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Abstract 

The purpose of this doctoral research dissertation is to develop a deeper understanding of 

the phenomenology, variability and driving processes of proton aurora at Mars.  Proton aurora 

are the most recently discovered of the three types of Martian aurora.  Due to Mars’ lack of a 

global dipole magnetic field, the formation processes of Martian proton aurora are uniquely 

different than aurora on Earth.  Martian proton aurora are expected to form on the planet’s 

dayside via electron stripping/charge exchange processes between solar wind protons and the 

neutral hydrogen corona.  Herein, I present the results of a study of proton aurora at Mars 

observed using the Imaging UltraViolet Spectrograph (IUVS) onboard the Mars Atmosphere and 

Volatile EvolutioN (MAVEN) spacecraft.  Martian proton aurora are observed in IUVS data as a 

prominent enhancement in the intensity of the hydrogen Lyman-alpha (Ly-α) emission (121.6 

nm) between ~110-150 km altitude.   

Using altitude-intensity profiles from IUVS periapsis limb scan data spanning multiple 

Martian years, I create a comprehensive database of proton aurora detections and characterize 

their phenomenology.  Based on the results of this study, proton aurora are observed in ~15% of 

dayside periapsis profiles (with notable seasonal variability), making proton aurora the most 

commonly observed type of aurora at Mars.  The primary factors influencing proton aurora 

occurrence rates are solar zenith angle (SZA) and season.  The highest proton aurora occurrence 

rates are at low SZAs on the Mars dayside, consistent with known formation processes.  Proton 

aurora have highest emission enhancements, peak intensities, peak altitudes, and occurrence rates 

(nearing 100%) around southern summer solstice.  This time period corresponds with the 

seasonal inflation of the neutral lower atmosphere, the onset of Martian dust storm season, higher 
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atmospheric temperatures and solar wind flux following perihelion, and seasonally increased 

coronal hydrogen column densities.   

I compare remote sensing and in situ observations of Martian proton aurora events.  By 

evaluating concurrent Ly-α emission enhancements and penetrating proton fluxes associated 

with proton aurora, it is determined that these two parameters generally track with each other, 

and that discrepancies between the datasets correlate with periods of high dust activity and/or 

extreme solar events.  These discrepancies are caused by a combination of geophysical and 

observational factors.  I also compare proton aurora detections with magnitudes and orientations 

of the upstream magnetic fields that control the Martian magnetic/plasma environment.  I 

identify a possible preferential influence on Martian proton aurora activity caused by the 

upstream magnetic field orientations.   

Numerous types of “atypical” proton aurora are examined, and the causes and variability of 

these events are constrained.  I identify/characterize variations in proton aurora associated with 

local spatial and temporal variability.  And though rare in the IUVS dataset, detections on the 

planet’s nightside are found to comprise ~4% of all proton aurora observations.  The statistical 

properties of nightside events are quantified and possible formation mechanisms are explored.   

Lastly, I coordinate a multi-model proton aurora comparison campaign: collaborating with 

a partnership of ~20 different modelers/scientists at nine different research institutes in the 

United States and around the world.  Through this campaign we develop a better understanding 

of the physics and driving processes of Martian proton aurora, particularly emphasizing inter-

model and data-model comparisons.  The results of this doctoral dissertation provide a novel and 

unprecedented understanding of Martian proton aurora, including the short/long-term variability 

and primary influencing factors of these unique phenomena.  
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Preface 

“As when descends Eos (“Aurora” / “Dawn”) from Olympos' 

crest of adamant, Eos, heart-exultant in her radiant steeds amidst 

the bright-haired Horai; and o'er them all, how flawless-fair 

soever these may be, her splendor of beauty glows pre-eminent.” 

- Quintus Smyrnaeus, Fall of Troy 1. 48 ff (trans. Way)  

(Greek epic C4th A.D.) 

  

Aurora: “goddess of the Dawn” (and Hemera: “goddess of the Day”) 

In this doctoral dissertation I evaluate proton aurora on Mars.  Throughout the history of 

human civilization, sky watchers, philosophers, and scientists alike have been mesmerized by 

aurora on Earth.  These Northern/Southern lights (i.e., Aurora Borealis and Aurora Australis, 

respectively) have been a source of great wonder, awe, and even religious/mythological omens.   

It is interesting to note that the word “aurora” is derived from the Latin word for “dawn” 

and is the name of the Roman mythological goddess of the dawn (also known in Greek 

mythology as “Eos”).  However, as the reader will learn in the following chapters of this 

dissertation, Martian proton aurora are unique in that they occur almost exclusively on the 

dayside of the planet.  Thus, I propose (for purposes of the reader’s and my own amusement) that 

a more suitable naming convention, and means of contemplating Martian proton aurora, may 

instead be in association with the Greek goddess of the day, “Hemera” (or equivalently, the 

Roman goddess “Dies” - though I personally find the former more aesthetically pleasing).  

Hemera’s personification as the “brightness of the day” would indeed be an appropriate 

representation of this unique Martian phenomenon.  Perhaps one day human travelers to the Red 

Planet may have the pleasure of observing firsthand (while wearing ultraviolet goggles, of 

course) the mesmerizing beauty of Martian “proton hemera” (aka, proton aurora)! 
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1.1 Introduction 

Mars is a planet of many enigmas.  Although it is only a third the size of Earth, it is home 

to the solar system’s largest volcano (Olympus Mons), largest canyon system (Valles Marineras), 

and some of the largest impact craters (e.g., Hellas Basin).  In addition to these large scale 

geologic features, there is also vast morphologic and mineralogic evidence that liquid water once 

shaped and formed the surface of Mars.  This evidence is manifest through features such as long 

fluvial channels, paleobasins with inlet/outlet valleys, river deltas and alluvial fans, crossbedding 

and polygonal fractures consistent with desiccation cracks, and vast aqueous mineralogies such 

as phyllosilicates and carbonates.  Yet in spite of Mars’ remarkable geologic history, the planet is 

no longer geologically active and does not possess the pressures and temperatures necessary to 

sustain liquid water on the surface.  This paradox between observations of features on Mars that 

are consistent with an aqueous history and the current instability of liquid water on the Martian 

surface may be the planet’s most intriguing paradox.  This discrepancy may lead the curious 

reader to ask the crucial question: “What happened to all of the water on Mars?” 

Due to Mars’ small size, the planet’s escape velocity is much less than that of Earth.  One 

important result of this difference is that Mars is not able to hold onto atmospheric constituents 

and therefore has lost most of its atmosphere over time.  Another important factor is that the 

planet’s core cooled much faster than that of Earth, eradicating the planet-wide dynamo magnetic 

field.  We know that Mars once had a global intrinsic field because of the remnant crustal fields 

that are still present in southern hemisphere.  The significance of losing this global intrinsic 

magnetic field was not trivial and allowed what was left of Mars’ atmosphere to be stripped 

away to space by the solar wind over the course of billions of years.   
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Of particular relevance to this study is the loss of hydrogen (H) to space, which is driven 

by the breakdown and subsequent escape of Martian water.  Because H comprises the most 

extended regions of the Martian exosphere, it directly contributes to the formation of proton 

aurora on Mars (described in detail below).  Thus, as we will find in subsequent chapters, by 

studying proton aurora on Mars we also are evaluating a proxy for H escape, and consequently, 

the loss of water from Mars. 

1.2 The MAVEN Mission 

In order to understand Mars’ atmospheric loss to space over time, the Mars Atmosphere 

and Volatile EvolutioN (MAVEN) spacecraft (Jakosky et al., 2015) was sent to Mars.  MAVEN 

was launched in 2013 and arrived at Mars in late 2014, and was the first mission to be sent to 

Mars with the primary purpose of studying the planet’s upper atmosphere and loss to space.  

There are eight instruments onboard the MAVEN spacecraft.  Most of the MAVEN instruments 

are in situ instruments that study atmospheric and solar wind particles, with the exception of a 

remote sensing instrument, the Imaging UltraViolet Spectrograph (IUVS), which provided the 

primary dataset utilized in this study (see Data section of this chapter for more details). 

1.3 The Three types of Martian Aurora  

Aurora have been observed on almost every planet in our solar system, including Mars.  

Proton aurora are one of three types of aurora at Mars, in addition to discrete (Bertaux et al., 

2005) and diffuse aurora (Schneider et al., 2015).  Discrete aurora, first identified by Bertaux et 

al. (2005), are spatially confined aurora that are linked to the topology of the crustal magnetic 

field.  Alternatively, diffuse aurora, which were initially identified by Schneider et al. (2015), are 

not spatially constrained or linked to the crustal magnetic field.  Both discrete and diffuse aurora 

are formed via electrons exciting atoms in the neutral atmosphere and are observed exclusively 
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on the Martian nightside.  The formation processes of Martian aurora are different than those at 

Earth due to the presence of a Martian induced magnetic field (and lack of an intrinsic global 

dipole magnetic field).  Figure 1.1 (right) shows a schematic of solar wind particles interacting 

with draped/open magnetic field lines around Mars to create diffuse electron aurora; 

alternatively, discrete aurora are formed by solar wind particles that are accelerated along 

diverging magnetic flux tubes above crustal fields (e.g., Lundin et al., 2006).   

 

 

Figure 1.1: Comparison between magnetic field lines at Earth and Mars, as pertaining to diffuse and discrete aurora (Figure 

credit: Schneider et al., 2015)  

1.4 Proton Aurora Formation: Earth versus Mars 

Aurora form on Earth by energetic particles (typically solar wind electrons and protons) 

that are accelerated along the planet’s magnetic field lines toward the poles, where they 

subsequently excite neutral atmospheric constituents (e.g., Figure 1.1, left).  Upon deexciting, 

those neutral particles emit a photon which can be observed in visible (and other) wavelengths as 

the Northern/Southern Lights (i.e., Aurora Borealis and Aurora Australis, respectively).  While 
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most terrestrial aurora are formed through excitation by solar electrons, aurora formed by solar 

proton (H+) excitation also exist at Earth.   

Proton aurora were first identified at Earth by Vegard (1939) as doppler shifted hydrogen 

(H) Balmer-alpha and -beta spectral lines within the emissions of auroral observations.  Proton 

aurora were later thoroughly characterized in a detailed review paper by Eather (1967).  At 

Earth, proton aurora are strongly influenced by the planet’s magnetospheric field lines.   

Due to the lack of a Martian global intrinsic magnetic field, the formation process of 

proton aurora at Mars is notably different than at Earth.  As H is the lightest constituent of the 

upper atmosphere, the H corona comprises the most extended portion of the exosphere and 

dominates initial interactions with the solar wind.  The lack of a global dipole magnetic field at 

Mars allows for solar wind interactions with the Martian H corona on the dayside of the planet 

before it reaches the bow shock and is diverted around the planet by the Martian induced 

magnetic field (i.e., the magnetic structure of the near-space environment, e.g., Akalin et al., 

2010).  Martian proton aurora form via solar wind protons, traveling with the high energies and 

velocities relative to the Martian corona, interacting with the extended H corona (Figure 1.2).  

These solar particles can charge exchange with neutral H in the corona, pulling an electron from 

a neutral H atom and becoming an Energetic Neutral Atom (ENA) (Kallio and Barabash, 2001).  

The ENAs, having approximately the same velocity and energy as the incident solar wind 

particles, can then travel unimpeded past the planet’s bow shock and magnetic pileup boundary 

(MPB) into the atmosphere.  These particles interact with neutral atmospheric constituents 

(primarily CO2) to convert between ENAs and protons through charge exchange and/or electron 

stripping processes.  The H+/ENA conversion process can take place hundreds of times before 

being absorbed or destroyed.  During this process, the ENA can be excited and emit H Lyman-
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alpha (Ly-α) photons, creating proton aurora (Figure 1.2).  These proton aurora events can be 

observed in ultraviolet (UV) wavelengths as an enhancement (e.g., a brightness peak) in the Ly-α 

emission (121.6 nm) at an altitude of ~110km-150km.  Note that unlike typical aurora, where the 

neutral atmospheric gases emit photons, in this case it is the precipitating particle that emits.   

Because of the unique formation mechanisms of Martian proton aurora, they are expected 

to be confined to the dayside of the planet but are not expected to exhibit any 

geographic/latitudinal constraints such as Earth aurora.  And due to the dependence on charge 

exchange processes with coronal H, Martian proton aurora can be influenced by variations in 

either the solar wind flux or the H corona.   

 

Figure 1.2: Formation mechanism for Martian proton aurora originating from solar wind charge exchange.  Solar wind protons 

charge exchange with neutral hydrogen in the corona, then penetrate the Mars bow shock and travel unimpeded to the lower 

atmosphere as energetic neutral atoms (ENA), having the same energy and velocity of the solar wind.  These ENAs charge 

exchange again with other neutral atoms lower in the atmosphere depositing energy in the lower thermosphere. (Figure credit: 

Deighan et al., 2018)   
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1.5 The Connection between Martian Hydrogen and Proton Aurora 

Proton aurora are observed at Mars in the H Ly-α emission as an enhancement on top of a 

broad, diffuse background emission from thermal H in the extended Mars corona.  The typical 

coronal H Ly-α altitude-intensity profile is relatively flat (e.g., Figure 1.3, low intensity subplots) 

due to the diffusive separation of H from CO2 above the homopause, the relatively large scale 

height of H in the Martian atmosphere, and the optically thick nature of Ly-α.  Alternatively, the 

Ly-α emission associated with proton aurora is optically thin and Doppler shifted out of the 

thermal H distribution.  Thus, proton aurora are identifiable in UV spectral data as an 

enhancement in brightness between ~110-150 km in the Ly-α profile (e.g., Figure 1.3, high 

intensity peaked subplots).  The emission enhancement (between a few hundred R to a few kR) 

is sharply peaked at these altitudes due to the energy deposition process.  It is interesting to note 

that the enhancement altitude range is consistent with previously determined predictions of the 

peak altitude of energy deposition for protons and H in the Mars atmosphere (e.g., Halekas et al., 

2015; Deighan et al., 2018).   

Because of the important role of the H corona in the proton aurora formation process, 

variability in the H corona will affect the proton aurora profile as well.  Numerous previous 

studies carried out by different spacecraft/instruments have identified significant seasonal 

variability in the Mars H corona (e.g., Chaffin et al., 2014; Clarke et al., 2014; Battacharya et 

al., 2015; Mayyasi et al., 2017; Halekas 2017).  These studies found that the abundances, 

altitudes, column densities and escape rates of H reach an annual maximum around the Martian 

southern summer solstice (i.e., solar longitude, Ls, ~270).   

In a preliminary study of Martian H, MAVEN IUVS periapsis data spanning multiple Mars 

years were used to observe significant annual variability in Martian atmospheric H (Figure 1.3, 
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center).  The H Ly-α intensities reach local maxima around Ls ~270 over the course of two Mars 

years.  (Note that the general sinusoidal shape of the plot is associated with the precession of the 

MAVEN spacecraft, and annual variability is observed as an increased amplitude on top of this 

curve.)  We also observe a significant dependance on solar zenith angle (SZA), where the highest 

H Ly-α intensities occur at low SZAs (i.e., closer to the subsolar point).  Note that this 

preliminary study did not distinguish between the independent H contributions from thermal H in 

the Mars corona and H-ENAs associated with proton aurora (nor did other previous 

observational studies of Martian atmospheric H), as it is not possible to uncouple observations of 

these two unique H populations.  However, in subsequent chapters, the proton aurora 

contribution to the Ly-α profile is exclusively evaluated by subtracting out the background 

coronal H from profiles (explained in detail in Chapter 2).   
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Figure 1.3: Observations of annual hydrogen variability at Mars. Center: Ly-α Intensities and SZAs for the first 5000 MAVEN 

orbits.  Top and Bottom: Profiles of maximum, minimum, and median (at 150 km altitude) for select months; color corresponds 

to SZA & solid lines are altitude binned averages of the data. 

1.6 Previous Observational Studies of Martian Proton Aurora 

Proton aurora were first predicted to exist at Mars based on observations by the Solar Wind 

Ion Analyzer (SWIA) onboard the MAVEN spacecraft (Halekas et al., 2015).  A study by 

Halekas et al. (2015) initially identified an increased energy flux of “penetrating protons” (i.e., 

solar wind protons that penetrate into the Martian atmosphere) having the same energy and 

velocity as the incident solar wind.  A subsequent study by Deighan et al. (2018) found a strong 
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correlation between increased fluxes of solar wind penetrating protons and IUVS emission 

enhancements in Ly-α brightness, associated with proton aurora events.  Additionally, Ritter et 

al. (2018) presented observations of proton aurora using UV data from the Spectroscopy for the 

Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) spectrograph onboard 

Mars Express (Ritter et. al, 2018).  Between these two UV spectroscopy observational studies of 

proton aurora at Mars, only nine definitive detections of proton aurora were previously 

identified.   

1.7 Primary Dataset: MAVEN/IUVS 

We use data from the Imaging UltraViolet Spectrograph (IUVS) onboard the Mars 

Atmosphere and Volatile EvolutioN (MAVEN) spacecraft, to identify/characterize proton aurora 

at Mars.  IUVS has a Far-Ultraviolet (FUV) (110-190 nm) and Mid-Ultraviolet (MUV) (180-340 

nm) channel (McClintock et al., 2014).  The combination of these channels provides coverage of 

important UV atomic and molecular spectral features at Mars (Figure 1.4).  We specifically use 

IUVS limb scan data, taken during the periapsis portion of the MAVEN orbit.  IUVS limb scans 

are built up as the instrument scanning mirror is slewed during data collection while observing 

across-track of the spacecraft travel direction (Figure 1.5).  These data are used to create altitude-

intensity profiles for given atomic/molecular species (e.g., Figure 1.4 and Figure 1.7).  Of 

interest to our study is the hydrogen (H) Lyman-alpha (Ly-α) emission at 121.6 nm (Figure 1.6).  

A Ly-α altitude-intensity profile is created by integrating under a Ly-α spectral line to determine 

the area of the Ly-α intensity for each attitude range observed in the limb scan (Figure 1.7, left).  

The intensity value from each of these spectral profiles can then be plotted at its corresponding 

tangent point altitude, resulting in the altitude-intensity profile for an observation (Figure 1.7, 

right).   
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In this study, I utilize IUVS Level 1C periapsis intensity data.  In these data, which are 

created by the IUVS team, the background Ly-α emission is subtracted out, and the data are 

converted to kilorayleighs and binned into 5km altitude bins (e.g., Figure 1.7).  Using data from 

MAVEN/IUVS in combination with multiple additional supporting datasets, I characterize the 

phenomenology of and observe variations in Martian proton aurora.   

 

Figure 1.4: IUVS FUV and MUV example spectral observations and resulting altitude-intensity profile (Figure credit: Schneider 

et. al., 2012). 

 

Figure 1.5: Example of IUVS periapsis limb scan data collection process. Note that the left image is a limb-viewing perspective, 

and the right image is a top-down perspective. (Figure credit: McClintock et al., 2014) 
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Figure 1.6: Example of IUVS raw detector data (using “detector-dark-subtracted” data) (Top) and resulting line spectra 

(Bottom).    

 

Figure 1.7: General data reduction procedure for creating altitude-intensity profiles.  Left: IUVS line spectra at multiple 

altitudes from a single observation (i.e., data from different mirror and slit positions all from different corresponding limb 

altitudes). Right: Resulting altitude-intensity profile for a single IUVS observation. 
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1.8 Doctoral Dissertation Overview: Project Goals and Scientific Novelty  

The purpose of this doctoral dissertation is to provide a deeper understanding of the 

phenomenology, variability and driving processes of proton aurora in the atmosphere of Mars.  

Proton aurora are the most newly identified, and therefore, the least studied and arguably the 

least understood type of aurora at Mars.  Prior to this dissertation project, only two studies had 

observed Martian proton aurora (both in UV wavelengths) (i.e., Deighan et. al, 2018 and Ritter 

et. al, 2018).  This dissertation project builds upon the work of previous studies evaluating 

Martian proton aurora.  In subsequent chapters, I present the results of the most in-depth analysis 

of Martian proton aurora to date.   

In undertaking this project, I address many important research objectives, aiming to answer 

outstanding science questions and further develop our current understanding of Mars.  These 

research objectives include:  

• Create a comprehensive database of Martian proton aurora and characterize the 

phenomenology of these events.  We undertake a rigorous statical analysis of proton 

aurora, identifying thousands of observations across the MAVEN/IUVS dataset and 

creating a simple/efficient automated detection method for proton aurora activity.  We 

utilize the proton aurora detections to characterize the phenomenology of the events. 

(Chapter 2) 

• Evaluate the comparative variability between proton aurora and penetrating 

proton observations.  We compare H Ly-α remote sensing and in situ penetrating 

proton observations of proton aurora, identifying an unexpected deviation from 

nominal conditions that is associated with periods of high atmospheric dust activity 

and extreme solar activity. We identify a novel method for empirical estimation of 
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Ly-α enhancement in proton aurora events based on the penetrating proton flux and 

local Martian environment. (Chapter 3) 

• Constrain the geomagnetic locations of proton aurora occurrence at Mars to search for 

possible interaction with an upstream solar magnetic field.  We evaluate connections 

between proton aurora activity and the magnitude/orientation of the upstream 

magnetic field, identifying possible preferential occurrence of proton aurora at 

specific cone/clock angles. (Chapter 3) 

• Identify/characterize unusual variability in certain proton aurora observations.  

We evaluate numerous detections of “atypical” proton aurora (including nightside and 

“variable” proton aurora detections) to gain a deeper understanding of the trends and 

unique formation mechanisms of these uncommon events. (Chapter 4) 

• Develop the current understanding of proton aurora formation and variability through 

a coordinated multi-modeling comparison campaign.  We carry out a collaborative 

study to compare results from multiple models that effectively simulate proton aurora 

observations.  These results help to constrain the dominant physics/driving processes 

that affect proton aurora. (Chapter 5) 

Studying Martian proton aurora informs our understanding of the processes controlling 

Martian atmospheric loss and evolution, as the processes responsible for auroral formation at 

Mars are also responsible for stripping away the atmosphere.  Further, by understanding proton 

aurora at Mars we may better understand the connection between the solar wind and Mars’ 

extended H corona. This understanding, in turn, informs our knowledge of interactions at other 

planetary bodies that exhibit a neutral H corona and lack a global magnetic field (e.g., Venus, 

comets, and exoplanets), both in our solar system and beyond.    
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Chapter 2 Key Points  

• Proton aurora form via interactions between the solar wind and H corona; as such, changes in 

the H corona strongly influence proton aurora 

• Proton aurora occur in ~14% of dayside profiles in our data (varying with season), making 

them the most commonly observed aurora at Mars 

• Proton aurora occurrence rates are highest in dayside southern summer observations, nearing 

100% at low solar zenith angles at this time 

Chapter 2 Abstract 

We present observations of proton aurora at Mars made using the Imaging UltraViolet 

Spectrograph (IUVS) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) 

spacecraft.  Martian proton aurora display a prominent intensity enhancement in the hydrogen 

Lyman-alpha (Ly-α) (121.6 nm) emission between ~110-150 km altitude.  Using altitude-

intensity profiles from periapsis limb scan data spanning nearly two Martian years, we create a 

comprehensive database of proton aurora and characterize their phenomenology.  Due to Mars’ 

lack of a global dipole magnetic field, Martian proton aurora are expected to form on the dayside 

via electron stripping and charge exchange between solar wind protons and the neutral corona.  

We observe proton aurora in ~14% of dayside periapsis profiles (with notable seasonal 

variability), making proton aurora the most commonly observed type of aurora at Mars.  We 

determine that the primary factors influencing proton aurora occurrence rates are solar zenith 

angle (SZA) and season.  The highest proton aurora occurrence rates are at low SZAs on the 

Mars dayside, consistent with known formation processes.  Proton aurora have highest emission 

enhancements, peak intensities, peak altitudes, and occurrence rates (nearing 100%) around 

southern summer solstice.  This time period corresponds with the seasonal inflation of the neutral 
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lower atmosphere, the onset of Martian dust storm season, seasonally increased coronal 

hydrogen column densities, and higher atmospheric temperature and solar wind flux following 

perihelion.  The results of our study provide a new understanding of the primary factors 

influencing proton aurora, and the long-term variability of these phenomena as observed over 

multiple Mars years.   

2.1 Introduction 

Proton aurora have long been theorized to exist at Mars (e.g., Kallio et al., 1997; Kallio 

and Barabash, 2001), and have only recently been identified in orbital data (Deighan et al., 

2018; Ritter et al., 2018).  Using data from the Solar Wind Ion Analyzer (SWIA) (Halekas et al., 

2013) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft (Jakosky et 

al., 2015), Halekas et al. (2015) observed a population of protons with the same energy and 

velocity as the incident solar wind that had penetrated to atmospheric altitudes below the Martian 

bow shock and magnetic pileup boundary (MPB) (i.e., penetrating protons), and speculated that 

these might be associated with proton aurora.   

Deighan et al. (2018) used data from the Imaging UltraViolet Spectrograph (IUVS) 

(McClintock et al., 2015) onboard MAVEN to show that the penetrating proton population 

observed by Halekas et al. (2015) in SWIA in situ data were correlated with spectroscopic 

observations of emission enhancements in hydrogen Lyman-alpha (H Ly-α) emission profiles 

(i.e., the ultraviolet (UV) signature of proton aurora) (e.g., Figure 2.1).  Ritter et al. (2018) 

presented observations of proton aurora using UV data from the Spectroscopy for the 

Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) spectrograph onboard 

the Mars Express spacecraft.  The combination of these two previous UV observational studies 

provided fewer than ten examples of definitive Martian proton aurora detections.  We expand on 
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these previous studies to include the entire IUVS dataset (spanning nearly two Martian years), 

identifying over four thousand new proton aurora detections and characterizing their 

phenomenology and variability over time.   

Proton aurora on Earth were first observed by Vegard (1939) as doppler shifted hydrogen 

Balmer-alpha and -beta spectral lines within other auroral emissions.  These phenomena were 

later characterized in detail in a review paper by Eather (1967).  At Earth, proton aurora are 

strongly influenced by our planet’s magnetosphere: protons are directed along Earth’s magnetic 

field lines and deposited in an annular auroral region around the magnetic poles, where they 

create proton aurora.   

The formation process of proton aurora at Mars is notably different than at Earth.  Because 

hydrogen is the lightest constituent of the Martian upper atmosphere, the H corona is the most 

extended portion of the exosphere and influences initial interactions with the solar wind.  The 

lack of a Martian global intrinsic magnetic field allows the solar wind to interact with the H 

corona on the sun-ward facing side of Mars before reaching the bow shock and being diverted 

around the planet by the magnetic structure of Mars’ near-space environment (i.e., the induced 

magnetic field; e.g., Akalin et al., 2010).  Martian proton aurora form when solar wind protons 

strip electrons from H atoms in the extended corona and convert into energetic neutral atoms 

(ENAs) (e.g., Kallio and Barabash, 2001).  The thermal H+ ions produced in this way are then 

picked up by the solar wind convection electric field and mostly escape Mars' gravity (e.g., 

Rahmati et al., 2017).  The created H-ENAs pass unimpeded through the bow shock and MPB 

and subsequently undergo additional charge exchanges and collisions with neutrals in the lower 

atmosphere.  In so doing, the energetic hydrogen atom can be excited and emit Lyman alpha 

photons, creating proton aurora (Figure 2.1, left).  Note that unlike typical aurora, where the 
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background gases emit, in this case it is the precipitating particle that emits.  Martian proton 

aurora are expected to be confined to the dayside of the planet and not to exhibit the latitudinal 

constraints that exist at Earth.  Moreover, as a result of the strong dependence on charge 

exchange processes with coronal H, any variations in the H corona or solar wind flux will 

inevitably affect proton aurora.   

The dominant source of Ly-α at Mars is solar resonant fluorescence of H in the corona; the 

proton aurora emission appears on top of a broad, diffuse background emission from coronal H.  

