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2 ABSTRACT 

Light detection and ranging (lidar) digital elevation models (DEMs) are crucial for modeling 

coastal salt marsh systems, simulating the coastal dynamics of sea level rise (SLR), and predicting 

storm surge inundation depth and duration. Improvements in lidar acquisition technology and data 

processing over the last decade have led to increased accuracy. However, the lidar-derived DEMs 

for coastal salt marshes that are densely vegetated are generally unreliable without adjustment 

based on local ground truth elevations. In this study, Random Forest (RF) DEM adjustment models 

are trained for two similar Northern Gulf of Mexico salt marshes. The need for local topographic 

ground truth data to train the models is also investigated. Two Real-Time Kinematic (RTK) GNSS 

field surveys were conducted by others to acquire ground truth elevations near St. Marks, Florida 

(n=377) and Pascagoula, Mississippi (n=610). These elevations, along with lidar elevations and 

Sentinel-2A multispectral satellite imagery (MSI) reflectance values were used to train the RF salt 

marsh DEM adjustment models and apply them under two scenarios: local and non-local. A local 

adjustment relies on data collected within the adjustment domain to train the model whereas a non-

local adjustment uses data collected outside the adjustment domain. The RF-local models achieved 

the lowest mean absolute error (MAE) values for St. Marks and Pascagoula. The predictions using 

non-local RF models were unsatisfactory. The evidence suggests that local ground truth data are 

necessary for mitigating bias in salt marsh lidar DEMs, although future work should investigate if 

increasing the data set size could narrow the accuracy gap. This mitigation adjustment technique 

can be replicated in other coastal regions with similar vegetation profiles. As the world becomes 

increasingly vulnerable to the effects of climate change and SLR, it is important to accurately 

characterize the current state of the system to model marsh restoration and migration, natural and 

nature based protective infrastructure, and land use planning policies, for example.  
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7 Introduction 

Lidar digital elevation models (DEMs) are known to be inaccurate in coastal salt marshes 

mainly because the laser pulses cannot always reflect off the true marsh platform surface (Figure 

7.1). The presence of standing water and dense vegetation (typically tall grasses with peak 

seasonal heights greater than 1 m) are the primary causes for the widespread biases in 

topographic elevation data products such as point clouds and bare earth DEMs (Alizad et al., 

2016; Alizad, Medeiros, Foster-Martinez, & Hagen, 2020; Buffington, Dugger, Thorne, & 

Takekawa, 2016; Hladik & Alber, 2012) 

7.1 Importance of Research 

Salt marsh vegetation has adapted to conditions that are inundated with water and exposed to 

the air according to the tides. Sea level rise causes coastal salt marshes to recede because the 

marsh vegetation needs time without water to grow. If the vegetation is constantly inundated, the 

plants will eventually drown and die. Therefore, it is critical for sea level rise models to 

accurately characterize the marsh system as either inundated or exposed to the air. This relies on 

accurate elevation representations of the marsh platform. However, lidar DEMs are inaccurate in 

coastal salt marshes by a magnitude of about 0.1 - 0.6m (Table 8.1) depending on the location of 

the DEM (Hladik & Alber, 2012; Medeiros, Hagen, Weishampel, & Angelo, 2015).  

The ramifications of the persistent elevation bias are evident when lidar DEMs are used as 

input data for marsh evolution models in microtidal environments (Alizad et al., 2020). Models 

such as the Marsh Equilibrium Model (MEM) (J. Morris, Sundareshwar, Nietch, Kjerfve, & 

Cahoon, 2002) and HydroMEM rely on the marsh platform topography to serve as a starting 

point for future projections of marsh migration and evolution (Alizad et al., 2016; J. Morris, 

2007). When the initial state of the marsh platform is erroneously biased to a higher elevation 
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than the upper part of the tidal inundation frame (mean high water or MHW), the modeled marsh 

is not accurately inundated in the simulations and subsequently does not receive a realistic 

sediment loading. This was the case in the northern Gulf of Mexico when lidar data from 2007-

2008 were used to model a marsh with a tidal range of approximately 34 cm (Alizad et al., 

2016). Unless this bias is addressed, marsh biomass density and zonation projections will be 

inaccurate from the start and all emergent effects from future conditions such as sea level rise 

(SLR) will be unreliable. 

Accurate representation of coastal terrain is also an important factor in hurricane storm surge 

modeling, regardless of the local tide range (Bilskie, Coggin, Hagen, & Medeiros, 2015; Bunya 

et al., 2010; Dietrich et al., 2011). Coastal salt marshes are often the first or second physical 

buffer zone standing between an incoming storm surge and upland property. Therefore, it exerts 

substantial influence over the propagation (depth, extent, and timing) of storm surge inundation. 

Since this is a major cause of the destruction and economic disruption associated with tropical 

cyclones, accurate coastal flood predictions for both immediate event-scale decisions such as 

evacuation orders as well as longer term risk assessments and resilient infrastructure planning 

rely on coastal DEMs as a primary input data source (Baradaranshoraka, Pinelli, Gurley, Peng, & 

Zhao, 2017). 

