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ABSTRACT 

We implement and explore the success of a nonlinear, closed loop flow control 

strategy based on POD-ROM focusing on boundary-layer transitional flow in 

high-fidelity computational studies involving FDL3DI ILES code.  Controlling 

the boundary-layer transition from laminar to turbulent allows the laminar 

boundary-layer to be lengthened, decreasing skin-friction drag on an airfoil. 

Analyses are conducted on a flat plate with an elliptical leading edge, later to be 

implemented in future studies with real airfoil geometry. The feedback control 

design employs strategically placed synthetic-jet micro actuators and pressure 

sensors. The efficiency of the closed-loop flow control strategies is examined in 

comparison with open-loop control. 
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1. Introduction 

Engineers and scientists take an important consideration of the design of modern 

aerospace systems to optimize aerodynamic forces such as lift and drag. Flow control has 

recently been a popular consideration and is constantly evolving in the field of 

aerodynamics. It is the practice of manipulating the flow around an object through some 

form of interaction to a more desired outcome. The effects of successful flow control are 

inclusive to lift increase, drag reduction, transitional delay of laminar to turbulent, noise 

suppression, and more. In this paper, closed-loop active flow control is analyzed for the 

purpose of delaying transition and lengthening the laminar boundary layer to reduce drag 

over a flat-plate using a controller design based on proper orthogonal decomposition 

reduced order model (POD-ROM) methods, and is compared against open-loop flow 

control procedures. 

1.1. Drag 

The effects of pressure drag, and skin friction drag over an airfoil are two drag forces 

frequently analyzed and help explain aerodynamic phenomena. Pressure drag is due to 

the massive regions of flow separation. Skin friction drag is due to shear stress acting on 

a surface. Figure 1.1 shows that pressure drag is dominate on the blunt bodies (the 

cylinders and vertical flat plate), whereas skin friction drag is dominate on the 

streamlined body.  

Turbulent flow over a blunt body can help reduce pressure drag. This phenomenon is 

commonly seen over a golf ball. The dimples on a golf ball create a turbulent boundary 

layer on the ball, decreasing pressure drag, and allowing the ball to fly further through the 

air at low velocities. However, turbulent flow has the opposite effect on streamlined 
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bodies when skin friction drag is more prominent. The velocity gradient at the wall is 

steeper in turbulent boundary layers than in laminar boundary layers, thus turbulence 

produces larger shear stresses increasing friction drag over a surface. The velocity 

profiles of laminar and turbulent boundary layers are shown below in Figure 1.2. 

1.2. Transitional Flow 

Transition is the process of a fluid flow from laminar to turbulence. This process has 

been analyzed and researched for centuries. The overall picture of transition in a 

boundary layer over a smooth surface can be broken down into the steps (White, 2006): 

1. Stable laminar flow near the leading edge. 

2. Unstable two-dimensional (2-D) Tollmien-Schlichting (TS) waves. 

3. Development of three-dimensional unstable waves and hairpin eddies. 

4. Vortex breakdown at regions of high localized shear. 

5. Cascading vortex breakdown into fully three-dimensional fluctuations. 

6. Formation of turbulent spots at locally intense fluctuations. 

7. Coalescence of spots into fully turbulent flow. 

First, stable laminar flow at the leading edge is encountered. At a critical location x, 

the critical Reynolds number is defined, and transition begins to take place. Infinitesimal 

instabilities first appear characterized by 2-D TS waves. As these 2-D instabilities 

propagate downstream, they develop into 3-D instabilities then coalesce into a region 

where turbulent spots continually exist. Further downstream of this region, the flow 

reaches a fully developed turbulence state. This transition process is illustrated over a 

smooth flat plate in Figure 1.3. If the 2-D TS waves are mitigated upon first appearances, 

then the growth of these 2-D waves may be delayed. 
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1.3. Flow Control 

Flow control is commonly categorized into passive and active flow control. Passive 

flow control does not require any supplemental power or control loop and is achieved 

through several techniques that include geometric shaping, vortex generators and 

placement of grooves or riblets on surfaces. In contrast, active flow control requires some 

type of supplemental energy. Some methods include suction or blowing and the use of 

synthetic jet actuators. 

Active flow control can be further categorized into open-loop and closed-loop 

control. Open-loop control is straightforward where an actuator’s output is based on a 

predetermined input. In the closed-loop case, actuation is guided by information from a 

sensor in the flow with a flow model, which is the subject of the current work. The 

primary objective has been the development of a control technique based on reduced-

order models (ROM), namely POD-ROM. 

Open-loop control has proven to be quite useful in many applications but lacks the 

adaptability and resilience that flight environments require. In contract, closed-loop 

control has the capability of meeting these requirements to deliver more desired flow 

outcomes under varying conditions. 

1.4. Importance of Research 

Many aircrafts operate in flows of moderate to high Reynolds (Re) numbers where 

drag may be dominated by skin friction drag. In such cases, the reduction of this friction 

drag can improve aircraft performances. As previously discussed, turbulent boundary 

layers on a surface have higher shear stresses that increase skin friction drag. Therefore, 
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suppressing evolving instabilities to delay transition from laminar to turbulent can 

increase the length of the laminar boundary layer and reduce skin friction drag.  

The purpose of this research is to implement and validate closed-loop control 

strategies of synthetic-jet actuators against open-loop strategies that attempt to mitigate 

TS waves in their early development and maintain larger regions of laminar flow. This 

study is conducted on the benchmark problem of flat plate boundary layer transition 

control, with the hopes of future research development on real airfoil geometry. 

 

 
Figure 1.1 A comparison between skin friction drag and pressure drag for various 

aerodynamic shapes (Anderson, 2017). 
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Figure 1.2 Laminar and Turbulent boundary layers (Anderson, 2017). 

 

 

Figure 1.3 Cartoon of transition to turbulence in a boundary layer in which the plate is 

flat and smooth and the level of free-stream turbulence is low (White, 2006). 
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2. Review of the Relevant Literature 

This section covers relevant literature to this research study. The first section 

discusses Amitay et al. (2016), and Rizzetta and Visbal (2019 & 2020), who have 

conducted experimental and computational studies on a flat plate. The computational 

studies by Rizzetta and Visbal (2019 &2020) were influenced by and closely follow the 

experiment of Amitay et al. (2016). The current study closely follows the computational 

set up of Rizzetta and Visbal (2020). The second section discusses literature that 

implements POD-ROM closed-loop control procedures. 

2.1. Flat Plate Studies 

Research on transition control to better understand it and improve modern technology 

has been ongoing for years. One specific study done by Rizzetta and Visbal was 

conducted on a flat plate with an elliptical leading edge. In Rizzetta and Visbal (2019) a 

computational fluid dynamics (CFD) simulation was conducted and compared against the 

experiment of Amitay et al. (2016). The experiment of Amitay et al. (2016) enacts 

control of TS waves using linear superposition of waves. Thus, when a 2-D TS wave with 

a known phase and amplitude interacts with a disturbance of the same frequency and 

amplitude but opposite phase, the TS waves are mitigated.  

Amitay et al. (2016) used two Piezoelectrically Driven Oscillating Surface (PDOS) 

actuators to first excite 2-D TS waves, then mitigate the instabilities with the second 

actuator. The schematic of the PDOS actuator is in Figure 2.1. The design consists of an 

oscillating rubber surface with thickness of 0.79 mm and 50A hardness, a cavity with 

depth of 4mm and diameter of 79.5 mm, a neck opening with diameter of 12.7 mm, and a 
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mounted piezoelectric disc. The moving rubber surface’s diameter is limited to that of the 

neck opening.  

