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ON DOUBLY PERIODIC SOLUTIONS OF QUASILINEAR
HYPERBOLIC EQUATIONS OF THE FOURTH ORDER

T. KIGURADZE AND T. SMITH

The problem on doubly periodic solutions is considered for a class of quasilinear hyper-
bolic equations. Effective sufficient conditions of solvability and unique solvability of this
problem are established.

Copyright © 2006 T. Kiguradze and T. Smith. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

The problem on periodic solutions for second-order partial differential equations of hy-
perbolic type has been studied rather intensively by various authors [1–9, 11–14]. Anal-
ogous problem for higher-order hyperbolic equations is little investigated. In the present
paper for the quasilinear hyperbolic equations

u(2,2) = f0(x, y,u) + f1(y,u)u(2,0) + f2(x,u)u(0,2) + f
(
x, y,u,u(1,0),u(0,1),u(1,1)

)
, (1)

u(2,2) = f0(x, y,u) +
(
f1(x, y,u)u(1,0)

)(1,0)
+
(
f2(x, y,u)u(0,1)

)(0,1)

+ f
(
x, y,u,u(1,0),u(0,1),u(1,1)

) (2)

we consider the problem on doubly periodic solutions

u
(
x+ω1, y

)= u(x, y), u
(
x, y +ω2

)= u(x, y) for (x, y)∈R2. (3)

Here ω1 and ω2 are prescribed positive numbers,

u( j,k)(x, y)= ∂j+ku(x, y)
∂x j∂yk

, (4)

f0(x, y,z), f1(y,z), f2(x,z), f1(x, y,z), f2(x, y,z), and f (x, y,z,z1,z2,z3) are continuous
functions, ω1-periodic in x, and ω2-periodic in y.
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542 Doubly periodic solutions

This problem was studied thoroughly for the linear equation

u(2,2) = p0(x, y)u+ p1(x, y)u(2,0) + p2(x, y)u(0,2) + q(x, y) (5)

in [10]. The goal of the present paper is on the basis of the methods developed in [10] to
obtain effective sufficient conditions of solvability, unique solvability, and well-posedness
of problems (1), (3) and (2), (3).

Throughout the paper, we will use the following notation:

sgn(z)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, z > 1,

0, z = 0,

−1, z < 0.

(6)

Cm,n
ω1ω2

(R2) is the space of continuous functions z :R2 →R ω1-periodic in the first and
ω2-periodic in the second arguments, having the continuous partial derivatives u( j,k) j ∈
{0, . . . ,m}, k ∈ {0, . . . ,n}, with the norm

‖z‖Cm,n
ω1ω2
= sup

{ m∑

j=0

n∑

k=0

∣
∣
∣z( j,k)(x, y)

∣
∣
∣ : (x, y)∈R2

}

. (7)

L2
ω1ω2

(R2) is the space of locally square-integrable functions z :R2→R, ω1-periodic in
the first and ω2-periodic in the second arguments, with the norm

‖z‖L2
ω1ω2
=
(∫ ω1

0

∫ ω2

0

∣
∣z(s, t)

∣
∣2
dsdt

)1/2

. (8)

Hm,n
ω1ω2

(R2) is the space of functions z ∈ L2
ω1ω2

(R2), having the generalized partial
derivatives u( j,k) ∈ L2

ω1ω2
(R2), j ∈ {0, . . . ,m}, k ∈ {0, . . . ,n}, with the norm

‖z‖Hm,n
ω1ω2
=

m∑

j=0

n∑

k=0

∥
∥
∥u( j,k)

∥
∥
∥
L2
ω1ω2

. (9)

By a solution of problem (1), (3) (problem (2), (3)), we understand a classical solution,
that is, a function u∈ C2,2

ω1ω2
(R2) satisfying (1) (equation (2)) everywhere in R2.

