3 (c) 4 mm. 

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6

Vx

H/D

Gap:4mm D:1mm Blade:1.6m/s

Fric0.1 Fric0.15 Fric0.2 Fric0.25 Fric0.3

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6

Vx

H/D

Gap:1mm D:1mm Blade:1.2m/s

Fric0.1 Fric0.15 Fric0.2 Fric0.25 Fric0.3



68 
 

 

(b) 

 

(c) 

Figure 4.13  Different friction with gap size of (a) 1 (b) 3 (c) 4 mm. 
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(a) 

  

(b) 

 

(c) 

Figure 4.14  Different friction with particle size of (a) 1 (b) 2 (c) 3 mm. 
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4.6. The Effect of Particle Size Distribution 

The particle size distribution is investigated using a Weibull distribution, as described 

in Chapter 3. Two particle size ranges are considered to investigate the effect of powder 

quality. The same simulation setup is used with varying particle sizes in this section. Two 

particle size distributions are described and are referred to as narrow distribution and 

wide distribution in the following analysis. The morphology of the two distributions can 

be described by an example of the 2 mm mean particle size case shown in Figure 4.15. 

Simulations with varying mean particle size are analyzed in this section.   

  

(a)                                                                           (b) 

      

     (c)       (d) 
Figure 4.15 Two types of particles with (a)(c) wide (b)(d) narrow Weibull  
distribution. 
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(a) 

 

(b) 

 

(c) 

Figure 4.16  𝑣௫ distribution of particles with (a) narrow (b) uniform (c) wide distribution 
under 5mm gap. 
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To further investigate the effect of each parameter, each case of narrow distribution 

and a uniform distribution is presented correspondingly in Figure 4.17. It is observed that 

1mm and 1.5mm cases do not show desired spreading characteristics due to the small 

particle diameters and the relatively large gap. This trend continues for 2mm mean 

particle diameter, as shown in Figure 4.17 (c).  The spreading characteristics for 2.5mm 

and 3mm mean diameter cases are improved, as shown in Figure 4.17 (d) and (e). 

            

(a) (b) 

 

             

(c)       (d) 

Figure 4.17  Comparison of 𝑣௫ for narrow and uniform distribution of (a) 1 (b) 1.5  
(c) 2 (d) 2.5 (e) 3 mm particles. 
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(e)   

Figure 4.17  Comparison of 𝑣௫ for narrow and uniform distribution of (a) 1 (b) 1.5 (c) 
2 (d) 2.5 (e) 3 mm particles. 
 

The results for the two particle size distributions but with varying gap sizes are shown 

in Figure 4.18. The first observation of trend for each case in Figure 4.18 (a) has 

confirmed the analysis in Section 4.2 that smaller particles with an optimum gap tend to 

produce a better flow. Even though the fluctuation exists in the 2.5mm case, the overall 

flow quality is still acceptable. Comparing Figure 4.18 (a) and Figure 4.16 (a) with the 

same narrow particle size distribution but with a fixed 5mm gap, the spreading 

characteristics of the 2mm case are improved, which evidenced the previous guess that 

the unclear flow behavior is due to the improper gap size. Additionally, such 

improvement of the spreading characteristics for larger particles is greater than smaller 

particles, based on the observation that 1mm and 1.5mm cases have not much difference 

when changing the gap size comparing Figure 4.18 (a) and (b).  

As shown in Figure 4.18 (c), even the wide Weibull distribution tends to produce a 

uniform velocity distribution with an optimum gap. In these cases, most particles tend to 

move with the blade. In conclusion, with a proper selection of the gap, both a narrow 
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Weibull distribution and uniform distribution can improve the spreading characteristics if 

particles are small.  

 

(a) 

 

 

(b) 

Figure 4.18  𝑣௫ distribution of particles with (a) narrow (b) uniform (c) wide distribution 
under varying gap size. 
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(c) 

Figure 4.18  𝑣௫ distribution of particles with (a) narrow (b) uniform (c) wide distribution 
under varying gap size. 

