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Abstract

A generalization of the famous KdV and BBM equation are con-
sidered with a new nonlinear term. Sufficient conditions of solvability,
existence and uniqueness are established.
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1 Introduction

It is well known [3-4] that the equations

uxxx = (u + 1)ux + ut (1)

and

uxxt = (u + 1)ux + ut (2)

perform extremely well as mathematical models for long time evolution of
wave phenomenon. However, in the mathematical modeling leading up to
these equations many of the physical conditions are either overlooked or dras-
tically simplified to be taken as constant. If these physical conditions are not
simplified then the above equations may not be valid. If this is the case then
the modeling process must be redone, most likely leading to a completely new
partial different equation.

For a simple illustration of how this process occurs one can recall the well
known development of the standard partial differential equation for heat con-
duction. In the mathematical modeling of this phenomena if the physical
assumptions allow the density, μ, specific heat, ρ, and the thermal conductiv-
ity, K, of the medium under consideration to all be taken as constant, then one
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obtains the well know partial differential for heat conduction ut = c2uxx, where
c2 = K

μρ
= constant. However, if any one of the assumptions are violated then

the above heat equation is not going to suffice as a mathematical model for
the heat conduction within the medium. For example, if density and specific
heat are allowed to be constant but the coefficient of thermal conductivity is
taken as a function K of the spacial variable, then the equation for the heat
distribution under consideration takes the form μρut = Kuxx + Kxux.

The modeling process of longtime evolution of wave phenomenon follows
a very similar process, but it is a little more in depth on the physical side,
thus, it will not be discussed in detail here. However, in short one can see
that if certain physical conditions are either not simplified to be constant or if
additional forces are added into the modeling picture then mathematical model
for longtime evolution of wave phenomenon will generally take the general form
of the above equation (1) or (2), but it will most likely have some additional
terms. It is expected that the new equation will be an equation of the form

uxxt = (u + 1)ux + ut + f(x, t, u, ux, uxx) (3)

and

uxxx = (u + 1)ux + ut + f(x, t, u, ux, uxx) (4)

where the term f(x, t, u, ux, uxx) is left arbitrary, but is understood to be a
direct result of the change in the physical modeling as detailed above. Various
examples of this equation have been investigated in [5] but not necessarily
solved nor has existence of solutions been guaranteed. For example in [6]
recent work the equation

uxxt = (u + 1)ux + ut + cuxx (5)

was investigated as a mathematical model for long time water wave theory
when viscosity, c, was considered in the mathematical modeling of long range
water waves. In the following pages we will consider several generalizations
of both the BBM (3)and KdV (4) type equations and develop conditions for
existence, uniqueness and the like.

2 statement of results

Theorem 2.1 Let g(x) be a continuous function such that

sup
x∈R

|g(x)| ≤ b < ∞

then there exists a t0(b) such that the initial value problem
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uxxt = (u + 1)ux + ut + f(x, t, u, ux, uxx), u(x, 0) = g(x) (3)

has a unique solution defined in 0 < t < t0 provided that the nonlinear function
F (x, t, z1, z2, z3) satisfies the conditions

|F (zi) − F (z̄i)| ≤ Li|zi − z̄i|
for i = 1, 2, 3 where F = df

dx
.

Example 2.2 Let g(x) be a continuous function such that

sup
x∈R

|g(x)| ≤ b < ∞

then there exists a t0(b) such that the initial value problem

uxxt = (u + 1)ux + ut + cuxx, u(x, 0) = g(x) (5)

has a unique solution defined in 0 < t ≤ t0, 0 < x ≤ R provided that the value
of c satisfies the inequality

(1 + c + R)t0 ≤ 1.

Theorem 2.3 Let g(ξ) be a continuous function such that

sup
ξ∈R

|g(x)| ≤ b < ∞

then there exists a τ0(b) such that the initial value problem

uxxx = (u + 1)ux + ut + f(x, t, u, ux, uxx), u(x, 0) = g(x) (4)

u(x, 0) = g(x)

has a unique solution defined in the transformed coordinate system x = ε
1
2 τ

and t = ε
3
2 ξ + ε

1
2 τ. This solution is defined for 0 < τ < τ0 provided that the

nonlinear function F (ξ, τ, z1, z2, z3) satisfies the conditions

|F (zi) − F (z̄i)| ≤ Li|zi − z̄i|
for i = 1, 2, 3 where F = df

dξ.
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3 Proofs and auxiliary statements

In the following Theorems we will be considering solutions to partial differential
equations of the from

uxxt = (u + 1)ux + ut + f(x, t, u, ux, uxx) (3)

and

uxxx = (u + 1)ux + ut + f(x, t, u, ux, uxx). (4)

Both of the above equations will be taken with the initial conditions u(x, 0) =
g(x), considered for a class of real nonperiodic functions u(x, t) defined for
−∞ < x < +∞, t ≥ 0.