A voltage is applied to the disc to create oscillations of a defined amplitude and 

frequency corresponding to the input. A linear stability analysis conducted by Amitay et 

al. (2016) provided the characteristic frequency of TS waves for this schematic to be 250 

Hz. A test of the deflection of the dimple as a function of voltage for a range of 

frequencies surrounding 250 Hz was conducted and the results are shown in Figure 2.2.  

 

 
Figure 2.1 Amitay’s PDOS Schematic (Amitay et al, 2016). 

 

The experimental setup of Amitay et al (2016) is shown in Figure 2.3 and is recreated 

in the simulations of Rizzetta and Visbal (2019 & 2020). The flap at the trailing edge as 

seen in Figure 2.3 was used to adjust the location of the stagnation pressure at the leading 

edge and was not considered in the CFD simulations. The simulations also only consider 

the top half of the flat plate to reduce the computational domain. For both experimental 

and CFD set ups, the PDOS actuators were located at 273 mm and 388 mm from the 
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leading edge. Figure 2.4 shows that the location of the PDOS actuators fall in the 

unstable region on a boundary-layer stability curve with an oscillation frequency of 250 

Hz.   

 

 
Figure 2.2 Amplitude of actuator center deflection vs input voltage (Amitay et al, 2016). 

 

 
Figure 2.3 Experimental setup (Amitay, 2016). 
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Figure 2.4 Boundary-layer stability diagram where L1=PDOS1 and L2=PDOS2 (Rizzetta 

& Visbal, 2019). 

 

The role of the actuator located 273 mm from the leading edge, PDOS 1, is to 

introduce a disturbance to the flow to excite TS instabilities. The role of the actuator 

PDOS 2 located 388mm from the leading edge was to then suppress the TS waves 

produced by PDOS 1. Oscillations of the actuators for CFD simulations of Rizzetta and 

Visbal (2019 & 2020) are described by simple sine and cosine harmonic functions.  

Initially, Rizzetta and Visbal’s (2019) CFD configurations use the circular actuators, 

and the reference length of the flat plate is 500 mm. The configurations were then 

changed to implement spanwise actuators with lower forcing amplitudes and the 

reference length was increased to 1000 mm (Rizzetta & Visbal, 2020). Due to these 

differences, optimal amplitudes and phase shift of PDOS 2 are also different. A 

comparison of Rizzetta and Visbal’s (2020) PDOS 2 forcing amplitudes between the 

2019 and 2020 configurations can be viewed in Table 2.1. The relationship between 
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amplitudes A2, B2 and Ā2 is defined by a sine and cosine identity shown in Equation 2.1 

below where 𝜙2 is the phase shift of PDOS 2.  

 𝐴2 sin(2𝜋𝜔𝑡) + 𝐵2 cos(2𝜋𝜔𝑡) = �̅�2 sin(2𝜋𝜔𝑡 + 𝜙2) [2.1] 

 

Table 2.1 PDOS Actuator 2 forcing amplitudes for 2-D configurations 1 and 2. 

DESCRIPTION A2 B2 Ā2 Φ2 

CONFIGURATION 1: 2-D 1.77E-4 8.65E-5 1.97E-4 26.04 deg 

CONFIGURATION 2: 2-D 4.40E-5 1.34E-5 4.60E-5 16.94 deg 

(Rizzetta & Visbal, 2020) 

 

Rizzetta and Visbal (2020) also analyzed a closed-loop control methodology to 

suppress TS waves amplified by the sinusoidal input voltage applied to PDOS 1.  In this 

closed-loop analysis, a pressure sensor is placed at 426 mm from the leading edge and is 

used to obtain the fluctuating component of pressure. An Iterative Learning Control 

(ILC) strategy is then used to modify the control input (Rizzetta & Visbal, 2020). The 

input for the (k+1) iteration is defined by the control law in Equation (2) and requires T 

in Equation (5) to first be determined. The transfer function variables 𝛾𝐺 and 𝜙𝐺  are 

estimated by system identification (Rizzetta & Visbal, 2020). The learning coefficient, 𝜖, 

determines the convergence rate of Equation 2.5 and a value of 𝜖 = 0.5 was used. 

 
𝐼𝑘+1 = 𝐼𝑘 − 𝜖[𝑇𝑇𝑇]−1𝑇𝑇𝑃𝑘 

 

[2.2] 

 

 
𝐼 =  [

𝛼𝑖

𝛽𝑖
] 

 

[2.3] 

 

 
𝑃 =  [

𝛾𝑝 cos(𝜙𝑝)

𝛾𝑝 sin(𝜙𝑝)
] 

 

[2.4] 

 

 𝑇 =  [
𝛾𝐺 cos(𝜙𝐺) −𝛾𝐺 sin(𝜙𝐺)

𝛾𝐺 sin(𝜙𝐺) 𝛾𝐺 cos(𝜙𝐺)
] [2.5] 
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Finally, a visual plot of Rizzetta & Visbal’s (2020) results for no control, open-loop 

control, and closed-loop control can be seen in Figure 2.5 below, followed by some 

visual results of Amitay et al. (2016). The contour plots shown in Figure 2.5 show 

success in suppressing 2-D TS waves on a flat plate for both open-loop and closed loop 

control. In a visual inspection of the results, it appears that for closed-loop control the v-

velocity fluctuations are suppressed, but not as efficiently in comparison to the open-loop 

control. 

Similarly, results of Amitay et al. (2016) in Figure 2.6 also show success of TS wave 

reduction. “With excitation” in Figure 2.6 corresponds to PDOS 1 active only, and “with 

excitation and control” corresponds to both PDOS 1 and 2 active. Figure 2.6 c, d, g, and h 

are plots of corresponding spectra of each velocity components indicated with a white dot 

as seen in Figure 2-6 a, b, e and f. The contour plots in Figure 2.6 show that instabilities 

existent in both streamwise and wall-normal velocities are suppressed. For more 

information on the results of both experimental and CFD studies refer to Amitay et al. 

(2016) and Rizzetta and Visbal (2020). 

 

 

Figure 2.5 Contours of v velocity for 2-D configuration 2 simulations: a) PDOS 1 active 

only, b) PDOS 1 and open-loop control, c) PDOS 1 and closed loop control (Rizzetta & 

Visbal, 2020). 
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Figure 2.6  Results of experimental set up: a) and b) spectral magnitude contours of 

streamwise, and e) and f) wall-normal velocity with PDOS 1 active only for a) and e) and 

with PDOS 1 and 2 active for b) and f). Corresponding spectra of each velocity 

component plotted at location indicated by a white dot (Amitay et al, 2016). 
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2.2. Proper Orthogonal Decomposition Reduced Order Model 

Modal decomposition is a mathematical technique that extracts energetically and 

dynamically important features of a fluid flow. Proper orthogonal decomposition (POD) 

is one modal analysis technique commonly used that extracts modes based on optimizing 

the mean square of the field variable being examined. Its objective is to decompose a set 

of data into a minimal number of basis modes or functions to capture as much energy as 

possible. One POD method under the particular interest of the current research is the 

method of snapshots developed by Sirovich (1987). 

