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Abstract 
 

Machine learning (ML) has attracted a significant amount of attention from the artifi- 

cial intelligence community. ML has shown state-of-art performance in various fields, 

such as signal processing, healthcare system, and natural language processing (NLP). 

However, most conventional ML algorithms suffer from three significant difficulties: 1) 

insufficient high-quality training data, 2) costly training process, and 3) domain dis- 

crepancy. Therefore, it is important to develop solutions for  these problems, so the 

future of ML will be more sustainable. Recently,  a new concept, data-efficient ma-  

chine learning (DEML), has been proposed to deal with the current bottlenecks of      

ML. Moreover, transfer learning (TL) has been considered as an effective solution to 

address the three shortcomings of conventional ML. Furthermore, TL is one of the    

most active areas in the DEML. Over the past ten years, significant progress has been 

made in TL. 

In this dissertation, I propose to address the three problems by developing a software- 

oriented framework and TL algorithms. Firstly, I introduce a DEML framework and 

a evaluation system. Moreover, I present two novel TL algorithms and applications 

on real-world problems. Furthermore, I will first present the first well-defined DEML 

framework and introduce how it can address the challenges in ML. After that, I will 

give an updated overview of the state-of-the-art and open challenges in the TL. I will 

then introduce two novel algorithms for two of the most challenging TL topics: distant 

domain TL and cross-modality  TL  (image-text).  A  detailed  algorithm  introduction 

and preliminary results on real-world applications (Covid-19 diagnosis and image clas- 

sification) will be presented. Then, I will discuss  the current trends  in TL algorithms  

and real-world applications. Lastly, I will present the conclusion and future research 

directions. 
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Chapter 1 
 
 

Introduction 
 

 
1.1 Background and Motivation 

 

 
Machine Learning (ML) was proposed decades ago as a sub-field of artificial intelli- 

gence, and it is now attracting more and more attention.  In ML history,  there were     

two major winters in 1974 - 1980 and 1987 - 1993. ML was not preferred by academia 

and the industry during the previous winter due to its unstable performance and lim-   

ited computational power. To break the winter, many powerful processors such as 

graphics processing unit (GPU) and Tensor Processing Unit (TPU) were built to im- 

prove  the performance of deep ML models [10, 11].  After that, with the evolution of  

the internet, collecting massive training data  became  much  easier.  Recently,  With 

these two improvements, the modern ML (deep learning) has been successfully applied  

to various areas in our daily life, such as smartphones, health care, and smart cities. 

In the past decade, the academia and the industry have achieved significant break- 

throughs in several ML disciplines, such as supervised learning, semi-supervised learn- 

ing, unsupervised learning, and reinforcement learning. Moreover, supervised learning 
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and reinforcement learning have led the ML trend with their superb and robust per- 

formances. Generally, supervised learning requires a massive amount of well-labeled 

data and computational power for the training process, which is not always  feasible    

to many users. Reinforcement learning is very computationally expensive due to its 

unstable training process (non-convergence). Therefore, data-efficient machine learn- 

ing (DEML) has been proposed to create a more sustainable future for modern ML. 

DEML is a concept that covers all the techniques to address the incompatible training 

data and the computational power. With the help of DEML, the modern ML can be- 

come more efficient in training and more robust in prediction. Furthermore, as a sub- 

filed in DEML, transfer learning (TL) has been attracting more and more attention 

since it can effectively deal with the shortcomings of supervised learning and reinforce- 

ment learning [12]. 

Unlike other ML disciplines, the inspiration of TL is closely related to bionics. It mim- 

ics humans’ ability to generalize knowledge from one area to another similar area. 

For example, English speakers usually can learn Spanish with less effort because En- 

glish and Spanish share many common rules in pronunciation and grammar. With 

transferring the common knowledge, one does not need to start learning Spanish from 

scratch. Similarly, TL aims to use the least effort to develop a target model by trans- 

ferring knowledge stored in other models.  This concept has greatly expanded the use    

of ML to many performance-critical areas, such as biomedical informatics, NLP, and 

smart-and-connected system. However, traditional TL only tends to transfer informa- 

tion among similar domains and tasks. Negative transfer occurs when there is a larger 

domain discrepancy. In the future, we hope to develop more powerful TL algorithms  

that fit for distant domain transfer and the cross-modality transfer. 
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1.2 Challenges 
 

 
This dissertation discusses major challenges in modern ML and TL. Firstly, deep learn- 

ing is the mainstream in modern ML. Deep learning is facing three major challenges 

[13]: 

 

• Insufficient training data causes significant performance degradation. 

 
• Advance computational power is not accessible to everyone and We are reaching 

computational limits for deep learning. 

 

• The modern deep learning is not computationally expensive and data-dependent 

by accident, but by design. 

 
 

Primarily, most deep learning algorithms require a massive amount of training data. 

However, this condition does not hold in many real-world problems. Moreover, col- 

lecting and manually labeling a massive data set is too costly to do, and artificial data 

lacks distribution diversity. Furthermore, the incompatible computational power is an- 

other adversity of modern ML. Recently,  there are several potential solutions to align   

the model depth and the computational power, such as cloud computing [14], edge 

computing [15], and parallel computing [16]. However, these solutions are not always 

reliable due to poor communication stability and security. In addition, the  computa- 

tional power is reaching the limit for deep learning. Moreover, most ML algorithms 

assume that  the training data and the testing data  are independent distributed (i.i.d.),   

but it does not stand for most practical ML problems. As a consequence, insufficient 

training data lead  to a large  distribution mismatch between the training  and the test-   

ing data. The distribution mismatch can result a great performance decrease when a 
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ML model is applied to real-world applications. Moreover, most ML algorithms rely 

on massive training data due the architecture designs. 

In traditional TL, there are major challenges: 

 

 

• it assumes that the source domain and the target domain are closely related to 

each other. 

• it cannot transfer knowledge between different modalities. 

 
• it focuses on transferring on traditional and statistical models. 

 

 
It has been proved that  transfer learning is  able to handle two  critical machine learn-  

ing problems: 1) insufficient training data, and 2) domain distribution mismatch. The- 

oretically, transfer learning algorithms aim to develop robust target models by  using  

only a small set of target training data and transferring knowledge learned from other 

domains and tasks. Previously, the concept of adaptation layer with domain distance 

measurements was first proposed by [17]. It allows us to transfer knowledge between 

deep neural networks. In general, conventional  transfer  learning  algorithms  assume 

that the source domains and the targets share a certain amount of common informa-    

tion. However, this assumption does not always hold in many real-world applications, 

such as medical image processing [18, 19], rare species detection [20] and recommen- 

dation systems [21, 22]. In addition, transferring between two loosely related domains 

usually causes negative transfer [23–25], meaning that the knowledge transfer starts 

hurting the performance on the task in the target domain, and produces worse perfor- 

mance than non-transfer models. 

As these problems have become new challenges, this dissertation proposes to develop 

reliable solutions: 1) DEML framework and 2) TL. 
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1.3 Proposed Methodology 
 

 
In this dissertation, the author proposes the following methodologies: 

 

 
 

• DEML Framework and Evaluation System 

 
• A Decade Survey of Transfer Learning 

 
• Conventional Transfer Learning for Solid Waste Sorting 

 
• Feature-based Distant Domain Transfer Learning 

 
• Distant Domain Transfer Learning for Medical Imaging 

 
• Cross-Modality Transfer Learning for Image-Text Information Management 

 

 
 

1.4 Contribution 
 

 
To distinguish this dissertation from other studies, this dissertation pays attention to 

several important but not-well investigated problems, such as DEML, DDTL. and 

CMTL. Moreover, in this dissertation, there are four major contributions: 1) the au- 

thor proposes the concept of DEML and develops well-defined framework with a eval- 

uation system, 2) the author conducts the most recent TL literature review that cov- 

ers novel topics (DDTL and CMTL), 3) the author introduces two novel algorithms to 

deal with two most challenging TL problems: DDTL and CMTL, and 4) the author 

also presents two real-world applications with TL in this dissertation. 
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1.5 Organization of the Dissertation 
 

 
Finally, the remainder of this dissertation is structured as follows: In section-2, the au- 

thor will give a comprehensive review of TL in the past decade, and this overview can 

help professional to find well-suited methods for different situations quickly. And then, 

Section-3 will introduce a novel DEML framework and a evaluation system.  More-  

over, the author will introduce a TL method for solid waste sorting.  Next,  a  novel 

distant domain TL algorithm will be  discussed  in  Section-4.  After  that,  the  author 

will demonstrate a DDTL application on a medical imaging task. Moreover, a corss- 

modality TL algorithm will be introduced in Section-5. Finally, a conclusion of the 

dissertation and a discussion of the future directions will given in Section-6. 



 

 

 

 

 

 

 

 

 

Chapter 2 
 
 

A Decade Survey of Transfer 

Learning (2010 - 2020) 

 
Transfer learning (TL) has been successfully applied to many real-world problems that 

traditional machine learning (ML) cannot handle, such as image processing, speech 

recognition, and natural language processing (NLP). Commonly, TL tends to address 

three main problems of traditional machine learning: (1) insufficient labeled data, (2) 

incompatible computation power, and (3)  distribution  mismatch.  In  general,  TL  can 

be organized into four categories: transductive learning, inductive learning, unsuper- 

vised learning, and negative learning. Furthermore, each  category  can  be  organized 

into four learning types: learning on instances, learning on features, learning on pa- 

rameters, and learning on relations.  This article presents a comprehensive survey on   

TL. In addition, this chapter presents the state of the art,  current trends,  applications,  

and open challenges. 

Transfer learning (TL) has attracted a significant amount of attention from the arti- 

ficial intelligence community. TL can effectively handle challenging machine learning 

7 
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problems, such as lack of sufficient training data and changes in the concepts being 

learnt. Over the past 10 years, significant progress has been made in TL. The author 

presents an updated survey by demonstrating the state-of-the-art, current trends, and 

open challenges in the field. While most recent surveys equally cover mainstream topic 

on TL, our survey extends that by identifying and discussing the most challenging TL 

problems, such as distant domain and cross-modality TL. The survey promotes the 

positive applications of transfer learning to foster a broader community in the field. 

 

 

2.1 Introduction 
 

 
Recently, ML has made breakthroughs in a number of different fields, including but 

not limited to image processing, speech recognition, and natural language process- 

ing (NLP). With state-of-the-art performances, ML techniques have been applied to 

more and more real-world problems that traditional statistical learning methods can- 

not handle. 

Commonly, traditional ML relies on a massive amount of training data. It assumes 

one critical condition: the training data and the testing data are drawn from the ex- 

act same distribution. However, this assumption does not always hold in many real- 

world problems. As such, most conventional ML algorithms usually suffer from three 

main difficulties: insufficient data, incompatible computation power, and distribution 

mismatch. First of all, various solutions have been proposed to address the first two 

problems, such as data argumentation, data synthesis, distributed learning, and cloud 

computing. However, each of these proposed solutions suffers from some adversities, 

such as regarding cost, efficiency, and security. Recently, transfer learning (TL) has 

been brought to our attention to deal with all three difficulties. 
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Figure 2.1: Mindmap of Transfer Learning 

 
 

Primarily, TL aims to solve the target task by leveraging the knowledge learned from 

source tasks in different domains, so it does not need to learn from scratch with a 

massive amount of data [23, 26, 27].  As such, TL first can address the most signifi-   

cant issue, insufficient well-labeled training data. Moreover, the time and computation 

resources required for training a model can also be greatly decreased since pre-learned 

knowledge from other domains and tasks can be reused. Furthermore, the distribution 

mismatch can cause significant performance degradation on ML models. TL can also 

address it by fusing knowledge from one or multiple different domains. 

In this chapter, the most representative works on TL in the past decade will be intro- 

duced and organized into different categories. Firstly, the author categorizes TL meth- 

ods into two levels. As shown in Figure-2.1, in the first level, according to the avail- 

ability of well-labeled data and the data modality in the source and target domains, 

it is categorized into five sub-fields: inductive TL, transductive TL, cross-modality 

TL, unsupervised TL, and negative TL respectively. Innovatively, each sub-field in 
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the first level is again categorized into four different learning types: learning on in- 

stances, learning on features, learning on parameters, and learning on relations. More- 

over, many successful real-world TL applications will also be introduced to emphasize 

TL’s importance to the industry. And more, negative learning also plays a vital role 

in TL, which is an essential topic of TL but lacks attention. It is not studied by differ- 

ent learning types in the second level. In stead, it is discussed from two perspectives: 

problem definition and algorithms. In this survey, a number of state-of-the-art works 

on negative transfer will be discussed. Furthermore, open challenges and future re- 

search directions are also discussed in this survey. 

Comparing with other recent surveys on TL, as shown in Table-2.1, the author makes 

several main improvements and contributions in this review.  The following outlines  

the main contributions of our survey: 

Table 2.1: Comparison of Recent Surveys on TL 
 

Statistical Deep Learning Homogeneous Heterogeneous Negative Cross-Modality Applications 

[23] Yes No Yes No Yes No Yes 

[28] Yes Yes Yes Yes Yes No Yes 

[29] Yes Yes Yes No No No Yes 

[30] Yes Yes No Yes Yes No Yes 

[31] No Yes Yes No No No Yes 

[32–34, 34–36] Yes Yes No No No No Yes 

Our Survey Yes Yes Yes Yes Yes Yes Yes 

 

 

 

 

• Introduce over 115 representative works from 2010 - 2020. Provide detailed ex- 

planations of each category’s most famous works and discuss inter-connections of 

all works in each category. 

• Discuss the most challenging topic, Cross-Modality TL, which has never been 

discussed in any previous surveys. 

 

• Present deep insights to current challenges and frontier of TL applications. 

 
• This survey can be used as a guideline for professionals to develop TL models. 
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Finally, the remainder of this chapter is structured as follows: In Section-2.2,  the au-  

thor introduces a number of recent surveys on TL, and demonstrate the improvements 

made by our survey. And then, in Section-2.3, the author gives an overview of the sur- 

vey, and this overview can help professional to find well-suited methods for different 

situations quickly.  Secondly,  in Section-2.4, the author first reviews the most recent    

TL works. In-between, the author also introduces some successful applications in in- 

dustries. And then, the author presents the future trends and the open challenges in 

Section-2.5 and Section-2.6. Finally, the author concludes the article in Section-2.7. 

 

 

2.2 Related Work 
 

 
In this section, as shown in Table-2.1, the author reviews several surveys on TL in the 

past decade. Moreover, the author demonstrates the main differences in our survey to 

distinguish it from other recently published works. 

Recently, some surveys of TL with informative contents are provided for readers from 

both the academies and the industries. These surveys [19, 23, 28–31, 33–38] categorize 

and review a wide range of TL techniques from different perspectives, such as algo- 

rithm types, applications, and the mixture of both. 

First of all, the author introduces some widely known surveys for TL algorithms. The 

survey [23] gives readers a brief overview and detailed explanations of representative  

TL algorithms from 2000 to 2010. However, this work does not cover several newly in- 

troduced TF disciplines, such as TL with artificial neural networks, heterogeneous TL, 

and TL with adversarial networks. In addition, the survey [28] gives attention to more 

recent TL topics that are not discussed in [23].  It introduces and summarizes a num-   

ber of homogeneous and heterogeneous transfer learning algorithms from 2010 - 2015. 
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More recently, another survey [29] gives special attention to homogeneous TL and re- 

views of state-of-the-art homogeneous TL algorithms and applications. It reviews ho- 

mogeneous TL from two perspectives: the data and the model. However, some  ad- 

vanced topics are not covered in this survey, including but not  limited  to  heteroge- 

neous TL, reinforcement TL, and lifetime TL. Moreover, heterogeneous TL is specially 

discussed by the survey [30]. Recently, deep learning has received increasing attention 

from the TL community. A recent survey [31] focuses on TL with deep learning. It 

provides a formal definition of deep transfer learning and reviews current works in four 

deep TL disciplines: instance-based, mapping-based, network-based, and adversarial- 

based. Furthermore, there are some surveys [32–34, 34–36] particularly concentrate 

on TL applications in different fields: health care systems, sentiment analysis, remote 

sensing, recommendation systems, and signal processing. 

Our work covers the most recent topics in the past decade, such as TL with deep learn- 

ing, TL with artificial neural networks, TL with statistical methods, TL with lifelong 

learning, and TL applications. Moreover, our survey also discusses the  most challeng-  

ing topic, cross-modality, and distant domain TL, which are not well-investigated in   

other surveys. Furthermore, detailed explanations of each type TF discipline’s repre- 

sentative methods are provided for readers to have a  better  understanding.  What  is 

more, TL-related applications and current trends of TL are also discussed. 

Table 2.2: Terminology Definition 
 

Domains Tasks Modalities 
 

Inductive TL   Same   Same   Same 

Transductive TL  Same Different but related  Same 

Unsupervised TL   Different but related Different   but related  Same 

Cross-Modality TL Different  Different Different 
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Table 2.3: Transfer Learning 

 

Non-Cross-Modality  

Transductive Learning 2.4.1  

Feature-Based [2, 3, 11, 17, 25, 27, 39–48] 

Instance-Based [1, 49–51] 

Inductive Learning 2.4.2  

Feature-Based [25, 46, 52–58] 

Instance-Based [59–65] 

Parameter-Based [5, 66–69] 

Relation-Based [1, 49–51] 

Unsupervised Learning 2.4.4  

Feature-Based [23, 70–72] 

Negative Learning 2.4.5  

Problem Definition [23, 28, 73–76] 

Algorithms [70, 77–79] 

Cross-Modality  

Cross-Modality Learning 2.4.3  

Supervised Target Data [9, 80] 

Semi-supervised Target Data [81–84] 

 

2.3 Overview 
 

 
In this section, the author gives an overview of all methods that are discussed in the 

survey. As shown in Table-2.3, the table can be used as an index  to help professionals  

to quickly find the works related to their specific interests. Moreover, it is also helpful 

for selecting appropriate methods to solve given TL problems. 

There are three steps to find the most suited methods for a given TL problem.  Firstly,    

it is essential to decide if the given problem is a regular TL task or a cross-modality. 

For  example, from text to image is a cross-modality task, and from image to image is    

a conventional TL task. 

For regular TL problems, there are four categories. The first three categories can be 

defined by the source domain’s label availability and the target domain. Moreover, 

negative learning can be defined by measuring the statistical distance between the 
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source domain and the target feature domain. For cross-modality  TL problems, there 

are two categories defined by the label availability in the target domain. 

 

 
2.4 State of the Art 

 

 
This section presents the state-of-the-art of TL in the past decade. 

 

 

 

2.4.1 Transductive TL 
 

Table 2.4: Transductive Learning 
 

Transductive Learning 
 

Feature-Based [2, 3, 11, 17, 25, 27, 39–48] 

Instance-Based [1, 49–51] 

 

The definition of transductive learning [23] is: the tasks in the source and target do- 

mains are the same, but the domains may be  different.  Under  this  setting,  the  la- 

beled data is only available in the source domain. Furthermore, there are two learning 

types in transductive transfer learning: learning on instances and learning on features. 

Moreover, the most widely known example of transductive learning is domain adapta- 

tion. In transductive TL, instance-based methods are not as popular as feature-based 

methods due to the limitations of its learning mechanism that is detailed in the fol- 

lowing section. Therefore, the current mainstream of transductive TL is feature-based 

methods. 

 
 

2.4.1.1 Learning on Instances 
 

 
Primarily, algorithms of learning on instances are defined as transferring the knowl- 

edge in the source domain to the target domain by re-weighting or re-sampling source 

instances. Moreover, instance-based methods are built upon two strict assumptions: 
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1) the particular amount of training instances in the source domain are related to the 

target domain so that they can be reused, and 2) the conditional distributions of the 

source and the target domain are identical. 

Importantly, not all the source data can be re-used for training the target model. There- 

fore, it is important to properly select samples that can benefit the task in the target 

domain. Firstly, [51] proposed a boosting method that leverages the concept of Ad- 

aBoost. Similarly, [1] proposed two novel approaches for instance re-weighting and 

instance selection based on the concept of PU learning and the in-target-domain prob- 

ability.  As shown in Figure-2.2, it first samples a small set P̂   from unlabeled data P 

in the target domain as spies and labels all the instances x ∈ P  − P̂ ;n.  as true.  Then 

it labels P̂  
u 

U  as false.  A Naive Bayes (NB) classifier is then applied to P̂   and U  to 

identify a reliable negative set Nr based on the threshold b. The next step is to find 

the in-target-domain probability of Ur = U − Nr by applying an Expectation Max- 

imization (EM) algorithm. In Instance Selection (PUIS), the instances with higher 

 

in-target-domain probability are selected. Differently, Instance Weighting (PUIW) first 

calibrates the in target-domain-probability, and then use it as the sampling weights for 

training NB model. 

However,  methods similar to [1] are not efficient and heavily dependent on the pre-    

set values of the calibration parameters when the tasks have high-dimensional distri- 

butions. Moreover, some other instance-based adaptation models [49, 50] can handle 

tasks with have high-dimensional distributions. The core concept of this type of mod-  

els is to adapt data in the source domain to the target domain by applying a logistic 

approximation. 

More recently, [85] developed an instance-based multi-source transfer learning method 
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P (d = 1|Xn) = EM (Nr, Ur, P ); 

Select instances with have 

high in-target-domain probability; 

Re-weight instances based 

on in-target-domain probability; 

 
 

 
 

PUIS PUIW 

 

 

Figure 2.2: PUIS & PUIW [1] 

 
 

based on the maximal correlation analysis [86]. Notably,  it does not require the data  

from source domains to train a target domain model. Instead, it only requires the pre- 

trained source domain models to construct a set of distributed networks as a feature 

extractor for the target domain data.  By doing this, the computation of the training         

is significantly reduced. What is more, a novel maximal correlation metric [87] was 

introduced to measure the distribution distance.  More than that, as shown below, it    

also proposed four rules for designing algorithm-specific TL algorithms. The four rules 

are: 

 
• Minimize the weighted empirical loss over source and target domains. 

 
• Assign balanced weights to data points, as focusing too much on specific data points 

leads to over-fitting caused by perturbations in the training data . 

 

• Assign more weight to the target sample, since target data will be used for testing. 

 
• Assign weights such that the performance gap between the domains is small. 

 

 
Moreover, it also proposed a novel algorithm called GapBoost, which adjusts the in- 

 

stance weight matrix by applying on a novel domain distance measurement, Y −Discrepancy: 

distY (DS , DT ) = sup|LDS (h) − LDT (h)|, h ∈ H, 

Sp̂y = Sample(P, a); 

P̂ = P − Sp̂y, label=0; 
Û  = U 

u 
Sp̂y, label=1; 

NB(Nr = Û , b); 

Ur = U − Nr; 

P : Small set of unlabelled data in the target domain; 

U : Large set of labeled data in the source domain; 
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where h is the optimal chosen learning model during each iteration in the training 

stage. 

 
 

2.4.1.2 Learning on Features 
 

 
However,  those required conditions of instanced-based algorithms do not always hold   

in many real-world problems [17, 43, 57]. Alternatively, feature-based methods have 

been developed to solve the issues. Firstly, [25] introduced the idea of transferable fea- 

tures for deep neural networks. In general, learning on features only needs a weaker 

hypothesis: the distributions of the target domain and the source domain are similar. 

Intuitively, it tends to minimize the distribution mismatch between the source domain  

and target domain by transferring or re-representing features to another space. Gener- 

ally, there are two types of feature-based transductive learning methods: data-centered 

methods [2, 11, 17, 39, 40] and subspace-centered methods [3, 42–45]. 

Generally, data-centered methods are to discover a uniform transformation that can 

convert the data from the source domain and the target domain to a domain-invariant 

space so that the distribution mismatch can be minimized without losing original in- 

formation. However, so it does not work well when the target domain and the source 

domain have a large discrepancy. Differently, subspace-centered methods try to reduce 

the domain shift by manipulating sub-spaces of the source domain and the target do- 

main. To do this, it is important to find the appropriate projections for the data in 

both domains. 

Firstly, the idea of adaptation layer was proposed by [39]. It introduced a modified 

feedforward neural network, Domain Adaptive Neural Network (DaNN), with one 

adaptation layer. Importantly, the loss function is contains two parts: the general loss 
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Figure 2.3: Deep Domain Confusion [2], it is an AlexNet-based architecture with 

one adaptation layer and an additional domain confusion loss (MMD-based) was 

proposed to learn a semantically meaningful and domain invariant representation. 
 

and the MMD loss. Additionally, the MMD loss is used to evaluate the distribution 

mismatch between the source domain and the target domain. The  model  has  pro- 

duced better performance than similar models [26, 88]. However, it is a very shallow 

and simple model, so the performance is limited. Furthermore, several studies have 

approved the deep neural networks can learn much more transferable features, so we 

would like to benefit from the deeper features. To explore the potential of DaNN, a 

number of novel methods were proposed [2, 3, 11, 40, 41].  As illustrated in Figure-   

2.3, Deep Domain Confusion (DDC) [2], an AlexNet-based [10] Convolutional Neural 

Network (CNN) with one adaptation layer and an additional domain confusion loss 

(MMD-based) was proposed to learn a semantically meaningful and domain invari-     

ant representation.  Additionally, the evaluation metric can also be used to determine  

the position and the dimensionality of the adaptation layer. Furthermore, [42, 43] im- 

proved the performance of [2] by introducing weighted-MMD with weight regularizer. 
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Moreover, [17] added another term, CORAL loss, to the regular loss function to pro- 

duce even better results. In this method, CORAL loss, fCORAL, is defined as the dis- 

tance between the second-order covariances of the source and the target features: 

 

 

fCORAL 

  1  
= 

4d2 
1CS − CT 1F 

 
 

 
 
 

 
 

Figure 2.4: Gradient Reversal [3], it has three components: a feature extractor 

(green ), a label predictor (blue), and a domain classifier (blue). 

 

 

 
However, the buried features in the deep layers could be highly task-specific, so that 

they cannot be safely transferred to new tasks. To solve this issue, another frame- 

work was proposed by [11]. It introduced a novel framework, deep adaptation net- 

works (DAN), to enhance the feature transferability and reduce the domain shift. Dif- 

ferently, multi-kernel MMD is used to close the distribution mismatch between the 

source domain and the target domain, and multiple adaptation layers are applied to 

improve the performance. As a classic example of multi-kernel MMD-based architec- 

tures, The Domain Adaptive Hash (DAH) network [45] combines hashing techniques 

and multi-kernel MMD. To the best of our knowledge, it is the first research that ex- 

ploits the feature learning capabilities of neural networks to learn representative hash 

codes to address the domain adaptation problem. Particularly, hashing techniques can 
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also convert the high dimensional data into binary codes, so it will be easier to access 

and store. In addition, there are more models [27, 46, 47] that have used adaptation 

layer. Especially, [48] is able to transfer across domains and tasks simultaneously. 

