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then the Equation 3.66 can be written as the state-space equation  

 

�̇� = 𝒇(𝒆 + 𝑿) − 𝒇(𝑿) + 𝑩 �̃� − 𝑵𝟑 𝑿 − 𝑩 𝑻∗   (3.68) 

 

This state-space equation will be further manipulated in the Controls subsection. 

Earth-moon barycenter orbiting sun, 𝒁.  A state matrix is used to model the E-M 

barycenter orbiting the sun. The letter Z is used to distinguish the E-M barycenter’s state matrix 

from the sailcraft’s state matrix. If I choose 𝑍1 = 𝑋𝐼𝐵, 𝑍2 = 𝑌𝐼𝐵, 𝑍3 = 𝑍𝐼𝐵, 𝑍4 = 𝑉𝑋𝐼𝐵
, 𝑍5 =

𝑉𝑌𝐼𝐵
, 𝑍6 = 𝑉𝑍𝐼𝐵

 (i.e., the components of the E-M barycenter’s position and velocity vectors with 

respect to the sun) as the state variables, then the state-variable description of the linear system in 

Equation 3.56 becomes: 

 

�̇�1 = 𝑍4                  (3.69) 

�̇�2 = 𝑍5 

�̇�3 = 𝑍6 

�̇�4 =
−𝜇𝑂

𝑅𝐼𝐵
3 𝑍1 

�̇�5 =
−𝜇𝑂

𝑅𝐼𝐵
3 𝑍2 

�̇�6 =
−𝜇𝑂

𝑅𝐼𝐵
3 𝑍3 

 

If I define the state vector 𝒁 using the state variables as elements: 

 

𝒁 = [𝑍1 𝑍2 𝑍3 𝑍4 𝑍5 𝑍6]
𝑇            (3.70) 
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then the Equation 3.69 can be written as the state-space equation 

 

�̇� = 𝑨𝑰𝑩𝒁 =

[
 
 
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−
𝜇𝑂

𝑅𝐼𝐵
3 0 0 0 0 0

0 −
𝜇𝑂

𝑅𝐼𝐵
3 0 0 0 0

0 0 −
𝜇𝑂

𝑅𝐼𝐵
3 0 0 0]

 
 
 
 
 
 
 

[
 
 
 
 
 
𝑍1

𝑍2

𝑍3

𝑍4

𝑍5

𝑍6]
 
 
 
 
 

  (3.71) 

 

Where: 

𝑨𝑰𝑩 = State matrix of Earth relative to E-M system barycenter. 

 

Note 𝑨𝑰𝑩 does not depend on t (continuous time-invariant) because 𝑅𝐼𝐵 is constant.  

Using the state transition matrix of 𝑨𝑰𝑩, Equation 3.71 can also be rewritten as: 

 

𝒁(𝑡𝑘+1) = 𝑒𝑨𝑰𝑩(𝑡𝑘+1−𝑡𝑘) 𝒁(𝑡𝑘)              (3.72) 

  

Note Equations 3.71 and 3.72 are both continuous time expressions. 

Since 𝑨𝑰𝑩 is constant during time interval dt, Equation 3.72 can be approximated using 

the first three terms in a Taylor series expansion of the exponential matrix [20] as: 

 

𝒁(𝑡𝑘+1) ≅ (𝑰 + 𝑨𝑰𝑩 𝑑𝑡 + 0.5 𝑨𝑰𝑩
2 𝑑𝑡2) 𝒁(𝑡𝑘)                           (3.73) 

 



111 

 

Note Equation 3.73 is a discretized time expression. For sufficiently small values of 𝑑𝑡, Equation 

3.73 behaves like Equation 3.71. In addition, I can assume 𝒁(𝑡𝑘) will change very little during dt 

and thus treat it as a constant. Then, between steps, I update 𝒁(𝑡𝑘). With Equation 3.73, the E-M 

system’s orbital equation of motion is now in the desired form, which can be entered into 

MATLAB and used to simulate the E-M system’s position over time.  

Control models.  This subsection describes the control goal selected for this model and 

the initial control design as well as an LQR control design. A linear control algorithm is 

assumed, and the system is modeled as a standard linear feedback control system. The control 

model is designed to make the system asymptotically stable.  

Control goal.  The control goal for this thesis is stabilization: that the system output 

𝑦(𝑡) converges quickly to the desired output 𝑌. The system output is the sailcraft’s actual 

position at time 𝑡:  

 

𝑦(𝑡)  = 𝑟𝑏 = [𝑥1 𝑥2 𝑥3]𝑇    (3.74) 

 

The desired output is the reference position, defined in advance via trajectory design: 

 

 𝑌 = �⃗⃗� = [𝑋1 𝑋2 𝑋3]
𝑇    (3.75) 

 

The difference between the two output positions is the output error, also known as the position 

error, defined in vector notation as 

 

𝑒𝑜𝑢𝑡 = 𝑦(𝑡) − 𝑌 = 𝑟𝑏 − �⃗⃗�    (3.76) 
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and in state-space as 

𝒆𝒐𝒖𝒕 = [
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] 𝒙 − [
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]𝑿 (3.77) 

If stabilization is achieved, then the sailcraft’s actual position over time (i.e., its actual trajectory) 

converges to the reference trajectory:  

 

𝑦(𝑡) → 𝑌 and 𝑒𝑜𝑢𝑡 → 0⃗⃗ and 𝒆𝒐𝒖𝒕 → 0   (3.78) 

 

The sailcraft follows the reference path exactly for 

 

𝑦(𝑡) = 𝑌 and 𝑒𝑜𝑢𝑡 = 0⃗⃗ and 𝒆𝒐𝒖𝒕 = 0    (3.79) 

 

However, the sailcraft’s position relative to the reference trajectory is not the only factor in the 

stability of its path. If the sailcraft’s actual instantaneous velocity is very different from the 

reference velocity for that position, the sailcraft will not follow the reference path for very long. 

Therefore, the overall error, i.e., the sailcraft error state vector 𝒆, should also go to zero. 

Initial control design.  I can treat 𝑅1
3 as approximately equal to 𝑟1

3 and 𝑅2
3 as 

approximately equal to 𝑟2
3 because the sailcraft actual trajectory is assumed to have only small 

deviations from the reference trajectory. Using this assumption and subtracting Equation 3.44 

from Equation 3.48, the position error equation of motion in vector form is  

   

�̈� = �̈�𝑏 − �̈⃗⃗� = −2�⃗⃗⃗�𝑏 × �̇� − �⃗⃗⃗�𝑏 × (�⃗⃗⃗�𝑏 × 𝑒) −
𝜇1

𝑟13
𝑒1 −

𝜇2

𝑟23
𝑒2 − 𝑁1�⃗⃗� − 𝑁2�̇⃗⃗� 1 + 

�⃗⃗̃�

𝑚
−

�⃗⃗�∗

𝑚
   (3.80) 
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Where: 

𝑒1 = Difference in sailcraft’s actual and desired position vectors from the Earth. 

𝑒2 = Difference in sailcraft’s actual and desired position vectors from the moon. 

Note, vectors 𝑒1 and 𝑒2 are different from the scalars 𝑒1 and 𝑒2 in Equations 3.65 through 3.67. 

To rewrite Equation 3.80 in terms of 𝑒 and �⃗⃗� only, first let the actual thrust vector �⃗⃗̃� be given as 

 

�⃗⃗̃� =  𝑚 𝑁1𝑟𝑏 + 𝑚 𝑁2 �̇�𝑏  + 𝑚 �⃗⃗⃗̃�(𝑡)   (3.81) 

 

Then, substituting Equation 3.81 into Equation 3.80, the error equation of motion is  

 

�̈� = −2�⃗⃗⃗�𝑏 × �̇� − �⃗⃗⃗�𝑏 × (�⃗⃗⃗�𝑏 × �⃗⃗�) −
𝜇1

𝑟13 𝑒1 −
𝜇2

𝑟23 𝑒2 + 𝑁1 𝑒  + 𝑁2 �̇� + �⃗⃗̃�(𝑡) −
�⃗⃗�∗

𝑚
 (3.82) 

 

For the purposes of this thesis, a linear control algorithm is assumed. I can choose a linear 

control given by 

 

  �⃗⃗̃�(𝑡)  =  𝑓(𝑒 ) +
�⃗⃗�∗

𝑚
     (3.83) 

 

where 𝑓(𝑒 ) is a linear function of 𝑒 described above and such that 𝑓(0) = 0. So, when the 

position error 𝑒 is zero (i.e., when the sailcraft is on the reference trajectory), the controls instruct 

the sailcraft to follow the reference trajectory thrust vector controls. Substituting Equation 3.83 

into Equation 3.82, the error equation of motion can be written as 
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�̈� = −2�⃗⃗⃗�𝑏 × �̇� − �⃗⃗⃗�𝑏 × (�⃗⃗⃗�𝑏 × �⃗⃗�) −
𝜇1

𝑟13
𝑒1 −

𝜇2

𝑟23
𝑒2 + 𝑁1 𝑒  + 𝑁2 �̇� + 𝑓(𝑒 )   (3.84) 

 

Finally, the expression is only in terms of the position error 𝑒, though the 𝑓(𝑒 ) value is 

unknown. 