For a set of fluid flow data, N is the number of grid points times the number of 

variables considered, and m is the number of snapshots. The method of snapshots takes a 

collection of snapshots 𝑿 of the form 𝑿 = [𝑥(𝑡1)   𝑥(𝑡2) …    𝑥(𝑡𝑚)] where x(ti), is the 

fluctuating component vector of size N (Taira et al., 2017), namely, 

𝑥(𝑡) =  𝑢(𝜉, 𝑡) − �̅�(𝜉) [2.6] 

 

with 𝑢(𝜉, 𝑡) being the component vector field and �̅�(𝜉) is the mean. The POD expression 

to be solved is:  

𝑦(𝑡) ≈ 𝑢(𝜉, 𝑡) − �̅�(𝜉) ≈ ∑𝑥𝑗(𝑡)𝜙𝑗(𝜉)

𝑚

𝑗=1

 [2.7] 

 

where 𝑥𝑗(𝑡) are now the coefficients and 𝜙𝑗(𝜉) are the POD modes. The eigenvalue 

problem to be solved is thus a size of (m × m) and is: 

𝑿𝑇𝑿𝜓𝑗 = 𝜆𝑗𝜓𝑗 [2.8] 

 

If 𝚽 = [𝜙1 𝜙2 … 𝜙𝑚] and 𝚿 = [𝜓1 𝜓2 … 𝜓𝑚] then the POD modes are 

recovered by, 

𝚽 = 𝑿𝚿𝚲−1/2 [2.9] 
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The incompressible Navier-Stokes (NS) equations can be expressed as, 

∇ ∙ 𝑢 = 0 ,      
𝜕𝑢

𝜕𝑡
= −(𝑢 ∙ ∇)𝑢 + 𝜈∇2(𝑢) − ∇𝑝 [2.10] 

 

where 𝑢(𝜉, 𝑡) is the velocity field over a spatial domain 𝜉; 𝑝(𝜉, 𝑡) is the time and space 

dependent pressure field and 𝜈 = 1 𝑅𝑒⁄ . Rearranging Equations 2.6 and 2.7 into Equation 

2.10 we achieve the POD-ROM of the NS equations. 

𝜕

𝜕𝑡
∑𝑥𝑗(𝑡)𝜙𝑗(𝜉)

𝑚

𝑗=1

= −([�̅� + ∑𝑥𝑗(𝑡)𝜙𝑗(𝜉)

𝑚

𝑗=1

] ∙ ∇) [�̅� + ∑𝑥𝑗(𝑡)𝜙𝑗(𝜉)

𝑚

𝑗=1

]

+ 𝜈∇2 [�̅� + ∑𝑥𝑗(𝑡)𝜙𝑗(𝜉)

𝑚

𝑗=1

] − ∇𝑝 

[2.11] 

 

This set of nonlinear ordinary differential equations are not useful for controller design, 

and a control input needs to be expressed so that a feedback controller may be designed 

with control theory laws. 

In Kidambi et al. (2020) the POD-ROM flow velocity field is expanded as a weighted 

sum of actuated and unactuated POD modes such that,  

𝑢(𝜉, 𝑡) ≈ �̅�(𝜉) + ∑𝑥𝑗(𝑡)𝜙𝑗(𝜉)

𝑚

𝑗=1

+ ∑𝛾𝑖(𝑡)𝜁𝑖(𝜉)

𝑀

𝑖=1

 [2.12] 

 

where 𝜁𝑗(𝜉) denotes actuation modes and 𝛾𝑗(𝑡) denotes actuation values, or control 

inputs. Equation 2.12 is substituted into Equation 2.10, and the individual terms yield, 

(Kidambi et al., 2020), 

𝜕𝑢

𝜕𝑡
≈ ∑�̇�𝑗𝜙𝑗

𝑚

𝑗=1

+ ∑�̇�𝑖𝜁𝑖

𝑀

𝑖=1

 

 

[2.13] 
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∇2𝑢 ≈ ∇2�̅� + ∑𝑥𝑗∇
2𝜙𝑗

𝑚

𝑗=1

+ ∑𝛾𝑖∇
2𝜁𝑖

𝑀

𝑖=1

 

 

[2.14] 

 

(𝑢 ∙ ∇)𝑢 ≈ �̅� ∙ ∇�̅� + ∑(�̅� ∙ ∇𝜙𝑗 + 𝜙𝑗 ∙ ∇�̅�)𝑥𝑗

𝑚

𝑗=1

+ ∑(�̅� ∙ ∇𝜁𝑖 + 𝜁𝑖 ∙ ∇�̅�)𝛾𝑖

𝑀

𝑖=1

+ ∑∑(𝜙𝑗 ∙ ∇𝜙𝑖)𝑥𝑗𝑥𝑖

𝑀

𝑖=1

𝑚

𝑗=1

+ ∑∑(𝜁𝑗 ∙ ∇𝜁𝑖)𝛾𝑗𝛾𝑖

𝑀

𝑖=1

𝑚

𝑗=1

+ ∑∑(𝜙𝑗 ∙ ∇𝜁𝑖 + 𝜁𝑖 ∙ ∇𝜙𝑗)𝑥𝑗𝛾𝑖

𝑀

𝑖=1

𝑚

𝑗=1

 

[2.15] 

 

By projecting Equations 2.13-2.15 onto 𝜙𝑘, Kidambi et al. (2020) obtains Equation 

2.16,  

𝑥𝑘(𝑡)̇ = 𝒜𝑘 + ∑ℬ𝑘𝑗𝑥𝑗(𝑡)

𝑛

𝑗=1

+ ∑∑𝒞𝑘𝑗𝑖𝑥𝑗(𝑡)𝑥𝑖(𝑡)

𝑛

𝑖=1

𝑛

𝑗=1

+ ∑𝒟𝑘𝑗𝛾𝑗(𝑡)̇

𝑛

𝑗=1

+ ∑∑ℰ𝑘𝑗𝑖𝑥𝑗(𝑡)𝛾𝑖(𝑡)

𝑀

𝑖=1

𝑛

𝑗=1

+ ∑ℱ𝑘𝑖𝛾𝑖

𝑀

𝑖=1

+ ∑∑𝒢𝑘𝑖𝑗𝛾𝑖(𝑡)𝛾𝑗(𝑡)

𝑀

𝑗=1

𝑀

𝑖=1

 

[2.16] 

 

where terms 𝒜𝑘 through 𝒢𝑘 are the listed in Equation 2.17. 

