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ABSTRACT 

This work presents several trajectory generation algorithms for multibody robotic 

systems based on the Product of Exponentials (PoE) formulation, also known as screw 

theory. A PoE formulation is first developed to model the kinematics and dynamics of a 

multibody robotic manipulator (Sawyer Robot) with 7 revolute joints and an end-effector. 

In the first method, an Inverse Kinematics (IK) algorithm based on the Newton-Raphson 

iterative method is applied to generate constrained joint-space trajectories corresponding 

to straight-line and curvilinear motions of the end effector in Cartesian space with finite 

jerk. The second approach describes Constant Screw Axis (CSA) trajectories which are 

generated using Machine Learning (ML) and Artificial Neural Networks (ANNs) 

techniques. The CSA method smooths the trajectory in the Special Euclidean (SE(3)) 

space. In the third approach, a multi-objective Swarm Intelligence (SI) trajectory 

generation algorithm is developed, where the IK problem is tackled using a combined SI-

PoE ML technique resulting in a joint trajectory that avoids obstacles in the workspace, 

and satisfies the finite jerk constraint on end-effector while minimizing the torque 

profiles. The final method is a different approach to solving the IK problem using the 

Deep Q-Learning (DQN) Reinforcement Learning (RL) algorithm which can generate 

different joint space trajectories given the Cartesian end-effector path. 

For all methods above, the Newton-Euler recursive algorithm is implemented to compute 

the inverse dynamics, which generates the joint torques profiles. The simulated torque 

profiles are experimentally validated by feeding the generated joint trajectories to the 

Sawyer robotic arm through the developed Robot Operating System (ROS) - Python 

environment in the Software Development Kit (SDK) mode. The developed algorithms 
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can be used to generate various trajectories for robotic arms (e.g. spacecraft servicing 

missions). 
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1. Introduction

This chapter explains the motivation behind the research done on joint space trajectory

generation for high DoF robotic systems. It outlines the problem statement and specific

objectives related to the generation of joint space trajectories given a Cartesian end-effector

trajectory or path. Also, it provides background information on forward kinematics,

inverse kinematics and dynamics, the mathematical foundation, and robotic arm that

was used in implementation phase of the research work.

1.1. Problem Statement and Objectives

Since the 1980’s, a popular approach for studying and analyzing the dynamics and

kinematics of open-chain mechanisms and multibody systems has been the use of

Denavit-Hartenberg (D-H) parameters. However, recently, there has been a rise of interest

in the PoE formulation used for forward and velocity kinematics of multibody systems.

Yet, there are few works that provide extensive and exhaustive description, simulation

and implementation focused on developing modern trajectory generation algorithms

for robotic manipulators using the Product of Exponentials formulation as a Forward

Kinematics tool. This work describes the application of Machine Learning (ML), Artificial

Neural Networks (ANN), Artificial Intelligence (AI), and Reinforcement Learning (RL)

in solving the Inverse Kinematics (IK) problem for high Degree of Freedom (DoF) robotic

arms. Depending on the number of joints and links possessed by a manipulator, the

mapping from Cartesian space to the robot’s joint space becomes very involved, which

is problematic as the tasks that a robotic arm receives are in Cartesian space, whereas the

commands (velocity or torque) are in joint space. Thus, the IK solution is an important

step for achieving “full” autonomy of robotic systems, which can be approached by using
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techniques inspired by brain activity that controls several open-chain manipulators at

once, instantaneously satisfying multiple objectives. Although most of the ML and AI

techniques are mature when it comes to vision systems, the algorithms and architectures

of RL models have to be optimized for robotic systems to achieve better performance.

This research extends the utility of the learning algorithms to the robotic arm manipulation

framework.

The aim of this research is to consolidate the algorithms and formulations of

forward/inverse kinematics and dynamics, Bézier curves, ML, and RL, and to present

simulation case studies and experimental implementations to demonstrate this unified

approach. The research work aims to accomplish this goal by presenting several trajectory

generation algorithms based on the Product of Exponentials (PoE) formulation, also

known as screw theory, and apply these algorithms to Rethink Robotics’ “Sawyer” robotic

arm (Robotics, 2017). This research also experimentally compares the developed PoE

Forward Kinematics model with the “classical” D-H parameters approach in terms of

joint angle errors and joint torques of a “Sawyer” multibody robotic system.

1.2. Forward Kinematics, Inverse Kinematics and Dynamics

Aerospace robotic systems, such as robotic arms performing spacecraft servicing

missions, require precise, real-time trajectory planning and control. Since the 1980’s, a

popular approach for studying and analyzing the dynamics and kinematics of open-chain

mechanisms and multibody systems has been the use of D-H parameters (Lynch & Park,

2017). Although the D-H formulation requires a minimum number of parameters to

describe a robot’s kinematics, it follows a strict convention as to how the reference frames

are assigned to each link. The PoE formulation, based on Lie group theory, Lie algebra,
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and screw theory, on the other hand, does not impose such restrictions at a cost of not

utilizing a minimal set of parameters required to describe the kinematics of a robot.

The PoE formulation of forward kinematics was first described by Brockett in (Brockett,

1984), and can also be found in (Lynch & Park, 2017; Murray et al., 2017; F. C. Park,

1994; Selig, 2004a,b). This work was partly motivated by the recent interest in the PoE

formulation. In (C. He et al., 2013; Wang et al., 2018) the PoE formulation is applied to

carry out kinematic analysis of robotic manipulators. In (Chirikjian, 2018; Müller, 2019;

F. C. Park et al., 2018), a general overview of the PoE method is provided with examples

and a tutorial. Lastly, in (G. Chen et al., 2014; R. He et al., 2010; C. Li et al., 2016; Pac

& Popa, 2013) the authors address kinematic errors and calibration of manipulators

using PoE. The PoE can also be used to define orbits and the state of a satellite (Malik,

Henderson, & Prazenica, 2021c).

A conventional approach for solving the inverse kinematics problem involves using

the Newton-Raphson iterative method of nonlinear root finding. Examples of the usage

of this method are shown in (Chiaverini et al., 2016; Lynch & Park, 2017; Murray et al.,

2017; Selig, 2004a). Alternatively, a “lookup” method of inverse kinematics approximation

can be used (Tarokh & Kim, 2007). In this work, the conventional method is developed

and described in Chapter 3, which is followed by modern trajectory generation algorithms

that are outlined in Chapters 4, 5, and 6. The feedforward plus feedback linearizing

controller used in this work requires the computation of the inverse dynamics, an algorithm

outlined in (Featherstone, 1983, 2014; Lynch & Park, 2017; Murray et al., 2017; Selig,

2004a).
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1.3. Mathematical Background

Lie algebra and Lie Group theory can be used in the formulation of forward and

inverse kinematics as well as dynamics (Lynch & Park, 2017). The equations of motion of

an open-chain robot with n single degree of freedom revolute joints can be expressed as a

set of second-order differential equations in the general form:

τ = M(θ)θ̈ + h(θ, θ̇) (1.1)

where θ ∈ Rn is the vector of joint variables, τ ∈ Rn is the vector of joint torques,

M(θ) ∈ Rn×n is the symmetric positive-definite configuration-dependent mass matrix,

and h(θ, θ̇) ∈ Rn is the combination of centripetal, Coriolis, gravity, and friction terms

applied to the system that depend on θ and θ̇. Equation 1.1 calculates the joint torques and

requires the prior knowledge of a robot’s state (θ, θ̇) and desired acceleration θ̈; thus, it

is referred to as inverse dynamics. The forward dynamics problem, on the other hand, is

concerned with finding a robot’s acceleration θ̈ given its state (θ, θ̇) and the joint torques:

θ̈ = M−1(θ)(τ − h(θ, θ̇)) (1.2)

In the case where an external force is applied at the tip of the end-effector, the

formulation of the forward dynamics is as follows:

M(θ)θ̈ = τ − h(θ, θ̇)− JT (θ)Ftip (1.3)

where Ftip is the wrench applied by the end-effector and J(θ) is the manipulator Jacobian

matrix that linearly relates the tip velocity vtip to the joint velocity vector θ̇.

vtip = J(θ)θ̇ (1.4)

The wrench Ftip ∈ R6 shown in Equation 1.3 is described below. By defining an

arbitrary reference frame {a}, let ra ∈ R3 be the vector to the point where force fa ∈ R3
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is applied. Thus, the wrench Fa expressed in the {a} frame is as follows:

Fa =

ma

fa

 =

ra × fa

fa

 =

[ra]fa
fa

 ∈ R6 (1.5)

where [ra] ∈ so(3) is a 3× 3 skew-symmetric matrix representation of ra ∈ R3.

The position and orientation of the end-effector or any other frame is represented as a

4× 4 transformation matrix T ∈ SE(3) which has the following formulation:

T =

R p

0 1

 (1.6)

where R ∈ SO(3) is the orientation of the body represented as a member of the special

orthogonal group and p ∈ R3 is a vector that represents the position of the frame in

Cartesian space. The transformation matrix can be obtained using the products of

exponentials formula that can be used for any open-chain manipulator (Brockett, 1984;

Lynch & Park, 2017; F. C. Park, 1994). The formulation is shown below, where the

position and orientation of the end-effector or any other frame can be represented in the

space (inertial) frame, given screw axes in space (inertial) or body frame, and the home

configuration of that frame Msn ∈ SE(3) in the space frame:

Tsn = e[S1]θ1e[S2]θ2 · · · e[Sn]θnMsn (1.7)

Tsn = Msne
[B1]θ1e[B2]θ2 · · · e[Bn]θn (1.8)

and, for every i = 1, 2, · · · , n, the norm of angular velocity ∥ωi∥ = 1 and vi is the linear

velocity at the inertial frame’s origin, expressed in the inertial frame produced purely due

to the rotation about the screw axis (vi = −ωi × rq), where q is a point on the screw axis.
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In the equation above unit screw axes in the body frame, i.e. Bi (i = 1, 2, · · · , n), can

be obtained in terms of unit screw axes in the inertial frame, Si (i = 1, 2, · · · , n), using

the adjoint map:

Bi = [AdM−1
sn
]Si =

 Ri 0

[pi]Ri Ri

Si (1.9)

where,

Si =

ωi

vi

 ∈ R6 (1.10)

Also, the rows of the “Space Jacobian” matrix shown in Equation 1.4 are constructed

from screw axes, such that:

Jsi(θ) = Ade[S1]θ1 ...e[Si−1]θi−1 (Si) (1.11)

The above formulation requires the “home” configuration Msn ∈ SE(3) of the frame

in question relative to the fixed base (inertial) frame when the robot is in its zero position

(i.e. joint variables θ1, θ2, · · · , θn are zero). Square brackets represent skew-symmetric

mapping of an element such that: p ∈ R3→ [p] ∈ so(3) and S ∈ R6→ [S] ∈ se(3). For

instance,

[S] =

[ω] v

0 0

 (1.12)

Forward kinematics utilizing the products of exponentials formulation utilizes the

exponential mapping such that: [S]θ ∈ se(3)→T ∈ SE(3).
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1.4. Robotic Arm Description

The 7R manipulator considered in this work is Rethink Robotics’ Sawyer robot.

The robot has 7 links and 7 joints, out of which 4 are rolling and 3 are pitching joints,

as shown in Figure 1.1 (Robotics, 2017). The masses of each link and the position of

Figure 1.1 Sawyer joints and links (Robotics, 2017)

each link’s center of gravity were recorded from the Universal Robot Description Format

(URDF) file dedicated to the Sawyer robot (Robotics, 2017). The mass of each link

and the position of its center of gravity represented in the inertial/space (base) frame

(xs, ys, zs) are given in Table 1.1. In addition, the inertia matrix of each link was obtained

Table 1.1

Link masses and centers of gravity

Link Mass (kg) xs (m) ys (m) zs (m)

1 5.32 0.0244 0.0110 0.2236
2 4.51 0.1078 0.1425 0.3201
3 1.75 0.03568 0.1775 0.3172
4 2.51 0.5091 0.0663 0.3218
5 1.12 0.7301 0.0309 0.3189
6 1.56 0.9047 0.1314 0.3109
7 0.33 0.9860 0.1517 0.3170



8

from the URDF file. It is important to mention that inertia matrices were given in each

link’s frame that is attached to its center of gravity with a specific orientation that follows

URDF guidelines. Table 1.2 shows the inertia components of each link as given in the

Figure 1.2 Home configuration of the Sawyer robot

URDF file and represented in the body frame of each link, as shown in Figure 1.2, where

the link body frames are attached to the center of gravity of each link with the orientation

as described in the URDF file.

Solid circles represent centers of gravity and stars are physical locations of joints. The

physical locations of joints are crucial for the screw axes representation. Screw axes in the
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space frame are given below:

S1 =



0

0

1

0

0

0



S2 =



0

1

0

−0.317

0

0.081



S3 =



1

0

0

0

0.317

−0.1925



S4 =



0

1

0

−0.317

0

0.481



(1.13)

S5 =



1

0

0

0

0.317

−0.024



S6 =



0

1

0

−0.317

0

0.881



S7 =



1

0

0

0

0.317

−0.1603



(1.14)

The end-effector home configuration in the space (inertial) frame is given as:

Ms7 =



0 0 1 0.9860

0 −1 0 0.1517

1 0 0 0.3170

0 0 0 1


(1.15)
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Similarly, home configurations in SE(3) were obtained for centers of gravity of each link.

Table 1.2

Link inertia properties in gm2

Link Ixx Ixy Ixz Iyy Iyz Izz

1 53.31 4.71 11.73 57.90 8.02 23.66
2 22.40 -0.24 -0.29 14.61 -6.09 17.30
3 25.51 0.00 0.01 25.30 -3.32 3.42
4 10.16 -0.01 0.27 6.57 3.03 6.91
5 13.56 0.02 0.14 13.56 1.06 1.37
6 4.73 0.12 0.05 2.97 -1.16 3.18
7 0.31 0.00 0.00 0.22 -0.01 0.36

1.5. Contributions

This work consolidates the algorithms and formulations of forward/inverse kinematics

and dynamics and presents several modern trajectory generation algorithms in simulation

case studies and experimental implementation. The general overview of the work is

presented as follows.

A PoE formulation is first developed to model the kinematics and dynamics of a

multibody robotic manipulator with 7 revolute joints and an end effector. Using the

developed model, an open-loop simulation is carried out. The simulation results are

compared to the classical D-H parameters approach and experimental results using a

simplistic torque trajectory applied to the “Sawyer” robotic arm.

Subsequently, two closed-loop simulations are presented. The first closed-loop

simulation tracks a straight line trajectory and the second closed-loop simulation makes

the end-effector track a more complex curvilinear trajectory produced from Bézier curves

under specific constraints. Both of these simulations follow similar steps as explained
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below. An inverse kinematic algorithm based on the Newton-Raphson iterative method

is applied to generate constrained joint-space trajectories corresponding to straight-line

(first closed-loop simulation) and curvilinear (second closed-loop simulation) motion

of the end effector in Cartesian space with finite jerk. Derivatives of these joint-space

trajectories are computed using Bézier curves, which ensures dynamically feasible

trajectories. A novel method of Mean Arctangent Absolute Percentage Error (MAAPE) is

then used to check accuracy of the derivatives of joint-space trajectories. The Newton-Euler

recursive algorithm is then implemented to compute the inverse dynamics, which generates

the joint torques required to achieve the reference trajectories. These torques are then

incorporated into a closed-loop control algorithm, and simulation studies are performed

using a dynamic model of the robotic system.

It is demonstrated that the proposed approach is able to successfully generate

constrained trajectories, and by using MAAPE it is shown that lower order Bézier curves

approximate the joint-space derivatives with the same accuracy as higher order polynomials.

The performance of the closed-loop controller in terms of accuracy of reference trajectory

tracking subject to model uncertainties was checked. The significant contribution of this

method is integration of all of the aforementioned techniques applied to a robotic system.

Moreover, it is believed that this algorithm will be able to generate trajectories for robotic

arms performing spacecraft servicing missions, because it also takes into account the

variable gravity vector.

The next algorithm generates trajectories with constant screw axes, which smooths

the trajectories in Special Euclidean space. These trajectories’ paths are defined by

Bézier curves. The time-scaling is quintic polynomial, which ensures that the jerk is
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finite throughout the trajectory. The CSA trajectories are obtained by varying multiple

parameters that are chosen by Particle Swarm Optimization (PSO), Q-Learning, and DQN

algorithms. The performances of these three approaches are compared.

Multi-objective swarm intelligence trajectory generation (SI-PoE) is the next algorithm

described in this work. Given a priori knowledge of the end-effector Cartesian trajectory

and obstacles in the workspace, the inverse kinematics problem is tackled by the SI-PoE

algorithm subject to multiple constraints. The algorithm is designed to satisfy a finite jerk

constraint on the end-effector, avoid obstacles, and minimize control effort while tracking

the Cartesian trajectory. The SI-POE algorithm is compared with conventional inverse

kinematics algorithms and standard PSO. The joint trajectories produced by SI-POE

are experimentally tested on the Sawyer 7 DoF robotic arm, and the resulting torque

trajectories are compared.

The final algorithm considered is DQN-IK, which is a deep reinforcement learning

approach for the inverse kinematics solution of a high degree of freedom manipulator.

A Deep Reinforcement Learning (RL) approach for solving the Inverse Kinematics

(IK) problem of a 7-Degree of Freedom (DoF) robotic manipulator using Product of

Exponentials (PoE) as a Forward Kinematics (FK) computation tool and the Deep

Q-Network (DQN) as an IK solver is developed. The algorithm is designed to produce

joint space trajectories from a given end-effector trajectory. Different network architectures

were explored and the output of the DQN was implemented on the Sawyer robotic arm.

The DQN was able to find different trajectories corresponding to a single Cartesian path

of the end-effector. The network agent was able to learn random Bézier end-effector

trajectories in a reasonable time frame with good accuracy, demonstrating that even
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though DQN is mainly used in discrete solution spaces, it could also be applied for

generating joint space trajectories.

This document is organized as follows: Chapter 1 gives insight into the problem

statement, the objectives, the challenges, the proposed solution and the cases for testing.