Consequently, the typical non-auroral coronal H Ly-α altitude profile is relatively flat due to the 

diffusive separation of H from CO2 above the homopause, the relatively large scale height of H 

in the Martian atmosphere, and the optically thick nature of Ly-α.  By contrast, the Ly-α proton 

aurora emission is optically thin and Doppler shifted out of the thermal H distribution (the 

Doppler shift not resolvable in our dataset).  Thus, proton aurora are identifiable in UV spectral 

data as an emission enhancement of intensities between ~110-150 km in the Ly-α altitude-

intensity profile (compare in Figure 2.1).  The emission is sharply peaked due to the energy 

deposition process, and the enhancement altitude range is consistent with previously determined 

predictions of the peak altitude of energy deposition for protons and H in the Mars atmosphere 

(e.g., Halekas et al., 2015; Deighan et al., 2018).   

In this study we focus on Martian proton aurora, which is one of three types of aurora at 

Mars, in addition to discrete (Bertaux et al., 2005) and diffuse aurora (Schneider et al., 2015).  

Studying Martian aurora can help us better understand how the Sun interacts with the upper 

atmosphere and near-space plasma environment of Mars.  Studying proton aurora in particular 

can provide insight into the solar wind’s direct interactions with Mars’ extended hydrogen 

corona, and how these interactions change over time and with different influencing factors.  
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Moreover, this knowledge can also inform our understanding of the sun’s interactions with other 

planetary bodies which we might not be able to directly observe, particularly those with a neutral 

hydrogen corona and no global magnetic field. 

 

 

Figure 2.1: (Left): Proton aurora formation mechanism (modified from Deighan et al., 2018) showing how solar wind protons 

charge exchange with coronal H and convert to energetic neutral atoms (ENA) which pass unimpeded through the bow shock 

and subsequently charge exchange again to convert back into protons and deposit energy in the lower atmosphere as proton 

aurora.  (Right): Example H Lyman-α altitude profile for coronal H (dark grey) and profile with proton aurora detection (blue) 

including a heuristic estimated coronal background profile for reference (light grey) (note that the background coronal profile is 

not distinguishable from proton aurora in the data).  We detect and characterize proton aurora using the method indicated in the 

figure, where the second highest intensity in the peak altitude range is subtracted from the high altitude median of a profile; 

emission enhancement differences above a predetermined threshold (described in Figure 2.2) are considered detections.  

2.2 Data and Methodology 

2.2.1 Data 

We use data from the IUVS instrument onboard the MAVEN spacecraft.  IUVS has a Far-

Ultraviolet (FUV) (110-190 nm) and Mid-Ultraviolet (MUV) (180-340 nm) channel (McClintock 

et al., 2015).  We specifically use IUVS FUV limb scan data (taken during periapsis), to generate 

altitude-intensity profiles of the hydrogen Ly-α emission at 121.6 nm.  (See supplementary 

material for more information about limb data and altitude-intensity profile creation).  We 
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examine data spanning ~2 Martian years (from MAVEN arrival in October 2014 through August 

2018), covering a wide range in season, geographic location, and SZA.  In this study, we use 

standard periapsis Level-1C altitude-binned intensity data products, which give H Ly-α profiles 

for all periapsis data.  The generation of these products is further described in Chapter 1, and in 

greater detail in the IUVS Software Interface Specification document (SIS).   

2.2.2 Methodology 

We began our study by searching for the characteristic proton aurora emission 

enhancement via visual inspection of Ly-α altitude profiles in the IUVS dataset.  These results 

were later used to assess the effectiveness of multiple automated detection methods and to 

determine the most reliable method.  We first tested the detection methods used by Deighan et 

al. (2018) and Ritter et al. (2018).  In the Ritter et al. (2018) detection method, the integral of the 

emission enhancement feature (i.e., the area under the altitude-intensity curve) between 120-150 

km in an altitude profile is compared to the area under the curve between 160-190 km; if the 

ratio of these areas is ≥1.1 (signifying a ≥10% emission enhancement), the observation is 

considered a detection.  With the Deighan et al. (2018) method, an observation is considered a 

detection if the difference between the median value in the 120-150 km range and the median 

value in the 160-190 km range is larger than 5 median absolute deviations away from the high 

altitude median.   

By comparing the results of numerous methods, we found that the detection method most 

effective at accurately identifying proton aurora in IUVS data is a modified version of the 

Deighan et al. (2018) method.  In this method, proton aurora are identified by: 1) separating the 

data of an altitude-intensity profile into high altitude (160-200 km) and peak altitude (110-150 

km) data regions (Figure 2.1);  2) taking the difference between the second highest intensity 
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value from the peak altitude data region and the median intensity value from the high altitude 

data region; and 3) comparing the difference values for profiles from the entire dataset against a 

statistically determined threshold value (in this study, the mean plus 0.5 standard deviations, as 

discussed below).  We use the second highest peak intensity in the difference to minimize false 

detections caused by cosmic ray hits on the instrument detector or other anomalous events that 

occur in a single altitude bin.  Profiles with difference values greater than the threshold are 

considered detections, while those below the threshold are not (Figure 2.2).   

Due to the typical lack of an airglow peak in the Ly-α profile, the mean and median of the 

emission enhancement values of all profiles in the dataset are close to zero.  Figure 2.2 (top left) 

shows a histogram of emission enhancement values for the entire dataset.  The proton aurora 

events with the largest emission enhancement differences are on the far-right side of the 

histogram (e.g., orbits 4107, 4224, and 4235; profiles shown in Supplementary Figure 2.1).   

To assist in identifying an appropriate proton aurora detection threshold, we plot 

normalized percentile-binned altitude profiles of the dataset (Figure 2.2, right).  In creating these 

profiles, we first normalize each IUVS profile to account for variations in coronal H intensity 

caused by differing observation illumination conditions.  In normalizing, we subtract out the low 

altitude median intensity (median between 50-100 km) from every intensity value in a profile; 

we then divide these intensities by the absolute value of the difference between the very high 

altitude median intensity (median between 175-225 km) and the low altitude median intensity.  

This makes the profiles run from zero to one, with a possible enhancement above one in the 

presence of proton aurora.  Every normalized profile in the IUVS dataset is then binned based on 

the value of the emission enhancement associated with the profile, with one bin for each 

percentile enhancement, resulting in an altitude-intensity profile for each bin.  The median 
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intensity values with respect to altitude are calculated for each percentile bin.  This produces 100 

median percentile-binned profiles.  The strongest proton aurora detections are therefore shown in 

the highest percentile bin profiles.  This characteristic enhancement due to proton aurora is 

clearly evident down to the ~90th percentile profile, where profiles become indistinguishable 

from neutral coronal H profiles.  This trend indicates that the 90th percentile is an appropriate 

cutoff to use as a detection threshold for proton aurora.   

Figure 2.2 (bottom left) shows that proton aurora can be identified as a tail of high 

enhancements attached to a symmetric underlying distribution.  The figure compares positive 

and negative emission enhancement values to approximate the shape of the emission 

enhancement histogram (Figure 2.2, top left) in the absence of proton aurora events.  The 

enhancement histogram in Figure 2.2 (top left) exhibits a positively skewed (non-Gaussian) 

distribution, where the asymmetric shape on the right-hand side is caused by the occurrence of 

proton aurora.  It is likely that this histogram would be symmetric in the absence of proton aurora 

events.  Using this assumption, we can identify an independent criterion for a proton aurora 

detection threshold.  It is apparent in Figure 2.2 (bottom left) that ~0.5 standard deviations (σ) 

from the mean is approximately where positive and negative histogram values begin to diverge. 

Above this value, an individual measurement is far more likely to be a proton aurora event than 

part of a symmetric statistical distribution, making 0.5σ an appropriate detection threshold.  

Further supporting the choice of a 0.5σ threshold is the fact that 0.5σ from the mean corresponds 

with nearly the same difference value as that of the 90th percentile of the dataset, identified 

independently from the median-binned profiles.  Thus, based on these two independently 

consistent determinations of a proton aurora detection threshold value, we use 0.5σ as our 
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detection threshold in this study.  Note that σ in this context is simply a mathematical description 

of the underlying distribution and does not carry the usual connotation of statistical significance. 

 

 

Figure 2.2: Detection methodology and threshold selection. (Top Left): Histogram of emission enhancement differences (as 

defined in Figure 2.1) of all H profiles in dataset. Chosen detection threshold is Mean +0.5σ (which also closely coincides with 

the 90th percentile).  (Bottom Left): Negative histogram values overlain on top of positive; note that positive values become non-

symmetric with negative values near detection threshold, suggesting an appropriate threshold choice.  (Right): Normalized 

percentile-binned altitude profiles; each profile represents median intensities from every emission enhancement percentile bin. 

An enhancement is prominent where proton aurora occur, and profiles become indistinguishable from coronal H profiles near 

~90th Percentile.  Using two independent criteria we establish a rigorous detection threshold for proton aurora.   

2.2.3 Sensitivity to Detection Threshold  

It is not always possible to determine the existence of proton aurora in a profile with 

absolute certainty (e.g., due to lower intensity events or very shallow emission enhancement 

features).  Consequently, any chosen detection method will inevitably involve a threshold which 

excludes some potential proton aurora events and/or includes borderline detections.  Our method, 
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like all other methods (e.g., that of Deighan et al. (2018) or Ritter et al. (2018)), will therefore 

inevitably include/exclude some marginal detections and non-detections.   

To assess the validity of our chosen 0.5σ threshold, we also tested numerous larger 

detection thresholds on the dataset.  In Figure 2.3 we present histograms of the entire IUVS limb 

dataset over-plotted by histograms for proton aurora detections using both a 0.5σ threshold and a 

3σ threshold.  We include a 3σ threshold not because it is statistically significant for a non-

normal distribution, but rather because there are no corresponding negative values in this 

histogram range and the identification of proton aurora events above this threshold value is 

certain.  The detection threshold histograms are nearly identical in shape, differing only in their 

total number of counts.  The 0.5σ threshold histogram on average has an order of magnitude 

more detections than the 3σ, as it includes most all plausible proton aurora detections; 

alternatively, the 3σ threshold is more selective, only including the brightest proton aurora 

detections.  The close similarities between the detection threshold histograms demonstrates that 

the results of our study are not significantly impacted by the choice of a detection threshold.  We 

therefore use the detection threshold of 0.5σ, so as to include both bright and faint events, and to 

thereby obtain the best statistics on the occurrences and phenomenology of proton aurora.   

We have investigated the robustness and possible biases of our chosen methodology’s 

ability to account for seasonal variations of the neutral CO2 atmosphere (e.g., Jain et al., 2015; 

Bougher et al., 2017).  The peak altitude range for proton aurora (110-150 km) encompasses the 

majority of airglow peak altitudes observed by IUVS; thus, variations in the neutral atmosphere 

will also affect the altitude of peak energy deposition for H and protons.  Our selected 

methodology uses a single threshold value to identify proton aurora throughout an entire dataset, 

irrespective of any variations that might influence the shape and intensity of the altitude profiles 
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(e.g., intensity variations due to season or SZA).  Using a single detection threshold could in 

some cases cause proton aurora events with relatively small emission enhancement values to go 

undetected (e.g., a profile with a shallow peak).  By using a 0.5σ threshold, we include even the 

comparatively small proton aurora events, thereby minimizing potential omissions associated 

with this method.  And although the threshold value varies slightly when different data are 

included/excluded from the study (due to small changes in the standard deviation and mean), any 

statistical changes in the dataset are minimal and do not significantly impact the scientific results 

(as determined by including new data in our study as the mission progressed).  Consequently, we 

find our chosen methodology to be most effective at automatically identifying proton aurora 

events in the dataset (having more positive detections and fewer false detections when compared 

with other methods).   
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Figure 2.3: Histograms of all IUVS data (grey) and proton aurora detections using 0.5σ threshold (blue) and 3σ threshold 

(green) as a function of different observational variables.  In each sub-panel we present normalized proton aurora detections 

showing occurrence rates (pink). Occurrence rates are determined by dividing 0.5σ detection counts by all data counts in each 

histogram bin.  Note that potential data sampling biases affect the local time and geographic latitude histograms, and local time 

data have been subset to include only low- and mid-latitude data (discussed further in text).  Highest proton aurora occurrence 

rates are observed on the dayside at low SZAs and around Ls 270 (southern summer solstice). 
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2.3 Proton Aurora Phenomenology and Variations 

The normalized proton aurora histograms in Figure 2.3 (pink subplots) represent proton 

aurora occurrence rates.  In creating these normalized histograms, values from proton aurora 

detection histograms have been divided by values in each bin from the entire dataset histograms.  

The highest proton aurora occurrence rates are correlated with low peak SZAs, daytime local 

times, peak altitudes between 110-120 km, and southern summer solstice (solar longitude, Ls, 

270).  There are apparent peaks in the occurrence rate histograms with respect to local time and 

latitude (Figure 2.3) in the late afternoon and near the southern pole; however, we note that these 

peaks are likely the result of a data sampling bias due to spacecraft observation location during 

certain seasons (explained in detail below).  The largest emission enhancements are observed in 

orbits 4107, 4224, and 4235 (Figure 2.2), and occur around southern summer solstice (altitude-

intensity profiles for these orbits are presented in Supplementary Figure 2.1).   

2.3.1 Proton Aurora Correlations and Occurrence Rates: SZA, Season, Local Time, and 

Altitude Dependence  

Figure 2.4 displays normalized histograms of proton aurora occurrence rates throughout 

the MAVEN mission.  Note that the cyclic oscillations in peak intensity, SZA, and latitude are 

due to the precession of the MAVEN orbit, which changes the location of the spacecraft 

periapsis over time.   The highest occurrence rates correspond with low SZAs, on the dayside 

(<~100°).  Additionally, the highest occurrence rates are observed around orbits 1000 and 4200.  

These two orbit ranges occur near Ls ~270 (we note that daytime data are not available 

immediately before or during Ls 270 near orbit 1000).  During this season, proton aurora 

emission enhancements and peak intensities exhibit some of the highest observed values 

throughout the mission (as high as 7kR and 20 kR, respectively), reaching nearly three times 
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higher than average values in other seasons.  Further, high occurrence rates primarily occur at 

low peak altitudes (110-130 km), with the notable exception being near southern summer solstice 

when high occurrence rates are observed at significantly higher altitudes (ranging between 110-

150 km).  This is coincident with the inflation of the lower atmosphere during this season.   

In Figure 2.5 we present correlations between select variables for the entire dataset.  We 

observe a strong correlation between low SZAs and high peak intensities (Figure 2.5A), 

confirming observations of high proton aurora intensity occurrence rates.  (Note that apparent 

bands in intensity in Figure 2.5A are due to the precession of the MAVEN orbit causing the 

location of the periapsis to change during different seasons and SZAs.)  We also observe a 

correlation between low SZAs and high emission enhancements for proton aurora events (Figure 

2.5B).  We find that proton aurora emission enhancements and peak intensities reach a maximum 

around southern summer solstice (Figure 2.5 D and E), further confirming previously identified 

seasonal trends in occurrence rates.  Additionally, expanding on our findings of peak altitude 

occurrence rates, we find that proton aurora profiles have the highest peak altitudes and the 

largest range of altitudes (compared to other seasons) around southern summer solstice (Figure 

2.5F and Supplementary Figure 2.2).  (Note that altitude gaps in Figure 2.5F are due to the 5 km 

altitude binning of IUVS Level 1C data products.)   

Proton aurora primarily occur during daytime local times, with an apparent peak in the late 

afternoon (Figure 2.3, Figure 2.4 and Figure 2.5C).  We note that the data in local time plots 

presented herein have been subset to include only low- and mid-latitude data (i.e., within ±60° of 

the equator), as local times near the poles during summer/winter are not physically meaningful 

(comparison local time plots which include the entire dataset can be found in Supplementary 

Figure 2.3).  Around southern summer solstice, the highest proton aurora occurrence rates with 
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respect to local time occur in the afternoon near orbit 1000 and span a range of dayside times 

near orbit 4200 (Figure 2.4).  The peak in occurrence rate around local time 15:00Hr in Figure 

2.3 is likely due to an abundance of data at this local time during southern summer (see Figure 

2.4 and Supplementary Figure 2.4).  And the few apparent proton aurora detections at local times 

in the nighttime are primarily at high latitudes during local hemispheric summer (see 

Supplementary Figure 2.4).  Thus, we do not identify any proton aurora dependence on local 

time, but rather, only a dependence on dayside occurrence, which is more appropriately 

characterized by SZA.   

We note that although the highest proton aurora peak intensities, emission enhancements, 

and occurrence rates are observed near southern summer solstice, we also observe some high 

values for all of these variables throughout the rest of the year (e.g., just after orbit 3000 and 

before orbit 6000 in Figure 2.4).  Enhancements and peak intensities of proton aurora are, 

however, much smaller during other times of the year.  Further, the high occurrence rates that do 

not occur near Ls 270 tend to be short-lived, typically spanning only weeks, rather than months at 

a time when observed around Ls 270.  These events are likely correlated with either increased 

solar activity or regional/global dust activity on the planet (explained in more detail in the 

Discussion section). 

Figure 2.6 shows proton aurora detection and occurrence rate plots (similar in style to 

those of Figure 2.3) that are further binned to identify variations in season and latitude.  The lack 

of data at low SZAs in many bins in Figure 2.6 (i.e., beige regions in occurrence rate plots) 

makes it challenging to determine occurrence rates near the subsolar point.  Proton aurora 

occurrence rates with respect to SZA reach nearly 100% around Ls 270 in the southern 

hemisphere, providing quantitative confirmation of the seasonal increase in occurrence rates 
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described above.  During this season and latitude, the SZA histogram exhibits the expected shape 

of a proton aurora SZA histogram: having highest occurrence rates at low SZAs and dropping off 

sharply at higher SZAs.  We also observe high occurrence rates (>60%) and a similar decreasing 

histogram shape at mid-latitudes during this season.  While the majority of bins have lower 

occurrence rates (averaging ~25%, with the exception of the before-mentioned Ls 270 season), 

an apparent exception to the very low occurrence rates outside of Ls 270 may be the southern and 

mid-latitude plots in the Ls 360 bins, having occurrence rates between 40-50%.  Although these 

rates are still far below the highest values observed near Ls 270, they are likely due to the 

extended period of high occurrence rates near orbit 1000 (see Figure 2.4), which began just after 

Ls 270 and continued into the beginning of Ls 360; hence, these are associated with a prolonged 

period of proton aurora events at the end of southern summer.  

2.3.2 Variables with No Apparent Correlations: Geographic Location and Spacecraft 

Observation Parameters 

Due to the minimal data available at northern latitudes and low SZAs during the Ls 270 

season (and because there are far fewer total data counts in the mid-latitude bin in Figure 2.6), it 

would be inaccurate to infer a latitudinal dependence from Figure 2.6.  High occurrence rates in 

the orbit 1000 range are from mid-latitude data, and southern latitude data in the orbit 4200 

range.  Because the MAVEN spacecraft periapsis was primarily located in the southern 

hemisphere around Ls ~270, when the highest proton aurora rates occur, comparable periapsis 

data for northern hemispheric summer months are not abundant.  This data bias, therefore, gives 

the appearance of a latitudinal dependence that likely does not exist (e.g., Figure 2.3 and Figure 

2.4).  We further discuss the geographic dependence of proton aurora (or rather, lack thereof) in 

the Discussion section.   
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Ritter et al. (2018) proposed that spacecraft observational parameters such as spacecraft 

altitude might play a role in the detectability and observed intensities of proton aurora.  We do 

not observe any dependence on spacecraft altitude, or tangent point distance for proton aurora 

occurrence or intensity. 

2.3.3 Atypical Proton Aurora Detections 

In addition to the typical proton aurora events outlined thus far (which usually have 

continuous detections in all similar SZA swaths within an orbit), we also observe many instances 

of proton aurora which only display detections in a few discontinuous mid-orbit swaths, which 

we refer to as “variable” proton aurora.  This type of proton aurora has recently been found to be 

potentially associated with transient layers in the Martian ionosphere (Crismani et al., 2019).  

Similar variations in proton aurora have also been observed on Earth and are often referred to as 

“pulsating” proton aurora (e.g., Eather, 1967; Nomura et al., 2016; Ozaki et al., 2016).  It 

remains uncertain based on current observations of these features at Mars whether they vary 

spatially and/or temporally, as there is plausible evidence suggesting both.  More work needs to 

be done to unambiguously determine the frequency of these events in the dataset, and to 

characterize the driving factors for this type of variation. 

Finally, we note that a small number of proton aurora events have been identified on the 

nightside of the planet (e.g., Figure 2.3 SZA subplots, Figure 2.6, and Figure 2.5C).  Work is 

ongoing to better understand the formation mechanisms responsible for producing nightside 

Martian proton aurora, but a detailed assessment of these events is beyond scope of what we 

present in this study.  We defer discussion of nightside proton aurora to a forthcoming paper. 
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Figure 2.4: Normalized 2-D histograms showing proton aurora occurrence rates as a function of different observational 

variables and MAVEN orbit (occurrence rates determined as in Figure 2.3).  Note that local time data have been subset to 

include only low- and mid-latitude data (discussed further in text).  Highest occurrence rates, emission enhancements, peak 

intensities, and peak altitudes are observed around southern summer solstice (Ls ~270), and correspond with low SZAs (i.e., 

daytime occurrences). 
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Figure 2.5: Proton aurora variations with respect to SZA (A&B), local time (C), and season (Ls) (D-F).  Color represents 

emission enhancement percentile bin (as in Figure 2.2, right), and proton aurora detections correspond with percentiles greater 

than ~90th percentile.  Note that local time data have been subset to include only low- and mid-latitude data (discussed further in 

text).  Proton aurora display high intensities, large peak enhancements, and low SZAs (occurring in daytime), and display 

highest intensities, enhancement, and altitudes near southern summer solstice (Ls ~270).   
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Figure 2.6: Seasonal and latitudinal variations of SZA for proton aurora.  Horizontal bins correspond with latitude (60° bin size) 

and vertical bins with Mars season (90° bin size, around each major season).  Top plots: All IUVS data (grey) and proton aurora 

detections (blue).  Bottom subplots: Proton aurora occurrence rates (pink) (occurrence rates determined as in Figure 2.3).  

Beige areas on normalized subplots represent bins where the total number of counts is less than or equal to ten.  Note that 

apparent latitudinal dependence is likely due to a data sampling biases (discussed further in text).  Occurrence rates reach 

nearly 100% at low SZAs around southern summer solstice (Ls 270).   

2.4 Discussion 

In this study we determine occurrence rates and seasonal variations of Martian proton 

aurora for the first time.  We identify proton aurora detections as profiles with an enhancement 

difference greater than a chosen threshold.  Using a detection threshold of 0.5σ plus the mean, 

we identify proton aurora detections in 9.7% of IUVS altitude-intensity profiles from 26.5% of 

orbits (corresponding with detections in 4254 of all profiles from 1074 different orbits).  When 
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considering only dayside profiles (i.e., SZA<105), the detection rate increases to 14.1%, with 

notable seasonal variability (e.g., annual proton aurora occurrence rates with respect to SZA 

ranging between ~25-100%).  By comparison, IUVS has detected diffuse aurora on Mars in a 

few percent of orbits with favorable geometry (based on Schneider et al., 2018, and references 

therein); and discrete aurora detections are rarer still in the IUVS dataset.  Based on these results, 

we find that proton aurora are currently the most commonly observed type of aurora at Mars.  

The two factors having the largest influence on proton aurora intensity and occurrence rate 

are SZA and season.  The highest emission enhancements, intensities, peak altitudes, and 

occurrence rates are all observed around southern summer solstice, and occurrence rates are 

highest at low SZAs (on the planet’s dayside) (Figure 2.3, pink subplots).  Occurrence rates 

approach 100% in southern summer at low SZAs, and average less than 25% (peaking at 25-

50%) during other seasons.  A correlation between proton aurora occurrence rate and low SZAs 

was expected based on the ENA-driven formation process (confining proton aurora to the Mars 

dayside).  Kallio and Barabash (2001) predict a quantitative dependence on SZA in modeled 

correlations of SZA with precipitating H atom particle flux and energy flux; it is tempting to 

compare this dependence to our occurrence rates but due to the differences in observed variables, 

these cannot be directly quantitatively compared.  A closer (though still incomplete) qualitative 

comparison to the Kallio and Barabash (2001) predictions would be Figure 2.5A, which shows 

the peak intensity of H-ENAs from proton aurora (yellow data points) falling off as a function of 

SZA. 

2.4.1 Dependence on Local Time, SZA, and Induced Magnetic Field 

We do not observe any correlation in our dataset between proton aurora and dawn/dusk 

local times.  However, we might expect these asymmetries to exist based on dawn-dusk 
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asymmetries in other geophysical parameters such as those predicted via modeling of H density 

and escape flux (Chaufray et al., 2015), as well as for the induced magnetic field (Liemohn et al., 

2017; Fang et al., 2018).  These factors are expected to create a bulge in H at the dawn or dusk 

terminator that alternates between the terminators with changing season and/or solar cycle.  Such 

variations could indeed lead to a local time dependence for proton aurora.  We note that there is a 

lack of data spanning all local times for latitudes/seasons when an observed region is not 

continually illuminated by sunlight (i.e., most proton aurora data are from the poles during local 

summer).  Case studies spanning a larger range of local times and diurnal illumination conditions 

would need to be conducted in order to determine a dependence on local time with certainty. 

The shape of the histogram of proton aurora occurrence rate with respect to SZA in Figure 

2.3 does not follow the predicted decreasing trend with highest occurrences near the sub-solar 

point, and motivates further examination of the factors controlling the occurrence rate with 

respect to SZA.  Since most of the histograms in Figure 2.6 have very low occurrence rates at 

low SZAs (when sufficient data exist), it is possible that some mechanism is responsible for 

suppressing proton aurora occurrence at low SZAs.  One possible mechanism is given by Gerard 

et al. (2019), who model Martian proton aurora under varying induced magnetic field intensities 

and orientations.  They show that the magnitude and direction of the induced magnetic field at 

Mars can lead to a magnetic barrier effect, stopping protons from penetrating into the 

atmosphere.  Prior studies have measured an induced field around Mars with a magnitude that is 

inversely dependent on SZA and reaches values as high as 40nT near the sub-solar point (e.g., 

Brain et al., 2003; Akalin et al., 2011).  Based on the results of their modeling, Gerard et al. 

(2019) predict that this SZA-dependent induced magnetic field could lead to a lack of proton 

aurora near the sub-solar point, where magnetic field intensities are highest.  Thus, we may be 
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observing the SZA effects of this field on proton aurora occurrence rate in our dataset, leading to 

suppressed occurrence rates at low SZAs in the SZA histogram of Figure 2.3.  Gerard et al. 

(2019) also note that deviations in orientation from a horizontal induced magnetic field can guide 

protons deeper into the atmosphere rather than act as a magnetic barrier.  During times of 

southern summer observations, when we observe the expected decreasing SZA histogram shape 

(Figure 2.6), it is possible that the induced magnetic field may have had a different magnitude or 

orientation favoring proton penetration at low SZAs; however, as the likelihood of favorable 

magnetic field conditions only during this season is small, we do not expect this to be the case.  

Another explanation is that the histogram shape during this time period is due to the much higher 

occurrence rates in this season relative to other seasons (i.e., nearing 100% in southern summer 

versus <25% in most other seasons), allowing the shape of the histogram the be more clearly 

discerned.   

In addition to SZA effects on proton aurora, Gerard et al. (2019) also demonstrate that 

both the presence of a horizontal induced magnetic field and the ratio of H+/H-ENAs in the 

incident beam can significantly decrease the intensity and peak altitude in a proton aurora 

altitude-intensity profile. They also find that a horizontal induced magnetic field, which leads to 

the magnetic barrier effect and blocks proton precipitation, would slightly widen the Ly-α 

spectral line.  While we do not address the influence of local magnetic field strength and 

orientation in our study, changes in the peak altitude and intensity of a profile are detectable in 

IUVS data.  However, it is worth noting that emission feature spectral line shape effects are 

below the resolution of IUVS so line broadening would not be observable in our dataset, and H-

+/H-ENA ratios cannot be determined using currently available MAVEN data.  While individual 

case studies may reveal these effects, our current statistical study does not.  In a future study, we 
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intend to constrain the effects of variability in the interplanetary magnetic field (IMF) and 

induced magnetic field, as well as that of the remanent crustal magnetic fields on the distribution 

of Martian proton aurora detections.   

