
Doctoral Dissertations and Master's Theses

Spring 2022

Stochastic Model Predictive Control via Fixed Structure Policies Stochastic Model Predictive Control via Fixed Structure Policies

Elias Wilson
Embry-Riddle Aeronautical University, wilsone8@my.erau.edu

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Navigation, Guidance, Control and Dynamics Commons

Scholarly Commons Citation Scholarly Commons Citation
Wilson, Elias, "Stochastic Model Predictive Control via Fixed Structure Policies" (2022). Doctoral
Dissertations and Master's Theses. 659.
https://commons.erau.edu/edt/659

This Dissertation - Open Access is brought to you for free and open access by Scholarly Commons. It has been
accepted for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly
Commons. For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/226?utm_source=commons.erau.edu%2Fedt%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/659?utm_source=commons.erau.edu%2Fedt%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

By

A Dissertation Submitted to the Faculty of Embry-Riddle Aeronautical University

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Aerospace Engineering

Embry-Riddle Aeronautical University

Daytona Beach, Florida

By

DISSERTATION COMMITTEE

Graduate Program Coordinator,
Dr. Sirish Namilae

Date

Dean of the College of Engineering,
Dr. James W. Gregory

Date

Senior Vice President for Academic
Affairs and Provost,
Dr. Lon Moeller

Date

ACKNOWLEDGMENTS

I would like to thank every member of my committee as each of you have helped me, in

some way, learn and grow. I cannot express enough praise for my advisor Dr. Prazenica

who gave me an opportunity to find my own path and do what I wanted. You were helpful

along the way and always offered useful advice or at least some dry humor. I was always

excited to meet and discuss 20 minutes of actual work over 2 hours. I look forward to staying

connected and working with you more in future. Dr. Henderson will forever go down as the

professor who could beat Dr. Prazenica in never returning graded homework. Your brief

yet quick replies to emails at any odd hour were always appreciated. Dr. Nazari convinced

me that making simulations within scripts instead of Simulink was cool. I desire to be cool,

so I started to model systems in this way. I now realize that creating my own work flows,

integrators, and functions not only makes me cool but also results in me learning what is

actually happening. Dr. Drakunov revolutionized the way I think about randomness in our

lives and he did so through a web cam and a board only slightly larger than a piece of paper.

Unfortunately, I was not able to take any classes with Dr. Dogan. I was, however, fortunate

enough to see your rise within the university as I watched the presentation you gave prior

to be hired. You put me in my place in terms of how much work I have got done as a Ph.D.

student. I need to thank Dr. Alvaro Velasquez who is not on my committee but he gave me

the opportunity to work with him at the Air Force Research Laboratory, and without that

experience, I would have never ended up going down this path. Lastly, Dr. Mark Gummin,

of small town Oregon fame, is the real reason why I am in this position. Without you, I

would have not attended graduate school.

i

ABSTRACT

In this work, the model predictive control problem is extended to include not only open-

loop control sequences but also state-feedback control laws by directly optimizing parameters

of a control policy. Additionally, continuous cost functions are developed to allow training of

the control policy in making discrete decisions, which is typically done with model-free learn-

ing algorithms. This general control policy encompasses a wide class of functions and allows

the optimization to occur both online and offline while adding robustness to unmodelled

dynamics and outside disturbances. General formulations regarding nonlinear discrete-time

dynamics and abstract cost functions are formed for both deterministic and stochastic prob-

lems. Analytical solutions are derived for linear cases and compared to existing theory, such

as the classical linear quadratic regulator. It is shown that, given some assumptions hold,

there exists a finite horizon in which a constant linear state-feedback control law will stabilize

a nonlinear system around the origin. Several control policy architectures are used to regu-

late the cart-pole system in deterministic and stochastic settings, and neural network-based

policies are trained to analyze and intercept bodies following stochastic projectile motion.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS i

ABSTRACT ii

LIST OF FIGURES viii

LIST OF TABLES ix

1 Introduction 1

1.1 Simple Motivating Example 4

2 Current Technology 8

2.1 Optimal Control Methods 8

2.2 Dynamic Programming 10

2.3 Reinforcement Learning 11

3 Parameterized Policy Model Predictive Control 13

3.1 Control Policy 13

3.2 Cost and Value Function 14

3.2.1 Cost Function 14

3.2.2 Value Function 17

3.3 Unconstrained Deterministic Problem 18

3.4 Unconstrained Stochastic Problem 19

3.5 Constrained Deterministic Problem 20

3.6 Least-Squares Approximation 21

4 Optimization Methods 23

4.1 Gradient Descent 24

4.1.1 Vanilla Gradient Descent 24

iii

4.1.2 ADAM 25

4.2 Value Function Derivative 26

4.2.1 Stochastic Value Function Derivative Approximation 29

4.3 Genetic Algorithm 29

5 Control Policy Architectures 32

5.1 Control Bound Constraint 33

5.1.1 Output Layer Derivative and Dropout 35

5.2 Open-Loop Control Sequences 39

5.2.1 Open-Loop Control Sequence Derivative 39

5.3 Linear Feedback Gain Based Policies 40

5.3.1 Constant Gain 40

5.4 Time-Varying Gain 41

5.5 Neural Network-Based Policies 43

5.5.1 Activation Functions 44

5.5.2 Single-Layer Perceptron 48

5.5.3 Convolutional Neural Network 52

6 Regulation Stability 55

6.1 Linear Feedback Control 60

7 Linear Quadratic Regulator 63

7.1 Open-Loop Control 63

7.2 Linear Feedback 68

7.3 Infinite Horizon Approximation Linear Feedback 70

7.4 Linear Quadratic Gaussian 74

8 Simulation Environments 77

8.1 Cart-Pole 77

iv

8.1.1 Cart-Pole Cost Function 78

8.2 Dot Intercept 79

8.2.1 Dot Intercept Cost Function 81

9 Simulation Results 90

9.1 Nonlinear Oscillator 90

9.1.1 Constant Gain Regulation over Finite Horizons 91

9.2 Stationary Horizon Cart-Pole Regulation 92

9.2.1 Pole Stabilization 92

9.2.2 Stabilization with Stochastic Initial Condition 95

9.2.3 Constant Gain State Feedback Convergence 96

9.2.4 Swing-Up Maneuver 98

9.3 Receding Horizon Cart-Pole Regulation with Modelling Error 99

9.4 Dot Interception with Stochastic Initial Conditions 101

9.5 Dot Interception with Process Noise 104

10 Conclusion 109

REFERENCES 115

PUBLICATIONS 122

APPENDIX A 123

APPENDIX B 124

APPENDIX C 127

APPENDIX D 129

APPENDIX E 132

v

LIST OF FIGURES

Figure Page

5.1 Sigmoid, hyperbolic tangent, and min-max activation function outputs given

u ∈ R[−1,1]. 34

5.2 Sigmoid, hyperbolic tangent, and min-max activation function derivatives

given u ∈ R[−1,1] 38

5.3 An example multi-layer perceptron neural network [1] 44

5.4 Rectified linear unit (ReLU), which is widely used and discontinuous, com-

pared to the swish activation function, which has similar properties and is

continuous. 46

5.5 Derivative of the rectified linear unit (ReLU) and swish activation functions. 47

5.6 Example convolutional neural network used for image recognition [2] 54

8.1 Cart-pole environment 77

8.2 Dot intercept environment 79

8.3 Dot intercept cost function example representation. 83

8.4 Effects of varying the depth standard deviation and the boundary constraint

constant. 85

9.1 Nonlinear oscillator regulation with the linear quadratic regulator and model

predictive control derived linear feedback gains. Left shows the value of gains

derived and right shows the resulting cost given a varying initial displacement

with zero initial speed. 90

9.2 Linear oscillator regulation with varying constant gain policy techniques and

the time-varying finite horizon linear quadratic regulator solution. Left shows

the the total cost observed by each policy, and the right shows the magnitude

of the closed-loop eigenvalues. 91

vi

9.3 Optimal regulation of the cart-pole system over 1 second using various control

policies (Nh = Ns = No = 101, ∆t = 0.01s) with
¯
x0 = [1 0 4π/18 0]T and

the weights S = Q = diag({1 0 2 0}), R = 0.001. 94

9.4 Sample regulation of the cart-pole system over 1 second using various control

policies (Nh = Ns = No = 101, ∆t = 0.01s) with
¯
x0 = [0 0 0.1392 0]T in (a),

and the average state values of the control policies over 5000 trials in (b) with

the weights S = Q = diag({1 0 2 0}), R = 0.001. 96

9.5 Sample regulation of the cart-pole system over 1 second using a time-varying

linear feedback policy and the finite horizon linear quadratic regulator (Nh =

Ns = No = 101, ∆t = 0.01s) with
¯
x0 = [0.8532 0 0.5957 0]T in (a), and the

average state value of the two policies over 5000 trials in (b) with the weights

S = Q = diag({1 0 2 0}), R = 0.001. 97

9.6 Total cost and closed-loop eigenvalues convergence of the cart-pole system

controlled by a constant linear state feedback policy over an increasing opti-

mization horizon with the initial condition
¯
x0 = [1 0 4π/18 0]T . 97

9.7 Cart-pole swing up maneuver using nonlinear and time-varying control policies. 98

9.8 Regulation of the cart-pole system over 1 second using various control policies

(Nh = Ns = No = 101, ∆t = 0.01s) with varying amounts of pole length

modelling error, the initial condition
¯
x0 = [1 0 4π/18 0]T , and the weights

S = Q = diag({1 0 2 0}), R = 0.001. 100

9.9 Receding horizon control of the cart-pole system using an OCS and CG policy

with Nh = 101, No = 10, and varying error in pole length modelling error.

