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Asymptotic accuracy of geoacoustic inversions
Michele Zanolin,a) Ian Ingram, Aaron Thode, and Nicholas C. Makris
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

~Received 18 April 2003; revised 17 June 2004; accepted 9 July 2004!

Criteria necessary to accurately estimate a set of unknown geoacoustic parameters from remote
acoustic measurements are developed in order to aid the design of geoacoustic experiments. The
approach is to have estimation error fall within a specified design threshold by adjusting controllable
quantities such as experimental sample size or signal-to-noise ratio~SNR!. This is done by
computing conditions on sample size and SNR necessary for any estimate to have a variance that~1!
asymptotically attains the Cramer–Rao lower bound~CRLB! and~2! has a CRLB that falls within
the specified design error threshold. Applications to narrow band deterministic signals received with
additive noise by vertical and horizontal arrays in typical continental shelf waveguides are explored.
For typical low-frequency scenarios, necessary SNRs and samples sizes can often approach
prohibitively large values when a few or more important geoacoustic parameters are unknown,
making it difficult to attain practical design thresholds for allowable estimation error. ©2004
Acoustical Society of America.@DOI: 10.1121/1.1787526#

PACS numbers: 43.30.Pc@WLS# Pages: 2031–2042

I. INTRODUCTION

Geoacoustic parameters of the ocean floor strongly af-
fect sound propagation and acoustic sensing in shallow water
ocean waveguides where extensive bottom interaction
occurs.1–3 A significant amount of work has been done in
recent years to develop methods for estimating geoacoustic
parameters and to benchmark these methods against simu-
lated noiseless data as for example in Refs. 2 and 4–10.
Much less work, however, has been done to assess the per-
formance of geoacoustic inversions in the presence of
noise.2,11–15

Nonlinear inversions are often required to estimate geoa-
coustic parameters from measured acoustic field data. Since
the measured data undergo random fluctuations due to addi-
tive noise, waveguide scintillation, or source randomness,
this nonlinearity often leads to estimates that are biased and
exceed the Cramer–Rao lower bound~CRLB! by orders of
magnitude. In these situations, exact expressions for the bias
and the variance are often difficult or impractical to derive
analytically.

Knowing both the CRLB and how to attain it is useful
for a number of practical reasons. The mean-square error of
any unbiased estimate of a deterministic parameter vector
from random data cannot be less than the CRLB, which ex-
ists given mild regularity conditions on the probability den-
sity of the data.16 This is trueregardless of the method of
estimation, and, for example, regardless of whether or not
there are significant ambiguities, sometimes referred to as
sidelobesin the estimation problem.

Parameter estimates only have practical value if their
errors fall within the design thresholds specified for the given
experiment. In the inversion of geoacoustic parameters, for
example, design errors are often set by the needs of those
who run propagation and scattering models to evaluate sonar
system performance. If the CRLB for a particular experiment

is always greater than the specified design error threshold,
the experiment will never be able to achieve its goals and
will necessarily fail. So the CRLB on its own is extremely
useful as a tool in aiding experimental design in these situa-
tions. If the CRLB is less than or equal to the allowable
design error, on the other hand, the practicality of the experi-
mental design is still questionable until it is established that
the parameter estimates derived from this experiment actu-
ally attain the CRLB.

Since necessary conditions for an estimate to attain the
CRLB are now available and depend on controllable vari-
ables of an experiment such as signal-to-noise ratio~SNR! or
sample size,17 and the CRLB is also a function of these con-
trollable variables, conditions are then also available to attain
any specified design error. This can be done by proper ad-
justment of the controllable variables.

Along these lines, we follow the general estimation
theory approach introduced in Ref. 17 and use it to derive
conditions to accurately estimate a set of unknown geoacous-
tic parameters from remote acoustic field measurements. We
do this by computing necessary SNRs and sample sizes for
the estimates to become asymptotically unbiased, for their
mean-square errors to attain the CRLB, and then for the
CRLB to fall within any specified design criteria.

