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EXECUTIVE SUMMARY 

The purpose of this report is to provide NASA 
with a rationale and recommendations for planning, 
implementing, and operating an Earth Observing 
System data and information system that can evolve 
to meet the Earth Observing System's needs in the 
1990s. The Earth Observing System (Eos), defined 
by the Eos Science and Mission Requirements Work
ing Group', consists of a suite of instruments in low 
Earth orbit acquiring measurements of the Earth's 
atmosphere, surface, and interior; an information 
system to support scientific research; and a vigorous 
program of scientific research, stressing study of 
global-scale processes that shape and influence the 
Earth as a system. The Eos data and information sys
tem is conceived as a complete research information 
system that would transcend the traditional mission 
data system, and include additional capabilities such 
as maintaining long-term, time-series data bases and 
providing access by Eos researchers to relevant non
Eos data. The Working Group recommends that the 
Eos data and information system be initiated now, 
with existing data, and that the system evolve into 
one that can meet the intensive research and data 
needs that will exist when Eos spacecraft are return
ing data in the 1990s. 

Eos SCIENTIFIC AND OPERATIONAL 
ENVIRONMENT 

Meeting the Earth science objectives of the 
1990s, delineated by the Eos Science and Mission Re
quirements Working Group, requires in many cases 
access to data from a number of instruments, from 
in situ observations, and to data that have been 
placed in time-series data bases that extend over a 
decade or more. In that sense, Eos as a program will 
clearly transcend the traditional NASA flight
project model, which stresses spacecraft observa
tions over a selected, and usualIy relatively short, 
period of time, and includes initial analyses ofthe ac
quired data. Thus, major issues for Eos and its data 
and information system include how Eos will oper
ate both as a flight project and as a long-term scien
tific research program. 

We envision Eos instrument teams that will guide 
instrument and algorithm development and will be 
involved in mission operations and scientific analy
ses of the data. We also envision that consortia of 
researchers, many stressing multidisciplinary analy
ses, will form and intensely work with Eos data for 
extended, although not indefinite, periods of time. 
In some cases, these research groups will request that 
special sets of observations from a variety of sources 
be acquired to meet their research needs. Many Eos 
researchers will need efficient access to relevant non
Eos data bases and to a variety of models to conduct 
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their research. We envision many Eos researchers be
ing supported under ongoing NASA Earth science 
programs associated both with Eos and with other 
global Earth science programs. 

We therefore recommend that the Eos data and 
information system serve both the Eos project and 
the more general NASA Earth Science and Applica
tions program needs, providing needed continuity to 
receive data from other sources (e.g., the Upper At
mospheric Research Satellite, the Ocean Topog
raphy Experiment spacecraft) and from the Eos 
spacecraft, to deliver these data to temporary reposi
tories for conversion to physical units, and to sup
port long-term archives where the data will be ac
cessible by and available to the greater scientific 
community. 

Mission operations and standard data processing 
tasks should be tailored to acquire and produce 
viable scientific data for a given instrument. The in
itial data should be housed in temporary mission or 
instrument repositories for primary analyses. These 
data should then be provided to data centers for 
long-term maintenance and access by scientific re
searchers. In a number of cases, subsets of Eos and 
relevant non-Eos data should be maintained at active 
data base sites to support specific research tasks (ac
tive data bases are subsets of data that are being 
routinely used in research and are under direct con
trol of a given research group). The resultant, highly 
processed data sets and associated documentation 
should migrate back to the data centers once the 
specific, chartered research tasks of an active data 
base have been completed. The core of the Eos data 
and information system should be an electronic in
formation network, alIowing access to the fulI suite 
of Eos system capabilities. This network should be 
flexible, providing access to mission operations, ar
chives, selected active data bases, and to, for exam
ple, large mainframe computers for certain, very in
tensive, computational activities (e.g., modeling) 
needed to support Eos data analyses. 

There will be at least four major types of Eos data 
and information system users: 

1. The first type includes instrument team 
members and support personnel, associated 
with Eos instrument or mission operations 
centers. They will need to monitor continualIy 
a sampling of data in near-real time for quality 
assurance, error detection, and instrument 
malfunction assessment. They should have the 
capability to reconfigure observational se
quences when malfunctions or special events 
occur. We do not expect that alI personnel will 
need to be resident at the centers, since the Eos 
information network is envisioned to provide re
mote, electronic access to the centers' functions. 



2. A second group of users will consist of re
searchers, instrument team members or 
operations-oriented personnel who need 
instrument-specific, near-real time, or even 
real-time data processing, delivery, and 
display capabilities. In some cases (e.g., 
NOAA or DoD) large data volumes will likely 
be required. 

3. The third user group will consist ofresearchers 
who will need to interrogate directories and 
catalogs of Eos and other relevant data on an 
instrument, geographic location, and time of 
acquisition basis. They will also need to order 
data, and in some cases they will request that 
particular observational sequences be ac
quired with Eos instruments. 

4. A fourth group of researchers also will need to 
interrogate directories and catalogs ofEos and 
pertinent non-Eos data but is distinguished 
from the third group by a need to browse Eos 
data visually via attributes, or preferably via 
expert systems (to find particular features, at
tributes, or special cases). 

In many circumstances, ranging from pipe-line 
data processing activities to researchers dealing with 
Eos-data archives, access to non-Eos data will be 
crucial to meeting processing and analysis require
ments. Thus, the Eos data and information system 
should provide a directory to the catalogs of pertin
ent non-Eos data and, in some cases, to the catalogs, 

. data, and.processing algorithms, per se. 

RECOMMENDATIONS FOR THE 19905 

The Eos data and information system must be 
designed to meet the challenges of Eos mission oper
ations, transparent data access, transmission, pro
cessing, a,nd maintenance, as well as those imposed 
by the needs of scientists for non-Eos data sets. The 
system should also accommodate "operational" 
users (e.g., NOAA) if their activities do not detri
mentally impact the conduct of Eos scientific tasks. 
If operational uses are to be made ofEos data, and if 
these users significantly affect the information sys- . 
tem, then those operational users or agencies should 
be expected to provide the system enhancements 
needed to meet their specific requirements. 

We delineate within this report a number of func
tions that an Eos data and information system of the 
1990s should fulfill. These functions do not con
strain physical location of personnel, data, or pro
cessing capabilities. In the 1990s, we expect that local 
processing capabilities, combined with modern net
work capabilities will allow a geographically distri
buted information system to become a reality. In 
fact, the goal of the data and information system 
should be to provide the scientific community with 
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remote electronic access to the variety of capabilities 
and services that Eos will provide. 

We recommend that the Eos data and informa
tion system of the 1990s be designed to accom
modate a suite of required functions, including: 

I. Eos flight system functions, including the 
recommended functions and characteristics of 
both remote sensing instrumentation and on
board data systems. 

Flight systems functions are presumably more 
closely akin to those dealt with in previous missions. 
There are, however, new requirements being placed 
into this category, requirements consistent with both 
evolving research methodologies and developing 
technologies. Specifically, given the large data 
volumes and rates envisioned, there will be a need for 
expert systems, automated command and control, 
transparency in command control, rapid response, 
onboard monitoring, significant onboard buffers, 
etc. Technically, the flight systems aspects of Eos 
may be quite challenging. 

2. User functions, which embrace the likely ways 
in which researchers, operations personnel, 
instrument scientists and teams, and other in
dividuals requiring access to Eos services will 
operate. 

User functions as a characteristic grouping are 
unique to Eos. In general terms, we envision the 
users of Eos and its data and information system 
playing a significantly greater role than in the past. 
Researchers should be tasked with the responsibility 
of ensuring the overall functional capability of the 
system, presumably in an oversight and advisory ca
pacity. Scientists should be obligated to return to the 
archives reduced or derived data sets resulting from 
their research. Thus, the communications of data 
and information will be bidirectional and not merely 
a one-way conduit with the researcher at the end of 
the system. 

3. Operational functions, including those in
herent in spacecraft and data and information 
system operation. 

Operational functions, like flight systems func
tions, will bear some resemblances to previous mis
sions. Since we anticipate that Eos will operate dur
ing the same timeframe as the Space Station, it is 
likely that some subset of the operational re
quirements may be met by activities not under the 
direct control of Eos, the research project. As an ex
ample, the bidirectional communications link be
t ween spacecraft and ground facilities will un
doubtedly be operated and managed by non-project 
personnel. There are a host of other operational re
quirements that will not be provided by other ac
tivities and must be satisfied within the confines of 
Eos per se. These requirements include quick-look 



data production for quality assurance purposes, 
command management, quality assurance, access 
services, near-real-time processing, etc. 

4. Eos information services functions, encom
passing the suite of network services (both 
space- and ground-based) that are required. 

Information network services functions are envi
sioned to be far more extensive and comprehensive 
than those employed in previous experiments. Sys
tem transparency while accessing geographically 
dispersed, heterogeneous data archives will be a fun
damental requirement. We believe the primary goal 
of the system should be remote, electronic access to 
the host of services and capabilities afforded by Eos. 
These include mission and instrument operational 
planning; access to directory, catalogs, and data 
bases; a spectrum of communication services; man
agement of inter- and intra-system information 
flow; access security, etc. Provisions must be made 
to ensure maximum flexibility in data management 
and communications network design, accommodat
ing needs of future researchers. 

5. The functional requirements characteristic of 
advanced data base management practices. 

The requirements for advanced data base man
agement functions are probably more extensive than 
for the other functional groupings. They may be sub
divided into electronic directory and catalog, browse 
file, data ordering, documentation, data archives, 
and standards requirements and functions. The 
prime purpose of incorporating extensive advanced 
data base management capabilities is to maximize 
scientific efforts and exploit Eos capabilities to their 
fullest. The requisite functions within this group are 
designed to allow scientists to focus on research, 
rather than on the details of accessing and preparing 
data for analysis. 

6. Eos ~ata processing functions, tailored to 
meeting a spectrum of requirements imposed 
by the four major types of Eos data and infor
mation system users. 

Data processing requirements will be highly 
varied. They range from quick-look processing .for 
instrument and mission operational personnel, to 
routine preprocessing to Levels 0 and lA, to higher 
level data reductions, to mainframe modeling capa
bilities. Near-real and real-time processing will be re
quired for operational purposes and may be of value 
for interactive browse activities. Processing capacity 
and performance should be capable of flexible 
enhancement to meet evolving needs defined by in
strument teams. Data reduction, grid overlay, stan
dard projection data set production, and data set 
merger will be required by the majority of Eos 
researchers. Throughout these data processing ac
tivities, self-documenting software will be needed to 
produce inventory, catalog, and directory entries. 
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7. Functional requirements for non-Eos data 
bases consistent with overall Eos scientific 
objectives. 

The principal function associated with non-Eos 
data bases is straight forward, transparent access. 
Ideally, this would provide the researcher with a 
"one-stop shopping" capability. Through close col
laboration of archival personnel and advanced net
work capabilities, a researcher could explore data 
catalogs, browse data sets, select pertinent data, and 
order these data, all from the same facilities that he 
customarily uses for similar services from Eos ar
chives. Although the major difficulties that will be 
encountered are political, every effort should be 
made to provide these functional capabilities since 
the success of Eos will be largely dependent upon a 
researcher's ability to utilize all relevant data in his 
work. 

Eos will be a unique space-research program; 
unlike many, the functional elements of its data and 
information system are highly interdependent. Re
sponsibilities residing within one element or category 
may require contributions from one or more addi
tional elements for completion. Thus, for Eos to be 
successfUl, all of the requirements and systems' at
tributes delineated within this report (and briefly 
summarized in an appendix) must be provided. Fur
thermore, to ensure that the resultant system can 
meet researcher's needs, the architectu~al design 
should feature and utilize two fundamental prin
ciples or contemporary design techniques through
out. These principles are "layering" (the technique 
of dividing and conquering that produces modular
ity) and "standardization" (of formats and proto
cols, which promotes data autonomy, hence trans
parency). Together, they can be used to create a data 
and information system that is adaptively flexible, 
transparent to the user, and robust, providing the 
foundation for diverse and evolving data processing 
and archival needs of Eos researchers and opera
tional users. 

RECOMMENDATIONS FOR THE 19805 

The key to successfully implementing the recom
mendations for the 1990s rests squarely with the 
care, planning, and attention devoted to initiating an 
Eos data and information system during the 1980s. 
The requisite information system should be evolu
tionary, supporting ongoing and. near-term NASA 
programs in the Earth sciences with existing data. 
We recommend that the Eos data and information 
system be built upon the experience gained from 
NASA's existing pilot data system projects (i.e., 
Pilot climate, Pilot Ocean, and Pilot Land Data Sys
tems) with a focus toward Eos data and information 
system objectives. We further recommend close col
laboration and coordination with the Unidata 



initiative of the University Corporation for At
mospheric Research (UCAR), and utilization of the 
Global Resource Information System philosophy as 
a unifying concept. 

The pilot projects and Unidata address discipline
unique problems. On the other hand, the Global 
Resource Information System concept stresses ac
cess to data from each of these pilots and from other 
relevant NASA and non-NASA data bases. In es
sence, a major task that can and should begin now is 
facilitating access to the geographically dispersed, 
heterogeneous data bases that already exist within 
these pilot projects and at a number of university and 
agency locations. 

Development of the information system should 
be done in close collaboration with scientists sup
ported under NASA's Earth Science and Applica
tions Division programs. In doing so, researchers 
would use the network and access, for example, the 
pilot data systems, thereby exercising the overall em
bryonic system and allowing NASA and its research 
community to gain experience appropriate to estab
lishing a data and information system well suited to 
the Eos spacecraft era. We therefore recommend 
that the Earth Science and Applications Division 
fund a limited number of multidisciplinary studies 
and discipline-oriented research teams (requiring 
multiple data sources) that can begin to address 
specific Eos scientific objectives in biogeochemistry, 
hydrology, and climatic research, as well as in 
specific disciplines requiring multiple data sources. 
These teams will provide scientific focus for develop
ing the Eos data and information system, including 
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developing detailed requirements for needed data 
sets, for the data base management and network en
vironment, and for evaluations of whether the evolv
ing information system adequately meets scientific 
needs. In developing the information system, par
ticular emphasis should be placed upon technology 
associated with flexible and transparent access to 
dispersed, heterogeneous data bases, to advanced 
data base management techniques (including search 
capabilities employing expert systems), and to cost
effective electronic network approaches (including 
direct broadcast of data). 

The final, and perhaps pivotal recommendation 
of th is panel is to initiate the planning and implemen
tation of an evolutionary Eos data and information 
system without delay. A functional system providing 
the means through which Eos data will be fully ex
ploited cannot be built in a matter of a few years; it 
must be encouraged and allowed to evolve in concert 
with the ever increasing knowledge base of the Earth 
sciences and with the requisite expertise to manage 
this data base. There are two imperatives or guiding 
principles which should be closely followed through
out this evolutionary process. They are (i) involve the 
scientific research community at the outset and 
throughout all subsequent activities, since the data 
will be acquired, transmitted, and processed for 
scientific research, and (ii) provide a representative 
group of active researchers with an oversight and re
view responsibility, since the most successful ex
amples of data base management involve user 
oversight. 



PREFACE 

The sciences, by their very nature, are evolutionary. The questions posed and information 
needed to address specific problems (as well as the problems themselves) change through time 
as we learn more about a particular phenomenon or process; this is scientific progress. 
Similarly, the computer and communications industries have been and continue to experience 
significant technological progress year after year. With this comes inevitable change: change 
that when capitalized upon will lead to better and more efficient ways of conducting scientific 
research. A report such as this, which deals with scientific data and information systems, 
should not constrain a future system to today's innovations but rather should leave as its 
legacy a firm set of guiding principles and recommendations that will stand and remain valid 
long after its authors have accepted new challenges and well beyond the time when a specific 
piece of hardware or software has become obsolete. It will provide an approach and 
methodology for designing and building a flexible data and information system that is consis
tent with the evolving character of the sciences it seeks to serve. As well, its flexibility will 
allow new technological advances that loom on the horizon to be readily incorporated into its 
design. The Eos Data Panel has, I believe, succeeded in creating a report of this genre. 

Clearly, a report of this breadth must draw quite heavily upon the expertise, experience, 
and knowledge of a large quorum of dedicated professionals. On behalf of the Eos Data 
Panel, I would particularly like to thank those individuals who graciously gave of their time 
and talent to contribute to this report. AlphabeticalJy, they include: 

Mark Abbott, Scripps Institution of Oceanography 
Dixon Butler, NASA Headquarters 
Jim Dodge, NASA Headquarters 
John Dutton, Pennsylvania State University 
Ed Greenberg, Jet Propulsion Laboratory 
Dick Hartle, NASA Goddard Space Right Center 
Ed Hurley, NASA Goddard Space Right Center 
Tom Karras, NASA Goddard Space Right Center 
Ron Muller, NASA Goddard Space Flight Center 
Rick Pomphrey, Jet Propulsion Laboratory 
Stan Sobieski, NASA Goddard Space Flight Center 
Jeff Star, University of California at Santa Barbara 
Mike Ward, NASA Goddard Space Right Center 
Jim Weiss, Jet Propulsion Laboratory 

To the host of other individuals who reviewed and commented upon various drafts of this 
report, our sincere thanks. 
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I. PURPOSE AND SCOPE OF REPORT· 

The Earth Observing System Science and Mis
sion Requirements Working Group was formed as 
an ad hoc advisory body to NASA's Earth Science 
and Applications Division and was charged with 
evaluating: (i) the potential for increasing our 
understanding of the Earth and how it works by 
utilizing systematic, multi-instrument observations 
from low Earth orbits, (ii) the role of in situ 
measurements, and (iii) requirements for programs 
of theory and data analysis to support scientific in
terpretations of these data. The Working Group 
delineated a number of high-priority, global-scale 
Earth science questions that should be addressed 
during the next decade. They then considered 
synergistic groupings of instruments to best meet 
these scientific objectives, the role of in situ 
measurements, and the need for a computation and 
data management environment that would facilitate 
research in an Eos era'. 

The Working Group pointed out that the data 
variety, complexity, and volume to be produced by 
Eos instruments would present major challenges in 
mission operations, data transmission, processing, 
and long-term maintenance of data that will ulti
mately constitute a portion of the time-series data 
bases. In fact, the Working Group considered that 
Eos as a whole should be thought of as an informa
tion system, whose development should begin now, 
with existing data. Through use of sound manage
ment principles and appropriate technologies, this 
information system could evolve to meet the needs of 
Eos during the 1990s. 

The Working Group was succeeded by an Eos 
Science Steering Committee. This Committee pro
vides a broad scientific oversight for the Eos Pro
gram and Project. The Steering Committee has, in 

turn, established a number of panels, one of which is 
the Eos Data Panel. 

The Data Panel was charged with examining an 
Earth Observing System data and information sys
tem in more detail. This report, resulting from 
deliberations by the Eos Data Panel, is intended to 
provide guidance to NASA in developing the req
uisite Eos data and information system to meet the 
needs of the Eos research community throughout the 
next decade, including the era when Eos instruments 
will be acquiring data. 

The Eos Data Panel began its deliberarions by 
creating realistic scientific research scenarios (Ap
pendix I) that closely parallel the scientific objectives 
set forth in the Eos Science and Mission Require
ments Working Group Report. The Panel then re
viewed the current state of and likely developments 
within the computer and telecommunications indus
tries. This information, together with the lessons of 
history (embodied to a great extent within the Na
tional Academy of Science Committee on Data Man
agement and Computation reports), forms the basis 
for developing the 'd·ata and information system's 
scientific and operational environment (Chapter II). 
Based upon the requirements, attributes, and 
characteristics of this environment, information 
system design and architectural considerations 
(Chapter III) were determined. 

Throughout this process, the Panel encountered 
many features that make Eos unique among flight 
projects. These unique features must be given 
careful thought and consideration by NASA man
agement (Chapter IV) if Eos is to be successfully im
plemented. Finally, the Panel summarized its major 
findings and delineated an approach or implementa
tion strategy for developing the Eos data and infor
mation system (Chapter V). 



II. Eos SCIENTIFIC AND OPERATIONAL ENVIRONMENT 

The Eos Data Panel developed requirements for 
an Eos data and information system operating in the 
1990s by considering a number of possible research 
scenarios. Several of these scenarios are presented 
for reference in Appendix I. There are clearly strin
gent requirements, based on the scientific user 
scenarios, for determining what Eos, other NASA, 
and relevant non-NASA data exist, acquiring these 
data in suitable form, and having the capability to 
analyze the data. In addition, there are challenging 
requirements for mission operations, especially 
when operational or rapid response functions are 
considered. In the following pages we discuss re
quirements for an Eos data and information system 
designed to address those needs. 

Eos DATA USERS 

In determining the characteristics and attributes 
of an Eos data and information system, the intended 
user community must be identified, its access pat
terns anticipated and delineated, and the projected 
volume of requests estimated. We have identified 
four major classes of Eos data users: 

1. Eos Operations Centers Users 

In order to ensure the collection of complete data 
sets, free of instrument errors, timely delivery of 
data to Eos mission or instrument operations centers 
will be necessary. A sampling of data from all in
struments should be processed and delivered to the 
centers in a format that is easily displayed and under
stood. These data will need to be continually moni
tored to ensure reliable collection. If problems oc
cur, a center will need to have the capability to trace 
the data flow back through the processing system to 
the instrument, aiding in the isolation and correction 
of problems. 

2. Instrument Specific, Real-Time Data Users 

During the Eos spacecraft era, an instrument 
specific, real-time data user will require online data 
processing and display capabilities. Within this user 
group there are several subgroups. Operational 
users, such as NOAA or 000, who will require en
tire, real-time data sets from specific instruments, 
constitute one subgroup. Their processing require
ments will range from raw data to fully processed 
scientific data. 

A second subgroup is composed of instrument 
teams or research groups selected from an An
nouncement of Opportunity. They may require con
trol over the capabilities of various instruments to 
satisfy scientific requirements. In general, these 

2 

groups will require quick-look processing of data 
from a specific set of instruments, over specific 
regions, at specific times. The processed information 
should be rapidly transmitted to these user teams so 
that it can be used in deciding, for example, the relo
cation of mobile, in situ measurement systems (e.g., 
aircraft, ships, autonomous platforms). 

A third subgroup can be loosely termed the spec
tacular event monitoring group. This group re
sponds rapidly to major scientific events, such as 
volcanic eruptions. It differs in function from the 
previous group in that the lead time for planning and 
coordination is greatly reduced. Consequently, it 
will require rapid decision-making capabilities in an 
Eos operations center and an established real-time 
processing and display capability that can be used to 
monitor an event. 

The potential size of these groups can be esti
mated using existing organizations and funding as a 
guide. It has been assumed that there will be no ma
jor increase in the number of scientists or funding for 
the Earth sciences in general, except for the direct 
funding necessary to proceed with Eos. The only 
real-time operational users of Eos data requiring 
full, instrument data streams will probably be 
NOAA and possibly 000. At any given time, there 
probably will be several groups (order 20) requiring 
quick-look data and a few (perhaps one or two) re
questing instrument command control. 

