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Abstract

The problem of classical solutions for the regularized long-wave equa-
tion is considered where various additional forcing terms are introduced
which are often required for physical modifications in the wave theory.
Sufficient conditions of solvability and existence are established and then
these conditions are related to the structure of the forcing terms under
consideration.
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1 Introduction

It is well known [3] that the equation

uxxt = (u(x, t) + 1) · ux + ut

(BBM equation henceforth) performs well as a mathematical model for long-
time evolution of wave phenomenon. Moreover, when investigating the math-
ematical modeling leading up to the BBM equation in applications of wave
phenomenon it becomes apparent that many physical conditions are either
overlooked, or drastically simplified to be taken as constant. For example, if
one adds the condition of viscosity to model water waves then the correspond-
ing equation takes the form

(u(x, t) + 1) · ux + ut − uxxt = cuxx,
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where is c a constant that represents the viscosity. Various results for the
above equation were discussed in our recent work [6]. In addition, various
other forcing terms have been investigated [5] and the corresponding equations
often take the form

(u(x, t) + 1) · ux + ut − uxxt = f(x, t, u(x, t)).

In the following pages we investigate the above equation and develop con-
ditions on the forcing term f that are required so that one can assure existence
of a solution of the corresponding partial differential equation.

Henceforth, we denote by u(m,n)(x, t) as the m+n partial derivative of a
function u(x, t) with respect to x m times and t n times, i.e. u(m,n)(x, t) =
∂m+nu
∂xm∂tn

. Also, we denote ζT as the class of functions u(x, t) that are continuous

and uniformly bounded of R × [0, T ]. Moreover, we denote ζ
(m,n)
T as the class

of functions such that u(i,j)(x, t) ∈ ζT for 0 ≤ i ≤ m, 0 ≤ j,≤ n. And, we use
the norm ||u|||ζT

= sup
x∈R,0≤t≤T

|u(x, t)|.

2 statement of results

In the following Theorems we will be considering solutions to the partial dif-
ferential equation

(u(x, t) + 1)u(1,0)(x, t) + u(0,1)(x, t) − u(2,1)(x, t) = f(x, t, u(x, t)) (1)

with the initial conditions u(x, 0) = g(x), considered for a class of real non-
periodic functions u(x, t) defined for −∞ < x < +∞, t ≥ 0. Moreover, we
will also be referring to the following integral equation for the same class of
functions

u(x, t) = g(x)+
∫ t

0

∫ +∞

−∞
K(x−ξ)

{
u(ξ, τ) +

1

2
u2(ξ, τ) − F (ξ, τ, u(ξ, τ))

}
dξdτ.

(2)

Theorem 2.1 Let g(x) be a continuous function such that

sup
x∈R

|g(x)| ≤ b < ∞
then there exists a t0(b) such that the integral equation, (2.2) has a solution
that is bounded and continuous for x ∈ R and 0 ≤ b < 1. The kernel is
K(x) = 1

2
sgn(x)e−x, and F is a function that satisfies

F (x, y, u)− F (x, y, ū) ≤ L|u − ū|.
where L is a positive constant.
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Theorem 2.2 Let g(x) be a continuous function such that

sup
x∈R

|g(x)| ≤ b < ∞

then there exists a t0(b) such that the integral equation, (2.2) has a solution
that is bounded and continuous for x ∈ R and 0 ≤ b < 1. The kernel is
K(x) = 1

2
sgn(x)e−x, and F is a function that satisfies

F (x, y, u) − F (x, y, ū) ≤ G(|u − ū|).
where G is a nondecreasing function, such that G(z) > 0 for z > 0 and∫

ε
1

G(z)
dz → ∞ as ε → 0.

Theorem 2.3 If g(x) ∈ C2 then any solution of integral equation

u(x, t) = g(x) +
∫ t

0

∫ +∞

−∞
K(x − ξ)

{
u(ξ, τ) +

1

2
u2(ξ, τ) − F

}
dξdτ

which is an element of ζ(0,1) for a given T > 0 is also an element of ζ
(2,∞)
(0,1) and

is a classical solution of the partial differential equation (1) with the initial
condition g(x) = u(x, 0) provided that the forcing term f(u) satisfies either
the condition of Theorem 2.1 or Theorem 2.2, and F (x, t, u(x, t) is such that
dF
dx

= f .