2.4.2 Seasonal and Intermittent Drivers on Proton Aurora 

Below we discuss some additional drivers that influence Martian proton aurora magnitude 

and variability on short and long timescales.  As with all planetary aurora, increased solar 

activity affects the intensity of Martian aurora.  Proton aurora and penetrating protons have been 

previously found to be associated with high solar wind flux and solar events such as coronal 

mass ejections (e.g., Deighan et al.; 2018, Ritter et al., 2018; Halekas et al., 2015).   

We observe the highest annual proton aurora intensities near southern summer solstice (Ls 

270), rather than immediately following perihelion (Ls 250).  Due to Mars’ highly elliptical orbit, 

the planet is ~0.3AU closer to the sun at perihelion than aphelion.  This substantial change in the 

sun-planet distance would cause higher solar extreme ultraviolet (EUV) irradiance, as well as 

increased solar wind flux and temperatures in the upper atmosphere near perihelion.  Because 

increasing the temperature of H atoms (and/or the abundance of H atoms along an observational 

line of sight) causes an increase in Ly-α brightness (e.g., Chaufray et al., 2008; Bhattacharyya et 

al., 2017; Chaffin et al., 2018), the changes in the neutral atmosphere following perihelion would 

lead to increased Ly-α intensities in the H corona.  Further, because it is not possible to 

distinguish between background Ly-α emitted by the neutral H corona and Ly-α emitted by H-

ENAs in a proton aurora profile, the increased intensities of coronal H could also then partially 

contribute to higher intensities in proton aurora profiles.   

Because of the essential role of the coronal H in proton aurora formation, any variations in 

the neutral H corona will strongly influence Martian proton aurora.  Seasonal trends in coronal H 
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have previously been observed at Mars by multiple different spacecraft/instruments (Chaffin et 

al., 2014; Clarke et al., 2014; Battacharya et al., 2015; Mayyasi et al., 2017), finding that H 

abundances and altitudes are highest around southern summer solstice (Ls 270).  Halekas (2017) 

proposes that the timing of the increased coronal H abundance may be due to “either a lag in the 

response of the upper atmosphere to solar input or a seasonal influence in addition to the direct 

effects of the solar EUV.”  Halekas (2017) also reported a peak in H column density upstream of 

the Mars bow shock near southern summer solstice, finding that the column density increases 

nearly ten-fold over the course of a year (leading to higher escape rates during this time).  

Chaffin et al. (2017) demonstrate, using a photochemical model, that if atmospheric water is 

lofted to high altitudes during southern summer it can be photodissociated into H, and 

subsequently inflate the H corona.  The increased coronal H abundances around southern 

summer solstice would thereby increase the background coronal brightness and move more H 

upstream of the bow shock.  This additional upstream coronal H would lead to more charge 

exchange interactions between solar wind protons and the H corona, increasing production of the 

H-ENAs that penetrate the atmosphere, and ultimately leading to higher proton aurora 

occurrence rates and intensities during this season.   

The major contributor to the increased peak altitude of proton aurora during southern 

summer is an inflated neutral CO2 atmosphere and larger scale height (e.g., Jain et al., 2015; 

Bougher et al., 2017).  Ly-α is absorbed by CO2 at low altitudes, being partially absorbed below 

~130 km and completely absorbed by 80 km (e.g., Gerard et al., 2019).  Gerard et al. (2019) 

demonstrate via modeling that CO2 absorption increases the peak altitude (and decreases the 

peak intensity) in an observed proton aurora Ly-α altitude-intensity profile.  Because the CO2 

density in the Martian thermosphere changes with season, this variation should alter the altitude 
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of proton aurora profiles over the course of the year.  Thus, higher CO2 densities and altitudes 

near Ls 270 contribute to higher proton aurora peak altitudes in this season by inflating the 

neutral lower atmosphere, thereby increasing the peak altitude of energy deposition for H and 

protons in the atmosphere.  This annual CO2 variation on its own, however, cannot explain the 

higher peak intensities observed in proton aurora profiles during this season, meaning that an 

alternate process(es) must be responsible for seasonally increased proton aurora brightness.   

Regional/global dust storms and other dust activity can also contribute to increasing the 

peak altitude, intensity, and occurrence rates of proton aurora on Mars.  Dust activity increases 

the temperature of the atmosphere, thereby also increasing the scale height and peak altitude of 

thermospheric CO2 (e.g., Jain et al., 2015; Liu et al., 2018; Heavens et al., 2018).  Vandaele et 

al. (2019) found that dust storms on Mars lead to a significant increase in H2O and HDO at high 

altitudes (40-80 km) on timescales as short as days.  This increased high altitude water can then 

photodissociate into H and supply more H to regions of the corona upstream of bow shock, 

thereby increasing proton aurora occurrence, intensity, and peak altitude.  Thus, dust activity 

affects proton aurora similarly as the inflated CO2 atmosphere and H corona, but over shorter 

timescales (e.g., days to weeks).  We might expect to see the most pronounced effects of dust 

activity on proton aurora during southern summer (just after the Martian dust storm season 

begins).   

2.4.3 Influence of the Bow Shock and Geographic Location on Proton Aurora 

Because proton aurora form as a result of charge exchanges with coronal H present 

upstream of the bow shock, changes in the bow shock shape/location can affect proton aurora in 

similar ways as the previously described H corona variations.  The location of the Martian bow 

shock has been observed to move with season, becoming more inflated and moving further away 
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from the planet near perihelion (e.g., Hall et al., 2016; Halekas et al., 2016).  And because the 

bow shock radius reaches a maximum around southern summer solstice, it is likely that the 

mechanisms responsible for this variation also influence seasonal variations in proton aurora.  

Hall et al. (2016) observe the bow shock altitude at the terminator increase by 11% at perihelion 

compared to aphelion and theorize that it is likely most heavily influenced by solar EUV 

irradiance (as opposed to dynamic pressure).  However, it should be noted that compared to the 

bow shock inflation, the corresponding inflation of the H corona (i.e., increased H abundance 

and column density) must be significantly higher, so as to inflate further beyond the bow shock 

than in other seasons and allow an increase in proton aurora occurrence rates during this time.   

We do not observe any clear geographic variability in Martian proton aurora.  Hall et al. 

(2016) note that the Mars bow shock in the southern hemisphere is on average located slightly 

farther away (2.4%) from the planet than in the northern hemisphere.  Although such a difference 

could create latitudinal variations in proton aurora occurrence, we note that this small difference 

moves the location of the bow shock by only a fraction of a H scale height, and thus should not 

strongly influence locations of occurrence (though larger changes in bow shock altitude could 

cause a presumably larger change in proton aurora occurrence rate).  It is plausible that proton 

aurora could theoretically exhibit a latitudinal dependence caused by remanent southern 

hemispheric crustal fields (e.g., Brain et al., 2003).  But because we observe high occurrence 

rates at all latitudes where data exist around southern summer solstice (i.e., mid- and southern 

latitudes), we determine that any apparent latitudinal dependence in the southern hemisphere 

(e.g., Figure 2.3 and Figure 2.6) is likely an observational bias caused by the location of periapsis 

during these times of observation (e.g., in Figure 2.4 compare latitude subplot with observation 

periods around Ls ~270 and at low SZAs).  We note that there is a lack of data at northern 
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latitudes and low SZAs in southern summer; as more northern latitude data become available in 

this season, we will be able to rule out a latitudinal dependence with more certainty.  We also do 

not observe a strong dependence on geographic longitude for proton aurora occurrence (see 

Supplementary Figure 2.5).  We might expect longitudinal trends to exist in the data at some low 

level based on the presence of nonmigrating atmospheric waves and tides (e.g., Lo et al., 2015; 

England et al., 2016) and also in the southern hemisphere due to localized remanent crustal 

fields.  These waves and tides can cause local CO2 density variations, which could lead to 

density variations in the H corona.  Such a longitudinal dependence may become visible if the 

data are detrended to account for SZA and seasonal variations in specific case studies.   

2.4.4 Solar Cycle Variations 

Because the MAVEN mission has only spanned a fraction of a solar cycle, we cannot 

observe long-term effects of solar cycle variation on proton aurora in our data.  However, we can 

hypothesize on these effects based on our observations and knowledge of the driving processes 

of Mars proton aurora.  Data used in this study were collected during the declining phase of the 

solar cycle (immediately following solar maximum).  The Ritter et al. (2018) study (another 

multi-year Mars proton aurora study) also used data taken during the declining and minimum 

parts of the previous solar cycle, limiting our ability to directly compare results from different 

solar cycle phases.  The higher occurrences of CME’s and solar energetic particle (SEP) events 

(e.g., increased proton flux) during solar maximum periods would initially suggest an increase in 

proton aurora occurrence rates during solar maximum conditions.  However, Kallio and 

Barabash (2001) propose that due to the denser H corona at solar minimum than maximum, the 

penetrating H-ENA particle flux (and consequently, proton aurora occurrence) will be higher 

during solar minimum periods.  Models of Mars dayside exospheric temperatures show that 
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average temperatures change by 100-150K over the course of a solar cycle, and annual changes 

in temperature between aphelion and perihelion are higher during solar maximum than solar 

minimum conditions (Bougher et al., 2014).  Chaufray et al. (2015) demonstrate via modeling 

that EUV heating at solar maximum leads to an increased coronal H Jeans escape flux and 

decreased H density at the exobase compared to solar minimum.  Moreover, Mayyasi et al. 

(2018) observed that even temperature changes due to impulsive events can significantly impact 

the H corona: finding that an 80K increase in exospheric temperature (due to a CME and solar 

flare in their study) led to increased H brightness on the dayside, decreased H density at the Mars 

exobase, and a nearly five-fold increase in instantaneous H escape flux due to Jeans escape.  We 

expect that increased temperatures during solar maximum will lead to inflation of the H corona 

further beyond the bow shock (decreasing H density at the exobase but increasing H column 

density upstream of the bow shock) and cause higher intensities and occurrence rates for proton 

aurora, similar to currently observed seasonal variations.  Future MAVEN measurements 

spanning a complete solar cycle will be beneficial in gaining a more robust understanding of the 

sun’s interaction with Mars’ upper atmosphere, as well as the long term influences of these 

interactions on proton aurora caused by solar cycle variations. 

2.5 Summary and Conclusions 

The results of our study provide a new understanding of the major factors driving proton 

aurora, and the long-term phenomenology and variability of these events as observed over 

multiple Martian years.  We find that that the two primary factors influencing proton aurora rates 

are solar zenith angle (SZA) and season.  Proton aurora primarily occur on the dayside at low 

SZAs, and the highest occurrence rates, emission enhancements, intensities, and peak altitudes 

occur around southern summer solstice (Ls ~270).  Proton aurora are prevalent at Mars, 
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occurring in ~14% of dayside IUVS periapsis data, with significant seasonal variability (having 

occurrence rates approaching 100% near southern summer solstice at low SZAs); this makes 

proton aurora the most commonly observed type of aurora at Mars.  The annual variation in 

proton aurora occurrence rate is in keeping with previously observed variations of the Mars H 

corona.  More specifically, seasonally induced lower atmospheric dynamics and chemistry 

around southern summer solstice lead to inflation of the H corona further beyond the bow shock 

and magnetic pileup boundary (MPB) relative to other seasons, exposing more neutral H to 

interact with incident solar wind protons.  The combination of these influencing factors, along 

with higher atmospheric temperatures and solar wind flux near perihelion, increase occurrence 

rates and intensities of Martian ENA-driven proton aurora around southern summer solstice.   

Proton aurora are one of the few observable Mars phenomena that are created by direct 

interactions between solar wind protons and the H corona.  Thus, by studying Martian proton 

aurora we can better understand the connection between the sun, Mars’ H corona, and its near-

space plasma environment.  Moreover, proton aurora occurrence and intensity may serve as a 

proxy for variations in each of these regions, as well as tracking changes in lower atmospheric 

dynamics (e.g., the neutral CO2 atmosphere and dust activity).  Studying Martian proton aurora 

may also provide additional context in understanding atmospheric loss and evolution, as the 

processes responsible for aurora formation at Mars (e.g., solar wind interactions and electron 

stripping/ionization in the H corona) are also responsible for stripping away the atmosphere.  

More work needs to be done to better understand these phenomena, including case studies of the 

effects of dust activity, the influence of changes in the induced magnetic field, modeling of 

absorption in the lower CO2 atmosphere, and longer temporal coverage showing variations over 

a full solar cycle.  As we learn more about Martian proton aurora, we also learn more about the 
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Sun-Mars system as a whole and gain an understanding of interactions at other planetary bodies 

that lack a global magnetic field and exhibit a neutral H corona.   

 

Chapter 2 Supplementary Figures 

 
Supplementary Figure 2.2: Altitude-intensity profiles for the top four orbits with the highest emission enhancement differences 

(Orbits 4107, 4224, 4235, and 4107).  These orbits have corresponding enhancement values of 7.13kR, 6.99kR, 6.87kR, and 

6.77kR, respectively.   
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Supplementary Figure 2.3: Seasonal and latitudinal variations of peak altitude for proton aurora.  Histogram plots are as 

described in Figure 2.6: All IUVS data (grey), proton aurora detections (blue), and proton aurora occurrence rates (pink). Beige 

areas on normalized subplots represent bins where the total number of counts is less than or equal to ten.  Note that apparent 

latitudinal dependence is likely due to a data sampling biases and the location of MAVEN periapsis during this time (discussed in 

the text).  The highest proton aurora occurrence rates are observed around southern summer solstice (Ls 270) spanning a wide 

range of altitudes.   
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Supplementary Figure 2.4: Proton aurora variations with respect to local time.  These plots show the same correlations as 

corresponding plots in the main text (Figure 2.3, Figure 2.4, and Figure 2.5C), but here the entire local time dataset is plotted 

(i.e., data from all latitudes) for comparison to plots in the main text that include only local time data from low- and mid-

latitudes (±60° latitude).   

 



49 | Proton Aurora on Mars 

 
Supplementary Figure 2.5: Seasonal and latitudinal variations of local time for proton aurora.  Histogram plots are as described 

in Figure S2 (and Figure 2.6).  Note that apparent latitudinal dependence is likely due to a data sampling biases and the location 

of MAVEN periapsis during this time (discussed in the text).  The highest proton aurora occurrence rates are observed around 

southern summer solstice (Ls 270), covering a wide range of local times due to the location of the MAVEN periapsis in this 

season.   
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Supplementary Figure 2.6: Seasonal and latitudinal variations of geographic longitude for proton aurora.  Histogram plots are 

as described in Figure S2 (and Figure 2.6).  Note that apparent latitudinal dependence is likely due to a data sampling biases 

and the location of MAVEN periapsis during this time (discussed in the text).  The highest proton aurora occurrence rates are 

observed around southern summer solstice (Ls 270); however, no clear longitudinal dependence is discernable.   
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Chapter 3 Key Points 

• We identify a correlation between orbit-averaged H Lyman-alpha emission enhancements 

and penetrating proton fluxes for ~two Mars years of proton aurora events. 

• Large offsets from the expected correlation are caused by major dust storm or extreme solar 

activity, causing variability in the observed proton-hydrogen ratio. 

• Using the penetrating proton flux, we may empirically estimate the proton aurora Ly-α 

emission enhancement for different atmospheric/solar conditions. 

Chapter 3 Abstract 

In this study, we compare remote sensing and in situ observations of Martian proton aurora 

events.  Based on the relationship between penetrating protons and hydrogen (H) energetic 

neutral atoms (ENAs) in the formation of proton aurora, we observe an expected correlation 

between the H Lyman-alpha (Ly-α) emission enhancement (used as a proxy for H-ENAs) and 

penetrating proton flux.  However, we observe a large spread in the relative comparison of these 

two datasets.  We determine that this spread is correlated with one of two major impacting 

events: high dust activity or extreme solar activity.  Proton aurora events exhibiting a relative 

excess in penetrating proton flux compared to Ly-α enhancement tend to occur during periods of 

high dust activity (caused by an increased equilibrium charged fraction and muted Ly-α peak 

brightness, due to the associated higher neutral atmospheric density and corresponding 

absorption by CO2 on the bottom-side of the Ly-α profile).  Conversely, proton aurora events 

exhibiting a relative deficit of penetrating proton flux compared to Ly-α enhancement tend to 

occur during periods of extreme solar activity (caused by larger Ly-α enhancements due to 

higher solar wind particle temperatures).  We also find that the largest proton aurora events occur 

during both dust storm and solar events, due primarily to the intensified increase in H column 



53 | Proton Aurora on Mars 

density above the bow shock.  We present a simplified yet novel method for empirically 

estimating the Ly-α emission enhancement of proton aurora events based on the penetrating 

proton flux and a knowledge of local dust/solar activity at the time.  Lastly, we compare proton 

aurora observations with interplanetary magnetic field (IMF) magnitudes and orientations 

upstream of the Martian bow shock.  We identify a possible correlation between proton aurora 

activity and specific IMF cone/clock angles, and a possible preferential occurrence during near-

radial IMF orientations.   

3.1 Introduction 

Martian proton aurora are understood to form by solar wind protons interacting with 

neutral hydrogen (H) in the extended Martian corona to convert into energetic neutral atoms 

(ENAs).  These ENAs, maintaining the same energy and velocity as the incident solar wind can 

then bypass the bow shock and magnetic pileup boundary (MPB) to penetrate into the upper 

portions of the atmosphere (i.e., the Martian thermosphere).  The incident solar wind protons 

convert between ENAs and protons through charge exchange and/or electron stripping many 

times before reaching a stopping altitude (e.g., Supplementary Figure 3.1) and de-exciting from 

their neutral state to emit a photon that can be observed in the H Lyman-alpha (Ly-α) emission 

(121.6 nm).  This process was initially identified to occur at Mars by Halekas et al. (2015) based 

on observations be the Solar Wind Ion Analyzer (SWIA) (Halekas et al., 2013) onboard the Mars 

Atmosphere and Volatile EvolutioN (MAVEN) spacecraft (Jakosky et al., 2015).  Halekas et al. 

(2015) observed a population of solar wind protons (as identified by the bulk energy and 

velocity) that had penetrated into the Martian thermosphere (referred to as “penetrating protons”) 

and speculated that they may be associated with proton aurora.   
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Following the study by Halekas et al. (2015), Deighan et al. (2018) identified proton 

aurora using the Imaging UltraViolet Spectrograph (IUVS) (McClintock et al., 2015) onboard 

the MAVEN spacecraft (Jakosky et al., 2015).  Proton aurora are observed in in ultraviolet limb 

scan data as an enhancement in the Ly-α emission above the background coronal H brightness 

between an ~110-150 km in altitude.  Deighan et al. (2018) observed multiple instances of 

proton aurora over the span of ~one month and compared IUVS Ly-α and SWIA penetrating 

proton observations during this period.  They observed that increases in SWIA penetrating 

proton fluxes clearly corresponded with increases in the IUVS proton aurora Ly-α “emission 

enhancement” (i.e., the difference between the Ly-α brightness at the peak and at high altitude 

for a Ly-α altitude-intensity profile – e.g., Figure 1 in Hughes et al., 2019).   

A previous study by Hughes et al. (2019) undertook a detailed statistical analysis of proton 

aurora using multiple Mars years of IUVS data.  Hughes et al. (2019) identified both a strong 

dependence on solar zenith angle (SZA) and season: with the most frequent and largest proton 

aurora events occurring on the dayside of the planet (i.e., at low SZAs) around southern summer 

solstice (i.e., solar longitude, Ls, ~270).  This increase in proton aurora activity near southern 

summer solstice was found to coincide with increases in the H column density and escape rate of 

the H corona, caused by seasonally increased atmospheric dust activity (e.g., Hughes et al., 2019; 

Chaffin et al., 2021; Chaffin et al., 2014; Clarke et al., 2014; Halekas, 2017).  This increased H 

abundance beyond the Martian bow shock allows a larger fraction of solar wind protons to be 

converted into H-ENAs, causing a seasonal increase in proton aurora frequency and emission 

enhancement. 

In this study we combine observations from remote sensing and in situ datasets to better 

understand Martian proton aurora.  While many previous MAVEN studies have compared 
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remote sensing and in situ datasets, only the Deighan et al. (2018) has used such datasets to 

specifically evaluate proton aurora.  However, the very limited time period of the Deighan et al. 

(2018) study (~1 month), precluded their ability to observe any seasonal variability or large-scale 

correlations between the datasets.  We undertake the first large-scale statistical comparison of 

IUVS and SWIA observations of proton aurora for multiple years of MAVEN data.   

3.2 Data and Databases 

3.2.1 MAVEN/IUVS proton aurora detections 

We use a database of proton aurora detections compiled in a previous statistical study by 

Hughes et al. (2019) and expand on this list by including observations through MAVEN orbit 

~8400 (note that the previous study considered data through MAVEN orbit ~7500).  These 

proton aurora detections were made using IUVS Level 1C periapsis limbs scans of Ly-α altitude-

intensity profiles.  (Further details on the proton aurora detection methods used can be found in 

the Methodology section of Hughes et al., 2019.)  Using the previously compiled database of 

individual limb scan Ly-α emission enhancements, we average the peak emission enhancement 

values for every limb scan within each MAVEN orbit to determine a single orbit-averaged 

enhancement for proton aurora events.  Averaging the orbit emission enhancement values in this 

study allows for better comparison of IUVS observations with the in situ orbit-averaged 

observations (which are typically averaged for inter-orbit comparisons to remove variability 

caused by the motion/viewing angle of the spacecraft, e.g., altitude and SZA).  Using orbit-

averaged values also helps to avoid discrepancies that arise from the different sampling times 

and locations of the remote sensing and in situ instruments for each of the comparison datasets. 

We exclude orbits with negative orbit-mean enhancements, as these are typically caused by 

observational/instrumental effects. 
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By evaluating the Ly-α emission enhancement (i.e., the Ly-α brightness due to proton 

aurora with the background coronal H brightness subtracted out), we effectively observe only the 

proton aurora contribution to the Ly-α emission.  Thus, while IUVS does not directly measure 

the H-ENA particles associated with proton aurora, the Ly-α emission enhancement serves as a 

proxy for evaluating neutral H associated with proton aurora events.   

3.2.2 MAVEN/SWIA penetrating proton observations  

In this study we use SWIA orbit-averaged penetrating proton fluxes (i.e., the product of the 

average penetrating proton density and velocity for each orbit).  We consider proton flux as 

opposed to density as it also incorporates any changes associated with varying solar wind 

velocity.  By evaluating the average SWIA penetrating proton flux from the periapsis portion of 

each orbit, we exclude any major variability associated with the spacecraft location (e.g., altitude 

and/or SZA) or small-scale intra-orbit variations.  Because SWIA does not measure of the 

penetrating proton population during every orbit (due to the varying altitude and orbit precession 

of the MAVEN spacecraft), we consider only MAVEN orbits with pristine measurements of the 

penetrating proton population (e.g., at altitude ranges below the planet’s bow shock and MPB) 

(e.g., Halekas et al., 2015).  A more detailed description of the parameters used in identifying 

and characterizing penetrating protons in SWIA data is described by Halekas et al. (2015 and 

2016).   

The MAVEN orbits used in this study were selected by identifying orbits that had 

overlapping coverage of both IUVS proton aurora detections and SWIA penetrating proton 

observations.   
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3.2.3 MAVEN/MAG observations 

The Magnetometer instrument onboard the MAVEN spacecraft measures interplanetary 

magnetic fields as well as local planetary magnetic fields in the Martian ionosphere (Connerney 

et al., 2015).  We use a database of orbit-averaged upstream magnetic field magnitudes in the x, 

y, and z directions of the Mars-Sun-Orbit (MSO) coordinate system (we convert these 

orientations to the commonly used cone and clock angles).  This database was compiled 

alongside SWIA measurements to identify and include average values from only MAVEN orbits 

that made pristine measurements of the upstream solar wind (as the changing MAVEN orbit 

limits the possibility of consistency in the location of the spacecraft during every orbit).  Only 

those MAVEN orbits with overlapping proton aurora detections and pristine upstream solar wind 

measurements were included in the IUVS-MAG data comparison.  A detailed description of the 

algorithm used to determine the parameters from MAG and SWIA data is described in Halekas 

et al., 2016 (Section 3.1).   

3.2.4 MAVEN Science Impacting event database 

The MAVEN Science Data Center website contains publicly available MAVEN data and 

spacecraft/instrument information.  This website also contains a database of MAVEN events that 

were observed by spacecraft instruments throughout the mission, as compiled by the MAVEN 

team.  The database can be filtered to include only major MAVEN science impacting events 

(e.g., dust storms, solar wind streams, solar flares, coronal mass ejections (CMEs), solar 

energetic particles (SEPs), and diffuse/discrete aurora).  It should be noted that this database is 

not inclusive of all events, but rather only the most significant events observed by MAVEN.  

Thus, any detailed analyses performed using this database should also incorporate observations 

from specific MAVEN instruments.   
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3.2.5 Mars Climate Database (Montabone et al. (2015) Dust Optical Depths) 

The Mars Climate Database (MCD) is a free resource that provides climatological 

information about Mars.  The MCD is primarily derived from a General Circulation Model 

(GCM) of the Martian atmosphere and validated with observational data (Forget et al., 1999).  A 

particularly useful MCD product for our study is the “Climatologies of the Martian Atmospheric 

Dust Optical Depth”, which provides combined-data gridded maps and derived GCM maps of 

column dust optical depth (9.3 μm absorption) spanning all geographic locations during ten Mars 

years (Montabone et al., 2015).   

We use the MCD database to determine a globally averaged normalized column dust 

optical depth (CDOD) during each MAVEN orbit.  An increasing CDOD value corresponds with 

increasing dust activity on the planet.  We look for time periods of high dust activity that occur 

just before or during MAVEN/IUVS observations of proton aurora.  (We note that globally 

averaging CDOD values provides an appropriate comparison for assessing large-scale variability 

that would lead to dust-induced H escape and expansion of the H corona; however, it also 

removes localized small-scale variability caused by intense regional dust storms.) 

3.2.6 MAVEN/SEP solar activity database 

The Solar Energetic Particle (SEP) instrument onboard MAVEN measures the impact of 

SEPs on the Martian upper atmosphere (Larson et al., 2015).  It is used to measure the energy 

fluxes of high energy solar wind electrons and ions (including protons).  In this study, we 

compare IUVS proton aurora detections to a SEP database of major proton-related solar events 

(compiled by the MAVEN/SEP team) in order to evaluate the effects of high energy solar 

particles on proton aurora. 
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3.2.7 Potential caveats of remote sensing-in situ data comparisons 

It is important to consider the potential caveats that may be associated with comparing 

remote sensing and in situ datasets, (e.g., IUVS and SWIA).  First, there are notable differences 

in the spatial and temporal scales of the measurements.  SWIA observes the local particle 

environment in the immediate vicinity of the spacecraft as MAVEN moves along its orbit.  

Alternatively, IUVS builds up each limb scan observation by integrating the number of photons 

along the line of sight between the spacecraft out to infinity (hence why IUVS ephemeris 

parameters – e.g., altitude, SZA, and geographic location - are typically given as the “tangent 

point” of the parameter).  Thus, while SWIA observes the penetrating proton population along-

track of the spacecraft as it passes through different altitude ranges and locations during the 

periapsis segment of a given orbit, IUVS observes the tangent point altitudes and intensities of 

proton aurora thousands of km away from MAVEN (and perpendicular to the spacecraft 

movement) during the MAVEN orbit periapsis.   

The possible variations in observations pertain not only to differences in the 

location/volume measured by each instrument, but also to the temporal resolution.  Each IUVS 

limb scan is built up by integrating over different altitude ranges during a ~two minute period, 

with a short period between each subsequent limb scan within a given orbit.  Alternatively, 

SWIA typically collects data at a ~4 second cadence during periapsis.  As such, SWIA is better 

suited for observing any small scale variability that is below the temporal resolution of IUVS.  If 

any localized variability occurs in space and/or time during an orbit, it would be extremely 

unlikely that both instruments would simultaneously observe the event.  Thus, in undertaking a 

statistical comparison with the datasets in this study, we assume minimal spatial and/or temporal 

variation between the MAVEN spacecraft and IUVS tangent point (i.e., that no local structures 
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or processes are significantly affecting the in-between region).  Any deviations from this 

assumption would lead to discrepancies in the comparisons.   