Lemma 3.1 The partial differential equation (3) can be as

[(1 − ∂2
x)]u

(0,1) = −∂x[u +
1

2
u2 − F (x, t, u(x, t), ux, uxx)],

or as an integral equation

u(x, t) =

∫ t

0

∫ +∞

−∞
K(x − ξ)(u(ξ, τ) +

1

2
u2(ξ, τ) − F (ξ, τ, u(ξ, τ), uξ(ξ, τ))dξdτ,

where F is a function such that ∂F
∂x

= f .

proof of Lemma 3.1:
To begin we note that (3) can be rewritten as

u(0,1) − u(2,1) = f − u(1,0) − u(1,0)u.

We then see that equation (3) can be rewritten as

[(1 − ∂2
x)]u

(0,1) = −∂x[u +
1

2
u2 − F ],

where F is a functions such that F = df
dx

. Following a similar argument as in
[3] one views the above as a differential equation for u(0,1); hence, one obtains
that

u(0,1) =
∫ +∞

−∞
K(x − ξ)(u(ξ, t) +

1

2
u2(ξ, t) − F (ξ, t))dξ,

where the Kernel is defined as K(x) = 1
2
(sgnx)e−|x|.
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Now, the above pseudo differential equation can easily be rewritten as an
integral equation as

u(x, y) = g(x) +
∫ t

0

∫ +∞

−∞
K(x − ξ)(u(ξ, τ) +

1

2
u2(ξ, τ) − F (ξ, τ))dξdτ,

where g(x) = u(x, 0). This complete the proof of Lemma 1.
proof of Theorem 2.1:
We denote ξt0 as the set of functions that continuous and uniformly bounded

on the strip [0, R] × t0, that have the norm ||u|| = supx∈R,0≤t≤t0 |u(i,0)| with
i = 0, 1, 2.

Now, let us define A as the integral operator, as in Lemma 1,

A[u] =

∫ t

0

∫ +∞

−∞
K(x − ξ)(u(ξ, τ) +

1

2
u2(ξ, τ) − F (ξ, τ, u(ξ, τ), uξ(ξ, τ), uξξ(ξ, τ))dξdτ

and view our partial differential equation (3) as an operator equation u =
g(x) + A[u]. Prior to proceeding with the usual fixed point argument we must
observe that

F (ξ, τ, v1,
∂v1

∂ξ
,
∂2v1

∂ξ2
) − F (ξ, τ, v2,

∂v2

∂ξ
,
∂2v2

∂ξ2
)

= [F (ξ, τ, v1,
∂v1

∂ξ
,
∂2v1

∂ξ2
) − F (ξ, τ, v2,

∂v1

∂ξ
,
∂2v1

∂ξ2
)]+

+[F (ξ, τ, v2,
∂v1

∂ξ
,
∂2v1

∂ξ2
) − F (ξ, τ, v2,

∂v2

∂ξ
,
∂2v1

∂ξ2
)]

+[F (ξ, τ, v2,
∂v2

∂ξ
,
∂2v1

∂ξ2
) − F (ξ, τ, v2,

∂v2

∂ξ
,
∂2v2

∂ξ2
)]

Now, applying the Lipschitz condition on the function F (x, y, u, ux, uxx) in
u for the first square parentheses, then in ux for the second and in uxx for the
third we obtain

|F (ξ, τ, v1,
∂v1

∂ξ
,
∂2v1

∂ξ2
) − F (ξ, τ, v2,

∂v2

∂ξ
,
∂2v2

∂ξ2
)|

≤ L1|v1 − v2| + L2|∂v1

∂ξ
− ∂v2

∂ξ
| + L3|∂

2v1

∂ξ2
− ∂2v2

∂ξ2
|. (6)
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Recalling the integral operator A and considering the difference of two solutions
v1 and v2 of our partial differential equation (3) we obtain that:

|A[v1]−A[v2]| =
∫ t

0

∫ +∞

−∞
e−|x−ξ|(|v1(ξ, τ)|−v2(ξ, τ)+

1

2
|v1(ξ, τ)2−v2(ξ, τ)2|)dξdτ

+
∫ t

0

∫ +∞

−∞
1

2
e|x−ξ||f(ξ, τ, v1,

∂v1

∂ξ
,
∂2v1

∂ξ2
) − f(ξ, τ, v2,

∂v2

∂ξ
,
∂2v2

∂ξ2
)|dξdτ

=
∫ t

0

∫ +∞

−∞
e−|x−ξ|(|v1(ξ, τ)| − v2(ξ, τ) +

1

2
|v1(ξ, τ)2 − v2(ξ, τ)2|)dξdτ

+
∫ t

0

∫ +∞

−∞
1

2
e|x−ξ||f(ξ, τ, v1,

∂v1

∂ξ
,
∂2v1

∂ξ2
) − f(ξ, τ, v2,

∂v2

∂ξ
,
∂2v2

∂ξ2
)|dξdτ.