3 Proofs and auxiliary statements

Lemma 3.1 The partial differential equation (1) can be as

[(1 − ∂2
x)]u

(0,1) = −∂x[u +
1

2
u2 − F (x, t, u(x, t))], (3)

or as an integral equation

u(x, t) =
∫ t

0

∫ +∞

−∞
K(x − ξ)(u(ξ, τ) +

1

2
u2(ξ, τ) − F (ξ, τ, u(ξ, τ))dξdτ, (4)

where F is a function such that ∂F
∂x

= f(x, t, u(x, t)).

proof:
To begin we note that using routing algebra (1) can be rewritten as

u(0,1)(x, t) − u(2,1)(x, t) = f(x, t, u(x, t) − u(1,0)(x, t) − u(1,0)(x, t)u(x, t).
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Now, the left hand side of the above equation can be rewritten as

[(1 − ∂x)(1 + ∂x)]u
(0,1) = [(1 − ∂2

x)]u
(0,1).

Similarly,

−u(1,0) − u(1,0)u = −∂x[u +
1

2
u2].

Combining this one can rewrite the partial differential equation (1) as

[(1 − ∂2
x)]u

(0,1) = f(x, t, u(x, t)) − ∂x[u +
1

2
u2].

Or,

[(1 − ∂2
x)]u

(0,1) = −∂x[u +
1

2
u2 − F (x, t, u(x, t)],

where F is a function such that ∂F
∂x

= f(x, t, u(x, t)). Now, one views the
above equation as a differential equation for u(0,1); hence, one obtains the
formal solution as

u(0,1) = −1

2

∫ +∞

−∞
e|x−ξ|∂ξ[u(ξ, t) +

1

2
u2(ξ, t) − F (ξ, t, u(ξ, t))]dξ.

Now, using integration by parts this can be written as

u(0,1) =
∫ +∞

−∞
K(x − ξ)(u(ξ, t) +

1

2
u2(ξ, t) − F (ξ, t, u(ξ, t))dξ

where the Kernel is defined as K(x) = 1
2
sgn(x)e−|x|. And, the above pseudo

differential equation can be rewritten as

u(x, t) =
∫ t

0

∫ +∞

−∞
K(x − ξ)(u(ξ, τ) +

1

2
u2(ξ, τ) − F (ξ, τ, u(ξ, τ))dξdτ

which completes the proof of Lemma 1.
proof of Theorem 3.1:

To begin we will write the integral equation (4) from Lemma 3.1 in operator
notation as

u = A[u]

where

A[u] =
∫ t

0

∫ +∞

−∞
K(x − ξ)(u(ξ, τ) +

1

2
u2(ξ, τ) − F (ξ, τ, u(ξ, τ))dξdτ.
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Now for our considerations let us denote ζt0 as the class of functions v(x, t)
which satisfy the integral equation from Lemma 3.1, which are continuous and
uniformly bounded on the infinite strip R × [0, t0]. Now, we will be consider
this set of functions v ∈ ζto that have the norm ||v|||ζt0

which is a Banach space
of bounded continuous functions where t0 is left as arbitrary.

Now let us consider two functions v1, v2 ∈ ζto and we observe that

|Av1 − Av2| =

∫ t

0

∫ +∞

−∞
|K(x − ξ)|(|v1(ξ, τ) − v2(ξ, τ)| + 1

2
|v2

1(ξ, τ) − v2
2(ξ, τ)|

+|F (ξ, τ, v2ξ, τ) − F (ξ, τ, v1(ξ, τ))|)dξdτ

≤
∫ t

0

∫ +∞

−∞
|K(x−ξ)|(|v1(ξ, τ)−v2(ξ, τ)|+1

2
|v1(ξ, τ)−v2(ξ, τ)||v1(ξ, τ)+v2(ξ, τ)|)dξdτ

+
∫ t

0

∫ +∞

−∞
|K(x − ξ)||L|v2ξ, τ) − v1(ξ, τ)|dξdτ.

≤ ||v1 − v2||ζ(1 +
1

2
||v1 + v2||ζ + L)

∫ t

0

∫ +∞

−∞
|K(x − ξ)|dξdτ

≤ ||v1 − v2||ζ(1 +
1

2
||v1 + v2||ζ + L)t

≤ ||v1 − v2||ζ(1 +
1

2
||v1||ζ +

1

2
||v2||ζ + L)t.