Chapter 2 will provide a description of the state-of-the-art and a literature review. Chapter

3 provides an overview of the Newton-Raphson iterative nonlinear IK algorithm

architecture, simulations and experimental implementations. Chapter 4 describes the

CSA algorithm for generating smooth trajectories in Special Euclidean space. Chapter 5

provides a description of the SI-PoE trajectory generation algorithm which can satisfy

multiple objectives simultaneously. This is followed by Chapter 6, where a deep RL

algorithm for solving the IK problem is outlined along with simulations and experiments.

Finally, Chapter 7 concludes the work with closing remarks and recommendations for

future work.
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2. Literature Review

This chapter presents an overview of work related to trajectory generation and planning.

The objective of this review is to identify tools that can be extended and adapted to joint

space trajectory generation for high degree of freedom robotic systems.

2.1. Inverse Kinematics

Trajectory generation and motion planning is an important part of robot control,

which most often is carried out with the end-effector’s position and orientation in mind.

This is not problematic when the closed-form analytical solution is available. However, in

cases where there is no such solution, the process of obtaining joint trajectories, or inverse

kinematics (IK), becomes a challenging task, especially in the presence of obstacles

or when minimization of effort is of importance as well. The inverse kinematics (IK)

problem has been an important topic in the robotics field for a long time, and many

different approaches have been demonstrated to generate joint trajectories that satisfy a

specific end-effector Cartesian trajectory. As the agility of robotic manipulators becomes

a crucial design consideration, which increases the number of joints, the IK problem

becomes even more involved as redundancy is introduced. Thus, machine learning (ML),

artificial neural networks (ANNs), or SI algorithms are attractive options to handle such

highly-nonlinear problems, which is evident by the recent interest in using SI/PSO

algorithms to address the IK problem.

Robotic manipulators’ applications span different sectors from automotive to space,

where they are used extensively in various industrial manufacturing and assembly processes,

including, but not limited to, welding, sorting, handling radioactive or hazardous materials,

surgery, transferring payloads in and out of space stations, etc. As Machine Learning
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(ML), Artificial Neural Networks (ANNs), and Artificial Intelligence (AI) in general,

matured in image recognition and vision systems, the next logical step would be to

achieve full autonomy of robotic manipulators (Sridharan & Stone, 2007; Yip & Das,

2019). However, there are certain challenges that have to be overcome to achieve this

goal. For instance, depending on the number of joints and links possessed by a manipulator,

the mapping from Cartesian space to the robot’s joint space becomes very involved, which

is problematic as the tasks that a robotic arm receives are in Cartesian space, whereas the

commands (velocity or torque) are in joint space. Therefore, the inverse kinematics (IK)

is arguably one of the most important aspects that has to be addressed in order to achieve

a fully autonomous robotic manipulator.

Generally the algorithms for solving the IK problem can be classified into three

categories: analytical, iterative, and intelligent. The first category is highly limited since it

can only be applied to simple robotic manipulators or specifically designed ones that have

finite IK solutions. The second category can be considered as the conventional method of

approaching the IK problem, where the algorithm most often aims to solve for the joint

trajectory while satisfying only a single objective, such as minimizing joint effort and/or

movement. Some work has proposed using Jacobian pseudo-inverse methods to prioritize

tasks in the workspace (J. Park et al., 2001) and keep the joint limits within the physical

bounds (Klein & Huang, 1983). The most commonly applied iterative approach is the

Newton-Raphson iterative nonlinear root-finding method, which considers the IK problem

as a nonlinear optimization problem (Lynch & Park, 2017).

The latter category can be described as a fresh view on the IK problem, since, in

this approach, techniques that were only recently developed and applied to engineering
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problems are leveraged. Amongst SI techniques, the Particle Swarm Optimization (PSO)

has received the most attention due to its performance on high-DoF IK problems (Collinsm

& Shen, 2017). Ample literature is available on different variations of PSO applied to

IK problems. One approach was to decouple the manipulator into two segments, thus

approaching the IK in a bidirectional fashion (Ram et al., 2019). Another work decoupled

position and orientation by applying two PSO algorithms to achieve faster convergence,

and, in addition, used the inverse Jacobian to smooth the trajectories, thus achieving

position control (Khan et al., 2020). Attempts to improve the performance of the artificial

intelligence algorithm were made by adding a constriction factor and adaptive inertia

to the PSO (Lin et al., 2016), applying a nonlinear dynamic inertia weight adjustment

(Yiyang et al., 2021), and even combining PSO with Agoraphilic for obstacle avoidance

(Bilbeisi et al., 2015). The scalability of the PSO to high-DoF IK problems has been

explored (Collinsm & Shen, 2017). Furthermore, quantum behaved PSO was proposed as

an IK solution where an improvement in performance was demonstrated (Dereli & Köker,

2020).

Even though many works have been published with different SI/PSO variants, there

are certain aspects that often have not been fully addressed. These include unclear indication

of how exactly inverse kinematics problem was set up and solved, unclear collision

identification algorithm, absence of torque trajectories, absence of initial conditions for

each SI/PSO iteration, absence of error in end-effector position/orientation, application of

the algorithm on planar (2-D) manipulators, experimental evaluation almost exclusively in

simulation, and etc. The objective of this work is to address the aforementioned
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shortcomings by demonstrating a novel SI-PoE algorithm and experimentally validating

it by applying it directly to a 7 DoF Sawyer robotic manipulator. The SI-PoE algorithm

is used for the cases where the end-effector trajectory and obstacles are defined a priori

in the workspace. The main idea is that the IK problem is solved by the SI given multiple

goals such as minimizing control effort, avoiding obstacles, and enforcing finite jerk

on the end-effector. An additional Quintic Polynomial Finite Jerk (QPFJ) method of

trajectory generation is also explored to demonstrate the possibility to enforce finite jerk

in joint space. The PoE is used as means of identifying any collisions with the obstacles

in the workspace. However, it should be noted that these goals often over-constrain the

solution leading to cases where a trade-off has to be made; for example, the end-effector

Cartesian trajectory accuracy might suffer in some cases if a hard finite jerk constraint is

imposed on the joints.

Apart from these methods, the application of Machine Learning (ML), Artificial

Intelligence (AI) and Artificial Neural Network (ANN) techniques has gained popularity

in recent years. Various RL methods, such as Genetic Algorithms (GA) and Swarm

Intelligence (SI) have proven to be effective in solving IK problems, even for robotic

manipulators with high-DoFs. Deep Deterministic Policy Gradient (DDPG) and Normalized

Advantage Function (NAF) algorithms have shown their usefulness in continuous action

spaces and, more specifically, in robotic manipulation (Gu et al., 2017). Deep Q-Networks

(DQN) have proven to be useful in the robotics field, where its architecture was used for

vision based manipulation (Sasaki et al., 2017a; F. Zhang et al., 2015), path planning

(Xin et al., 2017; Y. Yang et al., 2020), navigation (Ruan et al., 2019; W. Zhang et al.,

2019), and even collision avoidance (Xue et al., 2019). However, only a few works have
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explored the idea of utilizing the DQN architecture to solve the IK of a high-DoF robotic

systems (Guo et al., 2019; Phaniteja et al., 2017; Zhong et al., 2021), and even fewer have

implemented the findings on real robotic manipulators.

This work, on the other hand, examines the use of the DQN algorithm for solving

the aforementioned IK problem for the 7-DoF robotic manipulator, and implements it

on a physical Sawyer robotic arm. Understandably, the DQN algorithm works better for

discrete action spaces and applying it on a continuous action space as joint space control

might seem counterproductive, but this work aims to demonstrate that with a modest

compromise in accuracy, the DQN networks can be trained for generating complex

trajectories in joint space even for a high-DoF robotic arms. The application of such

methods could be designing joint space trajectories for robotic manipulator that perform

routine tasks, e.g. space servicing mission or welding in a factory line, which would

reduce the input required from the engineers setting up these manipulators, as they would

only have to double check the trajectories generated by the network reducing their workload,

saving resources and time. The simpler architecture of the DQN compared to, for instance,

DDPG means that it will be easier and faster to tailor it towards specific design objectives.

It is also believed that even the compromise in accuracy will be eradicated in the near

future, since faster and more reliable hardware becomes more and more readily available,

leading the author to believe that a simpler RL algorithm as DQN will become even

more convenient and accesible. Thus, this work aims to present a RL approach based

on ANNs for solving the IK problem for robotics with simulations and experimental

implementation on the Sawyer 7-DoF robotic manipulator.
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2.2. Analytical Methods

The IK problem can be solved analytically for simple manipulators with a few DoF

and, also, for a 6-DoF arms like Programmable Universal Manipulation Arm (PUMA-type)

robotic arm systems. Open-chain robotic manipulator with 6-revolute joints is a popular

design, which consists of a wrist with 3-revolute orthogonal axis joints connected by

an elbow joint to a shoulder with 2-revolute orthogonal axis joints. This type of robotic

manipulator is demonstrated in Figure 2.1.

Figure 2.1 PUMA robotic arm (Lynch & Park, 2017).

Furthermore, Stanford-type arms admit analytical IK solutions. The only difference of

this type of arm from the PUMA-type arms is that the revolute elbow joint is replaced by

a prismatic joint.

Generally, 6-DoF open-chain manipulators have finite numbers of IK solutions. It

was proven that most general 6-revolute joint robotic arns have up to 16 IK solutions

(Lee & Liang, 1988; Raghavan & Roth, 1990). Some analytical methods decompose

the IK problem to a set of basic screw-theoretic subproblems, called the Paden–Kahan
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subproblems, where the goal is to find an angle of rotation for a zero-pitch screw motion

between a pair of given points (Murray et al., 2017; Paden, 1985).

As was mentioned before, analytical methods are limited to certain types of robotic

manipulators, and as such for high-DoF (n > 6) they are rendered impractical.

2.3. Iterative Methods

The iterative approaches to the IK problem can be broadly classified into two categories:

pseudo-inverse Jacobian and numerical methods. These methods became a necessity

since the analytical solution to IK that was described in Section 2.2. is limited to simple

manipulators with a few joints and links, and as the number of joints increases, the robotic

arm will tend to have multiple postures corresponding to a single Cartesian point in space.

As such redundancy is introduced, pseudo-inverse Jacobian and numerical methods, such

as nonlinear root finding techniques, are normally employed.

The pseudo-inverse Jacobian based methods can be considered as traditional approaches,

but they suffer from the inability to satisfy several objectives at once; for instance,

minimizing torque and avoiding obstacles while tracking the desired Cartesian trajectory.

Numerical methods, such as the Newton-Raphson nonlinear root finding technique are,

generally, more flexible but might result in high computational cost or undesired postures,

which would require hard coding the joint space constraints or adding an additional

optimization algorithm.

Iterative methods generally require an initial guess for the joint space variables. The

performance of the iterative method highly depends on the quality of the initial guess

and, in the case where there are several possible IK solutions, e.g. high-DoF robotic

manipulator, the method tends to find the solution that is “closest” to the initial guess.
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Generally, each iteration would have a formulation close to the following one:

θ̇i+1 = θi + J†(θi)V (2.1)

where J† is the pseudo-inverse of the Jacobian J(θ), and V is a twist that would take the

current configuration to the desired one in one unit of time. An example of using the

Newton-Raphson iterative method is outlined in Chapter 3.

Sometimes iterative methods diverge and fail to provide a solution due to the highly

nonlinear nature of the IK problem. Many iterative methods rely on results and solution

techniques from least-squares optimization (Chiaverini et al., 2016). Another drawback

of such methods is that if there are multiple objectives to satisfy, e.g. obstacle avoidance

in addition to end-effector trajectory tracking, the algorithm might encounter problems

halfway through the trajectory as iterative methods do not have a sense of future possible

postures. For instance, the algorithm might bring the posture of a robotic arm to a state

where collision with an obstacle is inevitable due to the joint space constraints and past

joint space solutions, which were only satisfying the tracking accuracy of the end-effector

trajectory by finding the “closest” posture, not necessarily searching for a joint space

trajectory that would avoid a static or dynamic obstacle in the future.

2.4. Intelligent Algorithms

This category describes more modern algorithms compared to the analytical and

iterative methods. These modern tools developed during the recent advance of SI, AI,

ANNs, RL, and ML are actively applied to the field of robotic control.

SI algorithms are inspired by the behavior of animals and are commonly used for

solving difficult optimization problems. Generally, these algorithms are metaheuristic

by nature, and prevalent ones include evolutionary algorithms (EA), particle swarm
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optimization (PSO), differential evolution (DE), and ant colony optimization (ACO)

(Lones, 2014). SI-based techniques span different disciplines, researching potential

applications ranging from controlling a large number of robots or unmanned vehicles,

orbital swarm self-assembly and interferometry, planetary mapping, to even controlling

nanobots for locating and eliminating cancer tumors (Lewis & Bekey, 1992). Recent

research has shown that SI-based algorithms have promising performance, rivaling even

conventional Jacobian-based methods when solving the IK problem (Huang et al., 2014;

Rokbani & Alimi, 2013; Starke et al., 2016).

RL algorithms allow a robotic system to synthesize and improve its behavior through

trial and error. This is achieved by learning a task defined by a reward function, such

that when appropriate action is chosen it results in a reward, which in turn reinforces the

favorable behavior. Thus, the success and effectiveness of an RL algorithm highly depend

on the choice of a reward function. Another consideration that is taken into account by RL

algorithms is the concept of cumulative rewards over time, which can promote positive

long-term results leading to the exploration of a number of behaviors with larger sets of

actions that could be missed by other methods.

2.4.1. Particle Swarm Optimization

PSO is a method that is a part of a larger family of SI algorithms, which describe

social behavior of various ecosystems and animals such as bird flocks, schools of fish,

etc (Eberhart & Kennedy, 1995; X.-S. Yang et al., 2013). PSO is metaheuristic by nature,

quite simple to implement and provides the ability to converge to a good solution reasonably

quickly (Y. Shi & Eberhart, 1999); thus, it is used in a variety of disciplines and applications.

In simple terms, PSO performs an iterative search through the solution space using
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particles. Each particle contains parameters representing a solution, that denotes its

current position in the given solution/search space, as well as velocity, which influences

its position, guiding it to the most optimal solution. In general, PSO is a global optimization

algorithm, and therefore can provide solutions within a large search space, but not solutions

to a large degree of accuracy without significant computation.

Generally, PSO is more popular in the multi-agent swarm robotics field, where it has

been used for transfer learning in multi-agent robot environments (Atyabi & Powers,

2013), multi-robot target searching in unknown environments (Dadgar et al., 2016),

robotic swarms obstacle avoidance (Mohamed et al., 2010), and much more (Ab Aziz

& Ibrahim, 2012; Couceiro et al., 2012; J. Yang et al., 2019). However, as PSO is an

optimization algorithm at its core, it can be applied for solving nonlinear high-order

problems such as IK.

2.4.2. Q-Learning and Deep Q-Learning

In contrast to PSO, Q-learning does not use a set of individual particles for locating its

solution. Instead, a Q-learning agent learns through performing actions on the environment

and observing results. The Q-learning algorithm by itself works by guiding a reinforcement

learning agent through an environment defined by a Markov Decision Process (MDP)

(Hester et al., 2017). MDP is described by a tuple {S,A,R, T }, where S is a set of

available states, A is a set of actions, R is a set of rewards, and T is the transition function.

Using properties known as Q-values, an agent is able to correlate actions for expected

rewards, as well as to select an optimal action for a certain state. These Q-values are

updated after each iteration over the problem space and calculated using the Bellman

equation:
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Q(s, a) = Q(s, a) + α(R+ γmaxQ(s′, a′)−Q(s, a)) (2.2)

where Q(s, a) is the current Q-value, α is the learning rate, R is the reward for the selected

action, γ is the discount factor, and Q(s′, a′) is the estimated reward for the set of future

actions. Calculating Q-values that way, storing them in a state-action table and selecting

an action with the highest value guides the reinforcement learning agent to the optimal

solution.

Q-Learning and its variations are commonly used for path planning (Konar et al.,

2013; Low et al., 2019), multi-agent cooperation (Hwang et al., 2004; K.-H. Park et al.,

2001; Sadhu & Konar, 2017), locating and grasping an object (R. Chen & Dai, 2018;

James & Johns, 2016), etc. Generally, RL algorithms such as Q-Learning are attractive

because they aim to solve the fundamental robotics tasks of creating an intelligent machine

capable of achieving desired task through interaction with the world by acting and reacting

based on sensed information and knowledge, derived from the ability to learn and improve

skills autonomously.

In addition to Q-learning, the Bellman equation is also used for DQN but in a slightly

modified form to include individual weights and biases of the NN (Hausknecht & Stone,

2015). Furthermore, the resultant Q(s, a) is viewed as a loss function for the network. It

is given as follows:

L(s, a|θi) ≈ (R+ γmaxQ(s′, a′|θi)−Q(s, a|θi))2 (2.3)

where θi represents weights and biases of the NN for a given iteration i. Note that,

compared to the Bellman equation for Q-learning, the right term in Equation 6.4 is squared

to denote the standard squared error loss. The overall goal of the NN is to minimize the
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loss. Thus, after performing the gradient descent, this loss can be calculated and resultant

weights and biases adjusted accordingly.

DQN is a method that is able to provide a solution to a given problem through

reinforcement learning. In contrast to PSO, DQN is more complex as it is based on two

algorithms: Q-learning and Neural Networks. The AI agent takes an action for each state,

performs state transition and receives a reward depending on the result. Neural Networks,

on the other hand, are a set of algorithms that are used for identifying relationships

between various data pieces. They are modeled after neurons and neural connections

in the human brain.