 

4.7. Parameter Sweep 

In an expanded parameter space, the simulation time and the cost increase 

significantly. As described in Section 3.3, GNU parallel computing is introduced to 

remedy the computational cost. GNU parallel has shown great effectiveness in assigning 

simulation tasks. Few processes conducted in this work are compared in the course of the 

computational time cost in Table 4.1.   

 

Table 4.1 

Time cost comparison of different computing strategy. 

Running type Number of cases Processor quantity Time cost 
Serial 625 1 3 d 
Serial 10000 1 >24 h  

(terminated) 
GNU parallel 10000 200 8.5 h 
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The first 625 cases cover all simulations from Section 4.2-4.5. These 625 cases were 

run in serial with manual adjustments, which takes around three days of computational 

time in total. However, after expanding the parameter space, it becomes an impossible 

mission to run all cases with manual changes. Instead, a serial algorithm is generated to 

assign all simulations to a single processor. The task was terminated by the cluster due to 

the exceeding of cut-off computing time. The time can be estimated based on the time 

cost for the first 625 cases, reaching 1.5 months. Besides, there barely exists a margin if 

some errors happen during the serial running, and the failure can be catastrophic.  

The GNU parallel has shortened the overall simulation time to around 8.5 hours by 

simultaneously requesting more processors and activating processors. Not only the time 

cost is reduced, but more control of the task assignment also allows more margin to run 

all simulations with some easy-to-fix errors from either cluster or human factors.  

4.7.1 Lattice-based Parameter Sweep 

As described in Chapter 3, MFR is used to represent the quality of the spreading 

process. A frequency distribution chart for each lattice space is generated based on the 

calculated MFR, as shown in Figure 4.19. The first direct observation of convergence 

comes from the MFR distribution in each lattice space.  

In Figure 4.19, all lattice space contains many simulations getting “MFR=0”. This is 

likely due to the selection of the gap size range and the particle size range. In other 

words, most of these “zero” cases are from simulations that have a gap size smaller or 

equal to the particle size.  

In reality, such parameter setup is unrealistic and should be avoided. However, for 

uniform coverage of the parameter space, such a phenomenon is unavoidable. Scaling up 
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the gap size range will break the 2-time size matching between the gap and the diameter 

and further result in more inefficient spreading cases. To compromise the unrealistic 

spreading and inefficient spreading, the current parameter space is adopted.  

 

(a) (b) 

 

  

(c) (d) 

 

Figure 4.19  MFR Distribution in lattice space with grid of (a) 5(b) 6(c) 7(d) 9(e)10. 
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      (e) 

Figure 4.19  MFR Distribution in lattice space with grid of (a) 5(b) 6(c) 7(d) 9(e)10. 
 

 
(a)                                                                   (b) 

 

(c) 

Figure 4.20  Statistics of MFR in lattice space (a) mean and standard deviation (b) 
skewness (c) kurtosis. 
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Some key features from the observation of MFR distribution are focused on. Firstly, 

despite the presence of the unrealistic spreading, the fitting trend in each lattice space is 

similar and consistent, which is a good sign of convergence and validation of the current 

parameter space. Besides, the valley area in Figure 4.19 shows some unneglectable 

difference between lattice 5 and lattice 9. However, the difference becomes less between 

lattice 9 and lattice 10, suggesting a sign of convergence.  

To quantify the convergence of a lattice space, the variation of statistical measures is 

generated to describe the MFR distribution comprehensively, as illustrated in Figure 4.20. 

Once the relative change of one of the statistical measures falls into an acceptable range, 

the convergence is reached. By observing the statistical variation, lattice 10 is considered 

a convergence, with kurtosis first meeting the criterion. With that being said, the kurtosis 

is effective in checking the convergence of a lattice space in this work.  

4.7.2. LDS Parameter Sweep 

The same post-processing procedure is adopted in the LDS parameter sweep. The 

first observation of convergence comes from the MFR distribution, as shown in Figure 

4.21. The featured valley and peak area in each LDS space are compared, seeking a sign 

of convergence. A guess of LDS convergence can be made in LDS 1600-2000 due to the 

slight differentiation between two continuous parameter spaces.   