3. Users of Archival Data, Requirements Known 

This group of users has known requirements for 
instruments, geographic areas, and times of data ac
quisition. It will require a catalog of data availabil
ity, with quality attributes of the data sets. The size 
of this group could be as large as 1,000 to 10,000 
users. Of this group, approximately 50 to 200 will be 
active users at any given time. Each group member 
would be ordering 5 to 10 computer tapes per month. 
A few (1 to 10) of the active users will be ordering 
larger volumes of data. With the anticipated im
provement in computer technology in the 1990s, it is 
expected that these users would want to order and 
process approximately 10 times as much data as they 
do currently. 

4. Users of Archival Data, Attributes Known 

This user group differs from the others in that it 
addresses scientific problems that require data with 
certain attributes (e.g., a particular type of cloud, a 
vegetation feature with certain characteristics). This 
will require a browse capability to select appropriate 
data. 

There are two different types of browse re
quirements. One is a visual presentation of the data 



along with catalog listings of attributes. Well de
fined, standard data attributes within a discipline 
should be selected automatically and extracted for 
catalog entry during data processing. The attribute 
file should also be expandable, enabling user
identified attributes to be added. Similarly, as new 
algorithms are developed for identification of at
tributes, these algorithms should become part of the 
attribute file processing system (but old data should 
not be reprocessed to include these attributes with
out substantial peer and management review). The 
user community for these browse catalogues could 
be as large as 10,000 individuals. 

The second browse capability required is a re
duced volume data set suitable for custom process
ing by researchers. This data set will need to be 
available at a number of processing levels. Most 
users of these browse data sets will want highly pro
cessed versions of the data. The user community for 
this type of browse capability could be as large as 500 
to 5,000. 

DATA ACQUISITION 

The concept of interactive, transparent system 
access should guide the creation of an environment 
in which scientists will operate when using the Eos 
data and information system. This concept includes 
the complete data acquisition (including archival 
data as well as new observational sequences) and 
analysis cycle, since it addresses both the need to 
transform a request into action (causing a remote 
system element to acquire data) and the need to 
deliver processed results to the requester. A resear
cher's system interface device may be as simple as a 
smart terminal or as complex as a large, mainframe 
computer, with the majority of scientists depending 
upon commercially available, microcomputer-based 
workstations. Access to in-flight subsystems should 
be provided through a coordination and control sub
system for all commands; those not requiring more 
than the allotted amount of critical system resources 
should pass through this subsystem transparently. 
Within a downlink telemetry access period, execu
tion times for any flight system operating within the 
Eos data and information system should be in sec
onds, and those for archival data should be within 
minutes for small volumes, hours for medium vol
umes, and days for large volumes, depending upon 
the priority of the request. Thus, transparent access 
and rapid and timely responses are not only expected 
of the system, but also are a prerequisite. 

Uplink Activities - Data Requests 

Requesting observations from a flight instru
ment will involve decisions based on preset priorities 
and the cooperation of many simultaneous resear
chers and operational users. This necessitates the use 
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of a master schedule that should be updated every or
bit. The schedule should contain logistical informa
tion needed to plan an observation. Access to the 
schedule and the subsequent planning could be done 
electronically via a terminal, by formal proposal, or 
by agreement between collaborators. The system 
should utilize prompting algorithms for requests 
made electronically. 

Uplink Activities - Activity Planning 

Eos will utilize many strategies for data acquisi
tion. Planning, of necessity, should be conducted in
teractively, utilizing project-provided software tools 
for design, iategration and constraint assessment, 
and current resource summaries. These tools should 
allow command sequence design and integration, 
from simple requests to complex operations that re
quire the coordination of several subsystems and in
struments for multidisciplinary investigations. With 
these tools an experimenter could develop integrated 
command sequences that may be executed over long 
time periods, performing routine observations or 
providing for complex, critical observations in 
response to unique opportunities. The development 
of these plans could be interactively performed in 
concert with other investigators (via teleconferences) 
and with access to central archives of reference data. 

Uplink Activities - Command 

We envision several options available to the user, 
depending upon the desired operational scenario. 
Commands should be separated into categories that 
are non interactive, interactive, and critical. Com
mand execution could be in real time, near-real time, 
or preplanned. Interactive commands that require 
critical onboard resources should be processed at a 
ground-based control center, while noninteractive 
commands should be transparently transmitted 
from the user to the onboard system for final assess
ment and forwarding to the appropriate instrument 
or subsystem. Commands to be used in an emergen
cy situation should have prior validation and be cen
trally stored for immediate delivery. Eos should 
utilize all of these operational capabilities. 

Uplink Activities - Monitor and Control 

During particular operations, necessary 
engineering and quick-look data should be provided 
to researchers for monitoring purposes. These data 
should be delivered in near-real time with delays of 
order seconds when the spacecraft is within a down
link telemetry reception period. For emergency com
mands, loop delays should not be more than 30 sec
onds between command delivery and received re
sponse. Investigators should have the capability to 
monitor their instrument from their home institu
tion, and under certain conditions they may need 



command access. Access security must therefore be 
maintained at appropriate levels at all times. 

Onboard Processing - Command 

Onboard systems should be used for decisions 
when rapid response is needed. These situations may 
include changes of gain settings, filters, or data ac
quisition rates during anomalous conditions. These 
capabilities can be based on expert systems or soft
ware algorithms and could be used to plan inter
disciplinary investigations. Systems of this genre 
could respond to short-term events in a coordinated, 
priority fashion, allowing scientists to take advan
tage of measurements that otherwise would not be 
acquired. 

Onboard Processing - Function 
Monitoring 

Flight instruments will require a certain level of 
onboard monitoring to ensure their functional capa
bility and that of various subsystems. The areas of 
greatest importance are fault identification, isola
tion, and protection. Systems used for this purpose 
could be a combination of software algorithms and 
symbolics code. Many of the ground-based monitor
ing functions could be automated, tested on the 
ground, and eventually integrated with the space
craft for onboard system control. 

Onboard Processing - Data 

Onboard data processing provides an opportu
nity to red uce the vol ume 0 f in formation transmitted 
to the ground. Systems and algorithms that make de
cisions involving data acquisition strategies and 
record content should be used, thereby helping to 
maintain a reasonable downlink telemetry load. 
Techniques for data compression, editing, filtering, 
and refining data should be used for operational 
data sets. Certain levels of data reduction from on
board decisions may become a reality. 

Onboard Processing - Telemetry 

The onboard processing system should have the 
capability to format, error code, and buffer telem
etry data, as well as the capability to merge critical 
ancillary data needed for quick-look and other anal
yses. This assumes that data collection would be per
formed by a scheme that does not require filler data 
to produce a standard record length, or set interroga
tion times. 

Onboard Processing - Direct Broadcast 

Direct broadcast data from NOAA environmen
tal satellites have proven to be valuable for many 
users. Therefore, it is desirable that this kind of 
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operation be continued from Eos platforms carrying 
operational instruments. It should be possible to 
receive directly transmitted data at any modestly 
equipped ground station that is within line-of-sight 
of an Eos platform. This is also an important capa
bility for high data rate research instruments (e.g., 
the High Resolution Imaging Spectrometer or the 
Synthetic Aperture Radar), whose duty cycle may be 
constrained by the satellite's data recording system 
capacity and downlink availability. Most direct 
broadcast data should be produced in a raster format 
that can be readily interpreted. 

Data Acquisition - Real-Time Monitoring 

The Eos data system should have a real-time 
telemetry data processing system to monitor satellite 
and instrument status, and to confirm responses to 
uplink commands. Data for this purpose should be 
received in real time, perhaps by direct broadcasts 
from the satellite. Eos must maintain a mission oper
ations center where this real-time data is processed 
and available to operations personnel. We envision 
that at least 95 percent of the real-time data broad
cast by the satellite could be received, preprocessed, 
and displayed within 60 seconds from the time of 
transmission. 

Data Acquisition - Data Records 

The communications link between the Eos plat
form(s) and ground-based data reception facilities 
should be very stable. As a design goal, for any given 
orbit, all of the data transmitted by the space plat
form should be received in a form suitable for pro
cessing (e.g., as standard formatted data units) by 
the ground system, within 90 minutes of acquisition. 
To achieve this high percentage of data acquisition, it 
may be necessary to develop recall mechanisms to re
cover data lost during downlink transmissions. An 
accurate accounting of data received will be 
required. 

Data sequence and encode peculiarities should be 
removed by the data reception system. Data that is 
transmitted from a recorder, in reverse order, should 
be rectified and presented in chronological sequence. 
Any encoding or data packet formation applied to 
data for downlink transmission must be removed 
(i.e., after the data have been preprocessed by the 
data reception system it should be in the same format 
that it was in when it left the instrument system). 

For each unit of data (e.g., one orbit, one hour) 
preprocessed by the data receiving system, a catalog 
inventory record should be generated. This record 
should contain data record starting and ending 
times, data accountability information, etc. This in
formation should be maintained by an Eos data cata
log system. 



Data Acquisition - Ancillary and 
Correlative Information 

Both for research and quality assurance pur
poses, ancillary and correlative information will be 
needed. Much of this information will be derived 
directly from various spacecraft subsystems (e.g., at
titude control, universal time) or through an ad
vanced data collection and location system. In both 
cases, these data should be readily available to the 
Eos data: and information system and provisions 
should be made to merge these data with Eos instru
ment data, as required. 

Other types of ancillary information will be resi
dent in non-Eos archives. Access to these data may 
be crucial to a particular research project or to 
understanding the characteristics and calibration of 
a given instrument. Consequently, provisions should 
be made to access this information as needed. 

DATA PROCESSING 

The full value of satellite-derived data cannot be 
realized unless careful thought is given to its process
ing, maintenance, and distribution. The Eos data 
processing system should: 

I. provide near-real-time processing in support 
of field experiments, event monitoring, and 
quick-look scientific data analyses; 

2. process data to a level that is readily usable, by 
applying algorithms that have been approved 
and validated by the research community; and 

3. maintain and distribute data sets (i.e., both 
unprocessed and processed), ancillary infor
mation, and documentation that describes the 
processing procedures. 

Eos data can be processed in the traditional sense 
by principal investigators or investigator teams at 
university-managed facilities, or by project teams at 
project-managed facilities. In either case the need 
for timely production of research-quality data sets is 
essential. All data processing requirements noted in 
this report are independent of specific organiza
tional assignments and must be met by any facility 
(including commercially operated) that is producing 
Eos data. 

Near Real-Time Processing 

The Eos data processing system should support 
near-real-time data and information processing. 
These data will be used to support field experiments, 
monitor environmental events (volcanic eruptions, 
forest fires, floods, etc.), and provide the research 
community with an instrument quick-look capabil
ity. In general, quick-look information should be in 
the form of a graphics metafile or an image file that 

5 

can be transmitted effiCiently over medium-rate 
(9,600 bps) communications links and displayed on 
generally available graphics and image display ter
minals. To be of greatest utility, this information 
should be available within the time period of one or
bit (nominally 90 minutes). Many of the near-real
time data sets will be selected prior to instrument 
deployment, but it should be possible to implement 
new data requests in response to evolving research 
needs and as new field experiment support require
ments are identified. 

Data Reduction - Processing Level 
Definitions 

To facilitate the discussion of data processing, 
several processing "levels" are defined and used 
throughout the remainder of this report. These de
finitions are: 

Level 0 - Reconstructed unprocessed instrument 
data at full resolutions. 

Level IA - Reconstructed unprocessed instru
ment data at fuIi resolution, time referenced, and 
annotated with ancillary information, including 
radiometric and geometric calibration coeffi
cients and georeferencing parameters (i.e., plat
form ephemeris) computed and appended but 
not applied to the Level 0 data. 

LevellB - LevellA data that has been processed 
to sensor units (i.e., radar backscatter cross sec
tion, brightness temperature, etc.). Not all in
struments will have a Level I B equivalent. 

Level 2 - Derived environmental variables (e.g., 
ocean wave height, soil moisture, ice concentra
tion) at the same resolution and location as the 
Level I source data. 

Level 3 - Variables mapped on uniform space
time grid scales, usually with some completeness. 
and consistency properties (e.g., missing points 
interpolated, complete regions mosaicked to
gether from multiple orbits). 

Level 4 - Model output or results from analyses 
of lower-level data (i.e., variables that were not 
measured by the instruments but instead are de
rived from these measurements). 

Level of Processing 

A Levell data record is the most fundamental (i.e., 
highest reversible level) data record that has significant 
scientific utility, and is the foundation upon which all 
subsequent data sets are produced. Consequently, all 



Eos data should be processed to at least Level I. 
Given the volume of data involved and the likelihood 
that instrument teams and individual researchers will 
opt to process or have processed only select subsets 
of data, it is recommended that processing beyond 
Level IA be handled on a request basis (except for 
the production of browse data sets). The basic pro
cessing should rectify the instrument data at full 
resolution, append calibration coefficients, geogra
phic location parameters, etc. It is assumed that the 
accurate determination of calibration, Earth loca
tion, etc. will be performed by Eos instrument teams 
and will be the responsibility of instrument principal 
investigators. These tasks are critical to the success
ful utilization of Eos data and as such should receive 
significant attention to forestall any difficulties in 
producing data to Level IA. 

Level 2 is the first level that is directly usable for 
most scientific applications; its value is much greater 
than the lower levels. Level 2 data sets tend to be less 
voluminous than Level I data because they have 
been reduced temporally, spatially, or spectrally. 
Once verified, the value of Level 2 data remains high 
for a long period of time, declining only as newer 
data sets attract the interest of researchers. 

Level 3 data sets are generally smaller than lower
level data sets and thus can be dealt with without in
curring a great deal of data handling overhead. 
These data tend to be generally more useful for many 
applications. The regular spatial and temporal 
organization of Level 3 data sets makes it feasible to 
combine readily, data from different sources. The 
ability to produce combined or overlay data sets will 
greatly facilitate many scienti fic investigations. 
Therefore, it is recommended that any data from 
Eos instruments processed to Level 3 be produced in 
standard formats. Since the definition of a Level 3 
data set may be application-dependent it may be nec
essary to produce several "standard" data sets or 
customized sets to meet particular needs. 

In addition to Level I A data, there will be com
ponents of the Eos data and information system that 
will be required to produce Level 2 and Level 3 data 
sets to meet scientific objectives established by Eos
sponsored scientific researchers or research teams. 
As each data set is processed, attribute and accoun
tability information should be compiled (e.g., in
strument name, data starting and ending times, pro
cessing level, algorithms used, number of records 
processed, percentage of data processed success
fully) and appended. This information could also 
form the basis of an inventory record that should be 
maintained by an Eos data cataloging subsystem. 

Browse Data Sets 

It is recommended that a reduced volume data set 
be routinely processed to Level 2 for browse pur
poses. This data set should maintain the statistical 
properties of the original. A browse data set with a 
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volume of one-tenth to one one-thousandth of the 
original set should provide these properties. The re
quirements of data set subsampling and spectral 
band sampling will need further study. However, it is 
suggested that several reduced-volume data sets be 
produced that are targeted for different scientific ap
plications (e.g., from the moderate resolution imag
ing spectrometer), since the degradation of spectral 
resolution is discipline-dependent and in some cases 
instrument-specific. Spectral bands critical to each 
of the different scientific disciplines should be pro
cessed to identify specific data attributes (e.g., per
cent cloud cover, snow, soil, vegetation, water, scene 
average brightness, standard deviation, surface clas
sification, time of day). Pattern recognition 
algorithms should be applied at this step to identify 
attributes that should be recorded in the browse file. 
One feature of these data sets is that they do not re
quire external, ancillary data sources for processing. 
Finally, consideration might be given to producing 
browse files interactively, from a larger data set, as a 
researcher queries the system. Thus, it would be pos
sible to add a variety of browse presentations to the 
total Eos holdings. 

Instrument and Algorithm Performance 

All Eos instrument parameters should be 
monitored through the periodic transmission of 
standard diagnostic data sets and by examining their 
performance statistically (e.g., compiling minimum, 
maximum, and mean values, and standard deviation 
for given measurements) or by generating an alarm if 
the value of agiven measurement does not fall within 
a predicted range. This might best be done by ex
amining Levell data and compiling instrument per
formance data for each unit of data processed. It is 
essential that the performance of each instrument be 
monitored, and that unexpected behavior be noted 
and evaluated. The history of an instrument's per
formance should be maintained in archives where it 
will be readily available to the research community. 

Eos-derived environmental variables should be 
monitored in the same manner that instrument pa
rameters are monitored. Statistical information 
should be compiled for each unit of Level 2 data pro
cessed. Continuous monitoring of algorithm perfor
mance is essential if Eos is to produce uniformly 
high-quality Level 2 data. The history of an 
algorithm's performance should be maintained in 
the archives. 

Validation 

All Eos data should be validated to the satisfac
tion of the research community. It is anticipated that 
this would be done by first conducting an intense val
idation effort lasting between three and six months, 
followed by an ongoing monitoring effort. During 



the initial validation period, Level I and 2 data 
would be substantiated by comparing data from Eos 
instruments with those of similar spaceborne instru
ments and with in situ observations. Once the initial 
validation has been accomplished it will be necessary 
to continue monitoring instrument and algorithm 
performance for departures from the norms estab
lished during the initial validation. It may be nec
essary to mount additional validation efforts if the 
instrument or algorithms do not perform as antici
pated, for quality assurance purposes, or after 
known changes (e.g., replacement, refurbishment) 
of instruments. It is essential that the scientific com
munity participate in both the initial and ongoing 
validation efforts and that pertinent feedback from 
any retrospective scientific analysis be utilized when 
appropriate. 

Algorithm Enhancement and Data 
Reprocessing 

It is anticipated that during the course of the Eos 
project, new or enhanced processing algorithms or 
procedures will be found that will substantially im
prove the utility of Eos data. When this occurs, the 
Eos data processing system should be sufficiently 
flexible, easily accepting new algorithms and pro
cedures. Since algorithm changes are inevitable, an 
accurate processing history must be maintained for 
all Eos data. In some cases, algorithm changes will 
have such a significant impact that it will justify the 
reprocessing of previously processed data. There
fore the Eos data processing system must be able to 
efficiently accommodate new algorithms, access 
lower-level data that will be utilized in the repro
cessing activity, and update the archives with the 
resultant, improved data. 

Maintenance of Data Sets and Documents 

The main function of the Eos archival subsystem 
is to preserve, maintain, and distribute data from 
Eos instruments for use by the research community. 
However, the term "archives" is broadly defined; it 
is not merely a repository for data. Rather, it is an in
formation reservoir and conduit where both the 
quality and quantity of data are increasing and 
where access to and use of the data are encouraged. 
The Eos archives should be able to: 

I. accept data from Eos instruments at all pro
cessing levels; 

2. provide access to non-Eos data that are 
needed for processing of Eos data or by Eos 
investigators; 

3. provide in situ data used in the processing 
and validation of Eos data sets, or as cor
relative data; 
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4. preserve, maintain, and distribute all Level 
IA (produced by Eos platforms) and higher
level data holdings throughout the lifetime 
of the program; 

5. accept higher-level data sets produced by in
vestigators as part of their research work; 
and 

6. reprocess Eos data when needed. 

The archives should be able to store and maintain 
these data as well as provide a directory and catalogs 
for their retrieval. The directory should include in
formation about all Earth sciences data deemed rele
vant by Eos-sponsored researchers. The catalog sup
porting the directory should include entries for all 
Eos data sets and extend to the holdings of other rele
vant archives, when needed. The archives should 
also maintain a complete inventory of relevant scien
tific and technical documents concerning the data 
and the archives. Finally, it is envisioned that the Eos 
archival subsystem will be geographically distributed 
with elements at both data centers and at the active 
data base sites. It is assumed that these elements will 
be connected via an electronic network and that uni
form access to all system services will be provided. 

User Interface 

An Eos archival subsystem should be accessible 
from remote terminals or workstations via a promp
ting menu or natural language interface, supple
mented by a free-form command language for exper
ienced users. All capabilities and functions should be 
fully documented in a user handbook and in online 
help files. Consideration should be given to online 
tutorials that could be used to train novice system 
users. For those users who choose not to interact 
directly with the Eos archival subsystem, mail and 
telephone request should be considered. 

Electronic Directory and Catalogs 

An archival subsystem should provide an online 
catalog of data sets of interest to Eos investigators. 
The data set references in the catalog should be de
termined by an Eos scientific advisory group or by 
various user groups. Each data set should have a cor
responding higher-level directory entry that contains 
general information about the data set (e.g., spatial 
and temporal coverage, parameters measured, data 
set name, archives location, availability, and contact 
person). References to pertinent literature should 
also be included. Those data sets being produced by 
the Eos data processing system should also have a 
lower-level inventory, containing more details (e.g., 
parameter measured, calibration information, pro
cessing levels, applicable algorithm descriptions, 
measurement precision and accuracy, documenta
tion) about availability of data at specific times and 



places and appropriate access information (e.g., 
volume identifier for data sets on optical or magnetic 
storage media). 

A user should have the ability to search the 
catalog by any and all of the following attributes: 
time, place, instrument or a related group of in
struments, project or program, parameter(s), data 
set name, etc. The search should be limited to the 
top-level catalog, until a specific data set is selected 
by an investigator for further examination. At that 
point the user should be notified whether a detailed 
catalog exists, and, if so, what further search criteria 
are applicable. Detailed search criteria depend on in
formation availability for each catalog, but gen
erally should include at least time, place, instrument, 
and data attribute information. 

An investigator should have the option of dis
playing a list of data sets found, or complete top
level catalog contents, in any of several information 
categories. If a detailed catalog search is requested, 
the results should contain all appropriate and avail
able information for that particular catalog entry. 
Displays should be at the user's terminal, or on a cen
tral printer, at the user's option. Printed listings 
should include the user's mailing address, and 
should be shipped by operations personnel during 
the same shift. 

A data catalog should contain references to perti
nent data sets held by archives other than those 
within the Eos project. Methods for maintaining the 
timeliness and accuracy of these references must be 
established. It should be the responsibility of the Eos 
project to obtain information to be included in the 
catalog, and to verify the accuracy of the catalog 
contents. 

Document Storage and Retrieval 

The research community cannot effectively 
utilize Eos data unless they have access to both open 
and "gray" literature, containing pertinent 
technical and scientific information (e.g., project 
plans, instrument and algorithm documentation, 
validation results, data system documentation, data 
set descriptions, scientific papers). Therefore, the 
Eos archival subsystem should provide an online 
bibliography containing annotated references to all 
relevant published and unpublished literature de
rived from the project. Copies of unpublished pro
ject documentation should be retained as a part of 
the Eos data archives. 

A researcher should be able to search the biblio
graphy by specifying any number of attributes, in
cl uding author, publication data, subject category or 
sub-categories, instrument, parameter, or original 
document number or citation. The bibliography sub
system should respond by displaying the number of 
entries found at each stage of specification. The user 
should then have the option of displaying a list of 
titles found, or complete citation, including 
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abstracts. Displays should be at the user's terminal, 
or on a central printer, at the user's option. A user 
should have the capability to request a copy of any 
document found in the search. They should also be 
able to access the complete document text electron
ically for display or printing at their terminal or 
workstation. 