𝒜𝑘 = −〈�̅� ∙ ∇�̅�, 𝜙𝑘〉 +
1

𝑅𝑒
〈∇2�̅�, 𝜙𝑘〉 

[2.17] 

ℬ𝑘 = −〈�̅� ∙ ∇𝜙𝑗 , 𝜙𝑘〉 − 〈𝜙𝑗 ∙ ∇�̅�, 𝜙𝑘〉 +
1

𝑅𝑒
〈∇2𝜙𝑗 , 𝜙𝑘〉 

𝒞𝑘 = −〈𝜙𝑗 ∙ ∇𝜙𝑖, 𝜙𝑘〉 

𝒟𝑘 = −〈𝜁𝑗 , 𝜙𝑘〉 

ℰ𝑘 = −〈𝜁𝑖 ∙ ∇𝜙𝑗 , 𝜙𝑗〉 − 〈𝜙𝑗 ∙ ∇𝜁𝑖, 𝜙𝑘〉 

ℱ𝑘 = −〈�̅� ∙ ∇𝜁𝑗 , 𝜙𝑘〉 − 〈𝜁𝑗 ∙ ∇�̅�, 𝜙𝑘〉 +
1

𝑅𝑒
〈∇2𝜁𝑗 , 𝜙𝑘〉 

𝒢𝑘 = −〈𝜁𝑗 ∙ ∇𝜁𝑖 , 𝜙𝑘〉 

 

Continuously, Kidambi et al. (2020) expressed the actuated reduced-order dynamics 

model Equation 2.18 in control regime, 
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�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢, and 𝑦 = ℎ(𝑥) [2.18] 

 

where x(𝑡) contains the coefficients that result from POD-ROM, 𝑔(𝑥) is an input gain 

matrix and 𝑢(𝑡) is a control input and 𝑦(𝑡) is a measurable output such as flow velocity 

or pressure. This POD-ROM based controller by Kidambi et al. (2020) is the nonlinear 

closed-loop design under consideration for the current study. 
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3. Methodology 

The project provides opportunity for future research. The long-term project goals and 

steps are broken down in Figure 3.1. The project analyzes two different types of closed-

loop controllers and is compared against Rizzetta and Visbal (2020). For the sake of this 

project, an open-loop analysis was conducted and compared against Rizzetta and Visbal 

(2020), followed by the implementation of and analyzation of closed-loop controller 1, 

along with the exploration of closed-loop controller 2. Because CFD results are compared 

against Rizzetta and Visbal (2020), the flat plate simulation set-up is closely followed and 

discussed below.  

 

 
Figure 3.1  Project overview. 

 

3.1. Problem Statement 

The problem to be solved is to design a closed-loop controller that provides an input 

voltage to a PDOS actuator that deforms a surface in an oscillatory manner to suppress 

the 2-D TS waves before instabilities grow too large, lengthening the laminar boundary 

layer. The closed-loop analyses are first implemented on a flat plate, later to be analyzed 

on real airfoil geometries. The flat plate configuration is shown in Figure 3.2 and is the 
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same as that of configuration 2 in Rizzetta and Visbal (2020). The flat plate has a length 

of 1000 mm, a thickness of 19 mm, and a 4:1 elliptical leading edge. A1 denotes the 

PDOS actuator 1 at L1 = 273 mm and A2 denotes PDOS actuator 2 at L2 = 388 mm. 

Location L3 from the leading edge denotes the location of a pressure sensor S and varies 

for this study. Point O is 600mm from the leading edge and is used to compare the time 

history of pressure for the open and closed-loop control tests. 

 

  
Figure 3.2  Flat Plate Configuration (Rizzetta & Visbal, 2020). 

 

3.1.1. The Governing Equations 

The governing equations solved are the unsteady, three-dimensional compressible 

Navier-Stokes equations in Equation 3.1. Here, 𝑡 is time, 𝜉, 𝜂, and 𝜁 are computational 

coordinates. The vectors in Equation 3.1 are defined in Equations 3.2 through 3.7.   

 

𝜕

𝜕𝑡
(
�⃗⃗�

𝐽
) +

𝜕𝐹𝑖
⃗⃗⃗

𝜕𝜉
+

𝜕𝐺𝑖
⃗⃗⃗⃗

𝜕𝜂
+

𝜕𝐻𝑖
⃗⃗⃗⃗⃗

𝜕𝜁
−

1

𝑅𝑒
[
𝜕𝐹𝑣
⃗⃗⃗⃗

𝜕𝜉
+

𝜕𝐺𝑣
⃗⃗⃗⃗⃗

𝜕𝜂
+

𝜕𝐻𝑣
⃗⃗ ⃗⃗ ⃗

𝜕𝜁
] = 𝑆 

 

[3.1] 

 

 
�⃗⃗� = [𝜌 𝜌𝑢 𝜌𝑣 𝜌𝑤 𝜌𝐸]𝑇 

 

 

[3.2] 

 

 �⃗� =
1

𝐽

[
 
 
 
 

𝜌𝑈
𝜌𝑢𝑈 + 𝜉𝑥𝑝
𝜌𝑣𝑈 + 𝜉𝑦𝑝

𝜌𝑤𝑈 + 𝜉𝑧𝑝
𝜌𝐸𝑈 + 𝜉𝑥𝑖

𝑢𝑖𝑝]
 
 
 
 

 �⃗� =
1

𝐽

[
 
 
 
 

𝜌𝑉
𝜌𝑢𝑉 + 𝜂𝑥𝑝
𝜌𝑣𝑉 + 𝜂𝑦𝑝

𝜌𝑤𝑉 + 𝜂𝑧𝑝
𝜌𝐸𝑉 + 𝜂𝑥𝑖

𝑢𝑖𝑝]
 
 
 
 

 �⃗⃗⃗� =
1

𝐽

[
 
 
 
 

𝜌𝑈
𝜌𝑢𝑈 + 𝜁𝑥𝑝
𝜌𝑣𝑈 + 𝜁𝑦𝑝

𝜌𝑤𝑈 + 𝜁𝑧𝑝
𝜌𝐸𝑈 + 𝜁𝑥𝑖

𝑢𝑖𝑝]
 
 
 
 

 
[3.3] 
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𝐹𝑣
⃗⃗⃗⃗  

=
1

𝐽

[
 
 
 
 
 

0
𝜉𝑥𝑖

𝜏𝑖1

𝜉𝑥𝑖
𝜏𝑖2

𝜉𝑥𝑖
𝜏𝑖3

𝜉𝑥𝑖
(𝑢𝑗𝜏𝑖𝑗 − 𝒬𝑖)]

 
 
 
 
 

 

 

 

 

𝐺𝑣
⃗⃗⃗⃗⃗

=
1

𝐽

[
 
 
 
 

0
𝜂𝑥𝑖

𝜏𝑖1

𝜂𝑥𝑖
𝜏𝑖2

𝜂𝑥𝑖
𝜏𝑖3

𝜂𝑥𝑖
(𝑢𝑗𝜏𝑖𝑗 − 𝒬𝑖)]

 
 
 
 

 

 

 

 

𝐻𝑣
⃗⃗ ⃗⃗ ⃗

=
1

𝐽

[
 
 
 
 
 

0
𝜁𝑥𝑖

𝜏𝑖1

𝜁𝑥𝑖
𝜏𝑖2

𝜁𝑥𝑖
𝜏𝑖3

𝜁𝑥𝑖
(𝑢𝑗𝜏𝑖𝑗 − 𝒬𝑖)]

 
 
 
 
 

 

 

 

 

[3.4] 

 

 

 

𝑈 = 𝜉𝑡 + 𝜉𝑥𝑖
𝑢𝑖 

 

 

𝑉 = 𝜂𝑡 + 𝜂𝑥𝑖
𝑢𝑖 

 

 

𝑊 = 𝜁𝑡 + 𝜁𝑥𝑖
𝑢𝑖 

 

 

[3.5] 

 

 

 

𝐸 =
𝑇

𝛾(𝛾 − 1)𝑀∞
2

+
1

2
(𝑢2 + 𝑣2 + 𝑤2) 

 

 

[3.6] 

 

 

 𝑝 =
𝜌𝑇

𝛾𝑀∞
2

 [3.7] 

 

The variables  𝑢, 𝑣, and 𝑤 are Cartesian velocity components, 𝜌 is density, 𝑝 is pressure 

and 𝑇 is temperature. Continuously, the components of the heat flux vector and stress 

tensor are in Equations 3.8-3.9.  