Differently, [3] wishes to learn the underlying features that combine the discriminative- 

ness and domain-invariance.  The network architecture is shown in Figure-2.4.  It has  

one feature  extractor and two  sub-classifiers.  The underlying features can be learned   

by training two classifiers simultaneously, label predictor and domain classifier. The 

feature extractor can minimize the loss of the label predictor and maximize the loss of  

the domain classifier to make sure the features are domain-invariant.  The loss function   

is constructed as: 

 

 

E(θf , θy, θd) = 

 

    
Li (θf , θy) − λ

 
Li (θf , θd), 

 

  

 
 

where Ly is the loss for label prediction, Ld is the loss for domain classification. How- 

ever, the standard stochastic  gradient descent  does not fit this  procedure because of  

the negative sign in front of the Ld loss. To solve this problem, gradient reversal layer 

(GRL): 

Rλ(x) = x, 

 

dRλ 
= λI, 

dx 
 

was introduced to smoothly connect the feature extractor and domain classifier. Next, 

the GRL function is plugged into the loss function: 

 
E(θf , θy, θd) = 

 
N 

 

 

i=

 

1,di=0 

 
Li (θf , θy)+ 

 

 

 
(2.1) 

  
Li (Gd(Rλ(Gf (xi; θf )); θd), yi) 

i=1 

N 

i=1 i=1,di=0 

N N 
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2.4.2 Inductive TL 

 
Table 2.5: Inductive Learning 

 

Inductive Learning 
 

Feature-Based [25, 46, 52–57] 

Instance-Based [59–65] 

Parameter-Based [5, 66–69] 

Relation-Based [1, 49–51] 

 

Unlike transductive learning, inductive learning is defined as: the tasks in the source 

domain and the target domain are different regardless if the domains are the same or 

not. Under this setting, the well-labeled data is usually available in the target domain, 

no matter the well-labeled data is available or unavailable in the source domain. Par- 

ticularly, the main focus is on the former. In this case, inductive learning is similar 

to multi-task learning, but it only concentrates on the target task. Differently, when 

there is no labeled data in the source domain, inductive learning is close to self-taught 

learning. The information is hidden in the source domain, so it cannot be used di- 

rectly. Commonly, inductive TL aims to develop a target model with a small set of 

well-labeled data in the target domain. 

Additionally, there are four learning types in inductive learning: learning on instances, 

learning on features, learning  on  parameters,  and  learning  on  relations.  Furthermore, 

the first three types of methods are the mainstream in inductive learning, while relation- 

based methods are not very common. 

 
 

2.4.2.1 Learning on Instances 
 

 
Generally, the training data in the source domain are more or less out-dated, and 

processing new data is very costly. Inductive  TL  aims  to  train  an  accurate  model 

with only a tiny amount of well-labeled training data in the target domain. Moreover, 
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Algorithm 1: TrAdaBoost 

Input: Two labeled training sets Td and Ts; 

The unlabeled testing set S ; 

Initialize: Learner, F ; 

The number of iterations, N ; 

Weight Vector, W 1; 
for  t = 1, .... , N do 

1. Set P t = wt/
 N 

wt. 

2. Apply Learner, Ft(X) = Y . 

3. Calculate the error: 

Et = 

 

 

n+m 

 

wt ht(xi) c(xi) 
 n+m 

wt 

 

4. Set βt = Et/(1 Et) and β = 1/(1 + 2 ln n/N ). 
5. Update the new weight vector: 

 

wt + 1 = 
t 
i 

wtβ−|ht(xi) − c(xi)|. 
 

end f 
1, 

ITN β−ht(x) ≥ 
ITN β

− 1 

 

  Output: Ft(x) = t=[ N ] t t=[ N ] t 
0, otherwise 

 
 

the key of this type of methods is finding which part of the old data can be adapted 

to train a new model in the target domain. One of the most famous instance-based 

methods in inductive learning is TrAdaBoost [59], an AdaBoost [60]-based transfer 

learning algorithm. Conceptually, it extracts useful information in the source domain 

by iteratively re-weighting the source domain instances. Firstly, it employs a few la- 

beled new data, called same-distribution data Ts, to evaluate the value of each old the 

old data in the source domain. Furthermore, the instances with low value are classi- 

fied as diff-distribution data Td. And then, it combines Td, Ts, and unlabeled data S 

to train a new model for the target task. However, the re-weight procedure of TrAd- 

aBoost is not the same as AdaBoost. Additionally, it increases the weights of incor- 

rectly predicted instances in Td, while decreases the weights of correctly predicted in- 

stances in Ts. Similarly, [87] proposed GapBoost, a novel multi-source boost method 

for transfer learning. 

Recently, several algorithms inspired by TrAdaBoost have pushed the performance to 

2 2 

i=n+1 
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a new level. Firstly, one of the shortcomings of TrAdaBoost is only using one type of 

base learner to train the model in the target domain, but there might be other base 

learners that can give better performance. To address this issue, [61, 62] choose to em- 

ploy different base learners to improve the performance on specific tasks. Secondly, 

the original TrAdaBoost algorithm only uses one source domain for the knowledge 

transfer.  However,  the knowledge is not always enough from a single source domain.  

In order to overcome this shortcoming, [63, 89, 90] take advantage of combining mul- 

tiple source data sets to avoid negative learning. Additionally, [90] can decide which 

sources are helpful to build the model in the target domain by  iteratively performing   

two  types of boosting:  1) individual boosting for instances and 2) task-based boosting.  

It increases the weights of incorrectly predicted instances, and it also performs a task- 

based boosting that can enhance the instances from the tasks that have higher trans- 

ferability. Unlike TrAdaBoost, it keeps all the base learners can improve the perfor- 

mance of the model because the early iterations fit the majority of the data while the  

later iterations focus on more in-depth details.  Furthermore, there are also researches  

[64, 65] that improve the model with dynamic weight update methods. 

Overall, re-weighting instances iteratively is a proven way  to enhance inductive learn-  

ing models’ performance, yet some other researchers hold different opinions. Com-  

monly,  certain parts of the differently distributed data Td could help training the model   

in the target domain, yet certain parts could also be harmful. Moreover, there are 

no simple methods to measure the transferability of the source data sets accurately. 

Therefore, some algorithms [91, 92] intend to remove all the different distribution data 

instead of assigning small weights to them. 
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Figure 2.5: Feature-Based Inductive Learning [4], it requires a large set of labeled 

data from one or multiple source domains, and a small amount labeled data from the 

target domain. The core idea is to train three separate model by augmenting the 

original data into three sets, namely, source-specific, target-specific, and 

general-specific. 

 
2.4.2.2 Learning on Features 

 

 
Commonly, feature-based inductive transfer learning algorithms [25, 46, 52–57] wish to 

extract shared features to minimize domain divergence and model error. According to  

the types of source data sets, feature-based algorithms can be classified into two cate- 

gories: supervised and unsupervised. Firstly, supervised algorithms [25, 46, 52–56] are 

similar to multi-task learning, which combines a sufficient amount of labeled source   

data and a tiny amount  of labeled target data  to train a high-quality model in the  tar-  

get domain. However, multi-task learning tends to learn all the tasks simultaneously, 

while inductive transfer learning only focuses on the target task. Differently, unsuper- 

vised algorithms [57, 87] are more powerful but difficult to train. 

Primarily, most feature-based inductive transfer learning methods focus on finding 

domain-invariant features. In other words, the problems can be converted into how 

to effectively extract features that can reduce the divergence between the source do- 

main and the target domain [23]. [52] introduces a simple, fully supervised approach 

with feature-augmentation. Firstly, it requires a large set of labeled data from one or 

multiple source domains, and a small amount labeled data from the target domain. 

And then, it trains three separate model by augmenting the original data into three 

sets, namely, source-specific, target-specific, and general-specific. Additionally, three 
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sets of weights of those data sets are denoted as Ws, Wt, Wg. Moreover, Ws represents 

the sum of the ”source” and ”general” features, Wt represents the sum of the ”tar- 

get” and ”general” features. And the feature-augmented weights are regularized by 

|Wg|2  + |Ws − Wg|2  + |Wt − Wg|2. Finally, minimizing the sum of the equation will 

find the features that can minimize the divergence.  Moreover, as shown in Figure-  

2.5, [4] proposed a framework to justify the effectiveness of feature-based inductive 

transfer learning. Firstly, it constructs a feature mapping, F , for the source domain 

data. Then use this mapping to transfer the target domain data to the same feature 

space. After that, it trains a discriminative classification model based on the feature 

extracted by F . Besides, the mapping learned in the first step will also be used to 

convert the test data into the same feature space as the training data. 

Recently, several works [25, 46, 56, 57] have evaluated the combination of GANs and 

transfer learning. Initially, this kind of methods aim to free human from hand-designing 

networks for extracting shared features. For example, [56] aims to find features that 

are 1) discriminative for the main learning task in the source domain and 2) domain- 

invariant by implementing the idea of GANs. Moreover, these features are considered 

ideal for cross-domain transfer when models cannot identify the original domain of the 

inputs [25]. As shown in Figure-2.6, the model includes three main components, do- 

main classifier  Gf , predictor P , and feature  extractor  Gf .  The final goal is  to learn  

the mapping (M ) to predict unknown instances in the target domain with low risk. 

Furthermore, the risk is defined as follow: 

 

 
 

RDT (M ) = Pr(x,y) DT (M (x)/=y) 
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where DT represents the target domain, and M represents the mapping from the fea- 

tures to the labels. 

Similar to the typical GANs model, domain classifier and predictor will be adversar- 

ial to each other. As shown in Figure 2.6, the parameters of the domain classifier are 

trained to minimize the loss during the training. The feature extractor parameters are 

optimized to minimize the loss of the predictor fc and maximize the loss of the do- 

main classifier fd. Therefore, the loss of the model is constructed by two terms: 

 

f = fc(Ds, ys) + λfd(Ds, Dt) 

 

 

where Ds represents the source domain, Dt represents the target domain, and λ is the 

learning coefficient. 

 
 

Figure 2.6: GANs-Based TL 

 

 

 
 

2.4.2.3 Learning on Parameters 
 

 
Generally, parameter-based approaches [5, 66–69] are based on the assumption that 

there are shared-parameters in models from source domains and the target domain. 

Thus, this type of methods are not suitable for the cases with a significant domain 

shift. Under this setting, parameter-based methods can be easily derived from multi- 

task learning methods. However, multi-task learning is usually focused on learning all 

the tasks simultaneously, while parameter-based transfer learning is only focused on 
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optimizing the target task. Thus, the loss functions for all the tasks are the same in 

multi-task learning, but the loss function in the target domain has greater weights in 

the transfer learning. 

 

 

 

 

 

 

 

 

 

 

 
 

(a) (b) 
 

Figure 2.7: 2.7a: TransEMDT [5], it first trains a decision tree model based on the 

source data (DTS ). Secondly, it feeds a small amount of the labeled target data into 

DTS , and the prediction is used as initial clusters for K-Means model. 2.7b: Markov 

Logic Network [6–8], the Markov Logic Network can be demonstrated by finding 

similar relationships from two different domains to construct a mapping from the 

source domain to the target domain. 

 
 

Firstly, [5] introduced a decision tree embedded transfer learning framework. TransEMDT 

(Transfer learning EMbedded Decision Tree) aims  to  address  supervised  transfer  learn- 

ing problems. As shown in Figure-2.7a, it first trains a decision tree with the source 

data (DTS ). Secondly, it feeds a small amount of the labeled target data into DTS , 

and the prediction is used as initial clusters for K-Means model. After that, the pa- 

rameters of DTS is updated. Then the previous steps will be repeated until it con- 

verges. Finally, the output will be the decision tree for DTT . Similar to TransEMDT, 

[67] proposed another framework, TransRKELM (Transfer learning Reduced Kernel 

Extreme Learning Machine), which uses RKELM to build an initial activity recogni-   

tion model. Furthermore, several algorithms [68] have achieved promising performance 

by modifying SVM (Support Vector Machine). Typically, they assume that  weight 

vectors of SVM contains two components: W = WS +WD, where WS represents weight 
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vectors that are shared across the source and the  target  domains,  while  WD  repre- 

sents domain-specific weight vectors. In general, the traditional discriminative query 

strategy results in poor performance when there is a significant distribution mismatch 

between the source domain and the target domain. Some studies [68, 69] applied the 

generative query strategy to overcome this shortcoming. Moreover, [69] extended bi- 

nary learning method to multiclass problems by implementing the one-vs-all approach. 

Furthermore, [66] presented Multilinear Relationship Networks(MRN). It can prevent 

negative transfer in the feature layers by jointly learning transferable parameters and 

multilinear relationships. 

 
 

2.4.2.4 Learning on Relations 
 

 
Comparing to other topics in inductive TL, relation-based transfer learning is not very 

popular. Unlike the other three types of learning methods, relation-based  transfer 

learning methods do not assume the source data and the target data to be indepen-      

dent and identically distributed (i.i.d). This makes relation-based methods much more 

flexible and robust than traditional methods. However,  there are not many studies on  

this topic in recent years. Moreover, most of this type of algorithms are built based 

on statistical learning techniques.  The idea behind relation-based transfer learning is  

that similar relations exist in different domains. For example, the data in the source 

domain contains images of a professor giving a lecture to students, and the data in the 

target domain contains images of a manager giving a speech to  employees.  Although 

two sets of images describe different objects, they have the same relation. 

Some studies [6–8] have proposed to use Markov Logic Networks. As shown in Figure- 

2.7b, the Markov Logic Network can be demonstrated by finding similar relationships 
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from two different domains to construct a mapping from the source domain to the tar- 

get domain. 

 
 

2.4.3 Cross-Modality Transfer Learning 

 
Table 2.6: Cross-Modality Transfer Learning 

 

Cross-Modality Learning 
 

Supervised Target Data  [9, 80] 

Semi-supervised Target Data [81–83] 

 

Commonly, most TL algorithms require more or less the connection in feature spaces  

or label spaces between the source and the target domain. In other words, knowledge 

transfer can only be performed when the source data and the target data are in the   

same modality, such as image, audio, and text. Unlike all other TL methods, Cross- 

Modality Transfer Learning (CMTL) is one of TL’s most challenging topics. It as- 

sumes that the source and the target domain’s  feature spaces are entirely different,  

such as from text to image, from audio to text, and from image to audio.  Moreover,   

the label spaces between the source and the target domain can also be different. 

Intuitively, CMTL is inspired by humans’ ability to generalize knowledge from one 

subject to another by building a bridge with other subjects.  For  example, a child who  

has read an article with descriptions of monkeys, and he has never seen any  monkeys    

or images of monkeys. However, it is very possible that the child can recognize a mon- 

key based on that article’s knowledge. In this case, a child can transfer the knowledge 

from text data to image data using knowledge in other different domains.  Theoreti-  

cally, two seemingly unrelated domains can be connected by one or multiple bridge do- 

mains with overlapping semantic information. However, this type of learning behavior 
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is difficult for machines to mimic due to the challenge in selecting appropriate inter- 

mediate domains as the bridge. Moreover, there are two types of CMTL algorithms: 

CMTL with Supervised Target Data and CMTL with Supervised Target Data. 

 
 

2.4.3.1 CMTL with Supervised Target Data 
 
 

 

Figure 2.8: Text-to-Image [9], CMTL transfers between knowledge between text 

files and images with multiple translators. 

 

This section discusses several text-to-image (TTI) DDTL methods, which require a 

small set of labeled image target data. Importantly, image classification tasks cur- 

rently have  two  challenges:  1) labeled image data is relatively scarce and expensive  

to collect, and 2) features  of image data  lack semantic  meaning for class prediction  

as they represent visual features rather than conceptual ones. Moreover, labeled text 

data is often more accessible than labeled image data, and text features have more se- 

mantic meaning for predicting a class label. 

Firstly, Translated Learning via Risk Minimization (TLRisk) was introduced by [80]. 

It proposed an asymmetric architecture to map the features in the source domain to 

the target domain. Moreover, it uses a language model [93] and the nearest neighbor 

method to connect the text source data and the image target data. Moreover, for a 

smooth feature transition, it builds a translator by applying the Markov chain. The 

source features and the target features are modeled by two different Markov chains, 

which can be bridged with intermediate data. In other words, the translation is done 
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by learning a probabilistic model that uses cooccurrence data as a bridge between the 

source and target feature spaces. Finally, it uses a variant of the risk minimization 

model to produce the final label prediction. This method outputs promising results 

that are better than the baseline model trained on only target data. However, the 

computational cost of TLRisk is very expensive due to the risk function estimation 

and dynamic programming. 

To decrease the computational cost, [9] proposed another method for text-to-image 

(TTI) classification. In this study, the source domain is text data, and the target do- 

main is image data.  This method implements a novel transition method, translator, 

to build a bridge from text to images. It requires labeled source text data, text-image 

cooccurrence data, and a small amount of labeled image target data. This method 

uses TL to exploit such text data to improve image classification. Therefore, this prob- 

lem is converted to how to relate the text to semantic knowledge transfer images. 

Moreover, this method uses a text-image cooccurrence matrix that contains images 

and the text that occurs with them on the same webpage.  Cooccurrence information 

is effective because of the assumption that the text around an image describes the 

concepts in such an image. This cooccurrence information is relatively inexpensive to 

collect and serves as a bridge to learn the correspondence for translating the semantic 

information between the source text and the target image. This translation is achieved 

by the form of a feature transformation called a ”semantic translator function.” This 

translator takes the source, the target, and the cooccurrence data and learns the cor- 

respondence between the source text and the target images through the cooccurrence 

bridge. Each translator for the source text contains a ”topic space,” a common sub- 

space associated with the translation data. As shown in Figure-2.8, there are a num- 

ber of translators combined to form the final decision function f (x(t)). Furthermore, 
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this method bypasses the performances conducted by [80, 81] and other benchmark 

models trained with only target data, and it yields state-of-art accuracy with only a 

little target training data. 

 
 

2.4.3.2 CMTL with Semi-supervised Target Data 
 

 
Unlike CMTL with supervised target data, several methods can take labeled and unla- 

beled target data to improve the classification performance. 

Firstly, [81]proposed a heterogeneous TL for Image Classification (HTLIC) method 

that can take in semi-supervised source data and target data. Moreover, it aims to 

enhance a target image classification task with limited labeled data by exploiting se- 

mantic knowledge derived from unlabeled text documents and unlabeled annotated 

images from an auxiliary source. The unlabeled auxiliary data is relatively inexpen- 

sive to collect and it can enhance target image classification performance. It aims to 

find the relationship between unlabeled source text data and the semi-supervised im- 

age target data using auxiliary data with related semantic information. Furthermore, 

the connection is discovered using a two-layer bipartite graph where the top layer rep- 

resents the relationship between the images and the tags, while the bottom layer rep- 

resents the relationship between the tags and the documents. The feature space gap 

between the source domain and the target domain can be reduced. Moreover, more 

shared semantic information can be discovered with this bridge in low-level features 

with semantic analysis [94]. Unlike previous methods, HTLIC does not use a Markov 

chain to achieve the classification task. Instead, it applies traditional support vector 

machines (SVMs) [95] to make the final predictions. As the main improvement of this 

method, it proposed an efficient way to utilize semi-supervised target data to produce 

promising classification accuracy. 
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 λ2,1P λ2,2P ... λ2,N P  (1,1) (2,2) (2,N ) 

 

Furthermore, [4] first introduced the idea of using co-occurrence information between 

two different domains. And then, [96] proposed Co-occurrence Transfer Learning (CT- 

Learn) for  knowledge transfer between text data  and image data.  More importantly,     

it enables the knowledge transfer from multiple domains, significantly improving the 

target classification accuracy with appropriate source domain selection. Unlike the 

previous methods [81], CT-Learn first uses the co-occurrence information between the 

text data and image data to create a joint transition probability matrix P : 

 

 λ1,1P (1,1) λ1,2P (1,2) ... λ1,N P (1,N )   

 

 

P =  

 

 

. . ... . 

 
. . ... . 

 
. . ... . 

 
. (2.2) 

 

 

λN,1P (N,1) λN,2P (N,2) ...    λN,N P (N,N ) 

This matrix is constructed using intra-relationships and inter-relationships for all the 

co-occurrence, labeled, and unlabeled instances across both domains. Moreover, the 

intra-relationships are calculated by the affinity of the intrinsic manifold structure 

between the ith domain, and the inter-relationships are calculated by using the co- 

occurrence information. The diagonal elements represent intra-relationships, and other 

elements indicate inter-relationships between the ith and the jth domains. The weights 

λ decide the amount of transferable knowledge between domains, which shares a sim- 

ilar idea of learning rate in artificial neural networks. Furthermore, after extract the 

inter-relationships and the intra-relationships, it creates a coupled Markov chain based 
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on a random walk with a restart. Different from TLRisk [80], CT-Learn applies a vari- 

ant of regular Morkov chain to adapt multiple source domains. Moreover, most pre-  

vious methods can only handle binary classification problems, but CT-Learn can deal 

with binary and multi-class classification problems. Finally, CT-Learn performed the 

highest accuracy on most benchmark data sets. 

Table 2.7: Unsupervised Transfer Learning 
 

Unsupervised Learning 
 

Feature-Based [23, 70–72] 

 

 

 

2.4.4 Unsupervised Transfer Learning 
 

 
Primarily, the idea of transfer learning was proposed to solve the issue of lacking data. 

Moreover, many transfer learning methods have successfully generalized machine learn- 

ing techniques to practical and performance-critical problems. However, most algo- 

rithms are focused on supervised cases and semi-unsupervised cases. In general, super- 

vised algorithms cannot deal with cases where we do not even have  enough labeled in  

the source domains. 

Conceptually, unsupervised TL is defined as no labeled data in both the source do-    

main and the target domain. This type of methods are beneficial  to  tasks  that  are 

unique and special, so a sufficient amount of labeled data from both the source do-    

main and the target domain are not accessible. However, researchers have not favored  

this topic due to some barriers that make it difficult to apply to real-world tasks. Gen- 

erally, there is only one sub-field under this setting: feature-based learning. Addition-  

ally, unsupervised transfer learning is also termed as self-taught learning by many re- 

searchers and scholars. 
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2.4.4.1 Learning on Features 
 

 
Firstly, a few methods [70, 71] for clustering and dimensional reduction problems were 

summarized by [23]. The concept of Self-taught Clustering (STC) was introduced by 

[71], which aims to perform clustering on a small set of unlabeled target data with the 

help of a sufficient amount unlabeled in the source domains. In theory, STC tends to 

convert data sets in different domains into a common feature space, which can utilize  

the source data to cluster the target data. Moreover, proposed Transferred Discrim- 

inative Analysis (TDA) was proposed by [70].  It can generate pseudo-class labels for  

the target data by applying clustering methods. 

Furthermore, a novel self-taught learning algorithm was introduced by [72]. It uses 

sparse coding to construct higher-level features using the unlabeled data. Moreover,  

this algorithm had been shown to improve the performance of classification tasks sig- 

nificantly. 

 
 

2.4.5 Negative Transfer Learning 

 
Table 2.8: Negative Transfer Learning 

 

Negative Learning 
 

Problem Definition [23, 28, 73–76] 

Algorithms [70, 77–79] 

 

Certainly, transfer learning has successfully solved the issue of lacking training data in 

many real-world applications. However, it also has one shortcoming: negative transfer. 

Commonly, negative transfer occurs when transferring too much unrelated knowledge 

from the source domains. Despite its pervasiveness, negative transfer is usually de- 

scribed in an informal manner, lacking rigorous definition, careful analysis, or system- 

atic treatment. Firstly, there are numerous survey papers [23, 28, 73] have discussed 
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this issue in many TL disciplines. Furthermore, some researches [74–76] have recog- 

nized it in many real-world applications. In this section, the author introduces some of  

the works that address negative learning. 

First of all, typical TL assumes that the target domain and the source domain are dif- 

ferent but related, so some common instances or features can be transferred between 

different domains. However, it limits TL from being applied to cases where the source 

and the target are very loosely connected. To address this issue, some works focus on 

transferring knowledge between two distant domains. Firstly, an instance-based al- 

gorithm [77], transitive transfer learning (TTL). It transfers knowledge between text  

data in the source domain and the image data in the target domain by  using anno-       

tate image data as the knowledge bridge.  However,  this algorithm is very situational  

and case-dependent. Moreover, another feature-based method [78]  was  proposed  to 

deal with scarce satellite image data. It predicts the poverty based on the  daytime 

satellite image by  transferring knowledge of an object classification task with the help  

of some nighttime light  intensity information  as a bridge.  The main contribution  of 

this method is to use similar data with different conditions to connect two different 

domains. Moreover, an instance-based distant domain transfer learning (DDTL) al- 

gorithm [79] uses several intermediate domains to bridge the source and the target. 

More specifically, it first uses an auto-encoder pair to select instances from the source 

domain and the intermediate domains, and it also learns high-level representations for 

data in different domains. After that, it trains a CNN model by using the selected in- 

stances and representations. Importantly, this method can be simply generalized to 

different tasks and produce fairly decent results. However, there are some challenges 

need to be addressed. Firstly, most chosen instances are from the intermediate do- 

mains and only a little from the source domain. Furthermore, it makes the source 
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data seem unnecessary. The second, it assumes that there is a sufficient amount of in- 

termediate domain data so we can find enough samples to build the bridge connecting 

the source and the target domains. In some cases, enough intermediate domains might 

not be accessible. 

Furthermore, a study [97] first derived a novel definition of negative from three dif- 

ferent perspectives, the chosen model, the divergence between the joint distributions, 

and the size of labeled target data, respectively. More importantly, it proposed a new 

term, negative transfer gap (NTG), to quantify the effect of negative transfer. It then 

introduced a novel GANs-based instance re-weighting algorithm to select useful sam- 

ples from the source domain. 

 

 

2.5 The Frontier of TL 

 
Table 2.9: The Frontier of TL Applications 

 

Transfer Learning Applications 
 

Signal Processing Transductive TL [18, 98–103] Distant Transfer [77, 79] 

Sentiment Analysis  Inductive TL [104–107] Transductive TL [108, 109] 

Health System Inductive TL[18, 19, 110–112] Transuctive TL[113] 

CPS Inductive TL[114–116] Transuctive TL[117] 

 
In this section, the author presents the current trends in TL from two aspects: TL al- 

gorithms and TL applications.  For  TL algorithms, the author introduces several fields   

in TL that attract most attention.  For  TL applications, the author demonstrates vari-    

ous applications spanning multiple TL disciplines. Moreover, the main attention of the 

algorithm level is in solving the issues of insufficient data and distant domain trans-      

fer by conducting experiments that usually step ahead of making real productions. 
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Therefore, assumptions made in experiments do not always hold in real-world prob- 

lems. Differently, real-world applications focus more on applying TL models with sta- 

ble and promising performances, so methods with pre-assumptions cannot be used. 

 
 

2.5.1 The frontier of Transductive TL 
 

 
First of all, domain adaptation, a sub-field of transductive TL, is the most active area.     

It tends to solve problems where only have a sufficient amount of labeled source data  

and unlabeled target data for the training process. Therefore,  domain  adaptation 

methods can be categorized into a cluster of semi-supervised learning algorithms. 

Moreover, this semi-supervised manner gains more focuses than other TL topics do. 

Currently,  existing domain adaptation algorithms aim to close the marginal distribu-   

tion distance or conditional distribution distance  in  two  ways:  symmetrical  training 

and asymmetrical training. The first,  symmetrical  training  [2,  17]  means  that  there 

are two models with identical structures for the source and the target domains. It is 

commonly applied to feature-based algorithms.  The advantages of symmetrical train-  

ing are: 1) easy to train, 2) fast convergence, and 3) robustness with small source data 

sets. However, it also suffers from a significant shortcoming: performance decrease due 

to large domain discrepancy. Moreover, asymmetrical training [77, 79] is related to 

the cases where the structures of the source model and Target  model are not identi-      

cal but have some common layers. In general, it is applied in instance-based domain 

adaptation algorithms. Furthermore, it can handle a large domain shift by selecting 

statistically similar instances from multiple source domains. However, with multiple 

source domains, asymmetrical training suffers from difficulties in the training and non- 

convergence. 
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Moreover, there are two common learning types of domain adaptation algorithms: 

feature-based and instance-based. Feature-based is the mainstream in the domain 

adaptation area since there is no labeled target data.  Generally, feature-based meth-     

ods aim to utilize all training samples from the source and the target by  extracting  

shared features or closing the feature distribution distance. To extract  common  fea- 

tures, most algorithms first calculate the distance between low-level features from the 

source domain and the target domain with a distribution distance metric through each 

iteration.  The next step is to select or re-weight the features based on the distribu-       

tion distance to learn high-level feature combinations. Similarly, some feature-based 

algorithms tend to discover more shared features by  converting features from differ-    

ent domains into a novel feature space where the distance of different features is small. 