We note that the approach of Ref. 17 is a general con-
sequence of estimation theory and so can be and has already
been applied to obtain optimality conditions and to extract
new physical insights in a number of widely divergent and
physically unrelated estimation problems. These include
time-delay and Doppler shift estimation,17 source localiza-
tion in an ocean waveguide,18 and pattern recognition in 2-D
images,19 where anoptimal estimatein this context is defined
as being unbiased and having minimum variance following
standard practice.20 A basic advantage of this approach is that
it is typically straightforward to implement and provides ana-
lytical insight into the mechanics of asymptotic optimality
and consequently attainable accuracy for the given estima-a!Electronic mail: zanolin@mit.edu
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tion problem. Brute force numerical calculation of estimator
moments does not easily offer such insight, but is the only
alternative currently available.

Our present analysis focuses on aiding experimental de-
sign by determining necessary SNRs and sample sizes to
attain practical accuracies in estimating geoacoustic param-
eters of the seafloor from standard ocean-acoustic inverse
experiments. We consider narrow-band deterministic signals
received with additive ambient noise by both vertical and
horizontal arrays in continental shelf waveguides. Given the
large number of unknown environmental parameters in such
problems, it is common practice to invert for tens or more
parameters simultaneously.1,21–23 Various combinations of
geoacoustic parameters for simultaneous inversion are con-
sidered and criteria necessary for accurate inversions are pre-
sented. The conditions are found to become significantly
more stringent, sometimes to the point of being prohibitive,
as the number of unknown parameters to which the measured
field is sensitive increases.

In Sec. II, conditions necessary for asymptotic optimal-
ity are summarized in a more explicit form than has previ-
ously appeared, and a far more condensed and efficient form
of the asymptotic variance is also provided. An explicit ex-
planation of how these necessary conditions may be used to
achieve design specifications for error thresholds in a given
experiment also appears in Sec. II. Analysis of illustrative
problems in geoacoustic inversion appear in Sec. III. Since
the data are modeled as deterministic signals measured with
random ambient noise, we have not investigated the effects
of model mismatch or uncertainty in sensor location, both of
which may also lead to significant errors. These effects, how-
ever, will only make the necessary conditions more stringent.

II. NECESSARY CONDITIONS FOR ASYMPTOTICALLY
OPTIMAL ESTIMATION AND FOR ATTAINING
SPECIFIED ERROR DESIGN THRESHOLDS

Consider a set ofn independent and identically distrib-
uted experimental data vectorsX i of dimensionN obeying
the probability densityp(X;u), whereX5@X1

T ,...,Xn
T#T and

u is an m-dimensional parameter vector. The MLEû of u
maximizes the log-likelihood functionl (X;u)5 ln(p(X;u))
with respect to the components ofu. If the rth component of
u is denoted byu r , the first log-likelihood derivative with
respect tou r is then defined asl r5] l (u)/]u r . The elements
of the expected information matrix, known as the Fisher ma-
trix, are then given byi ab5E@ l al b#, and the elements of its
inverse by i ab5@ i21#ab , where i21 is also known as the
CRLB.

The moments ofû r for r 51,...,m can be expressed as a
series in inverse powers of the sample sizen,17,18 provided
that the required derivatives of the likelihood function
exist.24 The variance can then be expressed as

var~u r !5
var1~u r !

n
1

var2~u r !

n2
1OS 1

n3D , ~1!

where O(1/n3) represents integer powers higher than 1/n2

andvar1(u r) andvar2(u r) depend only on a single sample
probability distribution. The first term on the right-hand side

is the CRLB, which is the minimum variance for an unbiased
estimate and also the asymptotic value of the variance in the
limit as the sample sizen and SNR approach infinity.

The sample size necessary for the MLE variance to as-
ymptotically attain the CRLB is found by requiring the
second-order variance to be negligible compared to the first

uvar2~u r !/n2u

var1~u r !/n
!1, ~2!

which implies

n@
uvar2~u r !u

var1~u r !
. ~3!

Only for sample sizes satisfying this condition is it possible
for the variance to be in the asymptotic regime where it
continuously attains the CRLB. This follows from the fact
that each term in the expansion is proportional to a unique
power in 1/n.

In a similar manner, a necessary sample size for the
inversion to be asymptotically unbiased is found by requiring
that the first-order bias is negligible compared to the true
value of the parameter:

n@
ub1~u r !u

uu r u
. ~4!