This thesis presents the development of a random forest (RF) model structure for mitigating 

the elevation bias in lidar DEMs and applies it to two ecologically similar estuarine salt marsh 

systems in the northern Gulf of Mexico. Sentinel-2A multispectral imagery, the lidar DEM 

elevations, and field measured topographic elevations were used to train, test, and validate the 

models. The trained RF models were also tested at the non-local site to investigate the necessity 

of obtaining local spot elevations in marshes for the purpose of developing a bias mitigation 
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model. The overall objective of the lidar DEM bias mitigation effort was to provide a 

topographically accurate marsh platform model for two locations to be used in simulations of salt 

marsh evolution and migration in response to sea level rise. 

 

 

Figure 7.1: The DEM bias due to dense vegetation. The laser bounces off of the vegetation 

and is absorbed by standing water, which causes the error. (Martin et al., 2022) 
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8 Review of the Relevant Literature 

This chapter will cover how others have adjusted for the bias in lidar derived DEMs and 

compare how researchers use machine learning techniques for environmental applications. There 

are numerous ways to predict the bias including using different predictors as well as using a 

different prediction method.   

8.1 Lidar Digital Elevation Model Adjustment 

To mitigate the persistent high elevation bias in salt marsh lidar DEMs, corrections must 

be applied to the marsh surface topography. However, it is impractical to adjust multi-county or 

regional scale DEMs based on field data alone. To address this, techniques have been developed 

that rely on vegetation characteristics such as height (Hladik & Alber, 2012), remotely sensed 

biomass density (Medeiros, Hagen, Weishampel, et al., 2015), local tidal frame elevations 

(Alizad et al., 2018), and lidar waveform data (Rogers, Parrish, Ward, & Burdick, 2018). In 

addition to the high elevation bias, lidar DEMs also tend to flatten out the underlying 

microtopography including small tidal creeks, making the spatial distribution of the bias 

magnitudes non-linear (Medeiros, Hagen, & Weishampel, 2015). Approaches such as random 

forest (Alizad et al., 2016; Cooper, Zhang, Davis, & Troxler, 2019) multiple regression 

(Medeiros, Hagen, Weishampel, et al., 2015), and gradient boosted nonparametric regression 

(Rogers et al., 2018) have been shown to be effective in the past and the research is trending 

towards simpler models that require fewer field measured vegetation characteristics for model 

training.  

Hladik and Alber (2012) conducted a correction of a lidar derived salt marsh digital elevation 

model for an area in Georgia. Their results show in comparison to the RTK ground truth data, the 

lidar contained a bias of 0.03 to 0.25 m depending on the cover class. They developed correction 

factors according to the type of vegetation. The species-specific corrections reduced the overall 
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DEM error from 0.10 ± 0.12 m (SD) to -0.01 ± 0.09 m (SD) and the root mean square error 

(RMSE) from 0.16m to 0.10m. Medeiros, Hagen, Weishampel, et al. (2015) used remotely 

sensed biomass density to adjust the lidar-derived DEM for the Apalachicola River Marsh area. 

The adjustment resulted in raw mean errors for the lidar DEM and the adjusted DEM as 0.61 ± 

0.24m and 0.32 ± 0.24m, thereby reducing the high bias by approximately 49%. Further 

examples of lidar error reported in previous salt marsh modeling studies can be found in Table 

8.1 (Alizad et al., 2020)  

 

Table 8.1: Lidar error reported in previous salt marsh modeling studies 

Study Location Lidar Error (m) 

Hladik and Alber (2012) Sapelo Island, GA 0.03 to 0.25 

Medeiros, Hagen, Weishampel, et al. 

(2015) 

Apalachicola, FL 0.61 ± 0.24 

J. T. Morris et al. (2005) North Inlet, SC 0.13 ± 0.065 

Schmid, Hadley, and Wijekoon (2011) Charleston, SC 0.153 ± 0.176 

Thorne, Elliott-Fisk, Wylie, Perry, and 

Takekawa (2014) 

San Pablo Bay, CA 0.10 to 0.35 

Fernandez-Nunez, Burningham, and 

Ojeda Zujar (2017) 

Odiel, Spain 0.23 ± 0.13 to 

0.45 ± 0.19 

 

8.2 Machine Learning Techniques 

Cooper et al (2019) compared different machine learning techniques including Random 

Forest (RF), Support Vector Machine, k-Nearest Neighbor, and Artificial Neural Network 

(ANN). The RF models emerged as one of the most useful due to their computational efficiency, 

resistance to overfitting, ability to handle small datasets, and explainability (trained RF models 

natively produce feature importance metrics using out-of-bag testing). Rodriguez-Galiano, 
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Mendes, Garcia-Soldado, Chica-Olmo, and Ribeiro (2014) used a RF model to build different 

predictive models of nitrate pollution. An advantage of the RF in this study was its ability to 

determine variable importance. This feature was used to define the most significant predictors of 

nitrate pollution in groundwater using remotely sensed and in-situ data. The variable importance 

feature of the random forest makes it a useful machine learning tool because it allows for 

predictor comparison. 

Although many different machine learning techniques are used to conduct adjustments, the 

random forest technique is especially useful in environmental applications where the training 

datasets are relatively small. Singh, Sihag, and Singh (2017) used a RF regression model in 

comparison with M5P model tree, and ANN to model the impact of water quality on infiltration 

rate of soil. Their results show that the RF method was the best performing model in terms of 

predictive accuracy. The model was trained using only 132 field measurements. Mascaro et al. 

