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Introduction 

Whys , Wherefores, and Whims of A CELSS 

Raymond M. Wheeler 
NASA Biomedical Operations and Research 

Kennedy Space Center, FL 32899 USA 

When one thinks of what is required 10 provide life support in space, several lhings come 

to mind: First, is some sort of sheltered habitat to protect the humans from the extreme conditions 

of space, including high·energy radiation. Second, is a supply of life support consumables, 

including food, clean water, and oxygen (02) for breathing. The third is some means ol dealing 

with waste products that build up in the habitat, including solid and liquid wastes, and carbon 

dioxide (CO,) gas. 

A simple way to approach this is through slowage, where all the tood, water, O,. and 

materials for treating and OOntaining wastes are brought along from Earth. Stowage is generally 

safe and reliable, but becomes more and more costly the farther one goes and the longer one 

stays. For example, traveling to and from Mars could take two years, depending on the 

propulsion systems available, and thal does not include any time spent at the planet. Studies on 

the life support needs for the international space station indicate that each person requires about 

31 kg of life support consumables each day (Table 1); thus a 2·year trip would require 22 metric 

tons per person, and this does not account for materials needed to deal with wastes! Clearly, 

relying only on stowage in this situation wou!d be far too costly, and some sort of regenerative 

systems would be needed to recycle materials. 

The most obvious step to reduce stowage is regeneration of clean water from waste 

waler, since this represents over 95% of the mass requirements (Mitchell et al., 1994). But even 11 

water is totally recycled, each person would still require 300 kg of O, per year, 225 kg of food 

(dried), and perhaps several hundred kg of materials for C01 removal, or nearly 1 metric ton per 

person. Physical/chemical processes for scrubbing CO, and retrieving 0,, such as the Sabalier 

reaction combined with water electrolysis, have been proposed for atmospheric regeneration 



(Jones and lngelfinger, 1973; Mitchell et al., 1994). But these systems pdd mass to the launch 

payload, as well as increased energy requirements, and no purely physical/chemical processes 

are available to provide food. 

Table 1. Human life support requirements* 

Inputs Outputs 

Dally (%total Dally (%total 
Aqmt. mass) mass) 

Oxygen ........ 0.83 kg 2.7% Carbon ... ......... 1.00 kg 3.2% 
Dioxide 

Food"" .......... 0.62 kg 2.0% 
Metabotic ........ 0.11 kg 0.35% 

Drink ............ 3.56 kg 11.4% Solids 
Food WatfJr 
Prep Water Water . ............. 29.95kg 96.5% 

Waler ........... 26.0 kg 83.9% 
(HygieoelFlush 6.10) 
(Laundry/Dish 17.91) 

[Metabolic/Urine 12.3) 
(Hygiene/Flush 24.7) 
(laundry/Dish 55.7) 
(latent 3.6) 

Total 31.0 kg Total 31 .0kg 

•Source: NASA SPP 30262 Space Station ECLSS Architectural Control Document 
'' Food assumed to 09 dry except for chemfcally-Oouncl water. 

Instead of physical I chemical approaches, various biological processes such as 

photosynthesis might also be considered for life support. This concept is not new (Myers, 1954), 

and extensive testing was conducted in the early 1960s to sludy algae for atmospheric 

regeneration in closed life support systems (Miller and Ward, 1966). Through photosynthesis, the 

algae would lix the C01 into their tissue, while releasing 0 , as a reaction waste product. 

Beginning in the 1970s, bioregenerative testing using was expanded 10 include higher plants, 

since plants are generally more palatable and adaptable to food processing. Moreover, waste 

water could be used to grow the plants and 1he water that evaporates from the leaf canopy 1hen 

condensed to provide a source of pure water. Thus plants could provide four essenlial !unctions 

for a life support habitat: 0 1 production, CO, removal, food production, and water purification. 



NASA's CELSS Program 

The concept of incorporating biological components into a life support has come to be 

known as a Controlled Ecological Life Support System, or CELSS. Since the early 1980s, NASA 

has been sponsoring university-based research to explore CELSS concepts, with the maror 

emphasis directed at defining growing requirements and yield potentiat of different plant species 

under conlro!led environments. This included studies with wheat at Utah State University 

(Bugbee and Salisbury, 1988), soybean at North Carolina State University (Raper et al., 1991 ), 

potatoes at the University of Wisconsin (Wheeler and Tibbitts, 1988), lettuce at Purdue University 

(Knight and Mitchell, 1985), and sweetpotato at Tuskegee University (Hill et al., 1989). The 

fundamental information from these studies was then used to conduct baseline tests in a large, 

Biomass Production Chamber located at Kennedy Space Center (Prince et al., 1987) (Fig. 1). 

