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Abstract

The landing and reusability of space vehicles is one of the driving forces into renewed interest

in space utilization. For missions to planetary surfaces, this soft landing has been most

commonly accomplished with parachutes. However, in spite of their simplicity, they are

susceptible to parachute drift. This parachute drift makes it very difficult to predict where

the vehicle will land, especially in a dense and windy atmosphere such as Earth. Instead,

recent focus has been put into developing a powered landing through gimbaled thrust. This

gimbaled thrust output is dependent on robust path planning and controls algorithms. Being

able to have a powered landing with on-board real-time control algorithms is absolutely

essential to exploring the solar system as it is the only effective way to bring heavy equipment

or people to a planetary surface.

A robust, efficient, and easy-to-use controls algorithm will be formulated to solve this

controls problem known as the soft landing problem. Through representing rigid body motion

through dual-quaternions, translation and rotation can be represented in a single compact

form that is free of singularities and provides the shortest path interpolation compared to

any other formulation. These rigid bodies will be shown to follow a desired time-dependent

orientation and position through one of the most powerful methods of modern control known

for its accuracy, robustness, and easy tuning and implementation – sliding mode control.
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Chapter 1

INTRODUCTION

1.1 Problem Statement and Significance

As early as the 16th century, a Chinese legend was created that speaks of an official Wan-

Hu, who, with the help of many assistants, strapped himself to a chair fitted with two large

kites and 47 fire-arrow rockets. Unlike Wan-Hu who was launched and never seen again,

this crazy dream of travelling off of Earth’s surface can be seen throughout history. The

idea of propulsion off the surface of Earth has been enticing humankind for centuries. With

tremendous breakthroughs in physics by Sir Newton in the turn of the 18th century, ideas

of liquid and solid propellants by Tsiolkovsky and Goddard in the turn of the 20th century,

and finally V2 rockets by Oberth and von Braun, the potential for using rockets for space

was born and inspired the creation of American and Soviet space programs after WWII. [1]

The excitement of rockets in space was at an all time high during the space race in the 60s,

however the launch vehicles used in this time (Saturn V for America) were fully expendable

and in turn were extremely costly.

The effort was put forth to make a reusable launch vehicle in the shuttle program using the

Space Transportation System (STS), which consisted of two reusable Solid Rocket Boosters

(SBRs) and a non-reusable external tank. This hope to have a short turnaround time with

1
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a partially reusable launch vehicle was completely shattered when in reality, the turnaround

time took months and half a billion dollars, roughly the equivalent of launching a Saturn V

[2]. Likewise, Soviet response to the American STS program was the Soviet Buran program.

This craft, while upping the STS with having an autonomous landing, survived reentry but

wasn’t reusable. The Soviet Ministry of Defense then quickly defunded the program [3]. The

fact of the matter was, the shuttle program was far too expensive with a slow turnaround

time, major safety concerns, and few customers and in fact was used as an example to argue

that affordable, reusable launch vehicles was an unfeasible idea [4]. That is, until recently.

Since the shuttle program, there has been incredible scientific interest and anticipation in

getting back into space with huge improvements into the affordability and safety of rockets

pioneered by the Space Explorations Technologies Corporation (SpaceX). Their Falcon 9

rocket is a partially reusable system but with remarkable differences to the STS. For example,

the Falcon 9 isn’t based on two high performance booster engines and external tank but

rather 9 smaller and less efficient boosters, ’off the shelf’ on board computers, and identical

avionics and boosters in the first and second stages. This new and groundbreaking way to

launch into space was first implemented by SpaceX in 2015 with the purpose of delivering

payload into Earth’s orbit [2]. The Falcon 9 now not only delivers payloads such as Starlink

communications satellites to Low Earth Orbit, but also human payloads such as the recent

Dragon crew in the International Space Station in May of 2020. Recently, Blue Origins has

also joined this reusable booster effort with New Shepherd in 2021 and the commercialization

of space. For missions further from home, NASA’s Space Launch System (SLS) is currently

under development with the purpose of sending human and robotic explorers to deep space

destinations such as asteroids, Mars, and beyond and thus will be optimized for single use

[4].

Regardless if the purpose of the rocket is to have a one-way ticket to explore planetary

surfaces in deep space, or reusable in near earth orbit, one thing is clear, it will need to

have a system in place to land. Historically, this has been done with deployable parachutes
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and has been used in the Apollo program as well as landings on Mars as just two easy

examples. However, this method of landing is susceptible to parachute drift. For example,

the predicted landing site of the Mars Curiosity rover was only able to be narrowed down

to a 20km ellipse. With great effort from SpaceX and their reusable Vertical Take-off and

Landing (VTOL) Falcon 9 rocket, they have been able to narrow down this landing ellipse

to about 20 meters on a sea-going barge. Thus, being able to have this powered landing with

on-board real-time control algorithms is absolutely essential to exploring the solar system as

it is the only effective way to bring heavy scientific equipment or people to a planetary or

surface. [5]

1.2 Purpose Statement

A robust, efficient, and easy-to-use controls algorithm will be formulated to solve this controls

problem known as the soft landing problem. Through representing rigid body motion through

dual-quaternions, translation and rotation can be represented in a single compact form that

is free of singularities and provides the shortest path interpolation compared to any other

formulation. These rigid bodies will be shown to follow a desired time-dependent orientation

and position through one of the most powerful methods of modern control known for its

accuracy, robustness, and easy tuning and implementation – sliding mode control.

There are multiple components that factor into a space vehicle’s ability of VTOL. First,

there must be a method of path planning. This path planning algorithm would find desired

position and orientation (state variable) information in order to optimize fuel spent and

landing accuracy. This would be an on-board program that runs in real-time to provide this

live and updating state variable information. Second, there must be a controls algorithm that

takes the current and desired states of the vehicle, and provides necessary control outputs

in order to stably move the system to the desired states. Lastly, there must be a physical

mechanism that moves the vehicle given the necessary control outputs. These control outputs
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could map to gimbal angles and thrust magnitude for thrust vectoring, deflection angles in

grid fins, thrust magnitudes in reaction control thrusters for example, or combinations of

the previously mentioned. In addition to formulating a controls algorithm to follow desired

state variables in a robust way, this thesis will overview these components that factor into a

space vehicles ability to VTOL.

1.3 Nomenclature

Not Bold: a Real scalar in R

~a real vector in R
3

â dual scalar in DR

~̂a dual vector in DR
3

Bold Lowercase: a Quaternion in H

â Dual-Quaternion in DH

Bold Uppercase: A real matrix in R
n⇥n

Â Dual Matrix in DR
n⇥n



Chapter 2

REVIEW OF RELEVANT

LITERATURE

2.1 Soft Landing Problem

Planetary soft landing is considered one of the benchmark problems of optimal control theory.

It is gaining renewed interest due to an increase of focus on planet exploration such as Mars,

as well possible explorations to the moon and asteroids in our solar system. The topic of

finding ways to assure this pinpoint planetary soft landing is commonly referred to as the

soft landing problem [6], and is defined to be the final phase of a planetary entry, descent,

and landing (EDL). This phase is then completed when the vehicle lands with zero velocity

relative to the surface (aka "soft lands"). In 2013, Lars Blackmore proposed a solution

to compute optimal solutions that minimizes landing error and fuel consumption. This

optimal path finding has been matched with classical control algorithm methods to assure a

soft landing [7]. Many companies like Blue Origins and SpaceX are currently pursuing self

landing rockets as it is an incredibly new and developing field in space travel and controls

alike. Outlined in the sections below are an overview of current methodology of the VTOL

of space vehicle and current solutions to the soft landing problem.

5
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2.2 Launch Vehicle Reuse

2.2.1 SpaceX

In December of 2015, SpaceX’s Falcon 9 rocket became the first rocket to land via propulsion

after delivering a payload into orbit. So far, the Falcon family’s core boosters have success-

fully landed 107 times in 118 attempts [8] and are widely used by SpaceX to deliver payloads

such as communications satellites (Starlink) and humans to the ISS (Dragon program) in

low Earth orbit. The SpaceX Falcon 9 rocket utilizes two main stages; the first of which is

reusable [2]. The rocket will launch and the first stage will separate around 50miles high

and then undergo a flip turn (called a "gravity flip turn") with cold gas thrusters to orient

the booster with the bottom facing toward Earth. The gravity turn is an extremely simple

control strategy in which the thrust vector is aligned with the velocity vector in order to

cancel the initial horizontal component of the vehicles velocity [9] to accomplish a powered

landing –which consists of slowing down to a soft landing. Out of the 9 thrusters the first

stage has, three of them turn on to guide the rocket down to Earth in a reentry burn at

which point the booster is still hypersonic. As the booster starts entering Earth atmosphere,

the center engine turns on and grid fins are deployed to stabilize the booster slowing from

above mach 3 to subsonic speeds. Closer to the landing site, one last engine burns slows the

booster to about 5 mph in a landing burn [10]. A summary of the liftoff, main engine cutoff

and stage separation, gravity flip turn, reentry burn, grid fin activation, and landing burn

are in Figure 2.1. These Falcon 9 boosters land vertically on a water barge off the coast of

Florida. These water landings, primarily done for safety, pose many difficult problems due to

water currents, wind, and unlevel ground from waves that make a robust controls algorithm

and actuators a pivotal apart of the success of the mission.

From Figure 2.2, the grid fins are visible on the rocket’s first stage. These grid fins are

extendable aerodynamic control surfaces that activate after the gravity flip turn. The control

surface of the grid fin is much like ailerons or elevators on an airplane. The notable difference
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Figure 2.1: SpaceX Falcon 9 Launch Profile [2]. This figure summaries the liftoff, main
engine cutoff and stage separation, gravity flip turn, reentry burn + grid fins, and landing
burn onto the sea-faring barge.

being the gritted surface on the fin (as again, seen in Figure 2.2) that minimizes drag. While

grid fins are only able to rotated about their roll axis, they are able to act upon all 3 axes

of the booster, and are a common control technique implemented on guided missiles. These

control surfaces are able to control and move the current orientation of the rocket into a

desired orientation. [11]

In addition to booster landings and earlier programs such as Grasshopper, SpaceX has

also successfully vertically landed the Starship SN15. The goal of this fully reusable trans-

portation system is to carry both crew and cargo to Earth orbit, the Moon, Mars, and beyond

[12]. Unlike the symmetrical cylindrical body the Falcon 9 has, the Starship is shaped with
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Figure 2.2: SpaceX Falcon 9 Deployed Grid Fins [11]. These control surfaces activate after
the gravity-flip turn, and are able to provide full rotational control of the booster. The grid
fins work in conjunction with thrust vectoring to make the vehicle achieve a soft landing

an elliptical cross-section as seen in Figure 2.3. The existence of a flatted side would make

a vertically-aligned descent very challenging with its non-symmetrical moment of inertia.

This rocket then avoids the upper-atmospheric flip the Falcon 9 undergoes and instead uses

atmospheric drag to assist in reducing speed in reentry. It then reorients vertically in a slip

at around 250m above the landing site. This descent trajectory is shown in Figure 2.4.

Figure 2.3: Starship SN15 Body [12]. Note the wide non-symmetrical cross-section of the
vehicle which makes it difficult to control a gravity flip turn in the upper atmosphere
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Figure 2.4: Starship SN15 Descent Trajectory [13]. The utilization of its elliptical cross
section for atmospheric drag and reorientation close to the ground makers distinguishable
differences between the SN15 and Falcon 9 rockets.

2.2.2 Blue Origins

Blue Origins also created a VTOL rocket called New Shepherd NS-19 that’s first successful

flight was in December of 2021. As this spacecraft’s main mission is aimed toward space

tourism, its crew capsule was designed for comfort and with large windows to enjoy the

views. The rocket launched the crew capsule above the Karman Line so the crew can go into

space and enjoy the view on the way down. The capsule later lands via parachutes whereas

the rocket lands itself though VTOL. The New Shepherd utilizes drag brakes to reduce the

boosters speed during its descent and, similar to the Falcon 9, has aft fins that stabilize the

vehicle during ascent and steer the rocket back to the pad [14], [15]. Unlike SpaceX however,

the New Shepherd requires no reorientation or gravity-flip turn. It is solely a vertical takeoff,

vertical ascent, and vertical landing. There is no reorientation because its purpose is not to

launch things into orbit *around* Earth but rather just *up* in the upper atmosphere.

This therefore isn’t great tool to analyse VTOL rockets for space travel in general, how-

ever it will utilizes similar controls algorithms to land safely and softly on Earth’s surface.

The trajectory of the New Shepard can be seen below in Figure 2.5.
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Figure 2.5: New Shepherd NS-19 Launch Profile [16]. Notice there is no vehicle reorientation
because its purpose is not to launch things into orbit *around* Earth but rather just *up*
in the upper atmosphere.

2.3 Path Planning

There are many publications and works that propose solutions to the powered descent guid-

ance problem. Guidance has been proposed in 1D and solved analytically in closed-form

but it wasn’t extendable to 3D with state or control constraints. Other solutions compute a

closed-form solution by ignoring the constraints of the problem. Since the solution doesn’t

factor in constraints, constraints need to be checked explicitly after a solution is generated.

Another solution has been nonlinear optimization on board. This however has limited on-

board practicality as it cannot provide a priori guarantees on the number of iterations that

will be required to find a feasible trajectory nor can it guarantee a global optimum. The last

method, and most widely used method, are convex optimization approaches that pose the

problem as a second-order cone problem (SOCP). Using convex optimization with interior

point method (IPM) guarantee 1) finding a feasible solution if one exists and 2) will find

a global optimum to any given accuracy with an a prior known upper bound (aka number

of iterations required for convergence) [6]. Figure 2.6 outlines the purpose of this powered



2.3. PATH PLANNING 11

Figure 2.6: Optimal Powered Descent Guidance (PDG) enables planetary pinpoint landing.
It searches all possible diverts and significantly increases the divert capability over the current
onboard algorithms [17]. Image was taken from an article on GFOLD.

descent guidance problem.