(2014) used the random forest model in a different application and used remotely sensed data 

rather than field measurements. The main purpose of the study was to evaluate the performance 

of the random forest regression method for tropical forest carbon mapping. Their results 

conclude that spatial context should be considered when training an RF and adjustments may 

need to be made to avoid over fitting the data. However, the RF model with spatial context 

outperformed the stratification approach, which is the traditional method used in carbon stock 

modeling. 

Additionally, Belgiu and Drăguţ (2016) discuss how the RF classifier is particularly 

beneficial for remote sensing purposes, including studies with multi-source data. Hu et al. (2020) 

used a RF regression model with data from remote sensing and field measurements to estimate 

aboveground biomass in order to produce a global mangrove forest above-ground biomass 
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(AGBM) map. This work supported the findings of Fassnacht et al. (2018) who concluded that 

combining lidar data with many reference sample units and a random forest model produce 

biomass predictions with the lowest error. 

8.3 Summary 

Previous work has shown that in coastal salt marshes, the bias associated with remote sensing 

data needs to be mitigated. The adjustment can be conducted in a number of ways. However, 

machine learning and specifically a random forest technique outperforms other models especially 

for environmental studies where the training dataset is relatively small compared to typical 

machine learning data sets. Ground truth data and remotely sensed data have been used to make 

predictions using a random forest. Additionally, ground truth data have been shown to enhance 

predictive results of DEM error (Buffington et al., 2016; Hladik & Alber, 2012; McClure, Liu, 

Hines, & Ferner, 2015). However, collecting ground truth data in salt marshes is extremely labor 

intensive and costly.  

We will explore the predictive performance of a model trained on data from a different, but 

ecologically similar, location. A random forest model using remotely sensed data as predictors 

will be trained on in-situ data from two locations. Once the two models are trained, they will be 

used to predict the error for the other location.  
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9 Methodology 

DEMs for two regions in the northern Gulf of Mexico were adjusted: Apalachee Bay in 

Florida and the lower Pascagoula River in Mississippi. The adjustment was achieved using a RF 

machine learning model that was trained on satellite imagery including red, green, blue, (RGB) 

and near-infrared (NIR) (Table 9.1) spectral bands and the lidar-derived DEM elevation to 

predict the error in the DEM. In-situ Real Time Kinematic - Global Navigation Satellite System 

(RTK-GNSS) spot elevation points acquired by others were used as ground truth data. The 

predicted error was then used to adjust the original DEM. To test the need for local topographic 

data for DEM adjustment, the Pascagoula RF model was applied to Apalachee Bay’s data, and 

vice versa.  

9.1 Research Setting 

Both research settings were identified as areas of interest for the Effects of Sea Level Rise 

Program (ESLR) from NOAA’s National Centers for Coastal Ocean Science (NCCOS). The first 

setting for this study is the Apalachee Bay / St. Marks region of Florida’s northern Gulf of 

Mexico (NGOM) coast including parts of Gulf, Franklin, Wakulla, Jefferson, and Taylor 

counties (listed west to east, Figure 9.1). The second area of interest for this study is the lower 

Pascagoula River estuary in Mississippi and Alabama lying primarily in Jackson (MS) and 

Mobile (AL) counties. These locations will be referred to as APAL and PASC, respectively. 

Figure 9.2 shows the polygons used to mask out the areas identified as wetlands. More 

specifically, the wetland types in this area are classified as estuarine and marine (Figure 9.2, 

magenta), and freshwater emergent wetlands (Figure 9.2, blue). Both locations are similar 

ecologically, primarily dominated by Juncus roemerianus, or black needle rush, with Spartina 

alterniflora and Spartina cynosuroides on the fringe of the open water areas. The NWI polygons 
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representing the wetlands areas of interest were used to extract sections of the DEM for 

adjustment.  

 

 

Figure 9.1: Research settings in Pascagoula, MS (PASC) and Apalachee Bay, FL (APAL). 
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Figure 9.2: The adjustments for Apalachee Bay (top) and Pascagoula (bottom) were constrained 

to freshwater emergent wetlands (magenta) and estuarine and marine wetlands (blue). The white 

squares indicate where ground truth data was collected. 
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9.2 Lidar Digital Elevation Model – Apalachee Bay 

The lidar DEM used as the basis for the bias mitigation effort for the Apalachee Bay region 

was downloaded from NOAA Digital Coast (Digital Coast, 2022). The lidar DEM used in this 

study was compiled from three separate projects (Figure 9.3). The westernmost area was covered 

by the 2-meter resolution Lower Choctawhatchee lidar DEM collected between 9 April and 17 

May 2017 (Dewberry, 2018b). The central area was covered by the 1-meter resolution DEM for 

the Florida Panhandle collected between 31 March and 10 May 2018 (Dewberry, 2018a). The 

eastern end of the study area used an older 5-meter resolution dataset from the Florida Division 

of Emergency Management 2007 DEM (Dewberry, 2008). This older dataset was used due to the 

lack of more recent data in this area. These three DEMs were reprojected to NAD83(2011) 

Florida State Plane North in meters (EPSG: 6440), resampled and co-registered with 5-meter 

resolution, and their elevations were converted to meters NAVD88. They were mosaicked 

together with priority given to the more recent data (2018, 2017, and then 2007).  