The objective of Biomass Production Chamber testing was to determine the feasibility ol growing 

the crops on a large scale and define the resources required for operating a bioregenerative 

system. In addition, the tightly closed atmosphere of the chamber provided the opportuni!y to 

precisely measure rates of C01 removal, 0 1 production, water purification by lhe plants, as well as 

build-up of any atmospheric contaminants (Wheeler, 1992). This information was then used to 

begin to assess the overall economics of a CELSS (Drysdale et al., 1993). 

What Have We learned About Plants as Life Support "Machines" ? 

Test results to date from the CELSS Biomass Production Chamber have shown that each 

of the candidate crops tested, viz., wheat. soybean, lettuce, and potato, can be grown 

successfully on a large scale in a closed chamber and that yields are close to those predicted 

from university studies (Wheeler et al., 1995). Edible yields obtained from the crops have varied, 

depending on the environmental conditions used and the inherent ability of the crops to partition 

their growth into edible structures (Table 2). For example, lettuce biomass yields were generally 

low because low to moderate lighting is best !or growing lettuce. In contrast, wheat yields were 

high because wheat tolerates high light intensity and long photoperiods (even continuous light) 
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Figure 1. NASA's Controlled Ecological Lile Support System (CELSS) Biomass Production 
Chamber located at Kennedy Space Center, FL, USA. 

Potato yields also were high because Potatoes tolerate high lighting (although they do best with a 

long dark cycle) and are capable of partitioning over 70% of their total biomass into edible tubers 

(Wheeler and Tibbitts, 1987). Soybeans also do well with high light and a dark period each day, 

but yields were lower than potato because soybeans typically partilion only 30 to 40% of their 

biomass into seed. In all cases, the total and edible biomass yields were strongly dependent on 

the lighting provided to the plants, suggesting that increased yields can be obtained with higher 

lighting (Fig. 2). The best yields to date from the Biomass Production Chamber were obtained 

from potato and indicate that about 35 m1 of continuously-cropped area would be required to 

sustain the dietary caloric needs of one person. 

5-41 



Table 2. Yield, gas exchange, and water flux rates lrom different crops grown in NASA Biomass 
Production Chamber at Kennedy Space Center, FL.· 

Crop Total Total Edible Oxygen 
Light .. Biomass Biomass Produc-

tion 

(mo/m"' d') (gm'' d ') (gm''d') (gm'd') 

Wheat 58 32 13 34 
Soybean 35 15 5 18 
Lettuce 17 8 7 7 
Potato 42 27 18 29 

• Data gathered from a 20-m' stand but but expressed on a unit area. un~ time basis 
··oailyphotosyntheticallyac!iveradiation(400·700nm) 

Carbon Water 
Dioxide Produc-

Removal ti on 

(gm'd') (kgm'd') 

46 4.7 
25 4.3 

9 1.8 
40 3.8 

ln an cases, the crops were grown using a recirculating hydroponic approach (nutrient film 

technique or NFT), which helped conserve water and minerals. Growth cycles varied depending 

on the species: wheat, 70 to 85 days; soybean, 90 to 97 days: potatoes. 90 to 105 days: and 

lettuce, 28 days. Optimal temperatures also varied with species: soybeans preferring warm·-

26°C light/20"C dark; lettuce intermediate--23"C: and wheat and potatoes cool--20"C light/16°C 

dark. In addition to these four species, other crops being considered for testing In the Biomass 

Production Chamber, include sweetpotato, rice, peanut, and rice. This range of species wm 

provide a nutritionally balanced diet using highly productive crops, that have storage, processing, 

and palatability advantages (Tibbitts and Alford, 1982). 

For water production, the planted area required for one human's needs would be far less 

than for food. Studies in the Biomass Production Chamber showed that once the plant canopies 

have filled in, rates of water transpiration can average 4 to 5 kg m' day' (Table 2). Rates for 

lettuce were somewhat less because the leaf canopy is not complete tor a large portion of its 

growth cycle, i.e., there was less evaporating surface. To meet the water needs of one person 

{Table 1), a conservative estimate of 6 to 7 m'ol continuously cropped area would be required. 11 

5-42 



is interesting to note that the water flux can be throttled up or down, depending on the humidity 

around the plants (Corey and Wheeler, 1992). II more water is needed, the humidity set point can 

be lowered to drive evaporation faster. Of course, this would require that more water from the 

waste processing streams be provided to the plant roots. Because most of the studies to date 

have used nutrient solutions from reagent-grade chemicals, the effect of adding waste-stream 

effluent to the plant growing system has become an active area of research (Mackowiak et al., 

1995). 
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Flg. 2. Productivity of CELS~ crops in NASA's Biomass Production Chamber 
(BPC) as a function of daily photosynthetically active radiation (PAA). 