The general design of NN encompasses layers of interconnected nodes, which denote

neurons. Generally, several nodes serve as input layers, which are connected to one or

more hidden layers. The end result is presented by the output layers. Combining the

advantages of NN and Q-learning makes it quite efficient to find solutions for problems

that require an iterative approach or have large solution spaces. In addition, Q-Learning

in conjunction with NN allows to overcome some challenges that are common for Neural

Networks, such as the large amount of data required to train the NN agent (Mnih et al.,

2013). Using a reinforcement learning approach, which is iterative by nature, data can

be continuously generated after each pass over the problem environment; consequently

that data can be fed to the NN for it to learn and optimize the solution. One last benefit

lies in NN having the ability to efficiently “remember” the data, so any new iterations and

learning experiences will require less computation. Similarly to Q-Learning, DQN is used

for various robotics applications including, but not limited to, path planning (Lv et al.,

2019; Xin et al., 2017; Y. Yang et al., 2020), vision-based navigation and control (Sasaki
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et al., 2017a; F. Zhang et al., 2015), and grasping and picking (Deng et al., 2019; Joshi et

al., 2020; Liang et al., 2019).

2.4.3. Deep Deterministic Policy Gradient and Normalized Advantage Functions

Processes in the real world are predominantly continuous: positions, velocities, forces

and torques seldom possess a discrete range of possible values. Robotic arm manipulation

is no exception as it involves complex nonlinear continuous mappings for accurate trajectory

tracking.

A universal approach in AI research is to discretize a state of the world, which introduces

a number of issues. In the framework of Q-Learning or DQN, for instance, the conventional

approach is to store action-values in a look-up table by discretizing the continuous variables

present in the solution space. If the states are discretized too coarsely, it leads to a perceptual

aliasing, resulting in a loss of information and an inability to reach an optimal desired

state (Gaskett, 2002). The first obvious solution to the problem of perceptual aliasing is

to have a finer discretization of the continuous action space. However, it leads to a high

computational cost as the number of actions increases exponentially with each extra DoF,

which is also known as the curse of dimensionality (Bellman, 1966; Lillicrap et al., 2015).

This makes the exploration of such vast action spaces a computationally insurmountable

task.

Thus, RL algorithms that work with continuous action spaces were developed. DDPG,

NAF, and Soft Actor-Critic (SAC) methods are prominent examples of model-free RL

algorithms (Haarnoja et al., 2018). The main limitation associated with most model-free

reinforcement approaches is that a large number of training episodes are required to find
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Figure 2.2 Two robots learning to open doors using a RL algorithm (Gu et al., 2017).

solutions. Depending on the problem, simpler algorithms might be more attractive due to

the less complex model architecture and faster times to obtain solutions.

DDPG is a model-free, off-policy actor-critic algorithm that uses deep function

approximators which can learn policies in high-dimensional, continuous action spaces. It

uses four neural networks: a Q network (θQ), a deterministic policy network (θµ), a target

Q network (θQ′), and a target policy network (θµ′). The Q network and policy network

follow the simple Advantage Actor-Critic model, but in DDPG, the Actor directly maps

states to actions instead of outputting the probability distribution across a discrete action

space. Both target networks slowly track the original networks, which significantly

increases the stability with a slight reduction in speed (Lillicrap et al., 2015). DDPG

is used for motion and path planning (Z. Li et al., 2020; Wen et al., 2018; A. Yang et

al., 2021), tracking control (Liu & Huang, 2021), end-effector tasks without any policy

initializations and demonstrations (Gu et al., 2017; Vecerik et al., 2017), etc. It was also

demonstrated that the DDPG and NAF algorithms can benefit from having multiple

robotic arms learning in parallel, which leads to a faster learning rate proportional to

the number of robots (Gu et al., 2017).

NAF algorithms were developed as a continuous action spaces extension to the
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Q-Learning with deep neural networks. The main idea behind NAF is to describe the

Q-function in such a manner that its maximum argmaxaQ(st, at) is calculated analytically

during the Q-Learning update (Gu et al., 2016). This is achieved by estimating a separate

value function V (s|θ) and advantage term that is parameterized as a quadratic function of

nonlinear features of the state:

Q(s, a|θQ) = A(s, a|θA) + V (s|θV ) (2.4)

A(s, a|θA) = −1

2
(a− µ(s|θµ))TP (s|θP )(a− µ(s|θµ)) (2.5)

where P (s|θP ) is a state-dependent positive definite square matrix that is parametrized

by a lower triangular matrix L(s|θP ) whose entries come from a linear output layer of a

NN with exponentiated diagonal terms such that P (s|θP ) = L(s|θP )L(s|θP )T (Gu et al.,

2016). The rest of the NAF algorithm shares the same architecture with DQN. The NAF

algorithm is considerably simpler than DDPG, and most of the time outperforms DDPG

in manipulation tasks where high precision is required, making NAF a more suitable

candidate for learning real world robotic tasks (Gu et al., 2016). It was used for real-time

obstacle avoidance (Sangiovanni et al., 2018), manipulation tasks (Franceschetti et al.,

2020; Gu et al., 2017), path planning (Sangiovanni et al., 2020), etc.
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3. Newton-Raphson Iterative Trajectory Generation

This chapter presents the application of the Newton-Raphson iterative nonlinear

root finding technique. It is used to solve the IK problem and generate straight-line and

curviliniear end-effector Cartesian trajectories with finite jerk.

3.1. Open-loop Simulation

An open-loop simulation was performed by solving the forward dynamics given by

Equation 1.2. The forward dynamics problem requires the knowledge of initial states

(θ, θ̇), the inverse of the inertia matrix M−1(θ) ∈ R7×7, and the torque trajectory τ .

For the open-loop case, the torque trajectory τ is zero for the whole duration of robot

motion. The inertia matrix M(θ) is constructed column-by-column by solving the inverse

dynamics problem shown in Equation 1.1 seven times, since the robot has seven joints,

with angular rate θ̇ ∈ R7 = 0, gravity vector g ∈ R3 = 0, external wrench Ftip ∈

R6 = 0 and a column vector θ̈ ∈ R7 where all elements are zero except for one row

n ∈ [1, 2, 3...7], which is unity so that the n-th column vector of the inertia matrix M(θ)

can be obtained. Then Equation 1.1 becomes Equation 3.1 for the first column, and is

repeated for the rest of the columns by switching unity to the corresponding row:

τ = M(θ)



1

0

0

0

0

0

0


(3.1)

The h(θ, θ̇) ∈ R7 term that combines centripetal, Coriolis, gravity, and friction forces

is obtained by solving the inverse dynamics problem with θ̈ = 0 and Ftip = 0, which
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simplifies Equation 1.1 to the following:

τ = h(θ, θ̇) (3.2)

3.1.1. Inverse Dynamics Problem

The inverse dynamics problem shown in Equation 1.1 is solved using the Newton-Euler

inverse dynamics algorithm described in (Featherstone, 1983, 2014; Lynch & Park, 2017),

which requires joint angles θ ∈ R7, joint angular velocities θ̇ ∈ R7, joint angular

accelerations θ̈ ∈ R7, gravity vector g ∈ R3 = [0 0 − 9.81]Tm/s2, the forces and

moments acting on the end-effector Ftip ∈ R6 = 0, the relative positions of link frames

in the home configuration Mi−1,i ∈ SE(3), i ∈ [1, 2, 3...7], the spatial inertia matrices

of each link Gi ∈ R6×6, i ∈ [1, 2, 3...7], and, finally, screw axes Si ∈ R6, i ∈ [1, 2, 3...7].

Since the link frames in the inertial frame given in the home configuration M0,i ∈ SE(3)

are located at the center of gravity of each link, the spatial inertia matrix Gi assumes the

following form:

Gi =

[
Ii 0

0 miI

]
(3.3)

where Ii ∈ R3×3 is the rotational inertia matrix of link i, mi is its mass, and I ∈ R3×3 is

the identity matrix.

With known M(θ) and h(θ, θ̇) the open-loop simulation can be performed by solving

the forward dynamics problem in the following form:

θ̈ = −M−1(θ)h(θ, θ̇) (3.4)

The acceleration θ̈(t) of each joint is numerically integrated using Runge-Kutta fourth-order

method to obtain the states (θ(t), θ̇(t)) of the robot (Hoffman & Frankel, 2018).



31

3.1.2. Discussion of Open-Loop Simulation Results

Figure 3.4 demonstrates the open-loop simulation of the robot with zero initial condition

(θ(t) = 0, θ̇(t) = 0, θ̈(t) = 0), zero input torque on each joint (τ(t) = 0), zero external

forces and moments on the end-effector tip (Ftip = 0), disengaged brakes, and viscous

friction (τfr = −η θ̇(t)) at each joint that is proportional to the angular velocity at each

joint with a constant scalar viscous friction coefficient η = 0.05 Nms. The blue dot marks

the trajectory of the end-effector. For the open-loop simulation, it was also assumed that

the robot joints do not have joint angle limits and the robot’s base is fixed at a point in

space such that there are no obstacles (not even ground). The simulation time tsim was 10

seconds with a timestep of ∆t = 0.01 seconds.

It can be observed from Figure 3.4 that, in home configuration, the end-effector has

an elevation which is then transformed to kinetic energy that accelerates the end-effector

downwards following the pitching joints’ motion. The energy is then slowly dissipated

through the viscous friction and the end-effector moves slowly around the configuration

shown when tsim = 6 seconds.

Joint angular positions, velocities and accelerations are given in Figures 3.1, 3.2, and

3.3 respectively. It can be observed that the robotic arm tries to reach the “rest” state

because of the effects of gravity and the energy dissipation due to the viscous friction in

the joints. Regardless of the initial condition, the robotic arm with its brakes disengaged

and zero input torque will eventually point downwards due to the presence of gravity,

which is demonstrated in the open-loop response. Specifically, the pitching Joint 2 tries to

reach a positive 90 deg deflection, thus pointing downwards. The angular velocities and
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accelerations reach large magnitudes within the initial couple of seconds, as demonstrated

in Figures 3.2 and 3.3. It is worth mentioning that the robot did not reach the

before-mentioned “rest” state within the first 10 seconds of the simulation; however, one

can increase the simulation time or increase the damping ratio to reach that state within 10

seconds.

Figure 3.1 Open-loop joint angles
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Figure 3.2 Open-loop joint angular velocities.
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Figure 3.3 Open-loop joint angular accelerations.



35

Figure 3.4 Open-loop simulation with viscous friction.
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3.2. Closed-Loop Simulation (Straight Line and Curvilinear Trajectory Tracking)

In this section, an algorithm is developed to simulate a controller using the Lie algebra

formulation of the dynamics of a 7-revolute (7R) joint robot. Moreover, the trajectory

generation and the finite jerk constraint is explained in this section. The configuration

space (C-space) of the 3R open chain manipulator can be written as: S1×S1×S1×

S1×S1×S1×S1 = T 7, where T 7 is a 7-dimensional surface of a torus in 8-dimensional

space.

3.2.1. Straight Line Trajectory Description and Time Scaling

The desired end-effector trajectory (θd, θ̇d, θ̈d) is designed in the workspace of the

manipulator such that it is reachable by the manipulator’s end-effector. A point-to-point

trajectory is generated such that the motion of the robot starts from rest at the home

configuration (θ1(t0) = 0, θ2(t0) = 0, · · · , θn(t0) = 0) and comes to rest at another

configuration T (tf ). The end-effector’s exponential coordinates take the following form:

Ts7(t0) = e[S1]θ1(t0)e[S2]θ2(t0)· · ·e[S7]θ3(t0)Ms7 = Ms7 (3.5)

Ts7(tf ) = e[S1]θ1(tf )e[S2]θ2(tf )· · ·e[S7]θ3(tf )Ms7 (3.6)

Now, a time scaling polynomial function s(t) is introduced such that it maps t ∈

[0, tf ], s : [0, tf ] → [0, 1]. More on time-scaling can be found in (Bobrow et al., 1985) and

(Shin & McKay, 1985). Thus, the straight line trajectory can be defined in joint space as:

θ(s) = θstart + s(θend − θstart) , s ∈ [0, 1] (3.7)

It is important to note that the straight line in joint space does not necessarily correspond

to a straight line in Cartesian space. Thus, a straight line in task-space can be formulated

as follows (Lynch & Park, 2017):
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T (s) = Tstart + s(Tend − Tstart) , s ∈ [0, 1] (3.8)

However, the configuration shown in Equation 3.8 does not necessarily lie in SE(3).

Thus the trajectory is modified as follows (Lynch & Park, 2017):

T (s) = Tstart exp(log(T
−1
startTend)s) , s ∈ [0, 1] (3.9)

Still, the trajectory represented in Equation 3.9 does not produce straight-line motion

in Cartesian space, rather a straight line motion with a constant screw axis that often

produces a curved path in Cartesian space. In order to produce a straight-line motion

in Cartesian space, rotational and translational components of the motion have to be

decoupled and the motion has to be resolved in the following fashion (Lynch & Park,

2017):

p(s) = pstart + s(pend − pstart)

R(s) = Rstart exp(log(R
T
startRend)s)

(3.10)

where, p ∈ R3 and R ∈ SO(3) can be “extracted” from T ∈ SE(3).

Given a desired trajectory θ(t), t0 ≤ t ≤ tf the angular velocity and angular

accelerations can be obtained using the chain rule:

θ̇ =
dθ

ds
ṡ = (θend − θstart)ṡ (3.11)

θ̈ =
d2θ

ds2
ṡ2 +

dθ

ds
s̈ = (θend − θstart)s̈ (3.12)

Equations 3.11 and 3.12 demonstrate that the time scaling function s must be twice

differentiable in order for a robot to have a well-defined acceleration (dynamics). Also,

in order to avoid a discontinuous jump in acceleration, the path endpoints s̈(0) and s̈(tf )

are constrained to have zero acceleration, which forces the jerk to be finite throughout

the whole path. However, it is crucial to note that Equations 3.11 and 3.12 can only be
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used for a straight line motion in joint space. In the case where the trajectory requires

straight-line motion in Cartesian space, a numerical method involving Bézier Curves is

used to approximate the desired end-effector joint angles trajectory θd and obtain θ̇d, θ̈d.

Adding the aforementioned constraints results in the following quintic polynomial form of

time scaling:

s(t) = a0 + a1(t/tf ) + a2(t/tf )
2 + a3(t/tf )

3 + a4(t/tf )
4 + a5(t/tf )

5 (3.13)

subject to the following constraints:

s(tf ) = 1 , s(0) = ṡ(0) = s̈(0) = ṡ(tf ) = s̈(tf ) = 0 (3.14)

Equation 3.13 and 3.14 result in the following time scaling:

s(t) = 10(t/tf )
3 − 15(t/tf )

4 + 6(t/tf )
5 (3.15)

The plots of s(t) and its derivatives are shown in Figure 3.5.

Figure 3.5 Plots of s(t), ṡ(t) and s̈(t) for a fifth order polynomial time scaling.

It should be noted that the time scaling represented in Figure 3.5 does not take into

account the maximum allowable angular velocity or acceleration that the actuator is

capable of producing. To resolve this, the tf parameter is set to be large enough such

that the torques required at the joints after applying Equation 1.1 (inverse dynamics) do

not exceed the actuator limits.
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After defining the starting configuration Tstart (which can be chosen to be the home

configuration Ms7 without loss of generality), end configuration Tend and the time scaling,

there are 3 options for the motion. The motion can be resolved in joint space, task space

or screw space. In this section, the straight line trajectory is analyzed in task (Cartesian)

space.

3.2.2. Computed Torque Controller (CTC) Implementation Challenges

In the closed-loop simulation, it is assumed that each joint’s motor can be actuated

independently. As discussed in Section 1.1., the objective of the controller is to track a

straight-line trajectory in Cartesian space with a quintic time-scaling that ensures finite

jerk throughout the trajectory with zero acceleration at the endpoints. Therefore, the main

idea is that the end-effector starts from the home configuration Ts7(t = t0 = 0) = Ms7 ∈

SE(3) (Equation 3.5) and moves in a straight-line Cartesian space trajectory to some

arbitrary configuration Ts7(t = tf ) ∈ SE(3). Subscript s7 indicates that the configuration

of Joint 7 is in the space (inertial) frame. For the purpose of the closed-loop simulation

the initial and final configurations of the end-effector were chosen as in Equations 3.16

and 3.17.

Ts7(t0 = 0) =


0 0 1 0.9860

0 −1 0 0.1517

1 0 0 0.3170

0 0 0 1

 = Ms7 ∈ SE(3) (3.16)

Ts7(tf = 10) =


−0.8192 0 0.5736 0.6001

0 −1 0 0.1517

0.5736 0 0.8192 1.0584

0 0 0 1

 (3.17)

The generated straight-line trajectory in Cartesian space of the end-effector is illustrated
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Figure 3.6 Desired end-effector displacement.

in Figure 3.6, where x07(t), y07(t), z07(t) are components of the end-effector configuration’s

Ts7(t) ∈ SE(3) translational vector p(t), and rs7(t) is its norm (rs7(t) = ∥p(t)∥).

The challenge in this closed-loop simulation is to generate a reference desired trajectory

(θd, θ̇d, θ̈d), since the angular velocity θ̇d and angular acceleration θ̈d are not simply the

ones that can be obtained from Equations 3.11 and 3.12. The reason for this is that the

straight-line trajectory of the end-effector in Cartesian space requires the solution of

Equation 3.10 that involves the matrix logarithm and exponential mapping, and, in addition,

the 7R robot’s joint configuration can have multiple solutions for the same configuration

of the end-effector (Chiaverini et al., 2016). Therefore, the first problem is to solve for

the desired joint angles vector θd for a particular end-effector configuration using inverse

kinematics (there are infinite solutions for redundant systems) (Chiaverini et al., 2016),

and the second problem is to obtain the first θ̇d and second θ̈d derivatives of the desired
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joint positions to generate a trajectory (θd, θ̇d, θ̈d) for all joints that can be used for the

simulation of robot dynamics.