The mosaicked DEM was clipped to just the coastal areas (Figure 9.3) and checked for 

discontinuities using topographic profile transects generated in ArcMap, especially at the 

boundary between the 2018 and 2007 DEMs (green and blue areas, respectively). This boundary 

is also the upland boundary for the marsh evolution model grid that is the end-use of the adjusted 

DEM. There were no abrupt discontinuities that would indicate an error in the combined DEM. 

The 2007 nearshore region had a manually assigned elevation of zero rather than NoData and 

since this area was not within the wetland areas defined by the NWI, these areas were not 

included in the adjustment.  

9.3 Lidar Digital Elevation Model – Pascagoula River 

The lidar DEM used as the basis for the bias mitigation effort in the lower Pascagoula River 

region was developed by the United States Geological Survey (USGS) and is also freely available 
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for download (Digital Coast, 2022). As Figure 9.4 shows, the 3-meter resolution CoNED 

Topobathymetric DEM collected in 2014 (Partners, 2014) covered the entire area of interest in 

Pascagoula, so no other sources were needed. This DEM was reprojected to NAD83(2011) UTM 

Zone 16N (EPSG: 6345) and the elevations were converted to meters NAVD88. The DEM was 

then clipped to include the Pascagoula River coastline as well as the coastal areas and barrier 

islands at the mouth of the river (Figure 9.4). 

 

 

Figure 9.3: Lidar DEM products used as the bases for bias mitigation in the Apalachee domain. 

The western (purple), central (green), and eastern (blue) lidar were acquired in 2017, 2018, and 

2007, respectively. 
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Figure 9.4: Lidar DEM of the Pascagoula River region from USGS 2014 survey 

 

9.4 In-Situ Topographic Data Acquisition  

Others collected the in-situ topographic data for the Apalachee Bay region in the salt marsh 

and adjacent upland areas around the St. Marks lighthouse. Figure 9.5a shows the data points in 

orange which were collected using RTK-GNSS survey equipment in March of 2018. The surveys 

were completed using a wide top shoe, 2.5” in diameter, affixed to the bottom of the survey rod. 

The rod was not allowed to sink into the soft surface of the marsh but rather is held suspended 

where the surveyor feels resistance from the sediment and rhizome. Virtual Reference Station 

(VRS) corrections were obtained from the Florida Permanent Reference Network (FPRN) 

maintained by the Florida Department of Transportation (FDOT) in Real Time Correction 

Message (RTCM) version 3.1 format. A total of 377 spot elevations were collected across various 

transects located with an emphasis on capturing the topographic gradient from the water surface 

to the high marsh and uplands. 
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The in-situ topographic data for the Pascagoula region were collected in a similar manner 

using RTK-GNSS in March of 2019. Single base corrections were obtained from the Gulf Coast 

Geospatial Center (GCGC) Real Time Network operated by the University of Southern 

Mississippi in RTCM 3.1 MAX format. Figure 9.5b shows the 610 spot elevations that were 

collected in Pascagoula along transects designed to capture topographic gradient like the protocol 

in St. Marks. Topographic data at both sites were converted to orthometric heights in meters 

NAVD88 in real time by using a geoid separation file (GSF) of the Continental US based on 

GEOID12B.  

 

 

  

 

 

 

Figure 9.5: In-situ topographic data points are shown in orange for Apalachee Bay (left) 

and Pascagoula (right). In-situ data was collected only in wetlands identified as Freshwater 

Emergent Wetlands (magenta) and Estuarine and Marine Wetlands (blue). These show the 

areas identified by the white rectangles in Figure 9.2. 

a b 
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9.5 Satellite Imagery Acquisition and Processing 

Sentinel-2A MSI Level 1C data were downloaded from the European Space Agency 

(ESA) Copernicus website. The following are the tile numbers (Txxxxx) and acquisition dates 

for the satellite imagery. 

Apalachee Bay: 

• T16RFT, 8 March 2018 

• T16RFU, 31 March 2018 

• T16RGT, 8 March 2018 

• T16RGU, 8 March 2018 

• T17RKN, 28 March 2018 

• T17RKP, 8 March 2018 

Pascagoula: 

• T16RCU, 19 March 2019 

• T16RCV, 19 March 2019 

The images were chosen because they were the most cloud-free and were captured at 

roughly the same time as the ground truth topographic data. Each scene was downloaded at 

Level 1C top of atmosphere (TOA) reflectance and processed to Level 2A bottom of atmosphere 

(BOA) reflectance products using the Sen2Cor software provided by ESA. For each scene, bands 

2, 3, 4 and 8 (Table 9.1) were extracted (Thales Alenia Space, 2021), mosaicked, and reprojected 

to NAD83(2011) Florida State Plane North for Apalachee Bay, and NAD83(2011) UTM zone 

16N for Pascagoula, using the ESA SNAP software. These bands were selected because they are 

available at 10 m resolution, the other bands were available at either 30 or 60m resolution. 

Additionally, these bands are commonly used in remote sensing in studies of soils or vegetation. 
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The red and NIR bands especially are used to indicate vegetation health in the canonical 

Normalized Difference Vegetation Index (Tahsin, Medeiros, & Singh, 2021) and its derivatives. 

  

Table 9.1: Spatial Resolution Bands (10m) for Sentinel 2A satellite imagery used for training 

the random forest.  