Thus far we have described possible caveats for comparing remote sensing and in situ 

datasets onboard MAVEN.  However, it is also important to note that even comparisons between 

different in situ datasets can present challenges due to the different look directions and fields of 

view of certain MAVEN instruments.  For example, the fields of view of the SWIA and SEP 

instruments do not overlap.  Thus, while uncommon for most observations, it should be 

considered that any small scale perturbations in the local particles/fields environment could 

potentially cause inconsistencies between even the different in situ MAVEN observations.    

3.3 Observations and Results 

3.3.1 Proton aurora correlation with MAVEN science-impacting events 

When comparing proton aurora detections with major science impacting events detected by 

MAVEN, we find that almost all proton aurora events correspond with a simultaneous MAVEN 

science impacting event (e.g., dust storms and solar activity).  Figure 3.1 shows a comparison of 

proton aurora detections with other major science impacting events as identified by MAVEN 

during the first ~three Earth years of the MAVEN mission.  The type and duration of each major 

science impacting event is shown on the bottom half of the plot as a discrete point, along with 

the corresponding MAVEN orbit numbers.  The top half of the plot present orbits containing 

proton aurora detections (as identified by Hughes et al., 2019), with the vertical distribution and 

color of the points corresponding with the size of each proton aurora event (i.e., orbits containing 

relatively large proton aurora activity have the largest emission enhancements that are farthest 

offset above the horizontal threshold line).  Based on this preliminary comparison it is evident 

that the primary sources that influence the formation and magnitude of proton aurora on Mars 
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must be either from the “top-down” (i.e., major solar events) or the “bottom-up” (i.e., dust storm 

activity).  In the subsequent sections, we explore these different (and at times, complementary) 

sources for Martian proton aurora variability.  

 

Figure 3.1: Proton aurora detections are shown on the top of the plot with offset and color corresponding to Ly-α emission 

enhancement. The bottom portion of the plot shows most major MAVEN science impacting events observed in the first few years 

of the mission. These science events include dust storms, solar winds streams, CME/SEP events, solar flares (including CME 

and/or SEP events), and discrete and/or diffuse aurora. The season (Ls) and orbit-maximum IUVS limb scan tangent point SZA 

are overplotted for reference as grey linear and light blue sinusoidal plots, respectively.  

3.3.2 Comparison of IUVS Ly-α emission enhancements and SWIA penetrating proton 

fluxes for proton aurora detections 

In comparing orbit-averaged SWIA penetrating proton fluxes with orbit-averaged IUVS 

Ly-α emission enhancements for proton aurora detections (Figure 3.2, left), we identify a clear 

correlation between these datasets.  The trend of the plot of these two variables is mostly linear, 

with some notable deviations from the heuristic line-of-best-fit (which is created using a linear 

least-squares regression fitting routine).  As the penetrating proton flux and Ly-α enhancement 

generally track with each other throughout the MAVEN mission (e.g., Supplementary Figure 

3.2), the same driving processes are likely responsible for variability in both of these parameters.  

Most of the spread from the best-fit line appears to be strongly correlated with season, with 

orbits occurring near/during southern summer solstice (Ls ~270) exhibiting the most spread away 
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from the best-fit trendline (see Figure 3.2 and Supplementary Figure 3.3; note that point colors 

corresponds with Ls in Figure 3.2).   

By considering the offset of each point from the best-fit trendline, we may more 

thoroughly quantify the spread of the data in Figure 3.2 (left).  Figure 3.2 (right) shows each of 

these points plotted as a y-distance offset from the line of best fit for each respective MAVEN 

orbit numbers (note that the area of each data point corresponds with Ly-α emission 

enhancement, a measurement of the magnitude of a proton aurora event).  Orbits with a 

relatively high SWIA penetrating proton flux in comparison with the corresponding proton 

aurora emission enhancement (i.e., the data points mostly in the upper left quadrant of Figure 

3.2, left) are offset above the horizontal trendline location in Figure 3.2 (right).  Alternatively, 

orbits with a relatively small SWIA penetrating proton flux in comparison with the 

corresponding proton aurora emission enhancement (i.e., the points far below the trendline in the 

lower quadrants of Figure 3.2, left) are offset below the horizontal trendline in Figure 3.2 (right).  

It is important to consider that the location of the best-fit trendline is affected by the large spread 

in the data (especially due to seasonal variability); thus, while the exact offset distance of any 

specific data point from the trendline should not be held in high regard, the large offsets 

above/below the line are indeed associated with significant deviation from the trendline.  

Reasons for the extreme offsets from the line of best fit are examined in the following section.  
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Figure 3.2: Left: comparison of orbit-averaged IUVS Ly-α emission enhancement values and SWIA penetrating proton fluxes for 

orbits containing proton aurora detections (color corresponds with solar longitude, Ls). We identify a quasi-linear correlation 

between the two observables, with notable spread in the data (corresponding with orbits near southern summer solstice). Right: 

for each point in the left panel, y-distance offset from the line of best fit versus MAVEN orbit number. The offsets from the best-fit 

line correspond to a relative excess (positive offset) or deficit (negative offset) of penetrating proton flux compared with Ly-α 

emission enhancement (area of each data point corresponds with the orbit-averaged Ly-α emission enhancement). We note that 

these plots are constrained to only orbits containing proton aurora detections.  

3.3.3 Proton aurora observations compared with dust optical depth and solar activity 

A comparison of MAVEN science impacting events from Figure 3.1 with the line distance 

offsets in Figure 3.2 (right) provides even further illumination into reasons for the large spread in 

the data on the IUVS-SWIA comparison plot.  It becomes evident that the data points that exhibit 

a very large positive offset from the best-fit trendline (i.e., those with an excess SWIA flux 

relative to IUVS Ly-α enhancement) appear to correspond with major global dust storms.  

Alternatively, points that exhibit a very large negative offset from the best-fit trendline (i.e., 

those with an excess IUVS Ly-α enhancement relative to the SWIA flux) appear to correspond 

with major solar events (i.e., SEP, CIR, CME, etc.).   

In order to further evaluate the apparent correlations in our results, we compare proton 

aurora detections with observations from other instruments onboard MAVEN and different 

Mars-orbiting spacecraft.  In considering the association with dust activity, we compare our 

results with dust optical depth measurements from the MDC database compiled by Montabone et 

al., 2015; and to evaluate correlations with extreme solar activity we compare our findings with 



Chapter 3. A Combined Remote Sensing and In Situ Evaluation of Martian Proton Aurora | 64 

major solar events observed by the MAVEN SEP instrument.  In Figure 3.3 we plot normalized 

globally-averaged CDOD data from the MCD on top of the data offset distances from the best-fit 

trendline shown in Figure 3.2 (right).  This comparison confirms the identified trends that orbits 

exhibiting a relative excess in SWIA flux (i.e., orbits with highly positive offsets from the 

SWIA-IUVS best-fit trendline) correspond with periods of high CDOD (an indication of major 

dust activity during that time).  And orbits that exhibit a relative excess of IUVS Ly-α 

enhancement (i.e., orbits with highly negative offset from the best-fit trendline) correspond with 

extreme solar events.  We note that the major peak in CDOD between MAVEN orbits ~7000-

8000 corresponds with the planet encircling dust event (PEDE) of 2018.  However, because the 

MAVEN periapsis was observing on the planet’s nightside/terminator during this time (i.e., at 

high SZAs when the Ly-α enhancement is small or non-existent), there were no major proton 

aurora detections.  

 

Figure 3.3: Same as Figure 2 (Right) with annotations showing major dust and solar activity as observed in the Mars Climate 

Database (MCD) and by the MAVEN/SEP instrument, respectively. The overplotted green line represents globally averaged 

normalized column dust optical depth (CDOD) from the MCD. By comparing the datasets in this manner, we observe a trend that 

proton aurora events during orbits with a very large positive offset from the best-fit line appear to correspond with major dust 

storm activity; conversely, proton aurora events during orbits with a very large negative offset from the best-fit line appear to 

correspond with major solar events. (Description of data colors and area are provided in the caption of Figure 2.) 
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 We can further examine the correlation between CDOD and offset from the line of best fit 

by plotting these two quantities against each other, as shown in Figure 3.4A.  However, because 

the data points on the far right side of Figure 3.4A correspond with proton aurora detections at 

very high SZAs just before and during the PEDE, we exclude these uncharacteristic events from 

our analysis and focus on orbits that exemplify typical variability (as shown in Figure 3.4B).  

Based on the comparison in Figure 3.4B, it becomes apparent that all orbits that exhibit a relative 

excess in SWIA flux (i.e., all points positively offset from the best-fit trendline) correspond with 

relatively high CDOD values.  (We note, however, that it is not the case that all orbits which 

exhibit high CDOD values are necessarily positively offset from the trendline.)    

The connection between increasing dust activity and Ly-α enhancement for proton aurora 

is especially prevalent for orbits with very high SWIA penetrating proton fluxes.  Figure 3.4C, 

shows that there is not an apparent correlation between CDOD and Ly-α enhancement for all 

MAVEN orbits; however, in considering only the data points that are positively offset from the 

trendline (i.e., those with a relative excess of penetrating proton flux), a clear correlation 

becomes apparent between these two variables (Figure 3.4D).  (We note that a similar plot of 

CDOD versus Ly-α enhancement for points negatively offset from the trendline does not reveal 

any correlation, e.g., Supplementary Figure 3.4.)  We may further consider orbits that exhibit a 

significant relative excess of penetrating proton flux (i.e., with a large positive offset from the 

SWIA-IUVS best-fit trendline) by including only orbits with high SWIA penetrating proton 

fluxes (i.e., >1.5x1010 m-2s-1) (and again excluding high SZA observations during the PEDE) 

(Figure 3.4E).  The plot in Figure 3.4E shows a clear linear correlation between CDOD and Ly-α 

enhancement for proton aurora detections.  This clear correlation confirms the trends from Figure 
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3 of the strong dependance on dust activity for proton aurora enhancement and the relative 

penetrating proton flux to Ly-α enhancement ratio.   

Lastly, we note that no significant difference is observed in the penetrating proton 

velocities of orbits that have a relative excess or deficit of SWIA penetrating proton flux (i.e., 

positively or negatively offset from the best-fit trendline) (Supplementary Figure 3.5).  However, 

we observe a clear correlation between high penetrating proton density orbits and those with a 

relative excess of penetrating proton flux in comparison with Ly-α enhancement (i.e., those that 

are positively offset from the best-fit trendline) (Supplementary Figure 3.5).  This trend indicates 

that the observed variability in SWIA penetrating proton flux is primarily driven by changes in 

solar wind density rather than velocity during these orbits.    

 

 

Figure 3.4: A) Perpendicular distance from line of best fit (as described in Figure 2, Right) plotted against globally averaged 

normalized column dust optical depth (CDOD) values for each orbit. Note that the points on the far right side of the plot 

correspond with the small number of proton aurora events occurring during the 2018 planet encircling dust event (PEDE) as the 

location of the MAVEN periapsis was moving onto the night side (causing unusually high IUVS tangent point SZAs during these 

orbits). B) Subset of data highlighted in yellow from plot (A); a trend become evident that relatively high CDOD values generally 

correspond with a positive offset from the line of best fit. C) Comparison between CDOD values and emission enhancement for 
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proton aurora events. D) Same as plot (C) but subset to only the orbits that are positively offset from the best-fit line, revealing 

an apparent correlation between dust activity and proton aurora enhancement for positively offset orbits. E) Same as (C) but 

subset to evaluate only orbits with high SWIA penetrating proton flux values. We observe a strong linear correlation between 

CDOD and proton aurora enhancement during orbits with the highest SWIA fluxes.  

3.3.4 Comparison of IUVS proton aurora detections with MAG upstream magnetic field 

observations 

Figure 3.5 shows orbit-mean IUVS proton aurora emission enhancements in comparison 

with the magnitude (Figure 3.5A) and orientations (i.e., cone and clock angle in Figure 3.5B and 

Figure 3.5C, respectively) of the upstream interplanetary magnetic field (IMF).  We do not 

observe a clear correlation between proton aurora enhancement and IMF magnitude.  However, a 

double peak structure is apparent in the proton aurora enhancement at specific cone and clock 

angles.  (We note that similar trends are observed when plotting the results in MSO coordinates, 

e.g., Supplementary Figure 3.6.) 

Histograms of proton aurora observations with respect to IMF cone and clock angle are 

shown in Figure 3.6A and Figure 3.6C, respectively (and compared with histograms of all IUVS 

observations).  The proton aurora histograms closely follow the trends present in the entire 

dataset.  We also present normalized histograms of proton aurora occurrence rates (i.e., proton 

aurora detections/all observations) for cone/clock angle in Figure 3.6B and Figure 3.6D, 

respectively.  The normalized histograms may indicate slightly higher proton aurora occurrence 

rates for high (and possibly also low) cone angles (i.e., more radially oriented IMF angles).  We 

do not observe any preferential occurrence rates for clock angle.   
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Figure 3.5: Orbit-mean IUVS proton aurora emission enhancements compared with the magnitude (A) and orientation (i.e., cone 

angle (B) and clock angle (Figure 3.5C)) of the upstream interplanetary magnetic field (IMF). No clear correlation is observed 

between proton aurora enhancement and IMF magnitude, but a double peak proton aurora enhancement is apparent in both the 

cone angle and clock angle plots. 
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Figure 3.6: Proton aurora observations with respect to IMF cone angle (A) and clock angle (C) (Note that blue histograms 

shows all IUVS observations and orange histograms show only proton aurora observations).  Proton aurora occurrence rates 

are also shown these respective angles (B and D, respectively). 

3.4 Discussion 

3.4.1 Expected results based on previous studies and observations  

Case studies have previously performed for Earth to simultaneously observe UV proton 

aurora emissions and the incident protons using remote sensing and in situ data (e.g., Gérard et 

al., 2001; Frey et al., 2001).  Gérard et al. (2001) identified minor discrepancies between the 

proton and the Ly-α pre-midnight ovals which they attributed to a combination of instrumental 

and/or physical effects.  And overall, these studies found good agreement between the Ly-α and 

in situ proton observations for terrestrial proton aurora events, demonstrating the usefulness and 

relevance of this type of comparative analysis.   
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Based on the results of the Deighan et al. (2018) study (i.e., IUVS Ly-α emission 

enhancements found to increase with increasing SWIA penetrating proton fluxes) one might 

expect to observe a clear correlation in a multi-year statistical comparison of these different 

instrument observations during proton aurora events.  We do in fact observe this general 

expected correlation between IUVS and SWIA observations, where an increasing Ly-α 

enhancement typically corresponds with an increasing penetrating proton flux (indicating that 

similar influencing factors affect both variables).  While both the penetrating proton fluxes and 

Ly-α emission enhancements increase due to dust activity and extreme solar activity, of 

particular interest in this study is the relative increase of each of these variables in comparison 

with each other during these major events.  The significant amount of deviation from a constant 

correlation in the observed variability of each dataset is not consistent with expectations.  

Because some extreme solar events are commonly associated with enhanced solar wind 

proton velocities and densities, one might initially predict that orbits with a high penetrating 

proton flux to Ly-α enhancement ratio would be associated with extreme solar activity (which is 

opposite to the observed trends).  Indeed, one should expect that the solar wind velocity would 

play a significant role in shaping the results, as higher velocity solar wind protons produce a 

larger fraction of penetrating protons relative to ENAs or Ly-α (e.g., Halekas, 2017).  This is 

because the electron stripping cross section (associated with converting H to H+) increases with 

energy in the typical solar wind energy range.  Alternatively, the charge exchange cross section 

(associated with converting H+ to H) is flat (or slightly decreasing for very high energies), as is 

the Ly-α cross section in the solar wind energy range.  Thus, for a relatively high solar wind 

velocity, one would expect a higher ratio of penetrating proton flux to Ly-α emission 

enhancement for proton aurora.  While this may be the case for a few orbits with an extremely 
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high velocity (e.g., near MAVEN orbit ~1000), we do not observe any notable correlation 

between velocity and the penetrating proton flux to Ly-α enhancement ratio (either during dust 

or solar activity).  The lack of correlation between the observed trends in this study with 

penetrating proton velocities (and thereby, also solar wind velocities) implies that particle 

velocity is not the primary cause for the large inter-orbit variability that is observed.   

3.4.2 Causes for discrepancies between proton aurora IUVS Ly-α emission enhancement 

and SWIA penetrating proton flux 

There are numerous possible causes for the observed discrepancies in the IUVS proton 

aurora enhancement and SWIA penetrating proton flux comparison.  The apparent trends may be 

due to observational and/or geophysical effects.  One possible observational explanation may be 

due to discrepancies between the observation location of SWIA and IUVS (e.g., differences 

between the spacecraft and IUVS tangent point distance, SZA, altitude, etc.).  It is also possible 

that one or both of these instruments are not always observing at an altitude where the 

equilibrium charged fraction between protons and H-ENAs has been reached.  This would lead 

to discrepancies in the expected proton/ENA ratio. Given the difference in observing 

locations/altitudes of SWIA and IUVS, we consider this cause to be a possible contributor to 

some of the observed discrepancies.  Another possible observational effect may be orbit-to-orbit 

variations in the viewing angle of MAVEN/IUVS, which could cause an apparent 

increase/decrease in Ly-α intensity (and thereby, emission enhancement).  If the IUVS 

observational phase angle is oriented at ~90°, a wavelength shift could lead to absorption of the 

Ly-α proton aurora spectral emission by the coronal Ly-α spectral emission.  A preliminary 

assessment shows that this effect may be occurring in a few orbits that exhibit very high 

penetrating proton flux/Ly-α enhancement ratios with IUVS orbit-mean phase angles of ~90°; 



Chapter 3. A Combined Remote Sensing and In Situ Evaluation of Martian Proton Aurora | 72 

however, generally we do not observe a clear correlation between phase angle and high 

penetrating proton flux/Ly-α enhancement ratios (see Supplementary Figure 3.7).  While it is 

likely that the results of this study are partially influenced by observational effects, the observed 

trends of variations in penetrating proton/Ly-α emission enhancement ratios correlating with 

unique physical events (i.e., dust or solar activity) spanning multiple Martian years is a strong 

indicator that these observational effects alone cannot be entirely responsible for the observed 

discrepancies.   

Chaffin et al. (2021) found that Martian dust activity plays a significant role in increasing 

the column density of the H corona, leading to increased H escape.  A higher column density 

causes inflation of the H corona further beyond the bow shock, creating larger proton aurora 

enhancements due to more charge exchange interactions between solar wind protons and coronal 

H (e.g., Hughes et al., 2019; Chaffin et al., 2021).  The increased H column density beyond the 

bow shock causes an increase in both the densities of the penetrating protons and ENAs.  

However, the dust storm related increase in the neutral atmospheric CO2 density leads to a higher 

equilibrium charged fraction (F+
eq), causing a higher relative fraction of penetrating protons to 

ENAs.  In the context of considering the Ly-α emission enhancement as a proxy for the H-ENA 

flux related to proton aurora, we would expect to observe a similar increase the ratio of 

penetrating protons to Ly-α emission enhancement.  Additionally, a dust-induced increase in the 

neutral atmospheric scale height will also cause absorption by CO2 on the bottom side of the Ly-

α altitude-intensity profile (causing a decreased Ly-α brightness and higher altitude at the profile 

peak).  Consequently, the combined effects of increased neutral atmospheric density during dust 

storms (i.e., an increased F+
eq and the muted brightness of the Ly-α profile) result in the observed 

relative increase in the SWIA penetrating proton flux/IUVS Ly-α enhancement ratio during 
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major dust activity. This variability leads to a seasonal variability in the penetrating proton 

flux/Ly-α enhancement ratio that tracks with annual changes in H escape/column density due to 

Martian dust storm activity (Supplementary Figure 3.8 and Supplementary Figure 3.9).  We note, 

however, that this change in the ratio (i.e., the relative variability) between these variables should 

not be confused with the absolute variability in Ly-α emission enhancement with season, as the 

largest and most frequent annual proton aurora activity on Mars occurs around the southern 

summer solstice, corresponding with the maximum annual H column density (Hughes et al., 

2019; Halekas, 2017).  Thus, if not for the effect of CO2 absorption on the Ly-α profile, it is 

interesting to speculate that the Ly-α intensities and emission enhancements during this season 

would be even larger than those observed. 

The Ly-α emission enhancement serves as a proxy for ENAs incident on the Martian 

atmosphere. While SIWA measures quantities of the incident particles themselves (i.e., proton 

velocities and densities), IUVS observes Ly-α photons emitted by H atoms to calculate an 

integrated column H brightness.  Thus, it is important to consider that the Ly-α intensity can vary 

based not only on H abundance (e.g., the number density of photons), but also due to the particle 

temperature and/or observation angle of the spacecraft.  One way that the Ly-α enhancement 

could produce inaccurate results as a proxy for the penetrating H-ENA is if the H temperature 

increases but the H number density does not.  Increased particle temperatures associated with 

extreme solar events could lead to a higher Ly-α emission enhancement without a corresponding 

increase in the H-ENA number density (and thereby, the penetrating proton density and flux).  

However, as extreme solar events usually involve increased solar wind particle fluxes, it is likely 

that both the incident solar wind proton temperature and density are increasing during these 

orbits.  A study by Mayyasi et al. (2018) observed a rapid 80K increase in the exospheric 
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temperature induced by a CME/solar flare.  This impulsive solar event also caused a dramatic 

increase in the observed Ly-α brightness and a decrease in the H density at the exobase 

(corresponding with an increased column density above the exobase), resulting in a ~five-fold 

increase in H escape flux due to Jeans escape.  Although the H column density is found to 

increase during both dust storms and extreme solar activity, seasonal atmospheric escape due to 

dust activity is twice as large (an order of magnitude annual variation as calculated by Halekas, 

2017) and persistent for an extended period of the year (compared with only a few days of 

increased escape due to solar events).  Because we observe absolute increases in both the Ly-α 

enhancement and penetrating proton flux in most orbits during extreme solar events 

(Supplementary Figure 3.2), the solar wind proton flux and/or H column density (induced by 

higher exospheric temperatures and escape rates) must be increasing during these periods.  

However, an increase in one or both of these parameters alone could not account for the 

observed decrease in the relative ratio of the penetrating proton flux to Ly-α enhancement during 

these times.  And because we are observing Ly-α emission enhancements (i.e., subtracting out 

the contribution from coronal H) it must be the case that the increasing Ly-α enhancements are 

caused by the solar wind particle temperatures rather than the exospheric temperature.  Thus, we 

determine that the increased solar wind proton (and thereby, ENA) temperatures during extreme 

solar events is primarily responsible for the uncharacteristically high Ly-α proton aurora 

enhancements.   

Independent of the penetrating proton flux to Ly-α enhancement ratio, the largest proton 

aurora events throughout the MAVEN mission (i.e., those exhibiting the largest Ly-α emission 

enhancements) occur during periods of both high dust and extreme solar activity.  This is due to 

the combination of the effects described above: 1) the increased H column density due to dust 
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activity facilitates a larger H-ENA conversion rate upstream of the bow shock, and thereby a 

higher density of ENAs that penetrate the atmosphere; 2) increased solar wind proton densities 

during extreme solar events supply a larger number of incident protons that can convert into 

ENAs; and 3) increased exospheric temperatures during extreme solar events produce even 

further expansion of the H corona and H column density above the bow shock (further increasing 

the ENA conversion rate) and create larger enhancements in the Ly-α profile (due to increased 

particle temperatures). 

A possible source of discrepancy between SWIA and IUVS observations that has not been 

evaluated in this study is the influence of global and crustal magnetic fields.  Although changes 

in the magnetic environment do not affect ENAs, they could indeed affect the incident and 

penetrating proton populations.  In a future study we will evaluate the effects of remnant crustal 

fields and IMF strength and orientation on proton aurora observations.  We have also not 

considered the direct effects of the solar wind EUV, ram pressure, or Mach speed; these three 

parameters have been previously found to influence the bow shock location, and thereby the 

exposed H column density upstream of the bow shock (e.g., Halekas et al., 2016).  More work 

needs to be done to determine how seasonal and/or instantaneous variability in these factors 

(e.g., heliocentric distance or extreme solar events) might influence the results of this study.  

Finally, there may be possible effects associated with using orbit-averaged values and 

constraining the study to only orbits with overlapping SWIA and IUVS observations.  While 

averaging the measurements from the periapsis segment of each MAVEN orbit is the most 

effective method for comparing these two large datasets, this analysis method could obscure any 

inter-orbit temporal variability.  If the penetrating proton flux or the Ly-α emission enhancement 

respond on different timescales to the varying input parameters (e.g., if there is a lag in the 
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response time of one of the observed quantities), we would not observe the related variability 

between the IUVS and SWIA datasets. 

3.4.3 Empirical estimation of proton aurora Ly-α emission enhancement 

We present a direct application of the results of our study in estimating a Ly-α emission 

enhancement for proton aurora events.  Thus far we have considered the Ly-α emission 

enhancement as a proxy for the ENA flux associated with proton aurora.  However, as discussed 

above, there are certain circumstances in which Ly-α does not act as a sufficient proxy for ENA 

variability.  Based on the established relationship between penetrating proton flux and Ly-α 

enhancement for proton aurora, we may determine a quantifiable correlation for these two 

parameters.  As shown in Figure 3.7, if the Ly-α emission enhancement is considered as the 

dependent variable and penetrating proton flux the independent variable, creating a trendline for 

this plot (using linear least-squares regression) provides an equation (shown on plot) that maybe 

used to approximate the observed Ly-α enhancement for proton aurora events during “nominal 

conditions” (i.e., not during periods of high dust or solar activity) based on measurements of the 

penetrating proton flux.  Moreover, by subsetting the data on this plot into regions of relatively 

high and low penetrating proton to Ly-α enhancement ratios (i.e., points far below and above the 

best-fit trendline, respectively), we may more accurately determine the Ly-α enhancement for a 

proton aurora event based on a knowledge of the local neutral atmospheric density (particularly 

relating to dust activity and/or season) or solar activity during the period of interest.  This type of 

empirical estimate provides a useful and new tool for observations of future auroral events, 

particularly during periods when direct observations may not be possible due to spacecraft 

location/geometry.  We note, however, that this estimate does not take into account variability 

associated with observational parameters such as SZA and altitude.   
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Figure 3.7: IUVS Ly-α emission enhancement versus SWIA penetrating proton flux (inverted plot of Figure 3.1, considering Ly-α 

enhancement as the dependent variable). The trendlines give an estimate of the Ly-α enhancement for proton aurora event 

assuming a foreknowledge of the penetrating proton flux and the local dust/solar activity conditions. 

3.4.4 Connections between proton aurora and the upstream magnetic field environment 

In order to better quantify correlations between proton aurora and the local 

magnetic/plasma environment, we look for connections between Martian proton aurora and the 

upstream magnetic field: comparing proton aurora detections with magnitudes and orientations 

of the upstream magnetic field that influences the Mars induced magnetic field environment.  

The possible preferential occurrence of proton aurora during periods of more radial IMF 

orientations could be caused by unique interaction between the IMF and the Mars induced 

magnetosphere.  A modeling study by Gérard et al. (2018) found that any deviation from a 

horizontal induced magnetic field (e.g., during near-radial IMF conditions) could “decrease the 

efficiency of the magnetic barrier and actually guide protons deeper into the atmosphere.”  It 

would be interesting to search for evidence of variability in the penetrating proton flux (as well 

as the penetrating proton flux to Ly-α enhancement ratio) at different IMF angles, as such an 



Chapter 3. A Combined Remote Sensing and In Situ Evaluation of Martian Proton Aurora | 78 

observation would add credence to the modeling predictions of Gérard et al. (2018).  We defer 

such a project for a more detailed forthcoming study. 

The double peak structure in the cone/clock angle plots in Figure 3.5 (i.e., relating proton 

aurora emission enhancement to IMF orientation), implies a connection between the largest 

proton aurora enhancements/activity and specific IMF cone and clock angle orientations.  (It is 

interesting to note that the locations of the peaks may be consistent with orientations of the 

Parker spiral under nominal conditions.)  However, we also note that a possible observational 

bias may exist in the results due to limited data availability.  Thus, more work needs to be done 

before these findings can be interpreted with confidence. 