Feature-based methods can carry out  state-of-art  performance  when  the  source  and 

the target have  strong connections.  However,  the performance can drop if there is only  

a small amount of similar data samples across domains because a large number of dif- 

ferent samples can overfit the model. 

Differently, instance-based algorithms aim to select similar instances from different do- 

mains to ensure a safe and quality knowledge transfer. Combining instance re-weighting 

and distribution distance metric is the most  commonly  used  technique  in  instance- 

based methods. Also, there are two different types of instance re-weighting: soft re- 

weighting and hard re-weighting. Firstly, soft re-weighting does not eliminate  any 

instance. Instead, it just sets the weights of dissimilar instances  to  extremely  small 

values. On the contrary, hard re-weighting eliminates all dissimilar samples by set- 

ting the weights to zero. With the selection procedure, training samples have a more 
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reliable connection, and they can avoid the performance drop due to large domain dis- 

crepancy. Besides, instance-based methods can output relatively more stable perfor- 

mance. However, the performance can be disappointing when the volume of the source 

domain data is small because the number of selected instances can be insufficient if      

the domain distance is far. 

 
 

2.5.2 The Frontier of Inductive TL 
 

 
Generally, there are two main types of inductive TL learning algorithms: multi-source 

TL and self-taught TL. In common, both learning algorithms require labeled tar- 

get data for the training process. Moreover, multi-source learning also needs labeled 

source data, while self-taught does not rely on labeled source data. Furthermore, multi- 

source learning attracts more attention due to its stable performance. 

The main idea of multi-source learning is to take the advantage of multiple source do- 

mains. It is difficult to extract enough shared information from a single source domain 

in real-world problems due to the distribution discrepancy. Therefore, we aim to uti- 

lize multiple source domains to discover common features from each source domain 

and combine them to develop a source domain model. Moreover, this type of algo- 

rithms are usually stable and robust, but they are also computationally expensive due 

to the quantity of data from various domains. Under the setting of this type of algo- 

rithms, instance-based learning methods are more preferred than feature-based algo- 

rithms because the number of source training samples is sufficient for the training pro- 

cess. Furthermore, multi-source TL is closely related to supervised multi-task learning, 

another favored non-transfer ML technique. They both utilize multiple data sets from 

different domains and tasks. However, multi-task learning aims to improve the models 

in all different domains by sharing data sets. Differently, multi-source TL only focuses 
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on the model in the target domain for the target task. Therefore, multi-task learning 

achieves better overall performances for multiple domains, and multi-source learning 

carries out better performance for a model in a specific domain. 

Unlike multi-source TL, self-taught TL only requires labeled data from the target 

domain, which is more powerful but more costly and challenging to train. Moreover, 

feature-based learning methods and instance-based methods are both available in self- 

taught TL. In feature-based methods, unsupervised feature construction  is  required 

since there are no labels for the source domain data. The most commonly used un- 

supervised feature construction is sparse coding, which can be treated as a two-step 

minimization problem. In instance-based methods, the original TrAdaBoost [89] is the 

cornerstone of many advance self-taught TL algorithms, including but not limited to 

multi-source TrAdaBoost, weighted TrAdaBoost, and multi-class Boost. Furthermore, 

instance-based methods are generally easier to train because the convergence of unsu- 

pervised feature construction is not always guaranteed. 

 

 

2.5.3 The Frontier of Distant Domain TL 
 

 
Recently, insufficient training data and  domain  distribution  mismatch  have  become 

the two most difficult challenges in ML. To address these two issues, TL has attracted 

more attention due to its training efficiency and domain shift robustness. However, 

transfer learning also suffers from a critical issue, negative transfer [75]. It signifi-  

cantly limits the use and performance of transfer learning.  This  section  introduces 

some related works in three fields: conventional transfer learning, DDTL, and multi- 

task learning. 
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Firstly,  TL aims to find and transfer the common knowledge in the source domain     

and the target domain. Furthermore, a research [46] expands the use of TL from tra- 

ditional machine learning models to deep neural networks. Typically,  there are two 

types of accessible TL: feature-based and instance-based.  Moreover, both types fo-   

cus on closing the distribution distance between the source domain and the target 

domain.  In instance-based algorithms, the  goal is to  discover source instances simi-  

lar to target instances to eliminate the highly unrelated source samples. Differently, 

feature-based algorithms aim to map source features and target features into a com-  

mon feature space where the distribution mismatch is minimized. However, both of 

them naturally assume that the source domain and the target domain share a reason-  

ably strong connection. Unlike conventional transfer learning, our work can transfer 

knowledge between different domains and tasks that are not closely related. 

Secondly, most DDTL algorithms are similar to multi-task learning [118], which also 

benefits from shared knowledge in multiple different but related domains. Generally, 

multi-task learning tends to improve the performance on all the tasks. Differently, 

DDTL only focuses on using the knowledge in other domains to improve the target 

task’s performance on the target domain. 

Lastly, most previous studies of DDTL focus on instance-based methods and tend to 

take advantage of massive related source data. Firstly, [77] introduced an instance- 

based algorithm, transitive transfer learning (TTL). It transfers knowledge between   

text data in the source domain and the image data in the target domain using anno-    

tate image data as a bridge. However, this algorithm is highly case-dependent and 

unstable on performance. Similarly, another instance-based algorithm was introduced 

by [79]. It proposed a novel instance selection method, Selective Learning Algorithm 
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(SLA). Moreover, SLA can select helpful instances from many unrelated intermedi-     

ate domains to expand the volume of the source data. However, this algorithm mainly 

aims to handle binary classification problems. Furthermore, a feature-based method[78] 

can deal with scarce satellite image data. It  predicts  the  poverty  based  on  the  day- 

time satellite image by transferring knowledge learned from  an  object  classification 

tasks with the help of some nighttime light intensity information as a bridge.  How-    

ever, this method heavily relies on a massive amount of labeled intermediate training  

data, which can be too expensive to apply. Unlike existing DDTL algorithms, a novel 

feature-based [84] method benefits from multiple unlabeled source domains data with 

significant discrepancies. Furthermore, it can also handle multi-class classification and 

consistently produce promising results. 

 
 

2.5.4 The Frontier of TL Applications 
 

 
In real-world problems, the most frequently and successfully applied ML technique is 

conventional supervised learning. After that, TL is predicted to be the next success 

in the industry. First of all, conventional ML algorithms cannot always meet the per- 

formance requirements due to the accuracy degradation caused by domain shifts. To 

address this issue, inductive TL [18, 19, 110–112] has started receiving more and more 

attention.  Under the setting of inductive TL, multi-task learning is acknowledged as   

the most popular topic. Typically, it aims to improve the model robustness by using 

a small set of labeled target data set. Collecting a small set of labeled target data can 

decrease the training cost and enhance the robustness of the target model. The train- 

ing process of inductive TL is the same as transductive TL. The only minor change is 

adding another target loss term to the final loss function of the model. However, the 
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downside of inductive TL algorithms is that the training is more computationally ex- 

pensive and time-consuming since another loss term is added. 

Moreover, TL has been successfully applied to many applications in different fields, 

including but not limited to signal processing, sentiment analysis, health care system, 

and cyber-physical system (CPS). 

Firstly, there are two  main trends of signal processing, namely image processing [18,  

79, 98–100], audio analysis [101–103].  Transductive  TL and distant domain TL are    

the main streams for this field. With TL algorithms, several different real-world prob- 

lems can be solved by transferring knowledge from different domains with minimized 

cost. Sentiment analysis has also become an extremely active field in TL, including 

several applications: speech recognition, recommendation system, and spam detection. 

For example, the study [104] proposed the first TL enabled model for language under- 

standing. A few works contributed a lot in cross-language translation [108, 109, 119]  

and sentiment analysis [105–107]. Furthermore, as  more  attention  being  brought  to 

the health system, inductive and transductive TL has also been applied to solve many 

health cares and medical system-related problems, such as muscle fatigue classification 

[113], blood test analysis [110, 111], and medical imaging diagnosis [18, 19, 112]. Es- 

pecially, TL methods also benefit a number of COVID-19 related problems [120–122], 

such as detection, treatment, and spread prediction. 

Moreover, as a newly proposed concept, CPS requires moving beyond the classical 

fundamental computation and physics models. Therefore, it needs new models and 

theories that unify perspectives, capable of expressing the interacting dynamics and 

integration of a system’s computational and physical components in a dynamic en- 

vironment. A unified science would support composition, bridge the computational 
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versus physical notions of time and space, cope with uncertainty, and enable CPS to 

interoperate and evolve. Recently, there are many TL researches [114–117] conducted 

solid results in CPS. 

 

 

2.6 Open challenges 
 

 
So far, many studies of TL have carried out state-of-the results in several fields. Espe- 

cially, transductive TL is the most active area in TL. However, there are still a num- 

ber of open challenges of TL that are waiting to be addressed. This section discusses a 

number of major challenges in two levels: algorithm level and application level. 

 
 

2.6.1 Challenges in Algorithms 

 
Table 2.10: Challenges in Applications 

 

Challenges Major Related Applications 
 

Database for TL  Social Media, Online Shopping, Browsers, Web-based Applications 

Perception TL Virtual Assistant, Smart Homes, Smart Cities, Smart Wearings, Security Systems 

 

The author discusses several challenges at the algorithm level, such as human-guided 

TL, negative transfer, life-time TL, adversarial TL, and explainable TL. 

First of all, most existing TL algorithms heavily  rely on human  instructions.  Ide-  

ally,  we  expect models to learn an unseen task independently by  using an algorithm  

to fully explore the data. The most successful case is AlphaZero [123] developed by 

Google Deepmind. It can teach itself how to master the Go game from scratch with- 

out any human experiences and instructions. However,  the price  of liberating the model  

is usually very high, and it requires a massive amount of time and computation power     

for the training. Therefore, the next direction is to lower the cost of this type of al- 

gorithms. In general, correctly inputting human pre-experience to the TL models can 
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significantly reduce the time and the computation power required for training such a 

model.  This concept is termed as human-guided TL. It aims to improve the efficiency  

of TL learning algorithms by correctly assembling human knowledge. 

Secondly, negative transfer is widely acknowledged as an essential topic.  It is one of   

the most significant limitations of TL. To  address this issue, several distant domain      

TL algorithms [77, 79, 87] were proposed. Most existing methods are instance-based,  

and they are suffering from two major shortcomings: high case-dependence and mas-  

sive source data requirement. Moreover, current methods can only transfer distant 

knowledge in different domains from the same modality. In other words, they can only 

transfer from image to image, audio to audio.  Therefore, the next step of distant TL       

is to explore the potential of feature-based methods.  Moreover,  transferring  knowl- 

edge between two  different fields  is one of the greatest challenges of distant  TL, such  

as from image to audio and from text to image. Furthermore, an accurate  domain 

distance measurement is also a critical factor in overcoming negative transfer. Com- 

monly, MMD is the most popular non-parametric metric. However, it suffers from the  

risk of high-dimension data transformation. Other non-parametric metrics are not ac- 

curate enough for deep TL models. To address this issue, hybrid domain loss functions 

can help to improve the performance of distant TL. 

The third, life-time TL is a relatively new concept. It aims to enable a TL frame- 

work with self-selecting the optimal learning method. The motivation behind this is 

that manually choosing a proper learning algorithm for a new task can be very time- 

consuming. Furthermore, we cannot do it manually when we are facing a new mission 

every time. Recently, a learning to transfer (L2T) framework [124] introduced a way 

to self-select an algorithm based on the input data. More importantly, there are not 

many studies regarding this issue. There is still a long way to go. 
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What is more, adversarial TL is becoming another focus in the field of TL. In general,     

it shares a similar idea to the original adversarial training pipeline. However, adversar-  

ial TL methods replace the feature generator with a distant feature extractor.  There      

are a few proposed adversarial TL algorithms [31], but they are facing a critical diffi- 

culty in convergence.  The convergence cannot be guaranteed in the training process   

due to  the instability of the loss functions.  Commonly,  there are two  counterparts  in  

the final loss function, so the  gradient explosion and  disappear issues occur quite  of- 

ten. Therefore, designing stable loss functions will be the key to stabilize the training 

process for adversarial TL methods. 

Furthermore, a high-level guideline for TL is also vital to the development of TL algo- 

rithms. When we develop a TL algorithm, a high-level guideline should provide com- 

prehensive guidance to researchers in three main procedures of TL: 1) when to trans-  

fer, 2) what to transfer, and 3) how to transfer.  Commonly,  these three procedures      

can cover most high-level questions during the development of a TL algorithm. To the 

best of our knowledge, there  are many guidance tools for conventional ML, but there    

is a lack of research for TL. A comprehensive guideline can help us develop algorithms 

and produce TL-based products in the industry. 

 
 

2.6.2 Challenges in Applications 
 

 
In TL applications, the author demonstrates the current challenges into four major 

categories: Database for TL, Perception TL, User-machine Interaction, and Job Re- 

placement. Moreover, these challenges are related to the algorithms, policy and ethics. 

Primarily, the database for TL focuses on data privacy, data labeling, data cleanness, 

and data sharing. Perception TL is mostly related to sentiment analysis for the appli- 

cations that only take speech as the input. Moreover, user-machine interaction aims 
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to develop more user-friendly products with TL techniques. Lastly, replacing job posi- 

tions with TL-enabled machines are facing many ethics issues. 

 
 

2.6.2.1 Challenges in Database for TL 
 

 
First of all, the database is the cornerstone of all deep learning algorithms.  The database  

has four main challenges: data privacy, data labeling, data cleanness, and data shar- 

ing. First, data privacy means that data  sets  cannot  be  shared  due  to  restrictions, 

such as the patient information of medical data, copyrights of human face data, and 

security requirements of aviation data.  Therefore, data sets with restricted informa-   

tion cannot be shared to the public. Moreover, some TL algorithms involve with mul- 

tiple source data sets, so they have  a greater chance of violating  the rules and poli-   

cies.  To  address this issue, an extra step to filter out classified information of data     

sets should be added to the process of data creation. What is more, many privacy- 

preserving methods have  been adopted to supervised learning algorithms [125].  TL   

can also benefit from privacy-preserving techniques [126, 127]. However,  this con-  

cept has not been well investigated due to the difficulties caused by  multiple data sets  

in different domains. Importantly, it is critical to all the applications conducted by 

database companies and Internet-based products. 

Secondly, data labeling is  another issue in TL. Unlike traditional supervised learning,  

TL learning does not rely on a massive amount of labeled training data, so we do not 

need to manually label a big data set for TL. However, many deep TL learning models 

require multiple data sets in different domains but with the same label space.  There-  

fore, it creates a new challenge of labeling data sets for TL, which requires to assign 

domain labels to multiple source domain data sets with the same instance label space. 
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Moreover, it is relatively easy to discover several data sets with the same instance la-  

bel space from different domains, but it is still time-consuming to manually assign do- 

main labels when the source space is huge. In the future, creating exclusive data sets 

with domain labels can significantly benefit TL models. This problem is notably more 

critical to real-world applications with TL techniques because developing a real-world 

product requires way more data than academic experiments do. 

 
 

2.6.2.2 Challenge in Perception TL Applications 
 

 
Furthermore, perception TL concentrates on the verbal and motional inputs taken 

 
by TL algorithms, such as speech, voice, and motions. Recently, the stationary image 

data is considered as the  most common input  of most ML-enabled  applications, such 

as auto-driving systems, smart wearings, and security systems.  The easiest access is  

the reason why the majority of the ML-based applications most prefer the stationary 

image data. However, there are four major drawbacks of the stationary image input. 

Firstly, most existing applications are not friendly to people with disabilities. For ex- 

ample, stationary image-based products can cause difficulties for people who cannot 

type the keyboard due to their disabilities. Secondly, stationary image-based ML sys- 

tems cannot easily be controlled by users. The third,  ML-enabled  security  systems 

with image-based inputs suffer from safety issues because image data can be easily 

faked. Lastly, the domain shift can hurt the performance significantly. 

To address these issues, many studies proposed to adopt other data types with less 

accessibility can for a wide range of applications by adopting TL techniques. For ex- 

ample, the study [104] proposed the first TL algorithm for speech recognition and 

achieved a promising performance. Furthermore, TL algorithms have been expanded 
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to other areas: gesture recognition, voice recognition, and Micro-expression recogni- 

tion.  Therefore, the next stage of TL-based applications is to expand the types of in-   

put sources and enable multiple types of input sources. However, there are many un- 

solved problems in TL models for other types of inputs. The most challenging topic is 

sentiment input, such as speech and text. For example, most products can only take key-

words as inputs but cannot handle longer sentences.  There are many successful    TL 

algorithms for image processing tasks, but there are not many studies in senti-     ment 

analysis. Recently, some works [105, 128] have introduced TL algorithms for sentiment-

focused long speech analysis. Therefore, adapting TL techniques to real- world products 

with perception inputs is a very challenging topic. 

 

 

2.7 Concluding Remarks 
 

 
Finally, the number of TL-related researches has been on a rapid increase in the past 

decade. Moreover, its usage in industries is bypassing supervised learning due to its 

advantages on efficiency and performance. In the future, with the above four main 

challenges being addressed, TL will be more widely used in both academia and indus- 

try. 



 

 

 

 

 

 

 

 

 

Chapter 3 
 
 

Data-Efficient Machine Learning 

Framework and An Application 

Case 

 
In this chapter, a novel DEML framework and a DEML evaluation framework will be 

introduced.  Particularly, it is a software-oriented and product-focused framework that   

is designed for DEML. However, it can be generalized to other conventional ML ap- 

plications with a few small adjustments. And then. the author will introduce an real- 

world application with TL. 

 

 

3.1 Data-Efficient  Machine  Learning Framework 
 

 
As a sub-field of artificial intelligence, Machine Learning (ML) was proposed decades 

ago, and it is now attracting more and more attention. In the beginning,  machine 

learning was not preferred by most researchers because of its poor performance, which 

51 
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was limited by insufficient data and weak computational power. To solve these two 

main issues, many powerful processors (TPU and GPU) have been built to give us 

the ability to train extremely complicated models, and the internet has made data 

more accessible. Recently, with more accessible data and powerful machines, the per- 

formance of machine learning models has been brought to a whole new level, such as 

[10, 11]. However, in many real-world problems, either we do not have adequate well- 

labeled training data or do not have  enough unlabeled data to train an accurate model   

for a specific task even though the data is much more accessible than it was before. 

In addition, even with a sufficient amount of data available, the training process for 

deep models can be too costly. As these problems become the new challenge, Data- 

Efficient Machine Learning (DEML) has been proposed to improve the efficiency and 

the performance of ML. The goal of DEML is to enable us to build models with an 

insufficient amount of data or limited computation power. 

As shown in Figure-3.1, DEML covers a wide range of topics in data science and learn- 

ing algorithms, which can provide a scientific guideline to deal with insufficient train- 

ing data and incompatible computational power in modern ML. In general, there are 

three main components: data science, learning algorithms, and generative adversarial 

networks (GANs). Moreover, GANs is a type of Deep Neural Nerworks (DNNs) com- 

monly used in learning algorithms and data augmentation. DEML framework benefits 

many tasks, such as computer vision, NLP, and data analysis. For data science, the 

goal is to expand the volume of training data sets artificially. For learning algorithms, 

the goal is to reduce the reliance on massive data by alternating the architectures. 

This section will provide comprehensive overviews of each component in the DEML 

framework and explain how each component can help us deal with insufficient training 

data and incompatible computational power. 
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Figure 3.1: Data-Efficient Machine Learning 

 

3.1.1 Data Science 
 

 
Training a deep ML model is repeatedly tuning a large set of hyper-parameters to op- 

timize the final performance. The volume of required training data is proportional to 

the size of the model. Generally, there are two ways to solve this issue: 1) reduce the 

number of hyper-parameters and 2) obtain more training data. From the perspective 

of data science, the focus is on obtaining more training data. 

Data science has played an essential role in data-efficient machine learning methods.   

It is not only for data analysis but also for solving the issue of insufficient  training 

data.  In general, data science methods are frequently  used for deep  machine learn-  

ing methods that require a significant amount of training data. This section catego-  

rizes data science methods into two main sub-fields, data augmentation, and data re- 

sampling. 

 
 

3.1.2 Data Augmentation 
 

 
In machine learning, data augmentation is widely acknowledged as an effective way 

to address insufficient training data. And, data augmentation has been beneficial to 

many practical problems in different areas, such as image processing [129–132], audio 

Data Science Learning Algorithm 

Data-Efficient Machine Learning 

Data Augmentation Ensemble Learning Few-Shot Learning 

GANs Transfer Learning 
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Figure 3.2: Mindmap of Data Science 

 
 

analysis [133–135], and signal processing [135, 136]. In theory, we expect a well-trained 

model to be robust under many different situations, such as different backgrounds and 

different angles. Commonly,  a massive amount of training data is usually required for  

the model to learn the invariant features. However,  manually collecting training sam-  

ples from different orientations  and backgrounds is  very time-consuming.  Thus, we 

wish to generate new samples that contain diverse distribution by using data augmen- 

tation methods. In this subsection, the author mainly focuses on data augmentation 

in the following three fields, image processing, audio analysis, and signal processing, 

respectively. 

Table 3.1: Data Augmentation 
 

Data Augmentation 
 

Image Processing [10, 76, 129–132, 137–139] 

Audio Analysis [133, 134] 

Signal Processing [1, 49–51] 

 

 

 

3.1.2.1 Data Augmentation for Image Processing 
 

 
Firstly, [132] has briefly introduced many state-of-art image data augmentation tech- 

niques for deep learning. As shown in Figure-3.3 , it is categorized into two main branches, 

basic image manipulations, and deep learning approaches. In many image processing 

tasks, kennel filters, geometry, and color space transformations, random erasing, and 

Data Science 
Data 

Re-sampling 

Data Aug- 

mentation 
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mixing images are used most commonly. Moreover, deep learning methods are also 

frequently applied when conventional methods do not work well. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3: Image Data Augmentation 

 

 
For basic manipulation, geometric and color space transformations are applied to nu- 

merous of deep neural networks, such as Resnet [76], LeNet-5 [137], and AlexNet [10]. 

Moreover, the kernel filter method is one of the most popular ones which can sharpen 

and blur images by applying sliding filters to images. [139] introduced a kernel filter 

called PatchShuffle that randomly swap pixel values in the filter. Mixing images is 

also an effective solution for obtaining new data from the existing data. Firstly, [140] 

introduced a novel data augmentation method called Between-Class learning (BC 

learning). In the first place, it was inspired by [141], a data augmentation method de- 

signed for sound recognition tasks. Additionally, random erasing [142] is also another 

common image data augmentation technique. It randomly alters the pixel values of 

certain areas of an image. Typically, there are few regular ways to alter the pixel val- 

ues, such as, filling the areas with the mean value, 0, 255, or random values. Unlike 

other methods, random erasing mainly focuses on decreasing over-fitting, while it can 

also deal with the issue of lacking training data. 
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3.1.2.2 Data Augmentation for Audio Analysis and Signal Processing 
 

 
Signal processing and audio processing share several common behaviors, so the au- 

thor merges them into one section in this survey.  Commonly, alternating the length 

of signals is considered the most common data augmentation technique for signal pro- 

cessing. For example, a vocal tract length (VTL) method [143, 144] can produce three 

alternatives by scaling the original audio with three speed factors, 0.9, 1.0, and 1.1. 

Secondly, [145] proposes a modified vocal tract length perturbation (VTLP) method, 

which applies a deterministic perturbation factor, α, 

 

α → {α ± ∆, ..., α ± k∆, ..., α ± K∆} , k = 1, ..., K (3.1) 

 

where, 2K is the total number of replicas of the original data and δ is a fixed shift 

along the α axis. Moreover, stochastic feature mapping (SFM) augments training 

samples by statistically converting one speaker to another. In addition, SFM seeks to 

create a mapping from the source speaker O(S) to the target speaker O(T ) when both 

speakers speak the same utterance u with label L. As the equations are shown below: 

O(S) = 
{

o(S), ..., o(S)

  
o(S) ∈ H 

 

O(T ) = 
{

o(T ), ..., o(T )
  

o(T ) ∈ H 
 

F̂  = ArgminΓ 
(
F (O(S)), λ(T)

)
 

F 

 

where λ(T ) represents the acoustic model of the target speaker O(S) in the feature 

space H and then estimates a transformation F to minimize a chosen objective func- 

tion Γ. In addition, [146, 147] introduce synthesis speech data created by concatenat- 

ing existing waveform segments with statistical approach, like Hidden Markov Models 
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(HMM). 

 

 

 

3.1.3 Data Re-Sampling 
 

 
Importantly, generating extra new samples from existing data sets usually does not 

create different distributions. In other words, it cannot always enhance the robustness 

of a model. And, augmentation is not the only way to improve the performance of a 

model when the training data is insufficient. Re-sampling methods can achieve the 

same goal without generating new data points, and they are always recognized as an 

indispensable tool for machine learning. Generally, they involve repeatedly drawing 

samples from a training set and refitting a model of interest on each sample to obtain 

additional information about the fitted model. 

However, re-sampling methods are usually computationally expensive because they 

require fitting the same statistical method multiple times using different training data 

subsets. However, due to the recent advances in computing power, the computational 

requirements of re-sampling methods are not prohibiting. In this section, the author 

discusses two of the most commonly used methods, validation & cross-validation and 

bootstrap. 

 
 

3.1.3.1 Validation and Cross-Validation 
 

 
In the absence of an extensive designated test set that can be used to estimate the 

test error rate directly, a number of techniques can be used to estimate the quan-  

tity using the available training data. Most commonly, we can apply the validation 

set approach for deep learning models by simply separating the training into training 

and validation sets based on a certain ratio. However, taking away a subset from the 
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validation training is always feasible when we only have a small set of training data. 

Therefore, we tend to perform cross-validation for relatively small data sets, which 

shares many commons with the validation set approach. 

Firstly, assume that we try to estimate the test error associated with fitting a deep 

learning model to a particular distribution. We have a normal size data set that is big 

enough to let us perform the validation set approach. Then, we can randomly divide 

the training set into two parts, a training set and a validation set. The model then fits 

the training set, and the fitted model is used to predict the validation set.  The errors 

of prediction results on the validation set can be assessed using a MSE (Mean Square 

Error). The error rate can then be back-propagated to the model and make further 

adjustments on parameters to get better performance. The validation set approach is 

conceptually simple and easy to apply, but it has three main drawbacks: 

 

• The validation estimate of the test error rate can be highly variable, depending   

on precisely which observations are included in the training set and which are 

included in validation. 

• Only a subset of observations - those are included in the training set rather than    

in the validation set - are used to fit the model. Then the model tends to be over-

estimated on the test set error rate since the model was fitted on fewer samples. 

• It requires a relatively big data set, so it is not feasible when we cannot afford 

taking a subset out of the given training set. 

 
 

To  address the above issues, the cross-validation approach is considered as an effec-   

tive solution. Leave-One-Out Cross-Validation (LOOCV) is the most common method 
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(n) 

n 

 

closely related to the validation set approach. Similarly, LOOCV also involves split- 

ting the training set into two parts. Differently, instead of creating two subsets of 

comparable size, single observation (x1, y1) is used for the validation set, and the re- 

maining observations (x2, y3)...(xn, yn) make up the training set.  The model is fit on  

the n − 1 samples, and a prediction ŷ1 is made for the excluded observation. And 

more, (y1 − ŷ1)2  provides an approximately unbiased test error.  However, it is a poor 

estimate because it is highly variable since it is based on a single observation. The 

LOOCV estimate for the test error is the average of n samples: 

 
 

i=1 

CV = 
1 

MSE 
 

(3.2) 
 

 

 
 

As a shortcoming of LOOCV, it can be too costly to implement since the model has   

to fit the data n times. Especially for deep learning models, this can be very time- 

consuming with a big set of data. However, it is an efficient method for simple models, 

such as polynomial regression. 

