
A Creation of Efficiency: The Flight Time Calculator

Author

Sarah Hoover, Student, Embry–Riddle Aeronautical University

Affiliations

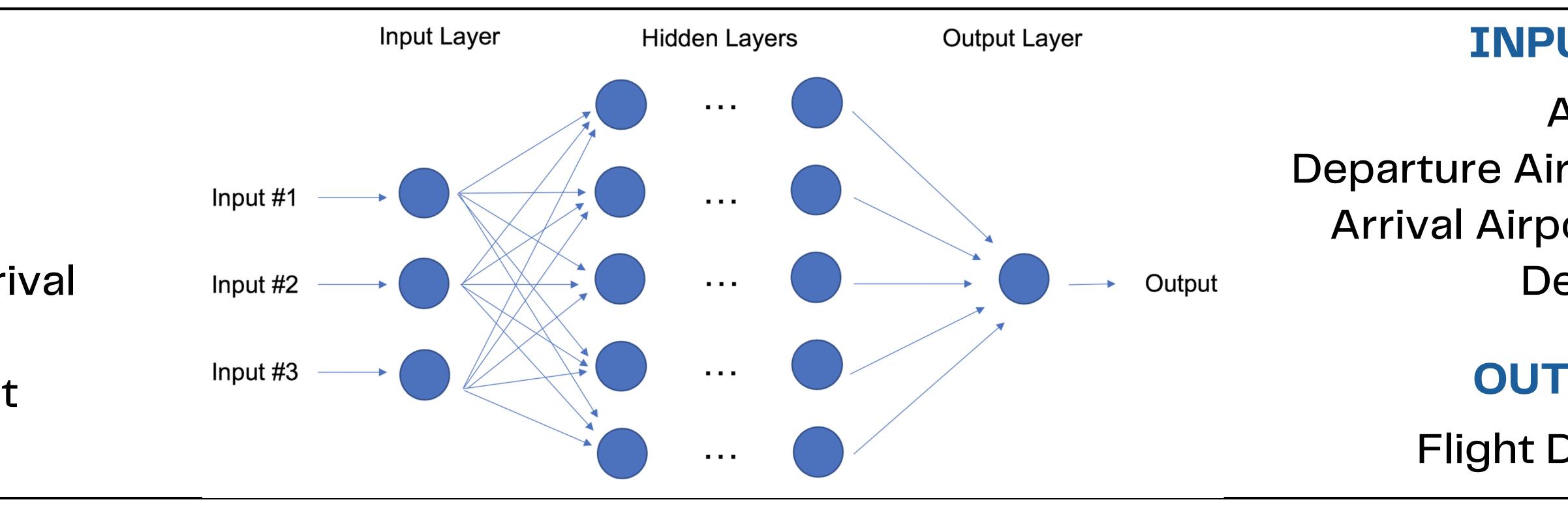
Dr. Mihhail Berezovski, Embry-Riddle Aeronautical University, Department of Mathematics, MA 490

Michael Campobasso, OneSky Hunter Gardner, OneSky Oleksandr Hendrik, OneSky

OBJECTIVE

Create an efficient, simple, and useful flight time calculator that can easily be utilized by multiple private aviation companies.

NEURAL NETWORK


6 input variables 4 hidden layers 1 output variable 80% of data trained using (arrival time – departure time) 20% of data tested without reference value

RESULTS AND DISCUSSION

Following a 24-hour clock, the neural network returns the predicted flight time in terms of decimal hours. The next steps would be to run a larger data file through the neural network and then consider details such as seasonal winds and flight path for better accuracy.

METHODOLOGY

Archival flight data of over 600 flights and additional data containing the latitude and longitude of US airports was utilized and processed through a neural network to return the flight time.

1.80000000e+00 1.66666667e-01 2.16666667e-01 3.83333333e-01 1.6000000e+00 1.40816667e+00 1.25000000e+00 1.78333333e+00 1.6000000e+00 1.78333333e+00 2.5000000e-01 1.66666667e+00 4.33333333e-01 1.66666667e+00 1.21666667e+00 2.16666667e-01 1.41666667e+00 7.00000000e-01 7.50000000e-01 1.26666667e+00 2.666666667e-01 1.33333333e+00 5.33333333e-01 1.65000000e+00 1.31666667e+00 6.16666667e-01 3.0000000e-01 2.05000000e+00 1.66666667e+00 1.18333333e+00 1.76666667e+00 1.65000000e+00

INPUT VARIABLES

Aircraft Type Departure Airport Latitude/ Longitude Arrival Airport Latitude/ Longitude Departure Time

OUTPUT VARIABLES

Flight Duration (Flight Time)