The same process can be followed in state-space form. To design a control algorithm that 

ensures the stability of the system, I must write the system in the format of Equation 2.40. Here, 

the system refers to the set of differential equations that describe the equations of motion for the 

error state vector 𝒆. To rewrite Equation 3.68 in the format of Equation 2.40 in terms of 𝒆 and 𝒖 

only, first let the actual thrust control input vector �̃� be given as 

 

�̃�  = − 𝑲 𝒆 + 𝑚 𝑵𝟑𝑿 + 𝑻∗    (3.85) 

 

Where: 

𝑲 = Control gain matrix. 

Note 𝑲 is a slowly changing, almost constant matrix. The job of this control �̃� is to compensate 

for the ∆𝒐 + 𝑻∗ terms in the reference trajectory and to make the error state vector 𝒆 go to zero. 

The effectively linear −𝑲 𝒆 term ensures stability and the 𝑚𝑵𝟑𝑿 + 𝑻∗ terms exist for the 

sailcraft to follow the desired path, like feedback and feed forward controls, respectively.  

As a check on my work, I confirm the actual thrust control input vector �̃� simplifies to 

the reference thrust control input vector 𝑻∗ when the error state vector 𝒆 = 𝟎 (i.e., when the 

sailcraft’s actual position and velocity match that of the reference trajectory). Substituting 

Equation 3.85 into Equation 3.59 and letting 𝒆 = 𝟎, I obtain 
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�̇� = 𝒇(𝒙) − 𝑩𝑲 𝒆 + 𝑚𝑩𝑵𝟑𝑿 + 𝑩 𝑻∗ = 𝒇(𝒙) + 𝑰𝑵𝟑𝑿 + 𝑩 𝑻∗  (3.86) 

 

If 𝒆 = 𝟎, then 𝒙 = 𝑿 and Equation 3.86 can be written as 

 

�̇� =  𝒇(𝑿) + 𝑵𝟑𝑿 + 𝑩 𝑻∗    (3.87) 

 

which is the same right-hand side as Equation 3.62. This relationship makes physical sense 

because, when the error state vector 𝒆 is zero, the controls instruct the sailcraft to move along the 

trajectory subject to three conditions: the nearly Keplerian equations of motion due to gravity, 

the disturbing term that forms the desired spiral trajectory, and the reference thrust control input 

vector 𝑻∗. Also, the state-space form Equation 3.85 is equivalent to the vector form Equation 

3.81 with the 3.83 substitution. 

Next, substituting Equation 3.85 into Equation 3.68, the error state vector’s state-space 

equation is  

 

�̇� = 𝒇(𝒆 + 𝑿) − 𝒇(𝑿) − 𝑩𝑲𝒆 + 𝑰𝑵𝟑𝑿 + 𝑩 𝑻∗ − 𝑵𝟑𝑿 − 𝑩 𝑻∗  (3.88) 

 

which simplifies to  

 

�̇� = 𝒇(𝒆 + 𝑿) − 𝒇(𝑿) − 𝑩𝑲𝒆   (3.89) 

 

or even more simply to  
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�̇� = 𝑨 𝒆 − 𝑩𝑲𝒆 = (𝑨 − 𝑩𝑲)𝒆   (3.90) 

 

Where: 

A = System matrix. 

Note 𝑨 is a slowly changing, almost constant matrix. It technically depends on time t (continuous 

time-variant) due to the 𝒓𝒃 term slowly changing as the sailcraft moves. However, 𝑨 is changing 

so slowly that I can assume 𝑨 is constant and use a constant matrix approach as opposed to a 

time-dependent matrix approach. Over time, I will need to correct 𝑲 a little bit as I go, after 𝑨 

has changed enough. 

Finally, Equation 3.90 is in the form of Equation 2.40, the desired state-space form for 

stability analysis. For the error to go to zero, the matrix pair (𝑨, 𝑩) should be controllable. This 

system is said to be controllable if the following condition is satisfied: the 𝑛 × 𝑛𝑚 controllability 

matrix (see Equation 2.41) has rank n. If the system is controllable, then it can be stabilized [20]. 

The eigenvalues of the (𝑨 − 𝑩𝑲) matrix can be assigned to make the system in Equation 3.90 

asymptotically stable. The system is stable, and the error converges to zero when the eigenvalues 

𝜆𝑖 for 𝑨 − 𝑩𝑲 have negative real parts. 

LQR control design.  Matrices 𝑨 and 𝑩 are determined by the physical models but 𝑲 

should be assigned. To choose K, one can solve for the problem of assigning eigenvalues 𝜆𝑖 of 

the matrix 𝑨 − 𝑩𝑲 that will ensure my error state vector 𝒆 goes to zero and as a result the system 

for the tracking error is asymptotically stable. Another method is to apply the LQR method. 

Applying LQR can make the system in Equation 3.90 asymptotically stable and show the error is 
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converging to zero even though the controls are “turned off” when sailcraft approaches sun 

periodically.  

First, I must solve the algebraic Ricatti equation for 𝑷 [20]: 

 

0 = 𝑨𝑇𝑷 + 𝑷𝑨 − 𝑷𝑩𝑹−1𝑩𝑇𝑷 + 𝑸   (3.91) 

 

Where: 

𝑷 = Solution matrix to 𝑸 and 𝑹, where: 

𝑷 >  𝟎 and 𝑷 = 𝑷𝑻 

𝑸 = State weighting matrix; 𝑸 ≥ 𝟎. 

𝑹 = Control input weighting matrix; 𝑹 >  𝟎. 

Next, I use the 𝑷 solution to solve for 𝑲: 

𝑲 = 𝑹−1𝑩𝑇𝑷     (3.92) 

Then I use the 𝑲 solution to solve for the acceleration control input vector 𝒖: 

𝒖 = − 𝑲 𝒆     (3.93) 

Lastly, I confirm this 𝒖 solution will minimize the linear quadratic performance index 𝐽: 

𝐽 =
1

2
∫ (𝒙𝑇𝑸𝒙 + 𝒖𝑇𝑹𝒖)

∞

𝟎
𝑑𝑡    (3.94) 

In this kind of optimal control problem, minimizing the index balances driving the error to zero 

quickly against not requiring a very large 𝒖 to do so. I must avoid very large 𝒖 values since the 

solar sail is limited in how much control thrust it can apply at once. 

Alternate control design.  The following alternate control design approach was 

considered but not completed.  

1. Establish actual initial conditions (e.g., position and velocity) at t1 
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2. Determine desired trajectory based on the logarithmic spiral reference trajectory at 

each tk 

3. Begin loop 

4. Determine the error between the actual initial conditions and the desired initial 

conditions based on the reference trajectory at tk 

5. Determine the force required to effect the desired end conditions at tk+1. Adjust the 

controls to generate the desired force 

6. Model the sailcraft’s movement from the actual initial position at tk to the actual end 

position at tk+1 

7. Repeat loop for the next time interval. 
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Chapter IV 

Simulation Results 

This chapter details the results from the three mathematical models’ simulations of the 

sailcraft’s movement in MATLAB: The Forward Euler model, the Earth-centered state-space 

model, and the E-M system-centered state-space model. 

Forward Euler Model 

The Forward Euler model was built to model the sailcraft’s motion in a circular 

equatorial orbit around Earth due only to gravity, not due to controls or SRP effects. The sailcraft 

starts in an initially circular equatorial orbit in the (x, y) plane of the ECI reference frame E. Its 

initial position is 1000 km altitude above Earth and initial speed is 441 km/min, the tangential 

velocity required to maintain a circular orbit at that altitude. The Forward Euler approximation 

(see Equation 3.7) is used as the update formula in the MATLAB simulations of the sailcraft 

position.  

The total elapsed simulation time was 5000 minutes, with updates at 0.01-minute 

intervals, to limit error accumulation without adding too much computing time. Figure 4.1 shows 

the sailcraft’s apparent position over time. Although modeled to maintain orbit, the sailcraft 

appeared to spiral outward as it orbited the Earth due to significant and rapid error accumulation 

in the Forward Euler approximation method, even with very short time intervals. The model of 

the orbit was numerically unstable due to the error accumulation, which increasingly impacted 

the sailcraft’s apparent position over time. Over the total elapsed simulation time of 5000 

minutes (83 hours), the magnitude of the sailcraft’s position vector changed from 7378 to 9406 

km, a fictional increase of 2028 km. 
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Figure 4.1  Apparent Position Over Time of Sailcraft Relative to Earth, Forward Euler Method. 

2D rendering in (x, y) plane of E.  