𝒬𝑖 = [
1

(𝛾 − 1)𝑀∞
2
] (

𝜇

𝑃𝑟
)
𝛿𝜉𝑗

𝛿𝑥𝑖

𝑇

𝛿𝜉𝑗
 

 

 

[3.8] 

 

 

𝜏𝑖𝑗 = 𝜇 (
𝜕𝜉𝑘

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝜉𝑘
+

𝜕𝜉𝑘

𝜕𝑥𝑖

𝜕𝑢𝑗

𝜕𝜉𝑘
−

2

3
𝛿𝑖𝑗

𝜕𝜉𝑙

𝜕𝑥𝑘

𝜕𝑢𝑘

𝜕𝜉𝑙
) [3.9] 

 

3.2. Computational Setup 

This section encompasses the computational setup of the project, i.e., the mesh and 

numerical methods. The computational setup is the same as of that for Rizzetta and 

Visbal (2020) for comparison of results. The Airforce Research Lab (AFRL) provided 
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their implicit large eddy simulation (ILES) code FDL3DI for the sake of this project and 

its numerical methods are discussed below.  

3.2.1. Computational Mesh 

The computational mesh was provided by the AFRL. It is a half c-grid, consisting of 

the top half of the flat plate. Since the flat plate is symmetrical, only the top half is used 

to reduce computational expenses. The overall grid used consisted of a 4129 x 431 x 3 

grid size with a total of 3,550,080 cells. The grid spacing near the wall is approximately 

.015 mm, resulting of a yplus less than one. 

The computational grid is shown in Figure 3.3. As seen in Figure 3.3a, grid stretching 

can be seen in the farfield regions. This stretching helps prevent any spurious reflections 

in the outflow region. The 4:1 elliptical leading edge of the flat plate is shown in Figure 

3.3b. In figure 3.3c, the 3-D view of the grid is shown. The grid uses 3 slices in the z-

direction to be compatible with FDL3DI for a 2-D case. 

 

a) b)  

c)  

Figure 3.3 Computational Mesh, a) Farfield region, b) 4:1 Elliptical Leading Edge, c) 3-

D view (z-direction stretched by a factor of 12). 
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3.2.2. AFRL FDL3DI ILES Code 

The AFRL FDL3DI code is an implicit LES solver. It incorporates the sixth-order 

accurate Pade compact scheme for spatial derivatives and second-order backward-

implicit time differencing scheme for temporal derivatives. Subiterations are utilized 

within a time-step to maintain temporal accuracy.  In addition, to maintain stability and 

accuracy, a low-pass Pade-type spatial filter from Gaitonde (1997) is used with the finite 

differencing schemes. The filter is applied following each subiteration to the evolving 

solution to adjust poorly resolved features. This filtering methodology is a post-

processing technique.  

3.2.2.1. Freestream Conditions  

Standard atmospheric conditions are assumed for this problem and are listed in Table 

3.1. The Reynolds number of 1,081,642 and a Mach number of 0.1 were used to match 

conditions of Rizzetta and Visbal (2020). With standard atmospheric conditions, the 

speed of sound is 340.3 m/s, thus the velocity used is 34.03 m/s. This is slightly more 

than half of the freestream velocity used in the experiment of Amitay. Note that the 

Reynold’s number calculated uses the 16 m/s of that of Amitay. 

 

Table 3.1 Freestream Conditions. 

Description Value 

Speed of Sound 340.3 m/s 

Freestream Velocity 34.03 m/s 

Pressure 1 atm. 

Density 1.225 kg/m3 

Kinematic Viscosity 1.48E-5 m2/s 

Temperature 288.15 K 

Ratio of Specific Heats 1.4 
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3.2.2.2. Boundary Condition  

This section covers the boundary conditions applied to the computational domain. At 

the flat plate, the no-slip adiabatic wall condition is enforced. The general location of this 

can be seen in red in Figure 3.4. Ahead of the flat plate, an inviscid wall condition is 

used. The outflow boundary condition is variable extrapolation and pressure is 

atmospheric. The general location of this is seen in blue in Figure 3.4. Lastly, there is a 

freestream pressure extrapolation for the inlet as seen in green.  

 

 

Figure 3.4 Boundary Conditions. 

 

3.2.3. Closed-Loop Controller 

The computational set-up follows that of Rizzetta and Visbal (2020), except for the 

closed-loop controller. This study examines two potential closed-loops controllers to 
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mitigate 2-D TS instabilities, Controller 1 and Controller 2. Controller 1 is a simple 

pressure-correction controller that uses a pressure sensor downstream of PDOS 2. 

Controller 2 is a non-linear controller that incorporates Proper Orthogonal Decomposition 

Reduced Order Model (POD-ROM) methodology. 

3.2.3.1. Controller One 

Controller 1 is a simple pressure-correction closed-loop controller that takes a 

pressure perturbation reading multiplied by a control-law gain value and outputs a 

voltage, 𝑢𝑜 in Equation 3.10, read by the PDOS actuator. A black-box model of this 

control loop is below in Figure 3.5. 

 𝑢𝑜 = 𝐺𝑝′ 
 

[3.10] 

 𝑝′ = 𝑝2 − �̅�2 [3.11] 

 

 

Figure 3.5 Black box model of pressure-based controller. 

 

The pressure perturbation is calculated by the controller using Equation 3.11, where 

𝑝2 is the pressure reading from the sensor, and �̅�2 is the averaged pressure from the 

sensor. This methodology allows only one sensor to be used, and no previous averaged 

pressure value is needed. This methodology is different than that of Rizzetta 2020, where 

the averaged pressure value is taken from the steady-state simulation before instabilities 

occur.  
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A downside to this methodology is suppression is delayed due to the time it takes to 

achieve a converged averaged pressure value. In addition, the controller gain is 

contingent on the location of the pressure sensor. The controller gain G in Equation 3.10 

is expressed in Equation 3.12, where 𝐴2 and 𝐵2 are found in Table 2.1 for configuration 

2. The value F is chosen arbitrarily based on the location of the pressure sensor. 

 

𝐺 = 𝜏𝐹2√𝐴2
2 + 𝐵2

2 

 

𝑓𝑜𝑟 0 ≤ 𝜏 < 1 

 
[3.12] 

 
𝐺 = 𝐹2√𝐴2

2 + 𝐵2
2 

 

𝑓𝑜𝑟 1 ≤ 𝜏 

 

3.2.3.2. Controller Two 

Controller 2 is the robust nonlinear controller that incorporates POD-ROM 

procedures. As mentioned in Section 2.2, the controller method under consideration is 

that of Kidambi et al. (2020) in which Equation 2.12 is substituted into the NS equations 

to achieve a ROM. Kidambi et al. (2020) uses velocity as the selective component, but 

for the current work, a pressure sensor is used, thus the fluctuating pressure component 

will be under evaluation.  

The black box model for this control loop is below in Figure 3.6. When comparing 

the black box models of the two closed-loop controller, the POD-ROM has an extra step. 