In a future study, we will carry out specific case studies to evaluate the effects of crustal 

fields on proton aurora.  We will also look for corresponding variability between unique IMF 

orientations, penetrating proton fluxes, and the penetrating proton flux to Ly-α enhancement 

ratio.  Lastly, it may also be useful to consider the results in a different Mars coordinate system 

(e.g., relative to the electric field environment) to determine if new trends arise in the dataset.  

These results will aid in our understanding of the interactions between Martian proton aurora and 

the upstream/local magnetic environment. 

3.5 Conclusions 

In this study, we focus on large scale statistical comparisons of proton aurora observations 

by a remote sensing and in situ instrument.  We determine that the observed trends in the data 

(i.e., an excess in penetrating proton flux relative to Ly-α enhancement during dust activity and a 

deficit during extreme solar events) are due to the compounding effects of multiple physical and 

observational causes.  During major dust activity, an increase in the equilibrium charged fraction 

combined with a decreased maximum Ly-α brightness (due to CO2 absorption on the bottom side 
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of the Ly-α profile) lead to an observed excess in penetrating proton flux relative to Ly-α 

emission enhancement.  And increased solar wind particle temperatures during extreme solar 

activity cause an increased Ly-α brightness, leading to an apparent deficit in penetrating proton 

flux relative to Ly-α emission enhancement.  

We compare proton aurora detections with orbit averaged measurements of the magnitude 

and orientation of the local IMF upstream of the Martian bow shock.  We identify a possible 

correlation between high proton aurora activity and certain IMF cone/clock angles, and a 

possible preference for proton aurora occurrence during near-radial IMF orientations.  Work is 

ongoing to authenticate and expand upon these findings.   

Some questions that may yet be addressed in a future study are the specific effect of dust 

and extreme solar activity on atmospheric H and CO2 column densities and temperatures.  It 

would also be of interest to evaluate if any additional factors could be affecting or concealing 

any apparent trends between the datasets (e.g., SZA, Ls, CO2 absorption, etc.).  In a future study, 

it would also be interesting to compare our results with direct measurements of ENAs made by 

another spacecraft (as MAVEN is not equipped with an ENA detector).  One would expect to 

observe a close correlation between penetrating protons and the ENAs, with similar seasonal 

variability in the charged fractions around southern summer.  Concurrent Ly-α observations 

would provide useful comparative context for assessing variability in the local dust and solar 

wind environments.  Lastly, in order to better understand the unique variability within certain 

orbits, it would be beneficial to undertake specific case studies of different time periods.  In a 

forthcoming publication, we examine numerous orbit case studies of “atypical” proton aurora, 

further developing our understanding of the unique processes that can cause these events to 

deviate from the expected correlation. 
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Chapter 3 Supplementary Figures 

 

Supplementary Figure 3.1: Representation of the interaction between solar wind protons and the extended Martian H corona to 

create H-ENAs and penetrating protons during the proton aurora formation process (Figure 1 from Halekas, 2017). 
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Supplementary Figure 3.2: Overlapping observations of IUVS Ly-α emission enhancement and SWIA penetrating proton flux for 

proton aurora detections in the first few years of MAVEN orbits. 

  

 

Supplementary Figure 3.3: Offsets from the SWIA-IUVS best-fit trendline compared with season (solar longitude, Ls). The largest 

offsets (corresponding with a relative excess of penetrating proton flux compared with Ly-α emission enhancements) occur 

around southern summer solstice (Ls ~270). Note that color corresponds with the orbit minimum peak IUVS tangent point SZA.  
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Supplementary Figure 3.4: Same as Figure 3.4C but showing positive and negative offsets from the best-fit trend line overplotted 

in blue and gold, respectively (top plot), as well as on individual plots with season as the color (bottom). 
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Supplementary Figure 3.5: Top plots: Same as Figure 2, Right (offsets from the SWIA-IUVS best-fit trendline compared with 

MAVEN orbit numbers) showing SWIA penetrating proton velocity (top left) and density (top right) as the color. Bottom plots: 

Offsets from best-fit trendline compared with SWIA penetrating proton velocity (bottom left) and density (bottom right). 
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Supplementary Figure 3.6: Same as Figure 3.5, but the IMF magnitude and orientations are shown in different MSO coordinates.  

Note that color on the corresponds with IUVS orbit mean tangent point SZAs (top), and season (shown as Ls) (bottom). 

 

   

Supplementary Figure 3.7: (Left) Same as Figure 3.1, Left, but showing IUVS phase angle observations as the color.  (Right) 

Offsets from the SWIA-IUVS best-fit trendline compared with IUVS phase angle.   
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Supplementary Figure 3.8: Ratios of orbit-averaged SWIA penetrating proton flux to IUVS Ly-α emission enhancement (left 

plots) and Ly-α emission enhancement to penetrating proton flux (right plots), compared with MAVEN orbit numbers (top plots) 

and season, as Ls (bottom plots). (Note that SWIA penetrating proton flux is scaled down by dividing by 1x1010.) 

 

   

Supplementary Figure 3.9: Same as Supplementary Figure 3.8, but for each individual IUVS orbit periapsis limb scan (as 

opposed to orbit-averaged values).  The seasonal variability of the penetrating proton flux/Ly-α emission enhancement ratio is 

somewhat more evident in individual detections (as averaging over an entire orbit can mask small scale variability in some 

cases). (Note that the SWIA penetrating proton flux is scaled down by dividing by 1x1010 in the right plot.) 
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Chapter 4 Key Points 

• We identify different types of Martian proton aurora events that deviate from the typical 

characteristics of previous observations and known formation mechanisms. 

• “Atypical” proton aurora exhibit variability in the peak altitude and/or intensity of the 

hydrogen Lyman-alpha profile between limb scans within a single orbit. 

• Nightside proton aurora detections account for ~4% of all IUVS proton aurora detections, 

however, they are only observed to occur <1% of the time in all nighttime IUVS data. 

Chapter 4 Abstract 

Due to the lack of a planetary-wide magnetic field on Mars, proton aurora are expected to 

form on the planet’s dayside by electron stripping and charge exchange with the neutral corona. 

Previous studies have found a strong solar zenith angle (SZA) and seasonal dependance for 

Martian proton aurora, primarily constraining these events to the dayside and causing highest 

occurrence rates during southern summer.  However, we identify unique types of Martian proton 

aurora that deviate from typically observed characteristics of previous detections and known 

formation mechanisms.  Herein we present the results of a study of unusual Martian proton 

aurora observations.  We identify detections of numerous types of “atypical” proton aurora (e.g., 

“variable” and nightside events), evaluating the variability and investigating possible formation 

mechanisms for these phenomena.  “Variable” proton aurora are observed to exhibit variability 

in the peak altitude and/or intensity of the hydrogen Lyman-alpha (Ly-α) profile between limb 

scans within a single orbit; these observations are understood to correspond with spatial and/or 

temporal variability within a proton aurora event.  We present case studies of observations of 

variable proton aurora that are found to be associated with variability caused by neutral 

atmospheric waves/tides and the upstream solar wind.  Additionally, despite formation 
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mechanisms that should constrain proton aurora to the dayside, we identify a small number of 

detections on the planet’s nightside.  We present the results of a statistical evaluation of nightside 

proton aurora events (defined as SZA>100°).  We find that nightside proton aurora detections 

account for ~4% of all IUVS proton aurora observations and 10% of the MAVEN orbits 

exhibiting proton aurora; however, nightside detections are only observed in <1% of all 

nighttime observations, making them extremely uncommon.  We consider the potential effects of 

magnetic fields on nightside proton aurora events and propose possible formation mechanisms 

for these phenomena.   

Studying “atypical” proton aurora events aids in characterizing the different influencing 

factors on unique sub-types of Martian proton aurora.  The results of this study provide a deeper 

understanding of interactions between the solar wind, the local magnetic/plasma environment, 

and the Martian upper and neutral atmosphere.  Furthermore, we report the first known 

observation of energy transport from the lower/middle-atmosphere via waves/tides affecting 

upper atmospheric auroral variability at Mars.  Thus, the results of this study will provide useful 

context for future investigations that aim to develop our understanding of the interconnectedness 

between dominant processes in the lower-, middle-, and upper-atmosphere of Mars and the 

transport of energy throughout the Martian atmosphere.   

4.1 Introduction and Background 

Three types of aurora that have been observed at Mars: discrete (Bertaux et al., 2005), diffuse 

(Schneider et al., 2015), and proton aurora (Deighan et al., 2018; Ritter et al., 2018; Hughes et 

al., 2019).  Of these three types of aurora, proton aurora are the most recently identified and the 

most commonly observed at Mars (Hughes et al., 2019).  Although previous studies have 

evaluated the phenomenology and statistical properties of proton aurora, few studies have 
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assessed the characteristics of abnormal proton aurora events.  In this study, we build on 

previous work by presenting multiple case and statistical studies of unusual, or “atypical”, proton 

aurora observations. 

Unlike terrestrial aurora, Martian proton aurora form via interactions between solar wind 

protons and the extended Martian hydrogen corona.  Through electron stripping and charge 

exchange processes, incident solar wind protons are able to remove electrons from neutral 

coronal hydrogen (H) and convert into energetic neutral atoms (ENAs).  This process allows the 

solar wind protons to bypass the Martian induced magnetic field environment (e.g., the bow 

shock and magnetic pileup boundary (MPB)) and be transported to the lower parts of the 

atmosphere.  When these excited ENAs de-excite, they emit a Lyman-alpha (Ly-α) photon, 

which is detected as proton aurora (see Deighan et al., 2018 and Hughes et al., 2019 for a more 

detailed discussion of formation processes).  During the formation of proton aurora, the incident 

solar wind protons can convert back and forth between protons and H-ENAs many times before 

ultimately deexciting when in the ENA state and emitting a Ly-α photon.   

4.1.1 Relationship between Penetrating Protons and Proton Aurora on Mars 

Martian penetrating protons (i.e., solar wind protons that penetrate into the upper 

atmosphere) and proton aurora have previously been found to be strongly correlated.  The 

existence of proton aurora was initially predicted at Mars based on models (e.g., Kallio and 

Barabash, 2001) and observations of a penetrating proton population (Halekas et al., 2015).  The 

preliminary observations of penetrating protons by Halekas et al. (2015) were made using the in 

situ SWIA instrument (i.e., Solar Wind Ion Analyzer, Halekas et al., 2013) onboard the MAVEN 

(Mars Atmosphere and Volatile Evolution mission) spacecraft (Jakosky et al., 2015).  The SWIA 

observations were subsequently found to be correlated with enhancements in remote sensing 
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observations of the hydrogen Ly-α emission (121.6 nm) (Deighan et al., 2018), which were made 

using the IUVS instrument (i.e., Imaging UltraViolet Spectrograph, McClintock et al., 2014) 

onboard MAVEN.  Deighan et al. (2018) found that increased Ly-α intensities during proton 

aurora events (identified as a Ly-α emission enhancement between ~110-150 km in altitude) 

corresponded with periods of increased SWIA penetrating proton flux.   

A recent study by Hughes et al. (2021) identified strong correlations between MAVEN 

orbit-averaged SWIA penetrating proton fluxes in connection with orbit-averaged IUVS Ly-α 

emission enhancements of proton aurora events.  Hughes et al. (2021) also found that proton 

aurora can be influenced from the “top down” (e.g., due to extreme solar activity) or from the 

“bottom up” (e.g., due to strong dust storms).  Both influencing processes can act to increase the 

H column density above the exosphere, providing more available H to interact with solar wind 

protons through charge exchange.   

4.1.2 “Typical” vs. “Atypical” Martian Proton Aurora  

Due to the unique formation mechanism of proton aurora, and the strong connection with 

the Martian hydrogen corona, these aurora have been found to exhibit a strong SZA and seasonal 

dependence.  A previous statistical study by Hughes et al. (2019) used IUVS observations of 

Martian proton aurora to determine that these events are primarily constrained to the dayside of 

the planet (SZA < ~90°) and have highest Ly-α intensities, emission enhancements, peak 

altitudes, and occurrence rates (nearing 100%) around southern summer solstice (i.e., solar 

longitude (Ls) ~270).  This seasonal dependance of proton aurora was found to be directly related 

to the dust-induced increase in the H column density above the exobase and escape rate during 

this period (e.g., Hughes et al., 2019; Chaffin et al., 2021; Chaffin et al., 2014; Clarke et al., 

2014; Halekas, 2017).  They identified proton aurora events in ~14% of dayside periapsis 
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profiles (with notable seasonal variability), making proton aurora the most commonly observed 

type of aurora at Mars.   

Proton aurora events have been observed to change significantly in the ~4-5 hours between 

MAVEN orbits, at times appearing or ceasing altogether within that period (e.g., Deighan et al., 

2018).  While inter-orbit and seasonal variability is common in proton aurora, major variations 

within a single orbit (i.e., intra-orbit variations) are rare.  Apart from the variability associated 

with changing SZA, the altitudes and intensities of proton aurora observations generally show 

little variability between IUVS limb scans within an orbit.   

Previous studies have identified variations within individual proton aurora events, referred 

to as “variable” or “patchy” proton aurora (e.g., Hughes et al., 2019; Crismani et al., 2019).  In 

these observations, the Ly-α profile intensity is seen to increase/decrease during a single orbit, 

indicating spatial and/or temporal variability.  Hughes et al. (2019) reported observing this type 

of atypical variability in Ly-α profiles in their statistical IUVS proton aurora study.  And a study 

by Crismani et al. (2019) used MAVEN radio occultation data in combination with IUVS and 

SWIA observations of variability in a proton aurora event to characterize variability in localized 

ionization in the Martian ionosphere.   

4.1.3 “Modulated” H and Penetrating Proton Detections at Mars 

A recent study by Fowler et al. (2019) identified numerous instances of a quasi-periodic 

structure in the upstream solar wind conditions at Mars (e.g., in the proton flux, energy flux, 

magnetic field strength, and velocity).  Further, these observations were found to coincide with 

similar quasi-periodic behavior in the SWIA penetrating proton observations (Supplementary 

Figure 4.1).  Because there were no corresponding variations observed in the neutral atmosphere, 
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it was determined that these variations in penetrating protons were caused by variations in the 

upstream solar wind.   

Further, Fowler et al. (2019) found a strong correlation between the orientation of the 

interplanetary magnetic field (IMF) and the mean amplitude of the density variations (and/or the 

period of the variability) for highly modulated penetrating proton events.  They determined that 

the highest amount of density and/or temporal variation (i.e., the most modulated events) occur 

during periods when the IMF orientation is nearly or “quasi-” radial.  It was determined that this 

radial IMF creates an ideal orientation of the foreshock region upstream of the bow shock, 

causing convection in foreshock structures and localized enhancements of charge exchange.  

Because of the interconnected relationship between penetrating protons and H-ENAs to bypass 

the MPB, Fowler et al. (2019) made correlations between their findings of modulated penetrating 

protons and modulated H in the Martian atmosphere.  However, the Fowler et al. (2019) study 

did not entail unique observations of Martian H, nor did it entail a correlation with observations 

of proton aurora.  Herein we expand on the previous study by Fowler et al. (2019) to identify 

modulated proton aurora and characterize other unique/atypical variations in Martian proton 

aurora.   

4.2 Data and Methods 

The Imaging Ultraviolet Spectrograph (IUVS), onboard the Mars Atmosphere and Volatile 

Evolution mission (MAVEN) spacecraft observes the upper atmosphere and ionosphere of Mars 

in far- and mid-ultraviolet (UV) wavelengths (110–340 nm) (McClintock et al., 2014).  We use 

Level-1C H Ly-α observations from periapsis limb scans (i.e., altitude-intensity profiles) to 

identify and characterize proton aurora detections.  We additionally incorporate IUVS CO2
+ UV-

Doublet (UVD) profiles as a proxy for assessing neutral atmospheric variations.  We use a 
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database of Martian proton aurora detections compiled in a previous statistical study by Hughes 

et al. (2019), expanding on this list by including observations through MAVEN orbit ~8400 

(which includes the southern summer season from Mars Year 34).  (See Hughes et al., 2019 for 

more information on proton aurora detection methodology.) 

In order to compare IUVS observations with variability in the neutral CO2 and plasma 

environments (e.g., penetrating protons and local magnetic fields), we compare IUVS 

observations with data from multiple other instruments onboard MAVEN: the Neutral Gas and 

Ion Mass Spectrometer (NGIMS) (Mahaffy et al., 2015), the Solar Wind Ion Analyzer (SWIA) 

(Halekas et al., 2013), and the Magnetometer instrument (MAG) (Connerney et al., 2015).   

In this study we consider proton aurora detections throughout the entire MAVEN mission.  

However, in evaluating IUVS comparisons with the observations in the Fowler et al. (2019) 

study, we consider only detections from the ~3 week time period of their study (i.e., 

November/December 2016).   

4.3 Observations of “Atypical” Proton Aurora 

4.3.1 “Variable” proton aurora 

We describe detections of “variable” proton aurora, i.e., observations displaying variability in 

altitude and/or intensity within a single MAVEN orbit.  For the purposes of this study, we 

distinguish between two general types of “variable” proton aurora: 1) observations that exhibit 

corresponding variability with the neutral CO2 atmosphere, and 2) observations that do not 

correspond with variability with the neutral atmosphere.   

4.3.1.1 “Variable” proton aurora associated with neutral atmospheric variability 

We first consider proton aurora variability that is correlated with the neutral atmosphere.  

Although MAVEN does not observe neutral CO2, the CO2
+ UV-Doublet (UVD) emission 
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directly tracks with CO2 and is a commonly used proxy.  Thus, we may assess the concurrent 

variability of H and CO2 by comparing peak altitudes and intensities of the Ly-α and CO2
+ UVD 

profiles for each IUVS limb scan in a MAVEN orbit.   

In certain proton aurora detections, we observe an increase in altitude and/or intensity of 

proton aurora Ly-α observations between IUVS limb scans that tracks with similar profile 

variability in the corresponding CO2
+ UVD limb scan from the same orbit.  Figure 4.1 presents 

an example of this sort of variable proton aurora event observed during MAVEN orbit 4107.  As 

shown in Figure 4.1, the Ly-α peak altitude in this orbit increases by ~5km in the fourth through 

seventh limb scans, and subsequently goes back down in later orbit scans.  The peak altitudes in 

the offset Ly-α and CO2
+ UVD altitude-intensity profiles are observed to concurrently vary with 

each other in the same mid-orbit limb scans.  (We note a lack of corresponding variability in 

other IUVS emissions, verifying that the observed changes are physical rather than 

instrumental/observational.) 

In addition to variability in the IUVS Ly-α limb scan peak altitudes, the Ly-α emission 

enhancements during this orbit are also observed to fluctuate between limb scans.  Moreover, 

observations made by MAVEN’s SWIA and NGIMS instruments during this orbit show similar 

mid-orbit fluctuations in the penetrating proton flux and neutral CO2 density, respectively 

(Figure 4.1).  (Note that the general sinusoidal shape of the SWIA and NGIMS curves 

throughout the orbit is associated with the changing spacecraft altitude during periapsis; see 

Supplementary Figure 4.2 and Supplementary Figure 4.3 for details on spacecraft and IUVS 

observation geometries, and Supplementary Figure 4.4 for additional Ly-α information for this 

orbit.)   
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4.3.1.2 “Variable” proton aurora independent of neutral atmospheric variability 

There are also observations of variable proton aurora that are not associated with variability 

in the neutral atmosphere.  One unique example of this type of variable proton aurora are 

detections corresponding with modulated penetrating proton events, which were found by Fowler 

et al. (2019) to be associated with variability in the upstream solar wind caused by a radial 

orientation of the IMF.  We examine detections of modulated H deposition (observed by SWIA 

as penetrating protons) from the study by Fowler et al. (2019), spanning a multi-week period in 

late 2016.   

The plots in Figure 4.2 display IUVS Ly-α intensity data for three proton aurora events; here 

Ly-α altitude-intensity profiles of each limb scan in the orbit are overlain on top of a synthetic 

image format of the un-binned periapsis Ly-α data (i.e., each of the IUVS orbit limb scans 

(horizontal) displays the Ly-α intensity for each of the 21 IUVS mirror integrations (vertical) and 

seven spatial bins within each limb scan; e.g., similar to Figure 2 from Deighan et al., 2018).  

The top plot in Figure 4.2 shows an example of an orbit with minimal modulation of penetrating 

protons and a non-radial IMF (i.e., ~85° IMF orientation).  The middle and bottom orbits in 

Figure 4.2 show examples of “modulated” proton aurora (i.e., corresponding with highly 

modulated events from the Fowler et al. (2019) study) in MAVEN orbits 4223 and 4261, 

respectively.  Both of these orbits occur during near-radial IMF conditions (with respective IMF 

orientations of ~23° and ~37° from radial).  The peak altitudes of the Ly-α proton aurora profiles 

in each limb scan during orbit 4223 are mostly consistent, with the exception of a 15 km mid-

orbit increase in the peak altitude of Ly-α profile of the sixth limb scan in the orbit.  (We note 

that the maximum peak altitude in orbit 4223 is ~160km, far larger than the typical altitude range 

in which proton aurora have previously been observed or predicted to occur.)  Similarly, orbit 
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4261 shows a sudden mid-orbit decrease in the peak Ly-α intensity of the proton aurora profile in 

the sixth limb scan.  Although we observe significant variability between Ly-α limb scans within 

these orbits, we do not observe any corresponding variability in the IUVS CO2
+ UVD profiles 

(e.g., Supplementary Figure 4.5).  Similarly, the Fowler et al. (2019) study also did not identify 

any corresponding variability in the NGIMS CO2 observations during this orbit.   

In our comparative study, we identify proton aurora during all eight of the top most highly 

modulated orbits from the Fowler et al. (2019) study that have overlapping IUVS and SWIA 

observations (i.e., MAVEN orbits 4223, 4249, 4260, 4261, 4262, 4303, 4304, and 4276).  We 

observe definitive signs of variability in the IUVS data (i.e., changes in peak altitudes and/or 

intensities in proton aurora detections between limb scans within a single orbit) in four of these 

eight orbits (i.e., orbits 4223, 4261, 4262, and 4303; see Supplementary Figure 4.6 for Ly-α 

observations of all four orbits), and potential signs of variability in another three orbits (i.e., 

4249, 4260, and 4304).  (We note that it is not possible to identify intra-orbit proton aurora 

variability in orbit 4276, as only a very small proton aurora enhancement is observed in a single 

limb scan during this orbit; however, we do observe possible signs of altitude variability in the 

subsequent orbit.)  Additionally, we also observe similar variations in many other MAVEN 

orbits that do not have overlapping SWIA penetrating proton observations (and were thereby not 

included in the Fowler et al. (2019) study).  Lastly, we note that we do not observe any evidence 

of the described variability in proton aurora profile peak altitude or intensity (i.e., variability that 

is uncoupled from the CO2
+ UVD) during the orbits from the Fowler et al. (2019) study that were 

found to exhibit little/no modulation in SWIA penetrating proton observations.   
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Figure 4.1: (Top) Offset IUVS limb scan altitude-intensity profiles from MAVEN orbit 4107 for A) Ly-α and B) CO2
+ UVD 

emissions. Variations in Ly-α peak altitude between the scans within the orbit (observing a single proton aurora event) track with 

altitude variations in the CO2
+ UVD profiles (note that such variations in the CO2

+ UVD are consistent with previous 

observations of lower atmospheric waves/tides). C) Concurrent observations of IUVS emission enhancement, SWIA penetrating 

proton flux, and NGIMS CO2 density during the periapsis portion of MAVEN orbit 4107. We observe similar fluctuations in the 

different instrument measurements on roughly the same temporal scale during this orbit, consistent with being caused by the 

same driving mechanisms. 
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Figure 4.2: Altitude-intensity profiles overlain on top of a synthetic image format of Ly-α intensities for each IUVS limb 

scan/mirror angle in MAVEN Orbit 6753 (e.g., Figure 2 from Deighan et al. 2018). Examples of “modulated” proton aurora 

(middle and bottom plots) in comparison with a proton aurora event with minimal variability (top). The middle plot shows 

altitude variation in a central orbit limb scan (during near-radial IMF conditions) and the bottom plot shows intensity variation 

in a central orbit limb scan (also during near-radial IMF conditions). Note that the given SZA values given correspond with the 

median SZA in each IUVS scan; the boxes highlight the variability within each orbit, and the horizontal lines represent the 

average peak altitude for each orbit. 

4.3.2 Nightside proton aurora 

Although Martian proton aurora occur almost entirely on the dayside of the planet, we 

observe some proton aurora events on the planet’s nightside.  Figure 4.3 shows an example of a 

proton aurora event that occurs on the nightside of the planet, having IUVS peak limb scan SZAs 

between ~120°-145°.  This detection in MAVEN orbit 6753 also exhibits significant variability 

in the Ly-α proton aurora peak intensities (and a minor decrease in altitude with increasing SZA) 

between limb scans within the orbit.    

Nightside proton aurora detections account for 3.9% of all IUVS limb scan proton aurora 

detections and exhibit many notable differences from the more common dayside events.  Figure 

4.4 shows a comparison between IUVS dayside and nightside proton aurora observations 
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(defining day/night detections as +/- 10° of a peak SZA=90°, respectively).  Based on this 

statistical comparison, we find that nightside events exhibit much smaller Ly-α peak intensities 

(i.e., mean nightside peak intensity is ~3.8x smaller than mean dayside peak intensity; Figure 

4.4A), emission enhancements (i.e., mean nightside enhancement ~1.9x smaller than dayside 

enhancement) (Figure 4.4B), and peak altitudes (i.e., nightside altitude histogram peaks ~20km 

lower than dayside histogram: ~120km versus ~140km, respectively) (Figure 4.4 C).  Nightside 

proton aurora do not exhibit any clear seasonal dependance (in contrast to the strong seasonal 

dependance of dayside events, reaching a maximum occurrence near Ls~270) (Figure 4.4D).  

And nightside events do not appear to be geographically constrained on the planet (Figure 4.4E).  

It is also interesting to note that nightside proton aurora peak altitudes appear to decrease with 

increasing SZA (consistent with previous observations of the SZA dependence of nightside ion 

peak altitudes, e.g., Girazian et al., 2019), and that both day- and nightside observations exhibit 

higher peak altitudes during the southern summer season (i.e., around Ls ~270) (Supplementary 

Figure 4.7), when the H column density and escape rate reach an annual maximum (e.g., Chaffin 

et al., 2014; Halekas et al., 2017). 

 

Figure 4.3: Altitude-intensity profiles overlain on top of a synthetic image format of Ly-α intensities for each IUVS limb 

scan/mirror angle in MAVEN Orbit 6753 (e.g., Figure 2 from Deighan et al. 2018). This orbit shows an example of a nighttime 

proton aurora event. Note that the given SZA values given correspond with the median SZA in each IUVS scan. 
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Figure 4.4: Statistical comparisons of proton aurora observational parameters for dayside versus nightside events. Nightside 

events exhibit smaller peak Ly-α intensities (A), emission enhancements (B), and altitudes (C); they do not appear to exhibit a 

clear seasonal dependance (D), or to be geographically constrained on the planet (E). Note the difference on the scales between 

the day/night axes. (Note: day and night observations are defined as +/-10° of SZA=90°, respectively.) 

4.4 Discussion  

There are many inherent difficulties associated with comparative observations between 

remote sensing and in situ datasets such as IUVS and SWIA (e.g., see Hughes et al., 2021 for a 

thorough evaluation).  One such difficulty is due to the ~two minute integration period for IUVS 

limb scans. If the variability being observed occurs on a period larger than the IUVS integration 
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time, the instrument will not be able to detect any variability within a single limb scan. If the 

variability is small enough, such that it can be observed within a single limb scan or in 

subsequent IUVS limb scans (but still large enough so as to not be “washed out” during the 

integration period), the instrument may observe that variability. However, any large scale 

periodic variability could not be detected during the ~20 minute periapsis portion of the MAVEN 

orbit.  It is also important to consider the spatial extent of any variability. Because SWIA 

observes in the immediate vicinity of the spacecraft and IUVS observes ~100’s of km away from 

the spacecraft, IUVS would not observe any variability occurring on a small spatial extent near 

the spacecraft and vice versa. 