Band Number Central Wavelength (nm) Bandwidth (nm) 

B2 (Blue) 492.4 66 

B3 (Green) 559.8 36 

B4 (Red) 664.6 31 

B8 (Near-Infrared) 832.8 106 

 

9.6 Geospatial Data Fusion 

All data mentioned previously including the lidar-derived DEM, in-situ topographic data, 

and satellite imagery, were integrated using ArcGIS to produce the training and validation data 

sets for the bias mitigation machine learning models. 

First, the topographic spot elevations were converted to a point feature class containing 

xyz coordinates measured in the field. The lidar DEM elevations along with the reflectance 

values from the four multispectral satellite imagery spectral bands were interpolated onto the in-

situ spot elevations. The difference between the field measured marsh platform elevation and 

lidar DEM elevation was calculated and added as a field; this represents the DEM error and 

serves as the label in the machine learning model explained below. The following is a list of the 

fields in the point data corpus (Note that * indicates predictor fields and ** indicates the target 

value or label for training the machine learning model): 

• Northing (meters), field measured y coordinate 

• Easting (meters), field measured x coordinate 

• Elevation (meters), field measured z coordinate 
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• DEM_Elevation (meters)*, elevation interpolated from lidar DEM 

• B2_Blue*, representing the 492.4 nm band reflectance 

• B3_Green*, representing the 559.8 nm band reflectance 

• B4_Red*, representing the 664.6 nm band reflectance 

• B8_NIR*, representing the 832.8 nm band reflectance 

• ERROR**, elevation difference between the lidar DEM and field measured 

elevation, calculated from other fields as DEM_Elevation – Elevation 

The BOA S2A MSI reflectance data are provided in digital number (integer) format. The 

S2A MSI specifications state that these integer reflectance values are computed by multiplying 

the floating-point reflectance values by a quantification value (Thales Alenia Space, 2021). In 

the metadata for all scenes used in this study, the quantification value is 10,000. Therefore, this 

was the value used to convert BOA reflectances to floating point values, which can be used as 

input to a machine learning model without normalization. 

The projected, clipped and NWI-masked lidar DEM, which represents the collective set 

of points that need to be adjusted, was converted to a point feature class in ArcGIS. Like the field 

data, the reflectance values from the four satellite imagery spectral bands were interpolated onto 

the points to form the application data corpus. All the predictor fields listed above, along with 

Northing and Easting, are present in the application data corpus. 

9.7 Elevation Adjustment Model 

Other machine learning models including Support Vector Machine, k-Nearest Neighbor, 

or Artificial Neural Network were considered, but Random Forest (RF) has proven to make the 

best predictions in marsh environments (Cooper et al., 2019). Therefore, the elevation adjustment 

used to mitigate the bias in the lidar DEM was determined using an RF. An RF is an ensemble 

technique, consisting of many decision trees where each decision tree is trained on a random 
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subsample of the data to make either a classification or a regression prediction (Belgiu & Drăguţ, 

2016). Each tree makes its own prediction, which are aggregated to produce a single prediction 

from the forest (Figure 9.6). For a classification problem, each tree produces one vote for the 

classification and the aggregate prediction is the majority vote. However, the DEM error 

prediction requires a regression model, so each tree produces one numeric prediction and these 

are averaged to produce one aggregate prediction for the forest.  

The following is a strongly simplified example of the inner workings of an RF model. In 

addition to demonstrating the training process, we will also simulate sending an unlabeled point 

down the tree to produce a prediction. Each decision tree is “grown” using a random subsample 

of the predictors as well as a random subsample of the data.  

 

 

Figure 9.6: In a random forest, the source data (RGB, NIR, and DEM elevation) filters 

through the decision trees to produce a single prediction from each tree. The predictions from 

each tree are averaged to produce the predicted error for that location. The process is repeated 

until there is an adjustment for every location. 
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Table 9.2: Random subsample of predictors and sample data from the training data corpus 

taken with replacement. 

 
* True DEM Error = DEM Elevation – Ground Truth Elevation 

 

Table 9.3: Subsample B2 reflectances, sorted from smallest to largest. 

 

 

Table 9.4: Potential splits for B2 reflectances 

 

 

Table 9.5 Subsample B8 reflectances, sorted smallest to largest. Split from the last predictor 

remains 
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Table 9.6: Split for Branch 2 of B8 reflectance. 

 

 

Table 9.7: Split Value Threshold for DEM Elevation   

 

 

Table 9.8: Last split produces terminal or “leaf” nodes using the label, true DEM error.  

 

 

In this example, B2, B8, and the DEM Elevation predictors were selected as the predictors 

and 10 random samples were taken, with replacement, from the Apalachee training data corpus 

(Table 9.2). The B2 reflectance was randomly chosen as the first predictor feature in the tree. 

Then the subsample is sorted from smallest to largest by B2 reflectance (Table 9.3). Table 9.4 

shows potential split locations for the next branches. The variations are taken at each potential 

split and the split is chosen where the variation is minimized according to a variety of metrics 

including the Gini coefficient (Zheng, 2020), and in this example, the standard deviation of the 

values on each side of the split (Table 9.4) . However, an important parameter when generating 

an RF is the minimum number of values in a branch; for the purposes of this example this is set 
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to two except at the terminal or “leaf” node in a branch. The split with the lowest total standard 

deviation (left + right) is chosen. 