In (a), (b), (c), and (d), the pole modelling error is 0.07m, 0m, −0.07m, and

−0.15m, respectively. 102

9.10 Dot interception using a 1D CNN and 2-layer MLP network with unmodelled

process noise and the standard deviation σw = diag ({0.001, 0.01, 0.001, 0.01})

scaled from 0 to 10. 103

vii

9.11 Dot interception using a 1D CNN trained with fixed process noise over trials

with varying standard deviation σw = diag ({0.001, 0.01, 0.001, 0.01}) scaled

from 0 to 10. 105

9.12 Sample trial of dot interception with no process noise using the 1D CNN

policy that takes in 5 time steps of data. 106

9.13 Sample trial of dot interception with no process noise using the 2-layer MLP

policy. 107

9.14 Sample trial of dot interception with process noise of standard deviation σw =

diag ({0.01, 0.1, 0.01, 0.1}) using the 1D CNN policy that takes in 11 time steps

of data. 108

1 Sigmoid used for discrete step approximation assuming ymin = 0. 130

viii

LIST OF TABLES

Table Page

5.1 Comparative average computational time of output layer activation functions

and scaling over 106 iterations where the input at each iteration is taken to

be
¯
w ∈ R1000×4 ∼ N (0, 1) and the control bounds are

¯
umax = −

¯
umin = 14. 35

5.2 Comparative average computational time of output layer activation function

derivatives and scaling over 106 iterations where the input at each iteration

is taken to be
¯
w ∈ R1000×4 ∼ N (0, 1) and the control bounds are

¯
umax =

−
¯
umin = 14. 39

5.3 Comparative average computational time of hidden layer activation func-

tions over 106 iterations where the input at each iteration is taken to be

¯
w ∈ R1000×4 ∼ N (0, 1). 46

5.4 Comparative average computational time of hidden layer activation function

derivatives over 106 iterations where the input at each iteration is taken to be

¯
w ∈ R1000×4 ∼ N (0, 1). 48

9.1 Optimal regulation cost of the cart-pole system over 1 second using various

control policies (Nh = Ns = No = 101, ∆t = 0.01s) with
¯
x0 = [1 0 4π/18 0]T

and the weights S = Q = diag({1 0 2 0}), R = 0.001. 93

9.2 Average regulation cost of the cart-pole system over 1 second using various

control policies (Nh = Ns = No = 101, ∆t = 0.01s) with
¯
x0 = [0 0 ϕ0 0]T

where ϕ0 ∼ U(−π/18, π/18) and the weights S = Q = diag({1 0 2 0}),

R = 0.001 over 5000 trials. 95

ix

1 Introduction

Model predictive control (MPC), introduced by Richalet et al., has been extensively

studied over the past few decades and has proven to be a powerful tool for controlling large

complex systems. The MPC algorithm works by predicting a plant’s trajectory, over a finite

time horizon, given an open-loop control sequence (OCS), then improving upon those inputs

until an optimal set is found with respect to a user defined cost function. In general, cost

functions follow a similar quadratic form and can be easily designed to perform varying tasks

from regulation to tracking. No assumptions are made on the plant dynamics, other than

being differentiable, so the algorithm can be applied to both linear and nonlinear systems.

Lastly, functional constraints can be placed on both the system states and control inputs to

ensure the problem does not give physically infeasible solutions. Most notably, including a

terminal constraint on the system states dictates that the states must be equal to or within

a region around a specified value at the end of the time horizon.

Similar to MPC, dynamic programming (DP) works by predicting the system response

over a finite time horizon. Dynamic programming involves finding optimal value and policy

functions over the entire state space. For this reason, DP solutions come in the form of feed-

back control laws, which are robust to unmodelled dynamics and disturbances, while MPC

solutions give an OCS. Model predictive control simplifies the overall problem compared to

DP, in some way, by reducing the underlying optimization to just a single trajectory. For

systems with large or continuous state spaces, MPC proves more computationally realiz-

able as the solution does not concern the entire space. This issue is known as the curse of

dimensionality and, by itself, opened another realm of research regarding DP.

The goal of this work is to explore MPC’s ability to compute feedback control policies.

It is easy to imagine that, given an optimal state trajectory and set of control inputs, some

arbitrary function could be formed to map those states to the control inputs. If a function

with universal approximation capability, such as an infinite width single layer neural network,

were used, then any set of states could be mapped to any set of control inputs. That system

1

could then operate using the feedback function and follow the same trajectory as the OCS.

More interestingly, if the optimal trajectories and inputs were found for a variety of initial

conditions and covered a larger portion of the state space, a more powerful version of the

feedback function, which could produce more than one optimal trajectory, could be found.

Essentially, this would be pushing the MPC algorithm towards DP as more and more of the

total state space is explored.

In this work, a version of MPC, which is denoted parameterized policy model predictive

control (PPMPC), is presented. The goal is to find feedback control policies, not by solving

conventional MPC problems and then performing least squares regressions, but by directly

computing the optimal policy parameters. By taking the derivative of the cost function with

respect to the policy parameters, an iterative optimization scheme can be used to solve the

problem. This does not necessarily preclude solving for an OCS as the policy is taken to be

a general user-defined function. The policy parameters could take the values of the OCS, a

linear feedback gain, an arbitrary polynomial, a piecewise defined function, or even a neural

network. The main benefits to solving the optimal control problem in this way is a potential

decrease in computational effort, if there is a decrease in the total number of parameters to

solve for compared to conventional MPC, and increased robustness to unmodelled dynamics

and disturbances.

As computation power becomes increasingly accessible and easier to include within sys-

tem designs, ”brute force” control strategies become more appealing. One of these strategies

is Monte Carlo simulation, which has shown to be extremely powerful given enough com-

putational effort. Within the realm of reinforcement learning, Monte Carlo simulation is

used to perform massive statistical regressions within highly nonlinear discontinuous sys-

tems. Silver et al. showed how Monte Carlo Tree Search (MCTS) could be used to not only

play the ancient Chinese game Go, a difficult task, but also beat the world champion in

a real time sanctioned match. By “simply” running thousands or millions of simulations,

statistical information regarding a system can be gauged and utilized to form advantageous

2

control policies.

Within traditional control theory, stochastic systems are generally handled by assuming

random variables within the dynamics and measurements come from predefined probability

distributions. Most commonly, a Gaussian distribution is assumed, which enables estimators,

such as the various forms of the Kalman filter, to provide information on the true value

of the system state. Within complex nonlinear systems, even if the random variable or

variables come from some well behaved probability distribution, like the Gaussian one, the

characteristics of that distribution are distorted by the dynamics. This implies that the

probability distribution is actually changing throughout time. By performing the policy

optimization on a bundle of trajectories, the underlying statistical effects can be accounted

for along with a wider berth of the state space.

There are three main technical objectives to be addressed throughout this work: develop-

ing a deterministic PPMPC method, developing a stochastic PPMPC method, and including

decision making capabilities within these methods. For both the deterministic and stochas-

tic cases, the proposed formulation will be compared, within a linear environment, to well

known theory. The linear quadratic regulator and linear quadratic Gaussian will both be

derived using the presented formulas. Outside of analytical solutions for linear systems, the

algorithm will be tested in nonlinear environments using a numerical optimization approach.

Existing work regarding closed-loop regulation stability for general nonlinear policies is pre-

sented along with specific focus on constant linear state feedback policies. It is shown that,

given a large enough optimization horizon, a constant linear state feedback policy produces

will stabilize the system around the origin. Additionally, a continuous cost function that

allows a policy to be trained to make high level decisions and control a system is developed.