As previously mentioned, “typical” observations of Martian proton aurora occur on the 

dayside of the planet at low SZA’s with minor variability in the Ly-α emission enhancement 

between limb scans.  For a typical IUVS proton aurora observation, the Ly-α peak altitudes of 

limb scan profiles within a single orbit are mostly constant and the intensity only varies as a 

function of the cosine squared of the SZA.  Thus, the Ly-α profiles of proton aurora observations 

could only exhibit dramatic/rapid changes (i.e., on the order of minutes between IUVS limb 

scans) in the altitude and/or intensity as a result of corresponding variations in the density, 

temperature, and/or velocity of either the incident solar wind protons, the H corona, or the 

neutral CO2 atmosphere.   

The previous study by Fowler et al. (2019) found that the modulated H in their study was 

caused by temporal variability in the upstream solar wind.  Alternatively, the study by Crismani 

et al. (2019) determined that the observed “patchy” proton aurora event in their case study was 

the result of spatial variability, presumed to have been caused by a geometric observational 

effect related to localized ionization.  We have presented two unique types of variable proton 
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aurora that can be caused by localized geographic spatial variability (i.e., observations associated 

with atmospheric waves/tides) or temporal variability (i.e., “modulated” proton aurora).  Because 

there are multiple processes that can be responsible for intra-orbit spatial/temporal variability in 

proton aurora, it is not possible to determine a causal mechanism for observed variability via the 

exclusive evaluation of the Ly-α profiles for proton aurora events.  Multi-instrument case studies 

must be undertaken for different variable proton aurora detections in order to 

identify/characterize the unique mechanisms in each observation responsible for driving the 

variability.   

4.4.1 Variability associated with neutral atmospheric waves/tides  

The observed peak altitude variability in the IUVS CO2
+ UVD emission during orbit 

4107 is consistent with previous observations of atmospheric tides (e.g., Lo et al., 2015; England 

et al., 2016).  Additionally, the observed variability in the NGIMS and SWIA measurements is 

also consistent with typical observations of atmospheric waves and/or tides.  These observations 

correspond with altitudinal and/or geographic variability (e.g., latitudes, longitudes, and local 

solar times) in the neutral atmospheric density as the MAVEN spacecraft progresses through the 

periapsis portion of its orbit.  The concurrent/independent observations of atmospheric waves 

and/or tides by three different MAVEN instruments during this orbit (i.e., IUVS, NGIMS, and 

SWIA), in combination with the correlated timescales of variability with proton aurora suggests 

the influence of neutral atmospheric waves and/or tides in creating the observed variability 

during this orbit.   

Atmospheric waves and tides can affect the structure, energy transport, and dynamics in 

the lower- and middle-atmosphere (e.g., Guzewich et al., 2012; Guzewich et al., 2016; Lo et al., 

2015; England et al., 2016).  A change in neutral atmospheric density and/or temperature 
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(induced by waves and/or tides) during the observed orbit could cause a localized increase in the 

atmospheric scale height, in turn causing an increased proton aurora peak altitude and a 

decreased peak intensity (i.e., due to CO2 absorption on the bottomside of the profile).  The 

location/local solar time of the observations during this orbit may be consistent with possible 

influence by the diurnal thermal tide (e.g., see IUVS orbit observation geometry in 

Supplementary Figure 4.2) and/or topographically-forced stationary waves (as IUVS is 

observing near Hellas Basin during this orbit).   

To our knowledge, we report the first observation of the influence of energy transport 

from the lower/middle neutral atmosphere (i.e., via waves and/or tides) on upper atmospheric 

auroral variability at Mars.  Previous studies have reported on the effects of non-migrating 

thermal tides on Martian ionospheric variability (i.e., the peak altitude & density of M2 layer) 

(e.g., Withers, 2009 & references therein), as well as the effects of topographically-controlled 

thermal tides on variability in the upper atmosphere (e.g., Withers et al., 2003).  Connections 

between neutral atmospheric waves and auroral variability has also been previously observed at 

Earth: a study by Palmroth et al. (2020) found that upward propagating gravity waves from the 

lower atmosphere can be bent and made to travel horizontally through the thermosphere; when 

penetrating particles subsequently interact with these waves, they create “auroral dunes”, a 

unique type of aurora that exhibits small scale variability in altitude and brightness across a large 

spatial extent.   

Combined multi-instrument observations of different concurrent atmospheric phenomena 

(such as has been presented in this study) can provide new information to investigate coupling 

and energy transport between the lower/middle- and upper-atmosphere on Mars.  Additional 

datasets, including observations of local atmospheric temperature/density profiles (e.g., Mars 
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Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft), may be 

helpful in identifying/characterizing the atmospheric variability caused by waves/tides during 

this period.  However, the restricted observation times of MCS (i.e.., ~3pm local solar time 

observations on the planet’s dayside) may limit the ability to directly compare with IUVS 

observations in this orbit.   

We have presented a detailed case study of the influence of waves/tides on proton aurora, 

however, many similar observations have been identified in the IUVS dataset.  As previously 

discussed, every orbit exhibiting intra-orbit limb scan variability in proton aurora profiles does 

not necessarily corresponds with variability in the CO2
+UVD emission; and conversely, all intra-

orbit variability observed in the CO2
+UVD profiles does not necessarily corresponds with similar 

observed variability in Ly-α proton aurora profiles.  This lack of observed correlation in 

variability may be due to unfavorable observation geometries (e.g., high SZAs), relatively small 

amplitudes of temperature/density variations (such that the variability would not be observable in 

the Ly-α emission), or large CO2 scale heights (causing absorption on the bottomside of the Ly-α 

profile and obscuring any intra-orbit variability between limb scans). 

4.4.2 Variability associated with “modulated” H and penetrating protons 

Based on the connection between penetrating protons and ENAs, one would expect that any 

variability in the penetrating proton density would lead to variability in the deposited H, and 

thereby, the Ly-α profiles of proton aurora.  The observed variations in “modulated” proton 

aurora events are consistent with formation by a fluctuating energy source and quasi-periodic 

penetrating proton density, as observed in the SWIA modulated penetrating proton events in the 

Fowler et al. (2019) study.  This temporal variations in the upstream solar wind energy and 

density could indeed cause corresponding variability in the proton aurora peak altitude and 
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brightness (due to the energy dependance of the electron stripping/charge exchange cross 

sections and H/H+ stopping altitude, and Ly-α profile variability with H density).  We estimate 

that the range of variability in energy observed in the Fowler et al. (2019) study would 

correspond with ~10-15km variability in the proton stopping altitude; this value is consistent 

with the ~15km altitude variability observed between limb scans in orbit 4223.   

Fowler et al. (2019) identified periods of temporal variability on the order of 10’s of seconds 

(~15-55 seconds for the highest modulated events).  Because IUVS has a ~two minute 

integration time for each limb scan, it is likely that the instrument is observing this variability in 

proton aurora altitude and intensity (caused by the upstream energy and density variations) 

between orbit limb scan observations.  However, due to the relatively long integration time of 

IUVS, such differences between cans can be difficult to consistently observe, depending on the 

amplitude and period of the upstream variation.  We note that (by definition) all of the most 

highly modulated orbits from Fowler et al. (2019) exhibit large mean amplitude of density 

variations in the penetrating protons and/or relatively large time periods of proton density 

modulation.  Indeed, of the most highly modulated events, we observe clear evidence of 

variability in the Ly-α profiles from orbits that exhibit the largest density variations and/or 

periodicities.  Comparatively, almost all of the highly modulated event orbits that do not exhibit 

clear evidence of Ly-α variability have comparatively low density variations and/or periodicities.  

Thus, we find that the factors that determine whether or not IUVS will observe variability 

between Ly-α profiles during a modulated proton aurora event are the amplitude of the density 

variation and the periodicity of the modulation events (as variations on timescales significantly 

smaller than the IUVS integration times cannot be observed between limb scan integrations).   
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Finally, we note that variability in proton aurora events has also been observed at Earth.  One 

of the first of such observations was presented by Eather (1967), who observed what was 

referred to as “pulsating” proton aurora (e.g., Nomura et al., 2016; Ozaki et al., 2016).  

Observations of pulsating proton aurora have more recently been made from UV space-based 

instruments, including a study by Yahnin et al. (2009) in which they used the IMAGE spacecraft 

to observe the brightness of the proton aurora arc grow and diminish multiple times during a 

series of images spanning ~20 minutes (Figure 4.5).  The formation processes of aurora on Earth 

and Mars are fundamentally different due to the presence/absence of an intrinsic magnetic field, 

respectively.  However, the similarities between these terrestrial and Martian observations makes 

for a useful comparison in considering how such events might be observed at Mars in a similar 

sequence of images. 

 

Figure 4.5: Sequence of images from IMAGE spacecraft showing “pulsating” proton aurora at Earth on 9 March 2004 (credit: 

Yahnin+2009).  

4.4.3 Nighttime proton aurora detections 

Nighttime proton aurora are one of the most unique subtypes of Martian proton aurora, as 

their existence is not easily explained by the commonly understood formation processes.  

Nightside proton aurora account for ~4% of all individual IUVS limb scan proton aurora 

detections (184 out of 4705 detections in this study) and 10.0% of the MAVEN orbits exhibiting 

proton aurora (122 out of 1225).  (We note that dayside detections account for ~81% of 
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detections in this study, and near-terminator detections ~15%.)  Hughes et al. (2019) previously 

reported observing proton aurora in 9.7% of all IUVS limb scan profiles from 26.5% of all 

MAVEN orbits included in their study.  We find similar results here and identify proton aurora 

in 18.8% of all dayside IUVS observations (slightly larger than the 14.1% reported by Hughes et 

al. (2019) due to a different SZA cut off for dayside events, i.e., SZA<80° in this study versus 

SZA<105° in the Hughes et al. (2019) study).  Contrastingly, we observe proton aurora 

occurrence in only 0.85% of all nightside IUVS limb scan observations.  This extremely low 

occurrence rate of less than 1% speaks to the rarity of nightside proton aurora events.   

Previous studies have proposed that nightside H-ENAs could be the result of highly scattered 

solar wind ENAs or magnetosheath protons/ENAs (e.g., Brinkfeldt et al., 2006; Wang et al., 

2018).  Due to the unlikelihood of producing significant localized enhancements in in the Ly-α 

emission through scattering processes alone (i.e., such that it is observable above the background 

thermal H), we do not consider the former process to be exclusively capable of creating nightside 

proton aurora events and instead evaluate alternative possible formation mechanisms.    

A modeling study by Wang et al. (2018) proposed that nightside H-ENAs are generated by 

proton precipitation in the magnetosheath onto the nightside (primarily aided by a convection 

electric field that points away from the planet).  Wang et al. (2018) suggest a possible formation 

mechanism for nightside proton aurora: that magnetosheath penetrating protons, which 

contribute in part to the population of planetward-moving protons in the magnetotail, can travel 

back toward the planet and subsequently precipitate into the nightside exosphere as H-ENAs and 

protons.  Wang et al. (2018) predicted that the Ly-α intensities of nightside proton aurora should 

be ~one order of magnitude lower than those of dayside proton aurora events.  While our 

observations of nightside proton aurora do indeed exhibit relatively low Ly-α peak intensities in 
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comparison with dayside events, we observe a difference of only a factor of ~3.8 between the 

mean day- and nightside peak Ly-α intensities.  However, Wang et al. (2018) suggest that 

discrepancies in their predictions may be due to their assumption of a spherically symmetric 

exosphere, leading to an overestimation of the nightside exospheric density and therefore, H-

ENA precipitation flux.   

Previous studies of proton/ENA precipitation at Mars found that magnetosheath protons and 

ENAs exhibit uniquely different fluxes and energy spectra than their penetrating solar wind 

counterparts: having higher fluxes and a broader energy spectrum with a lower energy peak (e.g., 

Halekas et al., 2015; Wang et al., 2018).  Thus, an evaluation of the energy spectrum during 

nighttime events could help to shed light on the source of nightside protons.  Although SWIA 

has made some measurements of terminator/nightside penetrating protons, due to the rarity of 

nightside proton aurora detections, there are very few nighttime orbits exhibiting proton aurora 

that have overlapping IUVS and SWIA observations.   

Because solar wind particles do not have direct access to the nightside of the planet, nightside 

proton aurora may alternatively form via unique interactions between the upstream IMF with the 

Martian induced magnetosphere and/or remnant crustal fields, perhaps similar to formation 

processes responsible for creating discrete and diffuse electron aurora on the nightside of Mars.  

Martian discrete aurora have been found to be constrained to locations near the southern 

hemispheric remnant crustal fields, and form via solar particles accelerated along diverging 

magnetic flux tubes above magnetized crustal fields (Bertaux et al., 2005; Lundin et al., 2006).  

Discrete aurora can occur in “cusp”-like regions between strong remnant crustal magnetic fields 

or along open field lines connected to crustal fields (Lundin et al., 2006).  Alternatively, Martian 

diffuse aurora are not geographically constrained on the planet and are understood to form via 



109 | Proton Aurora on Mars 

solar particle interactions with draped solar wind field lines around Mars (Schneider et al., 

2015).  Magnetic field interactions could transport protons to the nightside of the planet, perhaps 

due to similar magnetic field alignment constraints as cusp proton aurora observed at Earth (e.g., 

Frey, 2002).  A comparison of nightside proton aurora detections with locations of open/closed 

magnetic field lines shows that these nightside events do not appear to be restricted to locations 

of a single type of open/closed magnetic field topology (Supplementary Figure 4.8, Top).  

However, proton aurora events that occur near remnant crustal fields in the southern hemisphere 

appear to be constrained by the locations of the crustal fields, primarily occurring in 

between/bordering locations of strong radially-oriented magnetic fields (Supplementary Figure 

4.8, Bottom).  Thus, the similarities in locations to both discrete and diffuse aurora suggest that it 

is possible that nightside proton aurora may also be driven by the two processes responsible for 

creating discrete/diffuse aurora on Mars.  A thorough comparison of nightside proton aurora 

events with discrete/diffuse aurora observations will be necessary to better understand the 

connections between these auroral types.  However, such an assessment is beyond of purview of 

this current study. 

Future detailed case studies of these nightside detections (e.g., evaluating penetrating proton 

fluxes/energy spectra, local magnetic field variations, solar energic particles, and overlapping 

observations of discrete/diffuse aurora) will be beneficial in developing our understanding of the 

formation processes of these phenomena. 

4.5 Conclusions & Future work 

Herein we have presented multiple case studies of “variable” proton aurora, which are found 

to be associated with spatial and/or temporal variability in the neutral atmosphere or upstream 

solar wind.  Because of the range of potential formation processes that could be responsible for 
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variable proton aurora, multi-instrument case studies must be utilized to understand the unique 

causes for variability in individual events.  We have also presented results of a statistical study of 

nightside proton aurora events and compare these observations with the more common dayside 

detections.  We find that nightside proton aurora exhibit much smaller Ly-α intensities, emission 

enhancements, and peak altitudes.  Nightside events make up a very small subcategory of proton 

aurora (i.e., ~4% of all IUVS proton aurora detections, but observed in less than ~1% of all 

nightside IUVS Ly-α observations), making them extremely rare in the dataset. 

In a future study we will aim to further quantity the frequency and phenomenology of 

variable proton aurora events in the IUVS dataset.  It will also be beneficial to compare proton 

aurora variations with observations of atmospheric waves/tides, in order to assess the extent to 

which energy (and possibly also mass) transport and dynamic processes of waves/tides in the 

lower- and middle-atmosphere affect upper-atmospheric dynamics and auroral activity.  
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Chapter 4 Supplementary Figures:  

 
Supplementary Figure 4.1: Example of a modulated penetrating proton event from Fowler et al. (2019), showing quasi-periodic 

fluctuations in the upstream magnetic field and proton energy, density, velocity. 
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Supplementary Figure 4.2: IUVS orbit geometry plots for MAVEN orbit 4107, showing the locations of IUVS limb scan 

observations across different latitudes, longitudes, and local solar times during the orbit. 

 

 
Supplementary Figure 4.3: Same as Figure 4.1, with IUVS tangent point observation angles and spacecraft angles overlain 

(e.g., SZA and altitude). 

 



113 | Proton Aurora on Mars 

 
Supplementary Figure 4.4: Altitude-intensity profiles overlain on top of a Ly-α synthetic image format for MAVEN orbit 4107. 
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Supplementary Figure 4.5: Altitude-intensity profiles for the Ly-α and CO2

+UVD emissions for the three MAVEN orbits in Figure 

4.2 (i.e., orbits 4294, 4223, and 4261). 



115 | Proton Aurora on Mars 

 

 
Supplementary Figure 4.6: Ly-α altitude-intensity profiles overlain on top of a synthetic image format for the four MAVEN orbits 

from the Fowler et al. (2019) study with overlapping IUVS and SWIA observations that exhibit clear evidence of modulation in 

proton aurora observations. 

 

 
Supplementary Figure 4.7: Comparison of dayside and nightside proton aurora peak altitudes relative to SZA (left) and season 

(right).  The nightside proton aurora peak altitude appears to fall off with increasing SZA, and both types exhibit higher peak 

altitudes during the southern summer season (around Ls ~270). 
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Supplementary Figure 4.8: Locations of nightside proton aurora are shown in grey overlain on a map of (Top) open/closed field 

lines (map from Lundin et al., 2006) and (Bottom) remnant crustal field strengths and radial field orientations on shaded 

topography relief map (map from Connerney et al., 2005).  
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Chapter 5 Key Points 

• We undertake a multi-model comparison campaign to gain a better understanding of the 

physics and driving processes of Mars proton aurora 

• The incident solar wind particle flux and velocity are found to be the two most influential 

parameters affecting the proton aurora profile 

• All models in the study accurately represent the data, with minor discrepancies likely caused 

by model differences and input assumptions 

Chapter 5 Abstract 

Proton aurora are the most commonly occurring and yet the least studied type of aurora at 

Mars.  In order to better understand the physics and driving processes of Martian proton aurora, 

we undertake a multi-model comparison campaign.  Herein, we compare results from four 

different kinetic transport models with unique abilities to represent Martian proton aurora.  This 

campaign is divided into two steps: an inter-model comparison step and a data-model 

comparison step.  The first step entails modeling five different representative cases using similar 

constraints in order to better understand the capabilities and limitations of each of the models in 

the study.  Through this step we find that the two primary variables affecting proton aurora are 

the incident solar wind particle flux and velocity.  In the second step, we assess the robustness of 

each model based on their abilities to reproduce an example proton aurora event from the 

MAVEN/IUVS dataset.  In so doing, we are able to better constrain the unique physical 

processes driving proton aurora that are incorporated in each model.  The results of this 

comparative study provide a new understanding of the primary factors influencing variability in 

Martian proton aurora, as well as the dominant physics that need be incorporated in future 

models to accurately represent these events.     



119 | Proton Aurora on Mars 

5.1 Introduction and Background 

In this study, we undertake a comparative modeling campaign to better understand the 

physics and driving processes of Martian proton aurora.  Proton aurora have been recently 

determined to be the most commonly observed type of aurora at Mars (Hughes et al., 2019).  

This form of aurora is one of three types of Martian aurora, in addition to discrete (Bertaux et al., 

2005) and diffuse aurora (Schneider et al., 2015).  Further, proton aurora is the most recently 

discovered type of Martian aurora (Deighan et al., 2018; Ritter et al., 2018), and is thereby the 

least studied, and arguably the least understood type of Martian aurora.  Many past efforts to 

model these phenomena have been unable to fully reproduce the observations (e.g., Deighan et 

al., 2018), suggesting a gap in our understanding and a need for further exploration of the 

underlying physics of these events through modeling.   

In a previous statistical study, Hughes et al. (2019) used multiple Mars years of data from 

the Imaging UltraViolet Spectrograph (IUVS) (McClintock et al., 2015) onboard the Mars 

Atmosphere and Volatile EvolutioN (MAVEN) spacecraft (Jakosky et al., 2015) to assess the 

phenomenology of Martian proton aurora.  Based on this study, Hughes et al. (2019) found that 

most “typical” Martian proton aurora events occur on the dayside of the planet (i.e., at low solar 

zenith angles, SZAs) around the southern summer solstice (i.e., solar longitude, Ls, ~270).  This 

seasonal increase in proton aurora activity was found to be caused by an inflated Martian 

hydrogen (H) corona around southern summer solstice, which corresponds with higher H column 

densities and H escape rates due to dust activity and atmospheric temperatures reaching an 

annual maximum at this time (e.g., Hughes et al., 2019; Chaffin et al., 2021; Chaffin et al., 2014; 

Clarke et al., 2014; Halekas, 2017).  The seasonally increased abundance of H beyond the 

planet’s bow shock during this season allows a larger fraction of solar wind protons to be 

converted into H energetic neutral atoms (ENAs) (i.e., through charge exchange and/or electron 
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stripping), which can then bypass the bow shock and magnetic pileup boundary to create more 

frequent proton aurora events with very large H Lyman-alpha (Ly-α) emission enhancements 

during this time of year.  We note that proton aurora can be identified in ultraviolet limb scan 

data as an enhancement in the Ly-α emission (121.6 nm) above the background coronal H 

brightness between an altitude of ~110-150 km; this enhancement is due to an additional 

contribution of H from the proton aurora-inducing H-ENAs as they de-excite and emit photons 

that can be detected by IUVS (see Figure 1 from Hughes et al. (2019) for more detail). 

The purpose of this study is to gain a deeper understanding of Martian proton aurora.  

While previous studies of these unique aurora provided understandings of their phenomenology, 

frequency, and driving processes, much is still lacking in our understanding.  Modeling proton 

aurora activity provides a unique opportunity to understand these events, as it allows us to 

constrain different input parameters and observe/predict the varying results.  Moreover, by 

undertaking a comparative modeling campaign in which the results of multiple models are 

concurrently evaluated (with each model emphasizing different dominant physical processes and 

analytical solving techniques), we are able to simultaneously explore multiple possible outcomes 

for auroral events.  We note, however, that the purpose of this campaign is not to determine 

which is the “best” proton/hydrogen precipitation model in the study, but rather to identify what 

each model does best in simulating proton/hydrogen precipitation at Mars.  Through undertaking 

a rigorous assessment of Martian proton aurora using the results of multiple different 

simulations, we develop an understanding of the gaps in our knowledge and improve our abilities 

to more accurately model future proton aurora observations. 

Being able to effectively model Martian proton aurora is necessary for both developing our 

understanding of observations of auroral events in the IUVS dataset, as well as the ability to 
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predict and understand future observations.  We note that the statistical study by Hughes et al. 

(2019) incorporated data from only the first ~two Mars years of MAVEN orbits, taken during the 

declining and minimum portion of the solar cycle.  While the Hughes et al. (2019) study 

encompassed many interesting proton aurora events, in this present study, we focus our efforts 

on modeling one particularly unique event from the dataset.  The MAVEN mission continues to 

make new and exciting observations of Martian proton aurora, and new Mars missions with UV 

instrument capabilities are also beginning to make concurrent observations of these events.  And 

as the current solar cycle continues to increase toward solar maximum (a period corresponding 

with larger and more frequent solar activity), we anticipate that the intensity and frequency of 

proton aurora events at Mars will also increase correspondingly (e.g., Hughes et al., 2019).  

Thus, it is imperative in our efforts to study proton aurora that we first develop a firm knowledge 

of the physics and driving processes through modeling these events; this understanding will then 

provide the necessary context for future efforts to accurately model new and unique auroral 

observations.   

5.2 Modeling Campaign Description 

5.2.1 Description of models/teams involved in study 

In this study we incorporate four different proton/hydrogen precipitation models and a 

radiative transfer model.  Detailed descriptions of each of the four proton/hydrogen precipitation 

models used in the study are provided in Appendix A.  Here we briefly discuss the different 

modeling teams and types of models.  A radiative transfer (RT) model is also used in this study 

to “forward model” the results of each step into observation space (i.e., Steps 1B and 2B, 

respectively).  This model, referred to herein as the Deighan Radiative Transfer model, is briefly 

described below (as written by J. Deighan). 
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5.2.1.1 Proton/Hydrogen Precipitation Models and Modeling Teams 

We include four unique models/teams in this study: the Jolitz model (i.e., “ASPEN”), the 

Kallio model, the Bisikalo/Shematovich et al. model, and the Gronoff et al. model (i.e., 

“Aeroplanets”).  The former three teams run Monte Carlo models (with the Jolitz and Kallio 

models being 3-D and the Bisikalo/Shematovich et al. model being 1-D).  And the Gronoff et al. 

team uses a 1-D Kinetic model.  As mentioned, detailed descriptions of these models can be 

found in Appendix A. 

5.2.1.2 Radiative Transfer Model 

To quantitatively compare the proton aurora modeling results and the IUVS limb 

observations it is necessary to perform a radiative transport calculation. While the H I 121.6 nm 

emission from thermal hydrogen is optically thick in the upper atmosphere of Mars (Anderson & 

Hord 1971), the emission associated with proton aurora can be considered optically thin due the 

large Doppler shifting caused by the high velocity of the ENAs. This both offsets the line center 

and broadens the width of the spectral line shape and ensures that few of the photons produced 

by proton aurora interact with the ambient thermal hydrogen population for most viewing 

geometries. This allows a simple line-of-sight integration to be employed, though CO2 

absorption must still be taken into account (Deighan et al. 2018, Gerard et al. 2019). 

 The procedure used to calculate a model brightness to compare with each measurement 

by IUVS is as follows: First, the model atmosphere is sampled at 1 km intervals starting from the 

reconstructed spacecraft position and extending out 3000 km along the line-of-sight vector. This 

ensures adequate sampling of the model VER, as the auroral emission typically has a scale height 

on the order of 10 km and a peak VER occurring 500-1700 km away from the spacecraft for 

IUVS periapse limb scans. The column of CO2 between the spacecraft and each sample point in 
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the model is then integrated and an absorption optical depth is obtained using an absorption 

cross-section of 7.348e-20 cm2 (Huestis & Berkowitz 2010). Beer’s law is then applied to find 

the attenuation caused by CO2 absorption for each sample point and the attenuated VER is 

integrated to obtain a column emission rate (CER). This is readily converted into the brightness 

unit of Rayleighs conventionally used for airglow and aurora (Hunten et al. 1956). 

5.2.2 Campaign Outline/Steps 

The purpose of this study is to gain a better understanding of the physics and driving 

processes of Martian proton aurora.  This campaign is divided into two primary steps: an inter-

model comparison step (Step 1) and a data-model comparison step (Step 2); each step is then 

subdivided to reflect the “native format” and “forward-modeled” results (i.e., Steps 1-A and 1-B, 

as well as Steps 2-A and 2-B).   

5.2.2.1 Step 1: Inter-model Comparison 

We begin the campaign with an inter-model comparison in Step 1 using multiple different 

test cases of representative inputs to represent varying proton aurora conditions.  The purpose of 

this step is to set a baseline for inter-model comparisons, and to compare the effects of varying 

input conditions on the results of each individual model.   

Modelers were provided five different representative proton aurora conditions, each with 

varying solar wind velocity, H-ENA & proton fluxes at the top of the atmosphere, and CO2 

density profiles for high and low atmospheric temperature conditions.  Using these inputs, 

modelers created Ly-α altitude vs. volume emission rate profiles with their respective models for 

each representative test case.   
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In Step 1A, we first compare the results in each modeler’s “native format” (e.g., volume 

emission rate).  In Step 1B the results are “forward modeled” into observation space using the 

Deighan radiative transfer model.   

5.2.2.2 Step 2: Data-model Comparison 

In the second step, we assess the robustness of each of the models based on their abilities 

to reproduce a “typical” proton aurora detection from the MAVEN/IUVS dataset.  In undertaking 

Step 2, different variables in the models were tuned to match proton aurora events in the 

MAVEN/IUVS dataset.  Modelers were provided with relevant data inputs for a specific proton 

aurora event and challenged with accurately reproducing the event in their models.  As in Step 1, 

the model results in Step 2A are provided in their native formats, and “forward modeled” into 

observation space in Step 2B using the Deighan radiative transfer model.   

In the subsequent sections, we discuss the results of these steps.  We also consider the 

inherent assumptions of each model (e.g., altitude limits) and compare the differences in the 

model capabilities (e.g., the physics represented in each model) that may impact the results.   