3.2.3. Inverse Kinematics Implementation

The first of the two challenges is solved by using a numerical inverse kinematic

algorithm that utilizes the Newton-Raphson iterative method of nonlinear root finding

(Lynch & Park, 2017), (Chiaverini et al., 2016). This method involves an initial guess for

the joint angles θ0 and the inverse of the Jacobian matrix J ∈ R6×7 given in Equation

1.11. Since the Jacobian matrix is not square, the computation of the pseudo-inverse J† =

JT(JJT)−1 such that JJ† = I is required. Given the desired end-effector configuration

Tsd ∈ SE(3), the iterative method can be outlined as follows:

Vs = [AdTsb
]{log(T−1

sb (θi)Tsd)}−∧ (3.18)

where Vs ∈ R6 is the spatial twist that takes the current calculated configuration of the

end-effector Tsb(θ
i) ∈ SE(3) to the desired configuration Tsd if followed for a unit of

time. Thus, the idea behind this iterative method is to drive Vs to zero, which would

mean that no twist is required to move currently calculated Tsb(θ
i) to the desired Tsd. This

ensures that the joint positions θi ∈ R7 have converged. The update of the joint positions

is given as follows:
θi+1 = θi + J†

s (θ
i)Vs (3.19)

The iterations are carried out until error tolerances ∥ωs∥ < ϵw and ∥vs∥ < ϵv are

satisfied or the maximum number of allowed iterations is reached. The (−∧) symbol

represents the “un-wedge” mapping that maps se(3) ∈ R4×4 → R6; the opposite is the

“wedge” (∧) mapping. Although the initial guess is known for the home-configuration,

a small offset is given to the θ0 vector so that the Newton-Raphson converges within the
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preset tolerances without any errors. After obtaining the θ(t) trajectory for all joints, the

initial offset given to the θ0 vector is subtracted from the entire trajectory θ(t).

3.2.4. Numerical Derivatives of Joint Angles Using Bézier Curves

Now, as the joint angles trajectory (θd) is obtained, the task is to obtain the first and

second derivatives such that the dynamics problem is well-posed (θd, θ̇d, θ̈d). Therefore,

the derivatives are obtained numerically using Bézier Curves. The detailed algorithm is

outlined in (Pastva, 1998), and it is important to mention that, in this work, Bézier Curves

were only used to approximate the trajectory in the vertical direction.

The accuracy of the Bézier Curve fits was quantified using the Mean Arctangent

Absolute Percentage Error (MAAPE), given in (Kim & Kim, 2016), because the trajectory

of the end-effector is very close to zero in joint space, rendering Mean Absolute Percentage

Error (MAPE) ineffective. The MAAPE method was implemented in the following way

for a particular order of Bézier Curve:

MAAPEj
i =

1

N

N∑
k=1

arctan

(∣∣∣∣∣θdi(tk)− θjbi(tk)

θdi(tk)

∣∣∣∣∣
)

(3.20)

N = tf/∆t (3.21)

where superscript (j) indicates the order of the Bézier Curve, subscript (i) refers to the

joint number, θdi is the desired i-th joint angle trajectory, θjbi is the corresponding j-th

Bézier Curve fit approximation at discrete time (tk), and N is the number of steps. Figure

3.7 demonstrates that the MAAPE reduces significantly as the Bézier Curve fit order

is increased; even the fifth-order Bézier Curves well approximate the trajectories of all

seven joints. The (θ̇d, θ̈d) were obtained by differentiating the Bézier Curves as outlined in

(Pastva, 1998). The results for joints 1 through 6 are demonstrated in Figure 3.8.
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Figure 3.7 MAAPE vs. Bézier curve order.

As can be seen from the figures, the velocity is zero at the endpoints of the trajectory

for all joints. However, it can be observed that the acceleration is non-zero for most of

the joints at the beginning and at the end of the motion. This can be explained by the fact

that the constraint on finite jerk and zero acceleration at the trajectory endpoints was only

imposed on the end-effector and not necessarily on the joints themselves. Moreover, it is

important to mention that joint trajectories (θ, θ̇, θ̈) were computed offline for all joints

given only prior knowledge of initial (Equation 3.16) and arbitrary final (Equation 3.17)

configurations of the end-effector.

3.2.5. CTC Implementation and Introduction of Uncertainties

After the desired trajectory (θd, θ̇d, θ̈d) was obtained, the following feedforward

plus feedback linearizing controller, also known as the computed torque controller, was
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Figure 3.8 Desired trajectory (θd, θ̇d, θ̈d) of Joints 1 through 6.

implemented (Lynch & Park, 2017; Markiewicz, 1973; Paul, 1972; Raibert, 1978):

τ = M̃(θ)

(
θ̈d +Kpθe +Ki

∫
θe(t)dt+Kdθ̇e

)
+ h̃(θ, θ̇) (3.22)

θe(t) = θd(t)− θ(t) (3.23)
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where Kp = kpI , Ki = kiI and Kd = kpI are 7× 7 gain matrices with nonnegative scalar

diagonal elements kp = 50, ki = 20, and kd = 10. The tilde sign above the configuration

dependent mass matrix M̃(θ) and lumped forces h̃(θ, θ̇) matrix represents that there might

be some uncertainties in the parameters of the system, such as the locations of the center

of gravity, locations of screw axes, mass and inertia properties of the links, and gravity

vector. Random uncertainties up to 2% were given to the position vectors of the relative

configuration matrices Mi−1,i ∈ SE(3), i ∈ [1, 2, 3...7] and gravity vector g ∈ R3.

A robust controller will compensate for these uncertainties, and the controller given

in Equation 3.22 demonstrates a degree of robustness as shown in Figures 3.13 and 3.14

which demonstrate the ideal desired and simulated actual joint trajectories. The trajectory

with uncertainties is still very close to the desired trajectory and the joint angle errors

are the largest for the joints that are the closest to the end-effector, making the position

(Cartesian space) error minimal.

The simulated trajectory in Cartesian space after applying the control law without

uncertainties is shown in Figure 3.9, which demonstrates that the computed torque controller

achieves the goal of tracking a straight-line in Cartesian space. The plot of joint angle

errors is demonstrated in Figure 3.12. It should be noted that the errors in joint angles are

on the order of a tenth of a degree, reaching a maximum value of 0.2◦. Corresponding

errors in the end-effector position are presented in Figure 3.11 where xe = xd − x,

ye = yd − y, ze = zd − z and re = rd − r. Position errors are on the order of 2 millimeters

towards the end of the motion and reach a maximum error of ye = 6mm. However, the

error in the magnitude of the position vector p(t) barely exceeds 2mm.
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Figure 3.9 Closed-loop simulation, tsim = 10 seconds, and ∆t = 0.01 seconds.
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Figure 3.10 Torque trajectories, all joints.

Figure 3.11 Errors in end-effector position, simulated trajectory without uncertainties.

3.2.6. Comparison of D-H and PoE: Sinusoidal Trajectories

Using this recursive method the torques for each joint can be calculated using the

D-H parameters approach (Korczyk et al., 2021) or PoE approach described by Equation
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Figure 3.12 Errors in joint angles, simulated trajectory without uncertainties.

1.1. To generate the torque and the angular positions, velocities and accelerations of each

joint must be specified. The specific trajectories are provided as functions of time as seen

in Table 3.1, which results in the torques plotted in Figures 3.15 and 3.17. Modeled in

SimScapeTM, the numerical simulation of the dynamics described analytically by the D-H

parameters model generates identical results as shown by the subtraction of the results of

the D-H parameters method from those of the numerical simulation (Figure 3.16).
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Figure 3.13 Simulated trajectory without uncertainties.

The PoE method, on the other hand, shows a different torque profile as demonstrated

in Figure 3.18, which indicates that the SimScapeTM and D-H approaches calculate the

torque profiles in a different way. This was performed to analyze the veracity of both

mathematical approaches, D-H and PoE methods performed completely coded using
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Figure 3.14 Simulated trajectory with uncertainties.

functions developed exclusively from the code editor in MATLAB. The SimScapeTM

numerical method described the algorithm graphically using the Simulink environment

through a modular block approach.
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Table 3.1

Joint Trajectories

Joint Angular position Angular velocity Angular acceleration
1 sin(t) cos(t) -sin(t)
2 cos(t) -sin(t) -cos(t)
3 sin(t) cos(t) -sin(t)
4 cos(t) -sin(t) -cos(t)
5 sin(t) cos(t) -sin(t)
6 cos(t) -sin(t) -cos(t)
7 sin(t) cos(t) -sin(t)

Figure 3.15 Joint torques generated by D-H
parameters method.

Figure 3.16 Relative error propagation
between D-H and SimScapeTM.

Figure 3.17 Joint torques generated by PoE
method.

Figure 3.18 Relative error propagation
between PoE and SimScapeTM.

The joint torque profiles generated using the recursive method (Figure 3.15) and

PoE inverse dynamics method (Figure 3.17) produce different torques throughout the

trajectory defined in Table 3.1. Joint 2 shows the most discrepancy where the difference

between PoE and D-H torque trajectories reach a maximum value of 4 Nm. This could
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be caused by the assumptions made when modeling the links using D-H parameters when

typing the code and modeling in Simulink. More information on these discrepancies will

be detailed in Section 3.3.1.

3.3. Experimental Implementation

The finite jerk straight-line Cartesian trajectory was implemented on the Sawyer

robotic arm using the Ubuntu-Robotic Operating System (ROS) environment. The joint

space trajectories were communicated through the Sawyer Python API to the robotic

arm running SDK mode. Experimental joint angles, velocities, and efforts (torques) were

recorded. The recorded experimental data had noise, though the end-effector accurately

tracked the desired Cartesian trajectories.

3.3.1. Curvilinear Trajectory

To ensure the validity of the D-H parameters and the PoE approaches, an experiment

was conducted to compare the simulated torque trajectories with experimental ones.

The comparison proved the accuracy of both methods, and it was observed that the PoE

approach is more accurate than the D-H parameters approach. The trajectory for these

tests was generated by commanding the robot to move from its zero (or rest) position, in

which all links were configured to extend to the robot’s furthest reach in the x-direction.

Afterward, all links were configured to extend to the robot’s furthest reach directly to the

upward pose in the z-direction. The joint angles, angular velocities, angular accelerations,

and torque profiles corresponding to this motion are shown in Figures 3.19-3.22, which

results in a curvilinear trajectory of the end-effector in Cartesian space. The simulated

torque profiles of the D-H and PoE approaches are shown in Figures 3.23 and 3.24 respectively.
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Figure 3.19 Experimental joint angles. Figure 3.20 Experimental joint velocities.

Figure 3.21 Experimental joint
accelerations.

Figure 3.22 Experimental joint torques.

The error between the models and the robot can be determined by subtracting the

simulation profiles from the robot generated torque profiles, as shown in Figures 3.25

- 3.31. The PoE error (shown in red) is less than the D-H parameters error on all of the

joints except the first joint, where both methods demonstrated exactly the same degree

of accuracy. It is worth mentioning that the PoE method exhibits exceptional accuracy

in all pitching joints (joints 2,4, and 6), where, in contrast, the D-H parameters method

demonstrates a high margin of error up to 7 Nm in joint 2 (Figure 3.26), which is the

largest error.

Joint two is the first pitching joint, meaning it is the first joint that resists gravitational

effects while moving the subsequent masses. As joint number two is required to move
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such a large amount of mass, it is expected that this joint will most likely result in the

largest torque, which is confirmed by the prediction of the D-H and PoE algorithms

(Figures 3.23 and 3.24) and shown by the Sawyer torque profile (Figure 3.22). While

the profiles appear to be similar in shape, the magnitudes, however, do not match exactly.

Figure 3.23 Simulated torque profile
generated by D-H method.

Figure 3.24 Simulated torque profile
generated by PoE method.

Figure 3.25 Joint 1 error. Figure 3.26 Joint 2 error.

Figure 3.27 Joint 3 error. Figure 3.28 Joint 4 error.
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Figure 3.29 Joint 5 error. Figure 3.30 Joint 6 error.

Figure 3.31 Joint 7 error.

3.3.2. Straight-line Trajectory

The Cartesian straight-line trajectory was tested on the robotic arm multiple times

to confirm that it is repeatable. All of the 6 experimental runs produced almost identical

joint space angles, velocities and torques with some negligible variation in the noise.

Although experimental torque profiles exhibit some noise, they follow the desired

profiles well as demonstrated in Figure 3.32. Throughout the trajectory, the difference

between the experimental torque profiles and the ones obtained using the inverse dynamics

algorithm is around 2 Nm most of the time, with rare spikes up to 5 Nm lasting for a

couple of milliseconds. The joint space trajectories almost match the desired trajectories,

with the exception of joint 6 which was experiencing unusual behavior while following

the simulated profile that can be observed as a jagged line in Figure 3.33. The difference
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between the experimental and simulated joint angles occasionally reaches 0.01 rad for all

of the joints except joint 6, where the error spikes up to 0.04 rad several times, which is

abnormal as demonstrated in Figure 3.34. Despite the aberrant behaviour of joint 6, the

Cartesian error of the end-effector does not exceed about 6.4 mm in any of the three axes

as shown in Figure 3.35.

Figure 3.32 Experimental (solid) and simulated (dashed) torque trajectories.

Figure 3.33 Experimental (solid) and simulated (dashed) joint angle trajectories.
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Figure 3.34 Absolute error in joint angle trajectories (experimental-simulated).

Figure 3.35 Absolute error in end-effector Cartesian coordinates.

3.4. Discussion

An open-loop simulation, straight line and curvilinear closed-loop simulations were

completed. The closed-loop trajectories were implemented on the Sawyer robotic arm for

validation purposes.

To ensure the accuracy of the analytical dynamic models (D-H parameters and PoE)

the methods were compared to a numerical simulation developed in the SimScapeTM

Multibody environment and experimental results obtained from the Sawyer robotic arm.
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The comparison showed that the PoE calculates torque profiles in a different way as

compared to the D-H and SimScapeTM approaches. The PoE approach was more accurate

when compared against the experimental results, where the D-H and SimScapeTM methods

were less accurate. These results demonstrate that the PoE approach is ultimately a more

accurate approach for computing inverse dynamics.

A computed torque controller was used along with the Lie Group and Lie algebra

representation of dynamics and kinematics of a 7-revolute joint open-chain manipulator

to produce a straight-line motion of the end-effector in Cartesian space with quintic

time-scaling that ensures finite jerk throughout its motion. This goal was achieved; however

the jerk was not finite for some of the joints due to the fact that the finite-jerk motion

constraint was only imposed on the motion of the end-effector in Cartesian space and not

on the joint space. The controller demonstrated a degree of robustness and compensated

for small uncertainties in the model parameters. Since a 7-revolute joint manipulator

is a redundant system, the torque trajectories that correspond to the motion studied can

be optimized by, for instance, penalizing the first rolling and pitching joints that move

a lot of mass, which would theoretically decrease the amount of torque required for the

same motion. The experimental results obtained by feeding the simulated joint space

trajectories to the Sawyer robotic arm yielded accurate trajectories of the end-effector

in Cartesian space despite the noise that was present in the recorded experimental joint

angles, velocities and torques. In addition, the inverse dynamics algorithm’s accuracy was

validated by comparing the torque profiles of the simulated and experimental trajectories.

The possibility of adding finite jerk constraints to the joint space while satisfying the

constraints on the end-effector was explored and is discussed in Chapter 5.
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4. Constant Screw Axis Trajectory Generation

In this chapter, the application of Neural Networks (NNs) and Machine Learning

(ML) algorithms within the trajectory generation framework is presented. The main

objective is to demonstrate that the trajectory of an end-effector of a multilink robotic

system can be obtained by generating a path via the Bézier curve, imposing a finite jerk

constraint, and using the NN and ML algorithms to obtain the Constant Screw Axis

(CSA) trajectory closest to the chosen path. These constraints are of importance because

the the finite jerk forces the jerk to be finite throughout the motion of an end-effector,

which reduces the vibrations within the robotic arm or any other manipulator, and the

CSA smooths the trajectory in Special Euclidean (SE(3)) space. First, a Bézier curve is

chosen to define the path that an end-effector should follow. Subsequently, the finite jerk

constraint is imposed. Lastly, NN and ML algorithms are used to obtain the closest CSA

trajectory to the desired path. Since there are multiple CSA trajectories satisfying the

initial configuration and final position, NN and ML algorithms are employed to minimize

the Euclidean distance between the desired path (Bézier curve) and the actual obtained

CSA trajectory.

4.1. Methodology

During the motion of a robotic arm or any other manipulator, an end-effector is tasked

to move to a certain position at a specified time which is called a trajectory. The trajectory

of an end-effector consists of a pure geometrical (Cartesian) position called the path and a

time-scaling, which specifies the times when those geometrical (Cartesian) positions are

reached (Lynch & Park, 2017).
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There are numerous ways of defining both the path and the time-scaling of a trajectory.

In this algorithm, Bézier curves are used to generate the path of an end-effector due to

the virtue of the control polygon’s ability to give a clear indication of whether the path

is colliding with any nearby obstacle or object (Pastva, 1998). The convex hull points

which describe a Bézier path are easily constrained in 3D space to ensure the arm does

not collide with an obstacle in the path. A quintic polynomial time-scaling is chosen

simply because it imposes the finite jerk constraint on the trajectory, which eliminates any

undesired vibration of a robotic manipulator (Bobrow et al., 1985; Shin & McKay, 1985).

As the trajectory is fully defined, the Constant Screw Axis (CSA) trajectory is obtained

by combining the knowledge of the initial and final Cartesian coordinates and the quintic

time-scaling constraint. As there is no constraint on the final configuration’s orientation,

there are infinite CSA trajectories passing through the endpoints while satisfying the

finite jerk constraint. However, as it is required to follow the path generated using Bézier

curves, Machine Learning (ML) or Neural Networks (NN) can be used to minimize the

distance between the desired generated path and the CSA trajectory by converging three

parameters defining the endpoint’s orientation.

4.1.1. Path and Time-Scaling

The control points for the path defined by Bézier curves lie within the work space

of the manipulator, so that the end-effector can reach all cartesian positions given its

geometrical limitation. An example of a Bézier curve with 4 control points is given in

Figure 4.1.