The idea of VTOL rockets was pioneered by Lars Blackmore when he and his colleges

were able to create an algorithm to plot a collisionless and fuel-optimal path down to the

target, requiring on-board path computing in fractions of a second posing a solution to

what was called the convex optimization problem [5]. Convex optimization specifically,

provides guaranteed convergence to a globally optimal solution. However, problems such as

the powered descent guidance for Mars pinpoint landings (the original intent of the research)

as well as rocket landings in general do not have a convex structure. The use of optimizers

in autonomous spacecraft has been greatly limited since general nonconvex optimization

approaches don’t guarantee finding a solution if one exits, among other problems. Therefore,

the key was to reformulate the nonconvex problem as a higher-dimensional convex problem

through "lossless convexification" and then prove that an optimal solution to the convex

problem was also a globally optimal solution to the nonconvex one as seen in [6],[18] . Such

non-convex constrains on the control input include:

• Descent thrusters cannot be throttled off after ignition, so guidance algorithm needs
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to generate valid thrust vectors with a nonzero minimum

• Onboard sensors for terrain-relative navigation need specific viewing orientations which

constrains allowable spacecraft orientations and therefore the thrust vector pointing

direction

• time varying mass in dynamics (resolved with change of variables)

Thus, the constraints of the problem can be summarized and formulated as:

1. Thrust nonzero minimum and maximum 0 < ⇢1  ||Tc||  ⇢2, where Tc is the thrust

vector generated by the lander.

2. Thrust pointing constraints n̂TTc(t) � ||Tc(t)||cos(✓), where ||n̂|| = 1 is a direction of

the thrust vector and 0  ✓  ⇡ is the maximum allowable angle of deviation from the

direction given by ||n̂|| = 1

Optimization requires minimization of a cost function. In this case the minimization of

landing error and fuel [18]. Where:

1. Minimization of Landing Error: This formulated by the non-convex minimum landing

error problem where q 2 R
2 is the coordinates of the target at zero altitude as:

mintf ,Tc ||Er(tf )� q|| (2.1)

2. The Minimization of Fuel: This is formulated as the non-convex minimum fuel problem,

where m is the mass of the lander:

min m(tf )�m(0) = min

Z tf

0

↵||Tc(t)||dt (2.2)

where ṁ(t) = �↵||Tc|| (2.3)
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Figure 2.7: Path Planning Dynamic and Constraint Equations for the minimization of land-
ing error and the minimization of fuel spent. [18]

Thus, when the minimization functions are combined with the dynamics and constraints

of the system, the problems are expressed as in Figure 2.7.

Lossless Convexification was then implemented as G-FOLD (Guidance For Fuel Opti-

mal Large Diverts) algorithm and is currently in use in JPL’s ADAPT program (reference

Figure 2.8). This algorithm was developed to compute, onboard in real-time, fuel optimal

trajectories for large divert maneuvers necessary for planetary pinpoint or precision landings

[17]. It is an incredibly new and monumental development, that instead of using just for

a parachute Powered Descent (PD) to a desired location for Martian rover landings, it was

also implemented on rockets in SpaceX for vertical landing capabilities.
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Figure 2.8: Development History of GFOLD Algorithm [17]

2.4 Methods of Representing Rotation and Translation

Now that we have an idea of the planning involved to attain a desired trajectory, how in

the world are we going to be able to follow that trajectory? This is done by first coming up

with a system to store the rotation and translation information of the rigid body, and then

secondly coming up with a controls algorithm to transform this rotational and translational

information into desired rotational and translational information. The most common way to

store this rotation and translation information is through matrices. However, this paper will

introduce a much more computationally friendly method using quaternions, and working up

to dual-quaternions (full mathematical descriptions of these methods are in Chapter 3). In

order to analyse the quality of the different ways to represent rigid body transformations,

three main parameters are used: robustness, efficiency, and ease-of-use [19].

1. robustness – means the formulation is continuous and, therefore, free of discontinuities.

It is also important to have a unique representation for each solution. This assures

that there is minimal to no redundant information in the formulation. These problems
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show up in Euler Angles and it’s corresponding problem of gimbal lock.

2. efficiency – means the formulation should be computationally fast. This implies that it

should not only take up the smallest amount of space as possible, but also incorporates

the smallest number of calculations as possible. Likewise, the calculation cost to convert

between alternate representations (for example converting from quaternions or rotation

matrices to euler angles) should be minimal.

3. Ease-of-Use – means the formulation should be able to be used without many compli-

cations. This is a bit subjective and overarching, but essentially maximizing the other

two parameters will assist in maximizing this one. Or more appropriately, with this

parameter in mind, methods can be attained to maximize the other two. For exam-

ple, the method of quaternion was developed with the goal to represent rotation more

easily, and therefore a method was created that maximized robustness and efficiency.

This terminology will be used to compare and contrast different methods of representing

rotation and translation of Euler Angles and Rotation Matrices, Quaternions, and Dual-

Quaternions. These methods outline as follows and will be analysed in depth in Chapter

3.

Representing Motion in 3D

Rotation Translation

Rotation Matrices Translation

Quaternions Translation

Dual Quaternions

2.4.1 Why Dual Quaternions?

A rigid body has six different ways it can move. It can move through translation x, y, z

(or more practically: latitude, longitude, and altitude) and rotation  ,�, ✓ (yaw, pitch, and

roll). This make up the six Degrees of Freedom (DoF) of a rigid body. Dual-quaternions are
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able to combine the six DoFs into a single state instead of defining separate vectors. While

matrices are a classical way to represent rigid body dynamics, dual-quaternions are much

less computationally heavy, singularity-free, compact, and have been shown to be the most

efficient way to represent rotation and translation. This is especially seen in time critical

systems such as games. Benefits of using dual-quaternions include [19]:

• singularity-free

• un-ambiguous

• shortest path interpolation

• the most efficient and compact form for representing rigid body transformation

• unified representation of translation and rotation

• can be integrated into a system with a fewer lines of code and debugging effort than

other representation

• individual translation and rotation information is combined into a single invariant

coordinate frame

2.4.2 Dual-Quaternion Usage

In 1843, W.R. Hamilton introduced the idea of quaternions that would generalize three

dimensional vectors into a four dimensional space of real and imaginary numbers [20]. Then,

in 1873, W.K. Clifford took this idea and ran with it. He broadened the idea of quaternions

into biquaternions in what is called Clifford Algebra [21]. This idea was refined in 1898

by Alexander McAulay by using – in addition to the imaginary number components of

i2 = j2 = k2 = �1 – a new property where ⌦2 = 0. This strange idea was later developed by

people like Aleksandr Kotelikov that would take biquaternions into the more modern view of

dual vectors and dual quaternions [22]. Through its long history however, they have gained
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substantially less attention compared to normal quaternions due to their exotic nature. In

recent years though, dual-quaternions have been having a rise in popularity in robotics and

some areas in computer graphics.

Real-time 3-dimensional dynamic systems used in computer graphics for example, com-

bine key framed animations, inverse kinematics (IK), and physics based models to produce

controllable, responsive, realistic motions [19]. This is gaining recent interest in using dual-

quaternions in place of classical matrices. For computer graphics, in 2008, Ladislav Kavan et

al. demonstrated the advantages of using dual-quaternions for purposes of character skinning

and blending [23],[19]. This work was improved upon by Ivo Frey and Ivo Herzeg by being

able to then represent rigid body transforms using dual quaternions instead of matrices, and

by providing evidence that dual quaternions operate faster with accumulated transformation

of joints [24],[19]. This idea when then applied to key issues in computer games by Selig in

his book Rational Interpolation of Rigid-Body Motions. Such issues such as solving equations

of motion in real-time was solved very efficiently and succinctly by using dual-quaternions

to represent rigid-body transformations. Furthering this, people like Vasilakia and Kuang

have even presented strategies for creating real-time animation of clothed body movements.

[19]

In the field of robotics, in 2010, Pham et. al. [25] was the first to solve the linked chain

IK problem using a Jacobian matrix in a dual-quaternions space. People like Maule and Ge

later demonstrated the efficiency and practicality of using dual-quaternions for interpolating

motions in a three-dimensional space and generalizing it to multiple bodies. Perez then took

this and was able to form dynamics constraints for robotic systems using dual-quaternions.

[19]
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2.5 Control Algorithms for Rocket VTOL

Once we have the path planning to give us a desired state, and we have a method to represent

our motion, the next step is to move our current state to our desired state through a controls

algorithm. Control algorithms have two main categories: classical control and artificial

intelligence (AI) techniques. The main difference between these two types is that classical

control, for example Proportional Derivative Integral (PID) control, is based on a well-

defined mathematical model. AI however, such as Reinforcement Learning (RL), is far less

structured. Whether using classical or AI control however, both methods have inputs of

state variables and analyse the error with respect to a desired state and then outputs an

execution to the desired state in a stable and controlled manner [26]. The algorithms looked

at in this section are algorithms that have been implemented into a thrust vectoring control

system and corresponding implementation parallel to rocketry.

Mathematical models used in classical control are commonly represented using transfer

functions that are able to model the input-output relationship of the system defined by

differential equations [26]. In a general linear time-invariant system defined by:

ao
dny

dtn
+ a1

dn�1y

dtn�1
+ ...+ any = b0

dmx

dtm
+ b1

dm�1x

dtm�1
+ ...+ bmx (2.4)

where n � m, x and y are the input and output of the system respectively and a...n, b...n

are their respective coefficients. A transfer function can be defined where:

G(s) =
L[output]
L[input] =

Y (s)

X(s)
(2.5)

such that a Single-Input-Single-Output (SISO) relationship can be modeled as in Figure

2.9. In real life however, most controls problems are Multiple Input Multiple Output (MIMO)
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systems. For example, the output variables of the soft landing problem are all 6 DoF: roll,

pitch, yaw, latitude, longitude, and altitude not just a single variable. In addition, a rocket

VTOL is highly non-linear due to non-convexities mentioned in the last section. This requires

the system to be linearized about an operating point using a Taylor series expansion [26]. A

MIMO system can be expressed using general state vectors:

Figure 2.9: Single-Input-Single-Output Closed Loop System [26]

states : x = [x1, x2..., xn] (2.6)

outputs : y = [y1, y2, ..., ym] (2.7)

input : u = [u1, ..., ur] (2.8)

ẋ = f(x, u, t) (2.9)

y(t) = g(x, u, t) (2.10)

The dynamics of a system can then be defined by:

ẋ = Ax+Bu (2.11)

y = Cx+Du (2.12)
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Where A is the state matrix, B is the input matrix, C is the output matrix, and D is

the direct transmission matrix (usually ⇡ 0). The closed loop system can then be described

by Figure 2.10 in which the states of the system x are sought to be controlled to the refer-

ence/desired state r. The error e between these two states as well as any disturbance d at

that time step is added in to a corrective control input u that produces output states y. In

this case, we are looking to do thrust vectoring as our output control.

Figure 2.10: State Feedback System. [26]

2.5.1 Proportional Integral Derivative Control

The first type of control I will talk about is the classical control using PID. A PID controller

was shown to do successful thrust vectoring in 2005 in a Cat P-80 micro turbojet engine

[27] and is still a commonly used algorithm in classical control due to it’s simplicity and

efficiency. PID control works by finding the error between the output and reference states

and outputs a control signal based on the proportional difference of this error Kp, integral

of the error Ki, and derivative of the error Kd. The trick of PID controllers is to then

choose these three coefficients to ensure stability of the system. The proportional term Kp

will decrease the steady state error of the system and it’s purpose is to control rise time

of the control response. The integral term Ki eliminates steady state errors, but in doing

so, increases the order of the system that could make the system as a whole unstable. The
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integral terms main purpose is then to control settling time of the control response. And

finally, the derivative term Kd can lead to faster rise times and main purpose is to control

bandwidth and overshoot. Such control feedback is modeled in PID control as: [26].

u(t) = Kpe(t) +Ki

Z
e(t)dt+Kd

de(t)

dt
(2.13)

G(s) =
s

Kds2 +Kps+Ki
(2.14)

This form is also commonly rewritten in terms of the natural frequency of the system !n

and the damping factor ⇣, instead of of the three coefficients of Ki,Kp, and Kd as:

G(s) =
K!2

n

s2 + 2⇣!n + !2
n

(2.15)

These coefficients – whether finding Ki,Kp, and Kd or !n, ⇣, and K – are based on the

desired step input of the system, and – in addition with the stability of the system – can

be found using using a root locus approach. Using a root locus approach, a plot is created

of the roots of the characteristic equation G(s) of the closed-loop system. These roots are

called closed-loop poles and can be found by setting the denominator of equation 2.15 equal

to zero and finding the asymptotes of G(s).

s2 + 2⇣!n + !2
n = 0 (2.16)

This then is plotted in the s-plane, which is the frequency domain attained through using

a transfer function. These locations provide stability points of the system for a desired

output. In Yang’s case, he found his coefficients for his thrust vectored nozzle through trial

and error [27] instead of a root locus. Though PID is very simple, it’s drawbacks are in it’s
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simplicity. It doesn’t deal with coupled dynamics well and having MIMO systems greatly

increase the complexity of the PID [26]. Moreover, it doesn’t guarantee optimal control or

stability as the system is founded with set gain parameters.

Furthering the idea of PID, thrust control of missiles have been researched through means

of a Fractional PID controller (FPID) and Gain Schedule Fractional PID controller (GSF-

PID) as seen in [28]. Such controllers were researched in order to control the pitch channel

in nonlinear missile models in a robust way. Optimized through MATLAB, parameters of

these control designs were optimized to achieve the best tracking with a step unit reference

signal that could incorporate wind effects and dynamics uncertainties effects. Stability was

then proven using a Nyquist stability diagram and Bode diagram.

Such controllers expand on the knowledge of PID controllers by incorporating fractional

order derivatives and integrals. Such FPID controllers, in the time domain, (notated as

PI�D�) take the form of:

u(t) = kpe(t) + kiD
��
t e(t) + kdD

�
t e(t) (2.17)

The corresponding transform into the frequency domain through a Laplace Transform

takes the form of:

Gc(s) = kp + kis
�� + kds

� (2.18)

Such FPID controllers then not only need to design three parameters of proportional

grain kp, integral gain ki, and derivative gain kd, but also two parameters of fractional order

of integral gain � and fractional order of derivative gain � for the integral and derivative part

of the controller. Such turnings take place in a nonlinear control design block set (NCD)

using Simulink[28].
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2.5.2 Linear Quadratic Regulator

The second type of controller I will mention is Linear Quadratic Regulator (LQR) control.