Now, applying (6) we obtain that

|A[v1] − A[v2]| =

≤
∫ t

0

∫ +∞

−∞
e−|x−ξ|(|v1 − v2| + 1

2
(|v1| + |v2||v1 − v2|)dξdτ

+
∫ t

0

∫ +∞

−∞
1

2
e|x−ξ|(L1|v1 − v2| + L2|∂v1

∂ξ
− ∂v2

∂ξ
| + L3|∂

2v1

∂ξ2
− ∂2v2

∂ξ2
|)dξdτ

= (1 + R)t|v1 − v2| + Lt||v1 − v2||,
where ||f || =

∑ |f i|, L= max Li with i = 1, 2, 3 and R is a previously defined.
Hence, we have obtained that

|A[v1] − A[v2]| ≤ (1 + R)t|v1 − v2| + L||v1 − v2||. (7)

Now, we compute that

A[
∂v1

∂x
] =

∂

∂x
[
∫ t

0

∫ +∞

−∞
e−|x−ξ|(v1(ξ, τ)+

1

2
v1(ξ, τ)2)+

1

2
e|x−ξ|f(ξ, τ, v1,

∂v1

∂ξ
,
∂2v1

∂ξ2
)dξdτ ]

=
∫ t

0

∫ +∞

−∞
sgn(x)(−e−|x−ξ|(v1(ξ, τ)+

1

2
v1(ξ, τ)2)+

1

2
e|x−ξ|f(ξ, τ, v1,

∂v1

∂ξ
,
∂2v1

∂ξ2
))dξdτ.
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And, performing a similar calculation for A[∂v2

∂x
] and, after some algebra, we

obtain

A[
∂v1

∂x
] − A[

∂v1

∂x
]| ≤ sgn(x)(−1 − 1

2
|v1| − 1

2
|v2|)t|v1 − v2| + Lt||v1 − v2||.

Which yields, in the range x ≥ 0

|A[
∂v1

∂x
] − A[

∂v1

∂x
]| ≤ (−1 − R)|v1 − v2| + Lt||v1 − v2||,

or, in the range x < 0

|A[
∂v1

∂x
] − A[

∂v1

∂x
]| ≤ (1 + R)|v1 − v2| + L||v1 − v2||.

Hence, calling K = (−1 − R) if we are in x ≥ 0 or K = (1 + R) if we are in
x < 0 we have obtained

|A[
∂v1

∂x
] − A[

∂v2

∂x
]| ≤ (K)t|v1 − v2| + L||v1 − v2||. (8)

We perform a similar calculation for A[∂2u
∂x2 ] and proceed in the same manner

we obtain

|A[
∂2v1

∂x2
] − A[

∂2v2

∂x2
]| ≤ (1 + R)t|v1 − v2| + L||v1 − v2||. (9)

Thus, combining equations (7),(8) and (9) we obtain

|A[v1] − A[v2]| + |A[
∂v1

∂x
] − A[

∂v2

∂x
]| + |A[

∂2v1

∂x2
] − A[

∂2v2

∂x2
]|

≤ (1+R)t|v1−v2|+L||v1−v2||+(K)t|v1−v2|+L||v1−v2||+(1+R)t|v1−v2|+L||v1−v2||.