The next step is to introduce the time-scaling that imposes the finite jerk constraint

on the trajectory. The time-scaling that is capable of imposing this constraint is a quintic
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Figure 4.1 A Bézier curve example.

polynomial time-scaling function s(t) that has the following mapping: t ∈ [0, tf ], s :

[0, tf ] → [0, 1]. The time-scaling described in Equations 3.13-3.15 is utilized. Also, in

order to avoid a discontinuous jump in acceleration, the path endpoints s̈(0) and s̈(tf )

are constrained to have zero acceleration, which forces the jerk to be finite throughout

the whole path. The general expression for the quintic time-scaling is given by (Malik,

Henderson, & Prazenica, 2021b):

s(t) = a0 + a1(t/tf ) + a2(t/tf )
2 + a3(t/tf )

3 + a4(t/tf )
4 + a5(t/tf )

5 (4.1)

It should be noted that the time scaling represented in Figure 3.5 does not take into

account the maximum allowable angular velocity or acceleration that the actuator is

capable of producing. To resolve this, the tf parameter is set to be large enough such

that the torques required at the joints (inverse dynamics) do not exceed the actuator limits

(Malik, Henderson, & Prazenica, 2021b).
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4.1.2. Constant Screw Axis Parameters

As the path and the time-scaling are defined, the CSA trajectory can be obtained by

solving the equation following (Lynch & Park, 2017):

T (s) = Tstart exp(log(T
−1
startTend)s) , s ∈ [0, 1] (4.2)

where, T (s), Tstart, Tend ∈ SE(3) are the configuration matrices of an end-effector at

arbitrary initial and final times respectfully. Configuration matrices store the information

regarding end-effector frame’s (or any object’s) orientation and position in the following

form:

T =

[
R p

0 1

]
∈ SE(3) (4.3)

where R ∈ SO(3) is the orientation of the end-effector with respect to the inertial

frame represented as a member of the special orthogonal group and p ∈ R3 is a vector

that represents the inertial position of the end-effector frame in Cartesian space. The

initial configuration’s Tstart orientation and position are both defined, whereas the final

configuration’s Tend position is defined but the orientation is not. By manipulating the

orientation of the final configuration Rend, the CSA trajectory’s path changes, which can

be employed to fit to the desired Bézier curve path. This can be accomplished by utilizing

3 rotation matrices in terms of 3 unknown angles (θ1, θ2, θ3):

Rend = RstartRx(θ1)Ry(θ2)Rz(θ3) (4.4)

where,

Rx(θ1) =

1 0 0

0 cos θ1 − sin θ1

0 sin θ1 cos θ1

 ∈ SO(3) (4.5)
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Ry(θ2) =

 cos θ2 0 sin θ2

0 1 0

− sin θ2 0 cos θ2

 ∈ SO(3) (4.6)

Rz(θ3) =

cos θ3 − sin θ3 0

sin θ3 cos θ3 0

0 0 1

 ∈ SO(3) (4.7)

Given the orientation Rend of the final configuration Tend, Equation 4.2 can be used to

obtain the entire CSA trajectory. However, in order for the CSA trajectory’s path to match

with the desired Bézier curve path, the final orientation’s parameters (θ1, θ2, θ3) must

converge to the matching values. This can be accomplished by an iterative optimization

algorithm or with a NN (Malik, Lischuk, et al., 2021b).

This problem of computing matching parameters can be approached differently by

investigating the Bézier curve path’s first segment’s relation to the known start frame

(orientation) Rstart and the last segment’s relation to the final frame (orientation) Rend,

such that the Bézier curve path starts and ends with the same “direction”. In other words,

determine how the start frame should be rotated such that, at the end of the path, the last

segment has the same vector components in the last frame as the first segment’s vector

components in the start frame. The first segment of the Bézier curve in the start frame is

given by:
v
(1)
start = R−1

startv
(1)
s (4.8)

where v
(1)
s ∈ R3 is the vector components of the first segment of the path given in the

inertial frame. The last segment represented in the final frame is given by:

v
(2)
end = R−1

endv
(2)
s (4.9)
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where v
(2)
s ∈ R3 is the last segment of the path given in the inertial frame. Now, in order

for the CSA trajectory’s path to be close to the Bézier curve path, vector components

of the first segment in the start frame should be equal to vector components of the last

segment given in the final frame:
v
(1)
start = v

(2)
end (4.10)

This yields the following condition:

R−1
startv

(1)
s = R−1

endv
(2)
s (4.11)

If the condition given in Equation 4.11 holds true, the orientation parameters (θ1, θ2, θ3)

have converged to the values that ensure that the “direction” of the Bézier curve is the

same in both the starting and final orientations. However, it should be noted that Equation

4.11 is not a well posed problem and it has multiple solutions, all of which could be

“close” to the Bézier curve but not fully matching, which also means that the CSA trajectory

path is not guaranteed to be fully identical to the Bézier curve. Nevertheless, this approach

helps with the mathematical formulation and provides a first guess in an iterative method

or a NN.

4.1.3. Fitness Function

Alternatively, another method could be used to check the “closeness” of the CSA

trajectory to the desired path defined by the Bézier curve. The following equation demonstrates

the error of the actual CSA trajectory obtained by some arbitrary θ1, θ2, θ3 parameters,

which is used to quantitatively evaluate the algorithm effectiveness:

E =
√
(Pa − Pd)ξ[(Pa − Pd)ξ]T (4.12)

where E is the scalar metric defining the magnitude of curve “fitness”, Pa is an R3×n

matrix that consists of “n” Cartesian points defining the CSA trajectory’s path, Pd is an
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R3×n matrix that consists of n Cartesian points defining the desired Bézier curve path,

and ξ is a column-wise vector norm mapping such that: P ∈ R3×n→ p ∈ R1×n.

The selected NN and ML algorithms can use Equation 4.4 and then check the fitness

of the CSA trajectory’s path with the condition shown in Equation 4.11 or the fitness

parameter given in Equation 4.12. The latter is used to quantitatively evaluate the

effectiveness and compare the NN and ML algorithms.

4.2. Results

The PSO algorithm is initialized in this work by assigning particles to a search space

(S-space) S ∈ R3. Initial particles are evenly spaced in the S-space with 5 coordinates

ranging from −90◦ to +90◦ in all axes, which yields 125 equally spaced particles that are

shown in Figure 4.2. Once particles xk
i are initialized, the velocities vki are initialized

Figure 4.2 Particles x0
i assigned to S-space.
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randomly. Each particle records the best personal fitness to the desired Bézier curve and

is cognizant of the best global solution amongst the swarm. The fitness is checked by

utilizing Equation 4.12. The velocity and position of each particle is updated according to

the following update law:

vk+1
i = κ[ωvki + c1r1(PBk

i − xk
i ) + c2r2(GBk − xk

i )] (4.13)

xk+1
i = xk

i + vk+1
i (4.14)

κ =
2

|2− ϕ−
√

ϕ2 − 4ϕ|
, ϕ = c1 + c2 > 4 (4.15)

where κ is the constriction factor limiting the magnitude of the velocity, ω is the inertia

which controls the exploration and exploitation in the search space, c1 and c2 are cognitive

and social parameters respectively, r1 and r2 are random variables with a range of [0, 1],

PB is the best recorded individual fitness, and GB is the best recorded global (swarm)

fitness.

In order to assess the performance of the PSO algorithm, a sample Bézier curve

trajectory was generated. The following parameters were used when applying PSO to

fit the CSA trajectory to a Bézier curve: ω = 1, c1 = 2, c2 = 2.5, r1 and r2 are random

variables following a uniform distribution over the set [0, 1]. The stopping criteria were

maximum number of iterations k = 200 or variance in the fitness of a given iteration,

var(E) < 1 × 10−7. Starting from the initial particle distribution given in Figure 4.2

and using update Equations 4.13 - 4.15, the PSO algorithm was able to reach a minimal

possible value of the fitness metric evaluated using Equation 4.12. Figure 4.3 demonstrates

the convergence of the swarm in the S-space. Because of the stochastic parameters in the

update law, the number of iterations required for convergence varied from run to run
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from approximately 16 to 20 iterations, and it should be noted that all 125 particles went

through the provided number of iterations. It was observed that removing the constriction

parameter κ from the swarm intelligence leads to an increased number of iterations that

almost doubles in some cases.

Figure 4.3 Particles movement in S-space as iterations progress.

Notably, Figure 4.4 demonstrates the comparison of the handpicked CSA trajectory

(shown in blue), swarm CSA trajectory (shown in green), Q-Learning trajectory (shown

in yellow), and DQN trajectory (shown in purple) with the desired Bézier curve path

(shown in red). It can be seen that the CSA trajectories obtained from PSO, Q-Learning,

and DQN are “closer” to the desired Bézier curve path; furthermore, these trajectories

intersect with the desired path at some points and their average fitness values calculated
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using Equation 4.12 are 0.9478, 0.922, and 0.957 respectively, as shown in Table 4.2.

In contrast, the handpicked trajectory does not cross paths with the desired trajectory

and even has constant displacement error along the z-axis with fitness value of 0.985.

However, it is important to mention that the swarm generated CSA trajectory still does

not fully track the Bézier curve path, which can be attributed to the fact that the existence

of a CSA path is not guaranteed for any given Bézier curve path. In other words, there

might not be any axis along which the generated CSA trajectory can fully approximate

the Bézier curve. In addition, the fitness metric was found to be case-sensitive as the value

of the fitness highly depends on the chosen desired Bézier curve path. Also, since the

computation using the PSO method is supposed to dynamically converge to a solution, a

new calculation will need to be performed every time and for each new θ inputs.

Figure 4.4 Comparison of CSA trajectories.
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Q-Learning was also used to generate a CSA trajectory in order to compare with

PSO, and with some handpicked θ inputs. The following parameters were used when

applying Q-Learning to fit the CSA trajectory to a Bézier curve: the learning rate α =

1.1, the discount factor γ = 0.8, the initial exploration factor ϵ = 1.0, the initial θ

vector was randomized with values from the set [−180, 180], and the change per iteration

in the θ vector is δθ = ±0.1 deg. Three states were chosen: initial, transition, and

final. Most calculations would occur during the transition state, where an action would

be chosen, performed, evaluated and the reward would be given. It must be noted that

having only three states allows to simplify computations and utilize Equation 4.12 for

fitness calculation, similar to what was done for the PSO method. Three distinct types of

actions were allowed: increase the angle, decrease the angle, or keep the angle unchanged.

Furthermore, there are 3 elements in the θ vector, which results in a total of 27 items on

the overall actions list.

To evaluate results after each iteration, the newly calculated fitness was compared

to the fitness of the previous iteration and the reward was given based on the result. If

fitness for the current iteration is lower than the fitness for the previous iteration, the agent

will receive a positive reward. If the situation is the opposite or the current fitness equals

the previous fitness, a negative reward will be given to the agent. A stopping criterion

was added to the algorithm: the θ vector parameters are assumed to be converged if the

variance in the fitness of 500 iterations is var(E) < 1 × 10−8. It must be noted that the

number of iterations required for the Q-Learning algorithm to converge highly depends

on the initial value of the θ vector. However, it was found out that a maximum of 6000

iterations provides good convergence from any initial θ. An example of this convergence
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can be seen in Figure 4.5, where the calculation of the CSA error trajectory (fitness)

according to Equation 4.12 is shown against the number of iterations. It can be seen that

the algorithm converges rather quickly, yielding the CSA trajectory shown in Figure 4.4.

Despite providing a solution, however, this method suffers from a similar issue in

terms of computed path storage. Although the Q-table provides the ability to store actions,

it might not be very useful if the θ inputs change drastically. This is because, if the Q-table

is stored permanently and reused with new inputs, the agent will attempt to bring itself to

the same θ values that were computed during training. Depending on the starting θ, this

may require long or short computation time. The main problem is that, for some θ, there

might be closer, more applicable values than the ones computed by the Q-learning agent

has solved for during training. Alternatively, depending on the θ inputs and if the Q-table

is reused, the resultant CSA trajectory can have a very high fitness value, thus being quite

far from the Bezier curve. To avoid these issues, similar to the PSO method, the Q-table

can be recomputed each time for new θ inputs.

Figure 4.5 CSA error trajectory calculation by Q-Learning.
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Finally, DQN was used to calculate the CSA trajectory. To implement this algorithm,

MATLAB with its Deep Learning and Reinforcement Learning toolboxes was used. To

comply with the MDP tuple, states were mapped to actions using a Neural Network. This

network consisted of six layers: the input layer, four hidden layers, and an output layer.

The first layer was selected to be a feature input layer with three nodes, each representing

the value within the θ vector. Due to the fact that each θ can only be within the [-180,

180] limit, normalization was not chosen for this layer. The second layer was selected

to be a fully connected layer with 24 nodes, followed by a ReLU layer that represents a

Rectified Linear Unit activation function. Next is another fully connected layer with 48

nodes, which was followed by another ReLU layer. The number of nodes was chosen to

simplify computations and, as a result, to decrease the time to perform it.

It was observed that increasing the number of nodes did not provide a significant

improvement in computation of the θ values for the CSA trajectory. The last layer was

chosen to be a fully connected layer with 27 nodes, where each node would represent

an action. An evaluation of each state-action pair was performed similar to the PSO and

Q-learning methods, using fitness calculation with Equation 4.12. A reward was given

to the DQN agent in a similar fashion as for the Q-learning method. That is, the agent is

rewarded if the fitness for the current pass is lower than its value for the previous pass.

The terminal condition was determined using computation of the variance in the fitness of

500 iterations for each training epoch, which corresponded to var(E) < 1× 10−8. Other

training parameters for the NN were set as shown in Table 4.1.

Similarly to the PSO and Q-learning methods, DQN converges to a solution where

the fitness is minimized, as can be seen in Figure 4.4. It was also observed that, at times,
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Table 4.1

Selected DQN Parameters

θ vector between [-180, 180]
Change per iteration δθ ±0.1 deg

Learning rate 0.1
Discount factor 0.9

Gradient Threshold 1
Mini Batch Size 64

Target Smooth Factor 1e-3

DQN can find a solution that has lower fitness than Q-learning, although it takes DQN

longer to do so due to its complexity. This can be mitigated by increasing the learning rate

to about 0.7, allowing DQN to find the optimal solution quicker without much overshooting.

A comparison of PSO to Q-learning and DQN using various parameters with handpicked

θ vectors is provided in Table 4.2. It must be noted that an average was taken over four

cases for different θ inputs, where finding the CSA trajectory for each case was done for

five trials.

Table 4.2

Algorithm comparison

Property PSO Q-learning DQN
Avg fitness 0.948 0.922 0.957

Avg computation time 6.00 9.56 88.06
Avg iterations to converge 2125* 3344 4328

Despite being able to converge to a solution with minimized fitness, DQN was found

to have issues with the overall stability. This is because DQN performs better with discrete

action spaces, rather than with continuous ones. For our problem, as was mentioned

earlier, the action can be either increasing the angle by a constant increment δθ, decreasing

the angle by a constant δθ, or keeping the angle unchanged. However, this property can
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also be continuous, meaning that it can change after each iteration of the calculation. For

example, in one iteration, an angle can be chosen by an algorithm to be decreased by

0.5 degrees, but in the next iteration it can be decreased by 0.1 degrees, suggesting that

the reinforcement learning agent should understand that it does not have to increment

the angle by too much to avoid overshooting. Having discrete angle increments works

well for this problem when PSO and Q-learning are used, as these algorithms only need

to converge to one solution and training through multiple epochs is not required, i.e.

computation can occur in one epoch with multiple iterations.

Additionally, PSO and Q-learning are less complex than DQN; “remembering” solutions

is not required and a computation for new inputs can be done rather quickly. A DQN

agent, on the other hand, is intended to be trained, saved and reused. However, with

the large solution space that the Bézier curve trajectory calculation poses, not every

action will be the same for different inputs; thus, for different θ vectors, different actions

are required to converge to a trajectory that will be reasonably close to a Bézier curve.

This can perhaps be mitigated by training the DQN agent for a large number of epochs,

possibly 10000 epochs or more. Another solution can be to implement an actor-critic

strategy for the algorithm, where the critic will be more active and responsible for evaluating

state observations and actions using Neural Networks, and the actor will be a separate

Neural Network that will evaluate state observations for maximizing the long-term reward.

This can be done for DQN, however, another algorithm such as Deep Deterministic Policy

Gradient (DDPG) may be more applicable, as it is intended to work with continuous

action spaces (Casas, 2017). For CSA trajectory calculation using this method, a continuous

action space can be represented as changing the value of each θ by a non-constant number
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δθ that will be updated every iteration and will lie within a certain range, for example

between [-10, 10] degrees. This is in contrast to the discrete action space that was used for

PSO, Q-Learning and DQN, where each θ was incremented/decremented each time by 0.1

deg.

4.3. Discussion

It was demonstrated that PSO, Q-leaning and DQN algorithms are able to generate

CSA trajectories “close” to the desired Bézier curve path, based on the fitness metric,

in a reasonable number of iterations. The algorithm can be generalized to any degree of

freedom robotic manipulator provided that the inverse kinematics solution satisfying

the end-effector path generated by the algorithm exists. Even though the goal of the

algorithms was to minimize the fitness value, it was observed that the existence of the

CSA trajectory that corresponds to a desired Bézier curve path is not guaranteed, which

makes the fitness parameter case-sensitive and not always applicable.

Nevertheless, the algorithms were able to find the “closest” curves for a given case

within a reasonable computation time and number of iterations. The PSO algorithm was

found to be the fastest, as was expected, with an average computation time of 6 seconds,

and also the most consistent, as fitness values for different trials within the same case

study were exactly the same, even though initial velocities were always randomized for

each trial.

Q-learning produced better fitness values on average; however, it was less consistent

and a bit slower than PSO, having the mean time of 9.56 seconds. In some cases, the

fitness value varied more than PSO for the same inputs and throughout different trials.

This indicates that PSO is more stable on average, and given its computation time, it can
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be argued that it can be used for near real-time operation, despite having to perform a new

computation each time new inputs are introduced.

DQN was also able to find the “closest” curves; however, it posed certain challenges

to be reliably reused as a pre-trained agent for any initial CSA trajectory θ input. To

accomplish this, it is possible that a lengthy and time consuming training will be required.