LQR is a type of classical control that is a part of optimal control theory, which deals with

minimizing a cost function (similar to minimizing the cost function of fuel for finding optimal

path) to produce the best performance possible given some inputs [9]. The name of Linear

Quadratic comes from when the systems dynamics are characterised by linear equations

and the cost function is in the form of a quadratic. Realistically though, most dynamical

equations aren’t linear. For example, even incorporating drag force, which is proportional to

the velocity of the system, will make the system non-linear. Therefore in most applications,

the systems dynamics needs to be linearized about a specific operating point called a "trim

point". So being, when the system moves away from this trim point, the system can no

longer be represented with those linear equations. Therefore, LQR cannot guarantee global

stability of the system.

The cost function to be minimized takes the form of the following equation, where Q 2

R
n⇥n, Q � 0 is a square diagonal matrix called the state penalization, where n is the length

of the state vector. And R 2 R
m⇥m, R > 0 is as square diagonal matrix called the input

penalization, where m is the length on the input vector. The cost function J can then be

described by:

J =
1

2

Z 1

0

(xTQx+ uTRu)dt (2.19)

The minimization of J can be solved by the definition of the Hamiltonion function. This

function takes the linear state-space equation from 2.11 and a defined co-state �. Combined

with the integrand of J , the minimization problem can be posed as:
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H = xTQx+ uTRu+ �T (Ax+Bu) (2.20)

From this, an optimal input can be defined for the system,

u = �R�1BT� (2.21)

For this input to then be in terms of the actual states, we can shape the co-state of � to

be:

�(t) = S(t)x(t) (2.22)

Combing this equations and their derivatives (for a more complete derivation see [9]), an

ordinary differential equation can be found called the Riccati ODE:

�Ṡ = SA+ AT � BR�1BTS +Q (2.23)

Solving the Riccati ODE for S, we can indeed get a time varying optimal control in

terms of the state vector instead of the optimal control formulation shown in equation 2.21.

Solving for S we get:

u = �R�1BT� = �R�1BTS(t)x (2.24)

Which can be shown as S goes to infinity, it becomes a constant. In other words, S !
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1, S(t) = S, making the optimal control input to be:

u = �Kx = �R�1BTSx (2.25)

This input then, with feedback martrix �K, leads to optimal control of the system. It

must be noted however that this solution to the Riccati equation is only valid when:

1. Q � 0, R > 0

2. The couple (A,C) is observable

3. The couple (A,B) is controllable

The main takeaways is that unlike PID, LQR acts on the states of the system instead

of the states error. LQR can be used to solve an inverted pendulum problem, similar in

theory to a rocket problem, but it is independent on input constraints that made the system

non-convex. This leads way to the drawback of LQR. LQR will only be optimal linearized

states and don’t include constraints.

2.5.3 Model Predictive Control

Model Predictive Control (MPC) are used widespread in industry from precision landings,

trajectory planning in missiles (missle guidance), to thrust vectored flight [26]. Like LQR,

MPC is under the umbrella of optimal control theory.

MPC takes LQR another step by being able to factor in input constraints. This enables

an optimizer to find a solution that is not only optimal for present states, but future states

as well [26] up to a time horizon. This is in contrast to LQR, that uses analytical methods

instead of an optimiser for solve a quadratic cost function. The ability for the optimiser to

find solution for future states enables the system to pick actions that maximize not only the



2.5. CONTROL ALGORITHMS FOR ROCKET VTOL 26

current reward, but the future reward as well. A generalized convex quadratic MPC takes

the form of:

minimize J =
Pti+Th

t=ti
(xt

tQxt + uT
t Rut)

subject to ut� 2 U, xt 2 X

xt+1 = Axt +But

xti+Th
= xtarget

xti = xinitial

for t = ti...Th

where xinitial is the initial state, xtarget is the desired target state after a certain time

horizon Th. As is, the formulation constrains the problem to converge to a desired final

state. This formulation was modified to incorporate something called penalization. This

penalization S would penalise the change in actions �u. Thus the MPC formulation became:

minimize J =
Pti+Th

t=ti
(xt

tQxt +�uT
t R�ut + !TS!)

subject to ut � ulimits  !, ut 2 U, xt 2 X

xt+1 = Axt +But

xti+Th
= xtarget

xti = xinitial

for t = ti...Th

Where S is the penalty given if the control action approaches ulimits [26]. This formulation

of MPC was shown to achieve better results than the optimal control static gain given by

LQR shown in previous section. The way MPC acts on a system within a set time horizon

can be seen in Figure 2.11.

2.5.4 Reinforcement Learning

Reinforcement Learning (RL) takes the MPC idea of rewards a step further, but now is no

longer defined by a well-defined model where states are found analytically or are estimated.
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Figure 2.11: Model Predictive Control Outline [26]. MPC takes the current state and input
and fins a solution for the optimal input based on required constraints and prediction horizon.

RL is a type of dynamic programming that is a framework that adapts itself with its envi-

ronment. It works by having a set list of actions to choose from and rewards actions that

enforce good actions when in a state. The goal of RL is to then learn the policy – the method

of choosing action – to maximize reward [26].

RL has also been modeled for a Falcon 9 landing in [7] and in simulation toolboxes called

Box2D in python. Such an architecture is modeled in Figure 2.12.

In this RL environment, V (s) is the expected cumulative reward that a policy would get

if that policy were to be followed from that point on. Under a given action a and system

states s, the expected cumulative reward is dependant on the transition probabilities of going

from one state to each next possible state P a
ss0 , expected value of the next reward Ra

ss0 , and

discounted future rewards Rt where 0  �  1 given by:
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Figure 2.12: Reinforcement Learning Outline [26]

Rt =
1X

k=0

�krt+k+1 (2.26)

P a
ss0 = Pr{st+1 = s0|st = s, qt = q} (2.27)

Ra
ss0 = E{rt+1|st = s, at = a, st+1 = s0 (2.28)

The above notation representing discounted future reward Rt can be used to express

cumulative reward V (s) in what is called Dynamic Programming. This then formulates

what is called Bellman’s equation:
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V (s) = E⇡{Rt|st = s} (2.29)

V (s) = E⇡{rt+1 + �
1X

k=0

�krt+k+2|st = s} (2.30)

V (s) =
X

a

⇡(s, a)
X

s0

pass0 [R
a
ss + �V (s)] (2.31)

Where ⇡(s, a) is the probability of choosing action a when in state s. The update to V (s)

is a bit exotic as it needs to visit all previous states not just the previous step. This is done

through a method called Temporal Differencing (TD) and looks like:

V (st) V (st) + ↵[Target� V (st)] (2.32)

V (st) V (st) + ↵[rt+1 + �V (st+1 � V (st)] (2.33)

This update is reliant on what is called a hyper parameter ↵ which is the learning rate

of the system. This allows the system to visit all previous states that led to the reward.

2.6 Rigid Body Motion

Now that we have a desired trajectory through path planning, methods of represent our

motion, and examples of controls algorithm to get us there. I will now analyse methods

of actually physically moving the vehicle – through thrust vectoring and gimbaling. Before

getting there however, an introduction is first necessary into the math behind rigid body

motion.

The motion of a rigid body can be fully described by it’s rotation in terms of roll, pitch,

and yaw, and by it’s translation along the x,y, and z axis. This totals to 6 different ways a

rigid body can move, more commonly referred to as 6 Degrees of Freedom.
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The right-handed coordinate system of a rocket, as well as the rotation of a rocket, is

defined though it’s center of gravity. The roll axis (x-axis) is defined to be longitudinally

through the rocket, the yaw axis (z-axis) is usually defined though a defining characteristic

of the rocket like a fin or window that controls side-to-side movement, and the pitch axis (y-

axis) is mutually orthogonal to the other two that moves the nose of the rocket up and down.

It is then important for a rocket in a vertical position to have it’s thrust vector aligned with

the roll/longitudinal axis in order to prevent unwanted torques about the center of gravity.

[29]. Figure 2.13 outlines the coordinate system used.

Figure 2.13: Roll, Pitch, and Yaw Defined on a Rocket [29]

In conjunction with defining the axes of the vehicle, it is also important to know how to

represent the motion of it before one can venture to try to control its motion. The rotational

dynamics of a rigid body can be described by:
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~̇v =
~f

m
(2.34)

J~̇! = (~! ⇥ J~!) + ~⌧ � J̇~! (2.35)

Where ~v 2 R
3 is the translation velocity, m 2 R is the translation mass/inertia, ~f 2 R

3 is

applied translation force, ~! 2 R
3 is angular velocity of the system, J 2 R

3⇥3 is the rotational

inertia, and ~⌧ 2 R
3 is an applied torque. We can then solve this for ~!, and assume the

change in the moment of inertia is zero J̇ = 0. This isn’t entirely an accurate assumption as

the mass distribution does in fact change with time as the fuel is burned, but we will assume

this for demonstration purposes:

~̇! = �J�1(~! ⇥ J~!) + J�1~⌧ + J�1J̇~!

~̇! = J�1(~⌧ � ~! ⇥ J~!)

Torques on the system can be disturbance torques ~⌧ext caused by factors such as wind

gusts, drag force, fuel sloshing, and even relative motion of the engine with respect to the

body, as well as control torques ~⌧c from the Thrust Vector Control [9] such that ~⌧ = ~⌧ext+~⌧c.

Such control torques, torque the system about its center of gravity and moves the system

to a desired orientation (with added position error). Likewise, forces on the system can be

external forces ~Fext that disturb the system. as well as control forces ~Fc that moves the

system to a desired position. Such that ~f = ~Fext + ~Fc

Thus, the full Rigid Body Dynamics (RBD) of the system can be defined with the fol-

lowing set of equations:
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v̇ =
~F

m
� ~g (2.36)

~̇! = J�1(~⌧ � ~! ⇥ J~!) (2.37)

2.7 Thrust Vectoring

Whereas the guidance (path-planning) system will provide desired state (position and rota-

tion) information into the controls algorithm, the controls algorithm will output a control

force and control torque to the system to follow the desired states in a robust way. This con-

trol force and control torque will be mapped to the control surfaces or actuators available on

the vehicle that will then physically move the vehicle. For example, on an airplane, control

surfaces like that of ailerons, elevators, and rudder, control rotational motion and the engine

controls translation motion.

Control surfaces rely on deflecting the flow surrounding the vehicle in order to change

the attitude of the vehicle. In environments with little to no atmosphere then, as such

in space, certain planetary missions, asteriodal, or lunar missions, control surfaces are no

longer particularly useful tools to have. Grid fins are implemented as extendable control

surfaces for missiles and rockets in our atmosphere, but even grid fins are designed to be

rendered useless when outside of an dense atmospheric environment (hence why they are

extendable *in* the atmosphere). The solution then is to not design a control surface,

but rather a controlling mechanism that will apply a force and torque the vehicle into a

desired orientation. In spacecraft, common types of such control actuators can take the

form of reaction and momentum wheels, control moment gyros, magnetic torquers, and hot

gas (hydrazine) or cold gas thrusters [30]. On large vehicles, attitude control is usually

implemented in the form of Reaction Control Thrusters and particularly in the case of

rocketry, Thrust Vector Control.
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The guidance and navigation of a spacecraft requires slow steering maneuvers, and hence

slow changes in the thrust vector direction [9]. Simultaneously, the attitude control system

(ACS) needs to balance the vehicle as it follows its guidance system. This ACS usually

takes the form of Reaction Control Thrusters (RCT) that propel cold gas that moves the

vehicle. Being able to utilize the thrust force provided by the engine, however, would greatly

reduce the usage of reaction thrusters and hence saves energy and cold-gas mass. For this,

the Thrust Vector Control (TVC) was created to react to small disturbances as quickly

as possible about a certain range of action. This would allow the TVC to work within a

predefined values of thrust deflection angle and allow the RCT to take over when the required

deflection angle exceeds the limits of the TVC [30].

Thrust vector control allows the vehicles thrust to align with the vehicles center of gravity

(CG) in order to maintain straight line flight or induce vehicle steering as desired [30].

Futhermore, spacecraft landers and rockets alike, implement TVC to keep the thrust vector

parallel to the velocity of the spacecraft during the landing phase (gimbal angle = 0) in order

to slow down and achieve a soft landing [9]. Hence, it is of vital importance to the hovering

and landing phase. Powered flight of large vehicles in general are now expected to have some

means of TVC. Common types of TVC such as gimbaled thrust, vernier rockets, and thrust

vanes, change the direction of the thrust that will then torque the rocket about it’s center of

gravity [31]. Figures 2.14 and 2.15 details these five most common types of implementable

TVC on a rocket:

1. Movable Fins

2. Vernier Rockets

3. Thrust Vanes

4. Gimbaled Thrust

5. Reactive Fluid Injection
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Figure 2.14: Four Control Methods used in Rocketry [31]

Movable fins at the rear of the rocket were commonly implemented on early rockets and

are still currently implemented in air-to-air missiles. The movable fins work by altering the

amount of aerodynamic force acting on the rocket. As mentioned previously, the motion of

a rocket is defined about its center of gravity. However, aerodynamic force acts through the

center of pressure, not the center of gravity directly. The center of pressure, in addition,

isn’t normally located at the center of gravity of a rocket. As a result, the location difference

produces a control torque about the center of gravity [31].

Vernier rockets are dying out, but were used on older rockets such as the Atlas missiles,

as well as Space Shuttles, and Soviet R-7 rockets [32]. These rockets would operate by using

small additional rockets at the bottom of the main rocket to produce control torques. These

rockets aren’t commonly used today due to their additional weight for fuel and plumbing

[31].