In the LDS parameter sweep, all four statistics are obtained by expanding the LDS 

parameter space, as presented in Figure 4.22. Observing the statistical variation for each 

LDS space, specifically the variation of standard deviation, LDS space with 1600 cases 

should be sufficient in describing the parameter space. Compared with the 10,000 cases 
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required in the lattice-based sweep, the LDS parameter sweep has greatly reduced the 

required number of simulations.  

 

(a) (b) 

 

(c) (d) 

Figure 4.21  MFR distribution in LDS space of (a) 400 (b) 800 (c) 1200 (d) 1600 (e) 
2000 (f) 2400. 
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   (e)     (f) 

Figure 4.21  MFR distribution in LDS space of (a) 400 (b) 800 (c) 1200 (d) 1600 (e) 
2000 (f) 2400. 

 

 

 

(a) (b) 

Figure 4.22  Statistics of MFR in LDS Space (a) mean and standard deviation (b) 
skewness (c) kurtosis. 
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(c) 

Figure 4.22  Statistics of MFR in LDS Space (a) mean and standard deviation (b) 
skewness (c) kurtosis. 
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5. Discussions and Conclusions 

In this chapter, assumptions made for this work are validated with some previous 

relevant studies. In addition, by correlating other DEM simulation studies, all results 

presented in this work are discussed and compared.  

5.1. Assumptions For Reducing Computational Cost 

When a DEM simulation is designed, it is essential to balance the computational cost 

and accuracy. A few modeling assumptions are necessary to reduce the computational 

cost. One such assumption is regarding Young’s Modulus. To use the real Young’s 

Modulus in metallic material DEM, an extremely small timestep is required, which 

unfortunately results in an extremely long computational time (Kuo et al., 2002). The 

Young’s Modulus can be the most important property of the material for describing the 

stiffness, and the normal elastic coefficient of the contact model is directly based on the 

Young’s Modulus. As observed in a previous study that is about speeding up the DEM 

simulation (Lommen et al. 2014), the change of the modulus can directly lead to a change 

of the particle stiffness so that not only the interaction between particles but also the 

interaction between material and simulation box can be altered, which requires an 

extreme caution from DEM user.  

However, such modulus reduction, or further, the normal elastic coefficient reduction 

has been found to be effective in increasing the time step size, and the simulation result is 

confirmed to be insensitive to such modification. (Han et al., 2019). Several studies with 

DEM simulations listed in Table 5.1 below use a lower Young’s modulus lower than the 

actual Young’s modulus.  
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Another sacrifice to be made for balancing the computational cost lies in the selection 

of the particle diameter. To be specific, in reality, the diameter of a stainless-steel particle 

is approximately around 0.045mm. However, in this work, the particle diameter has been 

scaled up. The reason for this scaling is that, before particles are inserted into the 

simulation box, they have to be firstly generated in an “insertion box” with a fixed 

volume. Smaller particles tend to fill the insertion box compactly with a larger number of 

particles, which leads to a longer simulation time (Tekeste, 2015).  

 

Table 5.1  

Young’s Modulus assumptions for reducing the computational cost. 

Assumption Type Realistic Value Reduced Value Reference 

Young’s Modulus 

0.7 GPa 70 MPa Yuu et al., 1995 
2,004 MPa 0.2 MPa Ghasemi et al., 2020 
55 GPa 55 MPa Chen et al., 2017 
146 GPa 2 GPa Han et al., 2019 

Normal stiffness 
40,000 N/m 1,000 N/m Martins et al., 2013 
80,000 N/m 800 N/m Kuwagi et al., 2000 

 

In the previous study (Nan & Ghadiri, 2019), only a limited number of simulations 

may be enough to support the result, but such limited simulations are way too insufficient 

to support the parametric analysis. Thus, the particle diameter is scaled around 4-5 times 

as the real diameter, and the size distributions are based on this scaled diameter. The 

result suggests that the simulation time for each parameter setup is shortened to an 

acceptable range without losing much of potential particle behavior in the analysis with 

such a scale.  