The POD-ROM box in Figure 3.6 represents a kind of “estimator” or “observer” that 

approximates flow field velocity or pressure direct measurements. In this case it is the 

later. The POD-ROM approximations are used as surrogates for the actual sensor 

measurements in the feedback control law. This is beneficial because the actual closed-

loop flow control system is tested and adjusted using low-fidelity simulations that can be 

run within seconds or minutes, saving on computational time and expenses. 
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Figure 3.6 Black box model of POD-ROM based controller. 

 

The proposed method consists of first conducting CFD simulations on the flat plate 

with PDOS actuator 1 active for excitation of instabilities and open loop control. Then a 

POD analysis is then conducted on the pressure data from the simulations. The POD 

analysis will provide the needed coefficient and mode data, 𝑥𝑗(𝑡) and 𝜙𝑗(𝜉) respectively, 

and the flow field dynamic ROM correlates to Equation 3.13. 

𝑥�̇�(𝑡) = 𝒜𝑘 + ∑ℬ𝑘𝑗𝑥𝑗(𝑡)

𝑛

𝑗=1

+ ∑∑𝒞𝑘𝑗𝑖𝑥𝑗(𝑡)𝑥𝑖(𝑡)

𝑛

𝑖=1

𝑛

𝑗=1

+ ∑𝒟𝑘𝑗𝛾�̇�(𝑡)

𝑛

𝑗=1

+ ∑∑ℰ𝑘𝑗𝑖𝑥𝑗(𝑡)𝛾𝑖(𝑡)

𝑀

𝑖=1

𝑛

𝑗=1

+ ∑ℱ𝑘𝑖𝛾𝑖

𝑀

𝑖=1

+ ∑∑𝒢𝑘𝑖𝑗𝛾𝑖(𝑡)𝛾𝑗(𝑡)

𝑀

𝑗=1

𝑀

𝑖=1

 

[3.13] 

 

As an example, for four modes, Equation 3.13 can be expanded into the Equations 

3.14-3.18, where y represents the POD-ROM approximate of pressure and 𝑢𝑖 is the 

controller input. 

𝑥1̇ = 𝑏1 + 𝐿11𝑥1 + 𝑄141𝑥1𝑥4 + 𝑄111𝑥1
2 + 𝑄121𝑥1𝑥2 + 𝑄131𝑥1𝑥3 + 𝑢𝑖(𝑡) [3.14] 

𝑥2̇ = 𝑏2 + [𝐿22 + 𝑡2(𝑥2
2 + 𝑥3

2)]𝑥2 + 𝐿23𝑥3 + 𝑄121𝑥1𝑥2 + 𝑢𝑖(𝑡) [3.15] 

𝑥3̇ = 𝑏3 + 𝐿32𝑥2 + [𝐿33 + 𝑡3(𝑥2
2 + 𝑥3

2)]𝑥3 + 𝑄313𝑥1𝑥3 + 𝑄314𝑥1𝑥4 + 𝑢𝑖(𝑡) [3.16] 

𝑥4̇ = 𝑏4 + 𝐿41𝑥1 + 𝐿44𝑥4 + 𝑄444𝑥4
2 + 𝑄414𝑥1𝑥4 + 𝑄424𝑥2𝑥4 + 𝑄434𝑥3𝑥4

+ 𝑢𝑖(𝑡) 

 

[3.17] 

𝑦 = 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑐4𝑥4 [3.18] 
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4. Results 

Three main conditions are tested and compared in this simulation environment 

namely: 1) Production of 2-D TS waves: Excitation without control; 2) Excitation with 

open-loop actuation: Open-Loop Control; and 3) Excitation with closed-loop actuation: 

Closed-Loop Control. The suppression of TS waves is observed through pressure and v-

velocity values. Although in the real world, it should be noted that the nature of 

transitional flows is sensitive and thus results may change significantly between 

geometries. Because of this many tests and comparisons should be conducted. The 

simulations discussed below sheds light on the performance of the different closed-loop 

controllers for detecting and suppressing the growth of 2-D TS instabilities. 

4.1. Excitation With No Control 

The first step in simulation tests is to excite the growth of TS instabilities. This is 

conducted by PDOS 1 at location 273 mm from the leading edge. The streamwise 

wavelength of the largest amplified TS wave is obtained from linear stability theory of 

Amitay to be λ = 24 mm. Using a PDOS actuator of diameter half of λ produces the best 

control (Kotsonis, 2013). A frequency of 250 Hz was used as input to the PDOS 1 to 

enhance disturbances. The non-dimensional amplitude of PDOS 1 can be described by 

Equation 4.1 where 𝜔 is 15.625. 

 𝑎𝑚𝑝 = 2 × 10−5 × sin(2𝜋𝜔𝜏) [4.1] 

 

The pressure and v-velocity contour plots are seen in Figure 4.1a and b respectively. 

The three vertical lines indicate the locations of PDOS 1 and 2 (273 mm and 388 mm 

from the leading edge, respectively), and an observer point O where pressure is recorded 
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over time. Point O is located 600mm from the leading edge. These plots visually show 

the existence of 2-D TS waves from excitation of PDOS 1 actuation. 

 

a)  

b)  

Figure 4.1 Excitation without control contour plots a) Pressure, b) V Velocity. 

 

The time history plot for point O is shown below in Figure 4.2. Time at tau 0 

indicates when steady-state has been reached with PDOS 1 active. It can be observed that 

the pressure oscillates between roughly 71.409 kPa and 71.438 kPa in Figure 4.2.   

The evolution of pressure and v-velocity across the plat is also observed and is shown 

in Figure 4.3 and Figure 4.4 respectively. The pressure and v-velocity values are taken 

from 0.1m to 0.9m, for just after the elliptical leading edge and before the end of the 

plate. As seen in Figure 4.3, the pressure gradually increases along the plate and begins to 

oscillate after the first vertical line, which indicates the location of PDOS 1. The second 

vertical line indicates the location of PDOS 2, which is currently inactive. The third 

vertical line indicates the location of observer point O, the same as the contour plots. A 
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similar trend is seen in Figure 4.4 for v-velocity, however instead of a gradual increase 

upstream of PDOS 1, a gradual decrease is observed until disturbances are introduced by 

actuation and oscillations are observed.  

 

Figure 4.2 Time history plot at point O: excitation with no control. 

 

 

Figure 4.3 Evolution of x of pressure: excitation with no control. 



29 

 

 

Figure 4.4 Evolution of x of v-velocity: excitation with no control. 

 

4.2. Open-Loop Control 

After TS instabilities are excited and are evident, the first level of control conducted 

is open-loop control to compare against Rizzetta and Visbal (2020). The non-dimensional 

amplitude of PDOS 2 for open-loop control is defined by a simple wave harmonic 

function, found in Equation 4.2. 

 𝑎𝑚𝑝 = 4.4 × 10−5 sin(2𝜋𝜔𝜏) + 1.34 × 10−5 cos(2𝜋𝜔𝜏) [4.2] 

Figure 4.5 below contains the contour plots of pressure (a) and v-velocity (b) for the 

open-loop control. Comparing these plots to those in Figure 4.1, suppression is visually 

observed. Continuously, Figure 4.5b can be compared against Figure 2.5b.  

The actuation from PDOS 1 is active without PDOS 2 for 16τ (non-dimensional 

time). At this moment, PDOS 2 actuation is turned on. The time history plot of pressure 

for point O is shown in Figure 4.6. From the plot, suppression of the pressure oscillations 
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at point O is observed after 2τ from the moment PDOS 2 is turned on. Thus, the open-

loop control successfully decreases instabilities. 