Data Set Maintenance and Distribution 

The primary function of the Eos archival sub
system is to store, maintain, and distribute data sets 
from Eos instruments, from other supporting space
borne instruments, and from in situ measurement 
systems. The Eos archival subsystem should there
fore provide the following services, all of which are 
considered to be of equal importance: 

1. Ingest Eos data sets as they become available. 
This includes both scalar and raster satellite data, 
and in situ data sets. The archives should be able to 
absorb the large data sets ofthe 1990s and beyond on 
a continuing basis without any significant backlog. 
The key to performance and utility of the system is 
the way in which data sets are loaded into the ar
chives. The data must be rapidly available, and of 
known quality. Considerable care must be taken in 
the loading process to remove duplication, to ac
count for gaps in the data, to sort data into chrono
logical order, to detect poor-quality data, and to an
notate data whose veracity is questionable. The au
thority to purge any data from the archives should 
reside exclusively within the Eos-sponsored scientific 
research community. 

2. With Eos scientific advisory committee ap
proval, purge erroneous or outdated information or 
information with no significant value. The archives 
will be dynamic; just as they must efficiently load 
new data, so they must also efficiently deal with un
wanted data. 

3. Satellite swath data archives. Data coverage 
will be either regional (e.g., West Coast A VHRR and 
CZCS) or global. Swath data should be selectable by 
project, platform, instrument, level, version, pa
rameter, attribute, time, and region. 

4. Grid data archives. Coverage for Level 3 data 
sets could be regional (e.g., SSM/I polar grids) or 
global. Selection of Level 3 data should be by project, 
platform, instrument, level, version, parameter, grid 
type, time, and region. 

5. In situ data archives. Pertinent data from both 
fixed and moving platforms should enter the Eos ar
chives. Data from moving platforms may not be well 
organized spatially but should be stored in a sys
tematic manner. The storage method for these data 
should depend on data volume and demand. Data se
lection should be by project, platform, instrument, 
level, version, parameter, time, and region. 



6. Performance summaries archives. Data ac
counting summaries and other small non-spatial 
data sets should be maintained and distributed when 
requested. Summary data should be produced perio
dically. These data sets should have a fixed structure 
with no geographic dependence; thus, these data 
need only be referenced by the appropriate subset of 
project, platform, instrument, level, version, sum
mary type, and time. The storage method for sum
mary data will depend on data volume and demand. 

7. Browse file archives. Browse files are com
posed of reduced resolution data sets, should be pro
cessed at least to Level 2, and have either regional or 
global coverage. Browse files are designed to provide 
a rapid response to a user wishing to locate specific 
data interactively. These files should be optimized to 
deal with communications and remote terminallimi
tations and should be referable by project, platform, 
instrument, level, version, parameter, time, and 
region. 

8. Maintain data on media that provide long 
lifetime, rapid and random access, and economical 
storage. Currently, the primary candidate medium is 
high-performance digital optical disk. Optical disk 
storage media eventually could replace existing mag
netic tape archives. 

9. Distribute data sets on optical disk (or other 
appropriate media), or transmit data on a communi
cations link. As the Eos data base grows, it may 
become necessary to develop a high-speed communi
cations link to existing modeling facilities for the 
transfer of Level 3 (and possibly Level 4) data sets. 

Data Set Support Categories 

The Eos archival subsystem should provide 
several categories of support for archival data sets. 
The support category proposed for each data set 
should be selected by the Eos Project, based on 
guidance from the research community and cost/ 
benefit considerations. The categories are: 

I. Online support - subset selection by time, 
region, platform, instrument, and parameter 
from the archives; full range of output; full 
catalog support; 

2. Offline support - subset selection by media 
volume only, from the archives copy; storage 
media output only; full catalog support; 

3. Ordering support - catalog support; ability to 
place an order through the catalog subsystem; 
orders handled manually; 

4. Catalog support only - limited information in 
the catalog; no support for obtaining data; 
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5. Directory support only - directs user to a 
specific non-Eos archival facility for further 
in formation. 

All of these categories should be supported by the 
bibliography, but we expect that the level of support 
(i.e., the thoroughness with which relevant citations 
are selected, entered, or purged) will vary, according 
to the priority implied by this list. 

Performance and Accounting 

The Eos archival subsystem should meet suitable 
performance goals required by the research commu
nity, specified by the project, and agreed to by Eos 
investigators, at least during prime time (defined as 
0800 Eastern to 1800 Pacific Time on weekdays). 
Performance goals should specify system availabil
ity, data loading time, extraction time, data set gen
eration time, browse time (i.e., generation, transmis
sion, and display), and system response time. 

In order to monitor performance of the system 
and determine appropriate user charges, various ac
counting factors should be measured and reported. 
All required information should be recorded auto
matically and reported in weekly and monthly sum
maries. These data should include catalog usage, 
bibliography usage, archival loading, data set ex
traction, subset generation, and general resource 
usage. A detailed invoice should be prepared and 
sent to the user with each data shipment. Summary 
invoices should be prepared for each user on a 
monthly basis. In addition, online accounting 
algorithms should be available to allow researchers 
to estimate costs before requesting either data or 
data processing services. 

TELECOMMUNICATIONS 

The telecommunications industry is in a state of 
rapid change. Deregulation of the industry, the 
growth of satellite and fiber optics high-volume 
communication facilities, and the transfer of com
munications backbone switching and mUltiplexing 
equipment from analog to digital are causing major 
changes in communications capabilities. Networks 
for transfer of digital information are growing 
rapidly. Any requirements report relies on a 
background knowledge of what is feasible and read
ily available. Because of the uncertainties in the 
telecommunications industry, and the long lead time 
for Eos implementation, the telecommunications re
quirements should be periodically reevaluated and 
updated as new technologies become readily 
available. 

Downlink Communications 

Eos data rates are quite high in comparison to 
other Earth orbiting satellites. The expected average 



data rate is over 70 megabits per second, with peak 
rates of over 400 megabits per second. NASA com
munications commitments are for an average data 
rate of 70 megabits per second, but will not include 
continuous channel availability. Manned mission 
(i.e., the core Space Station) communications will 
have a higher priority. In order to buffer the high 
peak data rates and to guard against momentary 
downlink channel outages, an onboard data storage 
capability should be developed. This data storage 
subsystem should be sized to prevent loss of data. 
Data from one half orbit will be over 125 gigabytes. 
Onboard data storage needs to temporarily store 
these high data volumes, at a minimum. Data from 
onboard storage devices should be packed to take 
full advantage of broad-band downlink transmis
sion capabilities. 

Direct Broadcast Communications 

NOAA and its international clientele will require 
separate data storage and relay systems that will 
"guarantee" data delivery from any NOAA opera
tional instruments that may share the Eos polar plat
form. This system would likely function in a manner 
similar to current NOAA spacecraft, which have on
board storage and utilize burst transmissions over a 
receiving site. In addition, NOAA has international 
commitments to provide direct broadcast weather 
satellite data for remote regions. There are also a 
large number of international land-applications data 
users who are equipped to receive Landsat data. 
Consideration should be given to using these direct 
broadcast systems for transmission of high
resolution imaging spectrometer and synthetic aper
ture radar data when they are not being used to relay 
weather instrument data to NOAA facilities and 
clientele. 

Repository Communications for 
Quick-Look Users 

After relay by telemetry satellite, Eos data will 
first be delivered to NASA mission and instrument 
repositories. These data repositories are primarily to 
support NASA mission and instrument team opera
tions, with the data subsequently being transferred 
to Eos data centers, active data bases, etc. The 
transfer of data to these facilities could be either 
through electronic communication channels, or 
through the physical transfer of disk, tape, or other 
storage media. However, while the data is still in an 
Eos repository, certain communication functions 
are still needed for mission operations, quick-look 
data sets, operational user data sets, and other prin
cipal investigator functions. The principal investi
gators will require quick-look data sets for instru
ment command decisions, and for preliminary scien
tific analysis. 

IO 

Real-Time, Quick-Look Data Access 

The users identified as requiring access to real
time, quick-look information need interactive image 
processing and display capabilities. These indivi
duals may need some interactive image browse capa
bilities as well as the capability to reprocess further 
and display the data interactively. Further process
ing of the data may be mission dependent; conse
quently, applications software modules need to be 
easily added to the system. The user community re
quiring access to real-time interactive quick-look 
data will probably be limited to Eos instrument 
teams and selected active data base sites. Investi
gator processing requests should be completed 
within the timeframe of one orbit. Communication 
facilities are needed to link quick-look investigators 
with the repositories. Data rates between 56 kbps 
and 1.5 mbps will likely be required on this link. The 
link should also be capable of handling multiple 
users simultaneously. 

Uplink Communications 

Many mission operations activities will be 
planned and scheduled. However, there probably 
will be occasions when instrument command deci
sions will need to be made within the time period of 
one orbit. The requisite communications system 
needs to be capable of quickly providing scientists 
making these decisions with sufficient information. 
This information includes, in addition to quick-look 
data sets, trade-off information for various instru
ment configurations. Instrument team requests for 
configuration changes need to be included effec
tively into the command and control decision chain, 
and a mechanism should exist to arbitrate con flicting 
demands. The communications system needs to be 
functioning continuously, accommodating different 
user communities. These configuration decisions 
should be in addition to automated real-time selec
tion (within a priority set of options) of measure
ment sites for select instruments. 

Eos Information Network Services 

Eos data centers will make Eos-derived data ac
cessible by the greater scientific community. These 
centers should have archival data bases and ad
vanced data base management capabilities in addi
tion to demand processing facilities. The Eos infor
mation network should provide the required com
munications links to and within the scientific com
munity. This network will require catalog and 
browse attribute file, browse image file, and archival 
data set access, as well as the quick-look access 
previously described. It should also provide for elec
tronic communications between colleagues working 
on Eos-sponsored research. 



Catalog and Browse Attribute File Access 

Interactive electronic catalog and ordering func
tions should be available for Eos researchers with at 
least 9,600 bps dial-up capabilities. In the catalog, in 
addition to location, time, instrument status, and 
other available information, the attribute file should 
also be accessible for search purposes. An interactive 
catalog system should provide response to most 
search commands within I to 15 seconds. The system 
should be available on a continuous basis and be 
sized to handle at least 100 simultaneous 
investigators. 

Browse Image File Access 

In addition to the attribute browse capability, the 
system should allow for reduced-volume data 
browse. Because of data rate limitations of9,600 bps 
communications links assumed for most users, elec
tronic browse of image files may not be possible for 
many users. This would necessitate the publication 
of an image browse catalog. In this event, it could in
clude both the catalog and attribute numerical files, 
which could be computer processed to locate images 
or sequences of images. 

A select number of users (e.g., those associated 
with active data base sites) should have available 
higher data rate communications lines and they 
should be provided with interactive electronic image 
browse capabilities. Of particular importance are the 
data between the present and the last published im
age browse file. This interactive image browse capa
bility could be used by quick-look investigators and 
research teams monitoring \in instrument as a pre
check of ordered data sets. 

Access to Archival Data 

Even in the 1990s, many researchers will prob
ably receive high volumes of data through the mails. 
The majority of researchers can probably accept 
electronic interactive ordering (i.e., order placement 
and acknowledgment) with mail delivery. Turn
around time for orders should be consistent with 
mail service (i.e., a few days to a week at most). 

The system should also allow for delivery of data 
electronically, since a few sites may have the high
speed communications capability needed to receive 
large-volume requests. Other researchers will have 
lower-speed communications, consistent with lower 
volumes of requests. The system should allow for all 
levels of archival retrievals to be sent over any com
munication line tied to the system. This would also 
include the use of low-speed links for interactive 
catalog interrogation. 

Carrier Considerations 

The Eos information network will require com
munications facilities that tie together a large 
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number of researchers using various communication 
rates, ranging from dial-up lines to high-speed links 
of 1.5 mbps or more. Network protocols and stan
dards may result from the adoption of standards set 
by Space Station communications. Users with dif
ferent protocol capabilities will require translator 
boxes or packages at the gateways into the network. 
If extended to include local area network access, the 
NASA Program Support Communications Network 
(PSCN) would be one example of the type of capabil
ity that would be required. The PSCN was originally 
envisioned to link NASA researchers together with 
phone access, packet switched data (9.6 kbps), cir
cuit switched data (56 kbps), and computer network 
subsystem3 (l.5 mbps to 6.3 mbps). While the PSCN 
will link NASA facilities together with a computer 
network subsystem, it is not clear if it wiJI include 
voice, packet switched, and circuit switched access 
or if it will include extensions into the university and 
international research communities to serve Eos re
quirements. There are, however, numerous commer
cial carriers available that provide the full spectrum 
of communications requirements needed for an ef
fective and efficient Eos information network. 

DOCUMENTATION 

Proper experimental documentation encom
passes more than the description of the hardware 
and its initial calibration. Documentation should 
also include any information pertinent to scientific 
interpretation of the data record produced by the ex
periment. Since Eos is conceived as a global, multi
year Earth observational program, intercompari
sons between measurements made at different times 
and locations is central to the scientific return. Con
sequently, accurate and complete documentation is 
imperative for the success of this program. Docu
mentation is considered to be a vital part of the data 
record and should be stored and maintained with the 
same care as the data, per se. Some necessary ele
ments of this documentation are briefly ·described 
below. . 

Trace of Design, Fabrication and Testing of 
Hardware 

This information, which is routinely prepared by 
contractors, is rarely put into accessible form or kept 
as part of the data archives. Eos data volumes will be 
so large that digital storage of text materials can 
easily be supported. All key personnel should be 
identified and all reports collected in the archives. 
Much of this material may never be used, but some 
of it may prove crucial to understanding a particular 
set of critical measurements. 



Hardware Description 

Preparation of this document, including the 
above described information, should be included in 
the contractual obligations of instrument teams, in
strument principal investigators, and facility
instrument Centers. It should provide a compact 
description of instrument specifications, including 
the nature of physical variables measured, noise 
characteristics, internal processing, and coding of 
telemetry. Sufficient detail should be included to 
allow another group or individual to convert raw 
telemetry signals into basic physical quantities, using 
ancillary calibration information contained within 
the transmitted data record. 

Calibration 

The procedures and results of all calibration ex
periments and tests should be reported in sufficient 
detail for other scientists to evaluate their 
thoroughness and accuracy. All approximations and 
instrument uncertainties must be identified. Instru
ment performance over a complete range of environ
mental conditions should be evaluated. This infor
mation should allow conversion of telemetry signals 
to standard physical units of measure. Calibration 
standards should be traceable to the National 
Bureau of Standards; this requires documenting the 
history of Eos data records. 

Calibration History 

In addition to documenting calibration tests, a 
specific time sequence data record should be created 
from information used to monitor instrument cali
bration over the course of an experiment. In doing 
so, drifts in instrument characteristics can be 
reconstructed. Both the calibration and calibration 
history files should have the provision to hold more 
than one calibration test result or more than one type 
of monitoring information; all sources of calibration 
information must be identified and placed in the 
archives. 

Command History 

Automated command sequence construction, 
together with the necessary computer involvement in 
routine spacecraft communications (i.e., the com
mands given every instrument together with its 
status, indicated in housekeeping telemetry) should 
be available in mission operations computers; this 
information is rarely retained. Provision should be 
made within Eos data archives to create a data record 
documenting the history and providing a trace of 
commands and instrument status throughout the 
lifetime of the project. Significant reconfigurations 
of instruments (e.g., gain setting changes) or observ
ing sequences should be accompanied by log entries 
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identifying the reasons for and the source of the re
quested change. 

Bibliography 
A list of all papers and reports published in the 

open literature and thought to be pertinent to the 
type of instrument or observation being made, cali
bration or sensitivity studies, and the precision and 
accuracy of the data should be included as part of the 
documentation. Consideration should be given to 
making the complete text of all unpublished docu
mentation (i.e., the gray literature) electronically 
available. 

Processing Algorithms 

If an instrument data record is to contain quan
tities derived from measurements (those quantities 
obtained directly from the telemetry by application 
of calibration relations), then the methodology 
utilized must be thoroughly explained and all rele
vant references to literature concerning the method
ology should be listed. All processing software 
should be preserved and documented, along with a 
report of design and testing rationale used by the 
software creator. This requirement also applies to 
processing software used to locate the observations 
and calculate observational geometry parameters. 

Correlative Data Record 

Often routine processing procedures utilize addi
tional data or information to determine derived 
parameters. Although these data may describe sim
ple or well-known quantities (e.g., topography), the 
particular version of the information used may dif
fer slightly from other versions. Therefore, all such 
data should be considered part of the archives. 

Data Usage Trace 

Institutions responsible for maintaining Eos data 
archives should provide a trace of user access to the 
data, allowing other investigators to contact col
leagues familiar with a particular data set's charac
teristics. The trace should contain specific informa
tion about the data ordered and the name and ad
dress of the individual accessing the data. 

The above list of documentation is very exacting 
and will demand significant effort to acquire and 
maintain. Notwithstanding, given the requisite 
resources envisioned for Eos and the large invest
ment of time and money it will require, this docu
mentation effort appears trivial by comparison. 

NON-Eos DATA AND MODELS 

Most, if not all, of the research scenarios (vis. 
Appendix I) have some requirements for access to 



non-Eos data. In some cases, access to models (e.g., 
global circulation models), or modeling capabilities, 
will be needed to place Eos data in context with some 
physical or chemical process. While these external 
data, models, and modeling mainframes may not be 
a part of Eos as a space-platform mission, they are 
part of the Eos scientific requirements. Hence, a 
commitment by Eos to access external, non-project 
data sets and models should be made. Model results 
should be accessible and, in addition, researchers 
should be able to request model runs through an Eos 
data and information system. 

There are six possible levels of commitment to ex
ternal archives access. They range from accessing a 
directory of catalogs, to instant, remote access to the 
world's data bases. The six levels are: 

1. Directory of catalogs 

2. Information on specific catalog access 
routines 

3. Ability to place an order through Eos 

4. Direct access to other data bases through Eos 

5. Direct orders and near-real-time access to ex
ternal data bases through Eos 

6. Direct order and real-time access to data 
banks through Eos. 

It would be highly desirable if Eos could provide 
services through level 5. The user could locate a 
specific non-project data base, order that data 
through Eos, and have it arrive along with his Eos ar
chival data in a compatible file format. A single soft
ware routine based on this common format would 
then be sufficient to input all of the data necessary 
for research. 

STANDARDS 

The Eos project will be operating within the same 
timeframe as the Space Station project, which is 
designing a Space Station Information System. It, in 
turn, will operate under the auspices of the NASA 
Office of Space Science and Applications, which is 
defining a Science Applications Information Sys
tem. Each of these will impose some standards on its 
components. Space Station personnel have discussed 
standards for the operating system, programming 
language, software support environment, data base 
management systems, and the use of standard for
matted data units. There are potential benefits to 
these interconnected systems ifthe various standards 
adopted by such top-level entities as the Space Sta
tion Information System are acceptable to, and ac
cepted by, Eos in common or overlapping areas. 
This will require that Eos project personnel and 
researchers be familiar with, and preferably par
ticipate in, the definition of these standards. 

Careful consideration must be given to the stan-
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dards, conventions, or guidelines that Eos accepts or 
develops. Because Eos will be a primary researcher 
interface with the Space Station Program, its con
sistency of operation (i.e., the adherenee to stan
dards) and its flexibility (i.e., freedom from stan
dards) will weigh heavily in its acceptance by the 
research community. Unless standards are perceived 
by the user to be beneficial, they will be viewed as 
overly restrictive and onerous. Thus, early decisions 
should be made, minimizing the set of standards to 
be invoked while maximizing their utility. Three fac
tors should be considered before Eos adopts any par
ticular standard: 

1. Historical data from a suite of spaceborne and 
in situ instruments will be used for intercom
parisons by Eos researchers. These data reside 
in numerous archives, are in a variety of for
mats, have varying resolutions, are of differ
ing quality, and have a variety of appended 
ancillary information. Hence, these data will 
require resampling on space-time scales used 
for Eos data. 

Common data set organization (e.g., spatial 
resolution, map projection) and the use of 
logical catalog and data structures (allowing 
various computers to read the files) will 
minimize the reprocessing task. Common fac
tors such as these should be studied to provide 
guidance in selecting standards that will min
imize reprocessing at a future time. 

2. Eos will be operating in a computer environ
ment largely determined by developments in 
the commercial sector (i.e., by software and 
hardware manufacturers). We anticipate that 
Eos data and information system require
ments will parallel those that focus commer
cial developments (e.g., nested catalog struc
tures, advanced data base management capa
bilities, super micro- and mainframe com
puters). Since system costs would be mini
mized by adopting commercially available 
products, Eos requirements should be tailored 
and adapted to these product developments 
wherever feasible. 

3. The computer and communications com
munity is moving toward standard practices 
that will be both machine- and data
independent. These practices will allow data 
and algorithms to be readily interchanged 
even on future systems. Any standards 
adopted under the Eos data and information 
system auspices should take these practices in
to account. 

Areas of Consideration 

Areas of direct researcher and system interaction 
will include directory and catalog access, query and 



browse functions, archives access, algorithm de
velopment, and data interchange. Given the rapid 
rate of data base management developments, it is 
probably inappropriate to attempt to standardize 
specific data base structures, catalog organizations, 
query procedures, etc. Rather, a more productive ef
fort will concentrate on standardizing the tools with 
which to describe and manipulate these data. Thus, 
appropriate items for standards include data defini
tion languages (rather than a specific data structure) 
or data system model techniques (rather than defin
ing a specific data model). This approach also recog
nizes the existence of numerous heterogeneous data 
bases and their catalogs, which must be dealt with by 
Eos. Several NASA Pilot Data Systems are consider
ing the creation of uniform catalogs (i.e., uniform 
information presentation for the researcher) in con
trast to standard catalogs. 

Systems are usually described in block diagrams 
at various levels of detail. In such a description, the 
critical items are the functions to be performed by 
each block (i.e., its transfer function) and the 
characteristics of the paths between the block inter
faces. Unless some overriding factor dictates stan
dards within a block, the appropriate items needed 
for complete descriptions, and perhaps standards, 
are the functions and interfaces themselves. 

Beyond functions and interfaces, careful con
sideration should be given to standard format struc
tures for data interchange. While they may not ex
plicitly cover data storage formats, there is a close 
relationship between storage, interchange, and func
tional formats. Standard formats could serve several 
purposes; these include: 

1. Providing a data organizational structure that 
will accommodate all types of geographically 
related spatial and non-spatial data (i.e., sca
lar, polygon, and raster data), features and at
tributes, and necessary topological relations. 
While it may be desirable to define a single for
mat, the diversity of data types suggests that 
this is inappropriate; 

2. Providing a format volume record grouping 
capable of accommodating all necessary data 
in variously formatted records (i.e., feature 
identification, data quality, spatial data type, 
locational definitions, spatial relationships, 
and ancillary data). These format structures 
should be expandable to allow addition of 
future types of data; 

3. Providing an interchange format that will 
allow a researcher to read the data set, deter
mining the basic logical structure. A family of 
format structures necessitates conveying to 
the receiving computer the logical structure of 
the data being presented; this is the purpose of 
a data definition language; 
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4. Providing coding standards to accommodate 
a variety of information and attributes. 