Thrust vanes were used in early rockets such as the V2 and Redstone rockets, and are
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currently still used in both rocket and jet engines [9]. They operate by placing a small thrust

vane in the exhaust stream of the main rocket. This in turn deflects the exhaust/thrust and

produces a control torque [31]. The most common types of such thrust vanes are 1) external

jet vanes and 2) external additional nozzles. Jet vanes consist of external paddles located

at the exit of the engine that can change configuration to guide the exhaust. In doing so, it

is possible to control each pitch, yaw, and even roll with a single engine (Unlike Gimbaled

engines that can only control pitch and yaw with a single engine). The second method of

using external additional nozzles works by deflecting the exhaust moving an external nozzle

mounted at the engines exit while the main engine is kept still. The downside of this method

is that the existence of such features can greatly reduce the engines efficiency. In addition,

the thrust directing elements would be required to withstand extremely high temperatures in

the rockets exhaust. Such methods of using thrust vanes are also common for light vehicles

and have been implemented in lander prototypes like LEAPFROG, but later switched to the

mechanical manipulation of the engine via gimbaled thrust [9], [33].

Gimbaled thrust is the most common method of thrust vector control for large rockets

[33],[34],[31]. Such rockets rotate, or gimbal, the nozzle in order to produce a control torque

to control the pitch and roll angles only. As the nozzle moves, the thrust direction changes

relative to the center of gravity of the rocket and thus produces a control torque about the

center of gravity directly.

Reactive fluid injection injects a fluid into the side of the exhaust flow from the nozzle

in order to affect the net thrust. The injected reactive fluid then results in different thrust

magnitudes on the side of injection. This method will also increase the thrust on the side of

injection due to shock waves from the higher pressure, as well as additional mass and energy

into the exhaust flow. To increase the efficiency of this system, reactive fluid with high

density are preferred. As example of such an implementation was in NASA’s TitanIIIE-

Centaur rocket launcher in 1973. Below in Figure 2.15, outlines a schematic of the flow

injector on the TitanIIIE-Centaur [9], [33]. This method seems to be a bit outdated as the
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last major work was in a publication from 1977 [35], but it regaining some popularity with

the demonstration of TVC using hydrogen peroxide in hybrid rockets [36].

Figure 2.15: Reactive Flow Injection on TitanIIIE-Centaur (NASA) [9]

2.8 Gimbaling with Thrust Vector Control

Control of the rocket can then be implemented with gimbaling by 1) changing the angle that

the thrust expelled from the rocket (gimbal angle) and 2) the amount of thrust provided.

The control goal specifically then, is to keep the thrust/gimbal angle as close to zero as

possible. Such control is depicted in Figure 2.16.

A vehicle with a single motor under gimbaling TVC only allows control of the pitch and

yaw angles. The roll motion, defined to be the angular motion about the axial direction of the

vehicle, cannot be controlled [9]. In modern rocketry, in-place of having two different engines

for thrust vectoring to accomplish this full rotational control, other options are explored such

as implementation of grid fins or reaction control thrusters. The actuation of the nozzle is

obtained in rocket engines through the use of linear actuators that make the engine move

about a joint that is attached to the vehicle as a whole. Figure 2.17 outlines the different
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Figure 2.16: Thrust Vector Control (Gimbaled Thrust) [34].

types of joints typically used on gimbaled engines.

The gimbal bearing is the pivot point of the engine, and thus is the physical component

that carries most of the thrust load. In both the gimbal bearing joint and gimbal ring joints,

two actuators are mounted 90 degrees from each other that allows the engine to move along

two axes. The difference is that the gimbal ring has one actuator on the engine and the

other on the ring whereas the bearing has both actuators on the engine. The thrust vector

trim configuration is quite a different setup that consists of the two actuators mounted 120

degrees from each other. Moreover, the gimbal bearing was replaced with a lateral ball and

socket joint. This uncommon configuration may prove to be useful for relatively low thrust

engines, and was considered for Nuclear Engines in Rocket Vehicle Applications (NERVA)

[33], [9].

To avoid interference with the structure and platform of the actuators, the gimbal is

subjected to a range of motion. A Gimbal Offset Angle � is the angle between the ver-

tical direction and the current thrust direction and ⇠ is the gimbal rotation angle. For

LEAPFROG, this was set to [9]:
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Figure 2.17: Typical joints Used on Gimbaled Engines [33].

0� < |�| < 5� (2.38)

0� < |⇠| < 90� (2.39)

⇠ is defined to be a positive rotation around ẑ. For example, at ⇠ = 0 and � > 0, a

positive pitching moment (around ŷ) would be produced. The coordinates are then defined

to be as shown in Figure 2.18.

3D control thrust vectors can then be mapped to the two-dimensional gimbal coordinate

frame with:
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Figure 2.18: Thrust Vector Decomposition [9]. This maps thrust into three variables: two
angles and a thrust magnitude.

~T = T

2

66664

sin(�) cos(⇠)

�sin(�)sin(⇠)

cos(�)

3

77775
(2.40)

The produced moment acting on the body due to the thrust vectoring system can then

be represented with:

~⌧TV C = T l

2

66664

sin(�) sin(⇠)

sin(�)cos(⇠)

0

3

77775
(2.41)

where l is the distance between the center of mass and the center of thrust (gimbal

rotation point). Notice how the system cannot provide a torque longitudinally along the

rocket with only one gimbaling system.

Since my axes in Figure 2.13 are defined differently than what Figure 2.18 has, the
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equations changes to be:

~T = T

2

66664

�sin(�)sin(⇠)

cos(�)

sin(�) cos(⇠)

3

77775
(2.42)

and ... (2.43)

~⌧TV C = T l

2

66664

sin(�)cos(⇠)

0

sin(�) sin(⇠)

3

77775
(2.44)

As an example with control using TVC and grid fins, below would be the respective

control torques in the systems dynamics:

!̇ = J�1[⌧eternal + ⌧control � ! ⇥ (J⇥ !)] (2.45)

⌧control = [⌧TV C,x, ⌧TV C,x, ⌧fins] (2.46)

⌧external = ⌧drag + ⌧wind + ⌧slosh (2.47)

These equations are only relevant to one thrust vectoring engine with gimbaling and are

shown as an example of how one could map thrust and torque outputs to gimbal angles.

The equations adapt depending on the number of thrust vectoring engines and/or other

control mechanics in place such as grid fins or reaction control thrusters. Therefore, as the

purpose of this thesis is to 1) understand how space vehicles VTOL and 2) develop a sliding

mode controls algorithm for it. The actual mapping of control forces and control torques to

mechanical systems are beyond the scope of this thesis.



Chapter 3

MATH PRELIMINARY

Control of the 6 Degrees of Freedom of a vehicle strives to bring the rigid body’s orientation

and position into a desired orientation and position. Most types of control algorithms deal

with these two types of motion separately. However, in most application in space, airspace,

and robotics, rotation and translation motion are highly coupled. For example, making a

hovering drone change it’s position will require a change of angle (rotation) and a corre-

sponding impulse of thrust (translation). So being, the purpose of this paper is to study

all 6 DoFs simultaneously in order to develop a control algorithm that will affect the ro-

tation and translation simultaneously. This can be accomplished through representing the

states of the system using dual-quaternions and deriving a control algorithm that utilizes

this state-representation [37].

Before jumping straight into dual-quaternions, I will first analyse other methods of repre-

senting rotation and work a way up to using dual-quaternions in conjunction with rigid body

dynamics. This will be done by starting with rotation matrices, moving to quaternions, and

then with generalizing dual-quaternions. This thesis will also analyse sliding mode control

using this dual-quaternion representation in place of classical and AI control techniques as

analysed in Chapter 2.

41
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3.1 Rotation Matrices

Euler Angles have a long history, have been widely used in physics and graphics, and have a

variety of advantages and disadvantages. Their popularity comes with their ease-of-use and

intuitive nature. They generally can be easily comprehended and can be used without much

effort or difficulty that makes them a preferred choice. In addition, as rotation matrices

use Euler Angles directly, there is no drifting or need for normalization that comes up in

alternate methods [19]. Euler Angles are also regarded as friendlier and more minimalistic

than quaternions as they can fully represent a rotation with three parameters instead of four

(even though, spoiler alert, it will be shown that representing a rotation with four parameters

will be more efficient and robust).

Though rotation matrices/Euler Angle sets are simplistic in nature, they suffer from

many drawbacks. Since an Euler Angle set cannot commute, any given rotation in 3D space

can have twelve possible solutions or Euler Angle rotation sequences. Therefore, rotation

matrices aren’t robust as they can’t define a rotation with a unique solution. In order to

obtain Euler Angle information during a rotation, one needs to know which rotation sequence

they are using and stick with it. Finally, Euler Angles suffer from singularities that result in

gimbals lock that make them less efficient. These drawbacks have inspired an alternate way

of viewing rotations in 3D space through using quaternions.

3.1.1 Defining Euler Angles and Rotation Matrices

The most familiar way to represent a rotation in 3-dimensional space is to decompose the

rotation into three sequential rotations about three principle orthogonal axes: the x-axis

,y-axis, and the z-axis. These three angles compose of what are called Euler Angles. These

Euler Angles are used to represent rotations by inserting them into matrices, and using the

product of these three angle-matrices to produce an Euler Angle Set to represent the 3D

rotation as a whole. In general, however, Euler Angles do not commute in 3D space. For
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example, a rotation of an object 5� about the x-axis first, then 10� about the y-axis, then

finally 15� about the z-axis, would not give you the same final position if one were to switch

the order of rotation. The fact that this XYZ rotation doesn’t commute leads to twelve

possible Euler Angle Sets: XYZ, XYX, YZX, YZY, ZXY, ZXZ, XZY, XZX, YXZ, YXY,

ZYX, ZYZ to describe a single rotation. [19]

Mathematically, Euler Angles take the form of an angle  about the z-axis, an angle ✓

about the y-axis, and an angle � about the x-axis as seen in Figure 3.1.

Figure 3.1: Euler Angles Defined with Orthogonal Axes on a Rocket

We can work with Euler Angles when we convert them into matrices, and where the

product of these three angle-matrices are called rotation matrices or direction cosine matrices.

Rotation matrices then show that any rotation can be represented by a yaw rotation about

the z-axis  , pitch rotation about the y-axis ✓, and roll rotation about x-axis � (as an

example of one of the twelve Euler Angle Sets). This ZYX rotation takes the form of the

following equations, where the function s() and c(s) represent the sine and cosine function

respectively:
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R = Rz( ) ⇤Ry(✓) ⇤Rx(�) (3.1)

R =

2

66664

c( ) �s( ) 0

s( ) c( ) 0

0 0 1

3

77775

2

66664

c(✓) 0 s(✓)

0 1 0

�s(✓) 0 c(✓)

3

77775

2

66664

1 0 0

0 c(�) �s(�)

0 s(�) c(�)

3

77775
(3.2)

R =

2

66664

c( )c(✓) c( )s(✓)s(�)� s( )c(�) c( )s(✓)c(�) + s( )s(�)

c(✓)s( ) s( )s(✓)s(�) + c( )c(�) s( )s(✓)c(�)� c( )s(�)

�s(✓) c(✓)s(�) c(✓)c(�)

3

77775
(3.3)

To classify a rotation and translation, the relative orientation and position are compared

from an fixed inertial frame A to a body frame B attached to the rigid body. If the inertial

frame A is defined by the orthogonal unit vectors ~a = {~a1,~a2,~a3} and the body frame B is

defined by the unit vectors ~b = {~b1,~b2,~b3}, then B can be expressed in terms of frame A by:

~b = R ⇤ ~a (3.4)

Where R 2 R
3⇥3 is the direction cosine matrix. This then allows points to be rotated in

a 3D rotational space or SO(3) space.

Figure 3.2: Fixed Reference Frame A and Rotated Frame B [37].
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3.1.2 Rotation Matrix Kinematics

Using this idea of rotation can be coupled with translation into rotation matrix kinematics.

A point q 2 R
3 can be expressed by both in an inertial frame qa as well as in the body frame

qb. If the body frame has been both translated and rotated from the inertial frame, point qa

can be expressed in terms of the body frame using equation 3.4 with:

qa = ~pab +RA/Bqb (3.5)

Where RA/B is the direction cosine matrix that represents a rotation from reference point

A to reference point B, and ~pab 2 R
3 is a position vector. This process is shown for reference

in Figure 3.3.

Figure 3.3: Fixed Reference Frame A and Rotated Frame B with Translation [37].

Rotations are updated through updating their corresponding Euler Angles. These up-

dates take the form of the following equation, where R is the rotation matrix and ~! is the

angular velocity [37]:
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2
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�̇

✓̇

 ̇

3

77775
=

1

cos ✓
⇤R ⇤ ~! (3.6)

3.1.3 Gimbals Lock

Note that in equation 3.6, when the pitch = ±⇡
2 , the denominator will be undefined. At

this location of 90 degrees pitch, the yaw and roll axes align and the system looses a degree

of freedom. This means the system’s orientation can be described by an infinite number of

yaw and roll angles and there is no longer a unique solution. This problem is called gimbals

lock. A gimbal, as described in the Chapter 2, is a physical structure comprised of three

concentric rings with pivots that connect adjacent hoops, allowing the hoops to rotate within

each other [19]. In the aerospace community, such a gimbal can take the form of a gyroscope.

However the idea of a gimbal can be generalized to describe any rotation of roll, pitch, and

yaw. Figure 3.4 describes these three axes of rotation. One can see that the yaw and roll

rings align (red and green rings respectively), the system looses a degree of freedom.

Figure 3.4: Gimbal with Points of Rotation Indicated[19]. At the location of gimbal lock, the
yaw and roll rings align (red and green rings respectively), and the system looses a degree
of freedom.
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When objects rotate near gimbal lock, the interpolation of Euler Angles becomes jittery

and noisy and will become random and unstable at it converges to the singularity. Physically,

this numerical issue causes the gimbal to wiggle uncontrollably around the singularity. Using

Quaternions neatly avoids this whole problem. Especially in the aerospace community,

quaternions are the go-to representation of orientation for satellites, rockets, and airplanes.

As such, when Euler Angle are needed, the rotation operations are normally done using

quaternions and then converted to Euler Angles. [19]

3.2 Quaternions

Quaternions can be used in place of rotational matrices to represent rotation. Quaternion

kinematics are widely used in robotics and game design, and as of recent are the leading way

to represent rotations in aerospace applications. They are also starting to gain popularity in

space applications. Quaternions work by finding a quaternion from trigonometry before the

rotation occurs. This means that rotations can be accomplished with just multiplication,

division, addition, and subtraction of quaternions rather than a series of trigonometric cal-

culations during the rotation making the program operate with great speed and efficiency

[38]. Quaternions are also favored in controls due to their ability to define a quaternion

error than makes for simplistic design on control algorithms [37]. Quaternions also avoid a

problem in Euler Angles called Gimbals Lock which will also be looked at in this section.