This training must encompass finding “closest” curves for a least 10000 epochs. On the

contrary, an alternative solution can be to utilize the DDPG algorithm. It works similar

to DQN but is more aligned to be used with continuous action spaces, as in the curve

calculation described in this chapter.
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5. Swarm Intelligence Trajectory Generation

This chapter is aimed to demonstrate a multi-objective joint trajectory generation

algorithm for a 7 Degree of Freedom (DoF) robotic manipulator using a combined Swarm

Intelligence (SI) - Product of Exponentials (PoE) method. Given a priori knowledge of

the end-effector Cartesian trajectory and obstacles in the workspace, the inverse kinematics

problem is addressed usin SI-PoE subject to multiple constraints. The algorithm is designed

to satisfy a finite jerk constraint on the end-effector, avoid obstacles, and minimize control

effort while tracking the Cartesian trajectory. The SI-POE algorithm is compared with

conventional inverse kinematics algorithms and standard Particle Swarm Optimization

(PSO). The joint trajectories produced by SI-POE are experimentally tested on the Sawyer

7 DoF robotic arm, and the resulting torque trajectories are compared.

The rest of the chapter is outlined as follows: Section 5.1. describes the robotic arm,

finite jerk end-effector trajectory generation, and the PoE forward kinematics (PoE-FK)

algorithm used in setting up the IK problem and fitness function for SI. Section 5.2.

outlines the SI-PoE algorithm and its fitness function along with parameters, collision

detection mechanism, particles’ initial conditions, and computational performance. Section

5.3. presents the resulting joint trajectories, methods used to smooth them, and error in

the end-effector’s position. Section 5.4. provides the simulated and experimental torque

profiles and discussion on how the SI-PoE parameteres can be varied case-by-case for

optimal performance. Finally, Section 5.5. will provide discussion and final remarks.

5.1. Methodology

The robotic arm used in the simulation and experiments is Rethink Robotics’ 7-revolute

(7R) Sawyer robot, which is shown in Figure 1.1, where the robotic arm is at its home
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configuration with all joint positions at zero (θ1 = 0, θ2 = 0, · · · , θ7 = 0). The home

configuration and all of the dimensions were taken from Universal Robot Description

Format (URDF) file dedicated to the Sawyer robot Robotics (2017), and the simple

geometry reconstructed in Matlab is shown in Figure 5.1. The Sawyer arm has 7 links

and 7 revolute joints, 4 of which are rolling and 3 are pitching joints.

Figure 5.1 Home configuration of the Sawyer robotic arm represented in Matlab.

Forward kinematics is realized using PoE-FK. This method was chosen because it

enjoys certain advantages over the conventional Denavit-Hartenberg parameters (D-H)

approach, which include but are not limited to intuitive geometric interpretation that leads

to an easier set up process, uniform treatment of revolute and prismatic joints, absence of

strict rules to assign frames, and concise and elegant formula.
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Given physical locations of joints in home configuration from the URDF file, the

screw axes in the space frame are shown in Equation 1.13. The PoE-FK formula, which

represents the position and orientation of a frame (point) attached to the n-th link, is

shown below:

Tsn = e[S1]θ1e[S2]θ2 · · · e[Sn]θnMsn (5.1)

where Msn ∈ SE(3) is a frame (position and orientation) attached to the robotic arm’s

n-th link given in home configuration. The complete derivation of the PoE-FK can be

found in Chapter 1. Now, the choice of frames (points) to be tracked by PoE-FK is of

paramount importance and is chosen by the user (Malik, Henderson, & Prazenica, 2021a).

For example, if the center of gravity (CG) of each link is to be tracked, the following

matrices extracted from the URDF file can be used:

Ms1 =


1 0 0 0.0244

0 1 0 0.0110

0 0 1 0.2236

0 0 0 1

 Ms2 =


0 −1 0 0.1078

0 0 1 0.1425

−1 0 0 0.3201

0 0 0 1

 (5.2)

Ms3 =


0 0 1 0.3568

0 1 0 0.1775

−1 0 0 0.3172

0 0 0 1

 Ms4 =


0 −1 1 0.5091

0 0 1 0.0663

−1 0 0 0.3218

0 0 0 1

 (5.3)

Ms5 =


0 0 1 0.7401

0 1 0 0.0309

−1 0 0 0.3189

0 0 0 1

 Ms6 =


0 −1 0 0.9047

0 0 1 0.1314

−1 0 0 0.3109

0 0 0 1

 (5.4)
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Ms7 =


0 0 1 0.9860

0 −1 0 0.1517

1 0 0 0.3170

0 0 0 1

 (5.5)

However, it is important to mention that the computational effort increases per increment

of the number of points calculated by PoE-FK. The SI-PoE algorithm uses these points

calculated by PoE-FK to detect collisions, which could pose certain problems if few

points on the robotic arm are tracked. For instance, if few points are checked for collision,

a small obstacle might be passing between these two points without collision. However,

the physical links might be colliding with that obstacle.

Thus, the size of obstacles in the workspace is an important consideration, since both

the computational effort and the collision detection accuracy of the SI-PoE directly

correlate to the number of virtual points on the robotic arm that are chosen to detect

collisions and avoid obstacles. If few number of virtual points are implemented, the

boundary surrounding the obstacle can be increased in size to reflect collision. But this

approach will constrain the joint movement even further, which would limit the search

space for the SI-PoE algorithm, leading to underutilized collision-free space, undesirable

joint trajectories, or even absence of a solution in critical cases. In this case, a good

approach would be to choose, for instance, the CGs of all links as frames (points) for

tracking, interpolate between them depending on the heuristic of relative obstacle sizes,

and choose the appropriate size of boundaries surrounding obstacles. This way, the

PoE-FK (Equation 5.1) has to be called only for the CGs and not for virtual points between

them, which considerably decreases the computational effort while maximizing the

collision-free space.
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The trajectory of the end-effector is generated by utilizing Bézier curves for path

generation, and finite jerk model for the time-scaling (Malik, Henderson, & Prazenica,

2021b). In order to satisfy the finite jerk constraint on the end-effector, a quintic polynomial

time-scaling presented in Equations 3.13 through 3.15 is employed. The plots of the

time-scaling used to obtain the finite jerk trajectory is presented in Figure 3.5. The finite

time tf is chosen to be large enough so that the Sawyer robotic arm’s joint rates are not

saturated to the maximum.

An example of a Bézier end-effector path is shown in Figure 5.2. By applying the

time-scaling given in Equations 3.13 through 3.15, the trajectory now can be fully defined.

The resulting trajectory is smooth and satisfies the finite jerk constraint throughout the

whole duration of the movement. However, it should be noted that only the end-effector

movement satisfies the finite jerk constraint. Applying similar constraints on joint movement

is shown in Section 5.3.

Figure 5.2 A sample trajectory generated using Bézier path.
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The trajectory shown in Figure 5.2 was used as an input example to both the SI-PoE

algorithm simulation and the SI-PoE Sawyer experiment. The path of the end-effector

was generated using a Bézier curve, and quintic time-scaling given in Equation 3.15

was used to produce the finite jerk profile. The objective of the SI-PoE simulation is to

check the algorithm’s accuracy and efficiency; and the objective of the experiments is to

validate that the joint trajectories produced by SI-PoE can be followed accurately by the

Sawyer robotic arm. The experimental torque profile obtained in the Sawyer experiments

is compared with the PoE inverse dynamics formulation for the Sawyer robot developed

in Chapter 3.

5.2. SI-PoE Algorithm

The core of the SI-PoE algorithm is PSO and PoE. The latter was described in Section

5.1., while the former is a method that is a part of a larger family of SI algorithms, which

describe social behavior of various ecosystems and animals such as bird flocks, schools

of fish, etc (Eberhart & Kennedy, 1995; X.-S. Yang et al., 2013). PSO is metaheuristic

by nature, straightforward in implementation, and converges relatively quickly (Y. Shi &

Eberhart, 1999). These are the main reasons why it is utilized in a variety of disciplines

and applications. In simple terms, PSO iteratively searches through the solution space

using particles. Each particle contains parameters representing a solution (fitness), that

denotes its current position in the given solution/search space, as well as velocity, which

influences its position (fitness), guiding it to the most optimal solution. In general, PSO

is a global optimization algorithm, and therefore can provide solutions within a large

search space, which is very attractive for application to high-DoF robotic manipulators.

However, PSO suffers from high computational effort when solutions with a large degree
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of accuracy are required. Thus, combining PSO with a relatively fast PoE-FK algorithm

is proposed in this work. Furthermore, an additional advantage of combining PSO and

PoE is the ease of implementation of multiple objectives due to the concise and elegant

forward kinematics implementation. The SI-PoE method can be easily generalized to any

n-DoF robotic manipulator.

5.2.1. Swarm Initialization

The SI-PoE algorithm is initialized by assigning particles xi ∈ R7 to a search space

(S-space) Sspace ∈ R7. The initial location of the particles can be assigned arbitrarily, or

in a specific fashion that is proposed in this algorithm. In the proposed SI-PoE particle

Figure 5.3 Particles x0
i assigned to S-space starting from home configuration.

assignment, particles are evenly spaced in the S-space with an equal offset of ±1rad from

the “previous” solution in each (joint) coordinate, such that the swarm consists of 15

points as demonstrated in Figure 5.3, where each 7-dimensional swarm particle is a line.
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This method of particles’ initialization works remarkably well due to the fact that each

swarm point is essentially a change only in one of the 7 joint positions.

Most works choose the random method of swarm particles’ initialization. However,

when solving the IK problem, the known previous joint positions can serve as an initial

condition or basis for the particles’ distribution for each time step, which speeds up

the search process while not limiting S-space. The IK computation time comparing

random and the proposed particles’ initial conditions is demonstrated in Table 5.1, where

both a single end-effector position and a trajectory IK solution times are shown. The

random particle’s initialization was realized by adding random offsets in the range of

[−0.01, 0.01] rad to the previous successful joint positions. The stopping criteria were

number of iterations (k ≤ 20), and fitness to the desired trajectory (f < 0.0005).

Table 5.1

Comparison of random and proposed particles’ initialization

Method 1 point IK (s) Trajectory IK (s)
Random 0.24 13.61
Proposed 0.21 12.85

Although, the computational time advantage of the proposed method may seem

marginal, the real advantage becomes evident when comparing the consistency of the two

methods. The computation times demonstrated in Table 5.1 reflect the maximum number

of iterations since both methods were not able to meet the fitness criterion. However,

the proposed method was able to generate a trajectory with better accuracy in the same

number of iterations as the random method. This is demonstrated in Figure 5.4, where the

proposed swarm assignment has consistently small error throughout the trajectory, and
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the random swarm, on the other hand, exhibits large spikes in position error. It should

be noted that both methods enjoy the advantage of having previously calculated joint

positions, which drastically reduces the computation time and the scope of search in

S-space.

Figure 5.4 Position error with random swarm assignment (left) and proposed (right).

5.2.2. Swarm Fitness Function

As the objectives of the SI-PoE algorithm are to track pre-assigned trajectory while

satisfying finite jerk, minimizing joint effort, and avoiding obstacles, the fitness function

is shown below, where both the orientation and position of the end-effector can be tracked:

fi = σp∥pi − p
d
∥+ σR arccos

(
tr(RiR

T
d )− 1

2

)
+ σT

J | xk
i − θp |e + coll (5.6)
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where Ri ∈ SO(3) and p
i
∈ R3 are computed from PoE-FK,

Tsi = e[S1]xk
i (1)e[S2]xk

i (2) · · · e[Sn]xk
i (7)Mse =

[
Ri p

i

0 1

]
∈ SE(3) (5.7)

Mse =


0 0 1 0.9860

0 −1 0 0.1517

1 0 0 0.3170

0 0 0 1

 (5.8)

The σp and σR are the weighting parameters for position and orientation respectively.

Either of them can be set to zero for the cases where only position or attitude tracking is

desired; σJ = [0.01 0.009 0.008 0.007 0.006 0.005 0.004]T is the parameter penalizing

excessive joint movement, where the joints closest to the base are prioritized as they move

more mass; | · |e is the element-wise absolute value operator; Mse is the end-effector’s

home configuration; xk
i is the i-th particle in k-th iteration, θp is the current joint angles

(successful previous iteration), and coll is a scalar representing if any of the virtual points

collide with an obstacle in the workspace if the robot assumes the xk
i swarm particle’s

posture.

5.2.3. Collision Detection and Swarm Update Law

Collisions are detected using PoE, where the number of virtual points (frames) checked

by the SI-PoE depends on the obstacles’ size. The virtual particles are attached to a

specified link and this dictates their PoE-FK formula. For an arbitrary j-th particle that is

attached to the m-th link, the PoE-FK can be demonstrated as:

Tsj = e[S1]xk
i (1) · · · e[Sm]xk

i (m)Msj (5.9)
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where Msj is the position and orientation of the virtual particle in home configuration

given in the inertial frame.

coll =


+1, if virtual point collides with an obstacle

0, if virtual point does not collide with an obstacle

(5.10)

After the x0
i ∈ R7 particles are initialized, the velocities of the particles v0i ∈ R7

are randomly initialized with values from the [−0.1, 0.1] range. The SI-PoE update

law for the velocities and particles is presented in Equation 5.11 and 5.12, respectively.

Numerical values of the update law hyperparameters are shown in Table 5.2.

vk+1
i = κ[ωvki + c1r1(PBk

i − xk
i ) + c2r2(GBk − xk

i )] (5.11)

xk+1
i = xk

i + vk+1
i (5.12)

κ =
2

|2− ϕ−
√

ϕ2 − 4ϕ|
, ϕ = c1 + c2 > 4 (5.13)

where κ is the constriction factor limiting the magnitude of particles’ velocity, ω is the

inertia weight which controls the exploration and exploitation in the search space, c1 and

c2 are cognitive and social parameters respectively, r1 and r2 are random variables with

a range of [0, 1], PB is the best recorded individual particle’s location in S-space (R7),

and GB is the best recorded global (swarm) particle location in S-space (R7). The SI-PoE

algorithm stops if either 20 iterations were attempted or if the fitness of the current global

best particle is less than the set parameter (fGB < 0.0005). The SI-PoE algoritm steps are

summarized in the flowchart shown in Figure 5.6.
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Figure 5.5 demonstrates an example of the swarm convergence in the S-space. The

SI-PoE swarm consists of 15 points in S-space (R7), and it can be seen that the swarm

almost converged at 50% completion. Because of the stochastic nature of the parameters

within the update law, the number of iterations untill convergence varied from run to run

from approximately 17 to 20 iterations. However, most of the time for the cases with

σR = 0, the SI-PoE was able to find an accurate posture of the robotic arm within 10− 12

iterations with the position error of the end-effector being less than 8 − 9mm, and the

rest of the iterations of the algorithm reduces the position error to around 5 − 6mm. It

was observed that the constriction parameter κ reduces the number of iterations required

to achieve said accuracy, thus positively contributing to the algorithm by decreasing the

computation time.

Figure 5.5 Evolution of the SI-PoE swarm.
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Table 5.2

Selected SI-PoE parameters

Description Variable Value
Initial swarm point x0

i 1 rad offset at each joint
Initial velocity v0i random values between [−0.1, 0.1]

Inertia weight ω 1

Cognitive parameter c1 2

Social parameter c2 2.5

Random variable r1 random value between [0, 1]

Random variable r2 random value between [0, 1]

Convergence parameter ϕ 4.5

Constriction factor κ 0.5

Start

Input desired end-
effector trajectory

Initialize swarm x0
i

Initialize ve-
locities v0i

Perform PoE-FK
on end-effector

and virtual points

Compute fi

Update xk+1
i

and vk+1
i

Save xGB

Last point on
trajectory?

End

k = 20 or
fGB < 0.0005

no

yes

no

yes

1

Figure 5.6 SI-PoE algorithm flowchart.

5.3. Results

The SI-PoE algorithm was tested on different trajectories. For the purpose of illustration

and without the loss of generality, the end-effector trajectory shown in Figure 5.2 served
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as an input to the SI-PoE algorithm, and 3 obstacles were added to the workspace. All of

the obstacles were spheres: two of them had a diameter of 20 cm centered at [0.5, 0, 0.35]T

and [0.6,−0.13, 0.4]T , and the third obstacle had a diameter of 40 cm with its center

at [0.5, 0, 0]T . The center of gravity of each link served as a virtual point for obstacle

detection, as outlined in Equation 6.2, resulting in a total of 8 virtual points.

Figure 5.7 SI-PoE unfiltered and filtered joint positions and position errors.

The resulting joint trajectories obtained from the SI-PoE contained short term

fluctuations, which were filtered using a moving average filter. The filtering takes negligible

computational resources and requires approximately 0.02 s of computational time for a

trajectory with 100 points. The raw and filtered joint trajectories along with their position
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error for the desired trajectory shown in Figure 5.2 are demonstrated in Figure 5.7. Applying

the moving average filter smooths the trajectories and eliminates spikes at the expense of

slightly increasing the overall position error, which happens due to “flattening” of the

spikes. Along the trajectory, the maximum error reduces from approximately 13 mm

(unfiltered) to 4 mm (filtered) at 10 s. The total error integrated over time in all 3

axes is 0.0363 ms for the unfiltered joint trajectory and 0.0440 ms for the filtered

SI-PoE joint trajectory. The resulting movement of the simulated robotic arm is shown

Figure 5.8, where it can be seen that the SI-PoE was able to successfully generate an

obstacle avoidance trajectory with additional constraints such as the finite jerk on the

end-effector and prioritized penalty on excessive joint movement. At approximately 10 s

the robotic arm’s virtual points approach the third obstacle. In response, the robotic arm

starts actively utilizing rolling joint number 4 in order to stop the movement of the robotic

arm towards the obstacle and continue advancing the end-effector along the desired

trajectory.

The finite jerk constraint can be applied on the joint trajectories after obtaining the

trajectories from the SI-PoE, or separately if initial and final joint angles are known.