Glossary and Definitions 

In the multiple-system, multidisciplinary en
vironment of Eos, common understanding of terms 
is a necessity. This will require the adoption or 
development of a standard glossary containing 
operational definitions. This should include tech
niques as well as definit ions, and include such items 
as the data definition language and data modeling 
techniques. It would also be appropriate for the 
glossary to list applicable external standards (e.g., 
Federal Information Processing Standards, 
American National Standards Institute, Con
sultative Committee for Space Data Systems, Inter
national Standards Organization). 

Algorithm Interchange 

Much has been said about sharing of algorithms 
among scientific researchers. This has been ham
pered in the past by the use of different operating 
systems, different programming languages, and dif
ferent execution procedures. While it is unreason
able to expect the entire research community to stan
dardize on systems and languages, it is reasonable to 
consider a standard interface executive. This would 
allow the independent development of algorithms 
and executives and provide a method for easy inter
change between investigators. 

Data Interchange Formats 

An oft-voiced problem is that of data inter
change, particularly in light of the in finite variety of 
formats that are in use today. Several studies are cur
rently underway, aimed at providing a standard for
mat structure: 

I. Potential worldwide data transmission will be 
a feature of future systems. The International Stan
dards Organization (ISO) has formulated a series of 
standards expected to facilitate international elec
tronic message interchange. In addition, the Con
sultative Committee for Space Data Systems 
(CCSDS) has been developing a set of recommenda
tions for special purpose techniques that are tailored 
to the unique environment of exchanging data 
through space data channels. ISO's DIS 821 I stan
dard proposes a data definition language, and 
CCSDS proposes a number of data formatting stan
dards that may be suitable for Eos consideration. 

2. Two national committees are currently in
vestigating the interchange format question, one 
convened under the U.S. Geological Survey (to unify 



data representations from Federal agencies) and the 
other from the National Bureau of Standards via the 
U.S. Geological Survey and the American Congress 
on Surveying and Mapping (concerned with digital 
cartographic data standards). The National Com
mittee on Digital Cartographic Data Standards is 
charged with producing a format structure recom
mendation for the cartographic community before 
1986, with eventual consideration for inclusion 
within Federal Information Processing Standards. 
Careful consideration should be given to working 
with these national committees and subsequent 
adoption of the standards that they recommend. 

3. NASA is currently sponsoring a study of stan
dard formatted data units. A standard formatted 
data unit is a conceptual data object that could be 
transmitted between users. It will consist basically of 
a formatted and labeled data set; thus, it defines an 
interchange format. It will include a primary label 
that serves as a global identifier, a set of secondary 
labels that carry information about the data, and the 
data set itself. It currently focuses on the record 
level, but may also provide a nesting feature that 
would allow a given unit to be composed of multiple 
standard formatted data unit subsets. 

Clearly, the area of standards and formats needs 
considerable attention by Eos and, in particular, 
consideration in concert with the research commu
nity who must deal with the resultant standards. Since 
we envision the necessity for an entire suite of format 
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structures, system transparency to the researcher re
mains an overriding concern. This must be the guid
ing principle in establishing standards and format 
for the Earth Observing System data and informa
tion system. 

SUMMARY 

The foregoing discussion delineates a significant 
number of requirements, attributes, characteristics, 
and capabilities that we believe should be accom
modated within the Eos data and information sys
tem. These factors can be conveniently grouped into 
seven interrelated and interdependent functional 
categories and are summarized in Appendix II. 

These functional groupings are Eos flight sys
tems, user functions, operational functions, infor
mation service, advanced data base management, 
data processing, and non-Eos data base functions. 
Eos is unique in that we expect that many of the re
quirements cannot be accommodated by any single 
functional element or group. Rather, we anticipate 
that many functional elements will need to coor
dinate their activities to accommodate a given task. 
The interrelationships and interdependence of the 
elements within the resulting data and information 
system is thus quite significant. Consequently, Eos 
information services functions will be central to en
suring straightforward, transparent intra- and inter
system interaction, a prime characteristic derived 
from these researcher-imposed dependencies. 



III. ARCHITECTURAL CONSIDERATIONS 

In this chapter, we propose appropriate design 
principles and consider an Eos data and information 
system for the 1990s, the Space Station era. We pre
sent an example of a functional architectural design, 
described in terms of elemental composition, top
level functions, and internal and external interfaces. 
This conceptual arc.hitecture illustrates one possible 
configuration that could satisfy the general data 
system requirements that are developed in this 
report. 

To ensure that the designs considered were ap
propriate to the Eos data and information system, 
we categorized the requirements, characteristics, 
and attributes delineated in this report into seven 
functional groupings (cf. Appendix 11). These 
groupings were then compared to each functional 
element of the architectural examples. We believe 
that the flexibility and modularity of the conceptual 
design presented in this chapter is well suited to these 
requirements and the needs of Eos. 

Since the functional design of data transport fa
cilities and services is a key and fundamental factor, 
we have selected an architectural example based on 
space data communication standards developed by 
the Consultative Committee for Space Data Systems 
and utilizing International Standards Organization 
general purpose protocols for transparent inter
change between dissimilar system elements. We have 
examined this design in sufficient detail to ensure 
soundness of approach and methodology. As with 
any initial concept, this design is open to construc
tive criticism, revision, and improvement. A more 
detailed description of a system architecture is 
beyond the scope of this report. 

DESIGN PRINCIPLES 

Designing a data and information system for Eos 
is clearly a complex problem, particularly with re
spect to data handling. To ensure that the resultant 
system can meet scientific needs, the architectural 
concept should feature two fundamental principles 
or design techniques that we believe should be 
employed throughout: layering and standardization. 
Together, they can be used to create an information 
system that is flexible, transparent, and robust, pro
viding the foundation for diverse data processing 
and archival needs within an Eos data and informa
tion system. 

Layering and Modularity 

The first architectural principle to be applied 
throughout the design of an Eos data and informa
tion system is layering, the technique of dividing and 
conquering. Layering breaks the diverse and com-
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plex system into easily comprehensible modules with 
clear "strata" in which common data-handling 
functions reside. Strata exchange data according to 
well-defined rules and are thus predictable in terms 
of their functional characteristics. Layering is essen
tial for a data system that: 

1. is understandable by a wide range of users and 
implementers; 

2. can expand or contract easily to accommodate 
changing user requirements or technological 
developments; 

3. can be tested in a modular fashion by maxi
mizing the functional independence between 
processes residing in different system layers; 

4. displays simple, well-defined system inter
faces that are not constantly changing; 

5. can adaptively respond to dynamic mission 
events; 

6. facilitates recursive use of replicate hardware 
and software elements to lower system de
velopment and operational costs; and 

7. avoids the need for major advances in tech
nology by permitting complex tasks to be 
broken into pieces that can be handled within 
existing capabilities (e.g., parallel processing 
of very high-rate data streams). 

Standard Data Structures and 
Data Autonomy 

The second key architectural design principle is 
standardization of formats and protocols through 
which data are exchanged between distributed ele
ments of the system. Standard structures promote 
"data autonomy," the transport of independent, 
user-defined units of data through the system. Using 
this principle, the internal format and content of the 
data are defined by the user and transparent to the 
communications system. 

For the Eos data and information system to pro
vide efficient, high-performance data services that 
handle a diverse combination of data types and re
quirements, it should be adaptively responsive to the 
data per se. The concept of data autonomy (encapsu
lation of variable data within standard, network
interpretable labels) provides a foundation for these 
adaptive data services. Data autonomy is achieved in 
this architectural example by employing standards 
that require each data source (e.g., engineering sub
system, instrument) to encapsulate its data messages 
into "source packets" having globally interpretable 



labels that define the source and destination, class of 
service, priorities and delivery conditions, and pro
vide the information required for verification, vali
dation, and accounting of data within the packet. 
Thus, while the packet format is a standard for the 
network, the format of its contents can be variable; 
the data exchange network need only transmit what 
it is given. 

Adaptive Flexibility 

We envision an Eos data and information system 
that is dynamic, evolving to meet the needs of its 
changing clientele and advantageously employing 
new technological developments. Layering, modu
larity, structures, and autonomy are hallmarks of 
contemporary system design. Together, they provide 
ameans through which the resultant data system can 

. evolve adaptively to meet these changing needs. 
A data and information system design utilizing 

standard data structures affords a significant level of 
flexibility; its data services are readily adapted to 
changes in internal data format and data flow or 
routing without changing the system architecture. 
These structures should be deliberately designed for 
flexibility through the provision of features such as 
secondary headers, and they should have the flexibil
ity of allowing future versions to be defined as 
needed. 

DESIGN CONSIDERATIONS 

The Eos data and information system must be 
designed, implemented, and operated affordably, in 
an environment of almost constant technological 
and researcher-initiated change. Some of the re
quirements and constraints imposed by this environ
ment are now examined and their ramifications im
posed upon subsequent designs. 

Evolution 

A key architectural consideration for the data 
system is its projected lifecycle, which will encom
pass the development and operation of a very com
plex, dynamic system that must accommodate 
growth and evolution of spacecraft instrumentation, 
technology, and user requirements. At the outset, 
performance requirements imposed on the system 
will push data handling technology to the limit. 

Subsequently, data handling capabilities must 
evolve to support a maturing platform that carries an 
increasing number of instruments with growing re
quirements for data storage, processing, and trans
mission capacity. System technology will become 
obsolete quite rapidly unless the system design ac
commodates changes. 
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As the data system further evolves, spacecraft 
and ground-based data handling and processing 
operations may become more independent. The sys
tem's data communications and processing capabil
ities will need to expand in a controlled, evolutionary 
fashion to support growth. The evolving character 
of the environment in which the system operates re
quires that the architecture display a high degree of 
modularity and structure. Adaptive flexibility must 
become a cornerstone upon which the system evolves. 

Distributed System Considerations 

When the transmitted data stream is received at 
ground-based facilities, it will be distributed to a 
confederation of geographically dispersed data pro
cessing and archival facilities. We anticipate that 
these facilities will be interconnected by both private 
(e.g., NASCOM) and shared public (e.g., X.25-
based) communications networks and private and 
public broadcast satellites. 

System facilities may be distributed worldwide, 
and will provide specialized data handling, process
ing, and archival services in support of a large, and 
not yet fully defined, cadre of users. The breadth and 
diversity of the user community suggests that the Eos 
data and information system should feature a spec
trum of format and protocol standards for data in
terchange. Application-oriented standards are es
sential to facilitate the early development of a 
dynamically adaptive, distributed data system that 
can sustain planned evolution. 

The majority of researchers will also have chang
ing requirements for routine data handling services 
such as accounting, merging, grid overlay, map pro
jection, ancillary data processing, temporary stor
age, and retrieval. These are changes that the data 
and information system must efficiently 
accommodate. 

Data Types and Rates 

The data system will be required to transport and 
deliver a diversity of digital instrument and engineer
ing data through bidirectional TDRSS (Telecom
munications and Data Relay Satellite System) com
munications links. As a result, a spectrum of perfor
mance requirements will exist, including: (i) raster 
data that can tolerate delivery delays but not data 
outages (it is moderately tolerant of data errors when 
uncompressed, but intolerant when compressed); (ii) 
other digital data and data transport processes, in
cluding low- and medium-rate instrument telemetry, 
engineering and housekeeping data, ancillary data, 
data base transfers, command sequences, memory 
loads, and text and graphics, that have differing and 
often conflicting requirements (some, such as 
programs and data base transfers, are intolerant of 
any data errors or outages, while others are tolerant 
of even the poorest communications). 



The wide diversity of user data requirements sug
gests that the Eos data and information system could 
utilize several different classes of data transport ser
vice, each class displaying a well-defined quality of 
service that includes clear specifications of data rate, 
error rate, delay, sequential character, and com
pleteness. The data system must also provide certain 
value-added utility services for user data streams 
such as merging, sorting, storage, and remote access. 

TDRSS Compatibility 
All types of Eos digital data, each with its own 

service requirements, are merged into a composite 
data stream that flows across TDRSS transmission 
paths. TDRSS services include uplink and downlink 
transmission on S-band and K-band data channels. 
A 300 Mbps K-band single access service, using I and 
Q channels, will provide the dominant downlink 
data transport service for platform scientific and 
operational data. The S-band single access channel 
will primarily carry platform engineering and some 
real-time operational data. 

Initially, data system downlink services will need 
to accommodate a composite data rate that periodi
cally approaches (and even transiently exceeds) the 
present TDRSS limit of 300 Mbps. The uplink data 
service will be provided on the single-access S-band 
channel at 100 kbps when scheduled. It is important 
to note that TDRSS has the capability to com
municate with the Eos platform at any time via the 
multi-access forward link, but realistic operational 
support considerations will probably limit the use of 
this uplink to emergency situations. These com
munications services must transparently support in
stantaneous, dynamic, and adaptive changes in the 
blend and volume of data that flows through the 
link. 

Direct Downlink, Broadcast, and Uplink 
It is possible that Eos research instrumentation 

and NOAA operational instruments will reside to
gether on the same polar platform(s). NOAA opera
tions will likely require a direct downlink indepen
dent of TDRSS. The data and information system 
should accommodate this enhanced capability with 
minimal system impact. 

NOAA operations in support of international 
weather services require that some onboard pro
cessed data be broadcast from the platform to 
ground receiving stations. These transmissions 
would only contain real-time data and would not in
clude previously recorded information. Relay 
broadcast services could also be accommodated for 
search and rescue activities. 

Direct uplink capabilities would include only 
relay broadcast and data collection activities. Instru
ment and platform command functions would be 
handled through mission operations via the TDRSS 
uplink. 
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Data Interchange Standards 

Within the framework of the layered concept of 
"Open System Interconnection," the International 
Standards Organization (ISO) is currently develop
ing a broad spectrum of commercially supported 
general purpose data protocols. These protocols are 
designed to provide transparent interchange between 
dissimilar elements within an open, worldwide com
munications system. Emerging ISO standards will 
likely have direct application to the Eos data and in
formation system, although some of the standards 
are relatively unattractive for specialized data ex
change through either capacity- or bandwidth
limited space data channels. 

The Consultative Committee for Space Data Sys
tems (CCSDS) has been developing a set of recom
mendations for special purpose techniques that are 
tailored to the unique environment of exchanging 
data through space-based data channels. These 
recommendations supplement ISO standards in 
those specific areas that are unique to space mis
sions. Many CCSDS standard data link protocols 
are directly applicable to the Eos data and informa
tion system, although some, particularly space-to
space links, may require adaptation. 

In support of Eos scientific research, the data 
and information system will need to exchange heter
ogeneous data sets not only among its different 
elements but also with other systems both internal 
and external to NASA. The use of standard for
matted data units will enable common services 
within and interchange of these data among various 
data systems. 

Taken together, the ISO and CCSDS standard 
protocols form the basis for standardization, hence 
data autonomy, within the architectural example of 
an Eos data and information system considered 
here. 

FUNCTIONAL ARCHITECTURE: 
TOP LEVEL 

The Eos data and information system should 
provide its users with the services of a complete in
formation system, including the bidirectional com
munications capabilities required for transparently 
transferring many divers"e types of data between the 
various ground and space-borne elements of the sys
tem. Consequently, it will be necessary not only to 
procure and maintain certain physical elements of 
the system, but also to provide an interface with and 
use of facilities, utilities, and data provided by other 
NASA and non-NASA organizations in a manner 
that is transparent to the researcher. 

Overview 

A simplified functional diagram of a distributed 
data and information system concept is shown in 



Figure 1. This architectural example has been ex
amined in some detail to ensure that it meets the re
quirements, characteristics, and attributes de
veloped in this report. It is important to note that this 
example describes a distributed data system in which 
the same functions (e.g., acquisition planning, 
analysis, storing, and cataloging of data) may be ex
ecuted on different data sets at one location or the 
same data sets at different locations. These functions 
or processes and their results must be coordinated, 
either onboard or on the ground. Exactly where and 
how this coordination takes place will be a function 
of the level of intelligence that is built into the on
board and ground-based elements of the systems. No 
attempt has been made to detail all of the functional 
capabilities included within a given system element. 
Rather, a few key functions are highlighted for each 
and the reader is referred to Chapter II and Appen
dix II for a more detailed accounting. 

Two key elements of the system are the Interface 
Unit and the Data Management and Communica
tions Network. The Interface Unit includes a pro
cessor and memory, and provides the means together 
with telementry and telecommand capture and dis
patch systems (imbedded within the Data 

Management and Communications Network), 
through which commands will be sent and data 
received from spacecraft instrumentation. Similarly, 
position and timing information from the Global 
Positioning System can be appended to the data 
streams via Interface Units. 

On the Eos platform, Interface Units can playa 
key role in system resource management. With a 
large user complement, it is likely that conflicts will 
arise when users simultaneously request resources 
(Le., power, thermal, pointing, communications, 
etc.) that exceed those available. Rather than at
tempting to check every request centrally, a dis
tributed resource management system can be im
plemented using Interface Units. A set of software
controlled management services (network interfac
ing, actuator interlocking, power limiting, com
mand verification and validation checking, status 
monitoring, fault containment and isolation pro
cedures, etc.) could be downloaded to distributed In
terface Units for execution. 

With the exception of direct broadcast access to 
polar orbiting platforms by users with receiving sta
tions, the user interface to the Eos data and informa
tion system will be the same, regardless of 

DATA MANAGEMENT AND COMMUNICATIONS NETWORK 

DIRECT 
BROADCAST 

DATA MANAGEMENT AND COMMUNICATIONS NETWORK 

Figure 1. An example of a data and information system architecture suitable for Eos. 
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geographic location. Operations-oriented data will 
flow through its own ground station(s) and Eos data 
will flow through TDRSS. The types of data flowing 
to various Eos facilities and the processing capabili
ties resident at these locations are implementation 
questions requiring systems trade-off analysis. The 
generic architecture considered here does not con
strain the physical location of personnel, data, or 
processing capabilities. It is important to note that 
the use of data standards enables ground data pro
cessing facilities to upgrade their capabilities and 
transfer functions to different elements without ma
jor perturbations to the entire system. 

A user's low to medium data rate instrument or 
engineering subsystem will have an interface with the 
Eos data system Local Area Network via a standard 
Interface Unit, or via the operating system services 
of an onboard data processor that supports instru
ment operations. A source packet will be the stan
dard data structure at the Interface Unit. The Inter
face Unit provides the physical interface to the local 
onboard data network and its protocol, a packet 
transfer frame. High data rate instruments (e.g., 
High Resolution Imaging Spectrometer, Synthetic 
Aperture Radar) will format their packet data direct
ly into transfer frames, which can be switched direct
ly into dedicated "virtual channels" in the downlink 
stream (a virtual channel is created when a broad
band link is subdivided into two or more parallel 
paths operating quasiautonomously). These instru
ments can also exchange low-rate source packets via 
the Network for adaptively optimizing data 
acquisition. 

At the downlink receiving site, the high-rate 
serial frame stream is immediately split into parallel 
virtual channels, and selected frames are routed to 
appropriate lower-rate data handlers such as de
coders, packet extractors, data capture devices, etc. 
Closed-loop retransmission protocols will be im
plemented for certain virtual channels carrying 
critical data that cannot tolerate data outages. The 
elements of protocol required to execute closed-loop 
command operation procedures may be placed in a 
secondary header of the telemetry transfer frames 
assigned to those virtual channels that use retrans
mission techniques. 

The use of virtual channels in a telemetry frame 
allows a single 300 Mbps data stream to be immedi
ately split into many lower-rate parallel paths. Thus, 
processing functions such as decoding can be done at 
data rates that are well within the capabilities of ex
isting technology. Bulk data streams can be readily 
sent to dedicated real-time processors or a storage 
medium for immediate reception and possibly non
electronic transfer to a user. 

Data flowing through TDRSS will have Level 0 
processing performed at a ground data handling 
center (presumably located at White Sands) before 
transmitting: (i) platform engineering data to the 
Mission Operations Center; (ii) subsets of the instru-
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ment and engineering data to the Mission Operations 
Center for quick-look analysis by investigators; (iii) 
high-rate instrument and engineering data and 
subsets of platform engineering data directly to 
dedicated Instrument Operations Center(s); (iv) 
moderate and low-rate instrument and engineering 
data and subsets of platform engineering data to ap
propriate Instrument Operations or Mission Opera
tions Centers. 

Operational Facilities 

Operational Ground Stations can acquire data 
directly from the spacecraft in a manner similar to 
current NOAA practices. Assuming operational in
struments are resident on the Eos platform, these 
Stations provide transparent user access to their 
instruments. 

All data flowing through an Operational Ground 
Station will be transmitted to an Operational Pro
cessing Center for reduction and creation of direc
tory and catalog entries. These data will be accessible 
to other system elements linked to the Network. 

Instrument Operations Centers 

There are two types of Instrument Operations 
Centers envisioned, (i) those that are dedicated to 
specific high data-rate instruments, and (ii) those 
designated for groupings of low to moderate data
rate instruments. 

We anticipate that all unprocessed data would be 
stored at the White Sands receiving center for a two
day period. During this time period, the data would 
necessarily have to be transmitted, received, and 
acknowledged by the appropriate Instrument Opera
tions Center. 

Processing quick-look, Level lA, and higher
level data, and generating catalog, directory, and 
browse file entries, would be performed at the ap
propriate receiving Instrument Operations Center. 
This data and information would then be forwarded 
to an appropriate Data Center for long-term archival 
storage, catalog and browse file maintenance, and 
dissemination. 

Requests for observational sequences, com
mands, and command sequences generated by in
strument teams or associated investigators would be 
transmitted to the Mission Operations Center main
taining a master schedule. 

Mission Operations Center 

The Mission Operations Center supports plan
ning and execution of instrument operations, result
ing in the introduction of new Eos data into the sys
tem. Through Mission Operations, a researcher's in
strument request will be formulated into a command 
sequence and forwarded to the spacecraft. Should 
the need arise, the Mission Operations Center should 



provide rapid response for instrument teams or re
searchers requesting command control of an instru
ment from remote locations. The Mission Oper
ations Center, like the Instrument Operations 
Centers, will maintain software-supported planning 
aids, employing menus or other "user-seductive" 
techniques. This software will assist researchers in 
planning and scheduling of observational sequences 
by Eos instruments. 

Data Centers 

Currently, it is anticipated that there will be a 
lead Data Center that is responsible for algorithm 
development and maintenance; coordination of 
overall data system activities; development, distribu
tion, and maintenance of various technologies; net
work management; and maintenance of data ar
chives, the directory, and its own catalog. Data 
directory and catalog entries will be forwarded to 
and maintained by this lead Data Center. The direc
tory will be more comprehensive than the Eos data 
per se; it will include entries from other non-Eos data 
bases pertinent to Eos scientific objectives. 