5.3 Inputs and Results for Inter-model Comparison (Step 1) 

5.3.1 Assumptions/Constraints for Step 1 

To accurately compare the driving physics incorporated in each of the models, we utilize a 

number of constraints for each model in Step 1 (i.e., the inter-model comparison step).  The three 

primary constraints are 1) assuming the incident solar wind particle beam is monoenergetic; 2) 

assuming 1-D solar wind particle movement (i.e., monodirectional) that is incident at the 

subsolar point (i.e., SZA = 0); and 3) constraining the same cross section processes included in 

each model (yet allowing the use of different cross section values).  We may empirically justify 

inclusion of the first two constraints based on previous observations of penetrating protons 
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showing a monoenergetic (i.e., typically the same energy as the solar wind) population that is 

incident across the entire sunward-facing side of the planet (e.g., Halekas et al., 2015).  For the 

third constraint, we specifically consider five cross section processes (for protons and/or H 

interacting with CO2): elastic, charge exchange/electron capture, electron stripping, ionization, 

and Lyman-α.  Although some models have the ability to incorporate additional processes, all 

have incorporated at least these five processes.  Lastly, each modeling team incorporated their 

own Differential Scattering Cross Sections (DSCS) values. 

5.3.2 Representative inputs for Step 1 

In undertaking the inter-model comparison, we created five representative proton aurora 

events for each campaign team to model (Table 5.1).  We selected baseline cases that resemble 

previous observations of Martian proton aurora (e.g., Deighan et al., 2018), and incrementally 

changed the input parameters in each subsequent case in order to quantify the effect of these 

parameters on the proton aurora profile.  Specifically, we initially vary the type of incident 

particle at the top of the atmosphere (i.e., 100% H-ENAs or 100% protons in Case 1 and Case 2, 

respectively), then the average incident particle beam flux (Case 3), the particle velocity (Case 

4), and the neutral atmospheric temperature (Case 5).  By changing the temperature in Case 5, 

we inherently also change the scale height, and thereby the CO2 density profile.  For simplicity 

and conciseness in this step, the representative inputs in Step 1 do not incorporate variations in 

solar zenith angle (SZA) or magnetic fields (e.g., the models either ignored the effects of SZA 

altogether or assumed incidence at the subsolar point).  We note that in this study we are 

exclusively interested in modeling the proton aurora profile under different input conditions; 

since proton aurora are almost entirely formed due to interactions between the incident particles 

and the neutral CO2 atmosphere, the model results do not directly incorporate processes 
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occurring in the extended corona upstream of the bow shock (e.g., charge exchange between 

solar wind protons and the H corona).  

Table 5.1: Representative input for the five example cases in the inter-model comparison step (Step 1). These parameters were 

varied to assess their relative importance in each model.  

 

In order to vary the neutral atmospheric temperature parameter (Case 5) modelers were 

provided with two different CO2 density profiles, each containing altitude-binned (1 km bin) 

representative CO2 number density values for the two respective temperature ranges of 190K 

(i.e., baseline temperature) and 240K (i.e., high temperature).  These different CO2 density 

values were created using the equation:  

n(z) = nref * exp( (zref - z) / H ).    (1) 

where z is altitude, nref is the number density at a reference altitude, zref is the chosen reference 

altitude (in this case, 120 km), and H is the CO2 scale height.  Here we assume nref = 1 x 10^11 

cm-3
 at 120 km, and H is calculated for each temperature range using a values of g = 3.46 m/s2 

(i.e., g at the reference altitude of 120 km).  The calculated H values for the low and high 

temperature cases were 10.4 km and 13.1 km, respectively.   
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5.3.3 Results of Step 1A 

In Figure 5.1, it is evident that the results of the inter-model comparison show many 

similarities between the different modeled proton aurora volume emission rates (VERs), with the 

results of the Jolitz and Kallio models exhibiting the most similarities. There is a large range in 

the proton aurora peak altitudes between the models, where the Bisikalo/Schematovich et al. 

model consistently exhibits the lowest peak altitudes and the Gronoff et al. model exhibits the 

highest peak altitudes.  Moreover, there are similar variabilities present within most of the 

models when evaluating the differences between each of the five representative cases.  Almost 

all of the models show no difference in the proton aurora profile (i.e., VER or altitude) based on 

varying the type of incident particle at the top of the atmosphere (i.e., H-ENA or proton); the 

only exception is the Bisikalo/Schematovich et al. model, which exhibits a slight increase in the 

VER of the proton aurora profile for protons rather than H-ENAs as the incident particle.  We 

note that a possible contributor to the similarities observed between the Jolitz and Kallio results 

could be the similar cross section values used between each of these two models.   
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Figure 5.1:Simulation results of proton aurora altitude-VER profiles from each model for the five representative input cases in 

the inter-model comparison step of the campaign (Step 1-A).  The two parameters that have the most significant effect on the 

results are the input solar wind flux and velocity.    

5.3.4 Results of Step 1B  

In Step 1-B we “forward model” the results of Step 1-A into observation space (e.g., 

perform a “line-of-sight” integration comparison).  In this step we consider the heuristic 

observations that would be made by MAVEN/IUVS under similar input conditions.  In so doing, 

the model results are converted from Ly-α VER (in units of photons/cm3s) to Ly-α intensity (in 

units of kilorayleighs, kR), using the Deighan radiative transfer model.  The results of this step 

provide a more reliable cross-model comparison. 

As shown in Figure 5.2, the results of Step 1-B further reveal similarities in the model 

intensities and peak altitudes for each of the five cases.  We find consistently in each model that 

the two major variables the affect the proton aurora profile are the penetrating particle flux and 

the particle velocity.  Decreasing the flux by order of magnitude (Case 3) correspondingly 

decreases the Ly-α intensity by order of magnitude.  Similarly, doubling the particle velocity 

(Case 4) noticeably increases the peak intensity in each model and decreases the peak altitude by 
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~5-10 km.  In the final representative input case of increasing the atmospheric temperature (and 

thereby changing the neutral atmospheric scale height) (Case 5), all of the models show a slight 

corresponding decrease in the Ly-α intensity, and most models show an increase the peak 

altitude by ~5-10 km (with the exception of the Bisikalo/Schematovich et al. model, which does 

not exhibit a change in the peak altitude due to the changing temperature/scale height).   

The consistency of these results confirms our understanding of the driving processes which 

have the most significant effect on the proton aurora profile.  Particularly, we see in Cases 3 and 

4 that the solar wind proton velocity and density (which also affect the particle energy and flux) 

are tremendously important in the formation of notable proton aurora events.  Thus, we may 

predict from the results that high velocity and/or density solar events (e.g., coronal mass 

ejections and solar energetic particle events) will correspondingly create significantly enhanced 

proton aurora events. And that major changes in the neutral atmospheric scale height (e.g., local 

or global dust storms) can cause absorption by CO2 on the bottom side of the proton aurora 

profile, leading to apparently less intense profiles exhibiting a higher peak altitudes. 
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Figure 5.2: Simulation results from the inter-model comparison after running the results through the Deighan Radiative Transfer 

(RT) model (Step 1-B).  Using the RT “forward-models” the results into observation space (e.g., perform a “line-of-sight” 

integration comparison).  The model results more closely resemble each other after this step, but the dominant influencing 

factors identified in Step 1-A (Figure 5.1) are still present. 

5.4 Inputs and Results for Data-Model comparison (Step 2) 

5.4.1 Description of MAVEN/IUVS proton aurora observation and input data 

For the data-model comparison stage of the campaign (Step 2), we selected a typical 

example of a proton aurora event from the MAVEN/IUVS dataset; specifically, we chose an 

event that occurred during MAVEN Orbit #4235.  This particular proton aurora event occurs at 

low SZAs around southern summer solstice (Ls ~270), a period of time exhibiting frequent 

proton aurora activity and increased dust activity associated with the concurrent Martian dust 

storm season.  Figure 5.3 shows the IUVS Ly-α intensity data for this orbit: the left-hand plot 

shows the altitude-intensity profile for each of the limb scans used in the study; and the right-

hand plot is these profiles overlain on a synthetic image format of each of the IUVS limb scans 

from this orbit (horizontal) showing the Ly-α intensity for each of the 21 IUVS mirror 

integrations (vertical) and 7 spatial bins within each scan (e.g., similar to Figure 2 in Deighan et 
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al., 2018).  There are eleven IUVS limb scans in this orbit, however, in order to only include the 

most robust data, we use only the middle nine IUVS scans in this study (yellow highlighted 

scans in Figure 5.3).  Modeler’s results were compared with IUVS Level 1C altitude-binned Ly-

α intensity data from these nine scans in evaluating this step of the study. 

There are minor peak altitude variations in IUVS Ly-α observations between scans 

throughout this orbit.  These minor altitude variations correspond with similar altitude variations 

in the IUVS CO2
+UVD, suggesting the possible presence of waves and/or tides in the neutral 

atmosphere during this orbit (e.g., Lo et al., 2015; England et al., 2016).  The likely presence of 

waves/tides in this orbit is strengthened by similar observations in the MAVEN/NGIMS inbound 

CO2 altitude-density profile.  We note, however, that any minor variations in altitude should not 

have any significant influence on the modeled proton aurora profiles.  

This particular proton aurora event exhibits an especially high orbit-mean peak 

enhancement (3.93 kR) as observed by IUVS.  Also unique during this orbit is a particularly high 

penetrating proton flux (2.73 x 106 cm-2s-1) observed by MAVEN’s Solar Wind Ion Analyzer 

(SWIA) instrument (Halekas et al., 2013).  SWIA observed a strong solar wind stream 

interaction during this orbit, resulting in this especially high penetrating proton flux.  The 

MAVEN periapsis during this orbit is in the southern hemisphere on the dayside of the planet.  

Because the spacecraft periapsis does not occur near any remnant crustal fields, we do not expect 

a significant contribution (if any) from crustal fields during these observations.  The average 

interplanetary magnetic field magnitude and angle during this orbit is ~10 nT and ~45°, 

respectively.   



Chapter 5. Evaluating Martian Proton Aurora through a Coordinated Multi-Model Comparison 

Campaign | 132 

  

Figure 5.3: IUVS Ly-α intensity data of proton aurora observation used in the data-model portion of the campaign (Step 2). Left: 

IUVS altitude-intensity profiles for limb scans used in the study (MAVEN orbit 4235). Right: altitude-intensity profiles overlain 

on top of a synthetic image format of Ly-α intensities for each IUVS limb scan/mirror angle in this orbit (e.g., Figure 2 from 

Deighan et al. 2018). Note that only the central nine scans were used in this study (yellow highlighted scans), and that the given 

SZA values given correspond with the median SZA in each scan. 

5.4.2 Assumptions/Constraints for Step 2  

Modelers were provided with specific data instrument inputs for Step 2 (discussed more 

below).  We apply many of the same constraints and assumptions as those applied in Step 1 (i.e., 

assuming a monoenergetic incident particle beam, assuming monodirectional incident particle 

movement, and constraining the cross section processes used).  One notable difference is that in 

Step 2 we incorporate the effects of differing SZA, in order to simulate the SZA ranges of the 

different IUVS scans during this orbit.  And as in Step 1, we continue to exclude any possible 

effects due to electric or magnetic fields in this step.   

In order to additionally simplify the inputs for this step, all models assume that the incident 

particle population is composed entirely of H-ENAs at the top of the atmosphere (i.e., assuming 

a penetrating proton flux equal to zero).  Based on our findings in Step 1, the proton aurora 

profile does not significantly change in most models when assuming 100% protons or 100% H-
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ENA’s. Thus, this assumption of particle composition should not significantly affect the final 

results.  The H-ENA flux (FH-ENA) was approximated using the equation:  

FH-ENA = Fpp * 13.5     (2) 

Where Fpp (the SWIA orbit mean penetrating proton flux) equals 2.73 x 106 cm-2s-1 in this 

orbit, and 13.5 is the approximate percentage of the incoming beam of H-ENAs that is converted 

to protons.  This conversion value was determined based on previous SWIA observations (e.g., 

Halekas et al., 2015; Halekas, 2017) by assuming that at the point when H-H+ equilibrium is 

reached in the collisional atmosphere the mix is ~92.5% ENAs and 7.5% protons (i.e., the 

equilibrium fractionation for the relevant cross sections at 1 keV).   

Another constraint carried over from Step 1 was that all models utilized the same 

representative CO2 density (i.e., a 1 km altitude-binned CO2 number density profile).  However, 

in Step 2, the theoretical profile CO2 density line was created based on observed/derived neutral 

densities from two MAVEN instruments observing at different altitude ranges during this orbit: 

IUVS and the Neutral Gas and Ion Mass Spectrometer (NGIMS) (Mahaffy et al., 2015).  (We 

note that although NGIMS data are acquired during both the inbound and outbound portions of 

the orbit, we restrict this study to include only inbound data, due to instrument artifacts which 

have been found to artificially increase CO2 densities in NGIMS outbound data.)  The IUVS and 

NGIMS neutral densities are consistent with each other within the limited overlapping altitude 

range of the two instruments (i.e., at a reference altitude of 170 km, the NGIMS CO2 density is 

~1.48e9 cm-3, and the smallest derived CO2 density from different IUVS limb scans is~1.74e9 

cm-3). 

Figure 5.4 shows the theoretical CO2 profile for Step 2, which was created by fitting a 

best-fit exponential to the IUVS and inbound NGIMS data using equation (1).  Where, in this 
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case, nref = 1.1 x 1011 cm-3 (the average IUVS density at zref), zref = 130 km (the minimum 

altitude observed by IUVS during this orbit). The CO2 scale height was estimated by varying the 

temperature value until an appropriate fit was achieved (using a value of g = 3.41 m/s2 at 130 

km); a temperature of 180 K was used in calculating this best-fit line.    

 

Figure 5.4: Empirically-derived theoretical CO2 profile used in models for the data-model comparison step (Step 2).  This profile 

was created by fitting a best-fit exponential to the derived IUVS and measured inbound NGIMS (lower NGIMS curve) data from 

this MAVEN orbit.  

5.4.3 Results of Step 2A 

The results of Step 2A show that all models are able to simulate the data to within an order 

of magnitude of the same VERs (Figure 5.5).  As in Step 1, the results of Step 2A also show that 

the Jolitz and Kallio simulations are most similar to each other in terms of VERs & peak 

altitudes.  Further, the Gronoff et al. model results exhibit relatively low VERs compared with 

other models, and the Bisikalo/Shematovich et al. model results exhibit relatively high VERs & 

low peak altitudes; however, we note that the peak altitudes in these model results display the 

most variability between SZAs, and that the highest SZA profiles could not be modeled due to 

model limitations.   
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Figure 5.5: Simulation results from the data-model comparison step of the campaign (Step 2-A), showing proton aurora altitude-

VER profiles from each model for the specified input parameters and SZAs. Most of the model results display similar peak 

altitudes and VERs (within an order of magnitude). 

5.4.4 Results of Step 2B 

Forward modeling the simulation results using the Deighan RT model allow an appropriate 

comparison between the model results and the IUVS data.  In so doing, we determine through 

Step 2B that all of the models appear to underestimate the proton aurora brightness ~ 5-10 kR 

(Figure 5.6).  It is also apparent that the peak altitudes of model results are ~5-15km lower than 

the data peak altitudes.   

It is imporant to note that the Ly-α brightness observed in the IUVS data is created by 

contributions from not only the non-thermal H producing proton aurora, but also from the 

thermalized background coronal H.  Thus, by subtracting out the background coronal H from the 

IUVS proton aurora profiles, we are able to accurately compare the data with the model results.  

We perform this coronal H background subtraction by first estimating the background coronal H 
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during this time based on IUVS limb scan profiles from a nearby orbit that exhibit little/less 

evidence of enhancement due to proton aurora activity (created by fitting an arcsine function to 

the profiles from the nearby orbit).  This estimated background Ly-α brightness due to the 

coronal H is then subtracted out from each corresponding IUVS limb scan from the orbit of 

interest (between the two scans observing at similar SZAs).  The corrected intensities then reflect 

the H contribution only from proton aurora.  In this orbit, the intensities are reduced significantly 

(by nearly 10 kR at low SZAs), but the shape of the profiles between ~110-150km (around the 

proton aurora profile peak) does not change.  The profile peak altitudes typically also do not 

change as a result of this background subtraction routine (however, we note that in this case, the 

peak altitude of the lowest SZA profile has been shifted down by 5 km due to an altitude 

difference in the background subtracted profile). 

Through implementing a background subtraction routine for the orbit of interest, we see 

that the model intensities appear to be much more closely correlated with those of the data for 

each limb scan profile (Figure 5.6, compare with far right plot).  The observed background-

subtracted data intensities at low SZA profiles lie between the Gronoff et al. and 

Bisikalo/Shematovich et al. results.  However, at high SZAs, all three models for which results 

are available appear to model the data intensities rather accurately.  The Kallio and Jolitz model 

intensities overestimate the data at low SZAs (i.e., the largest intensity profiles) by a few kR, 

while the Gronoff et al. model intensities underestimate by a few kR.  At low SZAs, the 

Bisikalo/Shematovich et al. model intensities closely correlate with the data intensities, but still 

slightly overestimate the data; however, comparison of the profiles at high SZAs is not possible 

due to the limitations which prevent creation of model simulations at higher SZAs.  We note that 
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none of the model intensities exactly match with the data; possible reasons for these 

discrepancies are discussed in the following section. 

In spite of the better agreement between data and model intensities after subtracting out the 

theoretical background Ly-α brightness, it also must be noted that significant peak altitude 

discrepancies between the models and the data are still present. This altitude discrepancy 

suggests that other processes/assumptions are not fully accounted for or understood in our 

evaluation of the results.  In the following section, we examine numerous possible parameters 

that might be contributing to the observed discrepancies between the data and the models. 

  

Figure 5.6: Simulation results for the data-model comparison after running the results through the Deighan Radiative Transfer 

(RT) model (Step 2-B).  The uncorrected IUVS limb scan profiles for this orbit is shown on the far left plot, and the corrected 

background-subtracted limb scans (after subtracting out the theoretical “background” coronal H contribution) are shown on the 

far right plot.  The Ly-α intensities of the model results much more closely correlate with those of the background-subtracted 

data. However, there is still a notable discrepancy between the average peak altitude of the data profiles (solid grey horizontal 

line) and the average peak altitude of the model profiles (dashed grey horizontal line). Note that the SZA of the observations is 

decreasing from left to right (i.e., moving toward the subsolar point), as shown in Figure 5.3. 

5.5 Discussion of parameters affecting model differences and similarities 

5.5.1 Monodirectional vs. Isotropic assumption 

Another contribution to the data-model discrepancies in peak altitude is likely caused by 

the assumption of monodirectional particle movement of the incident solar wind.  We include a 

terminology note here that in specifying “monodirectional” versus “isotropic” particle 

movement, we refer specifically to the bulk velocity (i.e., average speed and direction) of the 

protons in the incident solar wind beam.  Thus, one might expect that if the assumption of 
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monodirectionality does indeed influence our results, the apparent data-model discrepancies 

should be improved (or at the very least, altered) by assuming isotropic particle 

movement/scatting.  In order to test whether or not this assumption has a significant influence on 

the campaign results, two modeling teams (Kallio and Bisikalo/Shematovich et al. teams) carried 

out example simulations using similar input parameters but assuming isotropic particle 

movement/scatting.  Figure 5.7 shows an example of this comparison using the 

Bisikalo/Shematovich et al. model.  In these comparative simulations, as the incident particle 

population was made to resemble an isotropic beam, the VER of the proton aurora profile was 

decreased and the peak altitude was increased by ~5-20 km (with the largest altitude variability 

observed in the Kallio model).  These variations (especially in altitude) could indeed contribute 

significantly to the observed data-model discrepancies.  Further, in addition to these simulated 

differences in VER and peak altitude, the Bisikalo/Shematovich et al. model also predicted a 

much larger H flux in the upward direction in the isotropic case.  This higher peak altitude in the 

proton aurora profile using the isotropic assumption in comparison with the monodirectional 

assumption is a direct result of H atoms being more efficiently backscattered due to collisions 

with CO2 (i.e., in the isotropic case, a fraction of precipitating H atoms are backscattered 

compared to no backscattering the monodirectional case).  Because neither of these two extreme 

assumptions (i.e., purely monodirectional or purely isotropic particle movement) is a probable 

physical occurrence, the actual particle precipitation pattern is likely somewhere between these 

two limiting cases.  Thus, the variability observed in simulating these two different assumptions 

of particle movement provides relevant information regarding a possible range of peak altitudes 

in which the model results may exist.  Moreover, we may also identify this assumption as a 

likely contributor to the observed discrepancies between the data and the models.  However, a 



139 | Proton Aurora on Mars 

lack of ability to quantify the fraction of monodirectional versus isotropic particle movement 

during this time prohibits any effort to quantify the effect of this assumption on the model 

results. 

 

Figure 5.7: Example comparison of assuming purely monodirectional movement of the incident particle population versus purely 

isotropic (results from the Bisikalo/Shematovich et al. model). Left: Comparison proton aurora profiles using each assumption; 

Middle: Simulated H energy flux in the downward and upward directions using a monodirectional assumption; Right: Simulated 

H energy flux in the downward and upward directions using an isotropic assumption. The simulated proton aurora profile using 

the isotropic assumption has a higher peak altitude and smaller VER due to the larger upward (e.g., backscattered) H 

population. Although the models assume purely monodirectional movement in this study, the reality is likely somewhere between 

these extreme assumptions, which could in turn lead to some of the observed discrepancies between the data and the models in 

Step 2 of the campaign. (Figure credit: Bisikalo/Shematovich et al. team)  

5.5.2 Cross Section Processes and Scattering Angle Distributions 

While the models in this study constrain the cross section processes included in their 

simulations to the five processes that can be included in every model, most models do not use the 

same cross section values.  These cross section values can indeed vary significantly with varying 

energy ranges.  However, we note that the cross section values used in each model agree to 

within less than ~an order of magnitude of each other for the relevant energy range in this study 

(i.e., between ~100eV – 2KeV).  Therefore, while differences in cross section values may have 

minor effects in the model-model comparison, we do not expect these differing values to 

significantly affect the results of the data-model comparison.   
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5.5.3 Other Assumptions 

There are a number of additional assumptions in this study that may have led to 

discrepancies between the models and the data.  First, numerous data-driven assumptions were 

made in creating the theoretical CO2 density profile for Step 2.  Any of three variables could be 

altered that could in turn significantly affect the proton aurora profile: the energy of the incident 

particles, the density of the atmosphere at a reference altitude, or the neutral atmospheric scale 

height.  All of these variables affect the peak altitude of the proton aurora profile, while changing 

the scale height and energy also affects the profile peak intensity (more specifically, changing 

the scale height can also affect how broad/narrow the profile shape becomes).  In this study, we 

determined the atmospheric density at a reference altitude (130km) by using the average derived 

IUVS Level 2 CO2 density at 130 km.  Because the CO2 density profile used by modelers in this 

study is theoretically derived, inaccuracies in the assumed quantities for reference density or 

scale height would lead to an inaccurate representation of the atmospheric density profile during 

this time.  Thus, it is possible that the CO2 density profile is not entirely accurate in representing 

the atmosphere at this time, possibly contributing to some of the discrepancies observed in the 

data-model comparison.  However, observations by MAVEN/SWIA during this orbit provide 

confidence that the calculation of particle energy (based on average penetrating proton velocity) 

and the assumption of monoenergetic particle behavior are appropriate and accurate, and 

therefore do not significantly affect the results.   

For simplicity in Step 2 we assume the precipitating particle population at the top of the 

atmosphere is entirely composed of H-ENA’s.  Although the incident particle population is 

indeed comprised of a fractionated portion of both ENAs and protons, this simplified assumption 

was preferred over a non-empirical assumption of an estimated fractionation ratio.  Moreover, as 
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the results in Step 1 do not significantly change in most models based on the assumption of an 

entirely ENA- or proton-rich population, we would not expect the effects of this assumption on 

its own to have a significant impact on the final results.  One potential exception may be the 

Bisikalo/Shematovich et al., results in which the peak intensity somewhat increases if a particle 

population of entirely protons is assumed (as seen in Step 1-A and 1-B).  Because the 

Bisikalo/Shematovich et al. results showed slight variability based on the assumed incident 

particle population, it is possible that the intensities in their model results might have been larger 

by changing this assumption (which may cause their simulated intensities to more closely 

resemble those of the Kallio and Jolitz models).    

Lastly, the ENA flux used in Step 2 was calculated as an empirically derived fraction of 

the orbit-averaged SWIA penetrating proton flux.  While this fraction is supported by previous 

observations by SWIA, the value can vary based on seasonal or spontaneous changes (e.g., the 

solar wind proton flux, the neutral atmospheric scale height, or the location of the bow shock).  

As determined in Step 1, decreasing the flux by an order of magnitude will correspondingly 

decrease the proton aurora peak intensity by an order of magnitude.  Thus, although the method 

used to calculate the ENA flux is believed to be an accurate approximation, we note that any 

major deviation from the statistical norm of local conditions during this orbit would cause 

discrepancies in accurately calculating the ENA flux.  Moreover, independent of the statistical 

robustness of the empirically calculated ENA flux, because the actual penetrating particle 

population is composed of a combination of ENAs and protons (with the fraction of ENAs 

increasing with decreasing altitude) (e.g., Halekas, 2017), the resulting model intensities for this 

step likely represent an upper limit for the simulated intensities (leading to the overestimation of 

profile intensities in most of the models).  Thus, the combination of the assumption of a purely 
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ENA-rich particle population and the chosen method for calculating the ENA flux are most 

likely major contributors to the observed discrepancies between the data and model intensities. 

5.5.4 Data Quality and Caveats 

In addition to the possible sources of discrepancy in the model assumptions, we must also 

consider possible caveats associated with the data.  Because IUVS is a remote sensing instrument 

its limb scan observations are created by integrating along the line of sight of the instrument.  

However, the SWIA penetrating proton fluxes are measured in situ during periapsis, and the orbit 

averaged value is used in this study.  It must be considered that there may be spatial and/or 

temporal discrepancies between these observations, even though they are collected during the 

same orbit.  Secondly, because IUVS Level 1C (L1C) data are processed and altitude-binned, we 

note that minor discrepancies may be introduced in the Ly-α intensities during the data reduction 

process.  We also note that the MAVEN spacecraft potential at periapsis during this orbit was 

observed to be relatively large and negative; these are not ideal conditions for observing low 

energy charged particles, which limits our ability to compare the observations from most other 

MAVEN instruments during this orbit.  The data used in this study does not incorporate low 

energy charged particles, and we are not aware of any potential caveats associated with the 

included datasets that could be influenced by the spacecraft potential.   

5.6 Summary, Conclusions, and Future Work 

The results of this modeling campaign provide a new understanding of the primary factors 

influencing variability in Martian proton aurora.  We found the inter-model comparison step of 

the campaign that the two most influential variables affecting proton aurora are the incident solar 

wind flux and velocity.  We also determined that most of the models in the study were able to 

simulate the representative inputs to within an order of magnitude, with the differences between 
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the models causing the observed inter-model variability.  In the data-model comparison step of 

the campaign, we determined that all of the models were able to efficiently simulate the data, 

with most over-estimating and one under-estimating (i.e., the Gronoff et al. model) the 

intensities.  The discrepancies in intensities and peak altitudes between the data and models 

could be attributed to a number of possible assumptions in the campaign.  And the differences 

between the model results in the data-model comparison step demonstrate the inherent 

capabilities, assumptions, and methodologies of each of the models. 

By undertaking this comparative study, we are able to better constrain the driving 

processes of proton aurora as characterized by each contributing model, as well as the dominant 

physics that need be incorporated in future modeling studies to accurately represent these events.  

The results of this study are applicable not only for proton aurora at Mars, as similar auroral 

processes can occur on any planetary body that exhibits an induced magnetic field and a neutral 

H corona.  Modeling studies such as this one are particularly important in efforts to study 

planetary bodies with minimal observations or where data are not available, whether in our solar 

system and beyond (e.g., Venus, comets, and exoplanets). 