 

 

Earth-Centered State-Space Model 

The Earth-centered state-space model was built to model the sailcraft’s motion as it 

increases its altitude from a circular equatorial orbit around Earth due to gravity, SRP, and ideal 

controls, with the eclipse factor considered. The ideal controls are those for on-off switching, an 

exact thrust vector solution to increase altitude. The sailcraft starts in an initially circular 

equatorial orbit in the (x, y) plane of the semi-inertial ECI reference frame E, which is in orbit 

around the sun in the (x, y) plane of the truly inertial HEI reference frame I. The sailcraft’s initial 

position is 1000 km altitude above Earth and initial speed is 441 km/min, the tangential velocity 

required to maintain a circular orbit at that altitude. Two different update formulae are used in 

the MATLAB simulations of the sailcraft position: matrix multiplication in state-space form (see 

Equation 3.22) with and without SRP and controls. That is, two models were built; one with 𝑻 = 

0 and one with non-zero 𝑻 substituted in the �̇� = 𝑨𝒙 + 𝑩𝑻 system for updating spacecraft 

position and velocity.  
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Open-loop system, �̇� = 𝑨𝒙.  The simplified model of the open-loop system does not 

include SRP or controls. Figure 4.2 shows the block diagram. 

 

 

Figure 4.2  Open-Loop System Block Diagram. 

 

The total elapsed simulation time was 5000 minutes, with updates at 0.01-minute 

intervals, to limit error accumulation without adding too much computing time. The simulation 

time of 5000 minutes was chosen as long enough to see the start of trends and short enough that 

the computer was not excessively tied up running the simulations, especially when trouble-

shooting mistakes. The sailcraft was modeled at 10 kg and the sail area was not specified 

because SRP was not considered. The position update formula used in the simulation was the 

matrix multiplication in state-space form in Equation 3.22 with 𝑻 = 0. Figure 4.3 shows the 

spacecraft position over time, tracing the same circular orbit each time, even after 47 orbits.  

 

 

Figure 4.3  Position Over Time of Sailcraft Relative to Earth, State Matrix A Method. Left panel: 

3D rendering of orbit around Earth. Right panel: 2D rendering in (x, y) plane of semi-inertial ECI 

reference frame E. 
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Figure 4.4 shows the sailcraft’s position over time relative to the sun in the HEI reference 

frame I, as the sailcraft orbits the Earth. The sailcraft motion appears to zigzag from bottom right 

to top left as the sailcraft orbits the Earth and overall orbits the sun. The same update formula 

used to model the sailcraft in orbit around the Earth was adapted to model the Earth around the 

sun, and the two were combined to obtain the sailcraft relative to the sun. In I, the Earth and 

sailcraft start at a maximum value in the x-direction and move in an overall circular orbit around 

the sun.  It does not account for adjustments that must be made for the ECI reference frame to 

change from a semi-inertial reference frame (as initially assumed) to a rotating, translating 

reference frame in I.  

 

 

Figure 4.4  Position Over Time of Sailcraft Relative to Sun, State Matrices A and AIE Method. 

2D rendering in (x, y) plane of HEI reference frame I. Note the total simulation time is <1% of a 

year so the plot does not immediately appear overall circular.  

 

 

Closed-loop system, �̇� = 𝑨𝒙 + 𝑩�̃�.  The simplified model of the closed-loop system 

includes the SRP and controls. Figure 4.5 shows the block diagram. 
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Figure 4.5  Closed-Loop System Block Diagram. 

 

The research goal investigated a sailcraft with 25 m2 sail area and 5 kg mass, a realistic 

size for a CubeSat-based sailcraft with a small payload. However, finding the elapsed time for a 

sailcraft with 25 m2 sail area and 5 kg mass to reach 240,000 km from Earth was beyond the 

capability of my computer. As a result, two sets of simulations were run: one for a realistic-sized 

sailcraft with 25 m2 sail area and 5 kg mass and one for a “super” sailcraft with 10,000 m2 sail 

area and 10 kg mass. For clarity, the two sets are labeled by their respective sailing loading 

value. Simulations modeled the trajectories over 72,000 minutes (50 days) or until the sailcraft 

reached 240,000 km, whichever was first. 

The total elapsed simulation time was 72,000 minutes (50 days), with updates at 0.01-

minute intervals, to limit error accumulation without adding too much computing time. The 

position update formula used in the simulations was the matrix multiplication in state-space form 

in Equation 3.22 with nonzero 𝑻 accounting for SRP and the simplest on-off switching method. 

Figures 4.6 and 4.7 show the spacecraft position over time, spiraling outward from Earth in the 

(x, y) plane of ECI reference frame E. The realistic-sized sailcraft with the larger sail loading 

value raised its orbit by less than 250 km in 50 days. The “super” sailcraft with the smaller sail 

loading value raised its orbit by 120,000 km in the same amount of time. The perigee of the two 
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trajectories was near x = 0 in E, which corresponds to the region of the orbit where the sailcraft is 

moving away from the sun and reaches maximum tangential acceleration from on-off switching.  

 

 

Figure 4.6  3D Rendering of Sailcraft Trajectory Relative to Earth. Sailcraft trajectory in 

equatorial Earth orbit in (x, y) plane of semi-inertial ECI reference frame E, calculated via state 

matrix A method. Left panel: 𝜎 = 0.2. Right panel: 𝜎 = 1,000. 

 

 

Figure 4.7 also shows the two sailcraft’s trajectories with the eclipse factor considered 

(red) and without the eclipse factor (blue). I was curious how much the eclipse factor affected 

the sailcraft’s spiral orbit. Note in the left panel of Figure 4.7 that both trajectories were plotted 

but the blue plot overlaps the red plot. In the right panel of Figure 4.7, the eclipse factor makes a 

very noticeable difference in the direction of the overall trajectory of the sailcraft with small 𝜎 

and a noticeable difference in the major axis length. The direction of the small 𝜎 trajectory with 

the eclipse factor (which appears to “tilt” left) is due partly to the change in the sun’s relative 

position to the Earth over the total elapsed time period. More specifically, the orbit’s major axis 

remains normal to the sun-line so as the sun-line slowly rotates, the major axis also slowly 

changes direction within the orbital plane [19]. It is also due in part to the larger 𝑟 values as the 

sailcraft moves away from the sun which means the radial components of its thrust do not cancel 

out over the duration of one orbit’s ‘on’ mode. More investigation is required to check if there 

are additional factors.  
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For the small 𝜎 trajectory without the eclipse factor, since the Earth’s shadow is not 

considered to block the last portion of the sailcraft’s ‘on’ mode for on-off switching, the sailcraft 

can continue to accelerate due to SRP for a few extra moments each orbit. Over time, the 

additional thrust produces a longer trajectory in the direction of positive x values, producing the 

shape shown in terms of length and direction. 

 

 

Figure 4.7  2D Rendering of Sailcraft Trajectory Relative to Earth. Sailcraft trajectory in 

equatorial Earth orbit in (x, y) plane of semi-inertial ECI reference frame E, calculated via state 

matrix A method. Left panel: 𝜎 = 0.2. Right panel: 𝜎 = 0.001. Both show trajectory with eclipse 

factor (red) and without eclipse factor (blue). In the left panel, the blue plot overlaps the red plot. 

 

  

Figure 4.8 shows the two sailcraft’s distance from Earth over time with the eclipse factor 

considered. The perigee and apogee in the large 𝜎 plot both increase over time, with apogee 

increasing faster. Each subsequent orbit is very slightly larger than the previous one such that the 

sinusoidal plot line instead appears as a solid block of color. In the small 𝜎 plot the perigee 
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decreases very slightly (so slightly it appears nearly constant) while the apogee increases 

exponentially over time. The sinusoidal plot line is distinguishable over the full elapsed time. As 

discussed, the sailcraft accelerates the fastest at perigee so the troughs appear very narrow 

compared to the crests over equally spaced time intervals. 

 

 

Figure 4.8  Sailcraft Distance from Earth Over Time, With Eclipse Factor. Magnitude of sailcraft 

trajectory in equatorial Earth orbit in E, calculated via state matrix A method. Top panel: 𝜎 = 0.2. 

Bottom panel: 𝜎 = 0.001. 
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Figure 4.9 shows the two sailcraft’s magnitude of SRP acceleration (from Equation 2.4) 

over time, which does not consider the eclipse factor. In the large 𝜎 plot, similar to Figure 4.8 top 

panel, the sinusoidal plot over the total elapsed time appears as a solid block of color whose 

maximum and minimum values do not perceptibly change over time. Therefore, the large 𝜎 plot 

is instead shown over the first 10,000 time steps (100 minutes) so information can be extracted. 

Each orbit appears to last about 1,050 time steps (10.5 minutes).  