 
 

3.1.3.2 Bootstrap 
 

 
Bootstrap is an alternative data re-sampling method that estimates quantities about        

a set of data by averaging estimates from multiple small subsets of the data. Unlike 

validation and cross-validation, bootstrap can be presented with confidence intervals. 

Moreover, a classic bootstrap procedure can be summarized as follow: 

 

• Initialize the number of bootstrap samples and the sample size. 

n 

i 
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• For each bootstrap sample, perform: 1) draw a sample with replacement with 

the chosen size; 2) fit a model on the data sample; 3) estimate the skill of the 

model on the out-of-bag sample. 

• Calculate the mean of the sample of model skill estimates. 

 

 
3.1.4 Learning Algorithm 

 

 
As mentioned previously, the reliance on big data is decided by the design of learn- 

ing algorithms. From this point of view, the focus is to reduce big data demand by 

alternating model architectures. In the DEML framework, there are five main learning 

disciplines: TL, non-parametric learning, few-shots learning, and ensemble learning. 

Moreover, TL is the major concentration in this dissertation. 

 

 

 
3.1.4.1 Transfer Learning 

 

 
Traditional ML relies on a massive amount of training data. It assumes one critical 

condition: the training data and the testing data are drawn from the exact same dis- 

tribution. However, this assumption does not always hold in many real-world prob- 

lems. As such, most conventional ML algorithms usually suffer from three main diffi- 

culties: insufficient data, incompatible computation power, and distribution mismatch. 

First of all, various solutions have been proposed to address the first two problems, 

such as data argumentation, data synthesis, distributed learning, and cloud comput- 

ing. However, each of these proposed solutions suffers from some adversities, such 

as regarding cost, efficiency, and security. Recently, transfer learning (TL) has been 

brought to our attention to deal with all three difficulties. 
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Primarily, TL aims to solve the target task by leveraging the knowledge learned from 

source tasks in different domains, so it does not need to learn from scratch with a  

massive amount of data [23, 26, 27].  As such, TL first can address the most signifi-   

cant issue, insufficient well-labeled training data. Moreover, the time and computation 

resources required for training a model can also be greatly decreased since pre-learned 

knowledge from other domains and tasks can be reused. Furthermore, the distribution 

mismatch can cause significant performance degradation on ML models. TL can also 

address it by fusing knowledge from one or multiple different domains. The rest of this 

dissertation will introduce a review of TL, novel TL algorithms, and cutting-edge TL 

applications. 

 

 

3.1.4.2 Few-Shot Learning 
 

 
Few-Shot Learning (FSL) is counter-intuitive to the conventional ML concept. It aims 

to develop a robust model with very few training samples or no training samples. In 

general, FSL has several sub-fields, such as one-shot learning (OSL), N-shot learning 

(NSL), and zero-shot learning (ZSL). Moreover, the inspiration of FSL is more simi- 

lar to human nature. For example, a person can recognize an unseen landscape if he 

has adequate information about its appearance, properties, and functionalities. The 

information can be learned from other sources, such as books, the internet, and radios. 

In this scenario, the person can learn how to recognize an object without seeing it or 

its images in advance. Therefore, a ML model can learn rare classes using FSL tech- 

niques, and the training cost can be greatly reduced. There are several common FSL 

algorithms: Model-Agnostic Meta-Learning (MAML) [148], Matching Networks [149], 

and Prototypical Networks [150]. 
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There are three common FSL approaches: 1) data-level approach, 2) parameter-level 

approach, and 3) meta-learning approach. 

In data-level approach, FSL aims to solve a task with insufficient training data by 

using knowledge from other large base-data sets. In addition, the base-data set does  

not have the classes that we have in our support-set for the FSL task. Besides, data 

augmentation and GANs can be used to increase the volume of the training data ar- 

tificially. However, the data-level approach can lead to the over-fitting issue. There- 

fore, the parameter-level approach is used to overcome this disadvantage. It usually 

limits the parameter space and uses regularization and proper loss functions. The 

model will generalize the limited number of training samples. Moreover, it can en- 

hance model performance by directing it to the extensive parameter space. Further- 

more, in the meta-learning approach, a model is learning to learn if its performance     

at each task improves with experience and the number of tasks. Meta-learning ap- 

proach learns common features shared by the target and the base sets instead of learn- 

ing the target objects directly. In general, there are two main types meta-learning 

approaches: metric-learning and gradient-based learning. Metric-learning algorithms 

learn to compare data samples. In the case of a Few-Shot classification problem, they 

classify query samples based on their similarity to the support samples. In image pro- 

cessing tasks, it trains a convolutional neural network to output an image embed- 

ding vector, which is later compared to other embeddings to predict the class. Differ- 

ently,  gradient-Based approach, you need to build a meta-learner and a base-learner.    

A meta-learner is a model that learns across episodes, whereas a base-learner is a  

model that is initialized and trained inside each episode by the meta-learner. 
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3.1.4.3 Ensemble Learning 
 

 
First of all, ensemble learning aims to create a strong learner by  combining two  or   

more weak learners. Generally, ensemble learning has three main advantages of: 1)  

weak learners do not require a massive training data set, 2) it improves flexibility and 

can scale in proportion to the volume of training data, and 3) it can boost the robust-  

ness and the performance. Moreover, the weak learners that contribute to the strong 

learners can be either the same type or different types. They can even be trained with 

different data sets depending on the specific situations. 

In real-world problems, unbalanced data sets can greatly benefit from ensemble learn- 

ing. The classes with insufficient training samples can be trained on simple learners, 

such as tree-based models, yield decent results with fewer data.  Differently, other 

classes can be trained with computational-expensive models, such as neural networks. 

And then, predictions made by the ensemble members may be combined using statis- 

tics, such as the mode or mean, or by  more sophisticated methods that learn how    

much to trust each member and under what conditions. 

Commonly, ensemble learning has two major methods: bagging and boosting. Bagging 

trains a bunch of individual models  in a parallel way.  A random subset of the data   

trains each model. Boosting trains a bunch of individual models in a sequential way. 

Each individual model learns from mistakes made by the previous model. Moreover, 

bagging can decrease variance, and boosting can decrease bias. More importantly, be- 

sides addressing insufficient training data, ensemble learning can also handle hetero- 

geneous learning tasks. Furthermore, there are two commonly used ensemble learning 

methods: Adaboost [60] and random forest [151]. 
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3.2 Product-focused DEML Evaluation Framework 
 

 
In this section, a product-focused DEML evaluation  framework  will  be introduced. 

First of all, this framework is software-oriented and product-focused. There is a signif- 

icant difference between the proposed evaluation framework and common experimen-  

tal and theoretical evaluation strategies used by most ML  competitions.  In  general, 

most researches only concentrates on the  situation that both training and testing data   

are from the same distribution.  In other words, the given training set and testing set     

are just two subsets that are randomly split from the whole data set. Therefore, the 

performance degradation on the testing set is not caused by distribution. However, 

in real-world problems, the testing set is usually collected from domains that are dif- 

ferent from the training set domain. The distributions of the source domain (training 

set) and the target domain (testing set) are more or less different. For example, a car 

detection model trained on a set of images collected from Orlando might not work well 

on the testing images collected from Beijing because the difference between the two 

cities is significant.  Thus, the distribution mismatch is an essential factor that can 

lead to serious accuracy reduction. 

From this aspect, the  proposed framework aims to improve the performance of DEML  

in the industry by paying close attention to the potential loss related to distribution 

mismatch. Moreover, this framework also provides a clear and efficient guideline to de- 

velop DEML models for practical problems. Furthermore, this framework is not only 

profitable to DEML models but also conventional ML models. According to the par- 

ticular goal of the given task, a few simple adjustments can make this framework to 

fit any ML problems. In the following sections, a number of notions and terms will be 

introduced first. And then, the details of the framework will be discussed. 



Chapter 3. DEML Framework and Evaluation System 65 
 

 

Importantly, there are several different types of model performances: 

 

 
 

• PerformanceH : Human-level performance. It is the average performance can be 

achieved by human. It is the benchmark for the DEML model. 

 

• PerformanceT : Training performance. Model performance on the training data. 

 
It is the highest accuracy that a DEML model can produce on the training set. 

 
 

• PerformanceT D: Training-development performance. Model performance on 

the validation data that is under the same distribution as the training data. 

 

• PerformanceT est: Testing performance. Model performance on a small set data 

collected from the real-world, which is under the different distribution as the 

training data. 

• PerformanceD: Development Performance.  Model performance on a bigger set  

of real-world data, which is under the same distribution as the testing data. 

 
 

Moreover, there are another few terms for different types of performance reductions: 

 

 
 

• Bias: the performance reduction between PerformanceH and PerformanceT . 

 
• V ariance: the performance reduction between PerformanceT and PerformanceT D. 

 
• Distribution Mismatch: it is reflected by the performance reduction between 

 
PerformanceT D and PerformanceT est. 

 

• OverfitRate: It is reflected by the performance reduction between PerformanceT est 

 
and PerformanceD. 
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Moreover, the main goal is to show more details of the evaluation framework and ex- 

plain how it can be helpful to develop a DEML model. What is more, the generaliza- 

tion of the proposed framework will also be justified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: DEML Evaluation Framework 

 

 
As shown in Figure-3.4, the framework is built upon five types of performances as 

mentioned in the previous section. With those performances, four different losses can 

be measured, and adjustments of the model can be made. To build a robust DEML 

model, there are five main steps: 

 

• Step 1: produce preliminary research to justify the best and average human-level 

performance of the task.  It is only reasonable to replace human by  machines if   

the machine can perform at the same level or even better than human can do. 

• Step 2: perform data analysis and choose a proper algorithm. Adjust learning 

algorithms or add more data if the value of the bias is high. Moving to next step 

without lowering the bias will cause greater performance decrease in the future 

steps. 
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• Step 3:  run the model on the validation set that is under the same distribution  

as the training data. Low variance proves that the model is not overfit on the 

training data, then it is ready for the next step. There are two common reasons 

that can lead to a high variance, 1) insufficient training data; 2) need regular- 

ization term. Commonly, data augmentation and DEML methods can be used to 

dramatically reduce it. 

• Step 4: run the model on a small set of real-world data. The performance de- 

crease is usually caused by distribution mismatch. To close the mismatch, data 

synthesis and transfer learning can be used. 

• Step 5: finally, test the model on the practical problem. If the performance de- 

grades significantly, it means the model is overfit on the development data. Ap- 

plying regularization techniques and data augmentation can make  the  model 

more robust. 

 

 

3.3 Transfer Learning-based Waste Sorting 
 

 
We are entering a new era of smart cities, which offers great promise for improved 

wellbeing and prosperity but poses significant challenges [152–154]. Machine learning 

and data analytics have emerged as essential tools to address these challenges, which 

smart cities are facing [155–158]. 

Rapidly increasing pollution from overpopulation and industrialization is causing seri- 

ous damage to the natural environment of the Earth. As the consequences, water pol- 

lution, air pollution, and deforestation are causing a number of negative effects on our 

health and the economy, such as the increasing cancer rate, new diseases, extinction of 
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species, and soil contamination. For example, toxic materials can be transferred into 

human bodies and wildlife from air, water, and food.  Moreover, soil contamination    

can seriously hurt all fields related to agriculture. As shown in the study of [159], the 

expense of pollution control has been exponentially increasing in the past few decades, 

and many potential solutions have been proposed. To the best of our knowledge, re- 

cycling is widely acknowledged as one of the proven ways to reduce environmental 

pollution effectively. In general, the benefits of cycling are listed as follows: reducing  

the waste lost in landfills, reducing greenhouse gas emissions, and saving resources for 

making raw materials. Furthermore, accurately sorting the waste from our daily life is  

the first and very important step of the big picture of recycling. Therefore, finding an 

effective and efficient way is the key to the success of the cycling process. 

In this chapter, our focus is on building a DL model for solid waste sorting, which 

lands in the field of image classification. Firstly, traditional image processing methods 

use hand-designed features to complete tasks like classification, detection, segmenta- 

tion. However, designing features by hand is a very time-consuming and costly pro- 

cess. Furthermore, it does not always output promising performance in complicated 

tasks. In the recent decade, DL has dominated this field by dramatically setting our 

hands free from designing features, and improving the performance. Additionally, one 

of the most famous DL models, convolutional neural network (CNN), has shown its 

great power in a number of different fields, such as object classification, object detec- 

tion, and speech reorganization. Generally, a deep neural network (DNN) tends to en- 

able the machine to learn how to accomplish the task. In other words, DNN can be 

considered as a black box of a massive amount of hyper-parameters. The goal is to get 

the best performance by iteratively adjusting the values of parameters based on a set 

of rules. However, most DL methods require a huge set of well-labeled training data to 
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get promising performance. In many real-world problems, we do not have a sufficient 

amount of labeled data for training, or we cannot even find unlabeled training data. 

Researchers started focusing on transfer learning to address this issue, which allows us  

to leverage the knowledge stored in other well-trained models. Moreover, we  do not  

have  many datasets for waste sorting tasks that can provide enough training data for  

deep networks. Therefore, the author proposes a transfer learning model for this topic. 

According to [23], there are three common transfer learning settings:  inductive trans-  

fer learning, transductive transfer learning, and unsupervised transfer learning. In 

general, there are multiple different domains in a transfer learning task: one target 

domain and one or multiple source domains. As for inductive transfer learning, super- 

vised training data is always available in the target domain. In the setting of trans-  

ductive transfer learning, the well-labeled data is only available in the source domain. 

Differently, there is no labeled data in  both  the source domain  and the target  domain  

in the setting of unsupervised transfer learning. In this review, the setting of the pro- 

posed model fits into inductive transfer learning.  In addition, there is only a small set    

of data [160] that contains 2530 images in total, which might not be enough for build- 

ing a robust waste sorting  model.  the author tends to use  domain adaption techniques  

to leverage the knowledge stored in deeply-trained models like, AlexNet [10], ResNet 

[161], that are trained on ImageNet dataset.  By doing so, the author was  able to push  

the testing accuracy to 96% by using such a small dataset. 

The rest of the chapter is organized as follows. Section 3.3.1 presents related work. 

Dataset is introduced in Section 3.3.2. the author presents the proposed methodolo- 

gies in Section 3.3.3. Moreover, experimental results are discussed in Section 3.3.5. 

Section 3.3.6 gives a conclusion. 
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Figure 3.5: Source Data & Target Data. 

 
 

3.3.1 Related Work 
 

 
Previously, many image classification projects have been created. However, there are 

not many that are related to waste sorting. In this section, the author introduces a 

number of projects that are related to waste sorting. Moreover, for a better under- 

standing, the author categorizes them into three sub-fields: traditional methods, con- 

ventional DL methods, transfer learning methods. 

 
 

3.3.1.1 Traditional Methods 
 

 
Firstly,  a traditional model, support vector machine (SVM), is considered one of the  

best initial image classification methods. Moreover, comparing to DL models, it is 

simpler to build and easier to train. [160] built an SVM model for waste sorting based  

on a hand-designed feature detector, SIFT. In addition, the SIFT descriptor is one of    

the most powerful feature detectors, and it is invariant  to scale, noise, and illumina-   

tion [162]. Thus, it is extremely helpful to waste sorting. Furthermore, the best kernel 
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of SVM was found after testing a number of different kernels. It is defined as: 

 

1x − x
i 

1
2

 

 
 

 

And, the best performance achieved by SMV was 63% testing accuracy. 

 

 

 
3.3.1.2 Conventional DL Methods 

 

 
Importantly, as mentioned in the earlier contents, one of DL methods’ greatest advan- 

tages is that deep networks can automatically learn features, instead of designing fea- 

tures by hands. However, DL models require matching the size of data and the size of 

the network. A significant mismatch usually causes over-fitting or under-fitting. [160] 

built a CNN that is considered as a simplified version of AlexNet [10]. As claimed by 

the authors, this model only achieved 22% testing accuracy, which is worse than a 

pure guess. Moreover, [163] selected three successful DL architectures, namely, Mo- 

bileNet [164], DenseNets [165], and Inception [166], to train from scratch. As a result, 

those models achieved testing accuracies, 84%, 84%, and 89%, respectively. DL models 

achieve better performance than traditional models. 

However, there are two main drawbacks of conventional DL methods. Firstly, those 

selected models are reasonably deep and complicated. Training from scratch is very 

time-consuming and can be over-fitting with such a small dataset. Secondly, one ad- 

vantage  the proposed model has is that there are a number of datasets that contain    

the objects that are in TrashNet. Furthermore, it can benefit from those samples in  

other datasets if distribution mismatches can be reduced. However, conventional DL 

methods cannot take advantage of those samples from other domains. 

2σ2 
K(x, x

i 

) = exp(− ) (3.3) 
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3.3.1.3 Transfer Learning Model 
 

 
To address drawbacks of conventional methods, numerous transfer learning methods 

have been proposed. Commonly, the distribution mismatches between the source do- 

main and the target domain are the main issue that prevents us from using samples 

collected from different domains for training. As one of the solutions, fine-tuning is 

acknowledged to be an effective way to deal with the distribution mismatch. Primar- 

ily, [163] also implemented fine-tuning on the selected DL architectures to improve the 

performance to a new level. As shown in Table-3.2, the authors pushed the best test- 

ing accuracy to 95% by combining fine-tuning and data argumentation. Fine-tuning 

not only produces a better testing accuracy but also dramatically reduces the training 

time. 

Moreover, the author would also like to expand the dataset by leveraging the samples 

collected from other domains. In this study, the author implements transfer learning 

methods DDC [2], DeepCoral [17], to push the performance to an even higher level. 

Generally, TL methods tend to reduce the distribution mismatch by adding an ad- 

ditional constraint term to the loss function. For example, DDC deploys Maximum 

Mean Discrepancy [167] (MMD) and DeepCoral use CoralLoss to measure the dis- 

tance between two domains so that the mismatch can be reduced. For our models, the 

author modifies the original loss functions in the original paper of DDC and DeepCo- 

ral.  Finally,  the best testing accuracy, 96%, was achieved by  DeepCoral-based  model. 
 

Table 3.2: Performance Overview 

 

 

Methods Testing Accuracy 

Traditional Methods 63% 

Conventional DL Methods 22% 

Transfer Learning Methods 95% 

Ours 96% 
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3.3.2 Dataset 
 

 
Firstly, there are not many open-source datasets for waste sorting. One of them, the 

TrashNet [160] was collected by students in Standford, which contains six classes: 

paper, glass, metal, cardboard, plastic, and trash. There are 2527 images with white 

background, and there are all resized to 512 by 384. Moreover, a few samples of each 

class of TrashNet are demonstrated in Figure3.5. 
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Figure 3.6: Source Data & Target Data. 

 

 
Importantly, this is a fairly small dataset that might not be able to train a model with 

high-accuracy. And, [160, 163] all used data augmentation techniques to expand the data-

set. However, objects in TrashNet are all very common things and can be eas- 

ily found in other datasets but with different distributions. In this study, the author 

wishes to benefit from the datasets in other domains using transfer learning tech- 

niques to deal with the distribution mismatch. In addition, there is another dataset 

[168] that has collected from different distributions but contains very similar objects 

as TrashNet, so that it can be used as the source data. Moreover, the distributions of 

Source 

Target 
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the source data and the target data are shown in Figure3.6. As we can tell from the 

figure, the distribution of the sample number of each class is imbalanced. Therefore, 

the author first balanced out the sample number of each class by applying basic image 

data augmentation, such as flip, rotation, kernel filters. 

 
 

3.3.3 Methodology 
 

 
As mentioned earlier, conventional DL algorithms have two significant shortcomings: 

insufficient training data and domain shift. Moreover, these two drawbacks signifi- 

cantly limit the potential of DL being applied to waste sorting. To address this prob- 

lem, the author proposes to adopt transfer learning to develop a robust waste classifi- 

cation model with a limited amount of training data. 

As a sub-field of data-efficient learning algorithms, transfer learning is currently one     

of the most popular topics. The concept of transfer learning is to  solve the target  task  

by leveraging the knowledge learned from source tasks in different domains, instead 

of learning from scratch and requiring massive data. Generally, traditional machine 

learning algorithms assume that training and testing data are in the same feature 

space and share the identical distribution. However, this assumption does not always 

hold in many real-world problems [25, 54–56]. One example is Office31 [169] classifi- 

cation, where we have a precise model trained on tons of data collected by webcam, 

but we now want to build another model using a small amount of data collected from 

Amazon. In this case, the author wishes to generalize the knowledge learned from the 

source domain to the target task with a completely different distribution. For this 

kind of problem, transfer learning can deal with the limited data issue and signifi- 

cantly reduce the time for training. 
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Figure 3.7: Deep Domain Confusion. 

 
 

As introduced by  [23], there  are three categories of transfer learning,  inductive trans- 

fer learning: transductive transfer learning, and unsupervised transfer learning. In this 

research, waste sorting is similar to multi-task learning problem, which lands into the 

setting of inductive transfer learning. For  inductive transfer learning, the source do-  

main and the target domain usually have labeled data in both domains. However, the 

target domain’s training data is not always enough, so we need to transfer the knowl- 

edge learned from the source domain. This study implemented a novel  loss function  

with dynamic weighting and built four different models, DDC-AlexNet, DDC-ResNet, 

DeepCoral-AlexNet, and DeepCoral-Resnet. 

 
 

3.3.3.1 DDC-AlexNet 
 

 
Previously, Alexnet [10] won the ILSVRC02012 competition and achieved top-5 test 

error rate of 15.3% on the ImageNet data-set. Firstly,  the idea of the adaptation layer 

was proposed by [39]. It introduced a modified feedforward neural network, Domain 

Adaptive Neural Network (DaNN), with one adaptation layer. Importantly, the loss 
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Figure 3.8: Deep coral with AlexNet backend. 

 
 

function is constructed by two parts, the general loss, and the MMD regularizer, re- 

spectively. Additionally, the MMD loss is used to evaluate the distribution mismatch 

between the source and target domains. However,  it is a very shallow and simple model,  

so the performance is still limited. To achieve better performance, the author wishes 

to extend the potential of DaNN to deeper networks. As illustrated in Figure3.7, Deep 

Domain Confusion (DDC) [2], an AlexNet-based [10] Convolutional Neural Network 

(CNN) with one adaptation layer was  proposed  to  learn  a  semantically  meaningful 

and domain invariant representation.  Additionally, the evaluation metric can also be  

used to determine the position and the dimensionality of the adaptation layer. 

Additionally, DDC deploys a loss function that contains two terms, classification loss 

LC , and MMD constraint MMD2. As shown in (3.4), XS and XT represent the data 

sets from the source domain and the target domain. Moreover, λ determines how 

strongly the author would like to confuse the domains. 

 

 
 

L = LC (XL, y) + λMMD2(XS , XT ) (3.4) 
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(3.5) 

In addition, λ is a fixed coefficient, as described in the original paper. However, set- 

ting a reasonable value to it is not a simple process. Greater value can lead the model 

to focus too much on reducing the distribution mismatch, while smaller value might 

get poor classification accuracy on the target domain due to not focusing enough on 

the distribution mismatch. Therefore, the author proposed to make λ to be a dynamic 

factor. As described in (3.6), it is a hyperbolic-tan function that scales from 0-1. The- 

oretically, we wish to focus on extracting domain-invariant features in the early stage 

and shift the focus on enhancing the target classification accuracy at the later stage. 

 

 
 

λ = tanh(0.02x) (3.6) 

 

 

 

3.3.4 DDC-ResNet 
 

 
Moreover, DDC is transfer learning architecture that can be easily generalized to other 

pre-trained DL models. In this study, the author also examined ResNet-based DDC 

model. However, the adaption layer with dynamic loss function is added after the last 

average-pooling layer. 
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Figure 3.9: Deep coral with Resnet backend. 

 
 

3.3.4.1 DeepCoral-AlexNet 
 

 
Furthermore, [165] introduced another transfer learning framework, DeepCoral, which 

shares a similar idea as DDC. As shown in Figure3.7 , it places one adaption layer af-  

ter the last fully connected layer with a new loss function, CoralLoss. fCORAL, is  de- 

fined as the distance between the second-order covariances of the source and the tar-  

get features. And, it is described in (3.7), 

 

 

fCORAL 

  1  
= 

4d2 
1CS − CT 1F 

 

(3.7) 

 

 

where CS and CT are feature covariance matrices, 1·12 
is the squared matrix Frobe- 

nius norm. Moreover, inspired by multi-kernel MMD [170], the author first proposes 

a novel distribution distance measurement, Dual Dynamic Domain Distance (4D). As 

demonstrated in (3.8), 4D domain loss combines two different evaluation metrics since 

a single metric might not be good enough for an accurate domain distance measure- 

ment. 

 

 
1 

4D = 
2 

(fMMD + fCORAL) (3.8) 
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Finally, the author dynamically combines the classification loss fClass and domain loss 

4D as the final loss function: 

 

 
 

f = fClass + λ4D (3.9) 

 

 
 

3.3.4.2 DeepCoral-ResNet 
 

 
Same as DDC, DeepCoral also can be generalized to other pre-trained networks. As 

shown in Figure3.9, the author extended it Resnet by adding the adaption layer  after  

the last average-pooling layer. 

 
 

3.3.5 Experimental Results 
 

 
3.3.5.1 Experimental Setup 

 

 
As mentioned in section 3.3.2, there are 2754 labeled-images in the source domain, 

and 2530 labeled-images in the target domain. In addition, images in two domains 

have the same set of labels but different distributions. In the experiment, the author 

split the target dataset into Target train and Target test by the ratio of 80/20. More- 

over, the total epoch is set to 200. Additionally, to extend the dataset even further, 

the author also applied simple data augmentation techniques to both the source data 

and the target data. Specifically, horizontal flipping, small rotation, and adding Gaus- 

sian noise were performed. 
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3.3.5.2 Results 
 

 
According to Table 3.3, comparing to other existing models built on TrashNet, our 

transfer learning models achieve better performances in general and DeepCoral ResNet 

with novel 4D loss has achieved the best testing accuracy, 96% with 75 epochs. More- 

over, the only previous model that is close to DeepCoral ResNet is the fine-tuned 

DenseNet model.  What is more, we  can see from the Table3.3  is that transfer learn-    

ing models are all the better than traditional models and conventional DL models. 

Table 3.3: Transfer Learning Performance 
 

 

Models TL Epoch Testing Accuracy 

DeepCoral ResNet 75 96% 

DeepCoral AlexNet 80 93% 

DDC ResNet 85 95% 

DDC AlexNet 75 93% 

DenseNet Fine-tune 120 95% 

Models Not TL Epoch Testing Accuracy 

SVM 100 63% 

Inception-V1 100 89% 

 

 

 

Furthermore, in all models built by us, DeepCoral ResNet gives the best performance, 

96% testing accuracy. Additionally, as  plotted  in  Figure3.10,  ResNet-based  models 

are generally more accurate than AlexNet-based models. As shown in the figure, all 

four models converge around 60 - 80 epochs, which is considerably faster than the fine- 

tuning models proposed in [163]. However, TrashNet is still relatively small for the 

DL architectures like ResNet, and AlexNet. The performances of the AlexNet-based 

model start dropping after 130 epochs. Furthermore,  the  models  start  over-fitting 

from there. Differently, ResNet-based models maintain stable through all 200 epochs. 

To show that the 4D loss function can improve the performance, the author made a 

comparison between DeepCoral ResNet with regular loss function and the same model 
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Figure 3.10: Accuracy Comparison. 

 
 

with a dynamic loss function. As we can tell from Figure3.11, dynamic loss function 

does not only faster convergence but also gives a smoother curve. More importantly, 

the concept of 4D loss can be generalized to more different distribution measurements 

by using a dynamical combination. 
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Figure 3.11: Dynamic loss vs Regular loss. 
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3.3.6 Concluding Remarks 
 

 
First of all, recycling is an essential process for our Earth. Pollution has caused a 

number of species extinctions, and the number is still increasing. 