Theorem 1. Let there exists a positive constant δ such that

f1(y,z)≥ δ, f2(x,z)≥ δ for (x, y,z)∈R3. (10)
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Moreover let the functions f1, f2, f0, and f satisfy the conditions
(
f1(y,z)− f1(y,z)

)
sgn(z− z)sgn(z)≥ 0 for y ∈R, zz ≥ 0, (11)

(
f2(x,z)− f2(x,z)

)
sgn(z− z)sgn(z)≥ 0 for x ∈R, zz ≥ 0, (12)

f0(x, y,z)sgn(z) < 0 for (x, y)∈R2, z �= 0,

lim
z→∞sgn(z)

∫ ω1

0

∫ ω2

0
f0(x, y,z)dxdy =−∞,

(13)

lim
z→∞

f
(
x, y,z,z1,z2,z3

)

f0(x, y,z)
= 0 uniformly on R2×R4. (14)

Then problem (1), (3) is solvable.

Theorem 2. Let f1 and f2 be continuously differentiable functions such that

f1(x, y,z)≥ δ, f2(x, y,z)≥ δ for (x, y,z)∈R3 (15)

for some positive δ. Moreover, let the functions f0 and f satisfy the conditions of Theorem 1.
Then problem (2), (3) is solvable.

Remark 1. Note that conditions (10) and (15) are optimal in a sense that we cannot take
δ = 0. Indeed, consider the problems

u(2,2) =−F(u) +
(
F′(u)u(1,0)

)(1,0)
+u(0,2) +π sinx, (16)

u(x+ 2π, y)= u(x, y), u(x, y + 2π)= u(x, y), (17)

where F(z)= z3, or F(z)= arctan(z). Problem (16), (17) satisfies all of the conditions of
Theorem 2 except condition (15). Instead of (15), we have that F′(z) is nonnegative and
vanishes at 0, or at∞ only.

Let us show that problem (16), (17) has no solution. Assume the contrary: let u be a
solution of (16), (17), and set v(x, y)= u(0,2)(x, y)−F(u(x, y)). Then for every y ∈R, the
function v(·, y) is a solution to the periodic problem

v′′ = v+π sinx, v(x+ 2π)= v(x). (18)

This problem has a unique solution v(x) = −π/2sinx. Therefore, problem (16), (17) is
equivalent to the problem

u(0,2) = F1(u)− π

2
sinx, u(x, y + 2π)= u(x, y). (19)

However, problem (19) has no more than one solution. Indeed, let u1 and u2 be arbitrary
solutions to problem (19). Then one easily gets the identity
∫ ω2

0

((
u(0,1)

1 (x, t)−u(0,1)
2 (x, t)

)2
+
(
F
(
u1(x, t)

)−F(u2(x, t)
))(

u1(x, t)−u2(x, t)
))
dt ≡ 0,

(20)

whence it follows that u1(x, y)≡ u2(x, y).
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Due to uniqueness, a solution of problem (19) should be independent of y. So finally
we arrive to the functional equation

F(u)= π

2
sinx, (21)

whence we get

u(x, y)= 3

√
π

2
sinx for F(z)= z3,

u(x, y)= tan
(
π

2
sinx

)

for F(z)= arctan(z).

(22)

In the first case u is not differentiable at πk, k ∈ Z, while in the second case u itself is a
discontinuous function, because it blows up at points π/2 +πk, k ∈ Z.

Thus, it is clear that of problem (16), (17) has no solutions in the both cases.

Remark 2. The conditions of Theorem 1 (as well as Theorem 2) do not guarantee the
uniqueness of a solution. Indeed, for the equation

u(2,2) =−un +u(2,0) +u(0,2)−
( n∏

k=1

(u− k)−un
)

, (23)

all of the conditions of Theorem 1 (and Theorem 2) are fulfilled. Nevertheless, it has at
least n solutions uk(x, y)≡ k (k = 1,2, . . . ,n) satisfying conditions (3).

We will give a uniqueness theorem for the equations

u(2,2) = f0(x, y,u) +
(
f1(x, y)u(1,0)

)(1,0)
+
(
f2(x, y)u(0,1)

)(0,1)
, (24)

u(2,2) = f0(x, y,u) +
(
f1(x, y)u(1,0)

)(1,0)
+
(
f2(x, y)u(0,1)

)(0,1)

+ ε f
(
x, y,u,u(1,0),u(0,1),u(1,1),u(2,0),u(0,2),u(2,1),u(1,2)

)
.