This dissertation is organized as follows. In the next section, a simple motivating problem

is presented to help further explain the goal and potential power of solving optimal control

problems by optimizing policy parameters within nonlinear environments compared to us-

ing linear approximations. In Chapter 2, an overview of related work is given along with

3

comparisons to the algorithm proposed here. Chapter 3 briefly introduces a general control

policy definition, thoroughly describes the value function, presents several cost function ar-

chitectures, and gives several forms of the optimizations problems to be solved. Methods

for solving optimization problems are given in Chapter 4, including a generic derivative of

the value function. Chapter 5 thoroughly describes how control policies are used within

the context of the this work and gives not only several examples to be tested but also the

required derivatives of those for use within the value function derivative. Regulation sta-

bility is addressed in Chapter 6. Existing stability proofs regarding MPC are presented

and leveraged to show optimal linear state feedback policies will stabilize nonlinear systems,

given that certain assumptions on the cost function, dynamics, and initial condition are met.

Linear quadratic regulator problems are analyzed in Chapter 7. The classical finite horizon

linear quadratic regulator is derived and that solution is used show how the linear quadratic

Gaussian can be derived. Additionally, constant linear state feedback gains are explored

for use within finite horizon problems. Chapter 8 presents the cart-pole and dot intercept

environments, which will be used to test the presented control strategy. Simulation results

are provided in Chapter 9, conclusions are made in Chapter 10

1.1 Simple Motivating Example

Model predictive control can be used to find not only a numerically identical feedback

gain for a linear system compared to the linear quadratic regulator (LQR) but also a better

performing gain for a system with nonlinearities. To show the efficacy of this approach, a

simple nonlinear oscillator is considered:

f(
¯
x, u) =

 x2

−κx1 − cx2 + b(3 sinx1) + u

 (1.1)

where
¯
x = [y ẏ]T is the state vector, y ∈ R is the displacement from zero, ẏ ∈ R is the

velocity, κ ∈ R is the spring stiffness, c ∈ R is the damping, and b ∈ {0, 1} acts as a

switch to enable or disable the sinusoid. This work focuses on discrete-time dynamics, so

4

this continuous time model is discretized using the first order Euler method:

¯
xk+1 =

¯
xk +∆tf(

¯
xk, uk) (1.2)

where k ∈ N is the time step and ∆t ∈ R>0 is the amount of time between steps. The goal is

to find a feedback gain K for the control policy uk = −K
¯
xk that minimizes the cost function

J =
1

2

∞∑
k=0

(
¯
xk

TQ
¯
xk +Ruk

2
)

(1.3)

where Q ∈ R2×2
≥0 is a symmetric state weighting matrix and R ∈ R>0 is a scalar weight on

the control inputs.

Given a completely linear system, the solution to this problem is well known: the infinite

horizon LQR, which, for the scope of this example, will be referred to simply as the LQR

[5]. The LQR feedback gain is given by solving the algebraic Riccati equation (ARE)

02×2 = S∞ − ATS∞(I +BR−1BTS∞)−1A−Q (1.4)

where 02×2 is a matrix of zeros, A ∈ R2×2 is the linear dynamics state matrix, B ∈ R2×1

is the control input matrix, and S∞ ∈ R2×2 is the solution to the ARE. The sizes of these

matrices are set by the number of states and control inputs within the dynamic system.

Once the solution to the ARE is found, the feedback gain is given by:

K∞ = R−1BTS∞
(
I2×2 +BR−1BTS∞

)−1
(1.5)

In a simplified sense, the LQR computes a sequence of control inputs that satisfies the

condition

dJ

duk
= 0 ∀ k ∈ N[0,∞) (1.6)

and it just happens to be that the solution to this problem is a linear feedback control law.

5

Using MPC, this problem can be solved by making the initial assumption that a linear

feedback control law is going to be used and finding the gain KMPC ∈ R1×2 that satisfies

dJ

dKMPC

= 01×2 (1.7)

Some approximation must be made since solving an infinite horizon optimal problem numer-

ically is not tractable; however, given a long enough horizon, the MPC solution will converge

towards the LQR solution. This problem can easily be solved by numerical optimization

software without even requiring the first order derivatives be input.

First, consider the case where b = 0 and the system is linear. Let ∆t = 0.01s, κ = −1,

and c = 1. Then the discrete dynamics matrices can be written as

A =

 1 0.01

0.01 0.99

 B =

 0

0.01

 (1.8)

and the weighting matrices can be taken to be: Q = I2 and R = 0.1. Additionally, all

simulations are ran for 10 seconds, which sets the horizon of the MPC cost, and all initial

conditions are taken to be
¯
x0 = [2 0]T . The LQR gain can be found by solving the ARE

and substituting that solution into Eq. (1.5), which yields K∞ = [4.260 3.386] and a corre-

sponding cost of J∞ = 316.0. Letting the MATLAB interior-point solver compute the MPC

gain yields KMPC = [4.260 3.386] with the corresponding cost JMPC = 316.0. Clearly, the

MPC approach will numerically reproduce the analytical solution.

Next, consider the case where b = 1 with κ, c, Q, and R remaining the same. Linearizing

the dynamics around
¯
x = 02×1, for use within the LQR algorithm, gives

A =

 1 0.01

0.04 0.99

 B =

 0

0.01

 (1.9)

which leads to the feedback gain K∞ = [8.988 4.335] with the resulting cost of J∞ =

6

509.4. Solving this nonlinear problem with MPC yields KMPC = [5.890 2.015] with the

cost JMPC = 486.3. Since the MPC algorithm bases its solution on the true nonlinear

dynamics, a more optimal feedback gain is found. The spring constant begins to decrease as

the displacement increases, which likely necessitates the smaller gain.

In this simple example, a performance benefit is shown when solving for a linear feedback

gain using MPC within a nonlinear dynamic setting. More importantly, this example suggests

that MPC can be used to determine more powerful control policies rather than just linear

feedback gains. A side effect of the nonlinear dynamics is that the optimal feedback gains

are now functions of the initial condition, a topic that will be explored more later in this

disseration. While linear control theory works well for systems like this one, within some

range of
¯
x0, performing complex maneuvers with nonlinear systems can prove to be quite

difficult. Given that MPC takes into account nonlinearities within the system, both powerful

nonlinear feedback policies and improved simpler linear policies can be found and shown to

perform better than the linear control theory counterpart.

7

2 Current Technology

2.1 Optimal Control Methods

Using full-state feedback and Euler-Lagrange equations, the linear quadratic regulator

(LQR) can be derived in a straightforward manner. No a priori assumption is made about

the form of the control law, yet the derivation eventually shows that a linear time-varying or

constant feedback control law is the optimal choice for finite or infinite horizons, respectively.

In both cases, a Ricatti equation is used to solve for the feedback gain, which does not depend

on the system states, but rather just the linear dynamic matrices. By linearizing nonlinear

dynamics around a given trajectory or within a given range of the state space, linear optimal

control techniques like this can be applied to nonlinear systems to produce state feedback

control laws (SFCLs) [6]. [7, 8] give closed-form solutions for regulation of nonlinear systems

using time and state dependent feedback gains found via a state dependent Riccati equation.

The derivation of the LQR for output feedback is a different process [5]. For the output

feedback LQR, in continuous time, the assumption
¯
u(t) = −K

¯
y(t), where

¯
y(t) = C

¯
x(t) is

the state measurement and C ∈ Rr×n is the output matrix, is made from the start, and

the problem is posed as finding an optimal value of K not the control sequence
¯
u(t). This

process yields a system of equations to solve for the optimal feedback gain. Misra and Bai

used an assumed feedback gain to control stochastic systems with output feedback. Instead

of just using the current state measurement, a time history of information was used to aid in

noise filtering and state estimation. This method is somewhat related to how convolutional

neural networks (CNNs) were leveraged by Wilson and Prazenica, where a time history of

data was used to estimate hidden states within a rotor system.

Explicit MPC entails finding an explicit control law offline and then implementing it, a

generally piecewise affine function, online. This helps reduce the online computational bur-

den since only a single function needs to be evaluated as opposed to solving an optimization

problem. Alessio and Bemporad give a survey of explicit MPC methods and Rawlings and

Mayne provide technical derivations. Both show that most applications treat linear sys-

8

tems with either quadratic or linear cost functions, which result in either quadratic or linear

multiparametric programs. Given linear constraints on the states and controls, the optimal

control law is found as a piecewise function whose domain is specified by the constraints.