The scaling of particle property, such as size, is commonly done in DEM modeling 

studies for the consideration of computational cost. In Kawaguchi et al. (2000), the 
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particle size was scaled from 1.41mm to 3mm for balancing the computational cost.  In 

some previous studies (Lee et al., 2018; Lommen et al., 2014), the mass of particles is 

scaled up, allowing a shorter time for particles’ freefall behavior due to the gravity. These 

works suggested that scaling of the particle mass is a promising solution for efficiently 

reducing the simulation time.  

5.2. Parametric Analysis 

The influence of the gap size from this work can be generalized as follows. When the 

gap size is two times the average particle diameter, an optimum flow behavior can be 

produced. When the gap is too large for the particle diameter, an inefficient particle flow 

is generated, which is also observed as a “short-feed” effect (Nan & Ghadiri, 2019). They 

observe a similar critical gap size allowing particle spreading on the platform without 

empty patches in their work.  

In a realistic particle spreading process, the gap size can be converted into a 

significant parameter of the printing process, namely, the layer thickness. In both 

polymer additive manufacturing and metallic additive manufacturing, the layer thickness 

is vital for generating a smooth flow and a higher-quality particle bed. Han et al. (2014) 

studied the effect of layer thickness on printed part quality. When the gap layer thickness 

is smaller than the average particle diameter, most particles tend to move with the blade 

and finally get pushed off the platform. This experimental observation is similar to the 

results in the current study. Another reason for the layer thickness being significant is that 

a thicker layer requires more concentrated energy to bond or melt the particles, which 

should also be considered in determining the upper limit of the layer thickness.  
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The influence of the particle size from this work can be concluded as follows. In 

general, a smaller particle size tends to produce a smoother velocity distribution 

contributing to a better particle flow performance. Such a result can match some of the 

previous works. For example, it was observed that too large particles tend to generate a 

so-called “short feed” effect that corresponds to cases of unrealistic spreading (Han et al., 

2014).  Additionally, as observed in Han et al. (2014), if the particle diameter is too 

small, there will be larger voids during the spreading. However, a similar result is not 

observed in the current work. A possible reason for this is the selection of the particle 

diameter and the contact model. The particle size has been scaled, and the particle 

cohesion is not considered in the contact model to save some computational cost, whereas 

a realistic particle size around 30𝜇𝑚 is used in their work. Notice that, when the particle 

size is relatively small, the motion of the particle can not only depend on the gravity and 

contacting force but also depend on or even get dominated by the cohesion effect. 

Agglomeration is commonly observed in the behavior of small particles (Bai et al. 

(2015)). However, when cohesion between particles is not considered, similar behavior of 

smaller particles to this work was observed by Chen et al. (2017).  

Another key parameter is friction. It is found that a higher quality of the spreading 

process can be obtained by lowering the friction between particles. Friction transfers the 

forces between particles providing particles with accelerating ability that makes particles 

move with the blade. 

Higher friction is also found to reduce the particle spreading quality in other studies 

as well (Chen et al., 2017). The particle flow fluidity was found to decrease when 

increasing the friction coefficient between particles in their work. Such a phenomenon is 
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explained by the restriction of the relative motion between particles in the flow. They 

also report that the friction was found to influence the powder packing density on the 

printing platform.  Particle-wall friction has not been considered in this thesis, which may 

also have some potential influence that needs to be considered in the future.  

Blade speed has not been studied much in previous research. Among the limited 

studies, Nan et al. (2018) found that a lower blade speed can benefit the particle 

spreading by allowing particles enough time to go through the gap. This observation is 

similar to what is found in this thesis. Additionally, in their work, the blade motion was 

correlated with the gap size for explaining the shape change of the particle pile in front of 

the blade. Parteli et al. (2016) suggest that a faster spreading process creates looser 

particle packing due to the presence of larger voids, which is indirectly confirmed in this 

work as well.  