Although direct measurements of CO, uptake and O, production were taken lhrcughout 

the growth and development of the different crops, an easy way to determine the average gas 

balances is to use the percentage carbon in the biomass, which could then be used to calculate 

total CO, removed and 0, produced. Other than a small amount from the planted seed, all the 

carbon in the plants' comes from photosynthetically-fixed CO,. and the 0, released is about 1 :1 

(molar basis) with the CO, fixed. Analyses of plant tissue from harvests have shown the following: 

lettuce··40% C, potatoes··41 % C, wheat··42% C, and soybean--46% C. Thus conversions of 



biomass yields (Table 2) indicate that about 20 to 25 m1 of continuously cropped area would be 

required to sustain atmospheric regeneration needs of one person, or slightly more than half of 

the area needed for food. As with water flux, this too could be throttled up or down as needed, but 

in this case by modulating the light intensity instead of the humidity (Wheeler et al. 1993). It is 

important to note that if the inedible biomass (e.g., leaves, stems, and roots) are converted back 

to CO., this would consume some of the 0 1 produced during photosynthesis and the planted area 

requirements for atmospheric regeneration would be similar to that !or food. In any case, system 

reservoirs of consumables would be required to butler oscillations in fluxes, as well as a 

safeguard against system failures. 

Are Plants Reliable tor Life Support? 

As many of us have experienced in backyard gardens, plant yields are not always what 

we hope for! This leads one to ask whether plants are reliable life support machines. However, if 

one looks closely at garden failures, invariably they can be explained by environmental stresses 

or suboptimal conditions on the plants. For example, if the plants dry out, or they do not receive 

enough nutrients (fertilizer), or it is too cold, yields will suffer. In addition, plants in natural settings 

are subject to insect pests and diseases. In controlled environments, environmental factors can 

be maintained at optimal levels and insects and many diseases can be excluded. After 6 years of 

operating the Biomass Production Chamber, we have not seen any insects nor experienced any 

plant diseases. We do not know conclusively whether any disease organisms were present, but 

simple precautions, such as keeping sources of disease inocula out of the chamber and 

maintaining healthy plants, appear to prevent disease outbreaks. Obviously, the plants do have 

environmental tolerance limits, and the hardware to provide the lighting, temperature control, 

water circulation, etc., must be reliable. Yet this requirement holds for any life support machine, 

and redundancy and alarms to initiate corrective actions are essential for any system. Perhaps 

one of the most important lessons we have learned to date is Iha! most failures have been related 

to the syslem controls and hardware, and that the plants have been very resilient and predictable. 



Continuing Challenges 

Is a CELSS feasible for a future Lunar or Martian colony? The results from studies at 

universities and our Biomass Production Chamber suggest that it is. Ultimately, the exact 

approach for life support must be determined after rigorous economic analyses. Mass, energy, 

and manpower requirements to operate and maintain a bioregenerative system will need to be 

determined, as will system reliability and risks. The latter may entail extensive failure mode 

testing and analysis, which represents a relatively unexplored area of horticulture. Another 

important consideration is that plants may provide some psychological benefits to humans who 

are forced to live in a confined habitat, and future testing should be expanded to study this. 

Clearly, more testing for many of the aspects of bioregenerative systems is required, 

particularly to assess the long-term sustainability and stability. In addition, testing of biological 

waste treatment and resource recycling concepts must keep pace with the plant production tests, 

and the CELSS Breadboard Project at Kennedy Space Center has begun to look at integrated, 

closed system tests with plants and waste treatment systems. 

The earliest applications of a CELSS concept will very likely rely heavily on stowage of 

consumables and regenerative physical/chemical schemes for life support, e.g., initial steps at 

colonizing Mars. As the colony becomes more autonomous over time, in my opinion, 

bioregenerative approaches will become more and more prevalent, particularly for food production 

and waste recycling. Yet much remains unknown and further research is needed. Clearly, 

leaving the safety of our home Earth will be a complex and daunting task, but as we learn more 

about operating closed ecological life support systems, we in tum will learn much more about our 

Earth and its life support system. 
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