 

a)  

b)  

Figure 4.5 Actuation with open-loop control contour plots a) Pressure, b) V Velocity. 

 

 

Figure 4.6  Time history plot at point O: excitation with open-loop control. 
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In Figures 4.7 and 4.8 the evolution of x of pressure and v-velocity are shown, 

respectively. They are plotted against results from Figures 4.3 and 4.4 when PDOS 2 is 

inactive. From the figures, suppression of the oscillations from PDOS 1 is evident 

downstream PDOS 2.  

 

 

Figure 4.7 Evolution of x of pressure: excitation with open-loop control. 

 

 

Figure 4.8 Evolution of x of v-velocity: excitation with open-loop control. 
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Figure 4.9 below shows the time-history of the actuator PDOS 2 amplitude from 15τ, 

1τ before it is turned on. From the plot, the simple harmonics wave from Equation 4.2 is 

seen. This will be compared to the PDOS 2 amplitude for the closed-loop control tests. 

 

 

Figure 4.9 Open-Loop Control PDOS 2 Amplitude starting from 1 tau before actuation. 

 

4.3. Closed-Loop Controller One 

Closed-loop controller 1 is the simplified pressure-based controller designed by Dr. 

MacKunis of Embry-Riddle Aeronautical University’s (ERAU) Physical Sciences 

Department. The controller uses input from a pressure sensor that is located downstream 

of PDOS 2. Different locations were tested for the pressure sensor. 

4.3.1. Pressure Sensor Locations 

The different sensor locations tested were x-locations S = 395 mm, 400 mm, and 500 

mm from the leading edge. The first location was an initial test of CFD implementation 

of the sensor location and closed-loop controller. Later, the sensor was moved to 400 mm 

from the leading edge due to the practicality of actuator and sensor sizes for 

manufacturing purposes. Another sensor location test at 500 mm was also conducted for 

comparison against sensor location S=400mm. 



33 

 

4.3.1.1. Pressure Sensor Location 1: 395mm 

The pressure sensor test with S = 395 mm from the leading edge was used to first test 

the implementation of the controller. This was done by analyzing the effect of 

perturbation pressure oscillations gathered by the sensor on the amplitude produced by 

PDOS 2. This comparison of amplitudes is shown in Figure 4.10. The value of F from 

Equation 3.12 is used to increase or decrease the amplitude of PDOS 2. Zooming in on 

Figure 4.10, we can see that the amplitude of PDOS 2 produced by the pressure-based 

closed-loop controller with a value of F = 192 is slightly larger than that of the open-loop 

amplitude of PDOS 2.  

 

a)   b)  

Figure 4.10 a) PDOS 2 actuator amplitude time history plot, b) zoomed image of (a). 

 

Furthermore, the perturbation pressure located at 600 mm was calculated and 

compared. Figure 4.11 shows the perturbation pressure comparison between open-loop 

control and closed-loop control with S = 395 mm. As seen in Figure 4.11a the 

perturbation pressure significantly decreases after the control is turned on at 16 tau. In 

Figure 4.11b, the perturbation pressure for the closed-loop control is slightly larger than 

that of the open-loop control. When comparing the perturbation pressures of the closed-



34 

 

loop test from before and after control, there is roughly a 90% decrease in pressure 

perturbations. The contour plots of pressure and v-velocity for this pressure-based 

controller are below in Figure 4.12a and b respectively. 

0.014 − .0013

0.014
× 100% = 90.7% [4.3] 

 

a)  b)  

Figure 4.11 a) Time history of perturbation pressure at x=600mm of open-loop control 

and closed-loop control when S=395mm, b) zoomed image of (a). 

 

a)  

b)  

 Figure 4.12 Actuation with closed-loop pressure controller when S=395mm contour 

plots a) Pressure, b) V Velocity. 
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4.3.1.2. Pressure Sensor Location 2: 400mm 

The second sensor location tested is S=400mm. The same value of F = 192 is used. As 

seen from Figure 4.13, the amplitude and the phase shift of the PDOS 2 actuator 

amplitude changed due to the change in sensor location. A higher value of F is needed in 

order to achieve a closer relation to the PDOS 2 amplitude of open-loop control. 

However, when analyzing the pressure oscillations in Figure 4.14 we can see that even 

with a smaller amplitude, suppression is reached at point O.  

Continuously, the pressure and v-velocity contour plots in Figure 4.15 show no 

significant changes when compared to Figure 4.12. This is expected, as S locations 

395mm and 400mm are only 5mm apart. Though the amplitude has changed, the pressure 

perturbations have decreased significantly. When comparing the perturbation pressures of 

the closed-loop test from before and after control, there is roughly a 90% decrease in 

pressure perturbations. 

0.014 − .0013

0.014
× 100% = 90.7% [4.4] 

 

a)   b)  

Figure 4.13 a) PDOS 2 actuator amplitude time history plot, b) zoomed image of (a). 
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a) b)  

Figure 4.14 a) Time history of pressure at x=600mm of open-loop control and closed-

loop control when S=400mm, b) zoomed image of (a). 

 

a)  

b)  

Figure 4.15 Actuation with closed-loop pressure controller when S=400mm contour plots 

a) Pressure, b) V Velocity. Vertical lines indicate locations from left to right: PDOS1, 

PDOS2, S, O. 

 

When analyzing the evolution of x for pressure and v-velocity values oscillations are 

evident downstream of PDOS 2. The oscillations dampen out and are still significantly 

smaller than those in Figures 4.3 and 4.4. The comparison between open-loop and closed-

loop controls are seen below in Figure 4.16 and 4.17. These plots show that suppression 

is achieved at a slower rate in comparison to open-loop control. 
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Figure 4.16 Evolution of x of pressure: open-loop control vs closed-loop control with 

S=400mm. 

 

 

Figure 4.17 Evolution of x of v-velocity: open-loop control vs closed-loop control with 

S=400mm. 
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4.3.1.3. Pressure Sensor Location 2: 500mm 

The third sensor location tested is S=500mm. Again, the same value of F = 192 is 

used. As seen from Figure 4.18, the amplitude and the phase shift of the PDOS 2 actuator 

amplitude has again changed due to the change in sensor location. It is observed that as 

the sensor location moves further downstream where higher TS instabilities are recorded, 

the phase shift of the PDOS 2 amplitude also changes. 

When analyzing the pressure in Figure 4.19 we can still observe a decrease in 

amplitude. The pressure and v-velocity contour plots in Figure 4.20 also show no 

significant changes when compared to Figure 4.12 and Figure 4.15, thus there is a similar 

90% decrease in pressure perturbations. 

0.014 − .0013

0.014
× 100% = 90.7% 

 

[4.5] 

 

When analyzing the evolution of x for pressure and v-velocity, the results were 

similar to that for S=400mm. The comparison between open-loop and closed-loop control 

for S=500mm are seen below in Figures 4.21 and 4.22. A comparison of the open loop 

and closed-loop results for S=400 and 500mm are discussed below in section 4.5. 

 

a) b)  

Figure 4.18 a) PDOS 2 actuator amplitude time history plot, b) zoomed image of (a). 
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a)   

b)  

Figure 4.19 a) Time history of perturbation pressure at x=600mm of open-loop control 

and closed-loop control when S=500mm, b) zoomed image of (a). 