Thus, we obtain, by taking sup for t ∈ [0, t0] we obtain that

|Av1 − Av2| ≤ t0(L + 1 +
1

2
||v1||ζ +

1

2
||v2||ζ))||v1 − v2||ζ̄

From this it follows that A is a continuous mapping; moreover, A is a contrac-
tion (i.e. satisfies Lipschitz condition) on the ball ||v||ζ < R if

t0(L + 1 + R) < 1.

If this condition is satisfied then by the Theory of fixed points [2] one can
assure that A has a unique fixed point in the ball ||v||ζ < R which completes
the proof.

proof of Theorem 3.2:
The proof of Theorem 3.2 is identical to the proof of theorem 3.1 with the

exception of a slight change in the algebra due to the adjustment of |u − ū|
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becoming G(|u − ū|). Moreover, this results in the Lipschitz constant L in
the proof becoming replaced by a new constant C which is obtained from
the function G. One can see an analogously development for the classic Os-
good’s theorem from the theory of ODE [1] which can be extended to this
PDE. Moreover, some generalizations of these conditions, such as Perron’s or
Krasnosel’skill-Krein’s, are also discussed in [1] for the theory of ODE which
again could be extended.

proof of Theorem 3.3:
To begin we will note that under the conditions posed A[u] is a continuously

differentiable function of t; hence, u(0,1)(x, t) exist and is given by

u(0,1)(x, t) = ∂t([A]u)(0,1) =
∫ +∞

−∞
K(x−ξ)(u(ξ, t)+

1

2
u2(ξ, t)−F (ξ, t), u(ξ, t)dξ.

(5)
One can see that (5) is continuous in x, continuous in t and bounded on

R × [0, T ]. Now, it can be argued that

u(0,2) =
∫ +∞

−∞
K(x − ξ)∂t(u(ξ, t) +

1

2
u2(ξ, t) − F (ξ, t), u(ξ, t))dξ.

And,

u(0,m) =
∫ +∞

−∞
K(x − ξ)∂m−1

t (u(ξ, t) +
1

2
u2(ξ, t) − F (ξ, t, u(ξ, t)))dξ.

From the above equation, using the fact that u2 has the same degree of regu-
larity as u if u is bounded and noting that the conditions of F also maintain
this degree of regularity, one can conclude that u(1,0) also has equal regularity.
Thus, one can obtain that u(0,1) is continuous and bounded on R×[0, T ]. Using
induction one can see that this can be carried on for any value of m, hence the
statement of the lemma concerning the t-dependence of u is verified.

Now, let complete the lemma by confirming the existence of u(1,0). To do
this we recall that from (2) that

u(x, t) = g(x) +
∫ t

0

∫ +∞

−∞
K(x − ξ)(u(ξ, τ) +

1

2
u2(ξ, τ) − F (ξ, τ, u(ξ, τ))dξdτ

and by dividing the range of integration at ξ = x we obtain

u(1,0) = g′(x) +
∫ t

0
(u(x, τ) +

1

2
u2(x, τ) − F (x, τ))dτ

−
∫ t

0

∫ +∞

−∞
1

2
e−|x−ξ|(u(ξ, τ) +

1

2
u2(ξ, τ) − F (ξ, τ, u(ξ, τ))dξdτ.
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which shows that u(1,0)(x, t) is continuous and bounded. Now, we can continue
in this fashion and obtain that

u(2,0) = g′′(x) +
∫ t

0
∂x(u(x, τ) +

1

2
u2(x, τ) − F (x, τ), u(x, τ)dτ

+
∫ t

0

∫ +∞

−∞
K(x − ξ)(u(ξ, τ) +

1

2
u2(ξ, τ) − F (ξ, τ, u(ξ, τ))dξdτ

= g′′(x) +
∫ t

0
∂x(u(x, τ) +

1

2
u2(x, τ) − F (x, τ), u(x, τ))dτ + u(x, t) − g(x)

which is also a continuous and bounded function. Now for the t derivatives of
u(1,0) and u(2,0) they can be developed inductively as above for u(0,m), hence,
their continuity and boundedness are obtained. Thus, it follows that the solu-
tion u(x, t) of (2) does indeed satisfy (1) pointwise in R×[0, T ] which completes
the proof.
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