3.2.1 Defining Rotation Quaternions

Quaternions combine real R and imaginary components C into a set H and are described by

four numbers, a "real" component and three mutually orthogonal "imaginary" components:
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q = q0 + q1î+ q2ĵ + q3k̂ (3.7)

q = [q0, q1, q2, q3] (3.8)

q = [q0,~q] Re{q} = q0 ~Im{q} = ~q (3.9)

A rotation quaternion is best understood when compared to the axis-angle representation

of 3D rotations as the functionality is very similar (reference Figure 3.5). Euler’s rotation

theorem states than any rotation can be specified using two parameters: a unit vector

defining a rotation axis and an angle ✓ describing the magnitude of the rotation about that

axis. [38]

Figure 3.5: Angle Axis Representation of a Rotation [38]. Any rotation can be described by
an axis of rotation and rotation angle

Therefore, the four number that represent an angle-axis rotation, (✓, x̂, ŷ, ẑ) are directly

comparable to the four number that represent a quaternion rotation. Where:
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q0 = cos(
✓

2
) (3.10)

q1 = x̂ sin(
✓

2
) (3.11)

q2 = ŷ sin(
✓

2
) (3.12)

q3 = ẑ sin(
✓

2
) (3.13)

Or more generally and succinctly it can be written as the following, where ~l is a unit

quaternion corresponding to the rigid body orientation [39]:

q = cos(
✓

2
) +~l sin(

✓

2
) = e

~̀✓
2 (3.14)

~̀ = (lxx̂+ lxŷ + lxẑ) (3.15)

~̀ =
q
|q| (3.16)

Properties of quaternion mathematics, as gathered from [38], [37], [40] include:

1. complex number rules: i2 = j2 = ijk = �1 and

ij = k ji = �k

jk = i kj = �i

ki = j ik = �j

2. scalar multiplication: sq = [sqo, s~q]

3. quaternion multiplication: q�p= [p0q0 � ~p · ~q, q0~p + p0~q + ~q⇥ ~p]

4. conjugation: q⇤ = [q0,�~q]

5. normalization: |q| =
p

qq⇤ =
p
q20 + q21 + q22 + q23 = 1 for rotation quaternions

6. inversion: q�1 = q⇤

|q|2 reverses axis of rotation which modifies the rotation opposite the

original direction. Notice it is the same as congugation for rotation quaternions
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7. associative property: (ab)c = a(bc)

8. logarithm: log q = [0, ~̀ ✓
2 ] = [0, (lxî + ly ĵ + lzk̂) ⇤ arccos q0] . Notice the logarithm

transforms a quaternion with four components into an array with no real component.

To use a quaternion to rotate a vector ~x to ~x0, the following equation can be used. Where

x is a real vector but placed in the imaginary part of the quaternion x. Note that since this

is purly a rotation, q will have a norm of 1.

x
0
= q�1xq x = [0, ~x] q = [q0,~q] (3.17)

3.2.2 Euler Angles Conversions and Gimbal Lock

Initial Euler Angles are quite intuitive to define on a physical structure whereas quaternions

are not. Given an initial orientation defined by roll �, pitch ✓, and yaw  , a rotation

quaternion can be defined by (where s() is the sine function and c() is the cosine function)

as:

q0 = c(�/2)c(✓/2)c( /2) + s(�/2)s(✓/2)s( /2) (3.18)

q1 = s(�/2)c(✓/2)c( /2)� c(�/2)s(✓/2)s( /2) (3.19)

q2 = c(�/2)s(✓/2)c( /2) + s(�/2)c(✓/2)s( /2) (3.20)

q3 = c(�/2)c(✓/2)s( /2)� s(�/2)s(✓/2)c( /2) (3.21)

Euler angles can also be defined from quaternions by:

roll = � = arctan (
2(q0q1 + q2q3)

q20 � q21 � q22 + q23
) (3.22)

pitch = ✓ = arcsin (2(q0q2 � q1q3)) (3.23)

yaw =  = arctan (
2(q0q3 + q1q2)

q20 + q21 � q22 � q23
) (3.24)
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These last three equations are also useful to display a common problem with rotating

with Euler Angles. In locations where the pitch = ±⇡
2 , the argument in the arctan will

be zero and roll and pitch will be undefined [38]. This location of gimbals lock was also

described in the previous section 3.1.3.

The last useful conversion we can do is from quaternions to a rotation matrix using:

R =

2

66664

q20 + q21 � q22 � q23 2(q1q2 � q3q0) 2(q1q3 + q2q0)

2(q1q2 + q3q0) q20 � q21 + q22 � q23 2(q2q3 � q1q0)

2(q1q3 � q2q0) 2(q2q3 + q1q0) q20 � q21 � q22 + q23

3

77775
(3.25)

3.2.3 Quaternion Kinematics

During a rotation, the change in the rotation quaternion can be described with no singular-

ities, given by:

q̇ =
1

2
q � ! (3.26)

Where q is the unit rotation quaternion given by equation 3.14, and ! is a quaternion

that has the angular velocity of the system as the imaginary part of the quaternion:

! = [0, ~!] (3.27)

~w = wxî+ wy ĵ + wzk̂ (3.28)

3.3 Dual-Quaternions

Dual-quaternions are able to combine the six degrees of freedom – both rotational and

translational information – into a single state instead of defining separate vectors that both
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quaternions and rotational matrices would need to do. While matrices are a classical way

to represent rigid body dynamics, dual-quaternions are much less computationally heavy,

singularity-free, and compact and have been shown to be the most efficient way to represent

rotation and translation. This is especially seen in time critical systems. [19]

3.3.1 Defining Dual-Quaternions

Clifford introduced dual-numbers to extend the set of real numbers R. Similar to how

complex numbers consist of a real part and a complex/imaginary part, dual numbers have a

real part and what is called a dual part. Similar to how complex numbers have the property

of i2 = j2 = k2 = �1 and take the form of: z = x+ îy, one can extend the set of real numbers

by including a dual factor ✏ such that ✏2 = 0, but where ✏ 6= 0. These "dual numbers" are

scalars in the set of DR that take the form of ẑ = x + ✏y0. Following this principle, we can

combine dual factors with real numbers and complex numbers in multiple dimensions that

create dual-vectors in DR
n and DC

n respectively, thus obtaining dual quaternions in DH
n.

Dual quaternions are then defined by q̂ = q+ ✏q0 where q and q0 are quaternions in H: [41]

q̂ = q̂0 + q̂1î+ q̂2ĵ + q̂3k̂ + ✏(q̂4 + q̂5î+ q̂6ĵ + q̂7k̂) (3.29)

q̂ = q + ✏q0 q̂ = [q̂0, ~̂q] (3.30)

A 6-DOF transformation consisting of a rotation q followed by a translation r in R
3 can

be represented by a dual quaternion q̂ by setting:

q0 =
1

2
q � r (3.31)

q0 =
1

2
q � [0,~r] (3.32)

~r = xî+ yĵ + zk̂ (3.33)
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Therefore, a dual-quaternion can represent pure rotation by setting the dual part equal to

zero and a dual-quaternion can represent a pure translation by using the unitary quaternion

of q = [1, 0, 0, 0]. Incorporating dual numbers into this smorgasbord of quaternion math will

have the following mathematical properties [37], [39]:

1. dual factor: ✏ 6= 0 and ✏2 = 0

2. multiplication:q̂ � p̂ = q � p + ✏(p � q0 + q � p0)

3. conjugation: q̂⇤ = [q̂0,�~̂q]

4. logarithm: log q̂ = log (q(1 + 1
2✏r)) = log q + log (1 + 1

2✏r)

given log (1 + x) ⇡ x for small x, then

log q̂ = log q + 1
2✏r, where the dual quaternion 0̂ 2 DH is defined as Ô = (1, 0, 0, 0 +

✏(0, 0, 0, 0) and the log(±0̂) are dull null vectors.

5. normalization: q � q0 = 0

To use a dual-quaternion to rotate and translate a point x to x0, the following equation

can be used similar to quaternions. Where x̂ is a point represented in a dual-quaternion

form, and q̂ represents dual-quaternion transformation.

x̂0 = q̂�1 � x̂ � q̂ x̂ = [x0, ~̂x] q̂ = [q0, ~̂q] (3.34)

To extract the rotational roll,pitch, yaw information (first four terms in the dual quater-

nion), the normal quaternion information can be extracted with equations 3.22, 3.23, and

3.24.

To extract the translational x,y,z information (last four terms in the dual quaternion)

the following can be used. Since:

q0 =
1

2
✏qr
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then:

1

2
✏r = q�1q0

r = 2q�1q0

Likewise, the logarithm law for dual-quaternions can also be expressed as:

log q̂ = log q + q�1q (3.35)

3.3.2 Dual-Quaternion Kinematics

Dual-Quaternion kinematics (translation + rotation) can be described using [37]:

˙̂q =
1

2
q̂ � !̂ (3.36)

!̂ = [0̂, ~̂!] (3.37)

where ~̂! is a dual vector (only real and dual components) in HR
3 called a twist, defined

as:

~̂! = ~! + ✏~v (3.38)

~̂! = ~! + ✏(~̇r + ~! ⇥ ~r) (3.39)

where ~! 2 R
3 is the angular velocity of the system and ~v is the translation velocity in

the body frame. ~v is then defined by ~r and ~̇r that are position and position time derivatives

in the body frame.
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3.3.3 Dual-Quaternion Rigid Body Model

Rigid Body Dynamics can be defined using dual quaternions by combining the Rigid Body

Dynamics equations of 2.34 (change in velocity) and 2.6 (change in angular velocity) into

a single equation [41]. This is done by defining a dual inertia matrix M̂ using the systems

inertia J 2 R
3⇥3 and the real identity matrix I 2 R

3⇥3:

M̂ = m
d

d✏
I+ ✏J (3.40)

M̂ =

2

66664

m d
d✏ + ✏Jxx ✏Jxy ✏Jxx

✏Jxy m d
d✏ + ✏Jyy ✏Jyz

✏Jxz ✏Jyz m d
d✏ + ✏Jzz

3

77775
(3.41)

M̂�1 = J�1 d

d✏
+ ✏

1

m
I (3.42)

where m is the mass of the system, and the operations of ✏ and d
d✏ are defined by:

✏v̂ = ✏(v + ✏v0) = ✏v (3.43)
d

d✏
v̂ =

d

d✏
(v + ✏v0) = v0 (3.44)

The rigid body dynamics can then be defined as:

˙̂
~! = �M̂�1(~̂! ⇥ M̂~̂!) + M̂�1f̂ (3.45)

Where f̂ = ~f + ✏~⌧ 2 DR
3 is a dual vector called the force motor, ~f 2 R

3 being a real

force vector in the body frame, and ~⌧ 2 R
3 being a real torque vectors in the body frame.

The complete dynamics of the rigid body can then be described with the two equations,
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3.36 and 3.45:

˙̂q =
1

2
q̂ � [0, ~̂!]

˙̂
~! = �M̂�1(~̂! ⇥ M̂~̂!) + M̂�1f̂

For purposes of this thesis however, instead of using this combined dynamics equation ˙̂
~!,

I will use two dynamics equations similar to 2.34 and 2.6 – one for force, one for torque. This

will in turn produce two sliding surfaces that will be talked about in the following sections

and in Chapter 4.

3.4 Sliding Mode Control

This report will combine a dual-quaternion dynamic representation with sliding mode control.

Sliding mode control (SMC) is one of the most powerful methods of modern control that

is known for its accuracy, robustness, and easy tuning and implementation. [42], [43], [44].

Systems operating under SMC are designed such that it’s state variables (x where x 2 Rn)

are driven onto a surface – named the sliding surface – in the state space. Classically, this

is represented by saying we want to design an appropriate one-component sliding manifold

described by:

�i(t, x) = 0 (3.46)

with the design goal to make the system reach the intersection noted as the following,

with � = col(�1, ..., �m):

{�(t, x) = 0} =
m\

i=1

{�i(t, x)} = 0 (3.47)
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Figure 3.6: Variable Structure System (VSS) [45]: A system defined by the number of states
changing

Once in the neighbourhood of the sliding surface, the closed loop response becomes

insensitive to uncertainties, disturbances, and non-linearities. This powerful property of

SMC, as well as the systems dynamics being able to be tailed by simply choosing a sliding

function, makes SMC an incredible control technique. To implement this control technique

requires two parts: 1) design of a sliding surface in accordance with design specifications and

2) choosing a control law that will attract the system states to the surface. But first, lets

talk about where it came from and how sliding surfaces even work.

3.4.1 Overview

Sliding Mode Control (SMC) is a subset of Variable Structure Control (VSC) which is a

subset of Variable Structure Systems (VSS). The meaning of variable structure is that the

number of system states change as seen in Figure 3.6. For example, a car’s motion can be

fully described by two degrees of freedom – latitude and longitude. Now if this car was taken

into the land of Harry Potter and was given the ability to fly by Mr Weasley, then the car’s

motion can be fully described by 6 degrees of freedom – latitude, longitude, altitude, and

yaw, pitch, and roll. Thus, the system changed from having two system states to having six:

a variable structure system.

Control of a VSS is obtained by using a switch that has switching logic dependant on the

state of the system as seen in Figure 3.7 as well as in equation 3.49. This switch switches the

control structure used by the system. This is represented by creating a dynamical equation
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Figure 3.7: A Variable Structure System Displaying its Switching Logic [45]. This switching
logic is dependant on the state of the system. This switching logic switches in between two
control structure u+ and u�

and control such that:

ẋ = f(x) + B(x)u , x 2 R
n , u 2 R

m, n > m (3.48)

u =

8
>><

>>:

u+(x) if �(x) > 0

u�(x) if �(x) < 0

(3.49)

Sliding Mode Control is then attained through two modes and can be seen in Figure 3.8:

• Reaching Mode: The trajectory is steered onto the switching line by a switching control

in finite time u) x! �

• Sliding Mode: The trajectory tends to the origin asymptotically � ! 0) x! 0

In doing so, the system is robust as it is insensitive to parameter uncertainties and external

disturbances and during sliding mode there is order reduction as the trajectory dynamics

has a lower order than the original system.
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Figure 3.8: Illustration of Sliding Modes reaching mode and sliding mode [45]. It displays a
control that tends to the origin based on the sign on � of a multi-state system.