The key result of this step is the split value threshold, defined as the average of the values on 

either side of the split. In this example, the split occurs between sample 6 and 4 because this is 

where the variation on either side of the split was minimized (Table 9.4). The average of those 

reflectances is 0.1765, so a point with B2 reflectance of less than or equal to 0.1765 will proceed 

down the left branch and a B2 reflectance of greater than 0.1765 proceeds down the right. Next, 

a new predictor feature is randomly chosen, B8 reflectance in this case, shown in Table 9.5. The 

same process is used to determine the split, noting that the sub-sampled features contained in 

each branch from the split above persist at this node. The reflectances in each branch are again 

sorted from smallest to largest (Table 9.5). To determine where the next split in each branch will 

be, the variations are quantified again (Table 9.6). This process is repeated for the next predictor, 

DEM Elevation (Table 9.7). The next split is the last and produces terminal or “leaf” nodes. The 

known target value or label is used for each subsample which completes this decision tree (Table 

9.8).  

The RF model was implemented in Python using the scikit-learn module (Pedregosa, 

Varoquaux, Gramfort, & Michel, 2011). The RF model hyperparameters were left at their default 

values with the exception of the number of trees being set to 300 (n_estimators parameter). 

Preliminary tests indicated that more than 300 trees offered no increase in prediction accuracy. 

The random state parameter was also set to an arbitrary number (59) for reproducibility 

purposes.  

To summarize, 300 decision trees are trained as described above to construct the RF. Each 

tree makes a prediction of the DEM error for a given point and the predictions from all 300 trees 



 

 

22 

 

are averaged to produce one aggregate prediction for that set of feature data. To predict a point 

whose DEM Error is unknown, the point would be sent down the decision tree. For example, 

Table 9.9 and Figure 9.7 show the logic that would be followed while sending an unlabeled point 

down the tree. The point with a B2 reflectance of 0.2594, B8 reflectance of 0.2001, and a DEM 

Elevation of 0.1747 would have a predicted DEM Error of 0.1147 from this tree.  

 

Table 9.9: Example of a random forest prediction of an unlabeled point. 

Reflectance Relationship to Split 

Threshold Value 

Result 

B2 = 0.2594 0.2594 > 0.1765 Go through Branch 2 

B8 = 0.2001 0.2001 < 0.294 Go through Branch 3 

DEM Elevation = 0.1747 0.1747 > 0.17305 Predicted DEM Error = 0.1147 

 

 

Figure 9.7: Decision tree trained from the given values from Table 9.3-Table 9.8. An unlabeled 

point sent down the decision tree with B2 ref. = 0.2594, B8 ref. = 0.2001, and DEM Elev. = 

0.1747 would produce a predicted DEM error of 0.1147. 
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9.7.1 Model Validation 

Due to the relatively small (n = 377 for St. Marks, n = 610 for Pascagoula) size of the 

field data corpus, RF model validation was executed using a bootstrapped or leave-one-out cross-

validation protocol. One record in the training dataset was held out, and the model was trained on 

the remaining data. Then the trained model was used to predict the held-out value. This was 

repeated for all records in the training data to prevent over-fitting the model and maximizing the 

training dataset. The statistical metrics used included a 1 to 1 plot with coefficient of 

determination (R2), root mean squared error (RMSE), normalized root mean square error 

(nRMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). 

For comparison, a linear regression (LR) model was also constructed and validated in the 

same manner on the same data to justify the use of the more complex RF model. Also, RF and 

LR models trained using only the DEM_Elevation field were developed in order to investigate 

the contribution of the satellite imagery to prediction accuracy. Statistical tests such as Akaike’s 

Information Criteria (AIC) or Bayesian Information Criteria (BIC) were considered to 

differentiate between RF and LR, but it was determined that these tests are better suited to 

differentiating parameters in the same model not for comparing two different models (Burnham 

& Anderson, 2004).  
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10 Results 

As described in the Methodology, a random forest model was used to predict the error in the 

lidar-derived DEM. The results of building the model and conducting the adjustment are discussed 

in the following sections.  

10.1 Lidar Bias Mitigation – Apalachee Bay, FL  

The results of the bootstrap cross-validation procedure for St. Marks are shown in Figure 

10.1. Recall that this reflects the results of using 376 data points to train the model and testing it 

on the single held-out value for a total of 377 training / test cycles. The MAE is commonly used 

in model evaluation studies and in this case it represents the average amount of error in the 

DEM. The data were more scattered around the 1 to 1 line than expected with the RF model 

achieving an MAE = 0.054 m and the linear regression (LR) model achieving an MAE = 0.08 m. 

During the cross-validation procedure, the RF was the better performing model. The unadjusted 

DEM had an MAE of 0.177m. Therefore, the RF model adjustment improved the MAE of the 

DEM from 0.177 m to 0.054 m, improving the accuracy of the DEM by about 69%.  

The satellite imagery used in this analysis, while publicly available, is not trivial to process 

therefore, its contribution to the prediction accuracy must be investigated. To accomplish this, 

we also ran the same training and test procedure using only the DEM_elevation field. Using only 

this field, the cross-validation procedure yielded an MAE value of 0.083 m for RF and 0.102 m 

for LR for the Apalachee region. Under these scenarios, the RF model improved the accuracy of 

the DEM by about 53% and the LR model by about 42%. Compared to an MAE of 0.054 m for 

RF with satellite imagery, the inclusion of the satellite imagery improved RF model 

performance. It is likely that the DEM_elevation field represents both the likelihood of 

inundation and a measure of bare ground visibility, as both are known to vary within the tidal 

elevation frame. Subsequently, the satellite imagery from wavelengths known to indicate the 
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variability in vegetation health (red and NIR) further predicts the interference of vegetation 

(Tahsin et al., 2021). 