Hovland et al. use explicit MPC to control large systems with fast dynamics, which generally

provide a challenge for MPC algorithms. Within a large state space, the computational re-

quirements for optimization are large, especially if that optimizations needs to be performed

quick enough to control a naturally unstable system with fast dynamics. Using explicit MPC

moves the computational burden offline as the optimal SFCL found is significantly easier to

evaluate.

Least-squares (LS) regression can be used to find approximations of optimal control

policies. Chen et al. used explicit MPC to derive a piecewise control law for high frequency

power electronics and then trained a neural network (NN) to reproduce the outputs of the

function. The NN helped increase computation speed as a large search through the domain

did not need to be performed. In a similar sense, Suykens et al. solved for optimal radial

basis function (RBF) weights by simultaneously solving a base MPC problem to find the

optimal inputs, and a regression problem, to minimize the error between the RBF output

and those optimal inputs. Sánchez-Sánchez and Izzo used a LS approach to train a NN

based policy to land spacecraft. By training a NN to reproduce optimal feedback functions

or inputs, these methods resemble the problem being presented in this work. Using a single

function as the control policy, all of the optimal solutions over some portion of the state

space are captured, in a least squared error sense.

Chen et al. approximated an explicit MPC law by directly finding the optimal parameters

for a NN based function. The poilcy parameters are optimized using the policy gradient

theorem [18] with an advantage function. The advantage function essentially provides a

way to greedily update the policy based on the system dynamics without taking a gradient

of those dynamics. By performing a large number of simulations with a stochastic control

policy, the state-control space is explored and any control inputs that provide an advantage

9

over others are weighted heavier while updating the policy parameters.

Eisenberg and Sage introduced Specific Optimal Control (SOC), which considers solutions

to general nonlinear problems using predefined parameterized control policies. While the

presentation of SOC was general, the implementation was limited as computer power was

lacking. Kleinman and Athans solved linear quadratic variants using the SOC method as

the problems do not rely heavily on simulations and data. Colombo et al. use optimize the

weights of a time-based basis function within an MPC algorithm to control a robot with an

attached arm. At the end of the 20th century and moving into the 21st, when computer

power began to grow exponentially, Parisini, Zoppoli, et al. applied the SOC method to

train NN based policies [22–28]. While the problems are presented using the SOC method,

an emphasis is placed on LS regression approaches as NNs have large approximation power.

It is shown that, if an optimal policy approximation can reproduce the true optimal solution

to within some defined error, then the system will remain stable [26].

2.2 Dynamic Programming

Dynamic programming (DP) was introduced by Bellman and has been heavily studied

since [29]. Solving optimal control problems in the form of state feedback policies, DP

provides some attractive benefits over MPC but is not without some drawbacks. First

developed for discrete action and state spaces, the Bellman equation is as simple as it is

powerful and is written as:

V ∗(
¯
xk) = min

¯
uk

(L(
¯
xk,

¯
uk) + V ∗(

¯
xk+1)) (2.1)

where V ∗ is the optimal value of being in a particular state, L is the observed cost of going

to state
¯
xk+1 by using control input

¯
uk in state

¯
xk. In words, the equation states that the

optimal cost from time step k occurs by taking the optimal control input over one time step

and then following the optimal trajectory from that new state. This sets up a method to

perform backward recursion from the goal state to determine the optimal trajectory. By

10

optimizing the control input at all of the possible states along the horizon, a feedback law

is determined in the form of a table. Given a discrete action space, computing the control

input that gives a minimal cost is at least somewhat tractable. However, given a continuous

action space, solving for this optimal control input at every time step becomes quite difficult

as implementation requires exploring all of the possible trajectories throughout the horizon,

and since the action space is continuous, there are an infinite number of possible trajectories.

Within discrete action spaces, powerful policy determination methods have been devel-

oped and are known as policy and value iteration. These two methods are quite similar and

can be grouped under one idea called generalized policy iteration (GPI) [18]. The scheme

is composed of two phases: policy evaluation and policy improvement. During the policy

evaluation phase, the state value function is determined for the current policy at all of the

reachable states. In traditional policy iteration, the state value function is completely de-

termined for the current policy before moving to the policy improvement phase. In value

iteration, a single iteration on the value function is performed and then policy improvement

begins. Zhou et al. used an extension of DPI known as approximate (or adaptive) dynamic

programming (ADP) to control systems without complete observability. A large breadth of

information regarding DP, DPI, and ADP is covered by Bertsekas [31, 32].

2.3 Reinforcement Learning

Reinforcement learning (RL) methods of controlling all types of dynamic systems have

become incredibly popular as research continues to advance their effectiveness and acces-

sibility grows with not only increasing computer power but also easy to use code libraries

that can reduce a complicated RL problem to a single script. At a base level, RL is trying

to solve two problems, which have been reoccurring throughout this literature section, a

policy optimization and a least squares regression. The largest assumption of RL is that the

plant dynamics are completely unknown and, in turn, can be highly nonlinear, discontinu-

ous, and/or stochastic. The regression problem, most commonly, considers a critic learning

a Q-function that incorporates these dynamics along with the underlying reward structure

11

[33]. Again, this reward signal can be any abstract function, which allows sparse rewards to

be given. Generally, RL problems concern maximizing a reward as opposed to minimizing a

cost. The policy optimization problem then involves an actor finding a policy based on that

learned Q-function. Instead of directly optimizing the Q-function to find the optimal inputs

for a given state, which can prove to be quite difficult, the parameters of a feedback function

are optimized to produce desired control inputs. As an example, Balakrishnan and Biega

used an actor-critic based algorithm to find optimal regulators for the longitudinal plane of

an aircraft.

Reinforcement learning offers a large advantage over MPC by simplifying the assumptions

regarding the cost (reward) function. Model predictive control relies on derivatives of the

cost function and determining these can be quite difficult for discrete tasks (i.e. a reward is

observed by entering a state, but zero reward is given otherwise). These kinds of rewards

work well for robotics tasks that involve decision making. Making a certain decision may be

desirable and result in a positive reward, while making another may be undesirable and not

give any reward. Farshidian et al. present a method of combining the reward learning portion

of RL with the dynamic optimization of MPC. Using an actor-critic structure where the critic

comes from RL techniques and the actor uses the system dynamics like MPC, the algorithm

finds a blend of the two architectures’ powers. If the dynamics of the system are known,

using them within the optimization is clearly helpful, and learning a cost function allows

the system to not only operate with a sparse reward signal but also adapt to unmodelled

dynamics and/or disturbances. Similarly, Saerens and Soquet present a method of learning

plant dynamics while also solving optimal control problems using those dynamics.

12

3 Parameterized Policy Model Predictive Control

Conventional MPC problems entail finding open-loop control sequences (OCSs) over some

finite horizon, of length Nh ∈ N>0, that minimize a cost function J : Rn×Nh+1 × Rm×Nh 7→

R≥0. The discrete system dynamics are given by f : X ×U 7→ Rn as
¯
xk+1 = f(

¯
xk,

¯
uk), where

X ⊆ Rn and U ⊆ Rm are sets of admissible states and inputs, respectively. Here, MPC is

extended to include not only open-loop control but also feedback control.

3.1 Control Policy

The inputs of an OCS are not constrained to take the form of some function like a

typical feedback control law:
¯
u = −K

¯
x. However, the MPC problem can be generalized

to encompass both the conventional OCS and solutions where the control is assumed to be

given by a specific type of function with unknown parameters. Let, the control input be

given by the generic function µ : X × Θ × N[0,Nh−1] 7→ U , where θ ∈ Θ parameterizes the

function. Not all of the inputs will be used for every architecture, and the set Θ ⊂ Rp, where

p ∈ N>0 is the number of parameters, is determined by the assumed structure of the policy

and the desired performance of the controller.

If the control inputs were assumed to come from a linear feedback control law
¯
uk = −K

¯
xk,

θ would simply be the control gain K ∈ Rm×n reshaped to lie within Θ ⊆ Rmn via the

operator

θ = vec(K) (3.1)

which can be inverted with

K = vec−1
m×n(θ) (3.2)

Note, the subscript of the inverse reshaping function will be dropped when dimensions have

been clearly defined. In the constant linear feedback case, the state input is used but the

time step is not. Considering the conventional MPC case, the state input is no longer used

and the parameter θ ∈ Θ ⊆ RmNh is just the OCS U ∈ RmNh , which does not need to be

reshaped. Using this assumption of a general control law introduces the ability to derive

13

optimal controllers of varying forms: open-loop control inputs, linear feedback laws, or other

abstract nonlinear functions.