Finite jerk joint angles, velocities, and accelerations as a function of time can be computed

as follows using the Quintic Polynomial Finite Jerk (QPFJ) model:

θfj(t) = θend[(10/t
3
end)t

3 − (15/t4end)t
4 + (6/t5end)t

5] (5.14)

θ̇fj(t) = θend[(30/t
3
end)t

2 − (60/t4end)t
3 + (30/t5end)t

4] (5.15)

θ̈fj(t) = θend[(60/t
3
end)t− (180/t4end)t

2 + (120/t5end)t
3] (5.16)
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where θfj, θ̇fj, θ̈fj are finite jerk joint angles, velocities, and accelerations respectively; θend

is the final joint position obtained using SI-PoE; tend is the total movement time.

Figure 5.8 Obstacle avoidance trajectory generated using SI-PoE.

Although Equations 5.14 - 5.16 produce a joint position profile with finite jerk, the

position error to the desired path becomes very high as demonstrated in Figure 5.9, which

would certainly lead to collision with obstacles in the workspace. One way of integrating

the QPFJ model with the SI-PoE is to use several via-points on the SI-PoE joint position

trajectory and “sew” the trajectory from the finite-jerk profile piece-by-piece. The downside

of this “sewing” approach is that it requires additional computational effort.
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5.4. Implementation

Experiments were conducted on the 7-DoF Sawyer robotic arm, shown in Figure 5.10.

For implementation and validation purposes, the joint positions obtained using SI-PoE

were directly fed to the Sawyer robotic arm through the Robot Operating System (ROS)

- Python environment on the Software Development Kit (SDK) mode. SI-PoE and QPFJ

trajectores shown in Figure 5.9 were tested. Joint angles, velocities, and torques were

recorded. The end-effector position error was calculated from the experimental joint

angles.

Figure 5.11 Experimental and simulated QPFJ and SI-PoE torques.

The experimental results for the joint angles and end-effector position are shown in

Figure 5.12. The Sawyer robotic arm successfully tracked both the SI-PoE and QPFJ

trajectories with minimum noise introduced. This result is evident in Figure 5.12, where

the maximum position error of SI-PoE in any axis at any point of time within the trajectory

is approximately 6 mm which correlates well with the simulated trajectory shown
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Figure 5.9 Simulated QPFJ and SI-PoE trajectories compared with the desired path.

in Figure 5.9. The integrated error in all axes is 0.1172 ms, which is larger than the

simulated integrated error of 0.0440 ms, which is attributed to the noise in the robotic

arm throughout the entirety of the trajectory. The Sawyer end-effector tracked the finite
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Figure 5.10 Sawyer robotic arm.

jerk profile well, while avoiding “virtual” obstacles. Eight virtual points were used for

collision detection. The entire movement took 20 seconds, while the computation of

the trajectory took approximately 13 seconds, indicating that the SI-PoE algorithm can

be applied “online” while the robotic arm is operating, given that the number of virtual

points is optimized a priori. Depending on the size of the obstacles in the workspace,

the number of virtual points checked for collision should be changed or the surrounding

boundaries of the obstacles should be increased in size. However, such methods could

lead to a limited S-space which could result in undesired trajectories, errors in the position

of the end-effector, or in critical cases even an absence of the solution.

The experimental torque profiles were compared with the simulated torque profiles

for validation purposes. The inverse dynamics algorithm outlined in Chapter 3 was

used to generate simulated joint torque profiles. Experimental torque profiles were also

contaminated with noise. Nevertheless, the predicted joint torque trajectories approximate

the experimental ones very well as seen in Figure 5.11. It should be noted that less noise

was present in the QPFJ trajectories, which shows that, generally, smooth joint trajectories
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produce smooth torque trajectories. Torque trajectories with and without penalty on

excessive joint movement were compared. Although the proposed SI-PoE succeeded

in minimizing torque by minimizing the excessive joint movement, as was proposed in

Equation 5.7, the difference was marginal with torque minimized roughly by 2− 3 Nm in

most of the joints.

Figure 5.12 Experimental and simulated QPFJ and SI-PoE trajectories.

5.5. Discussion

In this chapter, an SI-PoE algorithm was outlined, simulated, and experimentally

validated using the Sawyer robotic manipulator. The proposed SI-PoE algorithm utilizes
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PoE-FK for forward kinematics computation and collision detection. The proposed

fitness function of the SI-PoE includes both orientation and position errors, penalty for

excessive joint movement, and collision avoidance. The algorithm’s hyperparameters

were demonstrated along with the proposed swarm initialization that improved both

the computation time and accuracy of the end-effector position for each step. SI-PoE

was able to satisfy multiple constraints such as avoiding obstacles in the workspace,

minimizing excessive joint movement subsequently minimizing torque, and tracking a

finite jerk end-effector trajectory, as demonstrated in the simulation and experimental

validation with a maximum position error of 6 mm at any time throughout the trajectory.

The experimental torque profiles were compared with simulated inverse dynamics torque

trajectories and showed good correspondence. SI-PoE can be used “online” if the number

of virtual points checked for collision is carefully selected, as was demonstrated in this

work. The disadvantage of this method of obstacle avoidance is that if obstacles in the

workspace are small in size, it would either require more virtual points for the SI-PoE to

track using PoE-FK, which would considerably increase the computation time, or increase

the boundary surrounding the obstacle, increasing the effective size of the obstacles and

decreasing the swarm’s search space.

The finite-jerk in joint space was achieved using QPFJ method, which produced

smooth joint and torque trajectories. Although the finite-jerk constraint was satisfied

using QPFJ, the simultaneous obstacle avoidance was not achieved. The end-effector

position error can be reduced by utilizing Constant Screw Axis (CSA) trajectories. Potentially,

QPFJ can be combined with SI-PoE so that the manipulator avoids obstacles and satisfies

finite-jerk on its joints. However, it is expected that such a combination would increase
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the computational effort. An optimal combination of SI-PoE and QPFJ can be explored in

future work.
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6. Deep Q-Learning Trajectory Generation

This Chapter outlines a Deep Reinforcement Learning (RL) approach for solving the

Inverse Kinematics (IK) problem of a 7-Degree of Freedom (DoF) robotic manipulator

using Product of Exponentials (PoE) as a Forward Kinematics (FK) computation tool and

the Deep Q-Network (DQN) as an IK solver. The algorithm is designed to produce joint

space trajectories from a given end-effector trajectory. Different network architectures

were explored and the output of the DQN was implemented on the Sawyer robotic arm.

The DQN was able to find different trajectories corresponding to a single Cartesian path

of the end-effector. The network agent was able to learn random Bézier end-effector

trajectories in a reasonable time frame with good accuracy, demonstrating that even

though DQN is mainly used in discrete solution spaces, it could be applied for generating

joint space trajectories.

6.1. Methodology

The 7-DoF Sawyer robotic manipulator by Rethink Robotics was employed for

simulations and experiments. This arm is shown in Figure 1.1. The Sawyer robotic arm

has seven links and seven independently actuated joints. The information regarding the

arm’s dimensions, weight, inertia properties, joint positions and limits, etc. was extracted

from the Universal Robot Description Format (URDF) file (Robotics, 2017), and was

used in the simulation, where it also served as an input for the RL model.

The PoE method was employed for the FK modeling, as it is easier to set up and does

not limit a user to follow a strict convention, which is present when working with the

more conventional Denavit-Hartenberg (D-H) approach to FK (Lynch & Park, 2017). In

order to accurately track the position and orientation of any point on a robotic manipulator,
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such as the end-effector, the PoE-FK model only requires its home configuration and

Screw axes represented in inertial (space) frame. The end-effector home configuration is

represented as a 4× 4 SE(3) matrix and is shown in Equation 5.5. The detailed description

of the process is outlined in Chapter 1. The Screw axes, given in Equation 1.13, are

represented in the inertial frame as well. The PoE-FK of the end-effector is thus given

as:

Ts7 = e[S1]θ1e[S2]θ2· · ·e[S7]θ3Ms7 =

[
Rs7 p

s7

01×3 1

]
∈ SE(3) (6.1)

where (θ1, θ2, · · · , θ7) are the joint positions of the manipulator, and Rs7 ∈ SO(3) and

p
s7

∈ R3 are the orientation and position of the end-effector respectively.

Similar to Equation 6.1, the PoE-FK representation of any point on a robotic arm can

be described if its home configuration is available. The general formula for the PoE-FK of

an i-th point attached to a j-th link can be expressed as follows:

Tsi = e[S1]θ1e[S2]θ2· · ·e[Sj ]θjMsi (6.2)

6.2. DQN-IK Algorithm

DQN belongs to a family of RL algorithms that works by performing continuous

iterations over the problem space, collecting knowledge and selecting the appropriate

action. Here, it is used to solve the IK problem by observing the current state of the robot

and deciding how the joints should be oriented to achieve the smoothest and the most

accurate trajectory. DQN by itself can be described as a merger between Q-Learning and

neural networks. It has been shown that it can perform quite challenging and complex

tasks such as mastering Go (Silver et al., 2016) and several Atari games (Mnih et al.,
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2013). Being able to operate in environments with vast solution spaces and state-action

pairing, it is of great interest for robotics applications (X. Shi et al., 2020).

Similarly to the Q-learning algorithm, the DQN agent operates on the observation,

action selection, action execution, and reward obtainment scheme, as defined by the

Markov Decision Process (MDP) (Hester et al., 2017). This process is essential for the

agent’s decision making and is described as the tuple {S,A,R, T }. Here, S denotes

states on an agent in an environment, A denotes available actions, R represents rewards

given to an agent, and T is the transition from one state to another. As for Q-learning, the

goal of an agent is to observe the current state and select actions that would maximize the

reward. To identify those actions, Q-learning uses a Q-table that maps states to actions

and expected rewards. These expected rewards in the Q-table are specific for each state

and are known as Q-values, being calculated using the Bellman equation:

Q(s, a) = Q(s, a) + α(R + γmaxQ(s′, a′)−Q(s, a)) (6.3)

where Q(s, a) is the Q-value with the current state s and action a, α is the learning rate of

an agent, R is the reward, γ is the discount factor, and Q(s′, a′) is the reward estimation

for the next state. When the agent is placed in an environment, it observes the environment

via examining the Q-table, chooses actions, performs them, calculates the corresponding

Q-value and updates the Q-table accordingly. It iterates over that process until it reaches

the final state, i.e. its end goal. This algorithm is simple to implement and is generally

efficient for environments with limited number of states and actions. However, it is

not entirely suitable for complex environments, where the number of states is large, or,

conversely, small but continuous (X. Shi et al., 2020). To realize the benefits of Q-learning

in more complex environments, a reinforcement algorithm, such as DQN, can be used.
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As mentioned earlier, DQN operates in a similar manner to Q-learning; however, the

Q-table is replaced with a neural network, with a selected number of nodes and hidden

layers, where weights and biases of these nodes represent Q-values. An additional benefit

of DQN lies in a replay buffer, which allows to save some experience and reuse it during

training (Hester et al., 2017). This allows to decrease training time and increases stability

of an agent. The Bellman equation is adapted for neural networks and represents the

squared loss function, as seen in Equation 6.4:

L(s, a|θ) = (R + γmaxQ(s′, a′|θ′)−Q(s, a|θ))2 (6.4)

where θ denotes current weights and biases of the network, R is the reward, and γ is,

again, the discount factor. Note that Q(s′, a′|θ′) represents these parameters, such as

states, actions, weights, and biases of the target network, and Q(s, a|θ) are the predicted

values. In its operation in the environment, DQN performs gradient descent over the

neural network, calculating the loss and choosing actions to minimize it, maximizing the

reward.

6.2.1. Fitness Function for DQN-IK

To implement the DQN agent for solving the IK problem for the 7-DoF robotic

manipulator, a simulation was performed using MATLAB with the Deep Learning Toolbox.

The benefit of the simulation lies in its quick visualization of the solution as well as

inclusion of all required dependencies. The simulation would provide the trajectory

estimates that would then be used for visualization and could be fed to the real 7-DoF

robotic arm. To accomplish that, a custom environment was created for the agent, where

all initial properties were defined for the end-effector frame and joint space position

parameters θ. A total of seven θ parameters were present, one for each joint; these will
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serve as states for the DQN agent. This θ vector was required to be found by an agent for

every point in the trajectory via performing the gradient descent over the neural network.

After finding and tuning optimal position parameters for one point, the agent would move

to the next, compiling all points at the end into the full trajectory matrix. Actions were

defined as incremental changes to θ by a certain amount δθ = 0.0025◦. The training time

is very sensitive to the δθ parameter.

In general, a total of three types of actions were present: increase θ, decrease θ, or

leave it unchanged. As each of these action types can be applied to each joint, the number

of all possible combinations equals 37 = 2187. Upon executing an action by updating

joint space position parameters, the orientation was calculated using the PoE-FK model

(Equation 6.1). The output of the latter was used to evaluate the fitness of the selected

action, which would lead to the reward selection.

The fitness itself represents how close the position of the end-effector is to the desired

point in the path. Several fitness functions were implemented, where only some checked

the position error, and others evaluated the configuration error (position and attitude errors

combined). All of the attempted fitness functions are shown in Equations 6.5 through 6.8,

where the fitness value is a scalar for all cases (Malik, Lischuk, et al., 2021a).

f j
i = ∥pj

i
− pj

d
∥ (6.5)

f j
i =| [1 1 1]pj

i
− [1 1 1]pj

d
| (6.6)

where pj
d

is the (d) desired j-th point’s Cartesian coordinates along the trajectory, and the

pj
i

is the algorithm’s i-th iteration of the corresponding point’s coordinates. The fitness

functions shown in Equations 6.5 and 6.6 are rather simplistic, where only the norm
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mapping and absolute value operators were used. These functions lead to non-monotonic

convergence where the fitness value would oscillate about a certain value close to the goal

fitness fg, and most of the time diverging as the number of iterations increase. Also, these

fitness functions only take into account the position and do not attempt to minimize the

attitude error. The following fitness functions were also implemented:

f j
i = ∥

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 log(T−1
s7 (θji )Tsj)

−∧∥ (6.7)

f j
i = ∥log(T−1

s7 (θji )Tsj)
−∧∥ (6.8)

where Tsj is the configuration of the desired j-th point along the trajectory, T−1
s7 (θji ) is the

algorithm’s corresponding i-th iteration, log is the matrix logarithm, and (−∧) symbol

represents the “un-wedge” mapping from se(3) to R6. The fitness functions represented

in Equations 6.7 and 6.8 result in monotonic convergence to the fitness goal value fg

with occasional bounces just around the desired fitness value. Also, the fitness function

given in Equation 6.8 takes into account both the position and attitude error, such that

the algorithm can be configured to learn to track both the Cartesian trajectory of an

end-effector and the attitude.

6.2.2. Reward, Network Architecture, and Hyperparameters

After calculating the fitness, a reward was given to the agent. The reward itself was

adjusted dynamically according to the value of the aforementioned fitness. For example,

if the fitness of the current iteration after adjusting positions is lower than the fitness

for the previous iteration, then reward is positive, negative if otherwise, and close to no
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reward if it is exactly the same. To ensure the reward is given in correspondence to the

difference between the previous and current fitness, it has been modeled using the arctan

function in a range of (−π/2, π/2) (Hu et al., 2019). This approach avoids possible

overrewarding or overpunishing the agent. Therefore, to incorporate the difference between

previous and current fitness, as well as the desired goal, the reward is defined as:

R = arctan

(
(f j

i−1 − f j
i )
π

2

1

fg

)
m, (6.9)

where f j
i−1 is the fitness for the previous iteration for the point j, f j

i is the fitness for the

current iteration for the point j, fg is the goal fitness, and m is the selected magnification

factor.

The goal fitness represents the fitness value that was manually chosen after some

experimentation; it is used to stop calculations for the current point and move to the next,

which affects both the accuracy of tracking and training time. This value was chosen to

be ≈ 0.005. The magnification factor m is another chosen parameter used to increase the

output of the arctan as fitness values tend to be on the order of 10−3. Based on

experimentation, the factor was selected as m = 10. After obtaining the reward, the DQN

agent will store its experience in the so-called Experience Buffer. This buffer is also used

by the agent to sample small batches of the {S,A,R, T } tuple to essentially replay some

experience, allowing to learn more from the same data. Lastly, the agent will calculate

the overall network loss using Equation 6.4 and update weights and biases of the network

accordingly. The general algorithm of how the DQN agent operates in an environment for

finding the trajectory is presented in Algorithm 1.

The model architecture consists of four main layers: an input layer, two hidden layers,

and an output layer. As was mentioned earlier, seven joint space positions θ served as
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Algorithm 1 Pseudo-code for finding joint positions on the trajectory using DQN.
Initialize custom environment for the DQN agent.
Set the initial point of the screw axis that must be the closest to the Bézier curve.
Initialize the DQN Critic network.
Reset initial states: joint positions {θ1, θ2, θ3, θ4, θ5, θ6, θ7} for TrajectoryPoint j = 1.

for TrajectoryPoint j = 2 to MaxTrajectoryPoints do
Observe states {θ1, θ2, θ3, θ4, θ5, θ6, θ7} from TrajectoryPoint j − 1.

for Episode i = 1 to MaxEpisodes do
Observe states {θ1, θ2, θ3, θ4, θ5, θ6, θ7}.
Select action based on DQN Critic network’s weights and the exploration factor.
Update states {θ1, θ2, θ3, θ4, θ5, θ6, θ7} by amount δθ according to the selected

action.
Perform action via:

Tsi = e[S1]θ1e[S2]θ2· · ·e[Sj ]θjMsi

Evaluate fitness:
f j
i = ∥log(T−1

s7 (θji )Tsj)
−∧∥

Obtain reward:
R = arctan

(
(f j

i−1 − f j
i )

π
2

1
fg

)
m

Store the experience in ExperienceBuffer.
Sample random minibatch of transitions from the ExperienceBuffer.
Calculate DQN Critic network loss L and update network weights.
if Fitness == Goal then

break
end if

end for
end for

states, and, architecturally speaking, inputs to the neural network. It is followed by a

first fully connected, or, in other words, a dense layer with 128 nodes accompanied

by a Rectified Linear Unit (ReLU) activation function. This function was chosen due

to its computational efficiency and general popularity. Next, another fully connected

layer was included with 256 nodes and another ReLU function. Finally, the output layer

represents actions with a total of 2187 nodes, one for each action type available for

each joint. This architecture can be seen in Figure 6.1. Table 6.1 provides a summary
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Figure 6.1 DQN model used for solving inverse kinematics.

of other parameters, such as the learning rate, discount factor, gradient threshold, as well

as selected parameters for the reward calculation per Equation 6.9.