Example

Suppose a systems dynamics is described by the following equation where f is disturbances

as the system moves under the applied u:

ẍ = f(t, x, ẋ) + u (3.50)

The systems dynamics is then defined with a switching surface, creating an homogeneous

differential equation, where:

�(t) = ẋ1(t) + �x1(t) = 0,� > 0 (3.51)

such that x1(t) = x1(0)e
��t , ẋ1(t) = ��x1(0)e

��t (3.52)

Thus when � = 0, the states x, ẋ converge to the sliding surface asymptotically as t!1.
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Figure 3.9: Illustration of SMC’s Reaching Mode [45]. One can see a control that tends to
the origin based on the sign on � displaying reaching mode in SMC [45]

Now the goal is to just create a control that will make � ! 0 in finite time. In other words,

we need a control that switches direction in order to tend towards the sliding surface as in

Figure 3.9.

Creation of a Control

To create a control that switches direction in order to tend towards the sliding surface, we

will choose a u such that � ! 0. Notice that the creation of u is completely independent of

disturbances f . This means once on the sliding surface, we will remain on the sliding surface

independent of f . The control is formulated as:

u = �Usgn(�) such that (3.53)

u =

8
>><

>>:

�U � > 0

U � < 0

(3.54)

This negative feedback with positive constant U will create a zig-zag motion near the

sliding surface (along the t-axis) called chattering, as the system is undefined at exactly

� = 0 in equation 3.54. Smoothing this chattering can be done by replacing the discontinuous

"sign" term with continuous smooth approximations. There are two main examples of such
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smoothing approximations that can be used [46]:

SAT u = �Usat(�; ✏) = �U �
|�|+✏ ✏ > 0 ✏ ⇡ 0

TANH u = �U tanh(�✏ ) ✏ > 0 ✏ ⇡ 0

Figure 3.10: Evolution of � ! 0 Starting from Different Initial Conditions [46]

3.4.2 SMC for Error States

Now lets implement this idea, but instead of wanting to drive our system states to zero, we

want to drive our error states to zero in order to have a controlled system.

A nonlinear single-input-single-output (SISO) system can be modeled as a state space

representation, where y is the scalar output and u is the input variable, as the following:

ẋ = f(x, t) + g(x, t)u (3.55)

y = h(x, t) (3.56)
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Controlling the system aims to then make the output variable, y, track a desired path

dictated by ydes. This is quantified by minimizing the error between the two e = y � ydes.

In other words we want e! 0 in a "reasonable" amount of time. Thus, for our controls, we

want to drive not the system states to zero, but the error to zero.

This is done by choosing a sliding surface dictated by �(x) in the below equation 3.57,

which is dependant on the tracking error and it’s derivatives. The amount of derivatives

used (k) is the number of times needed to differentiate the error e in order for a control to

appear. Setting this � = 0 creates the sliding surface.

�(t) = e(t)k + Ck�1e(t)
k�1 + ...+ C1ė(t) + Coe(t) = 0 (3.57)

The characteristic equation of equation 3.57 displays the possible unequal roots.

� = �k + Ck�1�
k�1 + ...+ C1�+ Co = 0 (3.58)

such that Re{�} < 0 assures e! 0 (3.59)

Steering �(x)! 0 will then exponentially decrease the error e and the error derivatives,

fulfilling the control goal. For example, at k = 1, � = C1� + Co = 0 At this control goal of

�(x) = 0, the sliding surface becomes a straight line with slope C1 that is the sliding surface

in the error space.

The control input appears after the derivative of �, where f appears due to external

disturbances:

�̇ = ek+1 ++ek + ...+ ė (3.60)

�̇ = Bu+ f (3.61)
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The control is the same as modeled in equations 3.53 and 3.54. As an example, I will use

a first order control example (k = 0). In the first order, or "zeroth derivative", the sliding

surface dictated by �(t) = e(t) = 0 – meaning the sliding surface is a horizontal line on the

t-axis. With the control dictated in the equation 3.53, the convergence to the sliding surface

in the error space will look like Figure 3.10.

3.4.3 Quaternion Kinematic Sliding Mode

A quaternions based sliding mode will align a system’s orientation with a desired orientation

represented by the quaternion qd. The sliding surface is dictated below, as well as the control

that assures the system converges to the sliding manifold at � = 0:

� = ! + � log(q) = 0 (3.62)

u = �Usat(�; ✏) (3.63)

u = �U �

|�|+ ✏
(3.64)

The quaternion error q that represents how far the systems states are away from the

desired orientation is defined as:

q = q�1
d � q (3.65)

If the system isn’t operating under Rigid Body Dynamics (and hence, RBD equations),

the system isn’t able to utilize torque as it’s control. Therefore, the control u remains

unused. This means there is no longer a function to move the system onto the sliding

surface. Therefore, we will make the systems angular velocity ~! the control of the system,

and force the system to follow the sliding manifold at � = 0. This leads to the infamous
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quaternion logarithmic feedback of:

� = ! + � log(q) = 0 (3.66)

! = �� log(q) (3.67)

3.4.4 Dual-Quaternion Rigid Body Sliding Mode

Sliding Surface

More developed work [41] has been added to this classical definition of a sliding surface that

designs an equilibrium set given by the sliding surface equation 3.57 with a more complex

structure than just the intersection of many single component manifold. This is done by

utilising multi-component sliding surfaces based on the dual quaternions norms sliding mode

control algorithm. This robust control will allow for challenging classes of uncertain systems

such as those with unknown (meaning positive or negative control) control direction while

achieving finite-time convergence. This type of robust control also wont require monitoring

functions, function approximations as described in the last section or online adaptive laws

that make it very computationally efficient. Once the dynamics of the system is expressed in

dual-quaternions, a robust sliding mode controller will get rid of solve problems of having an

unknown control direction and achieve a finite-time convergence to a sliding surface. This is

done rigorously by generalizing the single rigid body kinematics and dynamics [41]:

˙̂q =
1

2
q̂ � [0̂, ~̂!]

˙̂
~! = �M̂�1(~̂! ⇥ M̂~̂!) + M̂�1f̂

to include multiple bodies, where the integer i represents a single rigid body and n
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represents the total about of rigid bodies. Two functions are also introduced, where ĝi

represents the internal forces/torques and ĥi represents the direction of the control force

f̂ i = ûi :

becomes:

˙̂qi =
1

2
q̂i � [0̂, ~̂!i] (3.68)

˙̂qi = f(q̂1, q̂2, ...,qn, ~̂!1, ~̂!2, ..., ~̂!n, t) (3.69)

˙̂
~!i = �M̂�1ĝi(q̂1, q̂2, ...,qn, ~̂!1, ~̂!2, ..., ~̂!n, t) + M̂�1ĥi(q̂1, q̂2, ...,qn, ~̂!1, ~̂!2, ..., ~̂!n, t) (3.70)

In order to write this more compactly, a generalized position dual quaternion vector is in-

troduced Q̂ = [q̂1, q̂2, ..., q̂n] 2 DH
n and generalized dual velocities vector ⌦̂ = [~̂!1, ~̂!2, ..., ~̂!n]T 2

DR
n

˙̂Q =
1

2
Q̂ � [0̂, ⌦̂] (3.71)

˙̂⌦ = �M̂�1ĝ(Q̂, ⌦̂, t) + M̂�1ĥ(Q̂, ⌦̂, t)û (3.72)

Much like the quaternion logarithmic control based on considering the angular velocity

of the system ~! as control in equation 3.67, the logarithmic feedback law can be established

for dual-quaternions and generalized to multiple bodies with !̂i = �2k log(�q̂), k > 0.

Rewriting with the generalized ⌦̂:

⌦̂ = �2k log(�Q̂) (3.73)

Equilibrium positions defined by the system lack of movement after a finite time ⌦̂! 0

can be obtained when the log(�Q̂) = 0. This occurs at identical equilibrium positions of Ô
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and �Ô. The parameter � is used to have the controller take the shorter path for these two

equilibrium positions through:

� =

8
>><

>>:

1 if q̂(t = 0) ⇤ Ô � 0

�1 otherwise
(3.74)

The sliding surface can then be defined using the dual vector �̂ 2 DR
n using equation

3.73 as:

�̂ = ⌦̂+ 2k log(�Q̂) = 0 (3.75)

Sliding Control

The dual-quaternion sliding surface in equation 3.75 can be combined with a control to

control the rigid body dynamics of a system to a desired state. A control can be formed

such that [41]:

u = �Usat(�̂; ✏) (3.76)

u = �U �̂

|�̂|+ ✏
(3.77)

Takes the form of the dual-vector incorporating a real control force ~f 2 R
3 and a real

control torque ~⌧ 2 R
3:
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f̂ = ~f + ✏~⌧ (3.78)

f̂ = �Usat(�̂; ✏) (3.79)

The dual-quaternion rigid body dynamics of the system is then defined using equation

3.45 as:

˙̂
~! = �M̂�1(~̂! ⇥ M̂~̂!) + M̂�1f̂external + M̂�1f̂ (3.80)

Instead of using the Dual-Quaternion Rigid Body Model and the Dual-Quaternion Rigid

Body Sliding Mode, for this thesis, I will separate the rotational and transitional components

of the dual-quaternion creating two sliding surfaces as will be explained further in Chapter

4.



Chapter 4

PROBLEM STATEMENT MODELING

In this particular problem, the desired position rdes will be with respect to an inertial ground

frame. The error between the current dual-quaternion state q̂ and q̂des will be in the body

frame however. Likewise, the control force ~F and control torque ~⌧ produced by sliding mode

control will be with respect to the body frame. This will ensure proper mapping of the

thrust and torques to the gimbal angle of the rocket. In order to define the variables in this

problem, Figure 4.1 outlines the coordinate systems used.

The translation and rotation error of the system will be analysed using the dual-quaternion

error q̂, but will use two difference sliding surfaces in-place of a single dual-quaternion slid-

ing surface. Likewise, the rigid body dynamics of the system will have two different RBD

equations for translation and rotation in place of the combined notation. This was done to

demonstrate the simplicity of controlling both force and torque using a single state space

variable q̂.

4.1 Control Goal

• Translational

~R: position of the Body Frame with respect to the Virtual Frame (position error)

68



4.1. CONTROL GOAL 69

Figure 4.1: VTOL Problem Defined Coordinate Frames with the inertial, virtual/desired
frame, and body/rocket frame

~e = ~r � ~rdes , ~e = ~rdes + ~R (4.1)

Control Goal 1: ~e! 0 as t!1

• Rotational

q: orientation of the Body System with respect to the Inertial System

qv: orientation of the Virtual System with respect to the Inertial System

q = q � q⇤
v (4.2)
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Control Goal 2: q! [1, 0, 0, 0] as t!1

4.2 Kinematics

We want control in the B - frame, where the dual-quaternion for position and rotation of

the B-system is:

q̂ = q + ✏
1

2
q~r , where ~r = [0,~r] (4.3)

˙̂q =
1

2
q̂!̂ , where !̂ = ~! + ✏~v in the body frame (4.4)

Information about the trajectory is given in the virtual frame:

q̂v = qv + ✏
1

2
qv~rv (4.5)

˙̂qv =
1

2
q̂v!̂v , where !̂v = ~!v + ✏~vv in the virtual frame (4.6)

Error is given in the body frame:

Since, q̂v = q̂q̂des (4.7)

q̂des = q̂⇤q̂v (4.8)

Substituting the definitions from equation 4.3, equation 4.5, and equation 4.2 into equa-

tion 4.8 we get:
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q̂des = (1� ✏1
2
~r)q⇤qv(1 + ✏

1

2
~rdes)

= (1� ✏1
2
~r)q(1 + ✏

1

2
~rdes)

= q + q✏
1

2
~rdes � ✏

1

2
~rq

= q + ✏
1

2
q(~rdes �~r)

= q + ✏
1

2
q(~rdes � q~rq⇤)

(4.9)

Since ~r is a position vector to the body frame in the inertial frame, we want to have error

relating position from the virtual frame to the body frame.

~r in Inertial Frame ~r

~r in Body Frame q~rq⇤

~r in Virtual Frame q⇤
vq~rq⇤qv

4.3 Dynamics

The Rigid Body Dynamics of a system, as shown in Chapter 2, is given by:

Old Rigid Body Equations

v̇ =
~F

m
� ~g

~̇! = J�1(~⌧ � ~! ⇥ J~!)

However we need to make noticeable changes to these equations to account for the control

force and gravity to be in the body frame instead of the inertial frame. Likewise, as ~! here

is the angular velocity of the body frame with respect to the inertial frame, we will need to

modify this to find the angular velocity of a system located within the body frame in terms

of the body frame. This is done given that the motion of a point in the body frame is:
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~vB = ~v + ~!B ⇥ ~rB (4.10)

~̇vB = ~̇v + ~̇!B ⇥ ~rB + ~! ⇥ ~vB, ,where, ~̇!B = 0 (4.11)

~̇vB = ~̇v + ~! ⇥ ~vB (4.12)

Where the force acting on the body is given by thrust and gravity in the inertial frame,

and putting gravity and thrust from the inertial frame to the body frame:

m~̇v = ~F �M~g (4.13)

m~̇v = q~Fq⇤ �mq~gq⇤ (4.14)

~̇v =
q~Fq⇤

m
� q~gq⇤ (4.15)

Substituting equation 4.15 into equation 4.12 we get:

~̇vB = ~! ⇥ ~vB +
q~Fq⇤

m
� q~gq⇤ (4.16)

Comparatively, putting torque ~⌧ into the body frame we get:

J~̇!B = �~!B ⇥ J~!B + q~⌧Bq⇤ (4.17)

Therefore, the full translational and rotational dynamics of the system in the body frame

are given by:
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New Rigid Body Equations

~̇vB = ~! ⇥ ~vB +
q~Fq⇤

m
� q~gq⇤

J~̇!B = �~!B ⇥ J~!B + q~⌧Bq⇤

4.4 Control

The translational and rotational control goal is met by:

�1 = ~! + �1 log(q) (4.18)

�2 = ~v + �2 log(q0) (4.19)

Where q̂ = q̂⇤
desq̂ is the quaternion part of the dual-quaternion error and q̂ = q̂⇤

desq̂ is

the dual-part of the dual-quaternion error.