The conditions~3! and ~4! provide insight into the per-
formance of any estimate in the limit of large sample size or
SNR. In fact, in this regime any estimate that satisfies these
conditions must be the MLE.20

As noted in the Introduction, parameter estimates only
have practical value if their errors fall within the design
threshold specified for the given experiment. In order to at-
tain a specified design error threshold by the present ap-
proach, the sample sizen must be large enough that~I! op-
timality conditions ~3! and ~4! are satisfied and~II ! the
CRLB falls within the required design error threshold.

A. Statistical model for the acoustic data

We consider the field generated by a deterministic nar-
row band source that is received by an array of hydrophones
with additive stationary ambient noise. One vector sample in
the frequency domain of the measured field can be obtained
from the Fourier transform of a time window of the acoustic
measurements. Statistical independence of the samples re-
quires them to have a sample spacing that is at least the
coherence time of the total received field.25 Explicitly, the jth
spectral data sampleX̃ j (v;u) for j 51,...,n is given by

X̃ j~v;u!5A~v!g̃~v!1h̃j~v!, ~5!

whereA(v) is the Fourier transform of the source amplitude,
g̃(v)5@ g̃1(v;u),...,g̃N(v;u)# is the vector of Green’s func-
tions in the frequency domain connecting the source location
to the N hydrophone locations on the array, andh̃j (v)
5@h̃ j 1(v),...,h̃ jN(v)# is the noise spectral sample which is
given by a Fourier transform of a finite time window of the
noise.
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FIG. 1. Waveguide model and experimental setup. An
isovelocity water column overlies a two-layer bottom: a
15-m-thick fluid sediment layer with a sound speed lin-
early increasing with depth stands above a basement
with constant sound speed and density. A narrow band
point source is located at the center of the wave guide
and receiving arrays. A ten-element vertical array and
horizontal arrays with 10 and 100 elements are consid-
ered. The spacing between the elements is 7.5 m and
the arrays are centered in the water column.

FIG. 2. Avar1 ~black!, Auvar2u
~gray!, and b1 ~dotted! for single pa-
rameter estimates ofcs , gs , as, rs ,
hs , andrb are presented forn51 as a
function of range between 0.5 and 10
km for a 100-Hz source and ten-
element vertical array centered at mid-
depth in the watercolumn.
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The noise spectrum is well described by a circular com-
plex Gaussian random variable~CCGR!,25,26 so that the
probability density for the real measured dataX j with j
51,...,n becomes

p~X,u!5~2p!2nN/2uCu2n/2

3expH 2
1

2 (
j 51

n

~X j2m~u!!TC21~X j2m~u!!J ,

~6!

whereX j andm~u! are specified by

X j5FRe~X̃ j~v;u!!

Im~X̃ j~v;u!!
G , m~u!5FRe~A~v!g̃~v!!

Im~A~v!g̃~v!!G , ~7!

with Re~
•
! and Im~

•
! indicating the real and imaginary parts.

The real covariance matrix

C5
1

2 S Re~C̃! 2Im~C̃!

Im~C̃! Re~C̃!
D ~8!

is specified by the spectral complex covariance matrix of the

noise across the arrayC̃ whose elements are given byC̃ln

5E@h j l (v)h jn* (v)#5s2d ln , with d ln equal to 1 forl 5n
and 0 forlÞn. Note that the expectation eliminates the de-
pendence on the sample indexj. Here we assume spatially
uncorrelated noise for both the horizontal and vertical aper-
tures based on our experience with experimental data in shal-
low water environments. An alternative would be to use the-
oretical predictions based on uniformly distributed surface
noise sources such as in Ref. 27.

In the present formulation, while the measured field con-
tains parameter information, the sufficient statistic for opti-
mal estimation in a measurement is not the measured field or
its ensemble average from measured data but the entire ar-
gument of the exponential, known as the Mahalobinos
distance.28 This preserves all the relevant intersensor phase
information as the ensemble average of a positive semi-
definite quantity.

For this statistical model, the expressions given in Ref.
17 for the numerators of the first-order bias and the first two
orders of the variance can be expressed in the much more
compact form

b1~u r !52 1
2i

rai bcgac
T gb , ~9!

var1~u i !52 i i i , ~10!

FIG. 3. SNR as functions of range between 0.5 and 10 km. Same experi-
mental setup as Fig. 2.