 

The trained RF model was applied to the lidar DEM for Apalachee Bay and the final adjusted 

DEM is shown in Figure 10.2. At this scale, the differences between the unadjusted and adjusted 

DEMs are difficult to see. The adjustment lowered the elevation by an average of 0.29 m. On a 

smaller scale differences are detectable. For example, Figure 10.3 shows the region where the 

field data were collected. The arrow is pointing to a manmade impoundment which appears to be 

relatively flat in the source DEM. However, the adjusted DEM recovers the underlying 

microtopography that exists in that area. The source DEM shows a higher elevation, with an 

MAE = 0.177 m. The adjusted DEM tends to lower the elevation which appears as the darker 

blue color in Figure 10.3. Figure 10.4 shows the actual adjustments that were made to the DEM. 

These subtraction values were calculated as the unadjusted lidar elevation minus the adjusted 

elevation.  

Figure 10.1: Leave-one-out validation plots of Pascagoula (left) and Apalachee Bay (right). 

The RF model improved the accuracy by about 69% for Apalachee Bay and about 90% for 

Pascagoula. 
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Figure 10.2: Comparison of the source (top) and adjusted (bottom) DEMs for Apalachee Bay 
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Figure 10.3: Comparison of the source (top) and adjusted (bottom) DEMs for Apalachee Bay 

zoomed in to the area where RTK spot elevations were taken. Notice the adjusted DEM shows 

underlying topography in the manmade impoundment which is called out by the white arrow.  
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Figure 10.4: Map showing the adjustments made to the DEM calculated as lidar elevation 

minus adjusted elevation for Apalachee Bay. The purple area outside the boundary on the west 

side of the image contains a value of zero because it was outside the area of adjustment. The 

adjustment lowered the elevation by an average of 0.29 m. 

 

 

Figure 10.5: Map showing the adjustments made to the DEM calculated as lidar elevation 

minus adjusted elevation for Pascagoula. The adjustment lowered the elevation by an average of 

0.56 m. 
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10.2 Lidar Bias Mitigation – Pascagoula Region 

The results of the cross-validation procedure for Pascagoula are shown in Figure 10.1. Recall 

that this reflects the results of using 609 data points to train the model and testing it on the single 

held-out value for a total of 610 training / test cycles. This is 1.6 times the amount of data points 

that was used for the Apalachee Bay region.  

The MAE for the source DEM was 0.493m. The RF model achieved an MAE = 0.044 m and 

the LR model achieved an MAE = 0.054 m. During the cross-validation procedure, the RF was 

the better performing model. Additionally, the RF model improved the accuracy of the DEM by 

about 90% and achieved a sub 5 cm MAE when used to predict the bias in the lidar DEM.  

The trained RF model was applied to the lidar DEM of the Pascagoula domain. The 

adjusted DEM for the entire area is shown in Figure 10.6. As with Apalachee, the differences are 

difficult to see at this scale. The adjustment lowered the lidar DEM by an average of 0.56m. 

When zoomed in to the area east of Portersville Bay, the differences between the source and 

adjusted DEM are more apparent (Figure 10.7). The adjusted DEM in this area appears to be a 

darker shade of purple which corresponds with a lower elevation compared to the source DEM.  
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Figure 10.6: Source DEM (top) compared to the adjusted DEM (bottom) for the entire 

Pascagoula domain. Differences are difficult to see at this scale. Figure 10.7 shows the 

differences more clearly. 
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Figure 10.7: A comparison of the source (top) and adjusted (bottom) Pascagoula DEM zoomed 

in on the area east of Portersville Bay.  



 

 

32 

 

10.3 Nonlocal Validation Testing 

It is expected that a lidar DEM from one location could be validated by an RF model trained 

on data from another location if the systems are ecologically similar. We tested this hypothesis 

by predicting the errors in Apalachee Bay using the Pascagoula RF model, and vice versa.  

Figure 10.8 shows that using a model on nonlocal data results in poor prediction accuracy 

because the R2 values are negative. A negative R2 value indicates that these predictions are worse 

than simply using the average of the point DEM errors as the prediction.  

This graph also shows a shortcoming of machine learning models because the RF model 

cannot make predictions outside of the boundaries of the data with which it was trained. In 

Figure 10.8a, the predictions are clearly constrained between -0.2 and 0.5. The three outlier 

points clustered around -0.1 should have a prediction close to -1, but since the model was trained 

with APAL data, it did not have any points close to -1 to reference. The results show that the 

model relies on having data in the marsh within the adjustment domain despite being similar 

from an ecological perspective. The differences in the tidal hydrodynamics likely necessitate 

local data for each adjustment. Table 10.1 shows the hydrodynamics at each location. The 

hydrodynamics appear similar, but the differences relative to the tide range are significant. 
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Figure 10.8: The DEM errors in the Pascagoula data were predicted using the Apalachee model 

(left) and the DEM errors in the Apalachee data were predicted using the Pascagoula model 

(right). 