For the small 𝜎 plot, the maximum values increase but at a slower rate than the minimum 

values decrease over time. If the sailcraft spirals out from Earth in the net direction of positive x 

values (since the eclipse factor is not considered), the distance from the sun at consecutive 

apogees increases. The SRP acceleration is inversely proportional to the square of the sailcraft’s 

distance from the sun. Thus, the minimum acceleration value exponentially decreases over time. 
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Figure 4.9  SRP Acceleration Over Time, Without Eclipse Factor. Magnitude of sailcraft 

acceleration due to SRP, calculated via Equation 2.4. Top panel: 𝜎 = 0.2 for the first 10,000 time 

steps. Bottom panel: 𝜎 = 0.001 for the full 7,200,000 time steps. 

 

 

Figure 4.10 shows the two sailcraft’s actual thrust vectors in the (x, y) plane with the 

eclipse factor considered (blue) and without the eclipse factor (red).  The actual thrust vector is 

that experienced by the sailcraft due to SRP and on-off switching controls. Note in the top left 

and bottom left panels of Figure 4.10 that both trajectories were plotted but the red plot appears 

to completely overlap the blue plot. The large and small sail loading value plots have the 

approximately same wedge shape but very different value scales. The connecting plot lines are 
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show the respective trajectory with eclipse factor (blue) and without eclipse factor (red), but the 

red plot overlaps the blue plot in places. 

 

 

Figure 4.11 shows the sailcraft’s position over time relative to the sun in the HEI 

reference frame I, as the sailcraft orbits the Earth. Over the total elapsed time and at this distance 

scale, the sailcraft’s zigzag motion that was noted in Figure 4.4 as the sailcraft orbits the Earth 

and overall orbits the sun instead appears as a smooth curve. The same update formula used to 

model the sailcraft in orbit around the Earth was adapted to model the Earth around the sun, and 

the two were combined to obtain the sailcraft relative to the sun. It also does not account for 

adjustments that must be made for the ECI reference frame to change from a semi-inertial 

reference frame (as initially assumed) to a rotating, translating reference frame.  

  

Figure 4.11  2D Rendering of Sailcraft Trajectory Relative to Sun, 𝜎 = 0.001. Sailcraft trajectory 

around sun in (x, y) plane of HEI reference frame I, calculated via state matrices A and AIE. The 

plot of the sailcraft trajectory around sun for 𝜎 = 0.2 appears identical at this scale and is not 

shown to avoid redundancy. 
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Figure 4.12 compares the critical distance 𝑟𝑐𝑟𝑖𝑡 and the sailcraft’s distance to the sun 𝑟 

over time. The sailcraft is eclipsed by Earth’s shadow when the sun-sailcraft distance 𝑟 (red) 

exceeds the critical distance 𝑟𝑐𝑟𝑖𝑡 (blue). From the detail plot of the small 𝜎 value, it is seen that 

the critical distance on one edge of Earth’s shadow is increasingly different than that on the other 

edge. Thus, that the eclipse factor model is a good approximation at the initial low altitudes when 

the orbit is almost circular is an incomplete approximation. The eclipse factor model is a good 

approximation only if the sail area is also sufficiently small. A large sail area will cause the 

sailcraft to gain altitude so quickly that the assumption that |𝑟𝐸|  is approximately equal at 

opposition and at the edge of the umbra may be a poor approximation.  

 

 

 

Figure 4.12  Comparison of Critical Distance 𝑟𝑐𝑟𝑖𝑡 and Sun-Sailcraft Distance 𝑟 Over Time. The 

four panels show the sailcraft is eclipsed by Earth’s shadow when the sun-sailcraft distance (red) 

exceeds the critical distance (blue). Top left panel: 𝜎 = 0.2, overall. Top right panel: 𝜎 = 0.2, 

detail view. Bottom left panel: 𝜎 = 0.001, overall. Bottom right panel: 𝜎 = 0.001, detail view. 
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Earth-Moon System-Centered State-Space Model 

From Equation 3.66, the values of matrices 𝑨 and 𝑩 are: 

𝑨 =

[
 
 
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(1 −
1−𝜌

𝑟13 −
𝜌

𝑟23) 0 0 0 2 0

0 (1 −
1−𝜌

𝑟13 −
𝜌

𝑟23) 0 −2 0 0

0 0 (−
1−𝜌

𝑟13 −
𝜌

𝑟23) 0 0 0]
 
 
 
 
 
 
 

 (4.1a) 

𝑩 =

[
 
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1

𝑚
0 0

0
1

𝑚
0

0 0
1

𝑚]
 
 
 
 
 
 
 

     (4.1b) 

Substituting Equations 4.1a and 4.1b into Equation 3.90, I obtain 

𝑨 − 𝑩𝑲 =           (4.2) 

[
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0 0 0 0 0 1

(1 −
1 − 𝜌

𝑟1
3

−
𝜌

𝑟2
3
) −

𝐾11

𝑚
−

𝐾12

𝑚
−

𝐾12

𝑚
−

𝐾14

𝑚
2 −

𝐾15

𝑚
−

𝐾16

𝑚

−
𝐾21

𝑚
(1 −

1 − 𝜌

𝑟1
3

−
𝜌

𝑟2
3
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𝑚
−

𝐾23

𝑚
−2 −

𝐾24

𝑚
−

𝐾25

𝑚
−

𝐾26

𝑚

−
𝐾31

𝑚
−

𝐾32

𝑚
(−

1 − 𝜌

𝑟1
3

−
𝜌

𝑟2
3
) −

𝐾33

𝑚
−
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𝑚
−

𝐾35

𝑚
−

𝐾36
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I did not have sufficient time to find solutions for this model. Instead, the following is the 

process I would follow if I had more time. 

1. Assign values for the small scalar coefficients 𝑁1 and 𝑁2. 

2. Check the matrix pair (𝑨, 𝑩) are controllable using Equation 2.41.  
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3. Assign the eigenvalues 𝜆𝑖 for (𝑨 − 𝑩𝑲) matrix to have negative real parts to make 

the system asymptotically stable. In MATLAB, 𝑲 = 𝑎𝑐𝑘𝑒𝑟(𝑨,𝑩,𝑾) where the 

elements of W are the desired eigenvalues with Re 𝜆𝑖 < 0. 

4. Assign values for the 𝑸 and 𝑹 matrices. 

5. Solve the algebraic Ricatti equation for 𝑷 using Equation 3.91. 

6. Use the 𝑷 solution to solve for 𝑲 using Equation 3.92. 

7. Use the 𝑲 solution to solve for 𝒖 using Equation 3.93. 

8. Confirm this 𝒖 solution will minimize the linear quadratic performance index 𝐽 using 

Equation 3.94. 

9. Iterate as needed. 



134 

 

Chapter V 

Discussion, Conclusions, and Recommendations 

Discussion 

This section discusses the key results and potential implications from the three 

mathematical models’ simulations of the sailcraft’s movement in MATLAB: The Forward Euler 

model, the Earth-centered state-space model, and the E-M system-centered state-space model. 

Forward Euler model.  The Forward Euler model was selected for its simplicity, as a 

starting point to formulate the sailcraft movement model. Its weaknesses in terms of numerical 

stability were well-known. I expected a rapid accumulation of error, but I did not expect quite so 

significant an accumulation of error: over the total elapsed simulation time of 5000 minutes (83 

hours), with updates at 0.01-minute intervals, the magnitude of the sailcraft’s apparent position 

vector changed from 7378 to 9406 km, a fictional increase of 2028 km. Even after shortening the 

update intervals, the error accumulation was still rapid and comparatively significant.  

These errors signaled an important warning that I kept in mind as I worked on each 

subsequent model: how well does the math model represent the physical model? For example, 

yes, I ultimately wanted the sailcraft to spiral outward from the Earth to the moon but in this 

model, it was appearing to spiral outward when it was supposed to be maintaining altitude. Next, 

I adapted the Forward Euler model to the Earth-centered open-loop model. Although the 

Forward Euler model provided useless results data, it was useful as a foundation for a more 

complicated state-space model, which was its purpose all along. 

Earth-centered state-space model.  The Earth-centered state-space model was selected 

for the simplicity of the on-off switching as an orbit raising method. Its simplicity made the 

process easier when formulating the sailcraft movement model in state space.  
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One key takeaway was seeing plainly that the math model matters. The Earth-centered 

open-loop model Figure 4.3 looks like what Forward Euler Figure 4.1 should have looked like. 

When 𝑻 was equal to zero in Equation 3.22, the sailcraft stayed in the same circular orbit, tracing 

the same path over and over- what the first model should have done if it did not accumulate all 

those errors. The difference was that the Forward Euler method was numerically unstable but the 

Earth-centered state-space model as an open loop was stable, even though they were modeling 

the same thing: spacecraft in two body problem orbiting Earth with no SRP effects and no 

controls. 

Upon review, this model had two major issues: the actual thrust equation (Equation 2.29) 

has an error and the eclipse factor model is flawed. In addition, the model is a state feedback 

closed loop. With sensors for spacecraft position and acceleration, the model would be an output 

feedback closed loop. Ultimately, the model should be built for what would actually be on the 

spacecraft. 