(25)

Theorem 3. Let there exists δ > 0 such that

f1(x, y)≥ δ, f2(x, y)≥ δ for (x, y)∈R2, (26)
(
f0(x, y,z)− f0(x, y,z)

)
sgn(z− z)≤−δ|z− z| for (x, y)∈R2, z,z ∈R. (27)

Then problem (24), (3) is uniquely solvable. Moreover, for every f (x, y,z1,z2,z3,z4,z5,z6,
z7,z8) that is Lipschitz continuous with respect to the last eight phase variables, there exists a
positive ε0 such that problem (25), (3) is uniquely solvable for every ε ∈ (−ε0,ε0).

To prove Theorems 1–3, we will need the following lemmas.
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Lemma 1. Let p0, p1, p2, and q ∈ Cω1ω2 (R2), and let there exist a positive constant δ and a
nondecreasing continuous function η : [0,+∞)→ [0,+∞), η(0)= 0 such that

p1(x, y)≥ δ, p2(x, y)≥ δ, (28)
∣
∣p1

(
x1, y1

)− p1
(
x2, y2

)∣
∣+

∣
∣p2

(
x1, y1

)− p2
(
x2, y2

)∣
∣

≤ η(∣∣x1− x2
∣
∣+

∣
∣y1− y2

∣
∣
)

for
(
xi, yi

)∈R2 (i= 1,2).
(29)

Then an arbitrary solution u of problem (5), (3) admits the estimate

∫ ω1

0

∫ ω2

0

(∣
∣
∣u(2,0)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(0,2)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(2,1)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(1,2)(x, y)

∣
∣
∣

2
)

dxdy

≤M
∫ ω1

0

∫ ω2

0

(
∣
∣u(x, y)

∣
∣2

+
∣
∣
∣u(1,0)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(0,1)(x, y)

∣
∣
∣

2
+ q2(x, y)

)

dxdy,

(30)

where the constant M > 0 depends on δ, ‖p0‖Cω1ω2
, and the function η.

Proof. Let u be a an arbitrary solution of problem (5), (3). For any h > 0, set

pih(x, y)= 1
h2

∫ x+h

x

∫ y+h

y
pi(s, t)dsdt (i= 1,2),

Qh[u](x, y)= (p1(x, y)− p1h(x, y)
)
u(2,0)(x, y) +

(
p2(x, y)− p2h(x, y)

)
u(0,2)(x, y).

(31)

Then u satisfies the equation

u(2,2) = p0(x, y)u+ p1h(x, y)u(2,0) + p2h(x, y)u(0,2) +Qh[u](x, y) + q(x, y). (32)

Multiplying successively (32) by u(x, y), u(2,0), and u(0,2), integrating over the rectangle
[0,ω1]× [0,ω2], and using integration by parts, we observe that

∫ ω1

0

∫ ω2

0

(

p1h(x, y)
∣
∣
∣u(1,0)(x, y)

∣
∣
∣

2
+ p2h(x, y)

∣
∣
∣u(0,1)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(1,1)(x, y)

∣
∣
∣

2
)

dxdy

=
∫ ω1

0

∫ ω2

0

(

Qh[u](x, y)− p(1,0)
1h (x, y)u(1,0)(x, y)− p(0,1)

2h (x, y)u(0,1)(x, y)

+ p0(x, y)u(x, y) + q(x, y)
)

u(x, y)dxdy,

(33)
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∫ ω1

0

∫ ω2

0

(

p1h(x, y)
∣
∣
∣u(2,0)(x, y)

∣
∣
∣

2
+ p2h(x, y)

∣
∣
∣u(1,1)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(2,1)(x, y)

∣
∣
∣

2
)

dxdy

=
∫ ω1

0

∫ ω2

0

(

p(0,1)
2h (x, y)u(2,0)(x, y)u(0,1)(x, y)− p(1,0)

2h (x, y)u(1,1)(x, y)u(0,1)(x, y)
)

dxdy

−
∫ ω1

0

∫ ω2

0

(
Qh[u](x, y) + p0(x, y)u(x, y) + q(x, y)