Any input constraints can be intrinsically handled by the control policy given that

µ(
¯
xk, θ, k) ∈ U ∀

¯
xk ∈ X , θ ∈ Θ, k ∈ N[0,Nh−1]. If the control constraints are simple upper

and lower bounds, a saturating function like a sigmoid or hyperbolic tangent can be used

to constrain outputs while also being differentiable. In practice, discontinuous functions like

min(·, ·) and max(·, ·) can be used to achieve the same outcome. Some consideration must

be taken with regard to the value of the derivatives at or near the constraint boundary.

Using a discontinuous function with a derivative taking values of 0 or 1 can result in no

update occurring if the constraint is active, and even in the continuous case, the derivatives

of the sigmoid and hyperbolic tangent functions quickly approach zero, which can scale the

derivative down significantly. This effect is especially apparent in time varying policies.

3.2 Cost and Value Function

Cost function design drives optimal controllers to perform in different ways. Commonly

cost functions include quadratic terms as these not only are easy to work with but also satisfy

the assumptions needed for optimization. More complex cost functions can be used as well,

although optimization becomes much more difficult if there are multiple local minima. In

this section, the base assumptions for a cost function with a single globally optimal solution

are presented along with some example quadratic cost functions commonly used. Then, the

system dynamics and control policy are used to derive the value function, which will be used

as the objective function in this work.

3.2.1 Cost Function

The cost function is assumed to be composed of a terminal cost ϕ : X 7→ R≥0 and a

running cost L : X × U 7→ R≥0 and is given by:

J(X,U) = ϕ(
¯
xNh

) +

Nh−1∑
k=0

L(
¯
xk,

¯
uk) (3.3)

14

where the state trajectory X ∈ XNh+1 and control trajectory U ∈ UNh are defined as:

X =

[
¯
x0

T

¯
x1

T · · ·
¯
xNh−1

T

¯
xNh

T

]T
(3.4)

U =

[
¯
u0

T

¯
u1

T · · ·
¯
uNh−2

T

¯
uNh−1

T

]T
(3.5)

The following assumptions hold for the terminal and running cost functions:

Assumption 1. ∃∂L(
¯
xk,

¯
uk)

∂
¯
xk

,
∂L(

¯
xk,

¯
uk)

∂
¯
uk

∀ k ∈ N[0,Nh−1],
¯
xk ∈ X ,

¯
uk ∈ U

Assumption 2. ∃∂Φ(
¯
xNh

)

∂
¯
xNh

∀ k ∈ N[0,Nh−1],
¯
xk ∈ X

Assumption 3. L(
¯
xk,

¯
uk) ≥ 0 ∀

¯
xk ∈ X ,

¯
uk ∈ U and L(0n, 0m) = 0

Assumption 4. L(
¯
xk,

¯
uk) > 0 ∀

¯
xk ∈ X when

¯
uk ̸= 0m

Assumption 5. ϕ(
¯
xNh

) ≥ 0 ∀
¯
xNh

∈ X and ϕ(0n) = 0

Assumption 6. L(
¯
xk,

¯
uk) → ∞ as

¯
xk → ∞ or

¯
uk → ∞

Assumption 7. ϕ(
¯
xNh

) → ∞ as
¯
xNh

→ ∞

There are three main attributes being forced by Assumptions 1-7: continuity, positive

(semi)definiteness, and radial unboundedness. To assess first order optimally and perform

gradient descent, a derivative (the transpose of the gradient) of the cost function will be

used, which means the cost function must be at least C1 with respect to its inputs. The cost

function must be positive semidefinite with respect to the system states and positive definite

with respect to the control inputs. These requirements lead to the existence of minima and

observability of the dynamics through the cost function. Within a linear quadratic context,

observability is addressed via the Gramian of the pair (A,Q1/2), where Q ∈ Rn×n
≥0 is a state

weighting matrix. In a nonlinear context, Assumptions 3 and 5 assert that a nonzero state

value returns a nonzero cost, and when combined with the radial unboundedness Assump-

tions 6 and 7, result in an observable system.

15

A non-decreasing radially unbounded cost function helps prove regulation stability of

optimally controlled systems as unstable systems return infinite cost for large horizons and

lower costs directly correlate to states that closer to the origin; class K and K∞ functions are

used to show a cost function is non-decreasing. First, a function α : R≥0 7→ R≥0 is class K

if it is strictly increasing and returns zero given a zero input (α(0) = 0). Second, a function

α∞ : R≥0 7→ R≥0 is a class K∞ if it is a class K function that satisfies limz→∞ α∞(z) = ∞. So,

a non-decreasing cost function is one such that there exists four K∞ functions α1, α2, α3, α4 :

X 7→ R≥0 where

α1(||
¯
xk||) < L(

¯
xk,

¯
uk) < α2(||

¯
xk||) (3.6)

for a given
¯
uk and

α3(||
¯
xk||) < ϕ(

¯
xk) < α4(||

¯
xk||) (3.7)

The same property can be applied with respect to the control inputs. Given two more K∞

functions α5, α6 : U 7→ R≥0 and a particular state
¯
xk, the cost of taking certain actions is

bounded as

α5(||
¯
uk||) < L(

¯
xk,

¯
uk) < α6(||

¯
uk||) (3.8)

The non-decreasing properties are used within Lyapunov based stability assessments. Not

all systems considered in this work satisfy these properties.

The most commonly used cost function in both linear and nonlinear control is the

quadratic function:

J(X,U) =
1

2¯
xNh

TS
¯
xNh

+
1

2

Nh−1∑
k=0

1

2¯
xk

TQ
¯
xk +

¯
uk

TR
¯
uk (3.9)

where S,Q ∈ Rn×n
≥0 and R ∈ Rm×m

>0 . Along with the ease of implementation, a quadratic cost

also satisfies all the necessary assumptions and non-decreasing properties required to assess

regulation stability. Note, in the context of matrices, the subscripts “≥ 0” and “> 0” denote

positive semidefinite and positive definite matrices, respectively. Modifying the cost to take

16

in error inputs

J(X,U) =
1

2¯
eNh

TS
¯
eNh

+
1

2

Nh−1∑
k=0

1

2¯
ek

TQ
¯
ek +

¯
uk

TR
¯
uk (3.10)

where
¯
ek =

¯
xk −

¯
xr,k with

¯
xr,k ∈ Xr begin a reference state, enables trajectory tracking.

Another commonly used cost function architecture, which is further explored in this

dissertation, is one where the inputs are minimized with a soft terminal constraint. In this

case

J(X,U) = ϕ(
¯
xNh

) +
1

2

Nh−1∑
k=0

¯
uk

TR
¯
uk (3.11)

where ϕ could take on the quadratic form in either Eq. (3.9) or (3.10) or it can be some

other appropriate function. This case is useful in that the outcome, or terminal state, is the

most important component as opposed to the entire trajectory. Similar problems are solved

by placing a terminal constraint on the problem and removing ϕ from the cost, but by just

increasing the weight of ϕ, a soft constraint is imposed on the problem. Soft constrained

problems are significantly easier to solve numerically as adding constraints not only increases

the overall computational complexity but also significantly restricts the solution space.

3.2.2 Value Function

Within optimal control it is common to find control inputs by minimizing (or maximizing)

the cost function with the dynamics included in the problem as a functional constraint. In

this case, Lagrange multipliers are typically used to solve the problem, resulting in the

Euler-Lagrange equations. Here, a value function, which is commonly found within RL

algorithms, is used as the objective function. The value function returns the cost of starting

at the initial state
¯
x0 and following the control policy µ. This is done by incorporating the

system dynamics and control policy into the cost function and effectively constraining the

cost function. Given the system dynamics,
¯
x0, µ, and θ, the state and control trajectories

17

can be completely defined as:

Xµ(
¯
x0) =



¯
x0

f (
¯
x0, µ(

¯
x0, θ, 1))

...

f (
¯
xNh−2, µ(

¯
xNh−2, θ, Nh − 2))

f (
¯
xNh−1, µ(

¯
xNh−1, θ, Nh − 1))


(3.12)

Uµ(
¯
x0) =



µ(
¯
x0, θ, 0)

µ(
¯
x1, θ, 1)

...

µ(
¯
xNh−2, θ, Nh − 2)

µ(
¯
xNh−1, θ, Nh − 1)


(3.13)

Evaluating the cost function along these trajectories then produces the value function V µ :

X ×Θ 7→ R≥0:

V µ(
¯
x0, θ) = J(Xµ(

¯
x0), U

µ(
¯
x0)) (3.14)

Since both the dynamics and control policy are constrained to map to X and U , respec-

tively, no functional constraints need to be placed on the value function based optimization

problem. Constraints can be added, however, to achieve desirable performance if necessary.