FIG. 4. nb and nv as functions of
range between 0.5 and 10 km for
single parameter.~a! nb for hs ~black!,
rb ~gray!, and as ~dotted!. ~b! nb for
rs ~black!, cs ~gray!, and gs ~dotted!.
~c! nv for hs ~black!, rb ~gray!, andrb

~dotted!. ~d! nv for rs ~black!, cs

~gray!, and gs ~dotted!. Same experi-
mental setup as Fig. 2.
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var2~u i !5 i imi ini pqS gnq
T gpm2gmn

T gpq2gmpq
T gn

1 i ztS gn
Tgtq

2
gm

T gzp1~2gqt
T gn2gqn

T gt!gpm
T gz

1~gmn
T gp1gmp

T gn!gzt
T gqD D , ~11!

wheregc¯d5@A(v)/s#gc¯d and the subscriptsc¯d indi-
cate that derivatives of the Green’s function with respect to
the parametersuc¯ud have been taken. The Einstein sum-
mation convention is used so that if an index occurs twice in
a term, once in the subscript and once in the superscript,
summation over the index is implied.

The SNR for a single sample collected across the array

FIG. 5. Avar1 ~black!, Auvar2u
~gray!, andb1 ~dotted! are shown as a
function of range forn51 between
0.5 and 10 km in inversions forcs

with one other unknown parameter.
The unknown is successively~a! as ,
~b! rs , ~c! gs , and ~d! hs . Same ex-
perimental setup as Fig. 2.

FIG. 6. Avar1 ~black!, Auvar2u
~gray!, andb1 ~dotted! are shown as a
function of range forn51 between
0.5 and 10 km for successive two-
parameter estimates of~a! as , ~b! rs ,
~c! gs , and ~d! hs with cs . Same ex-
perimental setup as Fig. 2.
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has been defined as the ratio SNR5m(v;u)m(v;u)* /tr(C)
5uA(v)u2g(v;u)g(v;u)* /Ns2. In most geoacoustic inver-
sion experiments performed in shallow water the SNR varies
between 10 and 20 dB,1,29,30sometimes reaching values be-
tween 30 and 40 dB.31 In the examples presented in this
paper the SNR is set to 15 dB at a range of 1 km from the
source, or, equivalently, the variance of the noise is fixed by

s25
1

N

uA~v!u2g~v;u!g~v;u!*

101.5 U
range51 km

. ~12!

III. ILLUSTRATIVE EXAMPLES

The conditions necessary to obtain an optimal parameter
estimate in a given experimental scenario depend on a num-

FIG. 7. For the estimation ofcs when
a second parameter is unknown,nb is
presented when~a! as ~gray! and gs

~black! are unknown~b! rs ~gray! and
hs ~black! are unknown andnv is pre-
sented when~c! as ~gray! and gs

~black! are unknown and~d! rs ~gray!
and hs ~black! are unknown. For the
estimation of a sediment parameter
when acs is unknown,nb is presented
for ~e! as ~gray! andgs ~black! and~f!
rs ~gray! andhs ~black!, andnv is pre-
sented for~g! as ~gray! andgs ~black!
and ~h! rs ~gray! andhs ~black!.

2036 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 Zanolin et al.: Asymptotic accuracy of geoacoustic inversions



ber of variables, including the parameters involved in the
inversion, the number of parameters simultaneously esti-
mated, the frequency of the source, the range of the receiv-
ers, and the SNR. In order to isolate and illustrate these con-
tributions, a number of simulations are performed in a
waveguide representative of the continental shelf where a

sediment layer overlays a bottom half-space, as shown in
Fig. 1 using a modal formulation for the field as in Ref. 18.
The numerical field derivatives approach used was bench-
marked analytically in a Pekeris waveguide.32 Field deriva-
tives were also checked with three independent propagation
codes including OASIS, SNAP, and a modified version of

FIG. 8. Simultaneous four-parameter
estimation of cs , gs , rs , and as

whereAvar1 ~black!, Auvar2u ~gray!,
and b1 ~dotted! are presented for~a!
cs , ~b! gs , ~c! rs , and ~d! as for n
51 as a function of range between 0.5
and 10 km. Same experimental setup
as Fig. 2.