)
u(2,0)(x, y)dxdy,

(34)
∫ ω1

0

∫ ω2

0

(

p1h(x, y)
∣
∣
∣u(1,1)(x, y)

∣
∣
∣

2
+ p2h(x, y)

∣
∣
∣u(0,2)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(1,2)(x, y)

∣
∣
∣

2
)

dxdy

=
∫ ω1

0

∫ ω2

0

(
p(1,0)

1h (x, y)u(0,2)(x, y)u(1,0)(x, y)− p(0,1)
1h (x, y)u(1,1)(x, y)u(1,0)(x, y)

)
dxdy

−
∫ ω1

0

∫ ω2

0

(
Qh[u](x, y) + p0(x, y)u(x, y) + q(x, y)

)
u(0,2)(x, y)dxdy.

(35)

However,

∫ ω1

0

∫ ω2

0

∣
∣
∣Qh[u](x, y)

∣
∣
∣
(∣
∣u(x, y)

∣
∣+

∣
∣
∣u(2,0)(x, y)

∣
∣
∣+

∣
∣
∣u(0,2)(x, y)

∣
∣
∣
)
dxdy

≤ 2η(h)
(

‖u‖2
L2
ω1ω2

+
∥
∥
∥u(2,0)

∥
∥
∥

2

L2
ω1ω2

+
∥
∥
∥u(0,2)

∥
∥
∥

2

L2
ω1ω2

)

,
(36)

∫ ω1

0

∫ ω2

0

(∣
∣p0(x, y)

∣
∣
∣
∣u(x, y)

∣
∣+

∣
∣q(x, y)

∣
∣
)(∣
∣u(x, y)

∣
∣+

∣
∣
∣u(2,0)(x, y)

∣
∣
∣+

∣
∣
∣u(0,2)(x, y)

∣
∣
∣

)

dxdy

≤
(

2
ε

∥
∥p0

∥
∥
Cω1ω2

+ 2ε
)

‖u‖2
L2
ω1ω2

+
2
ε
‖q‖2

L2
ω1ω2

+ 2ε
(∥
∥
∥u(2,0)

∥
∥
∥

2

L2
ω1ω2

+
∥
∥
∥u(0,2)

∥
∥
∥

2

L2
ω1ω2

)

,

(37)
∫ ω1

0

∫ ω2

0

(∣
∣
∣p(0,1)

2h (x, y)
∣
∣
∣
∣
∣
∣u(2,0)(x, y)

∣
∣
∣
∣
∣
∣u(0,1)(x, y)

∣
∣
∣

+
∣
∣
∣p(1,0)

2h (x, y)
∣
∣
∣
∣
∣
∣u(1,1)(x, y)

∣
∣
∣
∣
∣
∣u(0,1)(x, y)

∣
∣
∣

)

dxdy

≤ 2η(h)
h

ε
(∥
∥
∥u(2,0)

∥
∥
∥

2

L2
ω1ω2

+
∥
∥
∥u(1,1)

∥
∥
∥

2

L2
ω1ω2

)

+
2η(h)
hε

∥
∥
∥u(0,1)

∥
∥
∥

2

L2
ω1ω2

,

(38)

∫ ω1

0

∫ ω2

0

(∣
∣
∣p(1,0)

1h (x, y)
∣
∣
∣
∣
∣
∣u(0,2)(x, y)

∣
∣
∣
∣
∣
∣u(1,0)(x, y)

∣
∣
∣

+
∣
∣
∣p(0,1)

1h (x, y)
∣
∣
∣
∣
∣
∣u(1,1)(x, y)

∣
∣
∣
∣
∣
∣u(1,0)(x, y)

∣
∣
∣

)

dxdy

≤ 2η(h)
h

ε
(∥
∥
∥u(0,2)

∥
∥
∥

2

L2
ω1ω2

+
∥
∥
∥u(1,1)

∥
∥
∥

2

L2
ω1ω2

)

+
2η(h)
hε

∥
∥
∥u(1,0)

∥
∥
∥

2

L2
ω1ω2

.