For instance, the parameter space Θ could be constrained to some area that returns stabi-

lizing control policies. Without any additional functional constraints on the problem, the

optimization becomes much simpler to perform as basic gradient descent or stochastic search

algorithms can be used to find solutions.

3.3 Unconstrained Deterministic Problem

Typically, in optimal control, a problem is constrained by the system dynamics and solved

using Lagrange multipliers. For this work, the system dynamics are embedded into the cost

function, which gives rise to the value function in Eq 3.14. All of the problems considered in

18

this work will be constrained by the system dynamics, control policy, initial state, admissible

state set, and admissible control input set. Problems that are not subject to any additional

constraints (e.g. terminal constraints or state boundaries) will be considered unconstrained.

The unconstrained problem is given by

min
θ

J(X,U)

s.t.

¯
xk+1 = f(

¯
xk,

¯
uk),

¯
uk = µθ(

¯
xk, θ, k),

¯
xk ∈ X ,

¯
uk ∈ U ,

¯
x0 = x0

(3.15)

The value function, acting as a constrained cost function, gives the cost incurred by being

in state x0 and following policy µ. The problem can be rewritten in terms of a value function

as:

Problem 1.

min
θ

V µ(
¯
x0, θ)

s.t.

¯
xk ∈ X ,

¯
uk ∈ U ,

¯
x0 = x0

3.4 Unconstrained Stochastic Problem

Adding uncertainty to the problem is done for two reasons: to handle a stochastic system

or to create a more robust control policy. In both cases, the problem is similar to the

deterministic problem, but instead of handling the system states directly, the controller

works with expected values over the state distribution. No assumptions are made about

the probability distribution associated with the system state; instead, using Monte Carlo

simulations, the expected values will be determined using appropriate amounts of data. In

the most general form, the unconstrained stochastic problem is given as

19

Problem 2.

min
θ

E [V µ(
¯
x0, θ)]

s.t.

¯
xk ∈ X ,

¯
uk ∈ U ,

¯
x0 ∼ Dx0

where E is the expectation and D is used to denote a general probability distribution with

the subscript describing what it applies to. In this problem, the dynamics embedded within

the value function are given by the stochastic nonlinear dynamics

¯
xk+1 = f(

¯
xk,

¯
uk,

¯
ωk) (3.16)

where
¯
ωk ∈ Rn ∼ Dω is the process noise, which is assumed to be uncorrelated.

In the most obvious case, uncertainty in the problem is a direct result of either the initial

state or system dynamics being stochastic. Another use for uncertainty is creating robust

control policies. Adding some artificial stochastic terms to a deterministic system will cause

more of the state space to be explored, and if the control policy is trained on that expanded

view of the state space, a more robust control policy will be found. The simplest way to

explore a wider area of the state space is by adding some noise to the initial state. In this

case, the dynamics are still deterministic, so the policy will learn to control the true system

but over a range of initial conditions, which give a range of state trajectories. This process

is similar to RL algorithms as they rely on stochastic exploration of the state space, but in

this case, the width of the search is easily controlled by the added noise.

3.5 Constrained Deterministic Problem

Functional constraints placed on the optimization in the form of equalities or inequalities

ensure the system behaves is some desirable way. Most notably, constraining the terminal

system state to the origin is used to prove the closed-loop stability. Equality constraints

like the one used to constrain the system state to a particular point, dictate exact values

for states or control inputs along the horizon and are given as Ceq : X × Θ 7→ Rc1 , where

20

c1 ∈ N is the number of equality constraints. Both the system dynamics and control policy,

which constrain the cost function into the value function, are equality constraints. Inequality

constraints are useful for placing bounds on the admissible states and control inputs. The

c2 ∈ N inequality constraints are given as Cineq : X × Θ 7→ Rc2 . If some region of the state

space is undesirable, an inequality constraint can be used to ensure the system does not visit

that region. The constrained problem is given by

min
θ

J(X,U)

s.t.

¯
xk+1 = f(

¯
xk,

¯
uk),

¯
uk = µθ(

¯
xk, θ, k),

¯
xk ∈ X ,

¯
uk ∈ U ,

¯
x0 = x0,

Ceq(
¯
x0, θ) = 0c1 , Cineq(

¯
x0, θ) ≥ 0c2

(3.17)

Again, the problem can be rewritten in terms of a value function as:

Problem 3.

min
θ

V µ(
¯
x0, θ)

s.t.

X ∈ X , U ∈ U ,
¯
x0 = x0, Ceq(

¯
x0, θ) = 0c1 , Cineq(

¯
x0, θ) ≥ 0c2

3.6 Least-Squares Approximation

Least squares approximation can be used to determine a control policy, though this policy

is not necessarily optimal in terms of Problem 1. The LS policy is found by first solving

Problem 1 with an OCS control policy and then performing a LS regression using the optimal

state
¯
xk

∗ and control trajectories
¯
uk

∗ as given by Problem 4.

21

Problem 4.

min
θ

Nh−1∑
k=0

||
¯
uk

∗ − µ(
¯
xk

∗, θ, k)||

s.t.

¯
uk ∈ U

While using LS approximation in this way seems like a natural path given that solving

the OCS problem is common, doing so neglects interactions between the LS approximation

error and optimal solution. In the following section, the value function derivative shows the

control trajectory relies on not only the policy parameters but also the state trajectory. In

Problem 4, the state trajectory is fixed, so the control inputs are solely optimized by the

policy parameters. In Problem 1, the control inputs are optimized directly with the policy

parameters and indirectly through the state trajectory, assuming some state feedback policy

is used.

If there is some residual in the LS approximation (i.e. Problem 4 returns a cost greater

than zero) or the control trajectory found in Problem 1, using the same state feedback policy,

is not the optimal OCS, the optimal state trajectory using the feedback policy differs from

the OCS state trajectory, as considered in [27]. Since Problem 4 results in a function mapping

the optimal OCS trajectory X∗ to the LS approximation Û , if there is some deviation from

X∗ in the resulting trajectory when implementing the LS policy, which exists since Û ̸= U∗,

a compounding error effect occurs and drives the resulting control trajectory away from

U∗. For this reason, incorporating the system dynamics into the optimization improves the

result. However, given sufficiently small LS approximation error, the results will be similar.

22

4 Optimization Methods

Along with properly constructing a problem, performing the optimization can prove to

be time-consuming and difficult. Various optimization methods are available, and depending

on the characteristics of the problem, some methods will outperform others. With linear or

quadratic programming problems, optimal policies can largely be found analytically. These

simpler problems generally rely on systems with linear dynamics. Given some general non-

linear dynamics function, analytical solutions are likely impossible to find, so numerical

approaches are used. All commonly used scripting software/programming languages have

numerical optimization packages readily available or in some cases, already built-in. These

optimization packages include a variety of different schemes including both gradient-based

and gradient-free methods.

Gradient-based methods, such as vanilla gradient descent, are simple to perform and

have proven stability, given some assumptions about the problem. In artificial intelligence

research, the most common optimization strategy used is a gradient-based method termed

ADAM [37]. Incorporating momentum, ADAM works well for systems with highly nonlinear

stochastic objective functions as the momentum stabilizes the optimization process. The

most time consuming part of gradient based methods is calculating the gradient. If a policy

is defined by a large convolutional neural network, the number of parameters could easily

reach into the millions. Both analytically computing the derivative offline and computing

its value online can take significant computational effort. Built in optimization software

commonly includes numerical differentiation, which eases the implementation but increases

the computational effort.

Gradient-free methods rely on large amounts of data and some “brute-force” compu-

tations. Essentially, by simulating a massive number of choices, the optimal solution can

be found simply by picking the choice with the best performance. If the search space is

relatively small and discretized, performing a grid-search, which involves evaluating every

possible option, can be tractable. In a continuous space, a grid-search is clearly not an op-

23

tion as there are an infinite number of choices. Methods like the genetic algorithm (GA) or

particle swarm add some heuristics to a ”brute-force” search. Using performance data from

one generation of choices, the next generation can be chosen around areas that performed

the best. Naturally, gradient-free search methods provide little guarantee of finding true

optimal solutions, but in practice, they work well.

Three methods applied to policy optimization, are presented here. First, a derivative

of the value function is taken with respect the the policy parameters, which is used for

both vanilla gradient descent and ADAM. Secondly, the GA is explained with some special

consideration for neural networks.