FIG. 9. Source frequency is 100 Hz.
Necessary sample sizes for the simul-
taneous four-parameter estimation of
cs , gs , rs , and as : ~a! nb for cs

~black! and gs ~gray!, ~b! nb for rs

~black! and as ~gray!, ~c! nv for cs

~black! andgs ~gray!, and~d! nv for rs

~black! and as ~gray!. Same experi-
mental setup as Fig. 2.
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KRAKEN. The sound speed profile in the sediment can be
specified in terms ofcs and gs as c(z)5cs1gs(z2H),
where thez axis originates at the water–atmosphere interface
and is directed vertically downward.

To represent a typical experiment, in Secs. III A and
III B a ten-element vertical array is centered in a water col-
umn of depthH5100 m with 7.5-m spacing between each
element so that the shallowest element is at 16.25-m depth.
The source is placed at 50-m depth. In this paper a 100-Hz
deterministic monopole source is employed. Inversions per-
formed with horizontal arrays are presented in Sec. III C to
investigate the effect of array length and orientation on in-
version performance.

The necessary sample sizes for the variance to attain the
CRLB are computed by conservatively requiring in condition

~3! that the second-order variance is ten times smaller than
the CRLB for all parameters,

n>nv510
uvar2~u r !u

var1~u r !
. ~13!

Similarly, the necessary sample sizes for the inversions to be
unbiased are computed by requiring in condition~4! that the
first-order bias be ten times smaller than the true value of the
parameter, orn.nb510ub1(u j )u/uu j u except for sound
speeds wheren.nb5200ub1(u j )u/uu j u is used instead since
these biases strongly affect the acoustic field. The conditions
for an inversion to be optimal are then given byn.nb and
n.nv . If the computed values ofnv and nb are less than
unity, then only one sample is required and the figures can be
used to determine how far the SNR can be lowered without
sacrificing single-sample optimality. We especially note sce-
narios wherenb and nv are large but the corresponding
CRLB is small and vice-versa.

It should be noted that the illustrative examples can be
used to determine SNR outside of the ranges explicitly
shown due to the equivalence ofn and SNR in the
asymptotic expansions. For example, this means that the
conditions~3! and~4! can be reformulated in terms of SNR,
and thatnv andnb are proportional to 1/SNR.

A. Single-parameter inversions

Here we investigate the requirements for estimation er-
rors to attain specified design thresholds for single-parameter
inversions. To do this we compute the sample sizes necessary
for inversion optimality as well as the magnitude of the
CRLB for a single sample. It is important to note that the
former optimality condition need not be related to the param-
eter sensitivity expressed by the single-sample CRLB. This
is because the optimality conditions involve higher order pa-
rameter derivatives than the CRLB.

The biases, variances, and necessary sample sizesnv
andnb are computed as a function of source-receiver range
for all eight single-parameter estimates allowable in the
model. For our purposes only six of these need to be pre-
sented in Figs. 2 and 4. These are the thickness of the sedi-
ment layerhs , the compressional wave speed at the top of
the sediment layercs , the gradient of the compressional
wave speedgs , the attenuation in the sedimentas , the sedi-
ment densityrs , and the basement densityrb .

The decreasing trend in inversion accuracy with range
for all parameters is mostly due to the decrease in SNR
shown in Fig. 3 from both spreading and attenuation loss.
Stripping of higher order modes with range also plays a role
in the decreased accuracy. Estimates ofcs , rs , as , andgs

require smaller sample size to be optimal than the basement
density rb , and significantly smaller sample size than the
thickness of the sediment layerhs which has particularly
stringent optimality conditions. Hundreds of samples are
necessary for thehs estimate to be unbiased even at rela-
tively close ranges and thousands of samples are necessary
for the variance to attain the CRLB indicating that the sedi-
ment layer thicknesshs has a highly nonlinear relationship
with the acoustic measurements.