Since we recommend that processing beyond 
Level lA be performed on demand, it is anticipated 
that this processing and eventual scientific analysis 
could take place in both Instrument Operations and 
Data Centers. The resulting data sets will have direc
tory, catalog, and browse file entries developed at 
their processing location. The resultant data would 
be entered into an appropriate Data Center for ar
chival storage, catalog, and browse file mainte
nance, and distribution. 

Data Centers will be characterized by a staffhav
ing scientific expertise in one or more disciplines, the 
location of archives of Level lA and higher-level 
data sets, the capability for scientific data processing 
and analysis, maintenance of data catalogs and 
browse file entries for all data resident at the Center, 
and above all, the ability to retrieve and distribute ar
chival data and information. 

Active Data Bases 

Active Data Bases will be facilities where fo
cused, extended scientific analyses are conducted 
with archival data derived from a Data or Instru
ment Operations Center. Value-added processing 
(e.g., data reduction) will be performed at these sites 
and the resulting data, together with directory, 
catalog, and browse file entries, will be transmitted 
to an appropriate Data Center for long-term storage 
and distribution. Additionally, directory and 
catalog entries for these data sets will be generated 
and transmitted to the lead Data Center. 

Non-Eos Data Bases 
Many Eos scientific objectives require access to 

non-Eos data bases. This architectural example pro-
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vides for a complete bidirectional interface between 
any number of archives and the Data Management & 
Communications Network. Thus, researchers ac
cessing the system through any other component will 
have transparent access to pertinent non-Eos 
holdings. Similarly, Eos researchers working 
through the auspices of these non-Eos Data Bases 
could have full access to all system services. 

Data Management and 
Communications Network 

The Data Management and Communications 
Network will link together all other system elements 
and subsystems, in a manner that is transparent to a 
user. Its goal is to allow researchers to conduct mis
sion planning, request and receive data, interrogate 
directories and catalogs, and browse data sets re
motely and interactively. The success of Eos is 
therefore directly tied to the effectiveness of this in
formation Network. 

The Network should be managed by Data Center 
personnel, thereby ensuring that the Data Centers 
are involved directly in this key activity. The perfor
mance of the Network should be evaluated periodi
cally by personnel who lead activities of instrument 
teams and Active Data Bases. Thus, since the selec
tion of Active Data Bases and instrument teams will 
be governed by the scientific community through the 
peer-review process, those selected will have a 
significant vested interest and will act to ensure the 
utility of Data Centers and the Data Management 
and Communications Network through direct over
sight responsibilities. 

Transparent Data Handling 

The scientific and operational environment en
visioned for the Eos era (viz. Chapter II) suggests 
quite strongly that transparency in data handling will 
be a key factor and fundamental attribute of an Eos 
data and information system. In this example, the 
functional configuration is based on standard proto
cols that support the integrated transmission of 
many types of user data (e.g., instrument and 
engineering data, computer memory exchange, text 
and graphics) through common, limited-capacity 
data channels. It is also compatible with commer
cially supported terrestrial standards for open sys
tem interconnection. These characteristics are 
achieved by using two CCSDS standard application 
data structures (the source packet, and the standard 
formatted data unit) and two CCSDS data link struc
tures (the telemetry transfer frame and the Reed
Solomon telemetry codeblock) throughout the 
system. 

Data entering the system utilizes either a source 
packet, or the standard format data unit (that con
tains either sets of raw packets, or processed results). 
The format for transmitting data bidirectionally 



through TDRSS links is a telemetry transfer frame, 
that mayor may not be encoded using the Reed
Solomon error-correction algorithm. 

Selection of a telemetry transfer frame as the 
standard data link structure for bidirectional use on 
data channels has significant ramifications. The 
frame is optimized for efficient channel utilization. 
It is a fixed-length data structure that has a 
"natural" size of 10,080 bits, a convenient quantity 
of data to be handling on links operating at multi
megabit rates. Additionally, it is organized around 
the concept of virtual channels, that provides a 
mechanism for segregating different types of data, 
transmitted serially through a common data chan
nel, into several logically parallel paths. This permits 
a high-rate serial stream to be immediately split into 
many parallel, lower-rate data handling processes at 
a receiving facility (using relatively unsophisticated 
hardware). This significantly reduces requirements 
for developing high-rate processing technology. 

The telemetry transfer frame is optimized to fit 
within a high-performance Reed-Solomon code
block structure. Because this is a block-oriented 

Platform Platform 
telemetry telecommand 
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code, all of the Reed-Solomon parity bits are simply 
appended to the end of the frame. Therefore, some 
frames can be transmitted with the Reed-Solomon 
parity bits attached (permitting virtually perfect
quality frame data to be received after decoding), 
while others can be tranmitted without Reed
Solomon protection (in which case a frame will have 
the TDRSS channel bit error rate of lxlO- 5 ). Thus 
by selectively encoding some frames, and transmit
ting others uncoded (saving 15 percent coding over
head), different data qualities can be provided 
for dissimilar data types being transmitted through a 
common channel. 

FUNCTIONAL ARCHITECTURE: 
PEER LAYERS 

Redrawn (Figure 2), the architectural schematic 
reveals the "peer" layers of data handling. The stan
dard protocol data units, which provide the mech
anism for data exchange across the layers, are shown 
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Figure 2. Peer protocols within the data system example. 
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as well. Although for brevity, the following discus
sion is limited to the space-to-ground data transfer 
link, it is important to note that identical, mirror
image techniques are used on the uplink path and are 
applicable to both sides of the ground-based net
work. This self-similarity in data handling metho
dology, employed throughout the architectural ex
ample, is easily seen. 

The concept used here of transmitting bidirec
tional data streams through space-to-ground links is 
slightly different than conventional techniques used 
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by other spacecraft. Within the Eos system, the up
link and downlink data streams are similar; both 
contain low- to medium-rate instrument and engi
neering data and computer-to-computer data ex
change, and the physical characteristics of the uplink 
and downlink are virtually identical. Data retrans
mission protocols known as command operation 
procedures can be incorporated to provide fidelity 
and highly reliable delivery for both uplink and 
downlink data traffic that cannot tolerate data 
outages (e.g. data base transfers, memory loads). 



IV. MANAGEMENT CONSIDERATIONS 

There have been several recent reports published 
that deal with various aspects of data management 
problems in the space sciences. Three of these re
ports are particularly apropos and should be care
fully studied and followed by NASA management as 
the Eos data and information system evolves. These 
reports are the National Academy of Sciences Space 
Science Board, Volume 1: Issues and Recommenda
tions (1982)2 and Volume 2: Space Science Data 
Management Units in the 1980s and 1990s~ and 
Space Research Data Management in the National 
Aeronautics and Space Administration'. 

These reports examine many features of past 
data management practices and lay a firm founda
tion for minimizing problems with future systems. 
Volume 1 from the Academy'S Committee on Data 
Management and Computation develops a set of 
seven principles for successful scientific data 
management; this panel fully endorses these prin
ciples and urges NASA to closely follow them in the 
future. We therefore consider the recommendations 
contained within these reports to be appended to 
those contained herein. 

We note that these reports consider a spectrum of 
past difficulties and delve into the future to the ex
tent that projects in years to come will bear resembl
ances to those of the past. We envision an Eos that 
markedly differs in many ways from prior NASA 
projects. Consequently, rather than dwelling on past 
sins, we deal in this chapter with aspects of Eos that 
are unique and will require careful thought, con
sideration, and appropriate attention if the Eos data 
and information system, hence Eos per se, is to be a 
success. 

The unique features of an Eos data and informa
tion system provide a suite of management issues 
that fall into two categories, those pertaining to pro
gram and project management, and those involving 
information systems management. We deal in this 
section with both classes of management issues. The 
distinction between the two categories is, in most 
cases, readily apparent. 

LONGEVITY 
A crucial difference between Eos and previous 

data collection and analysis projects, which requires 
procedural changes, is the intended length of this ef
fort. Current practices for projects of limited dura
tion (up to five years) are determined by and for a 
single group of engineers, programmers, and scien
tists who participate throughout the lifetime of the 
project. Many current efforts, having lifetimes of 
nearly 10 years, already show the difficulties of 
changing team members and lack the flexibility to 
embrace new technologies and methodologies. The 
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fate of data sets acquired by these projects is gener
ally to fade rapidly from memory. Reasons for this 
problem include: 

1. Lack of useful documentation. Changes of 
personnel or dissolution of groups cause loss 
of knowledge of instruments and data charac
teristics, of calibration and processing proce
dures, and of data formats. 

2. Lack of planning for hardware or personnel 
changes. Data quality monitoring procedures 
are often nonexistent and necessary software 
changes are not controlled or documented 
adequately. 

3. Perception of data archives as passive 
storehouses that at best only dispense data. 
Little that is learned about the data is returned 
to the archives, hence data value can only de
grade with time. 

The success of Eos depends on changing existing 
practices in data collection and analysis, overcoming 
these problems. 

Although Eos is essentially a large, long-term 
data collection, processing, and analysis project, its 
data are intended to serve as a dynamic resource for 
research on global phenomena. Hence, unlike data 
processing in many projects, where value resides in 
the final product, value in Eos is distributed over 
many stages of data processing, all of which must be 
retained by an Eos data and information system. 
Furthermore, retrieval of much information is a 
matter for experimentation; fixed algorithms are dif
ficult to define. Yet, many steps in the processing of 
Eos data will be common to all analyses; these steps 
need to be identified and performed once. These 
characteristics of Eos suggest several new principles 
for the data system and its management that should 
be included in its design so that research access to the 
data is facilitated for years to come. These principles 
are: 

1. Archival activities should occur at several 
stages in the data processing system, represen
ting "raw" data, processed observables, and 
inferred or derived quantities. The definition 
of these stages depends on the nature of the 
observations and processing algorithms. If 
calibration and navigation information are ac
curate and readily available, "raw" data re
tention and maintenance may be avoided. 
Processed observables refer to raw data con
verted to the physical quantity directly meas
ured by the instrument (i.e., spectral 
radiance). Inferred quantities are those that 
are derived from directly measured quantities 
through application of auxiliary data or pro
cessing models. 



2. Data should be arranged into stable, predict
able units to allow for automated cataloging 
and easy user access to very large data 
volumes. 

3. Processed observable data should include 
complete calibration, navigation, and other 
ancillary information to facilitate use and to 
avoid repetitious processing. This and other 
pertinent information should be appended to 
the data with convenient frequency (e.g., per 
image). 

4. Catalog documentation should include results 
of automated quality assessments and a trace 
to cross reference other studies that have 
learned something about the data. 

Automated Data Processing 
and Management 

Much of the documentation chore can be han
dled by the addition of appropriate software for data 
processing that generates and accesses summaries of 
data attributes (i.e., self-documenting software). 
There are three types of software needed: Eos
specific, non-Eos, and user processing software. The 
Eos data system should be automated to handle the 
large data volumes effectively. Proper quality con
trol and data management require that the process
ing management software obtain and verify many at
tributes of the data; hence, recordkeeping and gener
ation of summary reports should be added func
tions. The management software should determine 
the source and contents of data sets, record what 
processing has been performed, where the data are 
stored, and form a cross reference list of data 
coverage, time, etc. In other words, this software 
should prepare a catalog entry containing this infor
mation. Any' 'use" of the data should also be moni
tored and recorded by the management software. 
Acquisition of non-Eos data sets for Eos purposes 
requires processing of these data to allow equivalent 
catalog entries to be made. 

Planning for Change 

The longevity of Eos and its data and informa
tion system, together with practical considerations 
of equipment, computer hardware and software, 
and personnel, requires that the data system must 
develop by evolution and that changes to the system 
be planned rather than ignored. Design of the data 
processing and management software and the associ
ated institutional arrangements should incorporate 
procedures for changing EVERY component, in
cluding the human element. Efficiency is not as im
portant as flexibility and clarity of design. 

1. Changes of personnel will occur. The doc
umentation of the total system, especially 
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when highly automated, should be thorough 
to allow ready training of new operations and 
management personnel. Knowledge ofthe sys
tem should be independent of the personnel. 

2. Instrumentation will change (e.g., improve). 
Data quality and catalog software should be 
able to detect and record these changes. Data 
analyses that lead to change should also be 
part of the Eos archives. 

3. Computer hardware should change when 
necessary to keep overhead low and to im
prove system capability. Software and pro
cedural changes triggered by such hardware 
changes should be planned; benchmark tests 
and standard data sets for reprocessing should 
be defined to verify the operation of the whole 
system after such changes occur. 

4. Software changes will occur to accommodate 
new data, new instruments, and improved 
analysis algorithms. Design of the data man
agement system should acknowledge this like
lihood. All of these changes should be con
trolled and documented. Management ar
rangements should ensure that operational 
software is secure, change procedures clearly 
defined, and changes are made using a self
documenting, monitoring system. 

5. Human-machine interfaces in the data pro
cessing and management system should be de
signed to maintain proper oversight and quali
ty control. Human tasks should be designed to 
be interesting (not too lengthy, not fatiguing, 
not too repetitive). Tasks should require prob
lem solving and judgment. One good way to 
ensure this type of interaction is to include 
users in the management system such that 
their knowledge is effectively included in data 
quality assessment. The processing and ar
chival institutions should have associated re
searchers with vested interests in the data per se. 

6. Use of expert systems in the management soft
ware should not overlook the utility of incor
porating various "scientific" analysis algo
rithms. Even though simple or standard algo
rithms may not be valid for all scientific prob
lems, such algorithms can be usefully applied 
for auxiliary quality assurance purposes by 
assessing data patterns and characteristics that 
can be used to monitor data attributes. For ex
ample, a sea surface temperature retrieval 
method, which is inaccurate for climate re
search, may be sufficiently accurate to moni
tor data quality, since expectations about the 
behavior of a physical quantity like sea surface 
temperature (e.g., no rapid changes) can be 
utilized for quality control. 



7. Data catalogs should consist of online, elec
tronic data sets that can be amended to accom
modate: new data sets, new attributes for ex
isting data sets, new cross references among 
data sets, processing and use trace, and 
bibliography. 

8. Data holdings can change in several ways 
other than addition of new data sets: (a) pro
cessing can provide an alternate form that has 
been sorted (mapped), edited, or labeled by 
analysis, (b) processing can produce associ
ated, inferred quantity data, and (c) process
ing of several data sets can produce alternate, 
correlated data sets. Planning of self
documenting data catalogs and a directory 
and holding structures should accommodate 
this inevitable evolution. 

Institutional Commitment 

Considering the above points, in addition to the 
requirements for incorporating scientific results into 
the archives we conclude that the role of data pro
cessing and archival institutions will be more active 
than in past or current practices. These institutions 
need to be part of the research process so that interest 
in the data and vigilance over the system will remain 
high. Provision of the many services outlined here is 
not a simple or easy task; appropriate institutional 
rewards must be found. Finding a solution to this 
problem must take account of several characteristics 
of the current practice of science: 

1. Publication of data and its documentation in 
refereed scientific literature is not possible, 
especially for the large satellite data sets. 
Hence, scientists do not spend much time on 
data structure or documentation. 

2. Quality assurance and formal acceptance pro
cedures for large data sets do not exist, and 
reliance on individual scientists is inadequate. 

The usual tools of scientific quality management, 
namely peer and publication reviews, are inadequate 
for creating the Eos data base needed for future 
Earth sciences research. This suggests that the role of 
the processing, management, and archival institu
tions should be extended to include participation in 
research projects and the publication of data docu
mentation. Consequently, some institutional 
publications might well be elevated to full journal 
status by instituting review procedures similar to 
those of the refereed literature. 

SYNERGISTIC CHARACTERISTICS 

Coordination will be the keystone of a successful 
Earth Observing System and the modus vivendi of 
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the data and information system. Unlike many flight 
projects of the past, virtually every facet of Eos, 
hence its data and information system, will require 
coordinated interaction to preserve its synergistic 
characteristics. Synergy within Eos occurs at three 
levels, all pertinent to the data and information 
system. They are: the scientific, project, and pro
gram levels. 

Scientific Level 
On the scientific level, we anticipate system 

resource conflicts arising that will demand resolu
tion within the confines of the data and information 
system. Multidisciplinary researchers and research 
teams will have needs for particular observational se
quences, while disciplinary researchers may well 
have requirements for entirely different measure
ments. Both groups will be affected by spectacular 
environmental events and the pressures (both scien
tific and political) to respond. 

These scientific conflicts could easily (and will 
likely) have an impact on the limited resources of the 
data and information system. While they may ram
ify and pervade the system, the areas most likely af
fected will include command management, instru
ment and mission operations, network services, on
board buffers, and data processing services. Since 
these services and facilities will have limited perfor
mance and capacity, a fast, efficient, and effective 
mechanism must be established to maximize resear
cher benefits when dissimilar scientific objectives 
collide. 

Project Level 
Resource conflicts at the scientific level directly 

translate into concerns at the project level. A major 
task of project personnel will be resource manage
ment, assuring continued, uninterrupted perfor
mance of the entire data and information system. 
Clearly, this will neither be a trivial task nor will the 
results of its performance be scientifically inconse
quential. 

There is an additional concern with resource 
management that heralds difficulties for the data 
and information system. This is synergistic instru
ment operation. While the Eos Science Steering 
Committee has discussed a number of synergistic in
strument scenarios, we do not presuppose that these 
are totally inclusive. As the research community in
creases its knowledge base, new requirements for 
multiple-instrument observational sequences will be 
identified. Preexisting requirements may remain and 
circumstances be further compounded by newly de
ployed instruments that may well place greater 
demands on available resources. The data system 
design, implementation configuration, and opera
tion must be based on preserving flexibility to the 
greatest extent possible, maximizing scientific pro
ductivity to its fullest measure. 



Program Level 

At the program level, resource conflicts take on a 
somewhat different character. To a large degree, the 
data and information system will be the key to ensur
ing Eos' scientific success. Consequently, fiscal re
sources must be identified and preserved to ensure its 
full and complete implementation, regardless of the 
inevitable pressures to do otherwise. This task will 
not terminate with the deployment of one or more 
Eos platforms. Rather, as new instruments are pro
posed (and subsequently deployed), and new syner
gistic groupings of instruments are identified, ade
quate funding must also be secured for enhance
ments to the data and information system, when re
quired. In doing so, the fidelity and performance of 
the system may be preserved to the ultimate benefit 
of scientific research. 

DATA VOLUME AND RATE 

The Eos data and information system will be re
quired to handle daily more data than any system 
ever conceived. In general terms, Eos will produce 
several orders of magnitude more data per day and is 
envisioned to have a duration exceeding any mission 
ever before proposed. Today, the only space mission 
at all close to projected Eos data rates, hence 
volume, is Landsat. While Landsat processing capa
bilities have been improving, the resultant data re
main relatively inaccessible and are used by a rather 
small number of individuals compared to projec
tions for Eos. Clearly, the operation of an Eos data 
and information system will create management 
problems of a magnitude that cannot even be fully 
appreciated at this time by either NASA manage
ment or the scientific research community who must 
cope with these data in their research. 

There are numerous management issues associ
ated with high data volumes and rates that can be 
clearly identified at this time. They involve virtually 
all of the recommended functional characteristics 
that the Eos data and information system should ex
hibit. Since the Eos data and information system will 
of necessity be a limited resource, it is reasonable to 
expect that the major issue associated with high Eos 
data rates and volumes will be scheduling, including 
scheduling of data acquisition, data set production, 
data access, and distribution timing. 

The architectural example discussed in Chapter 
III of this report concentrates on data flow and 
transparency. We have recommended the use of ex
pert systems to the extent possible to reduce delay 
times. Yet, we anticipate that even with these ad
vanced technologies, limitations in telecommunica
tions bandwidth, computational processing power, 
etc. will generate a significant number of scheduling 
problems. Further, it is likely that the synergistic 
nature of the overall mission will both solve what 
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might otherwise be a complex scheduling problem, 
and create yet others, particularly if the Eos plat
form(s) host instruments of an operational genre 
together with a suite of individual, principal in
vestigator, and facilities-class instruments. 

We know that existing systems, such as Landsat, 
are inadequate, and we know from a management 
perspective that an Eos data and information system 
must be vastly superior; we do not know the specific 
solutions to the myriad management problems that 
these high data rates and volumes will create. We 
therefore recommend that the Eos data and informa
tion system be built in an evolutionary fashion, 
enabling solutions to evolve along with the 
technology and expertise to cope with this new era in 
space research. 

ARCHIVAL DATA SETS 
A new objective unique to Eos is to increase our 

knowledge base, represented by data archives, by 
persistently adding the results of scientific data 
analyses to the basic observational data holdings. 
This continuous evolution of information content 
requires redefinition of the roles of scientists and ar
chival institutions as integral elements of this system 
(which is conceived as a network tying users, dispersed 
data processing, and archival functions together with a 
central data directory and network management). 

Individual investigators or scientific teams have 
new obligations to accomplish this knowledge in
crease. In return for access to the data system, these 
investigators must return their results to the system. 
Whether this obligation is accomplished by pro
viding system access to their individual holdings or 
by physical transfer of data sets to project archives, 
additional processing of the data resulting from an 
investigation will be required to provide: 

I. a catalog entry containing descriptions (de
fined by Eos) of data sources, data properties, 
analysis methods, and attributes (e.g., loca
tion, time, wavelength); 

2. a standard format to allow aCCess from Eos 
software, and processing by Eos archival 
software; 

3. documentation of data set contents, process
ing algorithms, instrument characteristics; 
and 

4. an evaluation of the results, including error 
analyses and validation tests, as well as a rele
vant bibliography. 

Archival institutions must be active participants 
in the data processing that supports scientific studies 
rather than passive storehouses. This new role re
quires data processing and distribution functions, in 
addition to the usual data acquisition and hol~ing 



functions (i.e., storage, security, purge). Data pro
cessing will be necessary to: 

1. put data sets into any Eos standard formats or 
develop software interfaces between data in 
non-Eos formats and any Eos standards; 

2. collect simple statistics of the data that can be 
used to assess data quality; 

3. examine data or apply simple algorithms 
to develop attribute lists used for search 

purposes; 

4. compare data attribute lists producing cross 
reference entries in the data catalogs; and 

5. prepare browse data sets by sampling the 
original data volume. 

Data distribution functions will be facilitated by: 

1. development and maintenance of data direc
tories (for all pertinent data sets) and data 
catalogs (for data sets held by Eos); 

2. production of browse data sets; 

3. establishment of peer review procedures for 
data quality; and 

4. publication of data documentation catalogs. 

FLEXIBILITY IN DESIGN: 
FUTURE USERS 

The Eos data and information system is being de
signed as part of the Eos project by evolution of a 
dispersed data processing network. Since the net
work is intended to provide flexible access to large 
data processing volumes by many project-related 
users, its design will have potential for other users 
entering the system at a later time. Thus the Eos data 
and information system is meant to continue the pro
cess of data analysis and research beyond the realm 
of the data collection phase of Eos alone. Provision 
should thus be made in the network design for ex
pansion of data access to and for acquiring new data 
sets from two classes of users. 