4.1 Gradient Descent

4.1.1 Vanilla Gradient Descent

Vanilla gradient descent is a simple yet powerful numerical optimization technique. Let

i ∈ N≥0 be the iteration, then the gradient descent method is given by the discretized

dynamic system:

θi+1 = θi − α
dV µ

i (¯
x0)

dθi
(4.1)

where α ∈ R>0 is the learning rate. Most commonly, α ≪ 1 but given a flat space, α can be

close to 1 or potentially even larger. Varying the learning rate throughout the optimization

can be useful as in the beginning, gradients are normally quite large, while near the end,

the value function flattens significantly. The parameter θ can be initialized randomly, or in

some cases, by a gradient-free method. Convergence is evaluated using

∣∣V µ
i+1(¯

x0)− V µ
i (¯
x0)
∣∣

V µ
i (¯
x0)

≥ ϵ (4.2)

where ϵ ≪ 1 is the convergence tolerance. While Eq. (4.2) is true, the system in Eq. (4.1)

continues iterating.

24

4.1.2 ADAM

ADAM, introduced by Kingma and Ba, has become the prominent optimization strategy

for RL algorithms. ADAM is a gradient descent algorithm that includes estimates of the

first and second moments of the value function, which help stabilize the system. Within this

work, element-wise operations will be used along with matrix products. First, the operation

· denotes the element-wise product:

¯
a ·

¯
b =

[
a0b0 · · · anbn

]T
(4.3)

given a, b ∈ Rn. Second, standard notion for division is used under the context of element-

wise operations:

¯
a

¯
b
=

[
a0
b0

· · · an
bn

]T
, bi ̸= 0 ∀ i ∈ N[0,n] (4.4)

Note, if a matrix inverse is to be used within a computation, a superscript will be used to

denote the inverse. The ADAM algorithm is given by the following system

ḡi =
dV µ

i (¯
x0)

dθi
(4.5)

m̄i+1 = β1 · m̄i + (1− β1) · ḡi (4.6)

v̄i+1 = β2 · v̄i + (1− β2) · ḡi2 (4.7)

m̂i =
m̄i

1− β1
i+1 (4.8)

v̂i =
v̄i

1− β2
i+1 (4.9)

θi+1 = θi − α
m̂i√
v̂i + ϵ̂

(4.10)

where ḡi ∈ Rp is a dummy variable that holds the value function derivative; m̄i, v̄i ∈ Rp are

the biased first and second moment estimates, respectively; β1, β2 ∈ R[0,1) are exponential

decay rates for the moment estimates; m̂i, v̂i ∈ Rp are the bias-corrected first and second

moment estimates, respectively, and ϵ̂ ≪ 1 is a dummy variable that helps avoid division

25

by zero. Convergence is evaluated by Eq. (4.2). Note, outside of the hyperparameters

introduced by the ADAM algorithm, no additional information about the system is required

as compared to vanilla gradient descent.

4.2 Value Function Derivative

Here, the derivative (transpose of the gradient) of the value function is taken to use in

both the gradient based optimization methods presented and analytical solutions presented

in the following sections. The goal is to find the value of θ such that the first order condition

of optimality is satisfied:

dV µ(
¯
x0)

dθ
= 0 (4.11)

In traditional MPC, the control inputs are implicitly defined by the states, which simplifies

the first order derivative of the value function. Since open-loop control inputs are not

explicitly defined by a feedback law, some differential change in an input near the beginning

of the horizon does not directly affect a control input near the end. As the whole optimization

process plays out, these two control inputs will exhibit some implicit coupling. However,

given a feedback control law, some change in a control input near the beginning of the horizon

will have a direct effect on a control input near the end since the inputs are explicitly defined

by a function of the state. This is to say, a differential change in the policy parameters will

not only affect the control inputs by changing the function mapping from states to inputs

but also by changing the inputs to that function.

A differential change in the value function can be written as a component due to the two

differentials dX and dU :

dV µ(
¯
x0) =

∂V µ(
¯
x0)

∂X
dX +

∂V µ(
¯
x0)

∂U
dU (4.12)

These two partial derivatives,
∂V µ(

¯
x0)

∂X
and

∂V µ(
¯
x0)

∂U
, are of dimension 1 × n(Nh + 1) and

1 ×mNh, respectively, while the differentials, dX and dU are of dimension n(Nh + 1) and

26

mNh, respectively, the same dimensions as X and U .

dX =

[
d
¯
x0

T d
¯
x1

T · · · d
¯
xNh−1

T d
¯
xNh

T

]T
(4.13)

dU =

[
d
¯
u0

T d
¯
u1

T · · · d
¯
uNh−2

T d
¯
uNh−1

T

]T
(4.14)

The partial derivatives of the value function are formed as

∂V µ(
¯
x0)

∂X
=

[
∂V µ(

¯
x0)

∂
¯
x0

T ∂V µ(
¯
x0)

∂
¯
x1

T
· · · ∂V µ(

¯
x0)

∂
¯
xNh−1

T ∂V µ(
¯
x0)

∂
¯
xNh

T
]

(4.15)

∂V µ(
¯
x0)

∂U
=

[
∂V µ(

¯
x0)

∂
¯
u0

T ∂V µ(
¯
x0)

∂
¯
u1

T
· · · ∂V µ(

¯
x0)

∂
¯
uNh−2

T ∂V µ(
¯
x0)

∂
¯
uNh−1

T
]

(4.16)

which leads to

dV µ(
¯
x0) =

∂V µ(
¯
x0)

∂
¯
x0

T

d
¯
x0 + · · ·+ ∂V µ(

¯
x0)

∂
¯
xNh

T

d
¯
xNh

+
∂V µ(

¯
x0)

∂
¯
u0

T

d
¯
u0 + · · ·+ ∂V µ(

¯
x0)

∂
¯
uNh−1

T

d
¯
uNh−1

(4.17)

Any differential change in the state trajectory will result entirely from some change in

the policy parameter:

dX =
∂X

∂θ
dθ (4.18)

where ∂X
∂θ

∈ Rn(Nh+1)×p is the block vector

∂X

∂θ
=


∂
¯
x0

∂θ

...

∂
¯
xNh

∂θ

 (4.19)

that incorporates the system dynamics within the problem, and can be formed with:

∂
¯
xk+1

∂θ
=

(
∂f(

¯
xk,

¯
uk)

∂
¯
xk

+
∂f(

¯
xk,

¯
uk)

∂
¯
uk

∂µ(
¯
xk)

∂
¯
xk

)
∂
¯
xk
∂θ

+
∂f(

¯
xk,

¯
uk)

∂
¯
uk

∂µ(
¯
xk)

∂θ
(4.20)

for rows k ∈ N[0,Nh] with the initial condition
∂
¯
x0

∂θ
= 0n×p. A detailed derivation of this

27

equation is given in Appendix A. Now, the differential dU can be expanded as two terms:

dU =
∂U

∂θ
dθ +

∂U

∂X
dX (4.21)

where the two partial derivative terms ∂U
∂θ

∈ RmNh×p and ∂U
∂X

∈ RmNh×n(Nh+1) are given by:

∂U

∂θ
=


∂µ(

¯
x0)

∂θ

...

∂µ(
¯
xNh−1)

∂θ

 (4.22)

and

∂U

∂X
=



∂µ(
¯
x0)

∂
¯
x0

0 · · · 0 0

0
∂µ(

¯
x1)

∂
¯
x1

· · · 0 0

...
...

. . .
...

...

0 0 · · · ∂µ(
¯
xNh−1)

∂
¯
xNh−1

0


(4.23)

where 0 := 0m×p. Note, the last column of zeros in Eq. (4.23) shows that
¯
xNh

has no direct

affect on the control trajectory. Substituting Eqs. (4.18) and (4.21) back into Eq. (4.12) and

factoring dθ yields:

dV µ(
¯
x0) =

(
∂V µ(

¯
x0)

∂X

∂X

∂θ
+
∂V µ(

¯
x0)

∂U

∂U

∂θ
+
∂V µ(

¯
x0)

∂U

∂U

∂X

∂X

∂θ

)
dθ (4.24)

Then, the total derivative of the state value can be written as:

dV µ(
¯
x0)

dθ
=

(
∂V µ(

¯
x0)

∂X
+
∂V µ(

¯
x0)

∂U

∂U

∂X

)
∂X

∂θ
+
∂V µ(

¯
x0)

∂U

∂U

∂θ
(4.25)

This gives the required information to perform gradient descent within the parameter space

and find a solution to Eq (4.11).