FIG. 10. Single parameter inversion ofcs using a ten-element horizontal
array with 7.5-m spacing. The array is located at 50-m depth with 100-Hz
source frequency. Shown forn51 as a function of range between 0.5 and 10
km are~a! SNR,~b! Avar1 ~black!, Auvar2u ~gray!, andb1 ~dotted!, and~c!
nb ~black! andnv ~gray!.
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We note that whilers and as have similar optimality
conditions ascs , the ratio of the square-root of the single-
sample CRLB, which is inversly related to the sensitivity of
the measurement to the parameter, to the true parameter
value is on the order of at least 0.1 forrs andas but is less
than 0.01 forcs . This highlights why thetwo requirements
explicitly stated in Sec. II are necessary for a parameter es-
timate to attain a specified error threshold and knowledge of
the CRLB alone is not enough.

The inversion ofhs , rb , and the other basement param-
eters not explicitly presented here are significantly more dif-
ficult than the other sediment parameters because they re-
quire either prohibitlvely large sample sizes to attain
optimality or because the square root of their single-sample
CRLBs are large compared to the true parameter value.
Sound in the water column is apparently less sensitive to
basement parameters due to attenuation in the sediment for
the given sediment thickness and acoustic frequency. Similar
observations about this lack of sensitivity have been noted in
Ref. 20 solely through CRLB analysis.

At lower frequency, penetration into the basement may
be more substantial, but there may also be fewer modes. This
could lead to difficulties in unambiguously inverting large
parameter sets. The modal structure of the acoustic field, for
example, imposes limitations on the number of bottom pa-
rameters of the given model that can be unambiguously de-
termined with a single frequency source. To illustrate the
situation, consider receivers in the water column of a Pekeris
waveguide. Each mode is then described by four parameters,
the real and imaginary components of the vertical wave num-
ber and of the mode’s equivalent plane wave amplitude since
the up- and downgoing plane wave amplitudes are the nega-
tive of each other in this case. This means that the effect of
bottom properties on the acoustic field can only be expressed

through 4M parameters, whereM is the number of modes,
making 4M an upper limit on the number of bottom param-
eters that can be unambiguously estimated regardless of the
number of receivers in the water column. Such limitations
can be potentially overcome by increasing the bandwidth.

B. Multiparameter inversions

Simulations presented in this section show that estima-
tion performance worsens as the number of parameters si-
multaneously inverted increases. To see this, the quantities
b1 , var1 , var2 , nb , and nv are plotted as a function of
source–receiver range for the simultaneous estimation of two
parameters, namelycs together successively withas , rs ,
gs , and thenhs in Figs. 5–7. Each pairing affects the esti-
mation of cs in different ways as can be seen in Fig. 5. In
fact, estimation ofcs is effectively uncoupled from that ofas

because the two-parameter estimates yield results nearly
identical to those of the corresponding single parameter es-
timates. This can be seen by comparing the moments in Figs.
5~a! and 6~a! with the corresponding ones in Fig. 2~a!, and
the necessary sample sizes in Fig. 7 with the corresponding
ones in Fig. 4.

The optimality conditions for an estimate ofcs , how-
ever, do become far more stringent when the estimate is
made simultaneously with either the sediment densityrs ,
gradientgs , or thicknesshs . This is consistent with intuition
since cs , rs , gs and hs are expected to be statistically
coupled since they are physically coupled in a nonlinear way
through the bottom reflection coefficient and through a
modal or wave number representation of the acoustic field. It
is also reasonable thatas and cs be statistically uncoupled
since the attenuationas leads to very slow decay in the field
while the sediment sound speedcs affects coherent modal

FIG. 11. Simultaneous four-parameter
estimation ofcs , gs , rs , andas using
a 100-element horizontal array with
7.5-m spacing. The array is located at
50-m depth and the source frequency
is 100 Hz. Avar1 ~black!, Auvar2u
~gray!, andb1 ~dotted! are shown for
n51 as a function of range between 1
and 10 km for~a! cs , ~b! gs , ~c! rs ,
and ~d! as .
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propagation and interference that varies far more rapidly
over range~this follows because the two parameters appear
in separate factors in the modal representation of the wave-
guide green funciton!. It is interesting that thousands of
samples are necessary for the variance ofcs to attain the
CRLB when the sediment thicknesshs is also an unknown as
can be seen by comparing Figs. 5~d! and 7~b! with Figs. 2
and 4. Simultaneous inversion for the sediment layer thick-
nesshs in these examples tends to induce extremely stringent
optimality conditions, such as prohibitively large necessary
sample sizes. This implies that sediment thickness and sedi-
ment sound speed are highly coupled for the given scenario
where sediment thickness equals the acoustic wavelength.
This is sensible since as the sediment thickness varies from
the wavelength scale in a decreasing manner, for example,
the acoustic field will become less sensitive to sediment
sound speed. The couplings described in this paragraph are
not apparent if only the CRLB is considered, as shown in
Fig. 5