Based on the effect of the large particles, some conclusions are drawn for the effect of 

particle size distribution. The previous analysis observed that lower friction and a slower 

blade can produce higher spreading quality. All parameters in simulations for the particle 

size distribution analysis are used with ideal values. Namely, the friction coefficient is 

0.1, and the blade speed is 1.2m/s, to minimize the effect from other variables. The worst 

flow behavior comes from the 3mm case with a wide Weibull distribution and a 5mm 

gap. This is understandable because of the existence of 3.5mm and 4mm particles 

significantly affecting the flow behavior due to the relatively small gap size. Other than 

this extreme case, most of the results and analysis match well with the previous analysis 

with uniform particle diameters. For example, the 2:1 ratio between the gap size and the 
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particle size for optimal spreading still exists. With an optimal gap size, both mixed 

particles and uniform particles can produce a more ideal flow.  

For small particles, both mixed particles and uniform particles can produce a smooth 

flow with an optimum gap. However, for larger particles, the performance of mixed 

particles with a narrow distribution is generally better than uniform particles, which 

brings out the powder quality effect considering the presence of narrower distribution in a 

higher quality powder. Based on the analysis of the uniform particle simulations, the 

observations of narrow distribution can be related to the existence of smaller particles. 

This is also noted by Lee et al. (2018). Further simulations can be conducted for a left-

skewed distribution to investigate and quantify this effect.  

5.3. Parameter Sweep 

LDS based parameter sweep algorithm is found to be effective in reducing the 

number of DEM simulations without sacrificing the comprehensive description of the 

parameter space. Even though the parameter sweep is a common tool for optimizing a 

large multi-dimensional parameter space, it is rare to be applied in additive 

manufacturing or the DEM simulation. This parameter sweep algorithm has been applied 

in pedestrian dynamics studies involving many trajectories for analysis. The application 

of parameter sweep algorithms for additive manufacturing simulations in this work has 

been done for the first time and is a novel contribution.  

Although it is hard to find some reference in a similar field, some similar studies 

applying the parameter sweep can be referred to draw some ideas on the performance of 

the sweep algorithm. A previous study (Chunduri et al., 2018) about optimizing 

pedestrian dynamics simulations by the parameter sweep compared lattice-based 



89 
 

parameter sweep and the LDS parameter sweep. They found that the LDS algorithm 

effectively reduced the number of simulations with similar coverage of the original 

parameter space. This observation is similar to the results of the current work. 

Specifically, the number of trajectories for their parameter space is reduced from the 

order of millions to around 30,000.  

However, there is some difference between their work and this study regarding the 

statistical convergence measures. Specifically, in their work, both kurtosis and skewness 

were effective in checking convergence. However, in this thesis, probably due to the 

different parameter space selection, skewness is not as effective as kurtosis. This may 

indicate that the performance of statistics for checking convergence may depend on the 

specific parameter space and bring up the benefit of using multiple statistics to 

comprehensively describe the parameter space.  

5.4. Conclusions 

In this work, a parametric analysis is performed for the particle behavior during the 

particle spreading process in metallic additive manufacturing. Particle diameter, 

spreading gap size, printing blade speed, and inter-particle friction are cross-analyzed to 

optimize the particle flow smoothness.  The primary conclusions of this research are 

listed below. 

(1) To obtain a particle flow with higher quality, the particle diameter is the most 

dominant factor. Smaller particles tend to have an ideal velocity distribution. 

However, the performance of smaller particles depends on the gap size as well. 

When the gap size is two times the particle diameter, a more ideal flow behavior 

is observed. Gap sizes larger than two times the particle diameter lead to 



90 
 

inefficient spreading processes, and similarly smaller gap sizes relative to particle 

size lead to unrealistic spreading processes.  

(2) Compared with the particle diameter and the gap size, the blade speed and inter-

particle friction have less effect on the flow behavior. Blade speed affects particle 

spreading more than the friction. A lower blade speed tends to produce a 

smoother flow. In reality, reducing the blade speed can be a solution to improving 

manufacturing quality. However, a lower spreading speed corresponds to a longer 

manufacturing time.   