In a future study, we aim to address the effects of magnetic and electric fields (i.e., induced 

and/or crustal magnetic fields) on proton aurora.  It will also be important to quantify the effect 

of the backscattered particle population on the proton aurora profile; because recent SWIA 

studies have shown that a significant portion of the incident particle population can be 

backscattered (Girazian and Halekas, 2021) this factor could thereby contribute to the observed 

data-model discrepancies.  Additionally, we will aim to address the effects of CO2 absorption on 

the proton aurora profile.  Because absorption of Ly-α by CO2 becomes significant below the 

peak of the proton aurora Ly-α emitting layer, it can have a non-trivial impact on proton aurora 
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modeling efforts.  We note that this study depends strongly on consideration of the efficiency of 

charge exchange between protons in the undisturbed solar wind and H in the extended corona (as 

this is an upper boundary for calculations due to the precipitation of H-ENAs).  Therefore, a 

possible next step for this campaign could be to consider the variations present in an energy 

spectrum of incident H atoms and protons (i.e., an energy spectrum that is not monoenergetic).  

And finally, we will expand our analysis to include an “atypical” example of a proton aurora 

event in the data-modeling portion of the campaign (e.g., spatially and/or temporally varying, 

nightside events, etc.).    
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6.1 Doctoral Dissertation Project Summary  

In this final chapter I summarize the findings presented in this doctoral dissertation and 

discuss the significance in the Planetary Science field.  As previously stated, the purpose of this 

project is to develop our understanding of the phenomenology, variability and driving processes 

of Martian proton aurora.  In completing this dissertation project, I have directly addressed the 

primary research objectives highlighted at the beginning of this dissertation, which include:  

• Creating a comprehensive database of Martian proton aurora and characterizing the 

phenomenology of these events, finding that proton aurora are uniquely constrained to 

the planet’s dayside and occur almost continuously during the Martian southern summer 

season (Chapter 2). 

• Evaluating the comparative variability between proton aurora and penetrating proton 

observations to identify the distinct effects of atmospheric dust activity and extreme solar 

events (Chapter 3). 

• Constraining the geomagnetic locations of proton aurora occurrence at Mars to search for 

possible interaction with an upstream solar magnetic field, finding a possible preferential 

occurrence of proton aurora at specific cone/clock angles (Chapter 3). 

• Identifying/characterizing unusual variability in “atypical” proton aurora observations 

(including nightside and “variable” proton aurora) to gain a deeper understanding of the 

trends and unique formation mechanisms of these uncommon events (Chapter 4). 

• Developing the current understanding of proton aurora formation and variability through 

a coordinated multi-modeling comparison campaign, thereby helping to constrain the 

dominant physics/driving processes affecting proton aurora (Chapter 5). 
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6.2 Scientific Novelty and Press Coverage 

As previously noted, this project is the first detailed study of Martian proton aurora to date.  

Thus, the scientific findings that resulted from this work are all novel developments in the field 

of Planetary Science.  However, certain parts of this dissertation project gained particular 

attention/notoriety and were covered by numerous national and international press outlets, 

including a press release by the National Aeronautics and Space Administration (NASA).  In this 

section, I briefly highlight these significant results.  (Note that the NASA press release can be 

found here: https://www.nasa.gov/press-release/goddard/2019/mars-proton-aurora-common) 

 As discussed in Chapter 2, the results of our detailed statistical study found that proton 

aurora are primarily constrained to the dayside of the planet, occurring at low solar zenith angles 

(SZAs).  Figure 6.1 shows a unique perspective of the spatially confined proton aurora on the 

sunward facing side of Mars.  The locations of proton aurora on Mars are due to the lack of a 

global intrinsic magnetic field.  Thus, this unique type of aurora on Mars provides new 

information about how the solar wind can interact with the upper atmospheres of planets to 

produce types of aurora that are not possible at Earth.   

 

Figure 6.1: IUVS apoapsis observations of nominal conditional of the Martian hydrogen corona (left panel) and observations 

when proton aurora are underway (middle panel). By subtracting out the hydrogen coronal intensities we may see the spatial 

constraints proton aurora on the sunward facing side of the planet (right panel). (Image credit: NASA/LASP/Univ. of 

Colorado/ERAU) 

https://www.nasa.gov/press-release/goddard/2019/mars-proton-aurora-common
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 Another unique finding from this study is the prominent seasonal variability and the 

nearly continuous occurrence of proton aurora around the Martian southern summer solstice.  

During this period Mars is relatively closer to the sun in comparisons with northern summer, 

causing higher atmospheric dust content and temperatures.  This increased abundance of 

atmospheric dust leads to dust-induced hydrogen (H) escape, and thereby, an extended H corona 

beyond the bow shock (allowing for more charge exchange interactions between the solar wind 

and H in the Martian upper atmosphere).  The result of this process is an annual maximum in 

proton aurora intensities, emission enhancements, and peak altitudes around southern summer, 

and an occurrence rate of nearly 100% on the dayside of the planet during this time.  This 

variability is nicely demonstrated in the schematic in Figure 6.2.   

 

Figure 6.2: Martian proton aurora exhibit significant seasonal variation due to dust-driven lower-atmospheric forcing and 

hydrogen escape. The peak activity occurs during southern summer, when the Mars atmosphere experiences increased dust 

activity and higher temperatures. (Figure credit: NASA/LASP /Univ. of Colorado/ERAU) 

Thus, another important discovery from this project is that proton aurora can actually be 

used as a proxy for evaluating Martian H escape and water loss to space!  To summarize the 

intriguing significance of these results, I quote (myself) from the before-mentioned NASA press 

release: “Perhaps one day, when interplanetary travel becomes commonplace, travelers arriving 
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at Mars during southern summer will have front-row seats to observe Martian proton aurora 

majestically dancing across the dayside of the planet (while wearing ultraviolet-sensitive 

goggles, of course). These travelers will witness firsthand the final stages of Mars losing the 

remainder of its water to space.” 

6.3 Conclusions 

The results of this study inform our understanding of the unique characteristics, variability, 

and driving processes of Martian proton aurora, as well as the solar wind’s interaction with the 

upper atmosphere of Mars under varying conditions.  These findings are relevant not only to 

Mars, but also to any planetary body that exhibits a hydrogen corona and lacks a global intrinsic 

magnetic field, both within our solar system and beyond (e.g., Venus, comets, and exoplanets).  

The results of this project, in combination with other studies, will provide a more thorough 

understanding of the physical processes driving the evolution of the Martian atmosphere through 

time.  This improved understanding of atmospheric processes and escape on Mars will pave the 

way for future robotic and human exploration missions to Mars and other planetary bodies in our 

solar system.  

I look forward to continuing to work on the future projects that I have outlined in the 

previous chapters of this dissertation.  I am delighted and honored to have been a part of the 

beginning stages of developing our understanding of Martian proton aurora - a unique/novel 

subject that is at the cutting edge of the Planetary Science field.  And I am eager to see the 

exciting developments in this field in the years to come! 
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Appendix A: Proton/Hydrogen Precipitation 

Model Descriptions 

In this appendix we provide detailed descriptions of each of the four proton/hydrogen 

precipitation models used in our study.  Descriptions are written by each modeling team and 

appropriate references are given at the end of each section. 

I. Jolitz 3-D Monte Carlo Model (Model Name: “ASPEN”) 

ASPEN (Atmospheric Scattering of Protons, Electrons, and Neutrals) is a 3D Monte Carlo 

test particle simulation. This model was initially developed to predict atmospheric ionization 

rates at Mars by solar energetic particles, which have higher energies than the ENAs studied in 

this paper [Jolitz et al. 2017], and has since been used to predict precipitating SEP electron fluxes 

at Mars [Jolitz et al. in-review]. The simulation solves the Lorentz force equations for energetic 

particle motion and uses a Monte Carlo approach to predict collisions and resulting energy loss 

in the atmosphere. Since magnetic fields were set to zero for this study, the transport equations 

reduced to ballistic motion. 

The collisional energy degradation algorithm used in ASPEN was originally developed and 

described in Lillis et al. [2008] for an electron precipitation model. It is very similar to the Kallio 

model in approach. Stochastic collisions were modeled by inverting the relation between 

intensity, density, and absorption cross-section for a particle beam incident on a medium of 

scatterers (colloquially known as Beer’s law) to dynamically calculate a probability distribution 

function that is combined with a random number to predict variable distances between collisions. 

This probability distribution function is calculated for each individual particle and depends on 

the position, path, and energy through the planetary atmosphere. Similarly, whenever a collision 
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occurs, the type of collision is predicted probabilistically using the relative cross-section of each 

possible collisional process and the particle energy is decremented by the corresponding energy 

loss. As a particle loses energy, the relative cross-sections of each process change. For example, 

a 2 keV proton colliding with a carbon dioxide molecule has a roughly 70% likelihood of 

capturing an electron, but the likelihood for the same process when the proton is 20 eV is only 

20%. 

This model is highly dependent on the choice of cross-sections. For the application in this 

study, the selected cross-sections for hydrogen and proton impact on carbon dioxide are 

described in Jolitz et al. [2017], with one exception. The cross-sections for proton- and 

hydrogen-impact excitation was replaced with Lyman-alpha emission cross-sections. 

Unfortunately experimental measurements of the Lyman-alpha emission cross-section from 

proton and hydrogen atom impact on carbon dioxide is limited. As of the time of this paper’s 

writing, only one set of measurements exist for 1-25 keV protons and hydrogen atoms [Birely 

and McNeal 1972]. The cross-section for emission by protons and hydrogen atoms below 1 keV 

is unknown. In order to approximate emission from particles at these energies, ASPEN uses a 

cross-section calculated by scaling the corresponding emission cross-sections from impact on 

molecular oxygen. ASPEN also accounts for the fact that proton-induced Lyman-alpha emission 

can only occur in addition to a charge exchange collision, since Lyman-alpha can only emitted 

by a hydrogen atom. 

Since ASPEN is a 3D Monte Carlo simulation, predicting an accurate emission rate 

requires appropriate choice of initial conditions and a large volume of simulated particles. For 

Step 1, we simulated 10,000 particles incident on the subsolar point from an altitude of 600 km 

and calculated the emission rate by binning all Lyman-alpha emitting collisions as a function of 
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altitude and multiplying by the incident flux. For Step 2, we simulated 10,000 particles 

isotropically distributed in space on a plane perpendicular to the direction of solar wind flow. 

Each particle represents a fraction of the assumed incident flux. The emission rate was then 

calculated by weighing the total number of emissions binned by altitude, solar zenith angle, and 

the fraction of flux associated with each simulated particle. 
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II. Kallio 3-D Monte Carlo Model 

The Kallio model is described in detail in Kallio and Barabash, 2000 and 2001. 

(i)    General intro: nature of the model (DMSC/semi-analytical, 1D/3D), brief 

history of its development, general references 

The model is 3D Monte Carlo model where incident particle, either H+ or H, collides with 

neutral particles after with the velocity of the particle is changed. The model contains 6 elastic 

and 24 inelastic process but, in this study, only processes shown in Table X was used. 

The model uses cartesian coordinate system both for the positions and velocities of the 

precipitating particles. In the coordinate system the x-axis points from the centre of Mars toward 

the Sun. 
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(ii)   Inputs, processes included, with relevant cross section references (in a 

separate table?), and outputs. 

The model inputs are neutral atom densities, energy dependent total cross sections (CS) the 

differential scattering cross sections (DSCS), the number of precipitating particles (NH) and the 

initial positions (rparticle(t=0)) and velocities (vparticle(t=0)) of the precipitating particles, in the 

present case hydrogen atoms (H).  

The total cross sections are given in Kallio and Barabash, 2001 (Table 1 and Fig. 3) and 

the DSCS scattering angle distribution in Kallio and Barabash, 2000 (Fig. 1, “nominal”) and 

2001 (Fig. 2). Total cross sections give the probability that a collision occurs. Random numbers 

are used to model if a collision occurs and which collision process occurs. If a collision happens, 

then the DSCS determines the new velocity of the incident particle after collision. The value of 

the scattering angle is obtained by using a new random variable. 

(iii)  Implementation and technical aspects: assumptions and constraints, domain 

of applicability and grid description, spatial resolution and timesteps, number of 

particles, overall performance?, etc. 

In the simulation, particles are injected into the upper atmosphere at the point [x, y, z] = 

[260 km + RMars, 0, 0], where the radius of the Mars, RMars, was in the simulation 3393 km. The 

velocity of the particles in the analysis presenting in this paper was a constant v = [vx, vy, vz] = [-

400, 0,0] km/s, i.e. a beam of particles moved initially exactly toward the surface of the planet.  

The model saves the position and the velocity of the particle if it has had a Ly-𝛼 collision 

process. The Ly-𝛼 volume production rate was derived from the saved positions of Ly-𝛼 

processes by collecting the number of the Ly-𝛼 collision processes (d#k
hf) at a given altitude (h) 

ranges: dhk  hk+1 – dhk. Then the Ly-𝛼 volume of the emission was derived by using a 1D 
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approximation, i.e. assuming that the area of the emission perpendicular to the x-axis (dAhf) is 

equal to the initial area in the solar wind (dAsw) through which the precipitating particles initially 

came, dAhf = dAsw. Therefore, the volume (dVk) from which the emission came within dhk was 

assumed to be dVk = dhk × dAsw. 

The altitude dependent Ly-𝛼 volume emission rate 

qk
hf = d#k

hf / (dt × dVk) = d#k
hf / (dt × dhk × dAhf) = d#k

hf / (dt × dhk × dAsw),      (1) 

is finally obtained from the particle flux of the precipitating H particles (jH), the number of 

the particles used in the MC simulation (NH) and the time (dt) which takes NH particles to go 

through the area dAsw: NH = jH dt × dAsw. This gives dt × dAsw = NH / jH and Eq (1) gets the form 

qk
hf = d#k

hf / (dt × dVk) = jH [d#k
hf / (dhk  × NH)].      (2) 

In the analysed simulation NH was 5000. As can be seen in Eq. (2) the particle flux jH is 

just a scaling factor and in this paper, it was 107 cm-3 s-1. In the plots presented in this paper the 

Ly-𝛼 emission altitude profiles was derived in 1 km altitude bins, i.e., dhk = 1 km. This provided 

a relatively good compromise between modest statistical fluctuations and the accurate 

determination of the peak emission value and altitude. 

(iv)   possibly, strengths and applications most suited for the model 

 

The largest uncertainty for the obtained Ly-𝛼 volume emission rate qk
hf is related to the 

uncertainty of the used total cross sections and the differential scattering cross sections between 

H and H+ particles and CO2 molecules. In the simulation many of these H/H+ collisions with CO2 

are modelled with H/H+ collisions with O2 and N2 which was published in the literature (see 

Kallio and Barabash, 2001, Table 1, for details).  

As described in Kallio and Barabash, 2000 and 2001, functional forms of the adopted 

DSCS are modelled following Noël and Prölss (1993). The used DSCS (see Kallio and 
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Barabash, 2000, Fig. 1a, the “nominal” DCSC and Kallio and Barabash, 2001, Fig. 2) is a fit to 

the data of H – O2 collisions from Newmann et al., 1986, Table 4. 

The inaccuracy caused by the 1D approximation, dAhf = dAsw, is small because the 

horizontal movement of the colliding particles in the atmosphere is small compared with the 

radius of the planet. 

It is also worth to note that although the statistical fluctuations in the derived emission 

altitude profiles could be reduced by using a larger number of precipitating particles (now 5000) 

in the used 1 km altitude binning, the statistical fluctuations are relatively modest already for the 

used number of particles. 

It is worth to note that the used MC model can be automatically used in the future more 

complicated situations than done in this paper. In this study the precipitating particles formed a 

monoenergetic beam and Ly-𝛼 emission was derived along the x-axis, i.e. at SZA = 0 deg. 

However, the velocity distribution function can be more complicated, for example Maxwellian 

velocity distribution function or the velocities can be read from a file. Moreover, the atmospheric 

density profile, n(r) can be 2D, say n(r) = n(SZA, h). In such a case the MC model can be used 

to derive altitude profiles at a given SZA (see Kallio and Barabash, 2001, for details). The 

atmospheric density can also be 3D, i.e. n(r) = n(x, y, z), which would result in the 3D Ly-𝛼 

emission rates. In the simulation the particle flux and their velocity distribution can also have 

latitude-longitude dependence (see Kallio and Janhunen, 2001, for details). 
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III. Bisikalo/Shematovich et al. 1-D Monte Carlo Model 

  (a) Precipitating high-energy hydrogen atoms and protons lose their kinetic energy in the 

elastic and inelastic collisions, (b) ionization of target atmospheric molecules/atoms, and (c) 

charge transfer and electron capture collisions with the major atmospheric constituents – CO2, 

N2, and O included in the model. Secondary fast hydrogen atoms and protons carry enough 

kinetic energy to cycle through the collisional channels mentioned above and result in a growing 

set of translationally and internally excited atmospheric atoms and/or molecules. 

To study the precipitation of high-energy H/H+ flux into the planetary atmosphere, we 

solve the kinetic Boltzmann equations (Shematovich et al., 2011) for H+ and H, including the 

collision term: 
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Equation (1) is written in the standard form for the velocity distribution functions               

f

 

H / H +(r,v), and fM(r,v) for hydrogen atoms and protons (Gérard et al., 2000). The source term    

Q

 

H / H +describes the production rate of secondary H/H+ particles and the elastic and inelastic 

collisional terms Jmt for H/H+ describe the energy and momentum transfer to the ambient 

atmospheric gas which is characterized by local Maxwellian velocity distribution functions. Our 

kinetic Monte Carlo model (Gérard et al., 2000; Shematovich et al., 2011) is used to solve kinetic 

equation (1). Model is 1D in geometric space and 3D in velocity space. Nevertheless, the 3D 

trajectories of H/H+ are calculated in the code with final projection on radial direction. In the 

current version of the MC model (Shematovich et al., 2019) an arbitrary structure of the induced 

magnetic field of Mars; that is, all three components of the magnetic field B = {Bx,By,Bz}, was 

taken into account. The details of the model implementation and statistics control with the 

variance below 10% can be found in (Shematovich et al., 2019). It should be pointed out that a 

key aspect of this model is the probabilistic treatment of the scattering angle distribution, 

which influences both the energy degradation rate and the angular redistribution of the 

precipitating protons and hydrogen atoms (Bisikalo et al., 2018; Shematovich et al., 2019). To do 

this, it is necessary to use both total and differential cross sections when calculating the post-

collision velocities for high-energy precipitating H/H+ and atmospheric particles. 

 The region under study is limited by the lower boundary, which is placed at 80 km, where 

H/H+ particles are efficiently thermalized. The upper boundary is set at 500 km, where 

measurements or calculations of the precipitating fluxes of protons or hydrogen atoms are used 

as a boundary condition. Both table and/or analytic (Maxwellian and/or kappa-distribution) 

functions representing the energy spectra as well as the pitch-angle (monodirectional, isotropic, 

or limited by cone) distributions of precipitating particles could be used at the upper boundary. 

Detailed description of all model numerical aspects used for this kinetic MC model study could 

be found in recent papers (Bisikalo et al., 2018; Shematovich et al., 2019) and are shown in the 

scheme below. 
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IV. Gronoff et al. 1-D Kinetic Model (Model Name: “Aeroplanets”) 

A. Introduction 

The Aeroplanets model (G. Gronoff, Wedlund, Mertens, Barthélemy, et al. 2012; G. Gronoff, 

Wedlund, Mertens, and Lillis 2012a; Simon Wedlund et al. 2011) is a 1-D kinetic transport 

model computing the ionization and excitation of atmospheric species by photon, electron, 

proton, and cosmic rays impacts, including the effect of secondary particles 

(Fig. [fig:workflow_ion]). It is based on the Trans* model series, initially developed for the 

Earth (Lilensten et al. 1999; Lummerzheim and Lilensten 1994; C. Simon et al. 2007a), and 

subsequently adapted to Venus (Gronoff et al. 2007, 2008), Mars (Witasse et al. 2002, 2003; 

Simon et al. 2009; Nicholson et al. 2009), Titan (Gronoff, Lilensten, and Modolo 2009; Gronoff 

et al. 2009), etc., and including several other modules such as a fluid model. Aeroplanets 

constitutes an improvement in modularity and adaptability, with every separate module having 

the option of being turned off to study one specific aspect of particle precipitation in the 

atmosphere of planets. 

The proton transport module is based on the work of (Galand et al. 1997, 1998), (Simon 

2006) and (C. Simon et al. 2007b) for Earth, who solved semi-analytically the coupled proton-

hydrogen dissipative kinetic transport equation for protons and hydrogen atoms charge-changing 

with neutral gas M: 

𝐻+ +𝑀 → 𝐻 +𝑀+𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑐𝑎𝑝𝑡𝑢𝑟𝑒, 𝜎10  𝐻 +𝑀 → 𝐻+ +𝑀 + 𝑒−𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑙𝑜𝑠𝑠/

𝑠𝑡𝑟𝑖𝑝𝑝𝑖𝑛𝑔, 𝜎01. 
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It naturally includes angular redistributions due to magnetic mirror effects and to 

collisions. 

B. Inputs and outputs 

Inputs to the Aeroplanets model include cross sections, the vertical profile of atmosphere 

composition (i.e. composition at different altitudes), and the precipitating fluxes of particles such 

H and H+ at the top of the atmosphere (see Figure [fig:general_aeroplanets]). Outputs include 

the vertical profile of H and H+ differential energy fluxes, and the vertical profile of the 

production rate of excited and ionized species and electrons, including emissions. The produced 

photoelectrons can be plugged into the main Aeroplanets electron model as an external and 

additional source of ionization in the atmosphere. 

Cross sections in Aeroplanets are taken from the latest version of the ATMOCIAD cross 

section and reaction rate database compiled and developed by (Simon Wedlund et al. 2011; 

Gronoff et al. 2012a Gronoff et al. 2021, in prep). In ATMOCIAD, experimental and theoretical 

cross sections as well as their uncertainties are collected. Many proton-hydrogen impact cross 

sections have been discussed in the seminal works of (Avakyan et al. 1998) and, in a lesser 

degree, of (Nakai et al. 1987); they contain a critical review of processes for photons, e−, H, H+ 

colliding with various gases of aeronomic interest and have been fully integrated into 

ATMOCIAD. 

Specifically, the proton transport code uses the following energy-dependent cross 

sections process by process: 

• Elastic. Parameterisations of (Kozelov and Ivanov 1992) originally valid for (H+, H) 

collisions with N2, and assumed to be the same for CO2 because of the lack of any recent 

measurements. The parameters are available in their Tables 1 and 2. 

• Ionisation. For H+, (Rudd et al. 1983) for high energies, extended at 𝐸 < 5 keV by 

(Avakyan et al. 1998). For H atoms, cross sections are based on (Basu et al. 1987) for N2 

and on (Avakyan et al. 1998) for the rescaling factor. 

• Electron capture (H+ → H). (Kusakabe et al. 2000) for 0.2-4 keV protons, review by 

(Avakyan et al. 1998) based on all other available data for higher energies (Desesquelles, 

Do Cao, and Dufay 1966; Barnett and Gilbody 1968; Toburen, Nakai, and Langley 1968; 
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McNeal 1970; Rudd et al. 1983 for 5 − 150 keV). Note that recent sub-keV measurements 

have been made by (Werbowy and Pranszke 2016) for CO and CO2, although these are not 

yet implemented in the ATMOCIAD. 

• Electron loss (H → H+). (Smith et al. 1976) between 0.25 − 5 keV, review by (Avakyan et 

al. 1998) using N2 𝜎01 cross sections (Green and Peterson 1968) based on all other available 

data for higher energies. 

• Ly-𝛼 H(2𝑝) and H(2𝑠) states. For both H+ and H collisions, exciting state H(2𝑝) (Birely 

and McNeal 1972) corrected by factor 0.9 presumably because of observation angle as per 

recommendation of (Avakyan et al. 1998). For both impactors creating state H(2𝑠), factor 

1.35 on the measurements of (Birely and McNeal 1972) is applied. 

Although ATMOCIAD is an extensive collection of cross sections, there is still a rather poor 

characterization of cross sections at low energies (typically in the sub-keV range). 

Regarding differential cross sections, Aeroplanets uses phase functions that are 

convolved with the energy-dependent cross sections above. For the particular cases computed for 

Step 1 of the present study, the following is used: For the two charge-transfer (10 and 01) and 

the elastic cross sections, the screened Rutherford function is used, equal to that of the electrons 

with a screening parameter equal to 10−3 (this is the same as in (Galand et al. 1997, 1998) and 

(Simon 2006; Simon et al. 2007) for Earth’s atmosphere): 

𝜉(cos𝜗) =
4𝜖(1 + 𝜖)

(1 + 2𝜖 − cos𝜗)2
 

with 𝜗 = 𝜇𝜇′ + √1 − 𝜇′2√1 − 𝜇2cos(𝜙 − 𝜙′). 𝜇 and 𝜇′ are the cosine of the pitch angles before 

and after the collision, whereas 𝜙 and 𝜙′ are the azimuthal angles before and after the collision. 

For ionisation, a simple forward scattering is simply assumed, following (Galand et al. 1998) for 

the Earth case. 

Because of the seamless implementation of ATMOCIAD as input to Aeroplanets, other 

available sets of cross sections may be used. It is possible to estimate the uncertainties from the 

cross-sections using a Monte-Carlo approach as described in (Gronoff et al. 2012b; G. Gronoff, 

Wedlund, Mertens, and Lillis 2012b). The outputs of the proton-transport model are the 

ionization and dissociation rates (including excited states productions), the proton/H induced 
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electron flux (which can be used in the electron model), and the proton/H fluxes at the different 

altitudes. 

C. Implementation 

The solution of the dissipative coupled Boltzmann H/H+ equation is based on the seminal work 

of (Galand et al. 1997, 1998), later developed and adapted as a module into Aeroplanets 

following (C. Simon et al. 2007b). It is based on the original idea that dissipative forces 

responsible for angular redistributions (due to elastic scattering) can be introduced in the force 

term of the general Boltzmann equation (Galand et al. 1997). Rearranging the energy/angle terms 

of the (H,H+) coupled system of equations leads to a linear system of equations with large sparse 

square matrix 𝐴 containing the energy degradation without angular redistributions of the 

incoming particle, for each altitude 𝑧 so that: 

𝜕𝛷

𝜕𝑧
= 𝐴𝛷 + 𝐵 

𝛷 = (
𝜙𝐻+

𝜙𝐻
) is the vector-flux of protons and hydrogen precipitating particles and 𝐵, the angular 

degradation term, is thus the term coupling downward and upward fluxes. Moreover, the mirror 

mode term can be switched on or off depending on the planet’s configuration. The equation can 

be solved by calculating the exponential of matrix 𝐴 for a typical grid of 100 energies and 10 

angles; but which can be increased for better resolution. In order to achieve such a feat of 

simplification for a complex system of equations, the following assumptions are made in the case 

of the Mars code: (i) plane parallel geometry, with the atmosphere stratified horizontally, the 

pitch angle of the particles can be imposed, (ii) external forces neglected, (iii) steady-state fluxes, 

(iv) continuous slowing down approximation assumed because of the low energetic losses by the 

precipitating particles compared to the incident energy of the particles. 

D. Strengths and applications 

Aeroplanets is better qualified for the quick computation of the proton precipitation from a 

measured spectra near the planet, and for the quick computation of the whole effect of that 

precipitation thanks to its coupling with a secondary electron transport model. The analytic 

computation approach prevents the computation within very complex magnetic topologies 

(which are best handled by Monte-Carlo models) but is perfectly suited for handling large sets of 

initial angles and energies. 
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General computation performed in Aeroplanets 

[fig:general_aeroplanets] 

 

 Workflow for the computation of the species production in Aeroplanets. The red circles 

emphasizes the model parts, the blue boxes the inputs, which can have strong influence on 

possible retrieval of the atmosphere. The Atmosphere model, which can either be an input for a 

simulation, or an output for the retrieval is described by a yellow hexagon. The outputs, which 

can be measured, or used for further computation are presented by the “3D” boxes. (Published 

in Gronoff et al., [2012a]). 

[fig:workflow_ion] 
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The workflow to model the emission as observed from a satellite from the modeling of the excited 

state species. (Published in Gronoff et al. [2012a]) 

[fig:workflow_emit] 

 

The neutral atmosphere computed by the MTGCM model for the Viking 1 landing conditions 

[Simon et al., 2009]. 
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Sensitivity analysis of the CO2+(B) doublet emission with the variation of the CO2 density in the 

atmosphere of Mars. 

 

Computation of the uncertainties with Aeroplanets. The large uncertainties below the peaks 

prevent an accurate determination of the density when the model is used for retrieval. 
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