I calculated the approximate actual thrust expression (see Equation 2.29) from the 

tangential thrust expression (see Equation 2.28), thinking that the radial thrust components 

approximately cancel over the course of one ‘on’ period for a small sail area. I then ran a 

simulation that plotted both Equation 2.28 and 2.29 to check how close the approximation was. 

After many orbits, the two appeared very similar plots. The only visible difference being that, 

depending which part of the orbit, one may be slightly greater than the other. More specifically, 

for 0 ≤ 𝜃𝐸 < 𝜋, the two plots matched since �̃� = 0 there. From 𝜋 < 𝜃𝐸 < ~ 
7

4
 𝜋, the curved 

trajectory of 2.29 was very slightly closer to Earth than that of 2.28. From ~ 
7

4
 𝜋 < 𝜃𝐸 < 2𝜋, the 

curved trajectory of 2.29 was very slightly farther from Earth than that of 2.28. Due to the 

apparent similarities between the two plots, I elected to use the Equation 2.29 expression as my 
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main model since it was simpler to input in MATLAB. However, I was incorrect: the radial 

thrust components do not cancel; the x-components of the radial thrust approximately cancel, but 

the y-components do not. I now fear I forgot the difference between thrust transverse to the orbit 

and thrust transverse to the sun-line and I do not recall whether I mistakenly used �̂� for 

�̂̃�𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 in the model for 2.28. 

Even if the actual thrust equation were corrected to be a good approximation of the 

transverse thrust, it would only be accurate for small orbit eccentricity. The on-off switching 

equations must change for elliptic orbits, including those of a sailcraft attempting to increase its 

altitude toward the moon. At the start, in the initial circular orbit, each ‘on’ and ‘off’ period was 

roughly 50% of the time. The way I set up the 𝑟𝑐𝑟𝑖𝑡 expression, the critical distance from the sun, 

in MATLAB, I did not account for the fact the sailcraft accelerating in one direction meant its 

apogee increased in a perpendicular direction. So, MATLAB was simulating that the ‘off’ period 

length increased with each orbit, which explains the increasingly shorter thrust durations that 

look like the fanned pages of a book in Figure 4.10. Lastly, my MATLAB model seemed to have 

an issue with not using enough significant figures so 𝑟𝑐𝑟𝑖𝑡 = 𝑛𝑜𝑟𝑚(𝑟(: , 𝑘)) and the eclipse 

factor was always 1. I did not have time to fix the eclipse factor model issues, so the third model 

ignores the eclipse factor and simply assumes the sailcraft is in sunlight 100% of the time. One 

way I did consider fixing it was to ignore 𝜃𝐸  and instead check if 𝑟(𝑡𝑘+1) > 𝑟(𝑡𝑘) then the 

sailcraft is moving away from the sun.  

Earth-moon system-centered state-space model.  The E-M system-centered state-space 

model was selected to develop a linear control algorithm, one of the simplest types of controls, 

that would limit the error from the reference trajectory. The reference trajectory was selected as a 
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logarithmic spiral to offer an exact reference solution. This model does not include the eclipse 

factor model and therefore does not account for the sailcraft being in periods of shadow. 

A thrust vector control solution (see Equation 3.85) was developed for this model to 

minimize error from the reference trajectory. The solution has both feedforward and feedback 

control channels, which respectively ensure the system has the desired output and the solution is 

stable. The feedback loop’s natural self-correcting properties provide robustness that can deal 

with imperfections in the third mathematical model. The preliminary results suggest Equation 4.2 

may have control gain matrix 𝑲 values that will result in all eigenvalues of (𝑨 − 𝑩𝑲) having 

non-positive real parts. These two equations are the significant result of the study and my 

contribution to previous solar sail controls research. 

One limitation of this method is that 𝑨 is a slowly changing, almost constant matrix, not a 

true constant matrix, due to the 𝑟𝑏 term slowly changing as the sailcraft moves. Thus, 𝑲 has to be 

periodically updated, after 𝑨 has changed enough. The question then becomes how much change 

in 𝑨 is enough and what is the impact of the error 𝑲 introduces between its updates. 

Conclusions  

To address the two problems described in the first chapter, this thesis considered the 

technical feasibility of solar sail propulsion as a possible low-cost alternative in missions that are 

suitable for conventional propulsion spacecraft, specifically uncrewed missions to the vicinity of 

the moon. This thesis investigated orbit raising methods for sailcraft, the trajectory design 

process, and zero-propellant attitude control actuator options; explored multiple thrust vector 

control designs for a sailcraft to transit from Earth to the moon; and described the results from 

such transit simulations. 
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The analysis of this mission concept’s technical feasibility had two focus topics: stable 

control design and reasonable trajectory mechanics. The initial findings from the third 

mathematical model indicate designing stable controls for the sailcraft’s mission is indeed 

feasible. However, the technical feasibility relating to sailcraft’s orbital mechanics is less 

straightforward. The two specified tasks that the sailcraft carry a small payload and be CubeSat-

based (i.e., the sail area must fit inside a CubeSat) are physically at odds with the implied task 

that the sailcraft reach the moon in a reasonable amount of time. The sailcraft needs to be 

lightweight to be effective, yet also with a large enough sail to transit in a reasonable amount of 

time. Here, a reasonable amount of time is not to exceed 300 days. With the applications of pre-

emplacing supplies or communications relays in mind, a delivery time on the order of months to 

almost a year is acceptable. Delivery times to the moon exceeding a year would likely be 

excessive and undesired.  

Although the second model was incomplete, it offers a very rough estimate of the 

sailcraft’s performance. The intended sailcraft of sail area 25 m2 and 5 kg would not be an 

effective sailcraft to carry a small payload toward the moon because it cannot raise its orbit in a 

reasonable period of time via on-off switching. The “super” sailcraft of sail area 10,000 m2 and 

10 kg may be effective for this purpose, but it is implausible for such a large sail area to fit inside 

a CubeSat-sized volume as intended. By improving the model and optimizing the orbit raising 

method, it may be possible to find a sail area between the two extremes that can effectively carry 

payloads to higher orbits within a reasonable time period and fit within a CubeSat. It is highly 

recommended such changes to the model and control designs be attempted prior to relaxing the 

mission constraints. 

The answers to the three research questions are summarized below. 
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What are simple control methods to increase altitude via solar sail propulsion?  

Simple sailcraft control methods to increase altitude include maximization of a 

component of the SRP force in a given direction, on-off switching, orbit rate steering, 

logarithmic spiral trajectories, and LQR controls to limit the trajectory error from a reference 

trajectory. 

What is the relationship between thrust vector control design, attitude control design, and 

trajectory planning and design for a sailcraft? For any spacecraft? 

For a sailcraft, thrust vector control design and attitude control design are effectively the 

same thing because the sail’s attitude to the sun determines its thrust vector. The nature of 

acceleration due to SRP is both a boon and a challenge to the sailcraft and its trajectory design. 

The acceleration is effectively constant, dependent only on sailcraft distance from the sun, 

orientation to the sun, and any periods of eclipse. However, it cannot be switched on and off as 

easily as chemical propulsion to make large, sudden changes to its orbit. 

For trajectory planning and design, the biggest differences between a sailcraft and any 

spacecraft lie in the desired orbit types, launch and retrieval or disposal options, ΔV budget, and 

the objective of the controls problem. Those differences are directly related to their thrust vector 

and attitude control design capabilities and limitations. A conventional chemical propulsion 

spacecraft is generally matched with a high thrust, short duration ΔV budget, a control objective 

to minimize the fuel needed, and has a wider array of usable orbit types, and its thrust vector and 

attitude control designs reflect this. A sailcraft’s thrust vector control design strictly limits 

permissible solutions for the trajectory design. For example, for a sailcraft with one reflective 

side and one non-reflective side, the sail thrust vector �̂� is constrained to be oriented away from 
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the sun, which immediately removes from consideration any orientations toward the sun, which 

make up half of all possible solutions for any given moment.  

Does control theory offer a reasonable linearized solution method for a sailcraft to traverse from 

LEO to the vicinity of the moon? 

This thesis’s research is not complete enough to decidedly answer whether control theory 

offers a reasonable linearized solution method. However, the initial findings from the third 

model, which is a linearized solution method, suggest it may be reasonable. Equation 3.85 offers 

a robust-looking thrust vector control solution to minimize error from the reference trajectory 

and Equation 4.2 appears to have matrix 𝑲 values that will result in all eigenvalues of (𝑨 − 𝑩𝑲) 

having non-positive real parts. More work is required to compare the limits of the solution’s 

robustness against likely disturbances, to confirm the eigenvalues’ non-positive real parts, and to 

verify there are no repeated eigenvalues on the imaginary axis, in order to prove the stability of 

the system. 

Recommendations 

Recommendations for future work include improving the sailcraft and system stability, 

employing higher-fidelity models, altering the control models and goals, estimating the launch 

limits and cost and risk, testing the controls with hardware, and considering end-of-mission 

options.  