Secondly, DL is one of the most powerful ways for many computer vision tasks. How- 

ever, most DL methods have  heavily relied on the Big Data and computational power  

to output state-of-art performances. In other words, the Big  Data  is  not  only  the 

power of DL, but also the limitation of it. To address this issue, transfer learning has 

attracted more and more attention in the past few years, and many TL algorithms      

have been proven to be successful.  As introduced by  Andrew Ng at NIPS 2016, TL  

will become the main direction of DL in the future. 

Finally, in this waste sorting experiment, the author first justified that TL models 

achieved the best performance better than all existing models built on TrashNet. And 

then, the novel domain loss function 4D proposed by us has shown the potential to 

benefit the TL models significantly with more accurate domain loss measurement. As 

in the future, few ideas can potentially push the results to an even higher level. First, 

GANs-based data augmentation might perform better than traditional data augmen- 

tation techniques. Then, other metrics that can calculate the distance between two 

different domains could also enhance the performance. Lastly, models built in this ex- 

periment used labeled-target data for training. However, other TL methods do not 

require labeled-target for training, which might be more helpful for those real-world 

problems that do not have adequate labeled data. 



 

 

 

 

 

 

 

 

 

Chapter 4 
 
 

Feature-based Distant Domain 

Transfer Learning with 

Application on Medical Imaging 

 
In this chapter, the author studies a not well-investigated but important transfer learn-   

ing problem termed Distant Domain Transfer Learning (DDTL). This topic is closely 

related to negative transfer. Unlike conventional transfer learning problems which as- 

sume that the source domain and the target domain are more or less similar to each    

other, DDTL aims to make efficient transfers even when the domains or the tasks are 

completely different. As an extreme example in image classification, there are only a 

sufficient amount of unlabeled images of watches, airplanes, and horses in the source 

domain, and the target domain only has a small set of labeled human face images. 

Previously, a few instance-based distant domain transfer algorithms were proposed to 

deal with this type of binary distant domain image classification problems. However, 

 

 
83 
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most existing algorithms are very task-specific and they are only good at binary clas- 

sification tasks. In this study, the author proposes a novel feature-based distant do- 

main transfer learning algorithm, which requires only a tiny set of labeled target data 

and unlabeled source data from completely different domains. Instead of selecting in- 

termediate instances, the author introduces Distant Feature Fusion (DFF), a novel 

feature selection method, to discover general features cross distant domains and tasks 

by using convolutional autoencoder with a domain distance measurement as a feature 

extractor. As the novelty of this study, it can effectively handle both distant domain 

mutil-class image classification and binary image classification problems. More impor- 

tantly, it has achieved up to 19% higher classification accuracy than ”non-transfer” 

algorithms, and up to 9% higher than existing distant transfer algorithms. 

Moreover, In this study, the author applies the DDTL model to COVID-19 diagnose 

using unlabeled Office-31, Caltech-256, and chest X-ray image data sets as the source 

data, and a small set of labeled COVID-19 lung CT as the target data. The main con- 

tributions of this study are: 1) the proposed method benefits from unlabeled data in 

distant domains which can be easily accessed, 2) it can effectively handle the distri- 

bution shift between the training data and the testing data, 3) it has achieved 96% 

classification accuracy, which is 13% higher classification accuracy than ”non-transfer” 

algorithms, and 8% higher than existing transfer and distant transfer algorithms. 
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Figure 4.1: Distant Domain Transfer Learning 

 

4.1 Feature-based Distant Domain Transfer Learning 
 

 
4.1.1 Introduction 

 

 
Machine learning (ML) has enabled a wide variety of beneficial applications and ser- 

vices [152, 154, 155, 157, 158, 171–174]. Transfer learning has the potential to improve 

ML in the target task by leveraging knowledge from the source task [175]. 

It has been proved that  transfer learning is  able to handle two  critical machine learn-  

ing problems: 1) insufficient training data, and 2) domain distribution mismatch. The- 

oretically, transfer learning algorithms aim to develop robust target models by  using  

only a small set of target training data and transferring knowledge learned from other 

domains and tasks. Previously, the concept of adaptation layer with domain distance 

measurements was first proposed by [17]. It allows us to transfer knowledge between 

deep neural networks. In general, conventional  transfer  learning  algorithms  assume 

that the source domains and the targets share a certain amount of common informa-    

tion. However, this assumption does not always hold in many real-world applications, 

such as medical image processing [18, 19], rare species detection [20] and recommen- 

dation systems [21, 22]. In addition, transferring between two loosely related domains 



Chapter 4. Feature-based Distant Domain Transfer Learning 86 
 

 

usually causes negative transfer [23–25], meaning that the knowledge transfer starts 

hurting the performance on the task in the target domain, and produces worse per- 

formance than non-transfer models. For instance, building a dog classification model 

by directly transferring knowledge from a car classification model is likely to lead to 

negative transfer due to the weak connection between the two domains. Therefore, it 

is not always feasible to apply transfer learning to areas where we cannot easily obtain 

enough source domain data related to the target domain. 

Previously, a novel algorithm, [77] first introduced a fairly new transfer learning method, 

Distant Domain Transfer Learning (DDTL). As shown in Figure 4.1, DDTL aims  to 

address the issue of negative transfer caused by  loose relations of the source domains     

and the target domains. In other words, it allows us to safely and effectively perform 

the knowledge transfer when the source domains and the target domains only share 

 
a very weak connection. The inspiration behind DDTL is that the ability of a human 

being to learn a new thing by using knowledge learned from a number of seemingly in- 

dependent things. For example, a human  who knows birds  and airplanes can recognize  

a rocket even without seeing any rockets previously. Therefore, DDTL greatly extends 

the use of transfer learning to more areas and applications there do not always have 

adequate related source data. However, this is one of the most challenging problems in 

transfer learning, and there are not many studies in this area. 

There are few proposed distant transfer algorithms [77, 79], but most of them are 

 
task-specific and lack stability in performance. In this study, as inspired by an instance- 

based method [79] and multi-task learning [176], the author proposes a novel feature- 

based DDTL algorithm to solve image classification tasks. There are two main im- 

provements made by our algorithm. First, the proposed algorithm does not require 

any labeled source domain data, and the domain can be completely different from 
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the target domain. It only needs a tiny amount of labeled target domain to produce 

very promising classification accuracy on the target domain. Second, it only focuses 

on the target task in the target domain. To the best of our knowledge, it is the first 

time that distant feature extraction has been introduced in distant transfer learning. 

the author proposes a novel feature selection method, Distant Feature Fusion (DFF), 

to discover general features across distant domains and tasks by using convolutional 

autoencoder with a domain distance measurement. the author shows that the pro- 

posed DFF algorithm has achieved the highest accuracy on an image classification 

task, which has a small set of labeled target data and some unlabeled source data 

from different domains. Compared with transfer learning methods, supervised learn- 

ing methods, and existing distant domain transfer learning methods, DDF has up to 

18% classification accuracy. 

The remainder of this chapter is structured as follows: In Section 4.1.2, the author 

first reviews the most recent DTTL works. And then, the author formulates the prob- 

lem definition in Section 4.1.3. And then, the author presents the details of the pro- 

posed algorithms in Section 4.1.4. After that, the author demonstrates experimental 

results and analysis in Section 4.1.5. Lastly, the author concludes the chapter and dis- 

cuss future directions in Section 4.1.6. 

 
 

4.1.2 Related Work 
 

 
Recently, insufficient training data and  domain  distribution  mismatch  have  become 

the two most difficult challenges in the machine learning area. To address these two 

issues, transfer learning has emerged more and more attention due to its training ef- 

ficiency and domain shift robustness. However, transfer learning also suffers from a 

critical issue, negative transfer [75], which significantly limits the use and performance 
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of transfer learning. In this section, the author introduces some related works in three 

fields: conventional transfer learning, DDTL, and multi-task learning. 

First of all, transfer learning aims to find and transfer the common knowledge in the 

source domain and the target domain. Furthermore, [46] expanded the use of transfer 

learning from traditional machine learning models to deep neural networks. Typically, 

there are two types of accessible transfer learning: feature-based and instance-based.  

And both types focus on closing the distribution distance between the source domain  

and the target domain. In instance-based algorithms, the goal is to discover source in- 

stances that are similar to target instances, so that the highly unrelated source sam-     

ples would be eliminated. Differently, feature-based algorithms aim to map source 

features and target features into a common feature space where the distribution mis- 

match is minimized. However, both of them naturally assume that the source domain  

and the target domain share a fairly strong connection. Unlike conventional transfer 

learning, our work can transfer  knowledge between different domains  and tasks that  

are not closely related. 

Secondly, most DDTL algorithms are similar to multi-task learning [118], which also 

benefits from shared knowledge in multiple different but related domains. Generally, 

multi-task learning tends to improve the performance on all the tasks. Differently, 

DDTL only focuses on using the knowledge in other domains to improve the perfor- 

mance on the target task in the target domain. 

Lastly,  most previous  studies of DDTL  focus on instance-based methods  and  tend 

to take advantage of massive related source data. Firstly, there were a few proposed 

instance-based DDTL algorithms [77, 79, 177] previously. For instance, the first study 
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in this field was [77], transitive transfer learning (TTL). It  transfers  knowledge  be- 

tween  text data in the source domain and the image data in the target domain by us-     

ing annotate image data as a bridge. However, this algorithm is highly case-dependent  

and unstable on performance. At a later time, [79] introduced another instance-based 

algorithm with a novel instance selection method, Selective Learning Algorithm (SLA). 

Moreover, it uses SLA to select helpful instances from a number of unrelated interme- 

diate domains to expand the volume of the source domain.  However,  this algorithm    

was proposed to handle binary classification problems. Furthermore, [78] proposed an- 

other feature-based method to deal with scarce satellite image data. It predicts  the 

poverty based on the daytime satellite image by  transferring knowledge learned from    

an object classification tasks with the  help of some nighttime light intensity informa-  

tion as a bridge. However, this method heavily relies on a massive amount of labeled 

intermediate training data, which can be too expensive to apply.  Different  from  ex- 

isting DDTL algorithms, our method benefits from multiple source domains without 

labeled data, and those source domains can have significant discrepancies. And our 

method can also handle multi-class classification and consistently produce promising 

results. 

 

 

4.1.3 Problem Statement 
 

 
In this DDTL problem, the author assumes that the data of each target domain is not 

enough to train a robust model. And there are a number of unlabeled source domains 

denoted as: 

S = 
{
(x 1 , ..., x n ), ..., (x 1 

 
 

, ..., xn )
  

, (4.1) 
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Figure 4.2: DFF Architecture 

where n and SN represent the number of samples in each source domain and the num- 

ber of source domains. And then there is one or multiple labeled target domains de- 

noted as T  = 
{

[(x 1 , y1 ), ..., (x n , yn )], ..., [(x 1  , y1  ), ..., (x n  , yn  )]
 

, where n and TN 
 

represent the number of samples in each target domain and the number of target do- 

 

mains. Let P (x), P (y|x) be the marginal and the conditional distributions of a data 

set. In this DDTL problem, we have 

 

 

PS1 (x) = PS2 (x) = ... = PSN (x) PT1 (x) = PT2 (x) ...  = PTN (x), (4.2) 

 

 

PT1 (y|x)  = PT2 (y|x)  = ... = PTN (y|x). (4.3) 

 

The proposed work’s main purpose is  to develop a model for the  target domain with  

a minimal amount of labeled data by finding generic features from distant unlabeled 

source domain data. The motivation behind this study is that data in distant domains 
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is usually seemingly unrelated in instance-level but related on the feature-level. How- 

ever, the connection on the feature level from one distant domain can be too weak to   

be used to train an accurate model. As such, simply using one or two  sets of source  

data is likely to fail  on building the target  model.  Therefore, the  author leverages 

from multiple unlabeled distant source domains to obtain enough information for the 

target task. 

 
 

4.1.4 Methodology 
 

 
In this section, the author introduces a novel feature-based DDTL algorithm, Distant 

Feature Fusion. As shown in Figure 4.2, there are three main components in DFF: dis- 

tant feature extractor, distant feature adaptation, and the target classification. There 

are three types of losses from three components: reconstruction loss, domain loss, and 

classification loss. 

 
 

4.1.4.1 Distant Feature Extraction 
 

 
As one of the inspirations of this study, a convolutional autoencoder pair is used as a 

feature extractor in DFF. As a variant of autoencoders, convolutional autoencoders 

[178] are usually beneficial to unsupervised image  processing related problems.  First  

of all, a convolutional autoencoder is a feed-forward neural network working in an un- 

supervised manner, which suits this DDTL problem perfectly since there is no labeled 

data in source domains. Generally, a convolutional autoencoder pair contains one in-  

put layer, one output layer, one up-sampling layer, and multiple convolutional layers. 

Moreover, there are two main components:  encoder EConv(·) and decoder DConv(·). 
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Moreover, the standard process of convolutional autoencoder pairs can be demon- 

strated as: 

 

 

Encoding : f  = EConv(x), Decoding : x̂ = DConv (f̂ ), (4.4) 

 

where f  is the extracted features of x, and x̂ is the reconstructed x.  Furthermore, the 

way to tune the parameters of a convolutional autoencoder pair is to minimize the 

reconstruction error on all the training instances. Conceptually, the output of the en- 

coder can be considered as high-level features of the unlabeled training data. Further- 

more, these features are learned in an unsupervised manner, so they are robust if the 

reconstruction error is lower than a certain threshold. 

Algorithm 2: Distant Feature Fusion Algorithm 

Input: S = XS , T = XT , YT . 

Max Iteration: I, Batch Number: N. 

for i = 1, ...., I do 

for j = 1, ...., N do 
Feature Extraction: fS = EConv(XS ), fT = EConv(XT ) Instance 

Reconstruction:  X̂S  = DConv(XS ), X̂T  = DConv(XS ) 
 

 

 
end 

end 

Label Prediction: XT 

Calculate LR, LD, LC 

Update θE , θD, ΘC 

= CT (fT ) 

Output: XT 

 
f x̂ 

 

 

 

 

x f 

 

Figure 4.3: Encoder and Decoder 

Up-sample 2*2 Conv 3*16*3*3 

Conv 8*16*3*3 Max Pool 2*2 

Up-sample 2*2 Conv 16*8*3*3 

Conv 16*3*3*3 Max Pool 2*2 
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In this DDTL problem, as shown in Figure 4.2, the unlabeled data from all source 

domains are assigned with the same artificial label, 0. Differently, all the target data 

keep their labels. And then, the author uses a pair convolutional autoencoder to dis- 

cover robust feature representation from unlabeled source domain data sets and the 

labeled target data sets simultaneously. And more, Module2 and Module3 are the en- 

code and the decoder. Moreover, the structures of the encoder and the decoder can be 

found in Figure 4.3. There are two convolutional layers and two pooling layers in each 

of the encoder and the decoder. And up-sampling is applied to the encoder to ensure 

the quality of the reconstructed images. The process of feature extraction has three 

main steps: feature extraction, instance reconstruction, reconstruction measurement. 

First, the author feeds both the source data and the target data into the encoder to 

obtain high-level features fS and fT . And then, extracted features are sent into de- 

coder to get reconstructions, f̂S  and f̂T .  The equations of the first two steps are ex- 

pressed as: 

 

 

 
fS = EConv(XS ), fT = EConv(XT ); (4.5) 

 

 

 

 

 

X̂S  = DConv(fS ), X̂T  = DConv(fT ); (4.6) 

 

Finally, the author defines the reconstruction errors from both the source domains and 

the target domains as the loss function of the feature extractor, LR is defined as: 
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i=1 j=1 

 

 

4.1.4.2 Distant Feature Adaptation 
 

 
Commonly, minimizing the reconstruction error LR can discover a set of high-level fea- 

tures of the given input data. However, the distribution mismatch between the source 

and the target domains is significant, so minimizingLR alone is not enough to extract 

robust and domain-invariant features. Therefore, the author needs extra side informa- 

tion to close the domain distance, so the extracted features can be robust to both the 

source domains and the target domains. In this research, as shown in Figure 4.2, the 

author adds a distant feature adaptation layer to the convolutional autoencoder pair   

to measure the domain loss, LD. The maximum mean discrepancy (MMD) [179], an 

important statistical domain distance estimator, is used as the domain distance mea- 

surement metric. The domain loss is expressed as: 

 

 
SN  

nSi ST   
nTi 

LD = MMD(
         

f j , 
      

f j ), (4.8) 

 

 

 

 1 
MMD(X, Y ) =1 

  
ϕ(x ) +

 1
 

 

 

n2 

ϕ(y ) 1, (4.9) 
 

 

 

where n1  and n2  are the numbers of instances of two different domains, and ϕ(·) is the 

kernel that converts two sets of features to a common reproducing kernel Hilbert space 

(RKHS) where the distance of two domains is maximized. 

f =1 i=1 

i i=1 j=1 

j 
XSi 

n1 
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Table 4.1: Accuracy (%) of Experiments on Caltech-256 
 

CNN SVM ASVM DTL TTL SLA DFF 
 

Target-Face 83 ± 1 84 ± 2 76 ± 4 88 ± 2 78 ± 2 96 ± 2 98 ± 1 

Target-Watch 77 ± 2 75 ± 5 60 ± 5 68 ± 3 67 ± 4 88 ± 4 97 ± 1 

  Target-Gorilla 80 ± 1 75 ± 1 54 ± 2 62 ± 3 65 ± 2 84 ± 2 91 ± 1  

Table 4.2: Accuracy (%) of Experiments on Office-31 (Conventional Methods) 
 

Conventional Methods CNN SVM ASVM DTL 
 

Target-Chair 85 ± 3 83 ± 1 74 ± 2 91 ± 3 

Target-Chair  Monitor 79 ± 2 80 ± 2 76 ± 2 84 ± 1 

  Target-Chair  Monitor  Pen 74 ± 2 76 ± 3 62 ± 2 78 ± 2  

Table 4.3: Accuracy (%) of Experiments on Office-31 (DDTL Methods) 
 

DDTL Methods DFF SLA 
 

Target-Chair 94 ± 1(A − W ) 93 ± 2(W − A) 95 ± 1(D − W ) 92 ± 2(A − W ) 87 ± 1(W − A) 90 ± 3(D − W ) 
Target-Chair Monitor 91 ± 1(A − W )  93 ± 2(W − A)  96 ± 2(D − W )  84 ± 2(A − W )  82 ± 1(W − A)  86 ± 1(D − W ) 

  Target-Chair Monitor Pen  85 ± 2(A − W )  89 ± 1(W − A)  91 ± 1(D − W )  78 ± 3(A − W )  72 ± 1(W − A)  80 ± 4(D − W )  

 
 

4.1.4.3 Target Classifier 
 

 
Furthermore, with extracted high-level features, the author adds two fully-connected 

layers after the encoder to build a target  classifier, CT , for  the target task  in the tar-  

get domain. As the motivation of this step, [10] proves that convolutional layers can 

discover features, and fully-connected layers can find the best feature combination for 

each class in the target task. In other words, fully-connected layers do not learn more 

new features but connect each class to a specific set of features with different weights. 

In this work, there is only one fully-connected layer followed by the output layer with 

cross-entropy loss, LC : 

 
 

TN  
nTi 

LC = −x[Class] +  
         

exp(Xj ). (4.10) 
i=1 j=1 

 

Finally, by embedding all three losses from 4.7, 4.8, and 4.10, the overall objective 

function of DFF is formulated as: 
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Minimize 
θE ,θD,ΘC 

 

L = LR + LD + LC , (4.11) 

 

where θE , θD, ΘC are the parameters of the encoder, decode, and the classifier, respec- 

tively. Moreover, L is the final loss constructed by the reconstruction error, domain 

loss, and classification loss. Finally, all the parameters are optimized by minimizing 

the objective function in Equation 4.11. 

 
 

4.1.4.4 Algorithm Summary 
 

 
Lastly, an overview of the proposed work is summarized in Algorithm 2. 

 

 
 

4.1.5 Experiment and Analysis 
 

 
In this section, the author introduces a number of benchmark models, such as su- 

pervised learning models, conventional transfer learning models, and DDTL models. 

Then the author demonstrates six experiment setups. Finally, the author represents 

results from the proposed DFF model and the comparisons with benchmark models. 

 
 

4.1.5.1 Benchmark Models 

 

Firstly, the author selects two supervised baseline models: support vector  machine 

(SVM) [180] and convolutional neural works (CNN) [10]. For SVM, the author chooses 

to use linear kernels. Moreover, for CNN, the model is constructed with two convolu- 

tional layers with 3 × 3 kernels followed by a 2 × 2 max polling kernel. Secondly, the 

author also chooses two conventional transfer learning models: deep transfer learning 

(DTL) and adaptive SVM (ASVM) [181]. Lastly,  the author picks two  DDTL meth-  

ods: transitive transfer learning (TTL) [77] and selective learning algorithm (SLA) 
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[79]. However, neither of the DDTL models can be completely reproduced with many 

details not being introduced in the papers, and no source code is provided. As such, 

reproduced accuracy of those two algorithms are not as high as claimed in original 

papers. Therefore, the author uses the best results claimed in the original papers as 

benchmarks. 

 
 

4.1.5.2 Date Sets and Experiment Setups 
 

 
Firstly, the author conducts three experiments on Caltech-256 [182], which is an image 

data set that includes labeled data of 256 different classes.  For  each class, the number   

of instances is from 80 to 827. To ensure the distance between different classes, the 

author randomly picks six distant categories: “watch”, “airplane”, “horse”, “gorilla”, “billiards”, “fa 

In each experiment, the author picks one of the six classes as the target domain. Specif- 

ically, “face”, “watch”, and “gorilla” are chosen as target domains in the three ex- 

periments. All the source instances are considered as negative samples, and the target 

instances are set as positive samples.  Under this setting, the experiments are formed     

as binary image classification problems. 

Furthermore, the author uses  Office-31 [183]  to set up  more experiments to  extend  

the DFF algorithm to multi-class image classification problems. Office-31 has three 

collections of total 4110 instances from three different data sources: “amazon”, “web- 

cam”, and “dslr”. In all three experiments, the author randomly selects five classes as 

source domains: S = “backpack”, “lamp”, “printer”, “punchers”, “headphones”. How- 

ever, for three experiments, there are three different target domain setups: “chair”, 

“chair”, “monitor”, and “chair”, “monitor”, “pen”. Furthermore, the author also per- 

forms three knowledge transfers in each experiment, namely “amazon”to“webcam”, 

“webcam”to“dslr”, “dslr”to“webcam”. 
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4.1.5.3 Performance and Analysis 
 

 
60 

 
40 

 
20 

 
0 

0 5 10 15 20 25 30 

Iteration 
 

4 
 

3 
 

2 
 

1 
 

0 
0 5 10 15 20 25 30 

Iteration 

 

Figure 4.4: Classification Loss and Domain Loss on Office-31 Data. There are three 

setups: A-W (Amazon - Webcam), D-W (Dslr - Webcam), and W-A (Webcam - 

Amazon) 

 

 
First of all, the author runs each experiment ten times to obtain each method’s perfor- 

mance variation range. As shown in Table 4.1, with insufficient labeled training data, 

non-transfer methods do not carry out promising results.  Conventional transfer learn-  

ing algorithms carry out the worst results due to negative transfer caused by large do- 

main discrepancies. Moreover, DTTL algorithms hold the best accuracy among three 

learning types of methods, and the performance of the proposed DFF algorithm has 

bypassed the previous record holder (SLA). It has achieved the highest accuracies in     

all three experimental setups. However, the first three setups are simple binary classi- 

fication problems. Therefore, the author conducts a series of multi-class image classi- 

fication experiments to examine the proposed DFF algorithm’s performance. The ac- 

curacies of multi-classification problems on the Office-31 data set are demonstrated by 

Table 4.2 and Table 4.3. Additionally, the number of instances of each data source in 
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Office-31 varies significantly, so there are a few accuracy jumps between data sources. 

In Table 4.1, it shows results of all conventional methods: non-transfer models and 

transfer models. 

Moreover, All non-transfer models are trained on the amazon data source, which has   

the most instances. As we can tell, non-transfer models’ performances are relatively 

poor, and the accuracy drops as the number of target classes increases.  Intuitively,  it     

is caused by  insufficient training data, leading the model to over-fit on the training     

set. Moreover, conventional transfer modes achieve better results, and the DTL model 

shows the best performance. Furthermore, as shown in Table 4.3, the overall perfor- 

mance of DDTL on multi-class classification problems is better than traditional meth- 

ods. However,  the  classification accuracy still decreases as the  increase of the number 

of classes. What is more, the proposed method has bypassed the performance of the 

previous model (SLA) in all experiments. Furthermore, the highest accuracy achieved  

by the DFF algorithm is 96%. 

Moreover, Figure 4.4 illustrates the domain distance changing through the training 

and demonstrates that the final classification is closely related to the domain loss. 

A − W has the largest domain discrepancy, which leads to the lowest classification 

accuracy. Furthermore, it also shows that the distant feature adaption layer can close 

the distribution mismatch even when domains are very distant. 

 
 

4.1.5.4 Strengths and Weaknesses 
 

 
The proposed DDTL algorithm, DFF, is simple and effective in dealing with image 

classification problems with a large discrepancy between the source and the target 
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data sets. It solves two  main challenges in  deep neural networks:  1) insufficient train- 

ing data and 2) significant domain mismatch.  Moreover, unlike instance-based meth-  

ods, DFF is a feature-based algorithm, so it does not heavily rely on a massive amount 

source data samples to build the bridge for knowledge.  It can discover deep features    

that connect the source domain and the target domain with a limited amount of source 

data.  Furthermore, it has a better generalization ability than the previous model.  It is    

not very case-specific and domain-specific.  What is more, the training process of the  

DFF methods is very fast and stable. Gradient explode and disappear problems do 

not occur like adversarial DDTL methods. 

 
 

However, there are a few shortcomings of the proposed algorithm. Firstly, multi-class 

classification problems’ performance is still not as good as conventional models trained 

with massive data. To address this issue, it is possible to produce cross-modality trans-  

fer, which benefits from semantic information in a domain that is in a different modal-  

ity, such as from image to text. This architecture is not suitable for cross-modality 

transfer. Moreover, the algorithm lacks the explainability of the decision-making pro-  

cess required for many real-world applications. Especially for DDTL problems, inter- 

pretable methods are more helpful to us to understand and improve the model. 

 
 

4.1.6 Concluding Remarks 
 

 
In this chapter, the author studies the DDTL problem, there only exists a large amount     

of unlabeled source data and a small set of labeled target domains collected from very 

distant domains and tasks. Under this setting,  conventional  transfer  learning  algo- 

rithms usually suffer from the negative transfer. To address this problem, the author 

introduces a novel  feature-based DDTL algorithm, DFF, which can effectively extract  

and fuse the high-level distant features learned from several distant domains. Unlike 
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other DDTL algorithms, DFF can handle multiple source and target domains, and 

 
it does not rely on any labeled data from source domains. DFF has achieved the top 

performance in terms of classification accuracy compared to different types of existing 

algorithms. Furthermore, the author also conducts an analysis of the DFF algorithm 

based on different types of losses. 

In the future, there are two directions regarding this DDTL problem. Firstly, the ex- 

plainability of the feature-based DDTL algorithm  is a challenging but essential prob-  

lem. Visualizing the changes in high-level features through  the  training  process  can 

help us understand the domain adaptation on the feature level.  Secondly, how to trans-  

fer knowledge between different fields, such as from image to audio, is also a difficult 

problem.  Solving this problem can expand the use of transfer learning to an even fur-  

ther level. 