The smaller user class includes individual scien
tists or small groups investigating specific 
phenomena, incidents, or specific geographic loca
tions. This type of user, as a group, will access data 
directories, data catalogs, and browse data very fre
quently but request only modest volumes of data. 
The network design must provide proper access se
curity and usage accounting, allow remote access to 
directories, catalogs, and browse data, provide 
usage statistics for accounting, and allow ordering of 
data. The Eos data and information system design 
may allow a user to order non-Eos data that is subse
quently reformatted by Eos before being transmitted 
to the user. 
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The larger user class is composed of consortia of 
investigators formed to undertake specific, large 
research projects external to Eos (e.g., a special field 
study may wish to acquire supporting data being col
lected by Eos or a retrospective study may be in
itiated to produce a climatological data set). This 
type of user will access data directories, catalogs, 
and browse files relatively infrequently but will re
quest rapid or scheduled delivery of large data 
volumes, possibly for long periods of time. The Eos 
information network should be designed to allow ex
pansion (paid for by the user) to support additional 
large demand uses. A key feature of the Eos infor
mation system, in this case, is access to data quality 
assurance and calibration information, in addition 
to the basic observation data, and provision of ap
propriate software interfaces within the network. 

ECONOMIC FACTORS 

Most academic research is funded with an 
assumption that data, once acquired, will be ex
changed through publications and by other means 
where the cost of obtaining the data by other in
vestigators is essentially negligible. In essence, scien
tists exchange data for personal recognition, which 
translates into professional growth, increased in
come through advancement, and peer recognition. 
Thus, grants for space research are often dominated 
by salaries of scientific personnel compounded with 
institutional overhead. Computer costs may also be 
substantial, but an approach being adopted more 
and more often is for a funding agency to provide a 
shared-use computer facility and allocate time to its 
investigators at no cost to the researcher. This tends 
to encourage full use of any large-scale machine, and 
the pattern is generally that new computers are fully 
subscribed within one to two years. 

The traditional procedure for obtaining Earth 
remote sensing data for research purposes is 
somewhat analogous to the super computer situa
tion. Investigators propose to participate in space 
missions and, if successful, receive access to data at 
no cost. Copies of archival data are made available 
at the marginal cost of reproduction. Under this 
system, the aggregate scientific community works to 
justify funding for a major space program or mis
sion and then receives the resultant data at marginal 
cost. In essence, if the promise of future knowledge 
is sufficient, then present professional stature is ex
changed for access to data at little direct cost. Full 
exploitation of the data is encouraged because the 
only barriers to obtaining data are successful peer 
evaluation leading to selection for participation in a 
mission or research program. 

These considerations have direct bearing on the 
financial model that should be used in operating 
Eos. The current research system will continue to 
function if data are provided at costs not exceeding 



the marginal cost of making the data available. 
However, an alternate system, which requires those 
obtaining data for research to pay a proportionate 
share of the capital cost of acquiring the data (e.g., 
Landsat), will necessitate major changes in the way 
research is funded. A full-cost recovery system will 
work against the interests of maximizing use of Eos 
by discouraging access to data, and further is dia
metrically opposed to the unique feature of Eos that 
requires researche~s to return reduced or derived 
value-added data sets to the archives. 

The scientific community and its sponsors 
strongly support a system where the value of im
plementing a mission is judged in advance, and ac
cess to its data is governed by a peer review selection 
process. Under this system, institutional capabilities 
such as a data system or spacecraft are funded as part 
Qf the decision to proceed with the activity, not 
recovered directly from the researchers utilizing 
them. Consequently, it will be more straightforward 
to successfully implement Eos and ensure its max
imum utilization if monetary charges for data are 
limited to the marginal cost of reproduction. 

Although this economic model will work ade
quately for some investigators, it will not work for 
all. Many researchers will be contractually obligated 
to provide value-added data to the archives. If a 
researcher is required to pay even the marginal cost 
of reproducing the initial data he receives, then it is 
reasonable to expect that he should receive financial 
remuneration for processing, copying, and pro
viding his derived or reduced data to the archives. 
Unless these costs are considered and included from 
the outset of proposal preparation, the task ofretur
ning these data to the archives will necessarily re
quire the use of an individual scientist's research 
funds; hence, the task will be of low priority. 

Thus, some adjustments to the existing economic 
system will need to be made. We anticipate that these 
changes will not require a major restructuring of the 
system, but rather note that the problem will likely 
arise and recommend that NASA management take 
all necessary steps to ensure that priority is given 
to the acquisition of value-added data from Eos 
researchers. 

INTERACTION WITH OTHER 
GOVERNMENTAL ENTITIES 

Unlike many other space research missions, Eos 
should provide a means for addressing a suite of 
multidisciplinary research problems. To do so re
quires access not only to data derived from Eos 
spacecraft, but also to other archives, many of which 
are operated and maintained by other governments 
and governmental agencies. Similarly, we anticipate 
that Eos will enable multiple data source, discipli
nary research to be more effectively conducted. Here 
too, many of the requisite archival holdings are 
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under the purview of other governmental entities. 
Clearly, to achieve the scientific objectives of Eos, 
researchers will need easy access to directories and 
catalogs, as well as to the data per se resident within 
these external archives. 

The technical challenges of efficiently and trans
parently linking heterogeneous data bases are not 
beyond the capabilities that should be readily 
available during the 1990s. The problems arising 
from the multidisciplinary scientific objective will be 
managerial in nature. Project management's princi
ple task will be to effectively ensure that the direc
tories and catalogs that researchers access are up
dated on a very frequent (perhaps daily) basis. Thus, 
inter- and intra-governmental communications will 
likely be the deciding factor in determining whether a 
researcher's data needs are met. 

On a program management level, the problems 
generated by this archival access issue become 
political in nature. We anticipate the need for multi
ple interagency agreements detailing access pro
cedures, updating methodology, responsibilities, 
funding, etc. On the international, inter
governmental level, similar negotiations must take 
place and agreements be defined. In both cases, we 
anticipate that these external governmental entities 
will request reciprocity in archival access. Since 
many research scientists and colleagues are in the 
employ of these external organizations, we expect 
that many will likely be collaborating with project
sponsored investigators. Clearly then, reciprocal ac
cess will be neither a technical nor a scientific issue 
but, rather, political. 

On this basis, we urge NASA to undertake ap
propriate negotiations with those governmental 
bodies responsible for the operation and main
tenance of archives holding data pertinent to Eos 
scientific objectives. The resultant agreements 
should be consistent with the access requirements 
delineated within this report. 

REWARDS AND PUNISHMENT: 
A PERSONNEL DILEMMA 

If the scientific community is to have easy access 
to existing, planned, and future data sets, the Eos 
data and information system must fully utilize ad
vances in data system software and hardware. In 
order to completely integrate these improvements in
to the Eos data and information system it will be 
necessary to greatly expand upon and upgrade ex
isting human resources involved in the fields of data 
management, preparation, maintenance, and scien
tific validation. The success of the data and informa
tion system requires that these professionals be 
recognized, encouraged, and appropriately re
warded for their efforts. 

Many traditionally trained scientists and 
engineers lack the inclination or ability to adequately 



perform the tasks necessary to manage, produce, 
and maintain data sets that are useful to the greater 
scientific community. These tasks include scientific 
quality assurance, validation, algorithm mainte
nance, and, of particular importance, documentation. 

Employment in the data management sciences is 
currently rendered relatively unattractive because 
workers receive fewer promotions and other types 
of recognition than coworkers in the more tradi
tional scientific disciplines. Consequently, the field 
has not attracted a large number of individuals of 
the type and caliber that Eos will most assuredly 
need. There are several reasons for these differences 
in recognition and rewards, but primarily they stem 
from the nature of the work; data management sci
entists do not produce the same type of publications 
as those engaged in traditional scientific endeavors. 
Data management publications are produced less 
often and do not generally appear in the refereed 
scientific literature. Indeed, the major derivative of 
data management is the data set itself, which is 
merely described by publications or, more often, 
user's guides and other types of similar documenta
tion. Throughout the scientific community, 
recognition of professional accomplishment and ex
cellence is primarily related to publications in 
refereed scientific journals. A major step toward 
encouraging highly qualified and motivated sci
entists to enter and remain in the field of data man
agement would be to broaden the base of what is 
recognized as a truly significant scientific publica
tion. This then remains the guide for measuring 
professional performance, but should include pub
lications of technical memoranda (which describe 
data sets), user's guides, algorithm and validation 
study results, as well as the data sets, per se. 

KEY ISSUES 
Although there are many considerations, both 

technical and managerial, noted within this report, 
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there are two prime issues that NASA management 
must address at this time. They are (i) the need for 
immediate action to plan, design, and implement an 
Eos data and information system, and (ii) the need 
to develop the experience, expertise, and technology 
necessary to ensure that the resultant system effec
tively meets the needs of the research community. 
One means of addressing these issues is to initiate a 
top-down functional design effort that is very close
ly coupled to and iterated with prototype experience 
to efficiently converge on an optimal system by the 
beginning of the next decade. Regardless of the ap
proach taken in addressing these issues, there are 
two imperatives or guiding principles that should be 
followed throughout the evolutionary process. 
They are (i) scientific involvement and (ii) scientific 
oversight. 

The prime objective of a scientific mission is to 
obtain new knowledge and understanding. There
fore, it is reasonable that since data are acquired for 
scientific research, scientists should play a signif
icant role in determining what data are required, 
how they are acquired, how they are processed and 
disseminated, and the disposition of the data after 
they are collected. Scientists must be actively in
volved throughout the Eos data and information 
system evolutionary process to ensure production 
of and access to data sets of the highest quality. 
This involvement will maximize the return on in
vestment and improve the quality of the resultant 
data. 

Management of scientific data bases has been 
the responsibility of project personnel, principal in
vestigators, and project archives (such as they are). 
Those scientists outside of the project per se who 
actually use the data for research purposes have not 
been actively involved in this process. These scien
tists should be involved at the outset via an over
sight and advisory function, since the most success
ful examples of data base management involve user 
oversight. 



v. RECOMMENDATIONS AND CONCLUSION 

The goal of the Eos data and information system 
must be, by the time Eos spacecraft are returning 
data, to meet the challenges of Eos mission opera
tions, data transport, processing, and data manage
ment, in addition to the challenges of access to infor
mation and data not under direct control of Eos or 
even NASA. An Eos data and information system 
must be a system that includes geographically 
distributed sites of varying capabilities and responsi
bilities. We expect that by the 1990s local processing 
capabilities, combined with network technologies, 
will allow such a geographically distributed system 
to become a reality. In fact, we envision the key ob
jective of an Eos data and information system to be 
providing remote and interactive electronic access to 
the variety of capabilities and services that the 
system offers. We consider the management of this 
data and information system to be considerably 
more difficult to implement successfully than the 
technological aspects. 

OPERATIONAL AND 
COMMERCIAL USERS 

We recommend that the Eos data and informa
tion system be designed to meet research needs, but 
that it also be used to meet the needs of operational 
(e.g., NOAA, DoD) users, to the extent that such 
needs do not detrimentally impact use of the system 
for research. Commercial users, likewise, should be 
accommodated to the extent that their use does not 
deter Eos research and to the degree that commercial 
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use costs can be recovered. If operational users 
significantly impact Eos operations, then the rele
vant operational entity should fund or provide the 
enhancements needed to meet their needs. This 
recommendation necessarily implies that the infor
mation system be designed in a manner that ensures 
flexibility, allowing enhancement without affecting 
operation of the remainder of the system. We believe 
that a modular, flexible architecture such as de
scribed in Chapter III of this report has the potential 
to meet this as well as many of the other require
ments presented herein. Consequently, we urge 
NASA to explore the adoption of a modular, trans
parent architecture for the Eos data and information 
system. 

FUNCTIONAL ELEMENTS: THE 1990s 

Within this report, there are a number of recom
mendations, requirements, attributes, and char
acteristics pertaining to detailed functions and 
capabilities of the Eos data and information system. 
An annotated listing of requirements is presented in 
Appendix II and grouped conveniently into seven 
separate categories. Figure 3 schematically portrays 
these functional categories and their interconnections. 

User 

The seven functional categories or groupings in
clude flight systems, user, operational, information 
services, advanced data base management, Eos data 
processing, and non-Eos data base functions. Flight 
systems include the functions and characteristics of 
both remote sensing instrumentation as well as the 

Operational Systems Functions Functions Functions 

Eos INFORMATION SERVICES FUNCTIONS 

Advanced Eos Data NOAA and 
Data Base Processing Other non-Eos 

Management Data Bases 
Functions Functions Functions 

Figure 3. Eos data and information system - Generic functional groupings. The 
schematic interconnection of these elements indicates thedependencies of any 
one task upon other functional domains. 
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onboard data system. User functions embrace the 
envisioned modi operandi of researchers, operations 
personnel, instrument scientists and teams, and 
other individuals requiring access to Eos services. 
The functions and characteristics inherent in space
craft and data and information system operation are 
included in operational functions. Eos information 
services functions include the suite of network ser
vices (both space- and. ground-based) that we envi
sion during the Eos era. Many of the new functional 
requirements for the data and information system 
are grouped under advanced data base management, 
while processing requirements for Eos data, per se, 
are grouped separately. Similarly, the needs for ac
cess to and data from non-Eos sources are encom
passed within the final functional grouping. 

Unlike many space research missions, the re
quirements levied upon Eos as a whole are such that 
these seven functional elements are very much in
terdependent upon one another. Tasks contained 
within one element may not be accommodated solely 
within the domain of that element but rather may re
quire input from one, two, or perhaps an even 
greater number of other functional domains. Thus, 
for Eos to be successfulJy implemented, all of the 
data and information system functional require
ments delineated in this report should be provided. 

Consequently, we recommend that the Eos data 
and information system of the 1990s include the 
functional characteristics depicted here in elemental 
form, identified throughout this report, and sum
marized in Appendix II. 

INFORMATION SYSTEM 
EVOLUTION: THE 1980s 

Many existing scientific research projects and 
pilot data system studies are considering aspects of 
problems that must be solved to implement suc
cessfully a data and information system supporting 
the project and program needs of Eos. Therefore, 
progress toward an appropriate information system 
can be obtained by focusing existing efforts, 
stimulating new scientific uses of data, and coor
dinating an iterative learning process that is directed 
toward evolutionary or "test-bed" information 
system concepts. These activities (many already 
begun or planned) should be focused and used to 
generate experience with information management 
problems and their optimal solutions, and provide 
the nucleus of a functional Eos data and information 
system. 

The conceptual structure for an Eos information 
system that underlies many current activities is that 
of a central coordination and information manage
ment function, together with access to data holdings 
located at a number of data archives. The recom
mendations noted below are meant to focus study on 
the problems of defining the functions and structure 
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of an Eos data and information system by attempt
ing to carry out these functions on a smalJer scale. 
The key lies in trying several solutions to the various 
problems so that planning for the resultant system 
will be based on experience. To secure the enthu
siastic participation of researchers and managers, 
the motivating factor for these information manage
ment studies should be real scientific investigations 
that demand solutions to many of the problems and 
functions outlined in this report. 

Expansion and Focus of Pilot Data Systems 

We recommend that NASA's current Earth 
science pilot data systems be continued and ex
panded (as appropriate) in their representative 
disciplines. AdditionalJy, we recommend close col
laboration with the UCAR Unidata initiative, which 
provides a similar focus for the atmospheric 
sciences. These efforts, each in a unique fashion, are 
addressing many of the technical and managerial 
questions that must be answered to design an Eos 
data and information system. Future efforts should 
address four areas: (i) develop data formats and in
terface software to alJow access to heterogeneous 
data from any of the existing pilots; (ii) develop (with 
researchers) new analytical tools for multi
disciplinary research; (iii) improve data sets in pilot 
archives by developing improved documentation 
and formats that cross traditional Earth science 
boundaries; and (iv) produce an electronic data 
directory for alJ NASA Earth science holdings, and 
similarly electronic catalogs for alJ Earth science 
pilot project holdings. 

Some or alJ of these objectives have already been 
identified by individual pilot efforts, but they should 
be focused with an Eos information system thrust, 
leading to progress toward Eos. A key feature must 
be strong interaction and collaboration with ongoing 
research efforts that emphasize the colJection and 
analysis of multiple data sets. The evolutionary Eos 
data and information system should work with re
searchers to facilitate archival access, and the re
searchers should return reduced and value-added 
data and analytic results to the archives. This in
teraction will alJow the information system, the pilot 
systems, and analysis efforts to evolve with a new 
level of sophistication. Developed software should 
be considered part of the archives. The Eos data and 
information system as welJ as the pilots can be struc
tured to properly manage information while stim
ulating research. 

We further recommend that the Global Resource 
Information System concept be focused on Eos ob
jectives, then utilized for developing the information 
network aspects of the Eos data and information 
system. Particular attention should be given to 
developing and utilizing technology to allow 
transparent access to heterogeneous data bases, to 
advanced data base management software with 



intelligent (expert systems) search capabilities, and 
to cost-effective network capabilities, including 
direct data broadcast. To the extent applicable, 
guidance from the Space Physics Analysis Network 
activities may be both desirable and worthwhile. 

Science Projects to Focus System Evolution 

We recommend that the Earth Science and Ap
plications Division fund a limited number of 
multidisciplinary research teams to investigate a 
select number of crucial scientific objectives in 
hydrology, biogeochemistry, or climatology, using 
currently available data sets. These research ac
tivities would foster multidisciplinary studies of 
Earth, studies that require access to multiple, diverse 
data sets. These research teams will be responsible 
for using the evolving Eos information system, col
lecting data from external archives, analyzing the 
data, and returning their results and experience to 
the embryonic information system. The link between 
multidisciplinary research projects and information 
management systems can provide the experiences 
necessary to move toward an operational Eos data 
and information system in the next decade. The key 
is selecting teams to do this type ofresearch now, us
ing current data and archival systems to define where 
many of the problems lie and what the solutions 
might be. Finally, these scientific projects can be 
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utilized to identify key data sets that need to be 
retained, maintained, and organized in a time series 
data base format for comparison with Eos data in 
the 1990s (e.g., preservation of the Advanced Very 
High Resolution Radiometer archives). 

CONCLUSION 

The final and perhaps most significant recom
mendation of this panel is to initiate the planning 
and implentation of an evolutionary Eos data and in
formation system without delay. A functional 
system providing the means through which Eos data 
can be most fully utilized will not be built in a matter 
of a few years; it must be allowed to evolve along 
with the increasing knowledge bases of the Earth and 
data management sciences. 

There are two fundamental principles that 
should be followed throughout the Eos data and in
formation system evolutionary process. They are: (i) 
Involve the scientific research community at the 
outset and throughout all subsequent activities, since 
the data will be acquired, transmitted, processed, 
and delivered for scientific research purposes; and 
(ii) provide the researcher with an oversight and 
review responsibility, since the most successful ex
amples of data base management rely on the active 
involvement of scientists. 
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APPENDIX I - RESEARCH SCENARIOS 

It is useful to consider how scientists in various 
disciplines would utilize Eos and its data to address 
research problems. In doing so, the Data Panel 
developed requirements and system attributes by 
considering examples of research activities, most of 
which parallel the scientific objectives delineated 
within the Eos Science and Mission Requirements 
Working Group report. Necessarily, these scenarios 
focus on current activities and methodologies. 
However, we do not envision major variations in the 
ways Eos investigators will approach problems in a 
functional sense. Therefore, these scenarios provide 
a background for developing Eos data and informa
tion system requirements. 

CLIMATIC RESEARCH 
This scenario portrays information system re

quirements for climate research, with a focus on at
mospheric phenomena. In climate research, not all 
of the quantities to be derived from the data are 
known beforehand. Indeed, a main purpose of the 
data analysis is to find and diagnose patterns of 
behavior; the knowledge of climate therefore grows 
by accumulations of multiple descriptions of the 
same data with special emphasis on correlations be
tween quantities. Summary statistics obtained from 
the data are compared with climate model perfor
mance to improve understanding and simulation 
capability. 

Data Characteristics 
The primary characteristics of a climate data set 

are its global coverage and temporal record length, 
but to be useful the coverage and length must have 
uniform properties. Research objectives, namely 
diagnosis of climate processes, also require suffi
cient space and time resolution (i.e., detail) to 
observe key atmospheric phenomena. Therefore, 
remote sensing climate data can be described as 
multispectral images with space and time resolution 
of 10 to 50 km and I to 12 hr., respectively. The 
dominant length scale of atmospheric motions 
argues for image scene sizes greater than 1,000 km 
("imagery" means data taken rapidly over large 
areas and includes such data as temperature soun
ding data). Useful record lengths are from a few 
years to decades. The importance of radiation pro
cesses in climate is such that research interest in 
measured radiances will be equal to the interest in 
quantities derived from the radiances. 

Data Access Patterns 
Three interrelated types of data access are often 

used to attain climate research objectives: (1) case 
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studies, (2) routine statistical analyses, and (3) cor
relation studies. 

Case Studies 
Case studies are analyses of specific, high-detail 

data sets to diagnose climate processes, to validate 
remote sensing data analysis techniques by compari
son to other measurements, or to validate the 
physical interpretation of statistical patterns in
ferred from coarser data analysis. Case study data 
sets are generally limited in geographic and temporal 
coverage, but still of large volume because of the 
need for high resolution. Access to raw data is usually 
needed. To generalize results from case studies, an 
ensemble of similar data must be examined. Thus, 
interaction of the research scientist with the data ar
chives involves catalog search to find data sets for 
specified geographic regions and times, catalog 
searches of many different data sets to find those 
cases with adequate data for intercomparison and 
validation studies, and browsing of reduced-volume 
versions of the data to find other examples of par
ticular phenomena. Data must be cataloged accord
ing to place and time, instrument and satellite, and 
physical quantities measured to allow for correlation 
searches. Browsing reduced-volume data to search 
for specific kinds of events can be facilitated by an 
interactive expert system (i.e., a computer system 
that "learns" to sort data from other investigators 
who have already sorted the data). This system is 
possible only if the results of previous case studies 
and statistical surveys are made part of the data ar
chives. Updating the catalog and archives and the 
menu of sorting criteria allows the use of data to 
become more sophisticated with time. More atten
tion should probably be paid to implementation of 
this approach than to providing processing software 
to investigators. 

Statistical Analyses 
Routine statistical analysis of the data demands 

repeated access to long, continuous time series of 
measurements. These analyses can be considered as 
progressive sorting of data, producing statistical 
characterizations of content. Access must be to both 
original measured quantities and to derived quan
tities. Information on calibration, calibration 
history, and documentation of techniques used to 
derive quantities are necessary parts of the data 
record. Although most users would perform their 
primary processing locally, several routine utilities 
would be used if available: mapping, statistics, and 
sorting and classification. The first refers to provi
sion of the data in a standard map grid so that 
statistics may easily be obtained. A mapping utility 
should allow not only a selection of the grid and its 



resolution, but also control of the procedures (ac
cumulation, sampling, replication, interpolation) 
used to reproject the data. Simple statistical utilities 
would be useful to reduce the data volume sent to a 
researcher. For example, an investigator interested 
in interannual variability of synoptic cloud features 
might request data averaged over the diurnal cycle. 
Samples of the data may also be desirable. Sorting 
and classification utilities make it possible for a 
scientist to select from a long data record those 
events of interest (determined by simple physical 
criteria). Updates of these utilities based on previous 
research results allow for more sophisticated 
analyses subsequently. 