Stability.  One could confirm the matrix pair (𝑨, 𝑩)  are controllable, prove the stability 

of the system, and show that the error converges to zero even though the controls are effectively 

turned off periodically when the sailcraft is approaching the sun. Two options here are to use a 

Lyapunov function to show it is asymptotically stable or to do a V transform: If 𝑽 <= 𝟎, then 

the trajectory is stable.  
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Future work could include both ensuring the inherent stability of the sailcraft’s physical 

design and adding more robust controls to counter disturbances. Ideally, the sailcraft would be 

statically stable, with the center of mass between the sun and the center of pressure. If a statically 

stable sailcraft is disturbed from its neutral sun-pointing orientation, a restoring torque is 

naturally generated that counters the disturbance. For a sailcraft that is not statically stable, any 

disturbance from its neutral orientation would instead be amplified [20]. A statically stable 

sailcraft does not require a robust attitude control design to counter the disturbance torques. 

However, it may still require controls to prevent the sailcraft from oscillating indefinitely around 

the neutral orientation from which is was disturbed. Other stability problems include modeling 

the impact of sail attitude stability, sail trajectory stability, precession, nutation, and thrust vector 

pointing performance on the mission completion, and selecting which to control for and which 

controls to optimize. Confirm the optimization tradeoffs chosen through test simulations of the 

controls performance in response to small disturbances to the system.  

Higher-fidelity models.  This thesis used many simplifications. Removing some of the 

simplifying assumptions is desired to create more generalized models that present more accurate 

and useful results. Simplifications to remove include the solar flux is constant; atmospheric drag 

is negligible at orbit insertion; the sun, Earth, and moon are spheres of uniform density; Earth 

does not rotate; and Earth does not have axial tilt. Of particular interest is how to control the sail 

so it can still increase altitude when dealing with atmospheric drag. Previously ignored factors to 

consider include sail operating temperatures, thermal and radiation environments (including the 

Van Allen belts), and motion in the z-direction. Future work should include how to change the 

sailcraft’s inclination from its parking orbit around Earth to lunar intercept.  
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Rather than assuming and modeling a rigid ideal sail, higher fidelity modeling of non-flat 

and nonperfect sails needs to be incorporated in the thrust and attitude controls designs, 

including structural vibration control to actively dampen the sailcraft’s flexible modes. The error 

state vector will need to be expanded to include not only errors in position and velocity but also 

errors in orientation and in angular velocity (i.e., have 12 elements instead of 6). Quaternions are 

recommended to account for the sailcraft’s orientation as well as errors in orientation. 

Quaternions would also be useful to track the E-M system’s reference frame rotating and 

translating in I. In addition, the eclipse factor model will need to be fixed to properly account for 

when the sailcraft is eclipsed by Earth’s umbra. The model should also determine a suitable 

value of the eclipse factor 0 < 𝜀 < 1 for when the sailcraft is partially eclipsed in Earth’s 

penumbra.  

In the second model, the total elapsed simulation time was 72,000 minutes (50 days), 

with updates at 0.01-minute intervals, to limit error accumulation without adding too much 

computing time. One might try making slightly larger time steps and running the simulations for 

a longer time span to check whether the larger time steps introduce any non-negligible update 

errors. If any update errors are negligible, continue to use the longer time steps and run the 

simulations for a longer time span in order to model the trajectory behavior over a longer period 

without exceeding the capability of the computer. 

Control models and goals.  The third mathematical model used a CR3BP as the 

dynamical model. Consider instead a patched conic problem as the dynamical model in cislunar 

space and an R2BP when sailcraft is near the moon. Also, this model’s control goals were 

stability first and minimum time second. Consider what changes if the minimum time problem is 
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first and stability second. Likely, the rate of change of an orbital parameter will need to be 

maximized for the minimum time problem.  

If one is inclined to go further, consider how the performance of a linearized controls 

solution method compares to a nonlinear controls solution method for a sailcraft to traverse from 

LEO to the vicinity of the moon. Explore the relationship between minimum sail area and 

maximum payload mass given the constraint that the sailcraft must reach the vicinity of the 

moon in less than 300 days. Expand the literature review beyond sailcraft to include low-thrust 

missions that have used a spiral trajectory to transit cislunar space (e.g., ESA’s SMART-1). 

Determine the applicability of these other low-thrust missions’ control designs to a sailcraft 

mission to the moon.  

Launch limits.  For future work, determine the required mass and area of the solar sail to 

offset the mass and volume of the CubeSat and the payload. Model whether a payload with a 

non-uniform density would cause the solar sail to drift off course. Consider whether the CubeSat 

should be attached to the payload in the launch vehicle or the two are launched separately and 

meet up in Earth orbit. In either case, consider what limitations that sequence places on the orbit 

insertion altitude, payload size, and the sailcraft’s controls. Determine the allowable ranges of 

altitudes and inclination or orbit shape for the sailcraft departing Earth orbit and arriving lunar 

orbit. 

Cost and risk.  Estimate the overall cost of the design, development, test, and evaluation 

of the sailcraft and the first unit. Consider how this cost compares to propellant-based orbit 

transfer to the moon, both in terms of time and cost. Explore sailcraft mission contingency 

planning, e.g., what is the likelihood and consequence if the payload suffers a MMOD strike en 

route. Consider if the payload can be protected and if it is worth using this low-cost delivery 
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method if the risk cannot be fully mitigated. Weigh the cost of the payload contents against the 

cost of the additional protective packaging.  

Hardware.  One could select the ADCS hardware, program it with the attitude control 

designs within, and run the actuator hardware through test conditions. Rukhaiyar et al. are doing 

related work in Embry-Riddle Aeronautical University’s Engineering Physics Propulsion Lab, 

building a prototype solar sail to capture orbital debris. The 6-unit CubeSat will be a fully 

autonomous system with a mission lifespan of 10 years and will be deployed utilizing 

ridesharing from excess payload on primary launches. They have built the 6U frame of the 

prototype and deployed the four sail booms in lab conditions. They also built a debris capture 

mechanism, which will soon be integrated with vision and feedback [69]. 

End of mission.  Finally, future work can determine what to do with the sailcraft at the 

end of its mission. One possibility is to design the sailcraft trajectory and attitude controls from 

the general vicinity of the moon to a more exact destination such as lowering the orbit to low 

lunar orbit or changing the inclination and rendezvousing with Gateway in NRHO. If the payload 

is a communications satellite, consider the controls needed for the sailcraft to station-keep in 

lunar orbit or at a Lagrange point. 

Another possibility is to figure out the trajectory and attitude control designs from the 

moon back to Earth. That way, the sailcraft could do a continuous loop from Earth to moon to 

Earth for repeated logistics transfers. For example, a company or agency may want a fleet of 

sailcraft with staggered departures to continuously transport materials between Earth and the 

moon and back. Find how the payload limitations from Earth to moon compare to the payload 

limitations from moon to Earth in this scenario. While sailcraft are not limited by reaction mass, 

they are limited by the lifetime of the sailcraft in the space environment [19]. I am curious to see 
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if the transit times and sail lifetime could support this scenario. Then perhaps the sailcraft could 

burn up in Earth’s atmosphere at the end of its lifetime. 
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Appendix A 

MATLAB Code
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%Michelle Nadeau EP700 Solar Sail Modeling 

%Written on 24SEP2020 by Michelle Nadeau 

clear all 

format compact 

 

 

%Simulation parameters 

TotalTime=1000; %Total elapsed time, [min] (72000 min = 50 days) 

dt=0.01; %Time interval, [min] 

t(1)=0; %Initial time 

 

 

%System parameters 

c0=299792.458*60; %Speed of light, [km/min] 

L=3.9E20*60^3;%Solar luminosity or flux, [kg km^2/min^3] 

mu_sun=132712440040.944000*3600; %Mass parameter of the sun, [km^3/min^2] 

mu_Earth=398600.436233*3600; %Mass parameter of the Earth, [km^3/min^2] 

mu_moon=4902.80076*3600; %Mass parameter of the moon, [km^3/min^2] 

r_sun=695700; %Radius of sun, [km] 

r_Earth=6378.1; %Radius of Earth, [km] 

r_moon=1738.1; %Radius of moon, [km] 

m=5; %Mass of sailcraft, [kg] 

Area=%25E-6; %Area of solar sail, [km^2] 

eta=1; %Efficiency of solar sail, [dimensionless] 

Error using dbstatus 

Error: File: C:\Users\Chelle\Documents\1. ERAU\EP700 Thesis\SolarSailv9.m Line: 23 Column: 41 

Invalid expression. Check for missing or extra characters. 