 

 

4.2 Distant Domain Transfer Learning for Medical Imag- 

ing 

 
4.2.1 Introduction 

 

 
Recently, with state-of-art performance, deep learning has dominated the field of im- 

age processing [152, 184, 185]. However, deep learning methods require a massive 

amount of well-labeled training data, and the majority of deep leaning methods are 

sensitive to the domain shift [155]. Therefore, transfer learning (TL) has been intro- 

duced to deal with the issues [175, 186]. In this study, the author proposes a novel 

medical image classification framework. Moreover, the author implements our frame- 

work to COVID-19 diagnose with CT images. Generally, medical image data sets 
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are difficult to access due the rarity of diseases and privacy policies.  Moreover, it is    

not feasible  to manually collect a massive amount of high-quality labeled lung CT  

scans associated with of COVID-19.  Therefore, it is hard to develop a regular deep     

lea ring model with insufficient training data. To overcome this obstacle, artificial and 

synthetic data can be used to expand the volume of the data.  However,  these meth-    

ods can lead to a distribution mismatch between  the  training  data  and  the  testing 

data. Furthermore, transfer learning can handle both problems  simultaneously.  In 

theory, transfer learning algorithms aim to develop robust target models by transfer- 

ring knowledge from other domains and tasks. Previously, [17] proposed an adaptation 

layer with domain distance measurements to transfer knowledge between deep neural 

networks. In general, conventional transfer learning algorithms assume that the source 

domains and the targets share a certain amount of information. However, this as- 

sumption does not always hold in many real-world applications, such as medical image 

processing [18, 19], rare species detection [20] and recommendation systems [21, 22]. 

Moreover, transferring between two loosely related domains usually causes negative 

transfer [23], meaning that the knowledge transfer starts hurting the performance on     

the task in the target domain. For instance, building a dog classification model by di- 

rectly transferring knowledge from a car classification model would likely to lead to 

negative transfer due to the weak connection between the two  domains.  Therefore, it     

is not always feasible to apply transfer learning to areas where we cannot easily obtain 

enough source domain data related to the target domain. For instance, COVID-19 

diagnosis based on lung CT is a typical example where we cannot easily find related 

source data for training. 
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Figure 4.5: Architecture Overview of Distant Feature Fusion Model 

 
 

In this study, the author develops a lung CT scan-based COVID-19 classification frame- 

work by studying a challenging problem, DDTL, which aims to deal with the short- 

comings of traditional machine learning and conventional TL. As shown in Figure-4.5, 

the proposed framework contains two parts: semantic segmentation and DFF. It can 

perform knowledge transfer between seemingly unrelated domains. Moreover, DDTL 

[77] is a newly introduced transfer learning method that mainly aims to address the    

issue of negative transfer caused by  loose relations of the source domains and the tar-  

get domains.  Unlike conventional TL methods,  the proposed DDTL algorithm bene-  

fits from fusing distant features extracted from distant domains. Generally, DDTL is 

usually involved with situation that the source domain and the target domain have 

completely tasks. Moreover, the inspiration for DDTL is from the ability of human 

beings to learn new things by bridging knowledge acquired from several seemingly in- 

dependent things.  For  example, a human who knows birds and airplanes can recognize  

a rocket even without seeing any rockets previously. Importantly, DDTL dramatically 

extends the use of transfer learning to more areas, and applications where do not al-  

ways have adequate related source data. In this case, the author considers COVID-19 

classification as a DDTL problem that can benefit from distant but more accessible 

domains. Furthermore, the author uses three open-source image data sets as source 

domain data sets to develop a robust COVID-19 classification method based on lung   CT 

images. 
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Previously, there are few proposed distant transfer algorithms [77, 79], but most of    

them are task-specific and lack the stability in performance. Inspired by an instance- 

based method [79] and multi-task learning [176], the author builds a DDTL algorithm    

to solve COVID-19 classification tasks by extracting and fusing distant features. There 

are two main improvements made by our algorithm. Firstly, it does not require any la- 

beled source domain  data, and the  source domains can be completely different  from   

the target domain. The proposed model only needs a small amount of labeled target 

domain and can produce very promising classification accuracy on the target domain. 

Secondly, it only focuses on improving the performance of the target task in the target 

domain.  To  the best of our knowledge, it is the first time that DDTL has been applied    

to medical image classification. Furthermore, the author introduces a novel feature se- 

lection method (DFF) to discover general features across distant domains and tasks 

by using convolutional autoencoders with a domain distance measurement. To outline, 

there are four main contributions made in this study: 1) Propose a new DDTL algo-  

rithm for fast and accurate COVID-19 diagnose based  on lung CT, 2) Examine exist-  

ing deep learning models (transfer and non-transfer) on COVID-19 classification prob- 

lem, 3) The proposed algorithms has achieved the highest accuracy on this task, which 

has a small set of labeled target data and some unlabeled source data from different 

domains. Moreover, compared with other transfer learning methods, supervised learn-  

ing methods, and existing DDTL methods, the proposed DFF model has achieved up      

to 34% higher classification accuracy and 4) The proposed framework can be easily 

generalized to other medical image processing problems. 

The remainder of this chapter is structured as follows:  In Section 4.2.2, the author     

first reviews the most recent DTTL works. And then, the author formulates the prob-  

lem definition in Section 4.2.3. Next, the author presents the details of the proposed 
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algorithm in Section 4.2.4. After that, the author presents experimental results and 

analysis in Section 4.1.5. Lastly, the author concludes the chapter and discuss future 

directions in Section 4.2.6. 

 
 

4.2.2 Related Work 
 

 
Insufficient training data and domain distribution mismatch have become the two  

most challenging problems in machine learning. To address these two issues, trans-  

fer learning has emerged a lot of attention due to its training efficiency and domain 

shift robustness. However, transfer learning also suffers from a critical shortcoming, 

negative transfer [75], which significantly limits the use and performance of transfer 

learning. In this section, the author introduces some related works in three fields: con- 

ventional transfer learning, DDTL, and existing ML methods for COVID-19 classifica- 

tion. 

 
 

4.2.2.1 Conventional Transfer Learning 
 

 
First of all, TL methods aim to solve the target task by leveraging the common knowl- 

edge learned from source tasks in different domains, so it does not need to learn the  

target task from scratch with a massive amount of data. Furthermore, [46, 187, 188] 

expanded the use of transfer learning from  traditional  machine  learning  models  to 

deep neural networks. Typically, there are two types of accessible transfer learning: 

feature-based and instance-based. Both types focus on closing the distribution dis- 

tance between the source domain and the target domain. In instance-based algorithms,  

the goal is to discover source instances similar to target instances, so that highly unre- 

lated source samples would be eliminated. Differently, feature-based algorithms aim to 
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map source features and target features into a common feature space where the distri- 

bution mismatch is minimized. However, both of them assume that the source domain 

and the target domain share a fairly strong connection. Unlike conventional transfer 

learning, our work can transfer  knowledge between different domains  and tasks that   

are not closely related. 

 
 

4.2.2.2 DDTL 
 

 
Secondly, the setting of DDTL is similar to multi-task learning [118], which also ben- 

efits from shared knowledge in multiple close domains. Generally, multi-task learning 

tends to improve the performance on all tasks. Differently, DDTL only focuses on us- 

ing the knowledge in other domains to improve the performance of the target task. 

Moreover, most previous studies of DDTL are instance-based and they tend to take      

the advantage of massive related source data. Firstly,  [77]  introduced  an  instance- 

based algorithm, transitive transfer learning (TTL).  It  transfers  knowledge  between 

text data in the source domain and the image data in the target domain by using an- 

notated image data as a bridge.  However,  TTL is highly case-dependent and unstable   

in performance. Similarly, [79] introduced another instance selection method, Selective 

Learning Algorithm (SLA). However, this algorithm was mainly designed for binary 

classification problems. Differently, [78] proposed a feature-based method to deal with 

scarce satellite  image data.  It predicts the  poverty based  on daytime satellite  images 

by transferring knowledge learned from an object classification tasks with the aid of 

nighttime light intensity  information as a bridge.  However,  this method relies  heav-   

ily on a massive amount of labeled intermediate training data. Notably, our method 

benefits from multiple source domains without labeled data, and those source domains 
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can have significant discrepancies. Furthermore, our method can also handle multi- 

class classification while consistently producing promising results. 

 
 

4.2.2.3 Machine Learning for COVID-19 Diagnosis 
 

 
Moreover, to overcome the shortage of COVID-19 testing toolkits, many efforts have 

been made to search for alternative solutions. Several studies [189–191] introduced 

machine techniques to COVID-19 diagnosis, including but not limited to, convolu- 

tional neural networks (CNN), transfer learning, empirical modeling. However, most 

existing non-transfer models suffer from a common shortcoming that is insufficient 

well-labeled training data. Transfer leanings methods can carry out fairly decent clas- 

sifications, but they are still limited by the domain discrepancy between the source 

data and the target data. 

 
 

4.2.3 Problem Statement 

 

In this DDTL problem, the author assumes that the data of each target domain is in- 

sufficient to train a robust model. And there are a number of unlabeled source do- 

mains denoted as S  =  
{

(x 1 , ..., x
nS1 ), ..., (x 1  , ..., x

nSN )
 

, where n and S repre- 
 

sent the number of samples in each source domain and the number of source domains. 

Then the author denotes one or multiple labeled target domains as: 

 
T = [(x 1 , y1 ), ..., (x

nT1 , y
nT1 )], 

1 1 1 1 
(4.12) 

..., [(x1 , y1 ), ..., (x
nTN , y

nTN )] 
TN TN TN TN 
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, where n and TN represent the number of samples in each source domain and the 

 

number of source domains. Let P (x), P (y|x) be the marginal and the conditional dis- 

tributions of a data set. In this DDTL problem, the author has the following: 

 

 

 
PS1−SN (x)  = PT1−TN , (4.13) 

 

 
PT1 (y|x)  = PT2 (y|x)  = ... = PTN (y|x). (4.14) 

 

The main objective of the proposed work is to develop a model for the target domain 

with a minimal amount of labeled data by finding generic features from distant unla- 

beled source domain data. The motivation behind this study is that data in distant 

domains is usually seemingly unrelated in the instance-level but related in the feature- 

level.  However,  the connection on the feature level from one distant domain can be    

too weak to be used to train an accurate model. As such, simply using one or two 

sets of source data is likely to fail in building the target model. Therefore, the author 

leverages from multiple unlabeled distant source domains to obtain enough informa- 

tion for the target task. 

 
 

4.2.4 Methodology 
 

 
In this section, the author introduces the proposed COVID-19 diagnose framework. 

Firstly, the author presents the reduced-size ResNet segmentation model. After that, 

the author introduces the novel DDTL algorithm, DFF. 
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4.2.4.1 Lung CT Segmentation by Reduced-size ResUnet 
 

 
First of all, extracting features from a full size lung CT image with a small training 

set can be difficult because the model might end up focusing on noise in the useless 

parts of the images. Therefore, it is important tp pre-process the image by applying 

semantic segmentation. As shown in Figure-4.6, the author can remove random noise 

and preserve the important information in the lung area of a image. Moreover, a small 

data set for training can lead to a over-fitting for a deep neural network. Therefore, 

the author develops a reduced-size ResNet for this Covid-19 diagnose task. 

 

(a) (b) 
 

Figure 4.6: 4.6a Original Image. 4.6b Segmented Image. 

 

Fisr of all, the proposed reduced-size ResUnet [192] contains two feature extraction 

parts: four convolutional blocks layers with down-sampling and four deconvolutional 

layers with up-sampling. Moreover, the author reduces the numbers of convolutional 

layers and deconvolutional layers, and apply dropout layers to prevent over-fitting. 

Furthermore, I adopt skip-connection to prevent two main problems in the training 

process: gradient explode and gradient disappear. In this study, the author  imple- 

ments a single skip-connection to form convolutional and deconvolutional blocks. By 
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doing this, the convergence time of the model is faster and the training process is 

more stable. 

Commonly, image segmentation tasks require to perform accurate pixel-level classi- 

fication on the input images. Therefore, it is critical to design a proper loss function 

based on each task. In this study, the final loss function is composed by a soft-max 

function over the last feature map combined with the cross-entropy loss. The expres- 

sions of the soft-max function and cross-entropy functions are: 

 
 

K 

pk(x) = exp(fk(x))/ exp(fk(x)), (4.15) 

k=1 

 

 

 

 

E = ω(x)log(p(l(x))(x)), (4.16) 
x 

 

where fk(x) represents the activation map of the kth feature at xth pixel and K  is the 

total number of classes, and the cross-entropy penalizes at each position the deviation 

of p(l(x)). Furthermore, the segmentation boarder is computed with morphological op- 

erations. The weight map is expressed as: 

 

 

ω(x) = ωc(x)ω0exp(− 
(d1(x) + d2(x))2 

2σ2 
), (4.17) 

 

where ωc is the weight map to balance the class frequencies, d1 and d2 are the dis- 

tances between a pixel to the closest boarder and the second coolest boarder, and ω0 

and σ are the initialization values. 
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4.2.4.2 DFF 
 

 
As shown in Figure-4.7, there are three main components in DFF: distant feature ex- 

tractor, distant feature adaptation, and the target classification. There are three types 

of losses from three components: reconstruction loss, domain loss, and classification 

loss. 

 

 
 

 

 

Figure 4.7: DFF Architecture: there are three main components in DFF, distant 

feature extractor, distant feature adaptation, and the target classification. There are 

three types of losses from three components: reconstruction loss, domain loss, and 

classification loss. 

 
 

Distant Feature Extraction 

 
 

As one of the inspirations of this study,  a convolutional autoencoder  pair is used  as  

a feature extractor in DFF. convolutional autoencoders [178] usually benefit unsu- 

pervised image processing related problems.  Firstly,  a convolutional autoencoder is  

a feed-forward neural network working in an unsupervised manner, which suits this 

DDTL problem perfectly since there is no labeled data in source domains. Moreover, 

 

there are two main components:  encoder EConv(·) and decoder DConv(·).  The stan- 

dard process of convolutional autoencoder pairs can be demonstrated as: 

 

 

 

Encoding : f  = EConv(x), Decoding : x̂ = DConv (f̂ ), (4.18) 

4: Classifier 

3: Decoder 
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where f  is the extracted features of x, and x̂ is the reconstructed x.  In addition, the way 

to tune the parameters of a convolutional autoencoder pair is to minimize the 

reconstruction error on all the training instances. Conceptually, the output of the en- 

coder can be considered as high-level features of the unlabeled training data. Further- 

more, these features are learned in an unsupervised manner, so they are robust if the 

reconstruction error is lower than a certain threshold. 

In this DDTL problem, as shown in Figure-4.7, the author uses a convolutional au- 

toencoder pair to discover robust feature representation from unlabeled source domain 

data sets and the labeled target data sets simultaneously. The structure of the auto- 

encoder pair contains two convolutional layers and two pooling layers in both the en- 

coder and decoder. Up-sampling is applied to the encoder to ensure the quality of the 

reconstructed images. The process of feature selection has three main steps: feature 

extraction, instance reconstruction, and reconstruction measurement. First, the author 

feeds both the source data and the target data into the encoder to obtain high-level 

features fS and fT . Then, extracted features are sent into the decoder to get recon- 

structions, X̂S  and X̂T .  The equations of the first two steps are expressed as: 

 

 
fS = EConv(XS ), fT = EConv(XT ); (4.19) 

 

 

 

 

 

X̂S  = DConv(fS ), X̂T  = DConv(fT ); (4.20) 

 

where XS and XT are the source and the target samples, and fS and fT are the source 

and the target features.  Finally, the author defines the reconstruction errors from both 
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the source domains and the target domains as the loss function of the feature extrac-  

tor, LR as follow: 

 

 

 
SN  

nSi 

L    = 
      1   

(X
ĵ 

− X 
  

)2+ 

ST 
nTi 

  1  

nTi 

(X
ĵ
 
Ti 

− XXTi
 

 
)2. 

(4.21) 

i=1 j=1 

 

where SN and ST are the numbers of the source domains and the target domains, nSi 

 

and nSi are the numbers of instances in the ith source domain and the target domain. 

 

Distant Feature Adaptation 

 

Algorithm 3: Distant Feature Fusion Algorithm 
 

Input: S = XS , T = XT , YT . 

Max Iteration: I, Batch Number: N. 

for i = 1, ...., I do 
for j = 1, ...., N do 

Feature Extraction: fS = EConv(XS ), fT = EConv(XT ) 

Instance Reconstruction:  X̂S  = DConv(XS ), X̂T  = DConv(XS ) 
 

 

 

end 

end 

Label Prediction: XT 

Calculate LR, LD, LC 

Update θE, θD, ΘC 

= CT (fT ) 

Output: XT 

 

 

Commonly, minimizing the reconstruction error LR can discover a certain amount of 

features with the given input. However, there is a large distribution mismatch between 

the source and the target domains, so minimizingLR alone cannot extract enough ro- 

bust and domain-invariant features. Therefore, the author needs extra side informa- 

tion to close the domain distance. In this research, as shown in Figure-4.7, the author 

adds a distant feature adaptation layer to the convolutional autoencoder pair to close 

the domain distance LD. The maximum mean discrepancy (MMD) [179] is important 

statistical domain distance estimator. The domain loss is expressed as: 

i i=1 j=1 

j 
XSi 
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SN  
nSi ST   

nTi 

LD = MMD(
         

f j , 
      

f j ), (4.22) 

 

 

 

 1 
MMD(X, Y ) =1 

  
ϕ(x ) +

 1
 

 

 

n2 

ϕ(y ) 1, (4.23) 
 

 

 

where n1  and n2  are the numbers of instances of two different domains, and ϕ(·) is the 

kernel that converts two sets of features to a common reproducing kernel Hilbert space 

(RKHS) where the distance of two domains is maximized. 

Target Classifier 

Furthermore, with extracted distant features, the author  adds  a  target  classifier  CT 

after the encoder. As the motivation of this step, [10] proves that fully-connected lay-  

ers aim find the best feature combination for each class in the target task.  In other  

words, fully-connected layers do not learn more new features but  connect each  class to 

a specific set of features with different weights. In this work, there is only one fully- 

connected layer followed by the output layer with cross-entropy loss, LC : 

 

 
TN  

nTi 

LC = −x[Class] +  
         

exp(Xj ). (4.24) 

 

where Xj 
i 

i=1 j=1 
 

is the jth sample in the ith target domain. Finally, by embedding all three 

 

losses from 4.21, 4.22, and 4.24, the overall objective function of DFF is formulated as: 
 

 

 

 

Minimize 
θE ,θD,ΘC 

L = LR + LD + LC , (4.25) 

f =1 i=1 
n1 
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Table 4.4: Model Comparison 

 

 CNN Alexnet Resnet SelfTran SLA DFF 

Transferable No Yes Yes Yes Yes Yes 

Base Model Discriminative Discriminative Discriminative Discriminative Discriminative Discriminative 

Loss Type Entropy Entropy Entropy Entropy Entropy&MMD Entropy&MMD 

Learning Type Feature-based Feature-based Feature-based Feature-based Instance-based Feature-based 

 

Table 4.5: Data Sets 

 

Data Set Total Classes Total Samples Label Mask 

Caltech-256 256 30670 Y es No 

Office-31 31 4110 Y es No 

Chest Xray 4 562 Y es No 

Lung-CT 4 367 Y es Y es 

Covid19-CT 2 565 Y es No 

 

where θE , θD, ΘC are the parameters of the encoder, decoder, and the classifier, re- 

spectively. Moreover, L is the final loss constructed by the reconstruction error, do- 

main loss, and classification loss. Finally, all the parameters are optimized by mini- 

mizing the objective function in Equation 4.25. 

 
 

4.2.4.3 Algorithm Summary 
 

 
Lastly, an overview of the proposed work is summarized in Algorithm 3. 

 

 

 

4.2.5 Experiment and Analysis 
 

 
In this section, the author introduces a number of benchmark models, such as su- 

pervised learning models, conventional transfer learning models, and DDTL models. 

Then the author sets up a serious of experiments. After that, the author demonstrates 

the experimental results. Finally, the author presents training details and the analysis 

of experimental results. 
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Table 4.6: Segmentation Performance 

 

IoU Dice Accuracy 

Reduced-ResUnet 0.96 0.97 0.96 

Unet 0.86 0.88 0.87 

 

4.2.5.1 Benchmark Models 
 

In this study, as shown in Table. 4.4, the author chooses several transfer  models  and  non- 

transfer models for comparisons. By comparing results from different methods, the author can 

justify the improvements made by the proposed methods. Firstly, the author selects three su- 

pervised non-transfer baseline models: convolutional neural works (CNN), Alexnet [10], and 

Resnet [193]. For CNN, the model is constructed with three convolutional layers with 3 × 3 

kernels followed by a 2 × 2 max pooling kernel. Secondly, the author also chooses three con- 

ventional transfer learning models: fine-tuned Alexnet, fine-tuned Resnet, and self-transfer 

(SelfTran) model [189]. What is more, the author chooses one instance-based DDTL method: 

selective learning algorithm (SLA) [79]. Furthermore, all details of each benchmark model are 

specified in Table. 4.4. 

 

 

 

4.2.5.2 Date Sets and Experiment Setups 
 

 
In this study, as shown in Table.  4.5, the author totally uses six open-source data sets:  Caltech-  

256 [182], Office-31 [183], chest X-Ray for pneumonia detection [194], Lung CT [195], and 

Covid19-CT [196]. The first, Caltech-256 includes labeled data of 256 different classes. For 

each class, the number of instances is from 80 to 827. Then, Office-31 has 31 different common 

office objects, with total 4110 instances collected from three different data sources: ”amazon”, 

”webcam”, and ”dslr”. However, Office-31 is an unbalanced data set.  Moreover, the chest X-  

Ray data set contains 5226 well-labeled images. Intuitively, the  chest  X-Ray  images  should 

have the most similarity with lung X-Ray images, so the author wonders if directly trans- 

fer and fine-tune would carry out better performance than the proposed method. Moreover, 

Covid19-CT contains 565 labeled lung CT images: 349 positive samples, and 216 negative 

samples. It is considered as a fairly small data set for training deep learning models. Finally, 
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Figure 4.8: Lung CT Segmentation 

 
Table 4.7: Top Accuracies (%) of Examined Models 

 

CNN Alexnet   Resnet   SelfTran   SLA DFF 
 

Testing  Accuracy  (Raw-Image) 74 ± 1   82 ± 3 86 ± 3 83 ± 1 54 ± 2 93 ± 1 

  Testing  Accuracy (Segmented-Image)    78 ± 2    85 ± 2 88 ± 3 87 ± 3 62 ± 1 96 ± 1  

Table 4.8: Accuracies (%) of DDTL Models with Single Source Domain 

 

 

 
62 ± 1 54 ± 1 46 ± 3 56 ± 1 

90 ± 1 76 ± 1 76 ± 2 74 ± 3 

 
 

Fine-tuned Alexnet (Segmented-Image)  80 ± 2 64 ± 1 68 ± 3 52 ± 2  81 ± 1 

Fine-tuned Resnet (Raw-Image) 66 ± 2 57 ± 3 61 ± 1 54 ± 1  64 ± 2 

Fine-tuned Resnet (Segmented-Image) 72 ± 1 61 ± 1 64 ± 2 62 ± 3  65 ± 2 

 

the author uses the lung CT data set for the segmentation model. The data set has 367 lung 

CT images with pixel-level masks. 

 

Moreover, the author runs each experiment five times to investigate the performance fluctua- 

tion range. Firstly, the author produces 4 experiments on CNN and conventional TL models  

with the Covid19-CT data. And then, the author sets up a series of experiments on DDTL 

models with single source domain and multi-source domains to explore the potential of the 

Source Domain Caltech256 Amazon Webcam Dslr Chest X-Ray 

SLA (Raw-Image) 

SLA (Segmented-Image) 

DFF (Raw-Image) 

DFF (Segmented-Image) 

54 ± 2 

88 ± 2 

52 ± 1 

78 ± 3 

48 ± 2 

73 ± 2 

48 ± 3 

70 ± 1 

52 ± 4 

61 ± 2 

63 ± 3 

69 ± 2 

Conventional TL Models      

Fine-tuned Alexnet (Raw-Image) 77 ± 1 61 ± 2 64 ± 1 51 ± 2 73 ± 3 

 



Chapter 4. Feature-based Distant Domain Transfer Learning 118 
 

 

Table 4.9: Accuracies (%) of DDTL Models with Multiple Source Domains 
 

Primary Source Domain Caltech256 Amazon Webcam Dslr 

Auxiliary Source Domain   Chest X-Ray 
 

SLA (Raw-Image) 54 ± 2 52 ± 1 48 ± 2 48 ± 3 

SLA (Segmented-Image) 62 ± 1 55 ± 3 51 ± 1 47 ± 2 

DFF (Raw-Image) 93 ± 1 73 ± 3 64 ± 2 86 ± 3 

DFF  (Segmented-Image) 96 ± 1 75 ± 2 66 ± 1 87 ± 1 
 

learning method. As shown in Table. 4.8, there are five unlabeled source domains data sets: 

Caltech-256 , Amazon , Amazon , Webcam , Chest X-Ray , and one labeled target data 

set: Lung CT for Covid-19 . What is more, another regular Lung CT contains masks for 

segmentation. Moreover, the first four source domains are seemingly unrelated to the target 

domain, but the last source domain is visually related to the target domain. 

 

Furthermore, unlike previous methods, the proposed method is able to utilize multiple source 

domains to improve the performance in the target domain. Therefore, as we can tell from Ta- 

ble. 4.9, the author chooses four primary source domains and use the Chest X-Ray data set 

as the auxiliary domain. In the following sections, the author will present the results and anal- 

ysis. 

 

 
4.2.5.3 Performance and Analysis 

 

 
In this section, the author first presents the performance of the segmentation model. After 

that, the author gives an overview of results of all examined classification methods and present 

insights on performance differences. Then, the author provides training details and analysis of 

our proposed DDTL algorithm. 

 

Segmentation Performance 

 
 

Firstly, the most informative part of a lung CT  is  the  lung  area,  and  it  allows  machines  to 

better imitate the behaviors of real specialists. The proposed  reduced-size  ResUnet  is  trained 

from scratch because there is no pre-trained model for this novel architecture. Moreover, the drop-

out layers and the skip-connections are applied to prevent over-fitting and non-convergence 

problems. As we can tell from Figure-4.6, the segmented image shows an accurate and clear 
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contour of the lung area, so the author can select only the lung area as the input for the DFF 

model. Furthermore, Figure-4.8 shows a better visual results of the segmentation model. The 

first column presents the original image, the second column shows the ground truth of the lung 

area, the third column gives the pixel-level classification of the model, and the fourth column 

illustrates the pixel-level difference between the ground truth and the prediction. 

 

Moreover, the author uses two common evaluation metrics for image segmentation tasks to 

quantify the performance. In the study, the author uses IoU (intersection over union), Dice 

(F1 Score), and pixel-level accuracy as the evaluation metrics. The definitions of them are: 

 

 
 

IoU = 
TP 

 
 

TP + FP + FN 

 

, (4.26) 

 

 

 

 
Dice = 

 

2TP 
 

 

2TP + FP + FN 

 
, (4.27) 

 

 

 

 
Accuracy = 

 

TP + TN 
 

 

TP + TN + FP + FN 

 
. (4.28) 

 

Furthermore, for the comparison, the author also conducts experiments on the original Unet 

with the same data set. The details are shown in Table. 4.6. Obviously, the reduced-size Re- 

sUnet outperforms the original Unet. The possible reasons are: 1) the original Unet cannot 

effectively prevent the model from learning noise, 2) the skip-connection helps the model to 

extract deeper features. 

 

Classification Performance Overview 

 
 

As demonstrated in Table. 4.7, the proposed DFF algorithm outperforms the highest test clas- 

sification accuracy (96%). And more, the CNN model is only at (78%) classification accuracy. 