Correlation Studies 
Correlation studies can be either case studies or 

statistical analyses; however, the focus is on the cor
relation between many variables. This kind of study 
is most demanding of resources because it requires 
all of the capabilities discussed above as well as ac
curate time and space collocation of mUltiple-source 
data. It will also require greater access to other data 
sets outside of those produced directly by satellite 
missions. Sorting of multiple data sets into col
located time sequences requires significant computer 
resources and detailed catalog and inventory infor
mation for each data set. Multidisciplinary research 
(e.g., air-sea interaction, land-atmosphere pro
cesses) will make extensive use of this type of data 
analysis. Access to multiple archives containing 
results of previous data analyses will also greatly 
facilitate this type of work. 

Needed Utilities 
Three types of software utilities need to be 

available to researchers either online or as doc
umented software that can be used locally. The first 
examines data documentation to determine physical 
variables (in SI units), to allow specification of 
measurement geometry and conditions, and to pro
vide time and location of the measurement. The sec
ond allows mapping of data on a standard grid, time 
selection, and data volume reduction by a variety of 
simple processes: sampling, averaging, sorting, 
classification, and calculation of simple statistics. 
The third updates catalogs, inventories, and 
selection-software menus to reflect previous analysis 
results. 

Mission Operations 
The constraints placed on mission operations by 

climate researcher data requirements are primarily 
those required by the maintenance of long, consis
tent measurement records. Changes of observational 
strategy generally would not require rapid system 
response. If space, time, and spectral resolutions of 
the instruments can be altered on command, climate 
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research needs could be met by ready access to com
mand history information (for short time record in
terruptions) and by data processing to produce the 
defined climate observations. Examples of this last 
strategy include continued production of lowei"
resolution climate observations by processing of 
higher-resolution data collected for some other pur
pose, or continued production of spectral images by 
processing spectrometer data to simulate broader 
band images. The key requirement is to obtain a· 
long, uniform data record. 

Data Management and Control 

The underlying structure of the data base re
quired to support the type of research discussed 
above is that of a centrally coordinated network of 
dispersed data archives. The central coordination ac
tivity involves maintenance of a master directory of 
all holdings and a library of software modules 
needed to interact with archives transparently. The 
interaction with specific archives includes examina
tion of local (more detailed) catalogs, browsing, 
ordering, and addition of data. Software modules to 
read (and write) data files should be provided, either 
by the central coordination institution or the local 
archives. 

Key technical difficulties that need to be resolved 
(based on current archival practices) are: 

1. improve documentation to provide complete 
experiment and calibration information; 

2. improve navigation information and its 
accuracy; 

3. resolve difficulties of multiple data set access 
caused by widely varying data formats; 

4. provide data browse capability in systems that 
can "learn" progressively more sophisticated 
sorting; 

5. provide for more remote data manipulation to 
allow preliminary (simple) studies that lead to 
more focused data selections. 

Scale of Activity 

Analysis of very large data sets will continue to be 
limited to a small number ('" 10) of groups, usually 
associated with large models, that have sufficient 
computer resources. The interactive nature of ar
chives is therefore crucial because the results of an 
analysis are usually smaller in volume than the 
original data and of more interest to a larger number 
of researchers. Consequently, these few, large 
groups should probably have component archives of 
the total network; however, these groups will not be 
very interested in providing services to others. The 
role of a coordinating function will be to provide ser
vices (Le., format documentation, catalogs). The 
more numerous ('" 100) users of smaller data sets 



will also be more interactive and use more processing 
power to access data. 

CLIMATIC MONITORING 

This scenario represents the type of observations 
that might be needed in the future to support 
seasonal forecasting qr to target anomalous events 
for intensive study. Data collection methodology is 
focused on uniform, global coverage; however, 
near-real-time analysis is required to produce a 
reduced resolution version of the data along with 
statistical summaries. In addition, this type of 
scenario requires an ability to switch rapidly from a 
low level to a high level of effort. Thus, routine ex
amination of summary statistics may lead, in quick 
sequence, to a request for more detailed data already 
in the archives and to a change in instrument con
figuration. This capability would support study of 
the time evolution of major climate anomalies. 

Data Characteristics 

The basic data taken by specific instruments 
represent a global description of the thermodynamic 
state of the atmosphere. These data would be 
equivalent to current routine weather observations, 
but a version ofthe data with somewhat lower spatial 
("-' 500 km) and temporal ("-' 1 day) resolution would 
be prepared. Climate monitoring would entail near
real-time calculation of a number of statistical quan
tities (e.g., anomaly maps) presented in a standard 
map-projection or grid format. Appearance of a 
"significant anomaly" would trigger an examina
tion of the full resolution data being acquired. 

Data Access Patterns 

Routine access to the archives for exammmg 
reduced resolution data and statistical summaries 
might be limited to a very few ("-'5) institutions in 
near-real time (weekly or monthly). Other research 
institutions may access these same records at other 
times to test forecast models, which would require a 
browse facility to locate "interesting cases." If 
seasonal forecasts are being attempted, then rapid 
access to the higher-resolution (unprocessed) data 
will also be needed. If intensive observations are re
quested or some change in observational strategy is 
called for, then data characteristics will be similar to 
those for case studies or field studies discussed 
above; but access will need to be more rapid. Part of 
the decision process in changing instrument con
figuration would be examination of "current" data 
in mapped or image form. 

Needed Utilities 

The basic utilities needed to provide near-real
time access to statistical summary data are process-
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ing algorithms required to produce statistical quan
tities (including a climatology data set for anomaly 
calculations) and a mapping facility. This type of ac
cess may take the form of electronic transfer of small 
data sets (maps) to a remote location for display. 
More rapid response to data requests (based on a 
browse data set) or a method for remote display of 
higher-resolution data sets may be necessary. 

Mission Operations 

Unlike climate research, this type of study re
quires not only more timely access to the data stream 
(within one week) and near-real-time processing on a 
routine basis, but also the ability to change observa
tional strategies quickly to get better information 
about some particular location. Since the research 
supported by this capability is directed toward 
developing monitoring and prediction techniques, 
some evolution of the observational strategy over the 
course of the mission is expected. . 

Data Management and Control 

Not only the instrument configuration, but also 
the data processing system will evolve as more is 
learned about the controlling factors for climate 
variations. Consequently, proper quality assurance 
and documentation of observations and processing 
software is imperative. Results of experimental 
anomaly predictions, whether retrospective, or near
real time, should be stored in some fashion for model 
intercomparisons. A trace of studies focused upon 
particular anomalous events can benefit subsequent 
analyses of climatic variations. 

Scale of Activities 

Routine access to the archives is likely to be 
limited to a few institutions with climate-scale 
Global Circulation Models and large computer 
resources; however, access to higher-resolution data 
sets for certain case studies (e.g., EI Nino, volcanoes) 
will be more widespread. 

LAND SURFACE CLIMATOLOGY 

The objective of a land surface climatology proj
ect is to develop a better understanding of the pro
cesses occurring within, and the interactions among, 
the Earth's biospheric, edaphic, hydrologic, and at
mospheric systems, and to determine their role in in
fluencing climate over land surfaces. To accomplish 
this objective, principal experimental efforts would 
be organized and conducted as three parallel ac
tivities, each of which depends on the development 
of a supporting data base and data analysis system. 

The first activity would be to conduct an analysis 
of existing remote sensing data in an attempt to select 



climatically representative study regions. The pur
pose is to determine the extent to which changes in 
the land surface can be determined and measured, 
and to assess the relative sensitivity of climate to 
various land processes. The second activity would be 
to prepare and validate comprehensive global data 
sets derived from operational satellites. The valida
tion would be performed to document the current 
state of the Earth's land surface with respect to a 
number of select environmental parameters. The 
third activity would involve pilot experiments on 
specific regional or continental land masses to cor
relate remote sensing measurements with climate 
sensitivity parameters and to validate or modify 
land-atmosphere interchange models for these study 
sites. 

These studies could include: 

1. Vegetation: Fluctuations in green leaf biomass 
(monthly, seasonally, and annually) would be 
related to precipitation and surface 
temperature on a continental scale. Biomass 
would also be related to ecological units (i.e., 
Holdridge Life Zones) and to processes such 
as desertification, deforestation, and habitat 
destruction. 

2. Soils: Regional measurements of soil moisture 
would be related to remote sensing surface 
signatures to determine if a broad range of 
relative differences in surface moisture condi
tions could be delineated using remote sensing 
instruments. 

3. Hydrology: The application of remote sensing 
techniques to provide better estimates of sur
face water areal extent and volume, evapo
transpiration, precipitation, snow cover and 
volume, and soil moisture would be explored 
on a global or regional basis and used if pro
ven feasible. 

4. Near-Surface Atmosphere: The capability to 
remotely detect and quantify climatic varia
tions in the land surface record and to relate 
these changes to climate process models would 
be also assessed. Measurements would include 
multi-stage sampling of the land surface for 
albedo, vegetation cover, surface roughness, 
insolation, ground temperature, precipita
tion, etc. 

Approach 

Historical land remote sensing data would be ex
amined to determine if in regions known to have ex
perienced significant variations in their climate, 
these climatic changes can be detected through an 
analysis of changes in land cover. The approach 
would be to assemble land surface data obtained 
from satellites into a data base, including developing 
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procedures to gain rapid, easy access to heter
ogeneous data in geographically dispersed archives. 
These data would need to be preprocessed and inter
compared. They would also be compared to col
lateral data sets in the form of tabular meteo
rological records; digital topographic data; poly
gonalland cover and soil designations; and intensive 
point, area, and transect data from field meas
urements. This would necessitate integrating se
lected ground reference data, such as soil and land 
use maps, into the data base. A georeference struc
ture would be used for relating these data sets. 

While analysis of retrospective data would pro
vide some indication of the influence of past land 
surface changes on climate, the present physical and 
biological state of the land surface should also be 
described. The best current sources of this informa
tion on a global scale are data sets derived from 
operational satellites. These satellite and ancillary 
data sets would be assembled into a global data base. 
Specific study sites, ranging in size from 10 to 500 
km 2 would be selected to represent different climatic 
regimes, and a data base would be assembled. Pilot 
experiments that entail collection of field data and 
remote sensing data would be conducted. These ex
periments would be designed to determine if specific 
processes can be detected through remote sensing of 
earth surface features, and would use data from a 
variety of instruments. 

Land-atmosphere process models representing 
the exchange of mass, energy, and momentum be
tween the land and atmosphere systems would be 
developed. Detailed data sets acquired over the study 
sites would be used to initialize or parameterize 
models in simulation runs, and to verify and validate 
the results of the models. The response of the land 
surface in terms of biomass productivity and water 
budget would be modeled given climate forcing 
functions (precipitation and insolation) and ter
restrial system properties (vegetation cover and sur
face roughness). 

Data Needs 

Satellite remote sensing data to be examined 
would include visible, near infrared, thermal in
frared, and microwave radiances acquired at spatial 
resolutions ranging from 30 m to 30 km, and tem
poral resolutions frorp. less than 1 day to 18 days. 

In addition to these data, observations from a 
variety of spectrometers, radiometers, and cameras, 
flown on aircraft, would be used. Ground-based 
measurements of vegetation and soils would also be 
collected at selected study sites. These measurements 
would include physical sampling of vegetation 
biomass and soil moisture for laboratory analysis. 
Other measurements would include reflectance in 
the visible and infrared portions of the spectrum 
using hand-held and truck-mounted radiometers, 



and standard meteorological parameters, such as 
temperature and relative humidity, from 
meteorological stations. 

Participants 

Institutions participating in this type of project 
would fall into two categories, those that would con
duct scientific research and those that could provide 
data. The number of scientific investigators involved 
would probably increase from perhaps 10 initially to 
as many as 50 in subsequent years. They could be 
geographically located at a total of perhaps 15 
domestic and foreign government agencies, univer
sities, and research institutes. All of their facilities 
would have the hardware and software expertise for 
digitally processing remote sensing data. Perhaps as 
many as 10 national and international institutions 
would be involved in providing data, including 
satellite, aircraft, and field measurements 

Information System Considerations 

Project needs would include locating and retriev
ing appropriate data, providing data to co
investigators, and transferring data to computer 
systems appropriate for each processing step. These 
steps would typically involve reformatting, 
preprocessing, processing and information extrac
tion, and developing or verifying process models. 

This type of project would need an information 
system that provides access to remote data bases and 
processing services to accomplish the following 
tasks: data search, browse, data storage, data pro
cessing (reformatting, registration, etc.), geographic 
overlay of dissimilar data, and data base manage
ment. An additional requirement would be to pro
vide these services quickly and in a straightforward 
and easy-to-use manner. This could involve the use 
of techniques being developed in the field of ar
tificial intelligence. The focus of the information 
systems needs discussed here allows scientists to 
focus on the research, and not waste their efforts on 
the details of accessing and preparing data for 
analysis. 

GEOLOGIC MAPPING 

Digitally merging and interpreting data collected 
by different remote sensing instruments with map 
and field data is rapidly becoming a major task of 
scientists in many different disciplines. For example, 
Landsat Multispectral Scanner (MSS) data have 
been merged with both Seasat and SIR-A radar data 
for geological analyses. These data have also been 
combined with geophysical, geochemical, and soils 
data that were digitized from existing map sources 
and then converted into images. One can envision 
projects that utilize Landsat thematic mapper, syn-
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thetic aperture radar, digitized topography, soils 
maps, and geophysical and geochemical data, 
together with Eos data. A main objective of these 
projects would be to extract new information on the 
types of soils and rocks in given areas. 

One of the first tasks would be to identify the 
data that are available in a locale of interest. If 
mUltiple-image data sets exist, the researcher must be 
able to access information that will help identify the 
best data sets for a particular project (e.g., if there 
are 20 Landsat images over the area, which one 
should be used). Information needed to select an im
age includes data quality, cloud cover, sun elevation, 
and weather information (e.g., visibility, wind 
speed, water vapor content). When using data from 
multiple sources one of the most critical re
quirements is that the various data be geometrically 
coregistered in the desired projection. Thus, once the 
various data sets have been collected and are in 
digital form the next step would be geometric correc
tion. Without good registration, the analysis and in
formation extraction process can generate un
satisfactory results. Rectification is currently one of 
the most time-consuming steps in data reduction, 
and most researchers would prefer not to deal with 
this complex task. An Eos data and information 
system should provide standard services that include 
projection changes, image coregistration, vector-to
raster conversion, and generation of data sets with 
various grid point settings. 

Another critical task is radiometric calibration. 
The data and information system should be able to 
produce quantitative digital-image data representing 
some physical unit (e.g., albedo for Landsat data; 
backscatter for radar data). For imaging spec
trometer data, radiometric calibration should in
clude both instrument corrections (gains, offsets, 
noise removal) and, in some cases, correction for at
mospheric contributions and variations induced by 
changing incidence, emission, and phase angles. 
Corrections such as these will allow data collected at 
different times or by different satellites to be used 
and compared, because the sensor values will repre
sent the same physical units relative to ground 
materials or cover. 

The processing stage comprises geometric and 
radiometric calibration, and once complete, the 
researcher can begin the data analysis and informa
tion extraction phase. One of the first problems will 
be determining which set of "group" of data should 
be used to extract the desired information. Because 
of the large volume of data that is present when 
various data sets are merged (e.g., imaging spec
trometer has dozens of image planes; thematic map
per has three visible, three near-infrared, and one 
thermal band; synthetic aperture radar with one 
microwave band; plus topography, digitized soil 
data, and geophysical data), the researcher must 
consider ays of grouping the data into subsets. The 
choice can be a subset of three bands, which has the 



most information (with the least amount of duplica
tion) for color composite representation or digital 
classification; or bands where data with high correla
tion can be grouped together. Statistical methods 
such as principal components analysis, "selective" 
principal components analysis, and optimum index 
factors can be used to accomplish data plane reduc
'tion and help extract information from the data. 
These techniques must be used because of the large 
number of combinations that can be generated (e.g., 
even Landsat thematic mapper data has 15 indepen
dent ratios, which can be grouped into 455 three
ratio combinations). Alternatively, deterministic ap
proaches can be used, such as expert systems for 
identification of particular rock types from imaging 
spectrometer data. 

METEOROLOGICAL USES 
Meteorology has a very active component of 

operational activities involved in daily weather 
forecasting. The operational activities are strongly 
tied to numerical weather prediction models. These 
models use global coverage of various atmospheric 
state parameters (including pressure, temperature, 
moisture, and winds throughout the depth of the at
mosphere) and runs are made every 12 hours. 
Horizontal resolution on the order of 100 km and 
vertical resolution on the order of 1 km are required 
in the troposphere. Boundary conditions such as sea 
surface temperature, soil moisture, snow cover, 
cloud cover, and topography are required by some of 
the more advanced models. Current data assimila
tion models use conventional radiosonde and sur
face observations, satellite sounding radiometer 
data, cloud drift wind data, aircraft reports, and 
satellite imagery. 

Most of the recent advances in weather fore
casting skill have resulted from either improved 
observing systems or better numeric models. 
Because Eos instruments will provide global 
coverage of meteorological parameters that could 
improve operational weather forecasting, there will 
be a very strong desire by the operational user com
munity to gain real-time access to selected Eos data. 
In particular, the moderate resolution imaging spec
trometer, the high resolution multi-frequency 
microwave radiometer, the laser atmospheric 
sounder, the scatterometer, and the Doppler lidar 
would be useful for forecast models. 

Data access patterns for operational users of Eos 
data will require the full data stream processed to in
clude calibration, earth location, and scientific units 
in near real-time (within three hours of 
observations). Previous experience with new data 
sources has shown that the general sequence of 
events includes theoretical studies that show the 
potential impact of the new data, data systems tests 
of one to three months when the data first become 
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available, followed by eventual operational utiliza
tion. The theoretical studies generally precede the 
data systems tests by 1 to 10 years. The data systems 
tests are usually performed within the first year of 
data availability. The processing system is set up to 
provide data in near real-time for a one to three 
month test period. It is set up as a "bare bones" 
system without the redundancy, complete documen
tation, etc., required of an operational system. New 
data are fed into a model running in parallel to an 
operational model, and the forecasts are compared 
to assess the impact of the new data. These data 
systems tests are generally run in real-time with a 
post facto analysis and evaluation period. If the data 
show a positive impact, they are then brought into 
operational use with the necessary processing equip
ment and software being procured to provide re
liable service. This generally requires one to three 
years after the data systems tests. If the satellite 
system providing new data will not be available for a 
number of years, the sequence stops at the data 
systems test until an operational satellite system is 
being procured. This generally requires five to eight 
years after the initial data availability on a prototype 
satellite system. 

Field Studies 

There have been a number of large me
teorological field studies (BOMEX 1968, GATE 
1975, SESAME 1979, FGGE 1979, etc.) that last for 
several months and focus on a particular phenome
non, such as tropical convection. These studies use a 
combination of in situ instruments and remote sens
ing gadgetry. An operations center directs the place
ment of aircraft and dictates instrument schedules to 
maximize information on the mechanisms under 
study. In order to do this, the operations center re
quires real-time, quick-look data from all instru
ment systems, including satellite instrumentation. In 
previous field experiments, satellite data have either 
been received and processed directly at a field site, or 
arrangements have been made to have the data 
received and processed at a central facility and then 
transmitted to the field she. 

Following the field exercise, there generally is a 
two to five year period where research groups do in
tensive studies with the data. Quick-look field pro
cessing of the data has already established a general 
framework of locations, times, etc., that are most 
promising for further study. Hence, the catalog re
quirements are fairly straightforward, including lists 
oftimes, dates, etc., of data availability, data quality 
indicators, etc. Prior experience with archives of 
satellite data used within field experiments has 
shown that approximately 20 to 100 separate groups 
will request data. Data requests are generally for 1 to 
10 computer tapes, with an occasional user re
questing 100 or more tapes. For a two-month experi
ment, frequently two to five days will be selected by 



most groups for intensive study with a few groups re
questing data throughout the entire time period. The 
data requests generally reach a peak about one to 
two years after the field experiment. The studies 
generally have a requirement for merged data sets 
from a large number of different data sources. 
Hence, accurate location information is extremely 
important in these studies. Calibration and conver
sion to scientific units is also required for these 
studies. 

The actual instruments of interest for a given 
field of study will vary according to the purposes of 
the experiment. The Eos Surface Imaging and Soun
ding Package (SISP), Sensing with Active Micro
wave (SAM) package, and the Atmospheric Physical 
and Chemical Monitors (APACAM) would have in
struments of interest, including very limited data sets 
of the very high-resolution imaging spectrometers 
and synthetic aperture radar instruments. 

Case Studies 
Meteorological case studies generally focus on a 

specific time and place where a particular meteor
ological phenomena is occurring. The investigators 
are generally of two types, those having specific 
times and places already established from other data 
sources (these investigators are generally like field 
study investigators in that all they require are lists of 
times and locations of data availability, quality in
dicators, etc.) and those with only a specific phe
nomena in mind (but no time or location). These re
searchers require extensive browse capabilities to lo
cate likely data sets. The most successful browse ca
pability includes sampled data sets in an image or 
graphical presentation. Books, movies, video discs, 
etc., of these-sample data sets can be rapidly exam
ined to locate a place and time that shows the desired 
phenomena. Then, the listings of data times, avail
ability, etc., are used to order data. 

VEGETATION BIOMASS 
The purpose of this type of research is to gain a 

better understanding of the spatial distribution of 
vegetation characteristics and processes, including 
biophysical factors (leaf area index, biomass, net 
primary productivity, canopy temperature, and 
albedo), and plant physiological processes (evap
otranspiration, photosynthesis, and respiration). 

Objectives include: developing methods to meas
ure (by remote sensing) biomass and net primary 
production of terrestrial vegetation, and to employ 
satellite images for assessing and improving the cur
rent representational accuracy of continental-scale 
land cover information. 

Approach 
Two approaches would be employed in this type 

of research. The ability to infer key vegetation 
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characteristics from remote sensing data is central to 
the economy of large-scale research. Therefore, in 
the first approach, spectral signatures of vegetation 
would be collected and correlated with laboratory 
measurements such as leaf reflectance. These data 
would be used to interpret measurements from air
craft and spacecraft where atmospheric conditions 
attenuate and distort the characteristics of the 
signatures. 

The second approach would employ both 
manual interpretation and machine classification of 
satellite data to stratify vegetation and other surface 
features into broad, physiognomic categories (based 
on vegetation structure) suitable for global com
parison. Aerial photographs, field reconnaissance 
and other data sources would be used in this analysis. 
Maps would be derived on scales consistent with ex
isting small-scale vegetation maps. This approach 
would provide both a comparison for current infor
mation sources, and an assessment of the methodol
ogy of very large-area vegetation mapping. How
ever, because of the resources that would be required 
to process data for the entire land surface of the 
Earth, an appropriate strategy would include the use 
of coarser resolution data for primary stratification 
in a multistage sampling approach. Even using 
coarse-resolution data and statistical sampling, 
assembling the required data would be a significant 
challenge. 