%CH1 Delimitations. Check cislunar regions where mass parameters dominate 

d_E(1)=1; 

a_E(1)=mu_Earth/(d_E(1)^2); 

d_m(1)=384400; 

a_m(1)=mu_moon/(d_m(1)^2); 

d_s(1)=149.6E6; 

a_s(1)=mu_sun/(d_s(1)^2); 

for j=2:385 

    d_E(j)=d_E(j-1)+1000; %distance of sailcraft from Earth, [km] 

    a_E(j)=mu_Earth/(d_E(j)^2); %acceleration of sailcraft due to Earth's gravity, [km/min^2] 

    d_m(j)=d_m(j-1)-1000; %distance of sailcraft from moon, [km] 

    a_m(j)=mu_moon/(d_m(j)^2); %acceleration of sailcraft due to moon's gravity, [km/min^2] 

    d_s(j)=149.6E6; %approximate distance of sailcraft from sun, [km] 

    a_s(j)=mu_sun/(d_s(j)^2); %acceleration of sailcraft due to sun's gravity, [km/min^2] 

end 

figure(1) 

plot(log10(a_E(:)),'b') 

hold on 

plot(log10(a_m(:)),'k') 

plot(log10(a_s(:)),'r') 

%plot(log10(a_s(:))+log10(1.1),'.') %Check where Earth or moon acceleration 

%is within 10% of sun's acceleration 

hold off 
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xlabel('Distance from Center of Earth [Thousands of km]') 

ylabel('Log of Acceleration due to Gravity [km/min^2]') 

title('Comparison of Accelerations due to Gravity on Sailcraft in Cislunar Space') 

 

 

%CH2 Solar Radiation Pressure. Check how SRP differs across cislunar space 

%Percentage difference between acceleration due to SRP at closest, furthest from sun 

R1=146.6944e6;R2=152.5056e6; 

W1=L/(4*pi*R1^2) 

W1 = 1.4156e+09 [kg/min^3] 

W2=L/(4*pi*R2^2) 

W2 = 1.3098e+09 [kg/min^3] 

percentagedifference=(W1-W2)/0.5/(W1+W2)*100 

pd = 7.7661; 

%Takeaway: almost 8% difference between SRP acceleration magnitude at 

%closest and furthest points from sun (R1 and R2 are closest and furthest 

%distances of moon from sun so I rounded up to 8% since sailcraft can be in 

%opposition in orbit around moon) 

 

 

%CH3 Physical Model. Check validity of assumptions to simplify system 

%Acceleration of the center of mass of the sun-Earth system 

acc=mu_sun*5.9724E24/(5.9724E24 + 1988500E24)/(149.6E6)^2 

acc=6.41e-08 km/min^2 -> takeaway: NEGLIGIBLE 

%Reduced mass (two-body problem) of the sun-Earth system 

mu=(5.9724E24 * 1988500E24)/(5.9724E24 + 1988500E24) 

mu=5.9724E24 

%Takeaway: NEGLIGIBLE 

 

%Acceleration of the center of mass of the moon-Earth system 

acc2=mu_moon*5.9724E24/(5.9724E24 + 0.07346E24)/(0.3844E6)^2 

acc2=1.18e-04 km/s^2 -> takeaway: NEGLIGIBLE 

%Reduced mass (two-body problem) of the moon-Earth system 

mu2=(5.9724E24 * 0.07346E24)/(5.9724E24 + 0.07346E24) 

mu2=7.2567e+22 

%Takeaway: NOT NEGLIGIBLE 

%Initial conditions for Earth relative to sun 

%Assumes Earth has CIRCULAR orbit about sun 

R_IE(:,1)=[149.6E6,0,0]'; %Earth position vector in SCI coordinate frame,  [km] 

omega_EI=2*pi/(365.2*24*60); %Rate of motion of rotating/translating reference frame E wrt I,  

[rad/min] 

v_IE(:,1)=[0,sqrt(mu_sun/R_IE(1,1)),0]'; %Earth velocity vector in SCI coordinate frame,  

[km/min] 

E(:,1)=[R_IE(:,1); v_IE(:,1)]; %Earth position and velocity state vector 

 

 

%Initial conditions for sailcraft 

%Assumes sailcraft has initial CIRCULAR orbit about Earth 

altitude_E=1000; %Initial altitude above Earth, [km] 

x(1)=r_Earth+altitude_E; %X component of the sailcraft position vector, in ECI coordinate frame, 

[km] 

y(1)=0; %Y component of the sailcraft position vector, in ECI coordinate frame, [km] 

z(1)=0; %Z component of the sailcraft position vector, in ECI coordinate frame, [km] 
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vx(1)=0; %X component of sailcraft velocity vector in ECI coordinate frame, [km/min] 

vy(1)=sqrt(mu_Earth/(x(1))); %Y component of sailcraft velocity vector in ECI coordinate frame, 

[km/min] 

vz(1)=0; %Z component of sailcraft velocity vector in ECI coordinate frame, [km/min] 

xx(:,1)=[x(1),y(1),z(1),vx(1),vy(1),vz(1)]'; %Sailcraft position and velocity in state space form 

xx0(:,1)=xx(:,1); %Sailcraft position and velocity in state space form (without eclipse factor) 

xx1(:,1)=xx(:,1); %Sailcraft position and velocity in state space form (for Forward Euler) 

r_E(:,1)=xx(1:3,1); 

r(:,1)=R_IE(:,1)+r_E(:,1); 

r_hat(:,1)=r(:,1)/norm(r(:,1)); 

for k=1:TotalTime/dt 

    %t(k+1)=t(k)+dt; %to advance time step 

 

 

    %Desired Earth position and velocity wrt sun 

    R_IE(:,k)=E(1:3,k); 

    A_IE=[zeros(3), eye(3); -eye(3)*mu_sun/norm(R_IE(:,k))^3, zeros(3)]; 

    E(:,k+1)=(eye(6)+A_IE*dt+0.5*A_IE^2*dt^2)*E(:,k); 

 

 

    %Desired position and velocity (sailcraft wrt Earth) Part 1 

    r_E(:,k)=xx(1:3,k); %Position vector of the sailcraft from the center of the Earth,  [km] 

    A=[zeros(3), eye(3); -eye(3)*mu_Earth/norm(r_E(:,k))^3, zeros(3)]; %State matrix 

    B=[zeros(3); eye(3)/m]; %Input matrix 

 

 

    %Approximate r position vector (Sun to sailcraft) in HEI coordinate frame 

    %Assumes no rotation of Earth 

    r(:,k)=R_IE(:,k)+r_E(:,k); 

    r_hat(:,k)=r(:,k)/norm(r(:,k)); 

 

 

    %Controls 

    %1. Determine when sailcraft is eclipsed by Earth's shadow 

    ef=1; %eclipse factor 

    if norm(r(:,k))>norm(R_IE(:,k)) %sailcraft is on far side of Earth from sun 

        %this is the roughest value of r_crit 

            a=r_Earth/r_sun*norm(R_IE(:,k))/(1-r_Earth/r_sun); 

            b(k)=r_Earth/a*(a-norm(r_E(:,k))); 

            c(:,k)=roots([1+b(k)^2/(a-norm(r_E(:,k)))^2 -2*a*b(k)^2/(a-norm(r_E(:,k)))^2 

a^2*b(k)^2/(a-norm(r_E(:,k)))^2-norm(r_E(:,k))^2]); 

            d(k)=r_Earth/a*(a-norm(c(1,k))); 

            %Critical distance: the point at which the orbiting sailcraft enters or exits Earth’s 

umbra 

            r_crit(k)=sqrt((norm(R_IE(:,k))+norm(c(1,k)))^2+d(k)^2); %[km] 

            %this is a very close approximation of r_crit, assuming sailcraft 

            %does not ascend too quickly, i.e. norm(r_E) at r_crit and at 

            %opposition are approximately equal 

            %this expression does not account for non-zero z values 

            %r_crit=sqrt((norm(R_IE(:,k))+norm(r_E(:,k)))^2+b^2); 

            %this is just an approximate value of r_crit. r_crit should be 

            %smaller so this is not a conservative estimate 

            %also, this expression does not account for non-zero z values 
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            if norm(r(:,k))>r_crit(k)  %Earth is between sun and sailcraft 

                ef=0; %eclipse factor 

            else %Earth does not block sunlight reaching sailcraft 

                ef=1; %eclipse factor 

            end 

    end 

 

    %2. Determine when sailcraft is accelerating due to SRP for on-off switching 

    %Assumes instantaneous switching between on and off positions 

    %Assumes sailcraft cone angle is 0 when 'on' and 90 degrees when 'off' 

    a_r(k)=2*eta*L*Area/(4*pi*norm(r(:,k))^2*c0*m); %Magnitude of acceleration of solar sail at 

distance r from sun, [km/min^2] 

    T(:,k)=[0,0,0]'; 

    T1(:,k)=[0,0,0]'; 

    if k==1 

        T(:,k)=[0,0,0]'; 

    %elseif norm(r(:,k-1)) > norm(r(:,k)) %Sailcraft is approaching sun / "off" position 