 

a)  

b)  

Figure 4.20 Actuation with closed-loop pressure controller when S=500mm contour plots 

a) Pressure, b) V Velocity. Vertical lines indicate locations from left to right: PDOS1, 

PDOS2, S, O. 
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Figure 4.21 Evolution of x of pressure: open-loop control vs closed-loop control with 

S=500mm. 

 

 

Figure 4.22 Evolution of x of v-velocity: open-loop control vs closed-loop control with 

S=500mm. 
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4.4. Closed-Loop Controller Two 

Closed-loop controller 2 is the POD-ROM based controller. This controller first needs 

a POD analysis of the solution in order to generate the reduced order model. An initial 

spatial POD analysis was conducted using the entire CFD domain and 34 snapshots in 

time. This analysis was conducted on the excited cases with not control and open-loop 

control. Figure 4.23 below shows the pressure and v-velocity contour plots for the first 

three modes of the excitation with no control case. 

Figure 4.24a shows a plot of the eigenvalues of the POD analysis with their 

corresponding mode. Figure 4.24b shows the plot of energy within the number of modes 

used for the excited and not control case. These plots show that the first 5 modes are 

critical in obtaining the most important flow characteristics for the excitation and no 

control case. Figures 4.25 and 4.26 are similar figures but for the excitation with open-

loop case. Again, it is noted that the first 5 modes are the most critical. Table 4-1 contains 

the eigenvalues and energy values. 

 

a) b)  

Figure 4.23 First three modes (top to bottom) contour plots of the excitation and no 

control case, a) pressure (range from -1e-4 to 3.8e-5) and b) v-velocity (range from -1e-3 

to 8.6e-3). 
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a)  b)  

Figure 4.24 a) Eigenvalues for each corresponding mode and b) Energy within number of 

modes used for the excitation with no control case. 

 

a) b)  

Figure 4.25 First three modes (top to bottom) contour plots of the excitation and open-

loop control case, a) pressure (range from -1e-4 to 3.8e-5) and b) v-velocity (range from -

1e-3 to 8.6e-3). 

 

a)   b)  

Figure 4.26 a) Eigenvalues for each corresponding mode and b) Energy within number of 

modes used for the excitation with open-loop control case. 
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Table 4.1 Eigenvalue and energy values with r modes. 

 Uncontrolled Case Open-Loop Controlled Case 

r Eigenvalues 
Energy Captured with 

r modes 
Eigenvalues 

Energy Captured with 

r modes 

1 0.8032 39.63682 0.7209 43.01226 

2 0.5695 67.74045 0.5787 77.54342 

3 0.4295 88.93734 0.3075 95.89220 

4 0.1741 97.52911 0.0469 98.69166 

5 0.0341 99.21176 0.0174 99.72690 

6 0.0117 99.78946 0.0028 99.89143 

7 0.0026 99.91845 0.0011 99.95487 

8 0.00077 99.95650 0.00043 99.98068 

9 0.00032 99.97239 0.00017 99.99091 

10 0.00026 99.98529 0.000078 99.99555 

 

With 5 modes obtaining 99% of the energy captured within the flow, Equation 3.18 

becomes the following, 

𝑦 = 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑐4𝑥4 + 𝑐5𝑥5 [4.6] 

 

If considering only one mode, the equation simplifies to Equation 4.7 below. 

𝑦 = 𝑐1𝑥1 

 

[4.7] 

Comparing Equation 4.7 with one mode to Equation 3.10 from the pressure-based 

controller, one could say that the pressure-based controller approximates a POD-ROM 

controller utilizing one mode. 

4.5. Comparison of Results 

The contour plots side-by-side for easy comparison is found in Appendix A. Figures 

4.27 and 4.28 are the evolution of x for pressure and v-velocity values for the open-loop 

case, closed-loop cases S=400mm and 500mm, and the uncontrolled case. From these 

plots, it is evident that the suppression rate of closed-loop cases S=400mm and S=500mm 

contain very little to no difference. 
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Figure 4.27 Evolution of x of pressure for open control, closed-loop controls for 

S=400mm and 500mm, and no control. 

 

 

Figure 4.28 Evolution of x of v-velocity for open control, closed-loop controls for 

S=400mm and 500mm, and no control. 
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5. Discussions, Conclusions, and Recommendations 

The flat plate model with excited TS waves and open-loop control was successfully 

recreated to allow further comparisons with closed-loop control. The pressure-based 

controller was successfully developed, implemented and suppressed TS fluctuations. The 

POD-ROM is still under development and is unclear if suppression will be more effective 

with multiple modes. At the outset, this project presents a further understanding in 

transitional control, resulting in a significant reduction of instabilities produced on a flat 

plate. 

5.1. Conclusions 

The results presented in this work is highly dependent on three important factors, 

which are: 1) the excited TS instabilities produced by PDOS 1; 2) control laws; and 3) 

geometry. Due to the delicacy of natural transition, a change in any of these parameters 

could prove to be beneficial or detrimental to successful transitional control.  

Transitional control on a flat plate was successfully simulated on FDL3DI. This work 

serves to be a virtual representation using closed-loop controller designs and serves as a 

benchmark for the optimal transitional control on real airfoil geometry. After testing a 

variety of scenarios in the simulation environment, the most significant results from this 

work are listed below: 

• Results indicate that the Pressure-Based Closed-Loop Controller was able to 

suppress TS instabilities observed in pressure perturbations by 90%. 

• When compared to the simple open-loop controller, there is a 50% increase in 

pressure perturbations, concluding that open-loop control is more successful 

in suppressing 2-D TS waves.  



46 

 

• Though suppression is achieved with the pressure based closed-loop 

controller, the open-loop controller suppresses the TS waves much quicker. 

• The sensor locations S=400mm and S=500mm provided very similar 

outcomes at the observer point O. 

• Mathematically speaking, the pressure-based controller can serve as an 

approximation of the POD-ROM controller with one mode. 

These results provide the hopeful indication on the possibilities of implementing 

PDOS actuators employed by a pressure-based controller for suppressing 2-D TS 

instabilities. This is a rudimentary proof of concept that shows the feasibility of transition 

control with a closed-loop controller on a flat plate. In addition to this, the prospect of 

this controller can be implemented and tested on real airfoil geometry.  

5.2. Recommendations 

While the open-loop system is clearly superior to the pressure-based closed-loop 

system, it was also observed that different freestream conditions and airfoil geometry 

could significantly alter the results.  This comparison would provide the rationale for the 

need to develop a nonlinear control system that can minimize any instabilities produced 

in the boundary layer.  

As the scenarios described above are discussed, the need for implementing artificial 

intelligence transition control was realized. More specifically, it was determined that a 

POD-ROM closed-loop controller has the potential for the best methodology for this 

study. This ROM paradigm would establish the rationale for optimal transitional control 

under any environmental conditions. This leads to the next important step in this 

research, where a POD-ROM controller tested on different airfoil geometries and 
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environmental conditions could be fabricated and a deeper understanding of transitional 

control would be achieved. 
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Appendix A 

 

 

 

 

Figure A.1 Pressure Contour Plots for top to bottom: excitation with no control, 

excitation with open-loop control, excitation with closed-loop control and S=400mm, and 

excitation with closed-loop control and S=500mm. 
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Figure A.2 V Velocity Contour Plots for top to bottom: excitation with no control, 

excitation with open-loop control, excitation with closed-loop control and S=400mm, and 

excitation with closed-loop control and S=500mm. 
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