Information System Considerations 

In support of this research, a data and informa
tion system should provide computation and infor
mation management support for a highly dynamic 
and diverse set of processing and data requirements 
that result from biospheric research needs. The ser
vices of the system should include data acquisition, 
search, browse, access, preprocessing, image pro
cessing and display, data management (physical and 
electronic), and operational management functions. 

1. Data Access: Online catalogs of and browse 
access to archival data would be beneficial. In 
addition, the ability for direct ordering would 
also be of value. The capability to browse 
large-image data bases before ordering images 
would be an important function. 

2. Data Input: Direct transmission of in situ data 
(both vegetation and radiometric) between 
field sites and processing centers would reduce 
delays by an order of magnitude (from months 
to a few days). Entry or conversion of an
cillary data (topographic, soils, climatic) to an 
acceptable format would add significantly. 

3. Preprocessing: Registration (band-to-band 
and sensor-to-sensor) and common data for
matting would be of tremendous value and 
high priority. Also of value would be the 



capacity to digitize photographs with interac
tive input from investigators at remote 
locations. 

4. Analysis: Efficiency of analysis could be in
creased if real-time interaction between cen
ters and remote investigators were possible. 

S. Archival Storage and Catalog: An active 
directory with up-to-date documentation of 
parallel and ancillary data sets held within 
and external to Eos would be of great value 
and high priority. 

6. Distribution and Network: Access to 
geographically dispersed data bases and the 
ability to overlay them in common format is 
of high priority. Data, besides being in com
patible file format, must carry documenta
tion of quality and type. Time scales for such 
access should be on the order of a few days. 
Networks of computer processors would be 
valuable. 

7. All of the above require that an advanced 
data management and control system be a 
part of the overall Eos concept. This system 
should facilitate researcher access, process
ing, and analysis in a manner essentially 
transparent to the scientist. It should in effect 
permit scientists to function as scientists, not 
librarians, communications experts, image 
processing specialists, or computer scientists. 

TEMPORAL INFORMATION 
EXTRACTION 

Following are several short scenarios that 
demonstrate the use of temporal information ex
tracted from data collected by remote sensing 
instruments. 

Mapping Lava Flows 

To understand volcanic processes and to gauge 
the extent of potential hazards, radar images col
lected every four to six hours over active volcanic 
fields are used to map the spatial distribution, flow 
direction, and volume of each new flow. Data must 
be collected during the eruption regardless of the 
weather conditions. Because of high cloud cover 
probabilities, an imaging radar system would have 
to be used. If radar stereo images were collected, 
topographic information before and after the 
various eruptions could be produced and used to 
calculate the volume of magma erupted. Topo
graphic data could also be used to compute slope, 
which is used to predict the direction and possible 
speed of any new flow. Eos and aircraft data 
could be used to meet the temporal coverage 
requirements. 

42 

Vegetation Mapping 

Along certain areas of the Colorado River, three 
to four major crops are grown with irrigation water 
from the river. The amount of water that can be 
used is strictly controlled, and information on its 
use is gathered by the Water Resources Division of 
the United States Geological Survey. Information 
gathered with stream gauges along the river is used 
to compute water usage. A study was conducted to 
see if Landsat multispectral scanner data could be 
used to predict water usage along the river. The 
method used a ratio of band 4 (chlorophyll) to 7 
(vegetation cell structure) to map the crops in an 
area. Then, known water usage for each crop was 
used to predict the amount of water removed from 
the river and the data sets correlated. This is clearly 
a time-dependent problem. 

There are a number of problems where temporal 
changes (man-made or naturally occurring) are of 
interest. There are several simple statistical 
parameters that can be computed for images and 
used to monitor temporal changes of interest. 
Statistical information that can be used for this pur
pose includes the average, standard deviation, and 
skew coefficient, plus the correlation coefficient 
between images and a mean image for the area. 
Principal components of the images would also be 
useful to identify changes that have occurred. 

With Eos data bases, differences between the 
averages and standard deviations of images can be 
used to check for low frequency and total contrast 
changes. The correlation coefficient between the 
mean and any given image can be used to select im
ages that warrant examination. Temporal monitor
ing and comparisons should be made against the 
current scene average. Monitoring and change 
detection capabilities will allow the system to do 
automatic-browse and search of data. These de
rived data would be of value in a number of other 
research areas. 

Updating Digital Line Graph Data 

The Mapping Division of the United States 
Geologic Survey generates Digital Line Graph data 
by digitizing most of the information present on 
either 1 :2S0K or 1 :24K topographic maps (e.g., 
roads, railroads, drainage features). They are in
terested in using data collected by remote sensing 
instruments to update their Line Graph files. High 
spatial-resolution image data that have been geo
metrically and radiometrically calibrated is re
quired. Digital processing techniques for pattern 
recognition and classification should be used (e.g., 
mapping of roads) and the registered Line Graphs 
should be periodically updated. Image data with at 
least lO-meter spatial resolution recorded in one to 
three spectral bands will be needed. Useful bands 
will be similar to thematic mapper bands 2, 4, and 



5. A single band with five-meter spatial resolution 
may be preferred because of the very fine detail that 
will be needed for identifying roads and other high
frequency patterns (spatial information may be 
more important than spectral information for this 
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application). Although a high spatial-resolution im
ager is not included on the current Eos payloads, 
one can imagine that an Eos Information System 
could provide directory and catalog information for 
this type of data. 



APPENDIX II - REQUIREMENTS SYNOPSIS 

This report presents more than 100 requirements 
and recommendations concerning the functional 
characteristics and attributes of a requisite data and 
information system for Eos. We include this Appen
dix as a means for assessing the interdependence of 
functional system elements and as a convenient 
reference for analysis of the architectural example 
presented in Chapter III. This listing is not complete, 
nor is it intended to be the sole reference for in
dividuals seeking a definitive accounting of re
quirements and recommendations set forth by the 
Eos Data Panel. Rather, it is meant to show the rela
tionship between functional elements of an Eos data 
and information system and to allow the reader to 
quickly obtain an overview of the requirements con
tained within this report. Eos Data Panel recommen
dations should not be taken out of context, and 
therefore the reader is referred to-the main body of 
this report for a complete accounting. 

The requirements listed below are grouped into 
seven generic classifications: Eos flight systems, 
user, operational, information services, advanced 
data base management, data processing, and non
Eos data base functions. An eighth category, 
management considerations, has been included and 
contains recommendations dealing with both im
plementation and the unique characteristics of the 
data and information system. The seven classes of 
system requirements are subdivided as appropriate 
and references to text indicated. No priority is in
dicated by the relative order in which these recom
mendations or requirements are listed. 

I. FLIGHT SYSTEMS FUNCTIONS 

1. Execution times for any system operation 
within an Eos data and information system 
should be in seconds, and those for archival 
data should be within minutes for small 
volumes, and days for large volumes, 
depending on the priority of the request. 

2. The Eos spacecraft should include a flexible 
flight information subsystem for controlling 
onboard processing of both uplink and 
downlink information. 

3. Interactive commands that require critical 
onboard resources should be processed cen
trallyat a ground-based control center, while 
non-interactive commands should be directly 
transmitted from the user to the onboard 
system for final assessment and forwarding 
to the appropriate instrument or subsystem. 

4. Onboard systems should be used for deci
sions when rapid response is needed (e.g., 
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gain settings or filter changes, or data acqui
sition rates during anomalous conditions). 

5. Flight instruments will require a certain level 
of onboard monitoring to ensure their func
tional capability and to format, error code, 
and buffer telemetry data, as well as the 
merging of critical ancillary data needed for 
quick-look and other analyses. 

6. The flight data system should be capable of 
acquiring and merging ancillary (e.g., time 
and position) and correlative (e.g., in situ) 
data into instrument data streams. 

7. It should be possible to receive directly 
transmitted data at any modestly equipped 
ground station that is within line of sight of 
an Eos platform. 

8. At least 95 percent of the real-time data 
broadcast by the satellite should be received, 
preprocessed, and displayed within 60 
seconds from the time of transmission. 

9. In order to buffer the high-peak data rates 
and to guard against momentary TDRSS 
channel outages, an onboard data storage 
capability should be developed. 

II. USER FUNCTIONS 

I. Capabilities of data centers should be 
periodically evaluated by key personnel who 
lead activities of instrument teams and active 
data base sites. 

2. All Eos data should be validated to the 
satisfaction of the research community. 

3. Investigators will require quick-look data 
sets for instrument command decisions, and 
for preliminary scientific analysis. 

4. Users will submit instrument requests to an 
instrument operations center for execution. 
This interaction will most likely occur over 
an electronic information network. 

5. One of the unique features of Eos is the re
quirement that a researcher return to the ar
chives the results of his research, in the form 
of reduced or derived data (Le., value-added 
data). 

6. Instrument teams will guide instrument and 
algorithm development and will be involved 
in mission operations. 



III. OPERATIONAL FUNCTIONS 

A. Mission 

1. A master schedule should be updated every 
orbit and it should contain logistical infor
mation needed to plan an observation. 

2. A mission operations center is the focus for 
real-time command and control of the space 
platform. Instrument operations center(s) 
are the focus for Eos instrument operations. 

3. Subsystems of the information system will 
support mission operations, including rele
vant network functions, acquisition and 
delivery of data to mission and instrument 
repositories, quick-look data production, 
and the large-scale processing needs of in
strument teams. 

4. Instrument teams will guide instrument and 
algorithm development and will be involved 
in mission operations. 

5. A mission operations center will need to 
continually monitor a sampling of data in 
near-real time for quality control, error 
detection, and instrument assessment. 

6. The capability to reconfigure observational 
sequences when malfunctions or special 
events occur is needed. 

7. If problems occur, control centers need to 
have the capability to trace the data flow 
back through the processing system to the 
instrument, aiding in the isolation and cor
rection of these problems. 

8. The capability should exist to integrate com
mands and create command sequences from 
simple requests to complex operations that 
require the coordination of multiple sub
systems and instruments. 

9. Access security must be maintained at ap
propriate levels at all times. 

10. All Eos instrument parameters should be 
monitored by examining their performance 
statistically. 

11. Automated command sequence construc
tion, together with the necessary computer 
involvement in routine spacecraft com
munications, should be available in mission 
operations computers. 

12. In some cases, instrument command deci
sions will have to be made within the time 
period of one orbit. 
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B. Instrument 

1. A mission operations center is the focus for 
real-time command and control of the space 
platform. Instrument operations centers are 
the focus for Eos instrument operations. 

2. Access to spacecraft subsystems should be 
channeled transparently through any con
trol system for non-interactive commands. 

3. Commands should be categorized as non
interactive, interactive, and critical. 

4. Research groups should have the capability 
to request acquisition of special obser
vational sequences from one or more 
instruments. 

5. Instrument teams may require command 
control over various instruments to satisfy 
scientific objectives. 

6. Researchers will require near-real-time pro
cessed data to decide, for example, appro
priate locations for mobile, in situ instru
ment systems (e.g., aircraft, ships). 

7. Instrument specialists and operations per
sonnel will require rapid decision-making 
capabilities. This requirement includes 
establishing real-time processing and display 
capabilities that can be utilized to monitor 
events. 

8. All Eos instrument parameters should be 
monitored by examining their performance 
statistically. 

9. If problems occur, control centers need to 
have the capability to trace the data flow 
back through the processing system to the 
instrument, aiding in the isolation and cor
rection of these problems. 

10. Users will submit instrument requests to the 
instrument operations centers for execution. 
This interaction will most likely occur over 
an electronic information network. 

IV. INFORMATION SERVICES 
FUNCTIONS 
1. Required functions and capabilities should 

not constrain physical location of personnel, 
data, or processing capabilities. 

2. A major goal of the system should be to pro
vide remote electronic access for the scien
tific community to the variety of capabilities 
and services that Eos will provide. 

3. Particular emphasis should be placed on 
technology associated with transparent ac
cess to dispersed, heterogeneous data bases. 



4. The system will require cost-effective net
work capabilities, including direct broadcast 
access. 

5. The network should provide access to mis
sion operations, archives, selected active 
data bases, and to large mainframe 
computers. 

6. Data center personnel should manage the 
network, ensuring that the data centers are 
involved directly in many key aspects of the 
project. 

7. Because of rapid advancements in the 
telecommunications industry, and the long 
lead time for Eos implementation, the 
telecommunications requirements should be 
periodically reevaluated and updated as new 
technologies become more readily available. 

8. Communications linking quick-look users 
with data repositories will be required. Data 
rates between 56K baud and 1.5M baud will 
likely be required on this link. 

9. The system should provide for a spectrum of 
electronic data delivery rates, ranging from 
9,600 baud to 6.3M baud. 

10. Access security should be maintained at ap
propriate levels at all times. 

11. Provisions should be made within the net
work design for future expansion to accom
modate new user's access to the services and 
capabilities afforded. . 

12. NOAA and its international clientele will re
quire separate data storage and relay systems 
for data delivery if they deploy operational 
instruments on an Eos spacecraft. 

13. Subsystems of the information system will 
support mission operations, including rele
vant network functions, acquisition and 
delivery of data to mission and instrument 
repositories, quick-look data production, 
and the large-scale processing needs of in
strument teams. 

14. Users will submit instrument requests to the 
instrument operations control centers for ex
ecution. This interaction will most likely oc
cur over an electronic information network. 

15. Access security must be maintained at ap
propriate levels at all times. 

V. ADVANCED DATA BASE 
MANAGEMENT FUNCTIONS 

A. Electronic Directory 

1. Eos-sponsored multidisciplinary and multi
ple data source, disciplinary-oriented resear-
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chers will require an electronically accessible 
directory of pertinent Earth sciences data. 

2. Self-documenting software will be required 
to create directory entries for newly acquired 
data. 

3. The Earth science data directory requires 
maintenance and periodic updating as 
project-sponsored researchers identify new 
data sets and as new Eos data are acquired. 

4. The master directory should include infor
mation on non-Eos data deemed pertinent by 
Eos-sponsored researchers. 

5. A researcher should be able to search the 
directory by project, platform, instrument, 
data processing level, version, parameter, 
time, location, or any combination of these 
attributes. 

6. The directory should include information 
about supporting catalog access. 

B. Electronic Catalogs 

1. Eos-sponsored multidisciplinary and multi
ple data source, disciplinary-oriented resear
chers will require electronically accessible 
catalogs of Earth sciences data. 

2. Self-documenting software will be required 
to maintain and update the catalogs as new 
data are acquired. 

3. The Eos data catalog should be accessible by 
project, platform, instrument, data process
ing level, version, parameter, time, geo
graphic location, or any combination of the 
above. 

4. The Eos catalog should contain a use trace in
cluding user name and address for any par
ticular data set. 

5. To the extent possible, the Eos project should 
endeavor to create, maintain, and update 
similar catalog services for pertinent data 
held external to the project. 

C. Browse Files 

1. The Eos project will be required to create, 
maintain, and update browse files within the 
archival system. 

2. Browse files should be updated in real-time 
for non-image data. 

3. Near-real-time updates will be required for 
some critical image data. It is anticipated 



that these data will be of reduced resolu
tion (either spectrally or spatially). 

4. Browse files should be accessible on an in
strument, time, geographic location, or 
any combination of these factors. 

5. Browse files should be searchable visually 
via attributes and by expert systems. 

6. Data attributes (e.g., cloud type and cover, 
vegetation type and cover, snow cover, 
data quality) should be appended to an in
ventory record within the browse files. 

7. Attribute files should be expandable, ena
bling researcher-identified attributes to be 
added subsequently. 

8. Researchers will require processing of 
reduced-volume data sets to Level 2 for 
browse purposes. 

9. Pattern recognition algorithms should be 
developed and applied to browse data for 
attribute identification. 

10. Online browse capabilities may not be 
possible for many users; this will 
necessitate publication of an image browse 
catalog. 

11. Consideration should be given to creating 
special purpose browse files interactively. 

D. Data Ordering 

1. The system should support online, elec
tronic ordering of all Eos data. 

2. To the extent possible, the system should 
support the online, electronic ordering of 
pertinent non-Eos data sets. 

3. Interactive ordering capabilities should be 
available with at least 9,600 bps dial-up 
links. 

4. The system should be available on a con
tinuous basis and be sized to handle at least 
100 simultaneous users. 

E. Documentation 

1. Documentation is considered to be a vital 
part of the data record and should be 
stored and maintained with the same care 
as the data per se. 

2. The documentation should include a con
cise description of instrument specifica
tions, including the nature of physical 
variables measured, noise characteristics, 
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internal and external processing history, and 
coding of telemetry. 

3. All sources of calibration information, pro
cedures, and results must be identified and 
placed in the archival documentation. 

4. An annotated bibliography covering all per
tinent papers and reports published in the 
refereed literature should be included as a 
part of the project's documentation (e.g., 
instrument descriptions, observations and 
sequences, calibration and sensitivity 
studies, precision and accuracy of 
measurements). 

5. Documentation should also include any in
formation pertinent to scientific interpre
tation of the data produced by various 
experiments. 

6. Consideration should be given to providing 
online, electronic access to technical reports 
and memoranda (i.e., the gray literature). 

F. Archives 

1. The archival system should be able to 
assimilate data at all processing levels. 

2. Access to non-Eos data that are needed for 
processing of Eos data or by Eos in
vestigators will be required. 

3. In situ data used in the processing or valida
tion of Eos data should be easily accessible 
and maintained within the archives. 

4. The archives must be able to assimilate, 
maintain, and distribute higher level or 
reduced data sets produced by either active 
data base sites or by individual investigators 
in their research work. 

5. Directory and catalog entries for all data 
stored and maintained within the archives 
will be required. 

6. The archives will require a fast, efficient, 
and cost-effective retrieval system for all of 
its data holdings. 

7. A history of both instrument and algorithm 
performance should be maintained and ac
cessible via the archives. 

8. The Eos archival subsystem should be ac
cessible from remote terminals and worksta
tions via a prompting menu or natural 
language interface. 

9. All capabilities and functions of the archival 
subsystem should be fully documented in a 
user handbook and in online help files. 



10. The archives should maintain a complete in
ventory of relevant scientific and technical 
documents concerning the data and the 
archives. 

11. Processed data should be retained in access
ible form, along with associated documenta
tion, to avoid redundant processing. 

G. Standards and Formats 

1. Considerable and careful attention must be 
given to the adoption of standards and for
mats; the research community should be in
timately involved in this process. 

2. We envision the necessity for an entire suite 
of format structures and, consequently, 
system transparency remains an overriding 
concern. 

3. Consideration should be given to various 
standards adopted by the Space Station Pro
gram in areas of overlapping concern if they 
are acceptable to Eos. 

4. Careful consideration should be given to 
working with both established national and 
international committees addressing stan
dards and possible adoption of the stan
dards that they recommend. 

5. A common, standard glossary containing 
operational definitions used within Eos 
should be created and maintained by the 
project. 

VI. DATA PROCESSING FUNCTIONS 

1. Processing requirements within the system 
will range from raw data to fully processed 
scientific data. 

2. Instrument-specific, near-real time, or even 
real-time data processing, delivery, and 
display capabilities will be required. 

3. Algorithms to be used for processing data 
should be approved and fully validated by 
the research community. 

4. Requirements for processing include: Level 
0, all data (for temporary repositories); 
Level I, all data (for long-term archives); 
Levels 2, 3, and 4, only upon request. 

5. The requisite data processing capability 
must support some near-real-time data and 
information processing. These results 
should be available to the requester within 
the time period of one orbit. 

6. Data processing subsystems should be 
capable of enhancement for special pur-
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poses during fixed periods of time (e.g., 
scientific processing for particular instru
ment team activities). 

7. Access security must be maintained at ap
propriate levels at all times. 

8. Users identified as requiring access to real
time, quick-look information need interac
tive image processing and display 
capabilities. 

9. Processing facilities will be needed to sup
port requested higher-level data processing 
for scientific research purposes. 

10. Data reduction, grid overlay, standard pro
jection, data set merger, etc., will be re
quired by Eos researchers. 

II. Distributed data processing facilities will be 
required to perform similar higher-level data 
processing functions. 

12. All data processing requirements are in
dependent of specific organizational 
assignments and must be met by any facility 
(including commercially operated) that is 
producing Eos data. 

13. Access to large mainframe computer facili
ties will be required for Eos researchers 
engaged in model development, evaluation, 
simulation, and experimentation. 

14. Data sequence and encoding peculiarities 
must be removed by the data reception 
system. 

VII. NON-Eos DATA BASES 
FUNCTIONS 

1. Many Eos-sponsored research tasks will re
quire access to operational data bases such 
as NOAA's. The project should make every 
effort to provide this access in a user 
transparent fashion. 

2. International data bases such as the holdings 
of the World Data Centers will be required 
by Eos researchers. Access to these data sets 
should be through the Eos data and infor
mation system. 

3. National archives such as those of the Na
tional Climate Center, National Ocean
ographic Data Center, etc. should be online 
to Eos researchers via the data and informa
tion system. 

4. Reduced data sets produced from data 
derived from other archives, as well as the 
original data, should be maintained within 
the information system. 



5. Directory entries covering pertinent, non
Eos data sets should be obtained and main
tained within the system. 

6. The data and information system should ac
como date catalog entries for non-Eos data 
sets. 

VIII. MANAGEMENT 
CONSIDERATIONS 

1. The scientific community must be involved 
during the development and evolution of the 
Eos data and information system. 

2. Active researchers should have an oversight 
and review responsibility for the data and 
information system. 

3. NASA management should pay particular 
attention to existing National Academy of 
Sciences reports dealing with space research 
data systems. 

4. A crucial difference between Eos and pre
vious flight projects that requires procedural 
changes is the length of the effort. 

5. An Eos data and information system must 
evolve and be a system that includes geo
graphically distributed sites of varying capa
bility and responsibility. 

6. A critical factor in developing the Eos data 
and information system will be strong in
teraction and close collaboration with ongo
ing research efforts that emphasize the col
lection and analysis of multiple data sets. 
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7. We recommend that the Global Resource In
formation System concept be focused on 
Eos objectives, then utilized for developing 
the network services aspects of the Eos data 
and information system. 

8. We recommend that the Earth Science and 
Applications Division fund a limited num
ber of multidisciplinary research teams to 
investigate a select number of objectives in 
hydrology, biogeochemistry, and climatol
ogy using existing data sets. 

9. We recommend that the Eos data and infor
mation system be built on the experience 
gained with existing Earth science pilot pro
jects, that these projects be focused toward 
Eos objectives, and that close collabora
tion be maintained with the ueAR Unidata 
initiative. 

10. We recommend that planning and evolu
tionary implementation of an Eos data and 
information system begin without delay, 
enabling the resultant system to reflect the 
experience and expertise of those people 
who must manage and utilize its capabilities. 

11. Eos should accommodate operational users 
if their activities do not detrimentally impact 
the conduct of Eos-sponsored research. 

12. If operational uses are made of Eos data, 
and if these uses significantly affect the in
formation system, then those operational 
agencies should provide enhancements to 
the system to meet their needs. 
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