The trend of more stringent optimality conditions con-
tinues as the number of parameters to be simultaneously es-
timated is increased. This is shown for the four-parameter

simultaneous inversion ofcs , rs , gs , andas in Figs. 8 and
9. The biases, variance terms, and necessary samples sizes
are consistently higher than in the cases where the param-
eters are either inverted alone or with only one other param-
eter. We find the trend can become less strignent for the
estimation of upper sediment layer parameters as the source
frequency is increased, but the opposite is typically true for
deeper parts of the bottom.

C. Horizontal array versus vertical array

Parameter estimates made from horizontal array mea-
surements are now examined to investigate the effect of ar-
ray length and orientation on inversion performance. The
moments of acs estimate from a horizontal array of the same
length and center depth as the vertical array of the previous
examples are shown in Fig. 10. No improvement is found in
the trend but much larger fluctuations appear upon compar-
ing these moments with those for the vertical array in Figs. 2
and 4.

The horizontal array has much poorer angular resolution
than the vertical array at the shallow horizontal grazing

FIG. 12. Simultaneous four-parameter
nb for ~a! cs ~black! andgs ~gray!, ~b!
rs ~black! and as ~gray! nv , ~c! cs

~black! and gs ~gray!, ~d! rs ~black!
andas ~gray!, and~e! SNR.
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angles where the dominant modes typically propagate. This
makes it more susceptible to range-dependent fluctuations in
SNR arising from the interference of unresolved modes.
While the vertical array can resolve the shallow-angle modes
with broadside angular resolution ofl/L, the horizontal ar-
ray receives them at or near end-fire where the angular reso-
lution is only A2l/L.

A horizontal array of length 10L, which can be obtained
by synthetic aperture measurements, for example, would be
required to have the same angular resolution for shallow
grazing angles at 100 Hz as the vertical array of lengthL.
Although this increase in array length greatly reduces the
fluctuations in SNR seen in the shorter horizontal array, as
shown in Fig. 12~c!, it does not provide much improvement
in the average trend of the MLE moments. This is illustrated
for example in Figs. 11 and 12, where the results for an
inversion involvingcs , rs , gs , andas are presented.

Comparing the performance of the long horizontal array
in Figs. 11 and 12 with that of the vertical array in Figs. 8
and 9, only the inversion of the bottom attenuation shows
some mild improvement. In summary, relatively short verti-
cal arrays can outperform much longer horizontal arrays due
to their higher resolving power at shallow grazing angles
where dominant modes tend to propagate.

Even if the angular resolution of the receiving array is
sufficient to resolve the important modes, further limitations
on parameter estimates may emerge depending on the modal
content of the field, as discussed previously.

IV. CONCLUSIONS

A reliable method to help attain specified accuracies in
the estimation of unknown geoacoustic parameters from re-
mote acoustic measurements is developed to aid the design
of geoacoustic experiments. The approach is to compute
sample sizes or SNRs necessary for estimates to~1! have
variances that asymptotically attain the CRLB and~2! have
CRLBs that fall within a specified design error threshold. We
show both analytically and with illustrative examples that the
former asymptotic condition need not be related to the pa-
rameter sensitivity expressed by the CRLB. This is because it
involves parameter derivatives of higher order than the
CRLB.

Applications to narrow band deterministic signals re-
ceived with additive noise by vertical and horizontal arrays
in typical continental shelf waveguides are explored. For
typical low frequency scenarios, necessary SNRs and
samples sizes often approach prohibitively large values when
a few or more important geoacoustic parameters are un-
known, making it difficult to attain practical design thresh-
olds on allowable estimation error. This is found to arise
because of the highly nonlinear nature of the geo-acoustic
inverse problem and the strong coupling found between
many of the important geo-acoustic parameters needed to
characterize the acoustic field in an ocean waveguide.
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