(39)

Now taking h > 0 and ε > 0 sufficiently small from (33)–(39), we immediately get estimate
(30). �

The following lemma immediately follows from [10, Lemma 2.7].
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Lemma 2. Let p0, p1, p2, and q ∈ Cω1ω2 (R2), and let p1 and p2 satisfy conditions (28). Then
an arbitrary solution u of problem (5), (3) admits the estimate

‖u‖C2,2
ω1ω2
≤ r

(∫ ω1

0

∫ ω2

0

(
∣
∣u(x, y)

∣
∣+

∣
∣
∣u(2,0)(x, y)

∣
∣
∣+

∣
∣
∣u(0,2)(x, y)

∣
∣
∣

)

dxdy +‖q‖Cω1ω2

)

,

(40)

where r is a positive constant depending on δ, ‖p0‖Cω1ω2
, ‖p1‖Cω1ω2

, and ‖p2‖Cω1ω2
only.

Lemma 3. Let p1, p2 ∈ Cω1ω2 (R2) satisfy the conditions of Lemma 1. Then there exist λ > 0
and Mλ > 0 depending on δ, ‖p1‖Cω1ω2

, ‖p2‖Cω1ω2
, and the function η such that for every

q ∈ Cω1ω2 (R2), the equation

u(2,2) =−λu+ p1(x, y)u(2,0) + p2(x, y)u(0,2) + q(x, y) (41)

has a unique solution u satisfying conditions (3), and

‖u‖C2,2
ω1ω2
≤Mλ‖q‖Cω1ω2

. (42)

Proof. This lemma easily follows from Lemmas 1 and 2. Indeed, let u be an arbitrary
solution of problems (41), (3). Multiplying successively (41) by u(x, y), u(2,0), and u(0,2),
integrating over the rectangle [0,ω1]× [0,ω2], and using integration by parts, we get

λ
(
‖u‖2

L2
ω1ω2

+
∥
∥u(1,0)

∥
∥2
L2
ω1ω2

+
∥
∥u(0,1)

∥
∥2
L2
ω1ω2

)

≤
(

1 +
∥
∥p1

∥
∥2
Cω1ω2

+
∥
∥p2

∥
∥2
Cω1ω2

)(
‖u‖2

L2
ω1ω2

+
∥
∥u(2,0)

∥
∥2
L2
ω1ω2

+
∥
∥u(0,2)

∥
∥2
L2
ω1ω2

)
+‖q‖2

L2
ω1ω2

.

(43)

Validity of Lemma 3 immediately follows from estimates (30), (40), and (43). �

Consider the linear equation

u(2,2) = p0(x, y)u+
(
p1(x, y)u(1,0)

)(1,0)
+
(
p2(x, y)u(0,1)

)(0,1)
+ q(x, y). (44)

If p1 and p2 satisfy (28), then by g1(·,·,x) : R2 → R and g2(·,·, y) : R2 → R, respec-
tively, denote Green’s functions of the problems

d2z

dy2
= p1(x, y)z, z

(
y +ω2

)= z(y),

d2z

dx2
= p2(x, y)z, z

(
x+ω1

)= z(x),

(45)

(see [10, Lemmas 2.1 and 2.2]).
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Lemma 4. Let u be a solution of problem (44), (3). Then the following representation is valid

u(2,0)(x, y)= p2(x, y)u

+
∫ y+ω2

y
g1(y, t,x)

((
p0(x, t) + p1(x, t)p2(x, t)

)
u(x, t)

+ p(1,0)
1 (x, t)u(1,0)(x, t) + q(x, t)

)
dt,

u(0,2)(x, y)= p1(x, y)u

+
∫ x+ω1

x
g2(x,s, y)

((
p0(s, y) + p1(s, y)p2(s, y)

)
u(s, y)

+ p(0,1)
2 (s, y)u(0,1)(s, y) + q(s, y)

)
ds,

u(x, y)=
∫ y+ω2

y

∫ x+ω1

x
g1(y, t,x)g2(x,s, t)

((
p0(s, t) + p1(s, t)p2(s, t)

)
u(s, t)

+ p(0,1)
2 (s, t)u(0,1)(s, t) + q(s, t)

)
dsdt.