Which is the same as

||A[v1 − v2]||

≤ (2 + 2R + K)t|v1 − v2| + 3L||v1 − v2||.
And, noting that |v1 − v2| ≤ ||v1 − v2||, we obtain the inequality

||v1 − v2|| ≤ L̄||v1 − v2|| (10)

where L̄ = (2 + 2R + K + 3L). Hence, we have obtained the necessary in-
equality for the standard Fixed point argument, thus, completed the proof of
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this theorem. However, it is very important to determine the exact value of
the constant L̄ due to the fact that in order to apply the standard Banach’s
contraction principle [2] there will be certain requirements, often L̄ ≤ 1, re-
quired in the necessary equation d(F (u), F (v)|| ≤ L̄d(u, v), with d being the
metric begin considered. It will be illustrated in the next example of how the
value of K can be obtained for particular partial differential equations under
consideration and how this is interpreted for the intervals where the solution
is defined.

proof of Example 2.2:
The partial differential equation

uxxt = (u + 1)ux + ut + cuxx (5)

u(x, 0) = g(x)

is a special case of (3) with f = cuxx and F = cux. Thus, one can see that
the function f does indeed satisfy the condition |F (zi) − F (z̄i)| ≤ L|zi − z̄i|
for Theorem 1. Namely, |F (zi) − F (z̄i)| = 0 for i = 0 and i = 2 and |F (zi) −
F (z̄i)| = c|zi) − z̄i| for i = 1. Thus, the results of Theorem 1 do establish that
a the partial differential equation (5) does have a unique solution. However,
in order to obtain further insight into the solution, it is necessary to find the
exact value of the constant K applied in the standard fixed point argument,
as noted at the end of the proof of Theorem 1. To do this we note that
the equation yields the value that L̄ = 1 + R + c for our example. Thus,
in order for one to satisfy the conditions required for Banach’s contraction
principle it follows that the constant K = (1 + R + c)t0 must be bounded
by one. Hence, it follows that t0 ≤ 1

1+R+c
which gives the local existence as

expected and standard continuation arguments can be applied to gain global
existence. Further details of this are discussed for (11) in a recent paper [6]
which focused on the physical applications and interpretations of the partial
differential equation (5).

Lemma 3.2 The partial differential equation

u(0,1) + u(1,0)u + u(3,0) − εu(2,1) = u(2,0) (11)

can be rewritten as

uξ + uτ + uξu − uξξτ = 0 (12)

if the change of variables ξ = ε−
1
2 x + ε−

3
2 t and τ = ε−

1
2 x = are applied.

proof of Lemma 3.2
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To begin we introduce the change the independent variables ξ = εkx + εRt
and τ = εkt. And, applying the standard chain rule we observe that

u(0,1) =
∂u

∂ξ
εR+

∂u

∂τ
εk, u(2,0) =

∂2u

∂ξ2
ε2k, u(3,0) =

∂3u

∂ξ3
ε3k, u(2,1) =

∂3u

∂ξ3
·ε2K+R+

∂3u

∂ξ2∂τ
·ε3k.

Plugging these values into (11) we observe that our partial differential equa-
tion becomes

εRuξ + εkuτ + εkuξu + ε3kuξξξ − ε2k+R+1uξξξ − ε3k+1uξξτ = 0.

Now, if we force k = R + 1 the partial differential equation takes the desired
form

εk(εuξ + uτ + uξu − ε2k+1uξξτ) = 0.

Finally, multiplying by ε
1
2 and selecting k = −1

2
we see that our partial dif-

ferential equation has become exactly equation (12) as stated in the Lemma,
hence, this complete the proof of Lemma 3.2.

proof of Theorem 2.3
As it was shown in Theorem 2.1 the partial differential equation

uxxt = (u + 1)ux + ut + f(x, t, u, ux, uxx), u(x, 0) = g(x)

has a unique solution expressed by the integral equation in Lemma 3.1 that
is defined in 0 ≤ t ≤ t0 where t0 is ultimately determined by the Lipshitz
constant from F with dF

dx
= f. Moreover, as it was shown in Lemma 3.2 the

partial differential equation (11) can be transformed into

uξ + uτ + uξu − uξξτ = 0 (12)

where ξ = ε−
1
2 x + ε−

3
2 t and τ = ε−

1
2 .

In order to obtain insight of the solution to our desired patrial differential
equation

uxxx = (u + 1)ux + ut + f(x, t, u, ux, uxx), u(x, 0) = g(x) (5)

we first investigate the equation

uxxx − εuxxt = (u + 1)ux + ut + f(x, t, u, ux, uxx), u(x, 0) = g(x).

Now, if we apply the transformation outlined in Lemma 3.2 to the above partial
differential equation it will become.
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uξξτ = εuξ + uξ + uτ + f̄(x, t, u, uξ, uξξ),

where f̄ is the function f from (4) after the ξ, τ transformation has been ap-
plied. Now, the logic outlined in the proof of theorem 2.1 shows that the above
partial differential equation does have a unique solution. Thus, by inverting
the transformation we can assure that our equation (12) does have a unique
solution. Then, by taking the limit as ε → 0 we obtain that the partial dif-
ferential equation (5) has a unique solution and this completes the proof of
Theorem 2.3.
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