Intuitively, it is caused by insufficient training data. Moreover, the Alexnet and SelfTran out- 

put promising accuracies (85%, 88%). In theory, initializing with pre-trained parameters can 

boost the performance due to the pre-train data set. However, the settings are more or less 
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similar to TL, and the accuracies are still lower than the proposed DDTL method. This per- 

formance gap can be caused by large domain discrepancy between two distant domains. The 

traditional models cannot close the domain distance to avoid the performance degradation. 

However, there is no evidence of negative transfer in the fine-tuning  models.  The  instance- 

based DDTL model (SLA) has the worst accuracy (62%), which is clearly a negative transfer  

case. Theoretically, the instance selection by the re-weighting matrix eliminates way too many 

source domain samples due to a large distribution discrepancy. As such, it cannot extract suf- 

ficient information for the knowledge transfer.  It can be considered as the same situation as       

the CNN model with insufficient training data. Furthermore, pre-processing the data with se- 

mantic segmentation can improve the performance. Moreover, it  proves  that  preserving  the 

most informative part by eliminating random noise from a small data set can enhance the final 

classification performance. 

 

Furthermore, the author has observed other interesting things. First of all, feature-based al- 

gorithms have more promising performances on the COVID-19 classification problem. Differ- 

ently, the instance-based method completely failed to solve this task. Intuitively, samples in 

distant domains are seemingly unrelated at the instance level, but they might still share com-  

mon information at the feature level. Therefore, the instance selection method tend to miss 

important information with only learning features at the visual-level. Differently, the feature- 

based models tend to ignore the large discrepancy at the visual-level. Instead, they aim to 

discover the relationship of two domains at the feature-level. Therefore, it can close the distri- 

bution mismatch by extracting domain-confusing features. 

 

Moreover, Table. 4.8 shows performances of conventional TF models and DDTL models with 

single source domain. Firstly, the proposed DDTL algorithm achieves the highest classifica-  

tion accuracy (90%, and SLA method shows negative transfer on all five source domains. It 

further approves that instance selection process might not be reliable for DDTL problems. 

However, the advantage of SLA is that it does not require labeled target data, while the pro- 

posed method needs labeled target data. In addition, not all source domains are suitable for 

distant knowledge transfer. The seemingly related domain, chest X-Ray, is actually not the 
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Figure 4.9: DFF Domain Losses with Single Source Domain 

 

 

most transfer-friendly for this task. Other data sets that are visually distant from the target 

domain carry out better results. It approves the theory that  seemingly  unrelated  domains 

might be statistically connected in the feature-level.  The author will provide more evidences   

in later contents. 

 

The best performance of conventional TL models is (88% which is better than non-transfer 

methods.  Initializing with pre-trained weights only yields a faster convergence but it does     

not improve the performance in this case. Accuracies from experiments of Chest X-Ray to 

Covid19-CT turns out to be worse than other experiment setups even the chest X-Ray is 

commonly assumed to be the most similar to the target domain. However, as shown in Figure- 

4.9, the domain loss between the Covid19-Xray and chest X-Ray is the greatest in all experi- 

ments.  It also proves that seemingly related domains might be distant in the feature level, so 

it is not always reliable to hand-pick source domains in DDTL problems. 

 

Moreover, the enhancement from semantic segmentation is still not good enough to reach 

the human-level performance. Therefore, unlike most existing DDTL algorithms, the author 

wishes to even improve the performance by using multiple source domain. Importantly, in 

DDTL problems, finding shared information cross different domains is the key to perform 
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a safe knowledge transfer. However,  the amount of common information extracted from a  

single distant domain might not be sufficient. As shown in Table. 4.9, the proposed method 

achieves (96% classification accuracy with using Caltech-256 as the primary source domain 

and Chest  X-Ray  as the auxiliary source domain.  It means that these two  data sets have  

less information overlapping, so the DFF model can extract more useful shared knowledge to 

transfer to the target domain. Differently, performance degradation appears in others multi- 

source domain experiments, which means others pairs have shared information that causes over-

fitting. 

However, one significant weakness of DDTL models is that they are highly dependent on the 

quantity and versatility of the source domains. As we can tell from Table. 4.8, the perfor- 

mances of the proposed model decreases dramatically when the webcam and the dslr data 

sets of Office-31 are set as the source domains. Theoretically, DDTL models benefit from ex- 

tracting the common knowledge of the source domain and the target domain, but they cannot 

complete this type of feature extraction when the source data set is small. There are only 550 

and 640 samples in the webcam and the Dslr data sets, which are less than the target samples. 

Therefore, it is not easy to safely and effectively transfer knowledge between different domains. 

On the contrary,  the Caltech-31 data set has over 33000 samples from 256 different classes, so    

it is easier to perform the knowledge transfer. 

Analysis of DFF 

 
 

Figure-4.10a-4.10d shows details of the DDF models in single source domain setting and the 

multi-source domain settings, illustrating four types of losses: total training loss, target clas- 

sification loss, domain loss, and reconstruction loss. Firstly, The proposed DFF algorithm has 

achieved the highest test classification accuracy when the Caltech-256 data set is the primary 

source domain and the chest X-Ray data set is the auxiliary source domain. Overall, it has the 

most smooth curves and the smallest domain loss. Moreover, with the additional information  

from the auxiliary source domain, its classification loss and reconstruction loss are dramati-    

cally reduced.  In other words, the model is able to extract additional features from the aux-    

iliary domain and use it as a bridge to close the distance from the target domain. Moreover, 
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Figure 4.10: Training Details of experiments on ADFE with 4 setups: 

Caltech-256 to Covid19-CT , Office-31-Amazon to Covid19-CT , 
Office-31-Webcam to Covid19-CT , Office-31-dslr to Covid19-CT . In each 

sub-figure, up left is total loss, up right is target classification loss, down left is 

domain distance, and down right is reconstruction error. 

 
 

large declines in performance appear in the other experiments with Amazon and Webcam . 

As mentioned earlier, the performance degradation can be caused by overlapping information 

in the primary and the secondary source domains. The model is over-fit due to the duplicated 

knowledge in two source domains. Especially, in the experiment 4.10b, the domain loss is in- 

creased but the classification loss is not lowered. Furthermore, this proves that seemingly dis- 

tant instances might share a certain amount of common features. And, such features can be 

extracted by properly adding a domain loss to the loss function. Moreover, Figure-4.9 supports 

another point: the smaller domain loss means a closer distance between two domains. As we 

can tell from the figure, the Caltech-256 to Covid19-CT combination has the lowest do- 

main loss, and it also has the best classification accuracy. Furthermore, the domain loss curve 

of Dslr data set increases during the training.  It indicate that the quantity and the versatility  

of the source data set play an important role in this task. Finally, the author quantifies the 
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Table 4.10: DFF Performance 

 

DFF Accuracy Precision Recall F1 

Single Source 0.86 0.92 0.86 0.88 

Multi-Source 0.88 0.92 0.93 0.92 

Segmented Multi-Source 0.96 0.97 0.98 0.97 

 
 

performance of DFF model with four evaluation metrics: accuracy, precision, recall, and F1 

score. 

 

 

4.2.6 Concluding Remark & Future Work 
 
 

To draw a conclusion, in this study, the author introduces a novel DDTL framework (DFF) for 

medical imaging. Moreover, the author applies the proposed framework on COVID-19 diag- 

nosis task to justify its proficiency. Moreover, the author conducts experiments with another 

5 methods with different leaning manners: non-transfer, fine-tuning, DDTL (SLA). To distin- 

guish our work from others, the proposed method can use seemingly unrelated data sets to de- 

velop an efficient classification model for COVID-19 diagnose. Unlike previous DDTL models, 

our method enables knowledge transfer from multiple distant source domains, and it can effec- 

tively enhance the performance on the COVID-19 diagnose. Moreover, the proposed method 

has great potential of expanding the usage of transfer learning on medical image processing by 

safely transferring the knowledge in distant source domains, which can be completely differ- 

ent from the target domain. Furthermore, this study is related to one of the most challenging 

problems in transfer learning, negative transfer. To the best of our knowledge, this is the first 

study that uses distant domain source data for COVID-19 diagnosis and outperforms promis- 

ing test classification accuracy. 

 

In addition, the framework is designed for general medical imaging tasks. COVID-19 diagno- 

sis is just an example to justify the performance of the proposed work. However,  the author  

also applies the framework to pneumonia diagnosis task. It also achieves decent performance 

(95.1 %) test classification accuracy. Intuitively, the reduced-UNet segmentation part is the 
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key to improve the generalization ability of the framework. It is justified in [192] that the orig- 

inal UNet is effective for medical imaging tasks. Therefore, the framework can be extended to 

other medical imaging tasks by  adjusting the size or the structure of the UNet based on the    

given data set. It proves that the proposed method has the ability of being adapted to other  

medical imaging methods. However, without the segmentation part, the proposed framework 

might also have the potential for regular image processing tasks.  the author plans to conduct  

more research in the direction, but it is out of the scope of this study. 

Four  contributions of this study are made:  1) it successfully adopts DDTL methods to COVID-   

19 diagnosis, 2) the author introduces a novel  feature-based DDTL classification algorithms, 3)  

the proposed methods achieve state-of-art results on COVID-19 diagnosis  task,  and  4)  pro- 

posed methods can be easily expanded to other medical image processing problems. 

However, there are several drawbacks of DDTL algorithms: 1) most algorithms tend to be 

case-specific, 2) source domain selection is too complicated in some cases, 3) distant feature 

extraction process is computationally expensive. 

In the future, there are a number of research directions regarding COVID-19 diagnosis and  

DDTL problems. Firstly, the explainability of the feature-based DDTL algorithm is a  chal- 

lenging but essential topic. Visualizing the changes on features in deep layers  through  the 

training process can not only help us to better understand the domain adaptation in the fea-       

ture level and decision making process of deep ANN models, but also discover the relationship 

between two distant domains. Moreover, how to improve the efficiency of feature extraction 

process is another key to improve the performance. Commonly, generative  adversarial  net- 

works (GANs) is widely acknowledged as a better feature extraction method. However, how to 

avoid non-convergence in the training process of adversarial networks is very challenging, and 

gradient explode and disappear make the training process for adversarial networks extremely 

difficult. As an inspiration, designing new adversarial loss functions is a possible way  of deal-  

ing with this problem.  Moreover, there are many robust models pre-trained with large data      

sets, such as Resnet, Alexnet, and MDDA.  Using  pre-trained  models  as  the  feature  extrac- 

tors can significantly increase the distribution diversity of extracted features. However, it can 
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lead to two major concerns: 1) re-training/fine-tuning such deep models is computationally ex- 

pensive, and 2) increasing distribution diversity can cause over-fit. Therefore, dimensionality 

reduction and feature selection techniques can be the key to extend feature-based DDTL al- 

gorithms to large pre-trained models. Furthermore, cross-modality TL, such as from image to 

audio, can be another potential solution to DDTL problem since semantic information can also 

exist in different cross-modality domains. Solving this problem can expand the use of trans- 

fer learning to an even higher level. Furthermore, for multi-source DDTL algorithms, source 

domain selection is important to  stabilize  the  performance.  Recently,  active  learning  meth- 

ods attract more and more attention from researchers. Finally, using medical CT images from 

other diseases as the source domain might or might be able to produce better results because 

seemingly related domains can also have large discrepancies in the feature level. Moreover, im- 

age data sets are usually not easy to access, so it is not always feasible to develop a TL model     

by using medical image data from other diseases. Therefore, granting access to medical image 

data sets to the public and generating distribution shift embedded artificial data is a promis-       

ing future research direction in the field of medical image processing. 



 

 

 

 

 

 

 

 

 

Chapter 5 
 
 

Cross-Modality Transfer Learning 

for Image-Text Information 

Management 

 
In the past decades, information from all kinds of data has been on a rapid increase. With state-

of-the-art performance, machine learning (ML) algorithms have been beneficial for in- 

formation management. However, insufficient supervised training data is still an adversity in 

many real-world applications. Therefore, transfer learning (TF) was proposed to address this 

issue. This paper studies a not well-investigated but important TL problem termed Cross- 

Modality Transfer Learning (CMTL). This topic is closely related to distant domain transfer 

learning (DDTL) and negative transfer.  In general, conventional TL disciplines assume that   

the source domain and the target domain are in the same modality. DDTL aims to make ef- 

ficient transfers even when the domains or the tasks are entirely different. As an extension of 

DDTL, CMTL aims to make efficient transfers between two  different data modalities, such      

as from image to text. As the main focus of this study, the author aims to improve the per- 

formance of image classification by transferring knowledge from text data. Previously, a few 
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CMTL algorithms were proposed to deal with image classification problems. However, most 

existing algorithms are very task-specific, and they are unstable on convergence. There are 

four main contributions in this study: 1) propose a novel heterogeneous CMTL algorithm, 

which requires only a tiny set of unlabeled target data and labeled source data with asso- 

ciate text tags, 2) introduce a latent semantic information extraction (LSIE) method to con- 

nect the information learned from the image data and the text data, 3) the proposed method 

can effectively handle the information transfer across different modalities (text-image), and 4) 

the author examined our algorithm on a public data set, Office-31. It has achieved up to 5% 

higher classification accuracy than ”non-transfer” algorithms and up to 9% higher than exist- 

ing CMTL algorithms. 

 

 
 

5.1 Introduction 
 
 

In the past decades, the volume of information from all kinds of data modalities has increased 

rapidly.  For example, with the modern internet system, a massive amount of image data can 

be accessed easily. However, a vast amount of redundant information can also be created, and 

it often gives us a hard time finding useful information. Therefore, it is essential to design 

more efficient and more effective information management methods that help us to extract 

useful information. In this paper, it focuses on improving the efficiency and the performance of 

image data management. Recently, machine learning has made breakthroughs in many differ- 

ent fields, including but not limited to image processing, speech recognition, and natural lan- 

guage processing (NLP). With state-of-art performances, machine learning models have been 

successfully applied to solve more and more real-world problems that traditional statistical 

learning methods cannot solve. 

 

In general, traditional machine learning relies on a massive amount of training data.  Moreover,    

it assumes one critical condition: the training data and the  testing  data  are  drawn  from  the 

same distribution.  However,  this assumption does not always hold in many real-world prob-   

lems [197]. As such, most conventional machine learning algorithms usually suffer from three 
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main difficulties: 1) insufficient data, 2) incompatible computation power, and 3) distribution 

mismatch. First of all, various solutions have been proposed to address the first two problems, 

such as data argumentation, data synthesis, distributed learning, and cloud computing. How- 

ever, each of these proposed solutions is suffering from some adversities regarding high training 

cost, implementation efficiency, and the security. Recently, transfer learning (TL) has been 

brought to our attention to solve all three difficulties. 

 

It has been proved that TL can handle all three problems in modern ML. Theoretically, trans-     

fer learning algorithms aim to develop robust target models by  using only a small set of tar-       

get training data and transferring knowledge learned from other domains and tasks.  Recently,    the 

modern TL has been extended to deep learning [58]. Moreover, the concept of adaptation  layer 

with domain distance measurements was first proposed by [17]. It allows us to transfer knowledge 

between deep neural networks. In general, conventional transfer learning algorithms assume that 

the source domains and the targets share a certain amount of common informa-     tion. However, 

this assumption does not always hold in many real-world applications, such as medical image 

processing [18, 19], rare species detection [20], and recommendation systems    [21, 22].  In 

addition, transferring between two  loosely related domains usually causes nega-    tive transfer 

[23–25], meaning that the knowledge transfer starts hurting the performance on       the task in the 

target domain and produces worse performance than non-transfer models. For instance, building a 

dog classification model by directly transferring knowledge from a car clas- sification model will 

likely lead to negative transfer due to the weak connection between the     two domains. Therefore, 

it is not always feasible to apply transfer learning to areas where we cannot easily obtain enough 

source domain data related to the target domain. 

 

Previously, [77, 84] introduced a novel transfer learning discipline, Distant Domain Transfer 

Learning (DDTL). DDTL aims to address the issue of negative transfer caused by loose re- 

lations between the source domains and the target domains.  In other words, it allows us to  

safely and effectively perform the knowledge transfer when the source domains and the target 

domains only share a very weak connection. The inspiration behind DDTL is that the ability 
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of human beings to learn a new thing by using knowledge learned from several seemingly inde- 

pendent things. For example, a human who knows birds and airplanes can recognize a rocket 

even without seeing any rockets previously. Therefore, DDTL greatly extends the use of trans- 

fer learning to more areas, and applications there do not always have adequate related source 

data. Moreover, extracting domain-invariant features is challenging when the source domain 

and the target domain have a large domain discrepancy. Therefore, DDTL usually requires 

massive source data sets to extract a sufficient amount of meaningful and domain-invariant 

features. However, massive source data sets are not always accessible, and the computation 

cost is not always affordable. 

 

Furthermore, DDTL can be further improved by embedding the information extracted from 

data sets in other modalities, such as image-text embedding. Image features cannot effectively 

represent semantic features in an image, and it is not easy to extract deep domain-invariant 

features with conventional TL. Therefore, the author proposes to improve the performance 

by  using the semantic information provided by text tags as the side information.  Moreover,     

it is easy to access images with some tags from websites like Wekipedia and flickr. Therefore, 

[81] first introduced a heterogeneous transfer learning framework for knowledge transfer be- 

tween text and images. It observed that for a target-domain classification problem, some an- 

notated images could be found on many social Web sites, which can serve as a bridge to trans- 

fer knowledge from the abundant text documents available over the Web. A critical issue for 

cross-modality information transfer is effectively converting the image information and the 

text information into the same format.  It proposed to modify the representation of the tar-  

get images with semantic concepts extracted from the auxiliary source data through a novel 

matrix factorization method by using the latent semantic features generated by the auxiliary 

data. However, it is not stable on convergence due to sparse matrix, and it relies on hand- 

designed image features. 

 

In this paper, as inspired by the Neflix recommendation system [198], the author proposes a 

novel CMTL algorithm with a non-sparse semantic matrix to solve image classification tasks. 
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Moreover, the proposed algorithm makes two main improvements. Firstly, the proposed al- 

gorithm can deal with both labeled and unlabeled target domain data for domain adaptation 

problems. It can use a sufficient amount of labeled source domain data and some associate 

text tags to produce very promising classification accuracy on the target domain. Secondly, 

the proposed novel semantic information transformation method can avoid the sparse ma-  

trix. Moreover, the author applies a deep feature selection method, Distant Feature Fusion 

(DFF). It aims to discover general features across distant domains and tasks by using a con- 

volutional autoencoder pair with a domain distance measurement. And then, the author intro- 

duces a novel latent semantic information extraction (LSIE) method. Furthermore, to justify 

the improvements, the author chooses a widely used public data set (Office-31) with manually 

added tags. With testing multiple benchmark models on the data set, the author shows that  

the proposed CMTL algorithm has achieved the highest accuracy on an image classification 

task. Compared with transfer learning methods, supervised learning methods, existing DDTL 

methods, and CMTL methods, our algorithm has achieved up to 9% higher classification accu- 

racy. 

 

The remainder of this paper is structured as follows: In Section 5.2, the author first reviews 

some related works. And then, Section 5.3 formulates the problem definition. After that, the 

details of the proposed algorithms are introduced in Section 5.4. Moreover, the author demon- 

strates experimental results and analysis in Section 5.5. Lastly, the author concludes the paper 

and discuss future directions in Section 5.6. 

 

 
 

5.2 Related Work 
 
 

Recently, insufficient training data and domain distribution mismatch  have  become  the  two 

most difficult ML challenges.  As one of the solutions, TL has emerged more and more atten-  

tion due to its training efficiency and domain shift robustness. In general, the conventional TL 

assumes that the source domain and the target domain are closely related [75]. However, this 

assumption does not hold in many real-world problems. A large domain discrepancy can cause 
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negative transfer [23], which significantly limits the use and performance of TL. Recently, 

DDTL and Cross-Modality Transfer Learning (CMTL) have been proposed to address this 

issue. In this section, the author introduces some related works in three fields: conventional 

TL, DDTL, and CMTL. 

 

First of all, TL aims to discover and transfer the domain-invariant and meaningful features in 

the source domain and the target domain. Originally, most TL algorithms focus on transfer- 

ring knowledge with statistical and traditional models. More recently, [46] has expanded the 

use of TL from traditional ML models to deep neural networks. Typically, there are two types 

of TL algorithms: feature-based and instance-based. In common, both types aim to close the 

distribution distance between the source domain and the target domain. In instance-based al- 

gorithms, the goal is to discover source instances that are similar to target instances, so that 

the highly unrelated source samples would be eliminated. Instance-based methods require a 

massive amount of source data and computation power to select enough samples for the tar- 

get task. Differently, feature-based algorithms aim to map source features and target features 

into a common feature space where the distribution mismatch is minimized. Feature-based 

methods usually require less source samples than instance-based methods. Importantly, both 

of them naturally assume that the source domain and the target domain are closely related. 

However, this assumption does not always hold since the distribution mismatch exists in many 

real-world problems. Furthermore, distant domains bring greater domain diversity which can 

lead to the issue of sparse domain-invariant features. Unlike conventional transfer learning, 

DDTL can transfer knowledge between different domains and tasks that are not closely re- 

lated. Moreover, most DDTL algorithms are similar to multi-task learning [118], which also 

benefits from shared knowledge in multiple different but related domains. Generally, multi- 

task learning tends to improve the performance on all the tasks. Differently, DDTL only fo- 

cuses on using the knowledge in other domains to improve the performance on the target task 

in the target domain. 

 

Moreover, most previous studies of DDTL focus on instance-based methods and tend to take 

advantage of massive related source data. There were a few proposed instance-based DDTL 
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algorithms [77, 79] previously. For example, the first study in this field was [77], transitive 

transfer learning (TTL). It transfers knowledge between text data in the source domain and 

the image data in the target domain using annotate image data as a bridge. However, this 

algorithm is highly case-dependent and unstable on performance. At a later time, [79] in- 

troduced another instance-based algorithm with a novel instance selection method, Selective 

Learning Algorithm (SLA). Moreover, it uses SLA to select helpful instances from a number 

of unrelated intermediate domains to expand the volume of the source domain. However, this 

algorithm was proposed to handle binary classification problems. Furthermore, [78] proposed 

another feature-based method to deal with scarce satellite image data. It predicts the poverty 

based on the daytime satellite image by transferring knowledge learned from object classifica- 

tion tasks with the help of some nighttime light intensity information as a bridge. However, 

this method has two major shortcomings. Firstly, it heavily relies on a massive amount of la- 

beled intermediate training data, which can be too expensive to apply. Secondly, it cannot 

extract deep hidden features with the simple model architecture. Unlike existing DDTL algo- 

rithms, the proposed CMTL method can benefit from multiple source domains without labeled 

data, and those source domains can have significant discrepancies. Furthermore, our method 

can also handle multi-class classification and consistently produce promising results. Moreover, 

this study aims to use knowledge extracted from different data modalities to deal with sparse 

domain-invariant features. 

 

Furthermore, CMTL is one of the most challenging topics in TL. It assumes that the source 

domain and the target domain share completely different spaces are, such as from text to 

image, from audio to text, and from image to audio. Moreover, the label spaces between the 

source and the target domain can also be different. Intuitively, CMTL is inspired by humans’ 

ability to generalize knowledge from one subject to another by building a bridge with knowl- 

edge from other seemingly unrelated subjects. For example, a child who has read an article 

with descriptions of monkeys, and he has never seen any monkeys or images of monkeys. How- 

ever, it is possible that the child can recognize a monkey based on the knowledge learned from 

the article. In this case, a child can transfer the knowledge from text data to image data using 
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knowledge in other different domains. Theoretically, two seemingly unrelated domains can be 

connected by one or multiple bridge domains with overlapping semantic information. However, 

this type of learning behavior is counter-intuitive for machines to mimic due to the challenge 

in selecting appropriate intermediate domains as the bridge. Firstly, [80] researched hetero- 

geneous transfer learning called Translated Learning via Risk Minimization (TLRisk). It pro- 

posed an asymmetric architecture to map the features in the source domain to the target do- 

main. Moreover, it used a language model proposed by [93] and the nearest neighbor method 

to connect the text source data and the image target data. Moreover, to produce a smooth 

feature transition, it also developed a translator by applying the Markov chain. The source 

features and the target features were modeled by two different Markov chains bridged with in- 

termediate data. In other words, the translation is done by learning a probabilistic model that 

uses cooccurrence data as a bridge between the source and target feature spaces. Finally, it 

proposed a variant of the risk minimization model to produce the final label prediction. This 

method conducted promising results that are better than the baseline model trained on only 

target data. However, the computational cost of TLRisk is very expensive due to the risk func- 

tion estimation and dynamic programming. Differently, our CMTL algorithm uses the image 

data as the primary feature source and the text data as the secondary feature source. The text 

data aims to provide side semantic information to improve the image classification accuracy. 

 

 
 

5.3 Problem Statement and Notation 
 
 

In this section, the author introduces notations and give a clear problem statement. 

 

 

 
5.3.1 Notation 

 
 

As shown in Table 5.1, there are a number of frequently used notations throughout the chap- 

ter. 
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Figure 5.1: Three different objects share common semantic text information. Three 

seemingly unrelated images share common information in the text domain. For 

example, each image is associated with text tags. The backpack and the mug share 

the “cylinder” as the common information, the mug and the helmet share “strap”, 

and the backpack and the helmet share “pattern”. 

 

Table 5.1: Notation 
 

Term Symbol 
 

DS Source Domain 

XS Source Domain Instance 

YS  Source Domain Label Space 

TS Source Domain Tag Space 

DT  Target Domain 

XT Target Domain Instance 

 

5.3.2 Problem Statement 

 

In this CMTL problem, the author assumes that unlabeled target domain data XT = 
{

(x1 , x2 , ..., xn )
 
 

 

is not enough to train a robust model. However, there are a sufficient amount of labeled source  

 
domain data and a decent amount of text tags associated to the source domain (DS ) and the target 

domain (DT ).  The source domain data is denoted as XS = 
{

(x 1 , y1 ), (x 2 , y2 )  ................ , (x n , yn )
 

, 
 

and the associated tags are expressed as: 

 

 

TS = 
{

(x 1 , t 1 ), (x 2 , t 2 )...., (x n , tn )
  

, TT = 
{

(x 1 , t 1 ), (x 2 , t 2 )...., (x n , tn )
  

. (5.1) 

Furthermore, the source domain and the target domain have a large distribution mismatch. 
 

Let P (x), P (y|x) be the marginal and the conditional distributions of a data set. In this CMTL 
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problem:  
PS (x) = PT (x), (5.2) 

 
PS (y|x) = PT (y|x). (5.3) 

 
 

The proposed work aims to develop a model for the target domain with a minimal amount of 

unlabeled data by finding domain-invariant and meaningful features from distant unlabeled 

source domain data and combining latent semantic information extracted from text tags. The 

motivation behind this study is that data in distant domains is usually seemingly unrelated   

in instance-level but related on the feature-level. Moreover, as shown in Figure-5.1, different 

objects might share common latent semantic information in a different modality. For example, 

each image is associated with two text tags. The backpack and the mug share the “cylinder” 

as the common information, the mug and the helmet share “strap”, and the backpack and 

the helmet share “pattern”. In general, the connection on the feature level from one distant  

domain can be too weak to be used to train an accurate model, and the knowledge bridge be- 

tween  different modalities can be difficult to establish.  As such, the two  main challenges of    

this study are:  1) extracting distant features, and 2) bridging features extracted from different  

data modalities. In this study, the author proposes DFF and LSIE to solve the two challenges. 

 

 
 

5.4 Methodology 
 
 

In this section, the author introduces a novel heterogeneous CMTL algorithm, Distant Feature 

Fusion. As shown in Figure-5.2, there are three main components in our  algorithm:  distant 

feature fusion, latent semantic information fusion, and  the  target  classification.  The  author 

gives details of each part in following sections. 
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Figure 5.2: CMTL Architecture Overview: there are three main components in our 

algorithm: distant feature fusion, latent semantic information fusion, and the target 

classification. 