(46)

We omit the proof of Lemma 4, since it is similar to the proof of [10, Lemma 2.7].
Let

ϕρ(z)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for |z| ≤ ρ,

ρ+ 1−|z| for |z| ∈ [ρ,ρ+ 1],

0 for |z| ≥ ρ+ 2,

χρ(z)=
∫ z

0
ϕρ(s)ds, (47)

and let Φρ : C1
ω1ω2

→R be a continuous nonlinear functional defined by the equality

Φρ(u)= ϕρ
(
‖u‖C1

ω1ω2

)
. (48)

Consider the equation

u(2,2) = f0
(
x, y,χρ(u)

)
+ f1

(
y,Φρ(u)u

)
u(2,0) + f2

(
x,Φρ(u)

)
u(0,2)

+Φρ(u) f
(
x, y,u,u(1,0),u(0,1),u(1,1)

)
− λu+ λχρ(u).

(49)

Lemma 5. Let λ > 0 and ρ > 0. Then every solution u of problem (49), (3) admits the esti-
mates

∫ ω1

0

∫ ω2

0

(
∣
∣ f0

(
x, y,χρ

(
u(x, y)

)∣
∣
∣
∣u(x, y)

∣
∣+

∣
∣
∣u(1,0)(x, y)

∣
∣
∣

2

+
∣
∣
∣u(0,1)(x, y)

∣
∣
∣

2
+
∣
∣
∣u(1,1)

∣
∣
∣

2
)

dxdy ≤ r0,
(50)

where r0 is a positive constant independent of ρ, λ, and u.
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Proof. Let u be a solution of problems (49), (3). Multiplying (49) by u(x, y), integrating
over the rectangle [0,ω1]× [0,ω2], and using integration by parts, we get

∫ ω1

0

∫ ω2

0

(
(− f0

(
x, y,χρ

(
u(x, y)

))
+ λu− λχρ(u)

)
u(x, y)− f1

(
y,u(x, y)

)
u(2,0)(x, y)u(x, y)

− f2
(
x,u(x, y)

)
u(0,2)(x, y)u(x, y) +

∣
∣
∣u(1,1)(x, y)

∣
∣
∣

2
)

dxdy

=
∫ ω1

0

∫ ω2

0
Φρ(u) f

(

x, y,u(x, y),u(1,0)(x, y),u(0,1)(x, y),u(1,1)(x, y)
)

u(x, y)dxdy.

(51)

By conditions (13) and (14), we have

(− f0
(
x, y,χρ

(
u(x, y)

))
+ λ
(
u(x, y)− χρ

(
u(x, y)

)))
u(x, y)

≥ ∣∣ f0
(
x, y,χρ

(
u(x, y)

))
u(x, y)

∣
∣,

(52)

Φρ(u)
∣
∣
∣ f
(
x, y,u(x, y),u(1,0)(x, y),u(0,1)(x, y),u(1,1)(x, y)

)∣
∣
∣
∣
∣u(x, y)

∣
∣

≤ r1 +
1
2

∣
∣ f0

(
x, y,χρ

(
u(x, y)

))∣
∣
∣
∣u(x, y)

∣
∣,

(53)

where r1 is a positive constant independent of ρ, λ, and u.
For h > 0, set

f1h(y,z)= 1
h

∫ z+h

z
fi(y,ξ)dξ. (54)

Then by condition (11), we have

−
∫ ω1

0

∫ ω2

0
f1h
(
y,Φρ(u)u(x, y)

)
u(x, y)u(2,0)(x, y)dxdy

=
∫ ω1

0

∫ ω2

0
f1h
(
y,Φρ(u)u(x, y)

)∣∣
∣u(1,0)(x, y)

∣
∣
∣

2
dxdy

+
Φρ(u)

h

∫ ω1

0

∫ ω2

0

(
f1
(
y,Φρ(u)

(
u(x, y) +h

)

− f1
(
y,Φρ(u)u(x, y)

))
u(x, y)

∣
∣
∣u(1,0)(x, y)

∣
∣
∣

2
dxdy

≥
∫ ω1

0

∫ ω2

0
f1h
(
y,Φρ(u)u(x, y)

)∣∣
∣u(1,0)(x, y)