(3) The inter-particle friction has the least effect on flow behavior. Higher friction 

can deteriorate the particle spreading by restricting the relative motion between 

particles, making particles move with the blade, creating an inefficient particle 

spreading.  

(4) A narrow Weibull distribution, which is indicative of higher quality powder, leads 

to a better flow behavior. Specifically, smaller particles with a narrow distribution 

can produce a high-quality particle spreading. With such powder texture, an 

optimum gap, namely, twice as the mean particle size, improves the particle 

spreading quality.   

(5) To reduce the computational cost of the parametric analysis, the lattice-based 

parameter sweep and the LDS parameter sweep are conducted in expanded 

parameter space. A computing tool called GNU parallel is applied to minimize the 

time cost for the massive simulation job and is shown to be highly effective. In 

lattice-based parameter space, nine intervals with ten grid values on each 

parameter range are sufficient to describe the 4-dimensional parameter space in 
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this work. Four statistical measures check the performance, and the kurtosis is 

effective in checking the convergence.  

(6) LDS parameter sweep is more effective in reducing the number of simulations 

required to describe the parameter space. The data points for LDS sweep are 

generated using scrambled Halton sequence and scaled to fit the current parameter 

space.  LDS parameter space converges at 2400 LDS simulations compared to 

10,000 simulations needed for the lattice-based sweep.  
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6. Recommendations for Future Work 

Considering some limitations existing in the current research, few recommendations 

relating to future work are listed based on all results of this thesis. By accordingly 

modifying the current methodology, it is feasible to perform a more realistic simulation 

which should provide a deeper understanding for the particle spreading procedure.  

In current work, all DEM simulations focus on the first-layer spreading. In a realistic 

multi-layer particle spreading, i.e., repeating the spreading process layer by layer, the 

interaction of particles is no longer restricted between unbounded particles but also 

between the particle and the printed part. Sintered particles have various material 

properties resulting in a more complex spatial particle interaction, which can be an 

extension of the current work.    

With the extraordinary ability of DEM, the bonding procedure can be simulated as 

well. The laser bonding energy and the laser scan rate were studied and found to 

influence the particle fusion in additive manufacturing (Han et al., 2019). Researchers 

have also studied the laser bonding procedure, including the aspects of heat transfer (Lee 

& Zhang, 2015). Also, the binder jetting process has been successfully simulated and 

investigated (Miao et al., 2019). Research along these lines is a promising extension to 

the current work.  

One limitation of this work lies in the correlation between the experiment and the 

simulation. On the one hand, most of the parameters used in simulations are obtained 

from other papers. It is found in this work that material properties such as friction and 

particle diameter can influence the flow behavior. Therefore, experimentation will 

provide stronger support for the parametric analysis. The post-processing in this work 
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uses numerically defined parameters. However, it is feasible to evaluate the performance 

of the particle spreading by the experimentally measured surface roughness and packing 

density of the particle bed (Chen et al., 2020). The addition of experiments to validate the 

computational models can improve the understanding of flow behavior and printing 

quality.  

From the numerical perspective, DEM provides the particle status with data 

intermittently, which means limited information when investigating the macroscopic flow 

behavior such as the continuous profile variation of the particle pile. Such intermittent 

particle status maybe lacks transient status. Plus, the complexity of DEM simulation 

comes from replicating a realistic particle spreading, which results in an unnecessary 

computational cost when the individual particle motion is not the focus of the study.    

The purpose of DEM is to observe the macroscopic group behavior by defining the 

interaction between individuals. This is similar to the idea of Agent-Based Modeling 

(ABM) (Wilensky et al., 2015). In general, ABM has been greatly used in natural science 

and social science. The power of ABM lies in reducing the complexity of the simulation 

system by providing a simplified simulation.  Depending on the interaction model, ABM 

has been used extensively in pedestrian dynamics (Chen et al., 2015; Pan et al., 2007). 

Besides, ABM also provides continuous tracking of the flow, which means a potential 

solution to continuous monitoring of the particle flow compared with DEM.  