Table 6.1

Summary of selected parameters for the DQN agent and reward function

Parameter Value

Joint Space Position Step δθ ±0.0025◦

Learning Rate 0.01
Discount Factor 0.9

Gradient Threshold 1
Mini Batch Size 64

Target Smooth Factor 1× 10−3

Goal Fitness fg 0.005
Magnification Factor m 10
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6.3. Implementation

A workstation with an Intel® Core™ i5-10600K Processor, 16 GBs of RAM was

used to host the simulation of the DQN algorithm for solving IK in MATLAB. For the

sake of brevity, this DQN agent along with IK computation and solution can be referred

to as DQN-IK. Random Bézier curves were generated and provided as an input to the

simulation, and the average time for the algorithm to learn a trajectory consisting of 100

Cartesian points is about 30-40 minutes on this particular workstation. The DQN-IK is a

bit slow at the beginning of the trajectory for the first 3-4 points and speeds up for the rest,

which owes to the aforementioned Experience Buffer. The hyper-parameters, presented

in Table 6.1, were obtained by rigorous studies and performance comparison. The goal

fitness value of fg = 0.005 led to a maximum allowable error in end-effector position

of 5 mm. Despite that, this fitness can be increased to speed up the learning of the DQN

agent, but that would lead to inaccurate positioning of the end-effector. Conversely, the

smaller the goal fitness, the more accurate the positional tracking is and the longer it takes

for the agent to learn.

The architecture of the neural network (Figure 6.1) was also tuned to strike a balance

between the complexity and the speed of the algorithm. As was mentioned in Section

6.2.2., the number of hidden layers was chosen to be two with 128 and 256 nodes

respectively. This number of nodes was determined from experimentation and found

to provide a good balance between accuracy of the solution and computation speed.

Increasing the number of nodes as well as layers did not provide sufficient gains. A

lower number of nodes, 64 and 128 can be used as well, but at a minor cost in accuracy.



108

Regarding the number of hidden layers, one layer will not be sufficient, as the DQN agent

will start having trouble finding the solution; thus having two layers provides a reasonable

implementation.

Figure 6.2 Experimental trajectories recorded from the Sawyer robotic arm.

As there are infinite solutions in the joint space, the DQN-IK algorithm was able to

generate several different joint space trajectories corresponding to a single Bézier curve

path. This is demonstrated in Figure 6.2, where it is evident that the algorithm approaches

the same path with different solutions. The heatmaps were different for the same path as

well. A sample heatmap is shown in Figure 6.3, and a corresponding bar chart is shown
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in Figure 6.4, where it can be seen that, in this particular case, the algorithm has utilized a

couple distinct actions more than the others.
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Figure 6.3 Heatmap corresponding to a DQN-IK trajectory.

The experimental implementation was carried out by sending the joint trajectory

data to the Sawyer robotic arm through the Ubuntu-ROS-Sawyer framework, where

the commands were provided as an input for the Python-based controller and sent to

the robotic arm in the Software Development Kit (SDK) mode. Joint angle positions,

velocities, and efforts (torques) were recorded and are shown in Figure 6.2. The recorded

experimental joint space trajectories are almost indistinguishable from the DQN-generated

profiles. The resulting end-effector Cartesian path is demonstrated in Figure 6.5. As

shown in this figure, the algorithm has found different solutions: in the first one the

manipulator tracks the trajectory from “below” (left column) and in the second from
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Figure 6.4 Bar chart of the DQN-IK trajectory.

“above” (right column). In Figure 6.6 it is demonstrated that the Cartesian error stays

within the bounds of ±5 mm except the initial jolt where the error spikes up to 10 mm

for a fraction of a second. The DQN-IK algorithm can also be utilized for generating

trajectories to avoid obstacles in the task space. To perform this task, the fitness function

should be modified to take into account the collision condition, which could be manifested

by a large increment in the fitness. The collision condition can be tracked using the

PoE-FK model, shown in Equation 6.1. Generally, the outlined algorithm is very versatile

and modular as various constraints can be incorporated to meet different design objectives.
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Figure 6.5 Sawyer robotic arm DQN-IK solution.

6.4. Discussion

In this chapter, it was shown that the Deep Reinforcement Learning approach using

DQN is viable for solving the inverse kinematic problem of a high-DoF robotic manipulator.

In general, the tracking position and/or orientation of any point or joint of the robotic
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manipulator only requires the home configuration of the point and Screw axes, which

are constant vectors. The proposed approach was used in conjunction with the DQN

algorithm to calculate optimal joint positions to achieve the required trajectory.

Figure 6.6 Error in Cartesian components of the end-effector.

The DQN-IK algorithm takes in joint space position parameters as inputs and selects

an appropriate action to adjust them in order to track Cartesian points on the desired

trajectory. The algorithm itself is comprised of the neural network with four layers: input,

two hidden layers and one output layer. During operation and for each iteration, the DQN

agent attempts to select appropriate action in terms of increasing/decreasing certain joint

space position values by a specified amount. The algorithm is then evaluated on its action

via calculation of the fitness value. The aim of this fitness is to calculate and demonstrate

how close the posture described by all seven joint positions is to the desired point on the
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Cartesian trajectory. This fitness is compared to the value of the previously calculated

fitness and the reward is given accordingly. The reward is dynamically adjusted based on

how far the previous fitness is to the newly calculated one. This allows to guide the DQN

agent more closely to its goal, decreasing computation time without giving too much

reward/punishment to the agent while trying to determine and optimize joint positions,

and to increase the convergence rate.

The movement of the 7-DoF robotic arm was simulated using MATLAB and then,

using generated data, was executed on the Sawyer robotic manipulator. During the simulation,

it was observed that, due to the infinite number of solutions in the joint space, the DQN

algorithm can find new trajectories each time it runs. It was demonstrated that even

though DQN, by itself, is bound to discrete action spaces, using DQN for inverse kinematics

proved to be a viable option, especially considering that its architecture is less complicated

than DDPG or NAF. The more elegant approach may still lie in using DDPG as its action

spaces are continuous. Nevertheless, while being more simple architecture-wise than

DDPG, DQN proved to provide a solution with good accuracy in a reasonable computation

time, and can be modified to fit different needs and objectives. The parameters selected

for the neural network after extensive testing and optimization are presented in this paper

as well, but can be adjusted to further optimize the algorithm and decrease computation

time.
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7. Conclusions and Future Work

Solving the Inverse Kinamtics (IK) problem is one of the biggest challenges that must

be addressed to achieve full autonomy of complex robotic systems such as high DoF

robotic manipulators. This work is a contribution towards the practical use of modern

tools introduced in Chapter 2 for trajectory generation algorithms that solve the IK problem

and produce joint space trajectories from a given Cartesian trajectory of an end-effector.

All of the algorithms were based on the Product of Exponentials Forward Kinematics

(PoE-FK) model. It was shown that PoE-FK is a versatile novel tool that can be used

in combination with numerical, iterative, optimization, and intelligent methods. An

iterative Newton-Raphson, Swarm Intelligence Product of Exponentials (SI-PoE), and

reinforcement learning Deep Q-Learning Inverse Kinematics (DQN-IK) algorithms were

developed and applied to a 7-DoF open-chain manipulator, resulting in desired behavior.

This chapter summarizes what was achieved and suggests directions for future research.

7.1. Summary

Chapter 3 introduced the first algorithm based on the Newton-Raphson iterative

method which solves the IK problem iteratively to generate constrained joint-space

trajectories corresponding to straight-line and curvilinear motions of the end effector in

Cartesian space with finite jerk. Derivatives of these joint-space trajectories are computed

using Bézier curves, which ensures dynamically feasible trajectories. Since it is a numerical

method the accuracy of the derivatives of joint-space trajectories was assessed using a

novel method based on Mean Arctangent Absolute Percentage Error (MAAPE). Joint

space trajectories produced by the Newton-Raphson IK algorithm were successfully
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implemented on the Sawyer robotic arm resulting in accurate tracking of the end-effector

trajectory.

In Chapter 4, Constant Screw Axis (CSA) trajectories were explored. The main

challenge associated with CSA trajectories is that, for a redundant system like the Sawyer

robotic arm, there are infinite trajectories that follow the CSA profile. Finding the most

suitable one was achieved by applying several different modern tools. Particle Swarm

Optimization (PSO), Q-Learning, and Deep Q-Learning (DQN) were used for that purpose,

and all of these tools were able to successfully obtain a CSA trajectory that was closest to

the desired Cartesian trajectory of the end-effector. In this particular case, PSO proved to

be the fastest and the most reliable tool.

Chapter 5 described a multi-objective IK solving algorithm which simultaneously

accurately tracks the end-effector trajectory, satisfies the finite jerk constraint, minimizes

joint movement and joint effort, and avoids obstacles. All of these objectives were achieved

by combining the Swarm Intelligence with Product of Exponentials (SI-PoE). Different

layouts of obstacles were checked in the simulations, which resulted in different joint

space trajectories, all of which successfully avoided collision in the work space. The

main setback of this algorithm is that the computational cost of the solution increases as

more accurate obstacle avoidance is desired as the collision detection accuracy depends

on the number of virtual points that are solved using PoE-FK. The output of the SI-PoE

algorithm was tested on the Sawyer arm, resulting in accurate tracking of the end-effector

Cartesian trajectory.

Robots can learn from experience through reinforcement learning techniques. Chapter

2 Sections 2.4.2. and 2.4.3. discussed several intelligent algorithms that can learn from
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off-policy actions in discrete and continuous state and action spaces. The ability to learn

from experience replay, other behaviors, virtual targets, and other robotic systems are

important for robotics as they can reduce experimentation time and lead to a fully

autonomous systems. Robotics problems usually include continuous state and action

variables. The solution space of high DoF robotic manipulators becomes very large

making the discrete state and action methods very challenging to apply and tune. However,

as the computational effort becomes less of an issue with modern hardware, discrete

methods might become more attractive since their architecture is less complicated compared

to the continuous methods. In Chapter 6, a Deep Q-Learning (DQN) method combined

with PoE was used to solve the IK problem (DQN-IK). The DQN-IK agent was able to

generate joint space trajectories for a 7-DoF Sawyer robotic arm in a reasonable amount

of time with good accuracy. These trajectories were also experimentally tested on the

Sawyer robotic arm that resulted in successful tracking of the end-effector trajectory.

7.2. Future Directions

The proposed trajectory generation algorithms can be improved further by incorporating

additional tools to the developed PoE-FK model. Combining CSA or QPFJ trajectory

properties with SI-PoE or DQN-IK could be a beneficial prospect if done correctly. In

the optimal case, the latter algorithms would generate the “backbone” trajectories, which

could be subsequently improved by the former tools by smoothing trajectory profiles

leading to less vibration and torque efforts. The downside of this approach would be

the added computational effort as the introduction of CSA/QPFJ trajectory properties

will manifest itself as adding additional post-processing filtering. Nevertheless, such a
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combination might still be computationally less expensive than continuous actions and

state RL agent.

The RL model for the IK solution can be greatly improved if the architecture is

switched from the discrete actions and states DQN to continuous DDPG or NAF. Continuous

state and action RL is worthwhile as smooth, accurate movement of the end-effector and

the rest of the joints will become possible and practical. However, the policies learned

from continuous models do not have convergence guarantees, and may introduce more

architecture complexities. A more stable continuous action space algorithm could be

developed if the RL model’s policies assimilate ideas from conventional approaches to IK

solving. As an example, the starting policy of a RL agent could be the minimization of a

spatial twist.

The simulation and experimental implementations presented in this work were produced

by learning from scratch. It results in slow learning, and sometimes even re-learning what

is already known. Thus, introducing transfer learning or “initial guess” policies and NNs

could potentially lead to shorter learning times and thus is suggested as a strong focus for

future research.
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Dereli, S., & Köker, R. (2020). A meta-heuristic proposal for inverse kinematics solution of
7-dof serial robotic manipulator: quantum behaved particle swarm algorithm. Artificial
Intelligence Review, 53(2), 949–964. doi: 10.1007/s10462-019-09683-x

Eberhart, R., & Kennedy, J. (1995). Particle swarm optimization. Proceedings of the
IEEE international conference on neural networks, 4, 1942–1948. 27 November-1
December, Perth, Australia. doi: 10.1007/s11721-007-0002-0

Featherstone, R. (1983). The calculation of robot dynamics using articulated-body
inertias. The International Journal of Robotics Research, 2(1), 13–30. doi: 10.1177/
027836498300200102

Featherstone, R. (2014). Rigid body dynamics algorithms. Springer. doi: 10.1007/
978-1-4899-7560-7

Franceschetti, A., Tosello, E., Castaman, N., & Ghidoni, S. (2020). Robotic arm
control and task training through deep reinforcement learning. arXiv preprint
arXiv:2005.02632.

Gaskett, C. (2002). Q-learning for robot control. The Australian National University. (PhD
dissertation) doi: 10.25911/5D7A2A09A7DFD



120

Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2017). Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. 2017 IEEE international
conference on robotics and automation (ICRA), 3389–3396. May 29 - June 3, Marina
Bay Sands, Singapore. doi: 10.1109/ICRA.2017.7989385

Gu, S., Lillicrap, T., Sutskever, I., & Levine, S. (2016). Continuous deep q-learning with
model-based acceleration. International conference on machine learning, 2829–2838.
June 19 - 24, New-York, USA.

Guo, Z., Huang, J., Ren, W., & Wang, C. (2019). A reinforcement learning approach for
inverse kinematics of arm robot. Proceedings of the 2019 4th International Conference
on Robotics, Control and Automation, 95–99. July 26 - 28, Guangzhou, China. doi:
10.1145/3351180.3351199

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. International
conference on machine learning, 1861–1870. July 10-15, Stockholm, Sweden.

Hausknecht, M., & Stone, P. (2015). Deep recurrent q-learning for partially observable
mdps. arXiv preprint arXiv:1507.06527.

Hays, C. W., Posada, D., Malik, A., Korczyk, D., Dafoe, B., & Henderson, T. (2021).
Structural design and impact analysis of a 1.5u cubesat on the lunar surface. 31st
AAS/AIAA Space Flight Mechanics Meeting, February 1-3, Virtual.

He, C., Wang, S., Xing, Y., & Wang, X. (2013). Kinematics analysis of the coupled
tendon-driven robot based on the product-of-exponentials formula. Mechanism and
Machine Theory, 60, 90–111. doi: 10.1016/J.MECHMACHTHEORY.2012.10.002

He, R., Zhao, Y., Yang, S., & Yang, S. (2010). Kinematic-parameter identification for
serial-robot calibration based on poe formula. IEEE Transactions on Robotics, 26(3),
411–423. doi: 10.1109/TRO.2010.2047529

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., . . . Dulac-Arnold,
G. (2017). Deep q-learning from demonstrations. arXiv preprint arXiv:1704.03732.

Hoffman, J. D., & Frankel, S. (2018). Numerical methods for engineers and scientists.
CRC press. doi: 10.1201/9781315274508

Hu, Z., Wan, K., Gao, X., & Zhai, Y. (2019). A dynamic adjusting reward function method
for deep reinforcement learning with adjustable parameters. Mathematical Problems
in Engineering, 2019. doi: 10.1155/2019/7619483

Huang, H.-C., Xu, S. S.-D., & Hsu, H.-S. (2014). Hybrid taguchi dna swarm intelligence
for optimal inverse kinematics redundancy resolution of six-dof humanoid robot arms.
Mathematical Problems in Engineering, 2014. doi: 10.1155/2014/358269



121

Hwang, K.-S., Tan, S.-W., & Chen, C.-C. (2004). Cooperative strategy based on adaptive
q-learning for robot soccer systems. IEEE Transactions on Fuzzy Systems, 12(4),
569–576. doi: 10.1109/TFUZZ.2004.832523

James, S., & Johns, E. (2016). 3d simulation for robot arm control with deep q-learning.
arXiv preprint arXiv:1609.03759.

Joshi, S., Kumra, S., & Sahin, F. (2020). Robotic grasping using deep reinforcement
learning. 2020 IEEE 16th International Conference on Automation Science and
Engineering (CASE), 1461–1466. 20-21 August, Hong Kong, China. doi: 10.1109/
CASE48305.2020.9216986

Khan, H., Abbasi, S. J., & Lee, M. C. (2020). Dpso and inverse jacobian-based real-time
inverse kinematics with trajectory tracking using integral smc for teleoperation. IEEE
Access, 8, 159622–159638. doi: 10.1109/ACCESS.2020.3020318

Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent
demand forecasts. International Journal of Forecasting, 32(3), 669–679. doi: 10.1016/
J.IJFORECAST.2015.12.003

Klein, C. A., & Huang, C.-H. (1983). Review of pseudoinverse control for use with
kinematically redundant manipulators. IEEE Transactions on Systems, Man, and
Cybernetics(2), 245–250. doi: 10.1109/TSMC.1983.6313123

Konar, A., Chakraborty, I. G., Singh, S. J., Jain, L. C., & Nagar, A. K. (2013). A
deterministic improved q-learning for path planning of a mobile robot. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 43(5), 1141–1153. doi:
10.1109/TSMCA.2012.2227719

Korczyk, J. J., Posada, D., Malik, A., & Henderson, T. (2021). Modeling of an on-orbit
maintenance robotic arm test-bed. 2021 AAS/AIAA Astrodynamics Specialist
Conference, August 8-12, Big Sky, USA.

Lee, H.-Y., & Liang, C.-G. (1988). A new vector theory for the analysis of spatial
mechanisms. Mechanism and Machine Theory, 23(3), 209–217. doi: 10.1016/
0094-114X(88)90106-1

Lewis, M. A., & Bekey, G. A. (1992). The behavioral self-organization of nanorobots using
local rules. IROS, 1333–1338. doi: 10.1109/IROS.1992.594558
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