∣
∣
∣

2
dxdy

−Φρ(u)
∫∫

Dh

∣
∣ f1

(
y,Φρ(u)

(
u(x, y) +h

)− f1
(
y,Φρ(u)u(x, y)

∣
∣
∣
∣
∣u(1,0)(x, y)

∣
∣
∣

2
dxdy,

(55)
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where Dh = {(x, y)∈ [0,ω1]× [0,ω2] : |u(x, y)| ≤ h}. Hence we immediately get that

−
∫ ω1

0

∫ ω2

0
f1
(
y,Φρ(u)u(x, y)

)
u(x, y)u(2,0)(x, y)dxdy

≥
∫ ω1

0

∫ ω2

0
f1
(
y,Φρ(u)u(x, y)

)∣∣
∣u(1,0)(x, y)

∣
∣
∣

2
dxdy.

(56)

In the same way, we show that

−
∫ ω1

0

∫ ω2

0
f2
(
x,Φρ(u)u(x, y)

)
u(x, y)u(0,2)(x, y)dxdy

≥
∫ ω1

0

∫ ω2

0
f2
(
y,Φρ(u)u(x, y)

)∣∣
∣u(0,1)(x, y)

∣
∣
∣

2
dxdy.

(57)

Taking into account (52)–(57), from (51), we immediately get (50) with r0 = (2 + δ−1)r1.
�

Proof of Theorem 1. Let v ∈ C1,1
ω1ω2

(R2) be an arbitrary function. Set

p1[v](x, y)= f1
(
y,Φρ(v)v(x, y)

)
, p2[v](x, y)= f2

(
x,Φρ(v)v(x, y)

)
,

q[v](x, y)= f0
(
X , y,χρ

(
v(x, y)

))

+Φρ(v) f
(
x, y,v(x, y),v(1,0)(x, y),v(0,1)(x, y),v(1,1)(x, y)

)
.

(58)

Consider the equation

u(2,2) =−λu+ p1[v](x, y)u(2,0) + p2[v](x, y)u(0,2) + λχρ
(
v(x, y)

)
+ q[v](x, y). (59)

Note that due to definitions of p1 and p2 for every ρ > 0, there exists a continuous func-
tion ηρ : [0,+∞)→ [0,+∞), ηρ(0)= 0 such that

∣
∣p1[v]

(
x1, y1

)− p2[v]
(
x2, y2

)∣
∣+

∣
∣p2[v]

(
x1, y1

)− p2[v]
(
x2, y2

)∣
∣

≤ ηρ
(∣
∣x1− x2

∣
∣+

∣
∣y1− y2

∣
∣
)
.

(60)

By Lemma 3, there exist λ > 0 and Mλ > 0 depending on ρ, δ, and the function ηρ only,
such that for every v ∈ C1,1

ω1ω2
(R2), problem (59), (3) has a unique solution u[v] admitting

the estimate

∥
∥u[v]

∥
∥
C2,2
ω1ω2
≤Mλ

(∥
∥q[v]

∥
∥
Cω1ω2

+ λρ
)
. (61)

It is easy to see that the operator � : v→ u[v] is a continuous operator from C1,1
ω1ω2

(R2)
into C2,2

ω1ω2
(R2), and therefore it is a completely continuous operator from C1,1

ω1ω2
(R2) into

C1,1
ω1ω2

(R2). Moreover,

∥
∥�(v)

∥
∥
C2,2
ω1ω2
≤Mλ

(∥
∥q[v]

∥
∥
Cω1ω2

+ λρ
)≤Mλcρ, (62)

where cρ is a positive constant independent of v.
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By Schauder’s fixed point theorem, the operator � has a fixed point u ∈ C2,2
ω1ω2

(R2),
which is a solution of the functional differential equation (49).