    %    T(:,k)=[0,0,0]'; 

    elseif norm(r(:,k-1)) < norm(r(:,k)) %Sailcraft is moving away from sun / "on" position 

        T(:,k)=ef*m*a_r(k)*r_hat(:,k); %Overall thrust vector experienced by the sailcraft due to 

SRP and on-off steering controls 

        %(both transverse and radial), [km/min^2] 

        T1(:,k)=m*a_r(k)*r_hat(:,k); %Overall thrust vector, ignoring eclipse factor, [km/min^2] 

    end 

%     f(k)=dot(R_IE(:,k),r_E(:,k))/norm(R_IE(:,k))/norm(r_E(:,k)); %Cosine of angle between sail-

Earth line and sun-line 

%     T1(:,k)=[0,0,0]'; 

%     if k==1 

%         T(:,k)=[0,0,0]'; 

%     elseif f(k-1) > f(k) %Sailcraft is approaching sun / "off" position 

%         T(:,k)=[0,0,0]'; 

%     elseif f(k-1) < f(k) %Sailcraft is moving away from sun / "on" position 

%         T(:,k)=ef*m*a_r(k)*r_hat(:,k); %Overall thrust vector experienced by the sailcraft due 

to SRP and on-off steering controls 

%         %(both transverse and radial), [km/min^2] 

%         T1(:,k)=m*a_r(k)*r_hat(:,k); %Overall thrust vector, ignoring eclipse factor, 

[km/min^2] 

%     end 

 

 

    %Desired position and velocity (sailcraft wrt Earth) Part 2 

    xx(:,k+1)=(eye(6)+A*dt+0.5*A^2*dt^2)*xx(:,k)+(eye(6)*dt+0.5*A*dt^2)*B*T(:,k); %xdot of System 

    xx0(:,k+1)=(eye(6)+A*dt+0.5*A^2*dt^2)*xx0(:,k)+(eye(6)*dt+0.5*A*dt^2)*B*T1(:,k); %xdot 

ignoring eclipse factor 

 

 

%     %Fwd Euler approximation of updated position and velocity vectors (sailcraft wrt Earth) 

%     x(k+1)=x(k)+dt*vx(k); %Updated x position 

%     y(k+1)=y(k)+dt*vy(k); %Updated y position 

%     z(k+1)=z(k)+dt*vz(k); %Updated z position 

%     r_E1(:,k)=norm([x(k),y(k),z(k)]); %%%r_E1(:,k+1)=norm([x(k+1),y(k+1),z(k+1)]); 

%     vx(k+1)=vx(k)+dt*(-mu_Earth*x(k)/norm(r_E1(:,k)^3))+T(1,k)/m; %Updated x velocity 

%     vy(k+1)=vy(k)+dt*(-mu_Earth*y(k)/norm(r_E1(:,k)^3))+T(2,k)/m; %Updated y velocity 

%     vz(k+1)=vz(k)+dt*(-mu_Earth*z(k)/norm(r_E1(:,k)^3))+T(3,k)/m; %Updated z velocity 
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%     v1(:,k)=norm([vx(k),vy(k),vz(k)]); %%%v1(:,k+1)=norm([vx(k+1),vy(k+1),vz(k+1)]); 

%     xx1(:,k+1)=[x(k+1),y(k+1),z(k+1),vx(k+1),vy(k+1),vz(k+1)]'; 

 

 

%To make the For Loop stop if sailcraft exceeds 240000 km from Earth 

    if norm(r_E(:,k))>=240000 

        k=TotalTime/dt; 

    end 

 

end 

%Spacecraft trajectory with Earth shown for reference 

figure(2) 

[px,py,pz] = sphere(50);                % generate coordinates for a 50 x 50 sphere 

cla 

sEarth = surface(px, py,flip(pz)); 

sEarth.FaceColor = 'texturemap';        % set color to texture mapping 

sEarth.EdgeColor = 'none';              % remove surface edge color 

earth = imread('landOcean.jpg'); 

sEarth.CData = earth;                   % set color data 

hold on 

view([90 30])                            % specify viewpoint 

daspect([1 1 1])                        % set aspect ratio 

axis off tight                          % remove axis and set limits to data range 

p=1/r_Earth; 

XX(:,:)=xx(:,:)*p; 

plot3(XX(1,:),XX(2,:),XX(3,:),'r') 

title('Sailcraft Trajectory in ECI Calculated via State Matrix A') 

hold off 

 

 

%Spacecraft Trajectory - with and without eclipse factor 

figure(3) 

plot3(xx(1,:),xx(2,:),xx(3,:),'r') 

hold on 

plot3(xx0(1,:),xx0(2,:),xx0(3,:),'b') 

hold off 

grid on 

axis equal 

xlabel('X-axis [km]') 

ylabel('Y-axis [km]') 

zlabel('Z-axis [km]') 

title('Sailcraft Trajectory in ECI Calculated via State Matrix A') 

legend('With Eclipse Factor','Without Eclipse Factor') 

 

 

figure(4) 

plot(X(1,:)) 

xlabel('Time Steps') 

ylabel('X-Component of Trajectory [km]') 

title('X-Component of Sailcraft Trajectory in ECI over Time') 

 

 

figure(5) 
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plot(X(2,:)) 

xlabel('Time Steps') 

ylabel('Y-Component of Trajectory [km]') 

title('Y-Component of Sailcraft Trajectory in ECI over Time') 

 

 

figure(6) 

plot(a_r) 

%axis([0 1e5 1.66505e-4 1.6654e-4]) 

xlabel('Time Steps') 

ylabel('Magnitude of SRP Acceleration [km/min^2]') 

title('Magnitude of SRP Acceleration of Solar Sail Over Time') 

%Note the eclipse factor in not included. 

 

 

figure(7) 

plot3(T(1,:),T(2,:),T(3,:)) 

hold on 

plot3(T1(1,:),T1(2,:),T1(3,:)) 

hold off 

axis([3e-4 9e-4 0 2e-5]) 

xlabel('Thrust X-axis [km/min^2]') 

ylabel('Thrust Y-axis [km/min^2]') 

zlabel('Thrust Z-axis [km/min^2]') 

title('Overall Thrust Vector Experienced by the Sailcraft Due to SRP and On-off Steering 

Controls') 

legend('With Eclipse Factor','Without Eclipse Factor') 

 

 

figure(8) 

plot(T(1,:)) 

xlabel('Time Steps') 

ylabel('X-Component of Thrust [km]') 

title('X-Component of Thrust Vector in ECI over Time') 

 

 

figure(9) 

plot(T(2,:)) 

xlabel('Time Steps') 

ylabel('Y-Component of Thrust [km]') 

title('Y-Component of Thrust Vector in ECI over Time') 

 

 

figure(10) 

plot3(r(1,:),r(2,:),r(3,:),'r') 

grid on 

xlabel('X-axis [km]') 

ylabel('Y-axis [km]') 

zlabel('Z-axis [km]') 

title('Sailcraft Position in SCI Calculated via State Matrices A and A_I_E') 

 

 

figure(11) 

plot(r_crit) 
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hold on 

plot(vecnorm(r,2,1)) 

hold off 

%axis([0 5e5 1.496e8 1.49615e8]) 

xlabel('Time Steps') 

ylabel('Distance from Sun [km]') 

title('Comparison of Critical Distance and Sun-Sailcraft Position Vector Magnitude over Time') 

legend('Critical Distance','Sun-Sailcraft Position Vector Magnitude') 

 

 

figure(12) 

plot(vecnorm(r_E,2,1)) 

%axis([0 inf 0.7e4 0.77e4]) 

xlabel('Time Steps') 

ylabel('Sailcraft Distance from Earth [km]') 

title('Sailcraft Trajectory in ECI Calculated via State Matrix A') 

%Removed Items 

 

 %a_transverse(:,k)=(1/norm(r_E(:,k)))*[r_E(2,k) -r_E(1,k) 0]'; %Again, assumes z component is 

zero 

 %T(:,k)=ef*a_r(k)*cos(acos(f(k))-3*pi/2)*a_transverse(:,k); %Transverse acceleration of solar 

sail 

 %T1(:,k)=a_r(k)*cos(acos(f(k))-3*pi/2)*a_transverse(:,k); %Acceleration of solar sail ignoring 

eclipse factor, [km/min^2] 

 

 

% figure(12) 

% plot3(xx0(1,:),xx0(2,:),xx0(3,:),'b') 

% grid on 

% xlabel('X-axis [km]') 

% ylabel('Y-axis [km]') 

% zlabel('Z-axis [km]') 

% title('Sailcraft Position in ECI Calculated via Forward Euler Approximation') 

 

% figure(13) 

% plot(f) 

 

% figure(14) 

% plot(cos(acos(f)-1*pi/2)) 

 

% figure(15) 

% plot3(n(1,:),n(2,:),n(3,:)) 

 

% figure(16) 

% plot(c(1,:)) 

 

% figure(17) 

% plot(b) 
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