 
 

5.4.1 Distant Feature Fusion 

 

Primarily, there are no well-labeled target data or source data for the training process, so the 

feature extraction will follow the unsupervised manner. Therefore, a  convolutional  autoen- 

coder pair is used as a feature extractor in DFF. As a variant of autoencoders, convolutional 

autoencoders [178] are usually beneficial to unsupervised image processing related problems. 

First of all, a convolutional autoencoder is a feed-forward neural network working in an un- 

supervised manner, which suits this problem perfectly since there is no labeled data in source 

domains. Generally, a convolutional autoencoder pair contains one input  layer,  one  output 

layer, one up-sampling layer, and multiple convolutional layers. In general, there are two main 

components:  encoder EConv(·) and decoder DConv(·).  The standard process of convolutional 

autoencoder pairs can be demonstrated as: 

 

 
Encoding : f  = EConv(x), Decoding : x̂ = DConv (f̂ ), (5.4) 
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where f  is the extracted features of x, and x̂ is the reconstruction of the original data sample. 

Furthermore, the way to tune the parameters of a convolutional autoencoder pair is to mini- 

mize the reconstruction error over all the training instances. Conceptually, the output of the 

encoder can be considered as high-level features of the unlabeled training data. Furthermore, 

these features are learned in an unsupervised manner, so they are robust when the reconstruc- 

tion error is lower than a certain threshold. In other words, the encoder aims to discover a cer- 

tain amount of representative features, and the decoder aims to ensure the extracted features 

are meaningful. Unlike supervised methods, this process does not require any labeled data. 

f x̂ 

 

 

 

x f 

 

Figure  5.3:  Encoder and Decoder:  f  is the extracted features of x, and x̂ is the 

reconstruction of the original data sample. 

 

In this problem, as shown in Figure 5.2, the author uses a pair of convolutional autoencoder to 

discover robust feature representation from unlabeled source domain data sets and the labeled 

target data sets simultaneously. Moreover, the structures of the encoder and the decoder can 

be found in Figure 5.3. There are two convolutional layers and two pooling layers in each of 

the encoder and the decoder. Moreover, up-sampling is applied to the encoder to ensure the 

quality of the reconstructed images. The process of feature extraction has three main steps: 

feature extraction, instance reconstruction, reconstruction measurement. First, both the source 

data and the target data are fed into the encoder to obtain high-level features fS and fT . And 

then, extracted features are sent into decoder to get reconstructions, f̂S  and f̂T .  The equations 

of the first two steps are expressed as: 

 

 

 

fS = EConv(XS ), fT = EConv(XT ); (5.5) 

ConvTranspose 64*32*3*3 Conv 3*16*3*3 

ConvTranspose 32*16*3*3 Conv 16*32*3*3 

ConvTranspose 16*3*3*3 Conv 32*64*3*3 
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X̂S  = DConv(fS ), X̂T  = DConv(fT ); (5.6) 

 

Finally, the reconstruction errors from both the source domains and the target domains are 

used to construct the loss function of the feature extractor, LR is defined as: 

 

 
 

L   =  
     1 

(Xˆ − X 
 

)2+ 
R 

n
 

i=1 m 

XSi XSi  
(5.7) 

   1 
(Xˆ − X 

 

 

)2. 

 

 

Commonly, minimizing the reconstruction error LR can discover a set of high-level features of 

the given input data. However, the distribution mismatch between the source and the target 

domains is significant, so minimizingLR alone is not enough to extract robust and domain- 

invariant features. Therefore, extra side information can help us to close the domain distance, 

so the extracted features can be robust to both the source domains and the target domains. In 

this research, the author adds a distant feature adaptation layer to the convolutional autoen- 

coder pair to measure the domain loss, LD. The maximum mean discrepancy (MMD) [179], an 

important statistical domain distance estimator, is used as the domain distance measurement 

metric. The domain loss is expressed as: 

 
 

n m 

LD = MMD(
  

fSi , 
  

fTi ), (5.8) 

 

 
 

n1 n2 

MMD(X, Y ) =1 
 1       

ϕ(x ) + 
 1       

ϕ(y ) 1, (5.9) 

 

where n1 and n2 are the numbers of instances of two different domains, and ϕ(·) is the ker- nel 

that converts two sets of features to a common reproducing kernel Hilbert space (RKHS) 

where the distance of two domains is maximized. Furthermore, it allows us to extract a set of 

domain-invariant and meaningful features for the target classification. However, the extracted 

i=1 

XTi 
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features might not be sufficient for developing a robust target classifier due to the larger dis- 

crepancy. Therefore, another set of additional information can ensure the performance of the 

target classifier. 

Algorithm 4: Distant Feature Fusion Algorithm 
 

Input: S = XS , T = XT , YT . 

Max Iteration: I, Batch Number: N. 

for i = 1, ...., I do 

for j = 1, ...., N do 
Feature Extraction: fS = EConv(XS ), fT = EConv(XT ) Instance 

Reconstruction:  X̂S  = DConv(XS ), X̂T  = DConv(XS ) 
 

 

 
end 

end 

Label Prediction: XS 

Calculate LR, LD, LC 

Update θE , θD, ΘC 

= CT (fS ) 

Output: XT 

 
 

 

5.4.2 Latent Semantic Information Extraction 

 

To discover another set of additional information, the author wishes to take advantage of other 

data sets with different modalities. As mentioned earlier, seemingly  unrelated  images  might 

share common information.  In this study,  there is an additional set of text tags associated to      

the source and the target images. Therefore,  some  additional  information  can  be  extracted 

from the text data to improve the performance of the target image classifier.  Moreover, there     

are two major challenges of cross-modality information transfer: 1) cross-modality feature fu-  

sion and 2) high dimension vs.  sparse matrix.  In this section, the author introduces a method     

for latent semantic information extraction for image-text  features.  First  of  all,  assume  that 

there are totally h unique tags in the tag space TS , and the instance-tag matrix MIT  ∈ Rn×h, 

where n represents the total number of images.  And then, the distant feature matrix can be   

found by feeding the image data into the DFF model. The distant feature matrix can be ex-  

pressed as MDF F ∈ Rn×d, where d is the number of features of the last convolutional layer. 

After that, a tag-feature matrix is defined as:  MT F  =  MD
T

F F MIT  ∈ Rd×h.  In addition, this 

tag-feature matrix represents the correlation between image features and the text features. 

More importantly, MT F is not sparse so that it can be effectively and safely decomposed at 
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a later time. The intuitive reason behind it is that each element in the matrix is the cumula- 

tive value of a specific feature and the specific tag of all instances. Besides, the matrix can be 

visualized as: 

F1T1 F1T2  ................. F1Th  

 2  1 2  2 2 h  

MT F = 

 
 

 

... ... .... ... 

 
... ... .... ... 

, (5.10) 

 
 

FdT1 FdT2  ................. FdTh  

where each row represents the relation between a specific feature and all tags, and each col-    

umn represents the relation between a specific tag and all features. Moreover, this matrix con- 

tains the information both from the image data and the  text  data.  The  next  step  is  to  dis- 

cover a certain amount of latent semantic features from it. 

 

Furthermore, motivated by  Neflix Prize [198], the latent semantic information can be extracted  

by performing matrix decomposition: 

 

MT F = UV T, (5.11) 

 

where U  ∈ Rd×l and V   ∈ Rh×l, and l  is the number of latent semantic features.  In addition,      

l is a user-defined value which will be introduced with more details at a later time. Moreover,  

the author applies numerical optimization method for the matrix decomposition process and 
 

the loss is defined as:  
LMD =1 MT F − Û V̂ T  12 +λR(Û , V̂ ), (5.12) 

 

where λ is the penalty coefficient, R(Û , V̂ ) is the penalty term to avoid over/under fitting, and 

R(Û , V̂ ) = (1 Û  12 + 1 V̂  12). 

Finally, with extracted latent semantic features, it can help us to reconstruct a new feature 

representation of the image data that embedded with both image features and text tag infor- 

mation. The new feature FF T = MDF F U ∈ Rn×l. And then, the new set of features is used to 

train a new classifier constructed by two fully-connected layers. 
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5.4.3 Target Classifier 
 
 

Furthermore, with new set of features, the author adds two fully-connected layers after the 

encoder to build a target classifier, CT , for the target task in the target domain. As the mo- 

tivation of this step, [10] proves that convolutional layers can discover features, and fully- 

connected layers can find the best feature combination for each class in the target task.  In    

other words, fully-connected layers do not learn more new features but connect each class to       

a specific set of features with different weights. In this work, there is only one fully-connected 

layer followed by the output layer with cross-entropy loss, LC : 

 

 
n 

LC = −x[Class] + exp(XSi ). (5.13) 

i=1 

 

Finally, by embedding all three losses from 5.7, 5.8, and 5.13, the overall objective function of 

DFF is formulated as: 

 

 
 

Minimize 
θE ,θD,ΘC 

 

L = LR + LD + LC , (5.14) 

 

where θE, θD, ΘC are the parameters of the encoder, decode, and the classifier, respectively. 

Moreover, L is the final loss constructed by the reconstruction error, domain loss, and classi- 

fication loss. Finally, all the parameters are optimized by minimizing the objective function 

in Equation 5.14. However, the classification loss is designed for the final target classification, 

and it is optional in the distant feature extraction process. With or without it would not sig- 

nificantly vary the results. More details will be discussed this at a later time. Moreover, the 

overview of DFF is summarized in Algorithm 4. 

 

 
 

5.5 Experiment and Analysis 
 
 

In this section, the author first introduces the data set and experimental setups. And then, 

the author compares our algorithm with a number of benchmark models, such as supervised 
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learning models, conventional transfer learning models, DDTL models and CMTL models. 

After that, the author presents results from the proposed CMTL model and the comparisons 

with benchmark models. Finally, the author demonstrates details of the proposed algorithm 

and result analysis. 

 

 

5.5.1 Data Set 

 

In this study, the author chooses a widely used public data set, Office-31 [183], which has three 

collections of total 4110 instances from three different data sources: “amazon”, “webcam”, and 

“dslr”. Moreover, the author randomly selects 10 classes to manually add 1 − 5 text tags to 

each sample. Moreover, as shown in Figure-5.1, text tags describe the appearance, the shapes, 

or the functions of each object. Moreover, the author performs three knowledge transfers in 

each experiment, namely “amazon”to“webcam”, “webcam”to“amazon”, “webcam”to“dslr”, 

“webcam”to“dslr”, “amazon”to“dslr”, and “dslr”to“amazon”. 

 

 

 

5.5.2 Bench Mark Model 
 
 

Firstly, the author selects one non-transfer supervised baseline models:  pre-trained ResNet50  

[76]. And then, the author picks two conventional transfer learning models: Manifold Dynamic 

Distribution Adaptation - ReNet (MDDA) [199] and Multi-Adversarial Domain Adaptation - 

AlexNet (MADA) [200]. Moreover, the author chooses one instance-based DDTL algorithm: 

selective learning algorithm (SLA) [79]. Lastly, the author selects another CMTL algorithm: 

Heterogeneous Transfer Learning for Image Classification (HTLIC) [81]. 

 

 

5.5.3 Performance and Analysis 
 
 

First of all, the author runs each experiment five times to obtain each method’s performance 

variation range. As shown in Table 5.2, with insufficient labeled training data, non-transfer 

methods still carry out fairly decent testing classification accuracy (78.3%). Conventional 
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Table 5.2: Accuracy (%) of Experiments on Office-31 

 

 

 
webcam-amazon 64 0.1 71 0.3 47 0.2 68 3 40 0.1 61 0.3 67 0.1 

webcam-dslr 92 0.1 98 0.1 90 0.4 62 3 65 0.2 88 0.1 97 0.1 

dslr-webcam 91 0.3 94 0.2 91 0.1 88 2 63 0.2 86 0.2 96 0.2 

amazon-dslr 77 0.2 85 0.1 76 0.5 68 3 54 0.3 74 0.4 89 0.1 

dslr-amazon 64 0.1 71 0.1 57 0.2 62 3 45 0.2 64 0.2 77 0.1 

Average 78.3 83.8 72.6 62 54.5 76.3 85.3 

 

transfer learning algorithms are able to bypass the accuracy achieved by the ResNet50 model. 

However, MDDA (83.8%) is the only conventional method that is better than the non-transfer 

model in this study. The MADA model is only at 72.6%, which is not promising. Moreover, 

the DTTL algorithm (SLA) outputs the second-worst performance (62%), which is not much 

better than a pure guess. After that, the previous CMTL method (HTLIC) has the worst ac- 

curacy (54.5%), which is a case of negative transfer. Finally, the proposed algorithm carries 

out decent performance (76.3%) without using tag information. With tag information, the 

performance is dramatically improved to 85.3%, which the highest in all tested methods. In 

addition, our algorithm achieves the best performance in four settings: “amazon”to“webcam”, 

“webcam”to“dslr”, “amazon”to“dslr”, and “dslr”to“amazon”. 

 

Moreover, Figure-5.4 illustrates the domain distance changing through the training and demon- 

strates that the final domain distance is closely related to the latent semantic information ex- 

tracted from text tags. The domain distance is a lot smaller when the semantic features are 

added to the training process. Furthermore, it also approves that the distant feature adaption 

layer can close the distribution mismatch even when domains are very distant. What is more, 

as illustrated in Figure-5.5, the number of latent semantic features can greatly affect the per- 

formance and convergence time. As we can tell, the performance first goes up as the number 

of semantic features increases, then it hits the peak at 50 semantic features and starts decreas-    

ing after. In general, more information should help the model to learn more useful knowledge. 

However,  way  too many features can also involve  noise which can hurt the performance.  In    

this study, 50 latent semantic features yield the  best  accuracy.  In  addition,  the  convergence 

time keeps increasing when the author adds more latent semantic features, and the model does   

not converge with more than 100 latent semantic features. 

 ResNet-50 MDDA MADA SLA HTLIC Ours (no tags) Ours (with tags) 

amazon-webcam 82 ± 0.2 84 ± 0.1 75 ± 0.4 88 ± 2 60 ± 0.2 85 ± 0.2 89 ± 0.1 
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Figure 5.4: The domain loss: the final domain distance is closely related to the 

latent semantic information extracted from text tags. The domain distance is a lot 

smaller when the semantic features are added to the training process. 

 

5.6 Concluding Remarks 
 
 

In this chapter, the author studies a CMTL problem in image-text information management, 

where only exists a decent amount of labeled source data with text tags and a small set of un- 

labeled target domain data collected from very distant domains and tasks. Under this setting, 

conventional transfer learning algorithms usually suffer from negative transfer. The author 

introduces a novel heterogeneous CMTL algorithm to address this problem, which can effec- 

tively extract and fuse the distant features learned from distant domains and latent semantic 

features from different data modalities. Unlike other ML algorithms, CMTL can handle mul-  

tiple source and target domains, and it does not rely on any labeled data from the target do-   

main. Moreover, DFF can achieve effective distant feature extraction, and LSIE can discover 

semantic information across modalities. Furthermore, the author also conducts a series of ex- 

periments on Office-31 and present an analysis of the proposed algorithm. 
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Figure 5.5: The impact of the number of semantic features: the performance first 

goes up as the number of semantic features increases, then it hits the peak at 50 

semantic features and starts decreasing after. 

 
 

In the future, there are two directions regarding this CMTL problem. Firstly, the explainabil- 

ity of the CMTL algorithm is a challenging but essential problem. Visualizing the changes in 

high-level features through the training process can help us understand the domain adaptation 

on the feature level. Secondly, how to effectively set the number of latent semantic features is 

another challenge. The iterative method used in this study is fairly computationally expen- 

sive and inefficient. Solving this problem can expand the use of CMTL algorithms to an even 

further level. 

X 50 

Y 85 

Accuracy 

Iteration 



 

 

 

 

 

 

 

 

 

Chapter 6 
 
 

Concluding Remark and Future 

Work 

 
6.1 Concluding Remark 

 
 

In section-3, a well-defined DEML framework and a product-oriented evaluation system. The 

DEML framework covers the most commonly used methods to ease the performance degra- 

dation caused by insufficient training data and incompatible computation power. In addition, 

these methods are organized into two main categories: 1) data science and 2) learning algo- 

rithms. In data science, there are two highlighted methods, data augmentation, and data re- 

sampling. In data augmentation, the author introduces a series of methods that can effectively 

increase training data volume. These methods can be implemented in several areas, such as 

image processing, audio analysis, and signal processing. Besides generating artificial data, 

the author also presents methods that can maximize the use of existing data sets.  There are   

three widely used techniques in data re-sampling: 1) validation, 2) cross-validation, and 3) 

bootstrap, which can efficiently re-use small data sets. However, data science methods cannot 

provide more distribution diversity to original data sets. Therefore, improvements in learning 

algorithms are needed when the data volume gets to a certain level. 

147 
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There are three learning disciplines in learning algorithms: FSL, ensemble learning, and TL, 

respectively. Additionally, TL is the main focus of this dissertation at the algorithm-level: 

 

• Few-shot learning benefits from meta-learning, and it can carry out decent results by 

using only a few or zero data samples. Under this setting, it might not always learn di- 

rectly from the target samples. Instead, it might learn some features from other samples 

that are related to the target. 

• Ensemble learning performs well with a small data set by combing multiple weak learn- 

ers. It assumes that weaker learners do not require a massive data set for training. The 

more common ensemble learning method is random forests. 

• As the main focus of this dissertation, TL aims to solve the target task by transferring 

knowledge learned from other domains, so it does not need to learn from scratch with a 

massive amount of data. 

 

More importantly, TL has been successfully adapted to deep learning. However,  conventional  

TL assumes that the source domain and target domains are closely related. Negative transfer 

occurs when there is a large discrepancy between two domains. This dissertation proposes two 

novel algorithms to avoid negative transfer. 

 

Recently, TL has been successfully applied to many real-world problems that traditional ma- 

chine learning (ML) cannot handle, such as image processing, speech recognition, and natural 

language processing (NLP). Commonly, TL tends to address three main problems of tradi- 

tional machine learning: (1) insufficient labeled data, (2) incompatible computation power, 

and (3) distribution mismatch. In general, TL can be organized into four categories: transduc- 

tive learning, inductive learning, unsupervised learning, and negative learning. Each category 

can be organized into four learning types: learning on instances, learning on features, learn- 

ing on parameters, and learning on relations. This article presents a comprehensive survey on 

TL. Besides, this chapter presents the state of the art, current trends, applications, and open 

challenges. In section-2, it presents an updated survey by demonstrating the state-of-the-art, 
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current trends and open challenges in the field. While most recent surveys equally cover main- 

stream TL topics, our survey extends that by  identifying and discussing the most challenging    

TL problems, such as distant domain and cross-modality TL. The survey promotes the posi-     

tive applications of transfer learning to foster a broader community in the field. 

 

Moreover, in section-3, TL techniques are applied to a real-world application, solid waste sort- 

ing. A novel loss function, the Dual Dynamic Domain Loss function (4D), is introduced to 

provide more accurate domain distance measurements. And then, as mentioned earlier, how 

to address the negative transfer issue when transferring knowledge among distant domains is 

a key to expand the use of TL. Therefore, in section-4, the author proposes a novel feature- 

based DDTL algorithm to negate the negative transfer between distant domains. This topic 

is closely related to negative transfer. Unlike conventional transfer learning problems, DDTL 

aims to make efficient transfers when the domains or the tasks are completely different. Most 

existing algorithms are very task-specific, and they are instance-based. This study proposed 

a feature-based algorithm that requires only a tiny set of labeled target data and unlabeled 

source data from completely different domains. Instead of selecting intermediate instances, the 

author develops Distant Feature Fusion (DFF), a novel feature selection method, to discover 

general features cross distant domains and tasks. As the novelty of this study, it can effectively 

handle both distant domain multi-class image classification and binary image classification 

problems. Furthermore, this DDTL algorithm is applied to medical imaging in section-4. 

 

As an extension of DDTL, CMTL is another very important but not well-studied TL problem. 

DDTL aims to make efficient transfers even when the domains or the tasks are entirely differ-   

ent. As an extension of DDTL, CMTL aims to make efficient transfers between two different 

modalities, such as from image to text. As the main focus of this study,  the author aims to  

improve the performance of image information classification by transferring knowledge between 

text data and image data.  Previously, a few CMTL algorithms were proposed to deal with im-   

age classification problems. However, most existing algorithms are very task-specific, and they  

are unstable on convergence. There are four main contributions  in  this  study:  1)  propose  a 

novel heterogeneous CMTL algorithm, which requires only a tiny set of unlabeled target data 
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and labeled source data with associate text tags, 2) introduce a latent semantic information 

extraction (LSIE) method to connect the information learned from the image data and the  

text data, 3) the proposed method can effectively handle the information transfer across dif- 

ferent modalities (text-image), and 4) the author examines the proposed algorithm on a public 

data set, Office-31. It has achieved promising performance. 

 

 
 

6.2 Future Works 
 
 

As the future plan, there are two promising directions: 1) TL algorithms 2) applied-TL. In  

this section, the author will discuss the details in each direction. 

 

 

6.2.1 TL Algorithms 
 
 

Many studies of TL have carried out promising performances in several fields. However, there 

are still some open challenges that are waiting to be addressed. Moreover, there are four re- 

search directions in algorithms: 

 

• Human-Guided TL: enable the model to master a task from scratch without any human 

experiences and instructions. 

• Negative Transfer: it occurs when the distribution mismatch between two domains is 

large. It is always the case in real-world problems. For example, a promising direction is 

discover methods that can efficiently transfer knowledge from pre-trained deep models, 

such as ResNet and MDDA. 

• Adversarial TL: adversarial models are generally more powerful but difficult to train.  It   

is not well-investigated in transfer learning. 

• Transfer Learning with Graph Neural Networks: graph neutral networks is a newly pro- 

posed concept. It has the potential in transfer learning. 
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For  human-guided TL, the key is how to provide human pre-experience to the learning mod-      

els correctly. With such pre-experience, the training process of TL models can be even more 

efficient. Moreover, to negate negative, there are three potential solutions, such  as  DDTL, 

CMTL, and meta-TL. In addition, DDTL  and  meta-TL  are  very  similar  concepts,  and  they 

can be combined by using active learning methods. For CMTL, as extensions of the proposed 

CMTL algorithm, future works can focus on transferring with other data modalities, such as   

video and audio.  Besides, adversarial-based TL is more powerful, but it is more difficult to     

train due to non-convergence.  As future plans, designing new training protocols that can per-  

form stabilize the training. Furthermore, in real-world situations, we are dealing with spatial- 

temporal data sets that are not euclidean-based.  Therefore, TL with traditional learning meth-   

ods is not suitable for such tasks.  As such, developing graph neural networks-based TL models    

is also very important. 

 

 

6.2.2 TL Applications 
 
 

Moreover, applying algorithms to practical problems can help us build a bridge between theo- 

ries and reality. There are several areas that can greatly benefit from TL techniques: 

 

• Computer Vision: medical image processing (classification and segmentation), diagnosis 

assistant (image-based detection and image enhancement). 

• Natural Language Processing: text semantic analysis, workflow analysis 

 
• Smart and Connected Community: smart home, activity recognition, indoor location, 

transportation with emergency response. 

• Others: recommendation system, personalized treatment planing, human-machine inter- 

face. 
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[183] Yunhan Zhao, Haider Ali, and René Vidal.   Stretching domain adaptation:  How far is 

too far? ArXiv, abs/1712.02286, 2017. 

[184] Sabina Jeschke, Christian Brecher, Houbing Song, and Danda Rawat. Industrial Internet 

of Things. Springer, Cham, Switzerland, 2017. ISBN 978-3-319-42558-0. 

[185] Y. Zhang, L. Sun, H. Song, and X. Cao. Ubiquitous wsn for healthcare: Recent advances 

and future prospects. IEEE Internet of Things Journal, 1(4):311–318, 2014. doi: 10. 

1109/JIOT.2014.2329462. 

 

[186] S. Niu, Y. Hu, J. Wang, Y. Liu, and H. Song. Feature-based distant domain transfer 

learning. In 2020 IEEE International Conference on Big Data (Big Data), pages 1–8, 

2020. 

 

[187] Shuteng Niu, Jian Wang, Yongxin Liu, and Houbing Song. Transfer learning based Data- 

Efficient machine learning enabled classification. In The 6th International Conference on 

Cloud and Big Data Computing (2020) (CBDCom 2020), August 2020. 

 

[188] Y Liu, J Wang, S Niu, and H Song. (2020) deep learning enabled reliable identity verifi- 

cation and spoofing detection. 2020. 

[189] Xuehai He, Xingyi Yang, Shanghang Zhang, Jinyu Zhao, Yichen Zhang, Eric Xing, and 

Pengtao Xie. Sample-efficient deep learning for covid-19 diagnosis based on ct scans. 

medrxiv, 2020. 

[190] Ting Chen, Simon  Kornblith,  Mohammad  Norouzi,  and  Geoffrey  Hinton.  A  sim- 

ple  framework  for  contrastive  learning  of  visual  representations. arXiv preprint 

arXiv:2002.05709, 2020. 



Bibliography 175 
 

 

[191] Mucahid Barstugan, Umut Ozkaya, and Saban Ozturk. Coronavirus (covid-19) classifi- 

cation using ct images by machine learning methods. arXiv preprint arXiv:2003.09424, 

2020. 

 

[192] Olaf  Ronneberger,  Philipp  Fischer,  and  Thomas  Brox.   U-net:   Convolutional  networks 

for biomedical image segmentation. In International Conference on Medical image com- 

puting and computer-assisted intervention, pages 234–241. Springer, 2015. 

 

[193] K. He, X. Zhang, S. Ren, and J. Sun.   Deep residual learning for image recognition.   In   

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 

770–778, 2016. 

 

[194] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS  Valentim,  Huiying 

Liang, Sally L Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al. 

Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 

172(5):1122–1131, 2018. 

[195] Samuel G Armato III, Geoffrey McLennan, Luc Bidaut,  Michael  F  McNitt-Gray, 

Charles R Meyer, Anthony P Reeves, Binsheng Zhao, Denise R Aberle, Claudia I Hen- 

schke, Eric A Hoffman, et al. The lung image database consortium (lidc) and image 

database resource initiative (idri): a completed reference database of lung nodules on ct 

scans. Medical physics, 38(2):915–931, 2011. 

[196] Jinyu Zhao, Yichen Zhang, Xuehai He, and Pengtao Xie. Covid-ct-dataset: a ct scan 

dataset about covid-19. arXiv preprint arXiv:2003.13865, 2020. 

[197] Youcef Djenouri, Jerry Chun-Wei Lin, Kjetil Nørv̊ag, Heri Ramampiaro, and Philip S. 

Yu. Exploring decomposition for solving pattern mining problems. ACM Trans. Manage. 

Inf. Syst., 12(2), February 2021. ISSN 2158-656X. doi: 10.1145/3439771. URL https: 

//doi.org/10.1145/3439771. 

 
 

[198] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and 

workshop, volume 2007, page 35. New York, 2007. 

https://doi.org/10.1145/3439771
https://doi.org/10.1145/3439771


Bibliography 176 
 

 

[199] Jindong Wang, Yiqiang Chen, Wenjie Feng, Han Yu, Meiyu Huang, and Qiang Yang. 

 
Transfer learning with dynamic distribution adaptation.  ACM Transactions  on Intelli- 

gent Systems and Technology (TIST), 11(1):1–25, 2020. 

[200] Zhongyi Pei, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Multi-adversarial do- 

main adaptation. arXiv preprint arXiv:1809.02176, 2018. 


	Data-Efficient Machine Learning with Focus on Transfer Learning
	Scholarly Commons Citation

	tmp.1619710498.pdf.1bBIo