By Lemma 5, u admits estimate (50). Conditions (13) and (50) imply the estimate

‖u‖H1,1
ω1ω2
≤ r1, (63)

where r1 is a positive constant independent of ρ, λ, and u. On the other hand, one can
easily establish the inequalities

‖u‖Cω1ω2
≤Ω‖u‖H1,1

ω1ω2
, (64)

∣
∣u
(
x1, y1

)−u(x2, y2
)∣
∣≤Ω‖u‖H1,1

ω1ω2

(√∣
∣x1− x2

∣
∣+

√∣
∣y1− y2

∣
∣
)

, (65)

where

Ω= 1√
ω1

+
1√
ω2

+
1√
ω1ω2

+
√
ω1 +

√
ω2. (66)

Choosing ρ >Ωr1, we observe that u is a solution of the equation

u(2,2) = f0(x, y,u) + f1
(
y,Φρ(u)u

)
u(2,0) + f2

(
x,Φρ(u)

)
u(0,2)

+Φρ(u) f
(
x, y,u,u(1,0),u(0,1),u(1,1)

)
.

(67)

Due to (63) and (65), there exists a nondecreasing continuous function η : [0,+∞)→
[0,+∞), η(0)= 0 independent of ρ such that
∣
∣ f1

(
y1,Φρ(u)u

(
x1, y1

))− f1
(
y2,Φρ(u)u

(
x2, y2

))∣
∣

+
∣
∣ f2

(
x1,Φρ(u)u

(
x1, y1

))− f2
(
x2,Φρ(u)u

(
x2, y2

))∣
∣≤ η(

∣
∣x1− x2

∣
∣+

∣
∣y1− y2

∣
∣
)
.

(68)

By Lemma 1 and inequality (68), there exists a positive constantM independent of ρ such
that u admits the estimate (30). Choosing ρ >Ω(r1 +M), we get that an arbitrary solution
of problems (67), (3) satisfies the inequality

‖u‖C1
Ω1ω2

< ρ. (69)

Consequently u is a solution of problem (1), (3) too. �

We omit the proof of Theorem 2, since it can be proved in much the same way. The
only difference is that instead of Lemmas 1–3 one should use Lemma 4 to get necessary a
priori estimates.

Proof of Theorem 3. Let q ∈ Cω1ω2 (R2). Consider the equation

u(2,2) = f0(x, y,u) +
(
f1(x, y)u(1,0)

)(1,0)
+
(
f2(x, y)u(0,1)

)(0,1)
+ q(x, y). (70)

By Theorem 2, problems (70), (3) are solvable. Let u1 and u2 be two arbitrary solutions
of problems (70), (3), and let v(x, y)= u1(x, y)− u2(x, y). Then applying (27), we easily
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get the inequality

∫ ω1

0

∫ ω2

0

(

δv2(x, y) + f1(x, y)
∣
∣
∣v(1,0)(x, y)

∣
∣
∣

2
+ f2(x, y)

∣
∣
∣v(0,1)(x, y)

∣
∣
∣

2
)

dxdy ≤ 0. (71)

Hence it follows that u1(x, y)≡ u2(x, y).
Thus for every q ∈ Cω1ω2 (R2), problem (70), (3) has a unique solution u[q]. Applying

Lemmas 1 and 2, one can easily show that the operator � : q → u[q] is a continuous
operator from Cω1ω2 (R2) into C2,2

ω1ω2
(R2) and that

∥
∥�

(
q1
)−�

(
q2
)∥
∥
C2,2
ω1ω2
≤ a∥∥q1− q2

∥
∥
Cω1ω2

, (72)

where a is a positive constant independent of q1 and q2. Therefore problem (25), (3) is
equivalent to the operator equation

u(x, y)=�
(
ε f
(
x, y,u,u(1,0),u(0,1),u(1,1),u(2,0),u(0,2),u(2,1),u(1,2)

))
(x, y)=�ε(u)(x, y).

(73)

Due to Lipschitz continuity of the function f , there exists a positive constant b such that

∣
∣ f
(
x, y,z1, . . . ,z8

)− f
(
x, y,z1, . . . ,z8

)∣
∣≤ b

8∑

i=1

∣
∣zi− zi

∣
∣. (74)

From (72) and (74), it is clear that for ε ∈ (−1/ab,1/ab), the operator �ε is a contractive
operator from C2,2

ω1ω2
(R2) into C2,2

ω1ω2
(R2). Hence (73), and consequently, problem (25),

(3) is uniquely solvable. �
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