This assures convergence onto the sliding surface � = 0 given the control torques and

control force through:

~⌧ = �M1sat(✏; �1) (4.20)

~F = �M2sat(✏; �2) (4.21)



Chapter 5

SIMULATIONS

5.1 Quaternion Simulations

Constant Desired Orientation

A simulation was created for a system’s orientation represented as a quaternion, to be con-

trolled to a constant desired orientation. The system has an initial orientation of 0.1 rad

roll, 0.2 rad yaw, and 0.5 rad pitch. Put through equation 3.18 outputs an initial quater-

nion qi = [0.9641, 0.0235, 0.2501, 0.0843]. The goal then is to align the system to a de-

sired quaternion of 1 rad roll, and 0 rad in pitch and yaw. Through 3.18, this becomes

qd = [.8776, 0.4794, 0, 0]. � was set to 2. This simulation was done to demonstrate the ca-

pability of quaternions and the quaternion logarithmic feedback. The system is represented

as a point, and this do not operate under the rigid body dynamic equations. This means

the angular velocity of the system acts as a control in place of a control torque. The full

kinematics used in these simulations are:
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q̇ =
1

2
q! ,where

! = [0, ~!] = [0,�� log(q)]

In summary:

Conditions

• Massless system ! control is attained through angular velocity !

• Initial Orientation: roll = 0.1rad, pitch = 0.2rad, yaw = 0.2rad

• Desired Orientation: roll = 1rad, pitch = 0rad, yaw = 0rad

Displayed below are plots of the Euler Angles (displaying from the initial to the desired

steady state), rotation represented in quaternion form, and quaternion error in Figures 5.1,

5.2, and 5.3 respectively. Notice that in the quaternion error, the imaginary components go

to zero but the real part error steady states at 1 due to the cos ✓
2 term in the Euler Angle to

quaternion conversion.

Variable Desired Orientation

The next simulation is to show a controlled rotation to a variable, time dependant, desired

orientation. In this, the initial orientation is the same as the last simulation. However, it is

now being controlled to the time-dependant desired orientation given as [roll,pitch,yaw] to

be [0.3 sin 0.4t, 0.3 sin 0.2t+ 1, 1]rad where t is time. � was set to 4 for a quicker response

time. The purpose of this simulation is to start to work our way up to what happens in

rocketry.
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Figure 5.1: Euler Angles Using Quaternion Logarithmic Feedback for a Desired Orientation.
This plot displays the initial orientation of roll = 0.1rad, pitch = 0.2rad, yaw = 0.2rad
converging to the desired orientation of roll = 1rad, pitch = 0rad, yaw = 0rad

Figure 5.2: Quaternion Components Using Logarithmic Feedback for a Desired Orientation.
This plot displays the actual orientation of the system in terms of its quaternion components
rather than Euler Angles for demonstration purposes.



5.1. QUATERNION SIMULATIONS 77

Figure 5.3: Quaternion Error Using Logarithmic Feedback for a Desired Orientation. This
plot displays the quaternion error q throughout the reorientation of the system. Notice in
this, q0 ! 1 as the rest of the components ! 0

In real life, desired orientation and position information will be given to the system as

each time-step. This variable desired orientation is supplied through optimization of path

length and optimization of fuel as found in on-board algorithms such as G-FOLD. Below are

figures demonstrating quaternions and its corresponding logarithmic feedback to be able to

control a system to a variable desired orientation. This simulation again using kinematics

not rigid body dynamics and thus the system is controlled with the angular velocity and not

a control torque. Such figures include Actual and Desired Euler Angles in Figure 5.4, shown

in quaternion components in Figure 5.5, and error in both Euler Angles and quaternions in

Figures 5.6 and 5.7 respectively.

In summary:

Conditions

• Massless system ! control is attained through angular velocity !
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Figure 5.4: Euler Angles for a Variable Desired Orientation. This was done in order to
demonstrate the robustness of this control mechanism for a variable desired frame. Within
the first two seconds the yaw angle goes from 0.2rad to 1rad which is almost a 57� change in
two seconds. This fast response time is attributed to a high gain (� = 4) that also quickly
minimises the error between each degree of freedom. In real life, rockets can’t acquire such
a fast response time, and this will be seen as an increase in error between the actual and
desired states.

• Initial Orientation: roll = 0.1rad, pitch = 0.2rad, yaw = 0.2rad

• Desired Orientation: [roll,pitch,yaw] = [0.3 sin 0.4t, 0.3 sin 0.2t+ 1, 1]rad

5.2 Dual-Quaternion Simulations

Constant Desired Orientation Case 1

Case 1 will consist of simulations that control a massless (or kinematic) system from an

initial orientation and position to a desired constant orientation and position. The initial

orientation is described by the quaternion q = [0.1301, 0.0260,�0.9110, 0.3904] and initial

position vector ~r = [�1, 0.1, 2]. This is being controlled to a position of ~rdes = [0, 0, 0] and

desired orientation of qdes = [1, 0, 0, 0] as shown in Figure 5.8.
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Figure 5.5: Quaternion Components for a Variable Desired Orientation. Specifically, this
shows the quaternion components as the system undergoes changes in its orientation and is
included for demonstration

Figure 5.6: Euler Error for a Variable Desired Orientation. This plot shows the error between
the actual and variable desired states in term of the systems Euler Angles. It demonstrates
that robust control can be attained with minimal error
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Figure 5.7: Quaternion Error for a Variable Desired Orientation. This plot shows the error
between the actual and variable desired states in term of the systems quaternions (q). The
same effect as the constant desired orientation happens here, as q0 ! 1 as the rest of the
components ! 0, which is the response we are looking for

Similar to the quaternion case, control is dictated through a control ! as the system is

defined to be without mass – or rather a point that cannot have a control torque acting on

it. Since the system is being controlled to the unity quaternion, the error q in the logarithm

can be replaced with just q. Thus, the control is in the form of:

˙̂q =
1

2
q̂!̂ ,where

! = [0, !̂] = [0,�� log(q̂)]

In summary:

Conditions
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Figure 5.8: Dual-Quaternion Components for a Basic Desired State. Dual-Quaternion com-
ponents for controlling a point system to the unity quaternion is the same as a plot of
Dual-Quaternion Error. As this will replace q with just q, this is what a baseline dual-
quaternion error should look like.

• Massless system ! control is attained through angular velocity !

• Initial Orientation and Position: q = [0.1301, 0.0260,�0.9110, 0.3904] , ~r = [�1, 0.1, 2]

• Initial Dual-Quaternion:q̂ = q + 1
2q~r

Constant Desired Orientation Case 2

Case 2 will consist of simulations that control a system with mass from an initial orientation

and position to a desired orientation and position. Thus the dynamics of the system will

operate under Rigid Body Equations and the control of the system will be utilized as a

control force for translational motion, and control torque for rotational motion.



5.2. DUAL-QUATERNION SIMULATIONS 82

˙̂q =
1

2
q̂!̂ ,where

�1 = ~! + � log(q̂)]

�2 = ~v + � log(q̂0)]

~F = �M1sat(✏, �1)

~⌧ = �M2sat(✏, �2)

!̇ = J�1(�! ⇥ J! + ⌧)

v̇ =
~F

m
�

0 0 g

�

The system was initialized with a mass and symmetrical moment of inertia. The system

was controlled to the orientation of the unity quaternion, but was controlled to the desired

position of x = �1, y = �0.5, z = 0.5 or rdes = [0 � 1 � 0.50.5]. This was done in order to

utilize the dual-quaternion error function q. In summary:

Conditions

• Mass system ! control is attained through ⌧ ,F

• Initial Orientation and Position: q = [�1.50.2� 1.50.1] , ~r = [3� 3� 3]

• Initial Dual-Quaternion:q̂ = q + 1
2q~r
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Figure 5.9: Rotational Sliding Surface.Sliding Surface based on the � from the quater-
nion/rotational part of the dual-quaternion. This plot shows convergence to the sliding
surface. That of which is located at the line � = 0 from the first order error (k = 0) given
by q ( ref. Sliding Mode Control Section)

Figure 5.10: Translational Sliding Surface. Sliding Surface based on the � from the
dual/translation part of the dual-quaternion. Notice how the convergence isn’t totally on
the � = 0 line. This is due to a constant upward force (z-direction) in order to "hover" and
counter gravity.This is seen in figure 5.12
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Figure 5.11: Control Torque based on Dual-Quaternion Sliding Mode. Torques of the system
in order to orient the body frame into the desired virtual frame. Notice how they steady
state at 0Nm. This is due to the fact that the desired orientation was constant with respect
to time, and was able to appropriately align itself with the desired frame in the 4 second
time interval.

Figure 5.12: Control Force based on Dual-Quaternion Sliding Mode. Force in z–direction
is non-zero because it needs to fight gravity at each time-step. There are no other external
forces in the simulation. This is also why there is error in the sigma plot
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Figure 5.13: Dual-Quaternion Error for a Desired State. This plot of dual-quaternion error
(compare with the massless dual-quaternion in figure 5.8, shows the error converge to zero
for all degrees of freedom. The exception in the first qo term converges to 1 (also seen as
proof of convergence in quaternion plots

Figure 5.14: Dual-Quaternion Components for a Desired State. This is mostly done for
visualisation purposes. One can see the translation/dual part of the dual-quaternion steady
states after about 1.5seconds, however the rotational/quaternion part of the dual-quaternion
takes longer to align.



Chapter 6

RESULTS

This thesis sought to provide a robust, efficient, and easy-to-use controls algorithm to solve

the soft landing problem, and furthermore, the bigger vertical take off and landing problem.

Through representing rigid body motion through dual-quaternions, translation and rotation

can be represented in a single compact form that is free of singularities and provides the

shortest path interpolation compared to any other formulation. These rigid bodies are able

to follow a desired time-dependant orientation and position through one of the most powerful

method of modern control that is known for its accuracy, robustness, and easy tuning and

implementation – sliding mode control. Through using this sliding mode control, convergence

to the sliding surface is guaranteed for general gimbals angles and force/thrust control. In

order words, it doesn’t require exact gimbals angle and thrust magnitude in order to assure

stable control.

Such control was demonstrated first by using quaternions to bring a system to a de-

sired orientation. This was then generalized to following a time-dependant desired orien-

tation. Dual-quaternions kinematics were demonstrated by also following a constant and

time-dependant desired frame. Using rigid body dynamics, plots were attained that proved

convergence of the error states to the sliding manifolds of both rotation and translation.

In addition, control forces that controlled translational motion, and control torques that
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controlled rotational motion were found. These control outputs were shown to steady state

for a constant desired orientation and position again leading to convergence of the states.

Dual-quaternion and quaternion component plots were shown for demonstration of initial

states converging to desired final states. Euler Angles of roll, pitch, and yaw were also used

to prove convergence of initial rotation states for desired rotation states, as well as tracking

of desired Euler Angles. Dual-quaternion error was lastly shown to converge to our control

goal. All plots were obtained through MATLAB. Through these findings, dual quaternion

representation with a sliding mode controller is shown to be an efficient and robust method

for Vertical Take off and Landing.



Chapter 7

CONCLUSION

In addition to formulating a controls algorithm to follow desired state variables in a robust

way, this thesis overviewed components that factor into a space vehicles ability to VTOL.

First, a method of path planning. This path planning algorithm would find desired position

and orientation (state variable) information in order to optimize fuel spent and landing

accuracy. This would be an on-board program that runs in real-time to provide this live and

updating state variable information. Second, a sliding mode controls algorithm that takes the

current and desired states of the vehicle, and provides necessary control outputs in order to

achieve convergence to the desired states. Lastly, physical mechanisms that moves the vehicle

given the necessary control outputs. These control outputs could map to gimbal angles and

thrust magnitude for thrust vectoring, deflection angles in grid fins, thrust magnitudes in

reaction control thrusters for example, or combinations of the previously mentioned.

Future work that could be done is a simulation in a flight simulation software. For

fun, I was actually able to implement a realistic simulation of pitch control though using

MATLAB/Simulink and Flightgear, but it was outside of the scope of this thesis. Similar

simulations projects can be found on YouTube and open-source flight software.

Other future work that could be done after this thesis are implementation into model

rockets. In this case, a pre-calculated trajectory would be planned into a micro-controller
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(Pi is the most common utilization for this) that would execute control forces and torques

through the dual quaternion and sliding mode controller. In order for this to happen, two

main thing would need to occur. 1) is that the rocket is fitted with instruments to gather

its body frame information. This would include a gps for positional data and a gyroscope

for rotational data. and 2) the control forces and torques that the controller would output

would need to be mapped to gimbals angles and thrust magnitude. Examples of this was

provided in chapter 2, but the equation will change based on the amount of thrusters used

as well as any implementation of a RCS system in addition to the gimbaling (thrust vector

controlling).

Apart from rocketry application, dual-quaternions and sliding mode control can be im-

plemented into any system in need of time efficient and robust controlling techniques. Given

the compact form of dual-quaternions for example, research could be done to model non-rigid

bodies and structures, and consequently their dynamics.



Bibliography

[1] T. Benson, Brief history of rockets, 2021. [Online]. Available: https://www.grc.nasa.
gov/www/k-12/TRC/Rockets/history_of_rockets.html.

[2] J. Gardi and J. Ross, An illustrated guide to spacex’s launch vehicle reusability plans.
[Online]. Available: http://www.justatinker.com/Future/.

[3] A. Zak, 2021. [Online]. Available: http://www.russianspaceweb.com/buran.html.

[4] B. Dunbar, A pictorial history of rockets, 2020. [Online]. Available: https://chrome.
google.com/webstore/detail/pdf-viewer/oemmndcbldboiebfnladdacbdfmadadm.

[5] T. Fernholz, Spacex’s self-landing rocket is a flying robot that’s great at math, 2017.

[6] L. Blackmore, Blackmore’s research: Lossless convexification. [Online]. Available: http:
//larsblackmore.com/losslessconvexification.htm.