The same particle spreading procedure has been replicated in an ABM software called 

Netlogo (Wilensky., 1999) with the same contact model as a preliminary extension of the 

current model. The greatest benefit lies in the reduction of the complexity in the DEM 
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simulation system. Since the ABM has not yet been used for studying particle dynamics 

in additive manufacturing, it will be a promising and novel extension of current work.  

Another extension of this work exists in the study of particle size distribution. In 

reality, it is extremely hard to find metallic powder with a uniform size distribution. The 

primary objective of all uniform particle size distribution in this work is to understand the 

general flow behavior when varying the particle size. Additionally, it was found in this 

work that mixed particle powder with a Weibull distribution can influence the flow 

behavior. The two Weibull parameters can be varied to describe the various particle size 

distribution, resulting in a further expansion of 4-dimensional parameter space to 6-

dimensions. The large parameter space can be adequately studied using the LDS 

parameter sweep as demonstrated in this thesis.   
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APPENDIX A – Parametric analysis post-processing algorithm 

Program postprocessing 
Implicit none 
 
!This Algorithm is for calculating the average velocity distribution from the 
!LIGGGHTS output file 
!The algorithm is on the basis of Fortran 90 
!All vriable values are defined by current simulation setup 
 
real, allocatable       ::data(:,:) !Read particle status from LIGGGHTS outputs 
integer                     ::i, N, j, istep, layer  
real                          ::D, gap, H,F, vxsum, num, vx, depth, Xlow, Xhigh, blade 
num = 0 
vxsum = 0 
 
depth=0.001 !Determine the layer thickness for post-processing 
 
F=0.1            !Input the friction  
D=0.003     !Input the particle diameter 
gap=0.005    !Input the gap 
blade=1.2     !Input the blade speed 
 
open(30, file= 'liggghts_output.txt')           !Define the input file for post-processing 
open(31,file='postprocessing.txt')               !Define the output file for post-processing 
 
read(30,*) N  ! Read the number of particles from the LIGGGHTS output 
allocate(data(N,7)) 
do i=1,N 
       read(30,*) (data(i,j),j=1,7) !Particle status in a matrix format for processing 
enddo 
 
Xlow =0.015+ blade * 0.00001 * 2000 * 5 
Xhigh = Xlow + 6*D  !Define the post-processing area 
  
do layer=1,12                !External loop for each layer with relative height  
        do i=1,N                !Internal loop for calculating the average velocity 
        H=gap + layer * D * 0.5    

!If particles fall in the post processing area 
if (data(i,2) >= Xlow .AND. data(i,2) <= Xhigh .AND. # 
data(i,4) >=(H-depth) .AND. data(i,4) <= (H+depth)) then      

        num= num + 1 ! Calculate the particle number 
        vxsum=vxsum+data(i,5)   !Calculate total x-velocity 
        endif 
        enddo 
        vx=vxsum/num   !Calculate the average x-velocity 
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        write(31,*) vx  !Output vx distribution layer by layer 
        num=0 !Initialize for next external loop 
        vxsum=0 
        vx=0 
enddo 
 
close(30) 
close(31) 
 
end program postprocessing 
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APPENDIX B – PBS script for GNU parallel 

##This Bash code is for submitting a GNU parallel job to a cluster. The example script is 
for running 200 sequential tasks in GNU parallel 
#!/bin/bash 
 
#PBS -l walltime=02:00:00      #Set cut-off computing time  
#PBS -l nodes=10:ppn=36        #Request a number of processors 
#PBS -N jobname 
#PBS -n 
#PBS -q shortq                           
#PBS -m aeb 
#PBS -M example@xxx.edu 
#PBS -j oe 
#PBS -d /scratch/target_directory 
 
 
module load gcc/6.1.0 
module load intel/mpi/64/2017/5.239 
module load intel/compiler/64/2017/17.0.5 
WORKING_DIR=/scratch/ target_directory 
 
 
cd ${WORKING_DIR} 
 
seq 1 200 | parallel -j 0 --sshloginfile $PBS_NODEFILE "cd ${WORKING_DIR}; ./run 
{} " 
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