 

Table 10.1: Tidal datum elevations at each location (NAVD88) 

  

 APAL (m) PASC (m) 

Mean High Water (MHW) 0.228 0.2339 

Mean Seal Level (MSL) 0.045 0.031 

Mean Low Water (MLW) -0.110 -0.174 

a b 
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11 Discussions, Conclusions, and Recommendations 

Using DEM in Apalachee with lidar data collected almost a decade apart creates an 

opportunity to analyze differences in lidar acquisition from 2007 and 2017/2018. Additionally, 

the most important predictor for the RF model was the DEM_elevation field. Furthermore, the 

nonlocal validation tests showed that local data is necessary to validate the model. Future work 

should include finding the optimum amount of training data needed for a model and a universal 

adjustment model should be explored as well.  

11.1 Improvements in Lidar Acquisition Technology 

To fully cover the Apalachee Bay region of interest, three data sources were mosaicked 

together. This was discussed in Section 9.2. Using data that was collected a decade apart (2007, 

2017, 2018) created the opportunity to compare the magnitude of the error. The DEM data 

collected for the Apalachee Bay region in 2017/2018 is substantially better than the 2007 data in 

terms of the high elevation bias. The mean of the error distribution from 2007 DEM is about 0.65 

compared to about 0.16 for the more recent DEM. This difference could be attributed to 

improvements in data collection technology as well as post-processing, specifically 

improvements in geometric calibration and radiometric correction. (Yan, Shaker, Habib, & 

Kersting, 2012) Additionally, the 2007 lidar DEM had five-meter resolution whereas the 2017 

and 2018 DEMs were two meter and one-meter resolutions, respectively. Continued 

improvements in lidar acquisition and processing could eliminate the need for an adjustment. 

However, the current technology is not enough to meet the need for high accuracy digital 

elevation models (Alizad et al., 2020). 

11.2 Most Important Predictor 

Feature importance is a built-in metric for trained RF models. It allows us to compare 

how important each predictor is in producing predictions. Table 11.1 shows the feature 
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importances for each predictor of error for both research settings. The DEM_Elevation predictor 

had the highest relative feature importance for both locations, therefore it explains most of the 

variability in lidar DEM error. The elevation of the marsh platform controls inundation potential 

and bare ground visibility (J. Morris, 2007), while the RGB and NIR predictors likely capture 

vegetation vigor and subsequently its interference with the laser. Since the DEM elevation is the 

most important predictor of the error, we can infer that inundation potential and bare ground 

visibility are more influential than vegetation vigor in predicting the error for these locations.  

 

Table 11.1: Feature importances for each model predictor and adjustment region.  

Predictor Feature Importance 

 Pascagoula Apalachee Bay 

DEM Elevation 0.6272 0.3725 

B8 (NIR) 0.0999 0.1345 

B4 (Red) 0.0896 0.1381 

B3 (Green) 0.0983 0.2313 

B2 (Blue) 0.0851 0.1236 

 

11.3 Non-local Topographic Data  

We reject the hypothesis that trained RF models are transferrable. Although the lower 

Pascagoula and Apalachee Bay are similar from an ecological perspective, the differences in the 

hydrodynamics require local data for each adjustment. The efficacy of a universal adjustment 

model trained on an expanded dataset across multiple marshes, especially those across a broad 

range of hydrodynamic conditions and ecologies remains to be seen. 

11.4 NWI Inconsistency 

A result we discovered when processing the geospatial data was an inconsistency in the NWI 

data for Apalachicola that appeared as unnatural discontinuities as seen in Figure 11.1. The NWI’s 
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terminology for classifications changed in 2013, which caused the discontinuity in the data north 

of Apalachicola (Figure 11.1) (Federal Geographic Data Committee, 2013).  

 

 

Figure 11.1: Inconsistency in the NWI mask for the Apalachee region illustrated by the 

unnatural breaks in the mask. This potentially caused some of the area of interest to be left out of 

the adjustment, which is outlined in white.   

 

11.5 Conclusions 

To accurately model a microtidal marsh system, the most representative DEM possible is 

preferred. A properly trained RF model can be used to reduce the error in the lidar-derived DEM 

In this study, the DEM was lowered by an average of 0.29 m for Apalachee and 0.56 m for 
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Pascagoula. The RF model improved the MAE of the DEM from 0.177 m to 0.054 m, improving 

the accuracy of the DEM by about 69% for Apalachee. For Pascagoula the results were even 

better, the RF model improved the MAE from 0.493m to 0.044m, improving the accuracy of the 

DEM by about 90%. DEM elevation is the most important parameter for predicting error in the 

DEM over the satellite imagery. However, the satellite imagery improves the performance of the 

model and should be included in the training dataset. 

11.6 Recommendations 

This approach can be adapted for other salt marshes, but local ground truth data are required 

to train and validate the model. In future work, a more consistent data source should be used to 

constrain the DEM adjustments to emergent wetlands in this region, such as the NOAA Coastal 

Change Analysis Program (C-CAP) Wetland Potential Layer. Other remotely sensed data sources 

could be explored with finer resolution such as Planetscope with RGB NIR at 3.7 m resolution or 

a UAS derived RGB NIR imagery with even finer resolution. Additionally, sediment elevation 

tables could be used as virtual ground truth points as opposed to collecting ground truth points by 

hand. A universal RF adjustment model that is trained on multiple datasets that represent a variety 

of hydrologic conditions could also be explored. As lidar acquisition and processing technology 

improves, the need for accurate elevation models will evolve as new demands arise.  
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