[7] U. Ates, Spacex falcon 9 landing with rl, 2020. [Online]. Available: https://towardsdatascience.
com/spacex-falcon-9-landing-with-rl-7dde2374eb71.

[8] M. Wall, Wow! spacex lands orbital rocket successfully in historic first, 2015. [Online].
Available: https://www.space.com/31420-spacex-rocket-landing-success.
html.

[9] D. Bernacchia, “Design of thrust vectoring attitude control system for lunar lander
flying testbed”, Ph.D. dissertation, 2019.

[10] N. V. Patel, How spacex lands a falcon 9 rocket, in 6 steps, 2017. [Online]. Available:
https://www.inverse.com/article/33904-how-spacex-lands-a-falcon-9-
rocket-in-6-steps.

[11] N. Boulanger, How to guide a rocket during its flight ? [Online]. Available: https:
//www.spaceandscience.fr/en/blog/grid-fins.

90

https://www.grc.nasa.gov/www/k-12/TRC/Rockets/history_of_rockets.html
https://www.grc.nasa.gov/www/k-12/TRC/Rockets/history_of_rockets.html
http://www.justatinker.com/Future/
http://www.russianspaceweb.com/buran.html
https://chrome.google.com/webstore/detail/pdf-viewer/oemmndcbldboiebfnladdacbdfmadadm
https://chrome.google.com/webstore/detail/pdf-viewer/oemmndcbldboiebfnladdacbdfmadadm
http://larsblackmore.com/losslessconvexification.htm
http://larsblackmore.com/losslessconvexification.htm
https://towardsdatascience.com/spacex-falcon-9-landing-with-rl-7dde2374eb71
https://towardsdatascience.com/spacex-falcon-9-landing-with-rl-7dde2374eb71
https://www.space.com/31420-spacex-rocket-landing-success.html
https://www.space.com/31420-spacex-rocket-landing-success.html
https://www.inverse.com/article/33904-how-spacex-lands-a-falcon-9-rocket-in-6-steps
https://www.inverse.com/article/33904-how-spacex-lands-a-falcon-9-rocket-in-6-steps
https://www.spaceandscience.fr/en/blog/grid-fins
https://www.spaceandscience.fr/en/blog/grid-fins


BIBLIOGRAPHY 91

[12] Starship. [Online]. Available: https://www.spacex.com/vehicles/starship/#:
~:text=Starship%20is%20designed%20to%20deliver,than%20our%20current%
20Falcon%20vehicles..

[13] E. Ralph, Spacex ceo elon musk explains how starships will return from orbit, 2019.
[Online]. Available: https://www.teslarati.com/spacex-elon-musk-explains-
starship-orbital-reentry/.

[14] E. Howell, Blue origin’s new shepard launch with gma anchor michael strahan: When
to watch and what to know, 2021. [Online]. Available: https://www.space.com/blue-
origin-michael-strahan-new-shepard-launch-explained.

[15] New shepard. [Online]. Available: https://www.blueorigin.com/new-shepard/.

[16] P. Rincon, Jeff bezos launches to space aboard new shepard rocket ship, 2021. [Online].
Available: https://www.bbc.com/news/science-environment-57849364.

[17] B. Açıkmeşe, J. Casoliva, J. Carson, and L. Blackmore, “G-fold: A real-time imple-
mentable fuel optimal large divert guidance algorithm for planetary pinpoint landing”,
LPI Contributions, pp. 4193–, Jun. 2012.

[18] B. Acikmese, J. Carson, and L. Blackmore, Lossless convexification of nonconvex con-
trol bound and pointing constraints of the soft landing optimal control problem, 2013.
[Online]. Available: chrome - extension : / / efaidnbmnnnibpcajpcglclefindmkaj /
viewer.html?pdfurl=http%3A%2F%2Flarsblackmore.com%2Fiee_tcst13.pdf&amp;
clen=781655&amp;chunk=true.

[19] B. Kenwright, “A beginners guide to dual-quaternions: What they are, how they work,
and how to use them for 3d character hierarchies”, Ph.D. dissertation.

[20] W. Hamilton, “On quaternions, or on a new system of imaginaries in algebra”, Philo-
sophical Magazine (1844-1850),

[21] Clifford, “Preliminary sketch of biquaternions”, Proceedings of the London Mathemat-
ical Society, vol. s1-4, no. 1, pp. 381–395, 1871. doi: https://doi.org/10.1112/
plms/s1- 4.1.381. eprint: https://londmathsoc.onlinelibrary.wiley.com/
doi/pdf/10.1112/plms/s1-4.1.381. [Online]. Available: https://londmathsoc.
onlinelibrary.wiley.com/doi/abs/10.1112/plms/s1-4.1.381.

[22] J. Rooney, “William kingdon clifford (1845-1879)”, 2007.

[23] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan, “Geometric skinning with approximate
dual quaternion blending”, ACM Transactions on Graphics, vol. 27, no. 4, 1–23, 2008.
doi: 10.1145/1409625.1409627.

https://www.spacex.com/vehicles/starship/%23:~:text=Starship%20is%20designed%20to%20deliver,than%20our%20current%20Falcon%20vehicles.
https://www.spacex.com/vehicles/starship/%23:~:text=Starship%20is%20designed%20to%20deliver,than%20our%20current%20Falcon%20vehicles.
https://www.spacex.com/vehicles/starship/%23:~:text=Starship%20is%20designed%20to%20deliver,than%20our%20current%20Falcon%20vehicles.
https://www.teslarati.com/spacex-elon-musk-explains-starship-orbital-reentry/
https://www.teslarati.com/spacex-elon-musk-explains-starship-orbital-reentry/
https://www.space.com/blue-origin-michael-strahan-new-shepard-launch-explained
https://www.space.com/blue-origin-michael-strahan-new-shepard-launch-explained
https://www.blueorigin.com/new-shepard/
https://www.bbc.com/news/science-environment-57849364
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=http://larsblackmore.com/iee_tcst13.pdf&amp;clen=781655&amp;chunk=true
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=http://larsblackmore.com/iee_tcst13.pdf&amp;clen=781655&amp;chunk=true
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=http://larsblackmore.com/iee_tcst13.pdf&amp;clen=781655&amp;chunk=true
https://doi.org/https://doi.org/10.1112/plms/s1-4.1.381
https://doi.org/https://doi.org/10.1112/plms/s1-4.1.381
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s1-4.1.381
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s1-4.1.381
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s1-4.1.381
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s1-4.1.381
https://doi.org/10.1145/1409625.1409627


BIBLIOGRAPHY 92

[24] I. Z. Frey and I. Herzeg, “Spherical skinning with dual quaternions and qtangents”,
ACM SIGGRAPH 2011 Talks on - SIGGRAPH ’11, 2011. doi: 10.1145/2037826.
2037841.

[25] H.-L. Pham and et al, “Position and orientation control of robot manipulators using
dual quaternion feedback”, IEEE, 2010.

[26] R. Ferrante, “A robust control approach for rocket landing”, Ph.D. dissertation, 2017.

[27] Y.-L. Yang and T.-Y. Hsu, “A dynamic model for two-dimensional thrust-vectoring
nozzles”, in ser. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Ex-
hibit. 2005.

[28] M. Ahmed and H. Dorrah, “Design of gain schedule fractional pid control for nonlinear
thrust vector control missile with uncertainty”, Journal for Control, Measurement,
Electronics, Computing and Communications, 2018.

[29] T. Benson, Rocket rotations, 2021. [Online]. Available: https://www.grc.nasa.gov/
www/k-12/rocket/rotations.html.

[30] S. Starin, “Attitude determination and control systems”, NASA Goddard Space Flight
Center,

[31] T. Benson, Examples of control, 2021. [Online]. Available: https://www.grc.nasa.
gov/www/k-12/rocket/rktcontrl.html.

[32] M. Jetzer, Lr-101 vernier engine. [Online]. Available: http://heroicrelics.org/
info/lr-101/lr-101.html.

[33] C. Ensworth, “Thrust vector control for nuclear thermal rockets”, NASA, 2013.

[34] D. Lopez, Gimbaled thrust, 2021. [Online]. Available: https://www.grc.nasa.gov/
www/k- 12/rocket/gimbaled.html#:~:text=Most%20modern%20rockets%2C%
20like%20the,of%20gravity%20of%20the%20rocket..

[35] R. J. Zeamer, “Liquid-injection thrust vector control.”, Journal of Spacecraft and Rock-
ets, vol. 14, no. 6, pp. 321–322, 1977. doi: 10.2514/3.57203. eprint: https://doi.
org/10.2514/3.57203. [Online]. Available: https://doi.org/10.2514/3.57203.

[36] E. Lee, H. Kang, and S. Kwon, “Demonstration of thrust vector control by hydrogen
peroxide injection in hybrid rockets”, Journal of Propulsion and Power, vol. 35, no. 1,
pp. 109–114, 2019. doi: 10.2514/1.B37074. eprint: https://doi.org/10.2514/1.
B37074. [Online]. Available: https://doi.org/10.2514/1.B37074.

[37] W. Price, “Nonlinear control for dual quaternion systems”, Ph.D. dissertation, 2013.

https://doi.org/10.1145/2037826.2037841
https://doi.org/10.1145/2037826.2037841
https://www.grc.nasa.gov/www/k-12/rocket/rotations.html
https://www.grc.nasa.gov/www/k-12/rocket/rotations.html
https://www.grc.nasa.gov/www/k-12/rocket/rktcontrl.html
https://www.grc.nasa.gov/www/k-12/rocket/rktcontrl.html
http://heroicrelics.org/info/lr-101/lr-101.html
http://heroicrelics.org/info/lr-101/lr-101.html
https://www.grc.nasa.gov/www/k-12/rocket/gimbaled.html%23:~:text=Most%20modern%20rockets,%20like%20the,of%20gravity%20of%20the%20rocket.
https://www.grc.nasa.gov/www/k-12/rocket/gimbaled.html%23:~:text=Most%20modern%20rockets,%20like%20the,of%20gravity%20of%20the%20rocket.
https://www.grc.nasa.gov/www/k-12/rocket/gimbaled.html%23:~:text=Most%20modern%20rockets,%20like%20the,of%20gravity%20of%20the%20rocket.
https://doi.org/10.2514/3.57203
https://doi.org/10.2514/3.57203
https://doi.org/10.2514/3.57203
https://doi.org/10.2514/3.57203
https://doi.org/10.2514/1.B37074
https://doi.org/10.2514/1.B37074
https://doi.org/10.2514/1.B37074
https://doi.org/10.2514/1.B37074


BIBLIOGRAPHY 93

[38] D Rose, Rotation quaternions, and how to use them, 2015. [Online]. Available: https:
//danceswithcode.net/engineeringnotes/quaternions/quaternions.html.

[39] S. Drakunov, “Spacecraft control using dual quaternions”, 2021.

[40] B. Graf, Quaternions and dynamics, 2008. arXiv: 0811.2889 [math.DS].

[41] W. D. Price, C. Ton, W. MacKunis, and S. V. Drakunov, “Self-reconfigurable control
for dual-quaternion/dual-vector systems”, Proceedings of the 2013 European Control
Conference (ECC), Zürich, Switzerland, 860–865, Jul. 2013. doi: 10.23919/ecc.
2013.6669849.

[42] S. V. DRAKUNOV and V. I. UTKIN, “Sliding mode control in dynamic systems”,
International Journal of Control, vol. 55, no. 4, 1029–1037, 1992. doi: 10 . 1080 /
00207179208934270.

[43] A. F. Filippov, Differential equations with discontinous righthand sides. Kluwer Aca-
demic Publishers, 1988.

[44] V. I. Utkin, “Sliding modes in control and optimization”, 1992. doi: 10.1007/978-3-
642-84379-2.

[45] S. Drakunov, Sliding Mode Control powerpoint.

[46] P. d’Armi, “A quick introduction to sliding mode control and its applications”, Univer-
sita’ Degli Studi Di Cagliari DEPATIMENTO DI INGEGNERIA ELETTRICA ED
ELETTRONICA,

https://danceswithcode.net/engineeringnotes/quaternions/quaternions.html
https://danceswithcode.net/engineeringnotes/quaternions/quaternions.html
https://arxiv.org/abs/0811.2889
https://doi.org/10.23919/ecc.2013.6669849
https://doi.org/10.23919/ecc.2013.6669849
https://doi.org/10.1080/00207179208934270
https://doi.org/10.1080/00207179208934270
https://doi.org/10.1007/978-3-642-84379-2
https://doi.org/10.1007/978-3-642-84379-2

	Vertical Take-Off and Landing Control via Dual-Quaternions and Sliding Mode
	Scholarly Commons Citation

	Signature Page
	Abstract
	Acknowledgments
	INTRODUCTION
	Problem Statement and Significance
	Purpose Statement
	Nomenclature

	REVIEW OF RELEVANT LITERATURE
	Soft Landing Problem
	Launch Vehicle Reuse
	SpaceX
	Blue Origins

	Path Planning
	Methods of Representing Rotation and Translation
	Why Dual Quaternions?
	Dual-Quaternion Usage

	Control Algorithms for Rocket VTOL
	Proportional Integral Derivative Control
	Linear Quadratic Regulator
	Model Predictive Control
	Reinforcement Learning

	Rigid Body Motion
	Thrust Vectoring
	Gimbaling with Thrust Vector Control

	MATH PRELIMINARY
	Rotation Matrices
	Defining Euler Angles and Rotation Matrices
	Rotation Matrix Kinematics
	Gimbals Lock

	Quaternions
	Defining Rotation Quaternions
	Euler Angles Conversions and Gimbal Lock
	Quaternion Kinematics

	Dual-Quaternions
	Defining Dual-Quaternions
	Dual-Quaternion Kinematics
	Dual-Quaternion Rigid Body Model

	Sliding Mode Control
	Overview
	SMC for Error States
	Quaternion Kinematic Sliding Mode
	Dual-Quaternion Rigid Body Sliding Mode


	PROBLEM STATEMENT MODELING
	Control Goal
	Kinematics
	Dynamics
	Control

	SIMULATIONS
	Quaternion Simulations
	Dual-Quaternion Simulations

	RESULTS
	CONCLUSION