28

4.2.1 Stochastic Value Function Derivative Approximation

Given a stochastic problem, an approximation can be made to calculate the derivative

of the objective function. The law of large numbers can be used to show that the average

value of a selection of randomly distributed points approaches the expected value of their

probability distribution function (PDF) as the number of sampled points increases, given

that the sampled points are uncorrelated. Consider a sample size Nb ∈ N>0:

E [Z] ≈ 1

Nb

Nb∑
i=1

zi (4.26)

where zi ∼ DZ is a sample point and DZ is the PDF of the random variable Z. Both the

expectation and derivative operators are linear, so

∂E [V µ

¯
x0]

∂θ
= E

[
∂V µ

¯
x0

∂θ

]
(4.27)

Using Eq. (4.26) and (4.27), the expected derivative of the value function can be approxi-

mated as

∂E [V µ

¯
x0]

∂θ
=

1

Nb

Nb∑
i=1

∂V µ

¯
xi0

∂θ
(4.28)

where
¯
xi0 ∼ D

¯
x0 is a sampled initial condition. If the initial condition is deterministic and the

problem is stochastic solely due to the dynamics,
¯
xi0 = ¯

x0 ∀ i ∈ N[1,Nb]. In implementation,

this requiresNb simulations be run in parallel with the derivative of each individual trajectory

evaluated using Eq. (4.25) The mean of the derivatives can then be used within a gradient

descent algorithm. ADAM includes a momentum component, which aids in filtering any

noise caused by fluctuation of the objective function from approximation error.

4.3 Genetic Algorithm

The GA started with Holland who was attempting to simultaneously explore adaptation

in biological systems and produce methods for solving optimization problems. Affenzeller

et al. explain the origins and inner workings of the GA along with the parallel research in

29

evolutionary strategies, which differs slightly. Based on the evolution of organisms, the GA

works by evaluating the performance of clusters- or generations- of policy parameters that

are kept at a fixed population size Np ∈ N. The parameters in a generation that performed

the best are kept and used to create ”children” that are tested in the next generation. Any

parameters in a generation that do not perform well enough to reproduce are discarded and

replaced by these children. As the generations continue to pass, the parameters start to

converge in an area of high performance.

There are three main operators used in the GA, which makes implementations fairly

simple. The first, and most apparent, is reproduction, where the best Nr ∈ N performing

parameters of a generation are passed onto the next generation. Original implementations

leave reproduction up to chance by directly correlating the probability of reproduction to

performance, but in this work, a set number of best performing parameters are reproduced.

Crossover is the main operator and is what produces children. Two of the Nr high performing

parameters in a generation are combined randomly to produce a new child parameter:

θji+1 =

[
θp11,i · · · θp1cp,i θp2cp+1,i · · · θp2p,i

]T
(4.29)

where j ∈ N[1,Np] is the generational parameter index, p1, p2 ∈ N[1,Np] are the indexes for the

two parents at the i-th generation, cp ∼ Ud(1, p) ∈ N[1,p] is the crossover point, Ud(a, b) is the

discrete uniform distribution over range [a, b], and p ∈ N is the size of θ. The last operator

is mutation. Each member in the population has some set probability of mutating at the

beginning of a new generation, which can be achieved with

θji =


θji + νm if ϵ̃j < ω̃

θji otherwise

(4.30)

where νm ∼ N (0, σm) ∈ Rp is the mutation, N (a, b) is a normal distribution centered at

a with standard deviation b, σm ∈ Rp is the mutation standard deviation, ϵ̃j ∈ R[0,1) is

30

probability of the j-th parameter mutating, and ω̃ ∼ U(0, 1) ∈ R is a dummy uniformly

distributed random variable that causes mutation.

Some special consideration can be taken to increase exploration and decrease the training

time for certain policy architectures while using the GA. Note, this work is not dedicated

to optimization methods, so this claim is made without providing sufficient comparative

evidence. Some policy architectures have distinct components (e.g. NNs or time-varying

linear feedback gains), so crossover can be done on a per component basis. Looking at the

time-varying linear feedback gain, this could entail performing a crossover between two gains

from the same time instance. So, for a sequence of Nh feedback gains, there would be Nh

crossovers occurring. Similarly, NNs have obvious components, namely the various weighting

matrices and biases. Every weight matrix and associated bias from a particular member of

a population can be combined with other applicable parts from other members.

The GA can be used to solve Problem 2, which means a stochastic objective function

will be minimized. Ideally, enough simulations would be performed to perfectly describe the

state distributions and the mean value would approach the expected value:

E [V µ(
¯
x0)] ≈

1

Nb

Nb∑
i=1

V µ(
¯
xi0) (4.31)

In practice, this approximation may be erroneous as there are computational limitations.

Since the GA analyzes these mean values to determine which members of the population are

performing well, it is important to properly compare the members. A bundle of trajectories is

used to approximate the expected value, and these trajectories each have their own randomly

generated initial condition. Some initial conditions inherently return a lower cost than others,

regardless of the controller performance. So, using the same initial conditions for every

member of the population is important for proper comparison.

31

5 Control Policy Architectures

Varying control policy architectures have varying characteristics, training techniques, and

capabilities. Here, a select number of architectures are explored including: the OCS, constant

linear feedback gain (CG), time-varying linear feedback gain (TG), multi-layer perceptron

(MLP) networks, and convolutional neural networks (CNN). Along with presenting the policy

architectures, the derivatives of each architecture with respect to their inputs, ∂U
∂X

and ∂U
∂θ
,

are presented for use within Eq. (4.25) and upper and lower bound control input constraint

handling is explored.

Time-varying policies like the OCS and TG are commonly found within optimal control.

Open-loop control sequences are used within conventional MPC algorithms as they can

produce abstract control trajectories, while TGs are found to be optimal solutions to both

deterministic and stochastic LQ problems. Time-varying gains are also shown to work for

nonlinear systems in a suboptimal manner [6]. Constant linear feedback gains are widely

studied for control of linear and nonlinear systems. In this context, the CG provides not

only a robust control method for applicable initial conditions but also the fewest number of

parameters to optimize (except for some specific cases like an OCS over an extremely short

horizon).

Neural network based policies are extremely popular in RL and can be very powerful. A

single CNN was trained using a Monte Carlo tree search algorithm to play the game Go and

in an real world sanctioned competition, beat the best player in the world in a multi-round

game [4]. Given a large enough network, the approximation capabilities of NNs are immense

and lead to their use within complex systems with large state spaces. In the case of Go, even

though it is a purely discrete state-action space, which might lend itself to DP, there are

around 10360 possible moves in an average game, so searching the entire state-action space

to determine optimal policies for each case is intractable. Hence, NNs can be used to find

approximations of the the true optimal policies over some reasonable amount of data, though

in this specific Go case, the amount of data and computational power is still immense.

32

5.1 Control Bound Constraint

In most systems, the control inputs are physically constrained to lie within some range

(e.g. the ailerons on a wing have some finite maximum deflection). For some cases, letting

the physical system saturate itself may lead to acceptable results, but for this work, the

control bounds are used within the optimization to find solutions that work best given those

limitations. This section focuses on control bounds that do not change as a function of the

state, i.e. Problem 1. By incorporating saturating functions into the the control policy, the

control bounds will be satisfied and incorporated into the optimization.

An output layer is commonly used to map the hidden layer outputs to the desired space

within a NN. In some cases, the output layer is just a simple matrix multiplication, which

would be applicable for cases where U = Rm. If U ⊂ Rm, then continuous activation func-

tions (AFs) like the sigmoid and hyperbolic tangent or discontinuous AFs like min(·, ·) and

max(·, ·) can be used in combination with a matrix multiplication to constrain the outputs.

Continuous AFs aid in mathematical proofs and suffer less from dropout, which is when the

gradient becomes zero and stops the learning process, when compared to discontinuous AFs.

However, discontinuous AFs are simple and efficient to implement and, in practice, perform

better given proper training.

One of the first successful AFs, the sigmoid, gives outputs over the range (0, 1) and is

defined as

(
¯
wk)

+
sigmoid =

1

1 + e−¯
wk

(5.1)

where
¯
w ∈ Rm is the hidden layer output. Note, hidden layer is a term commonly used for

the layers of neurons in a NN but in this context, the hidden layer is taken to be the portion

of the policy that comes before the output clamping and scaling. In the case of linear state

feedback, the hidden layer output is
¯
wk = vec−1(θ)

¯
xk. The output of the sigmoid can be

interpolated to cover the range of the action space using the linear method

¯
uk = (

¯
umax −

¯
umin) · (

¯
wk)

+
sigmoid + ¯

umin (5.2)

33

where
¯
umax,

¯
umin ∈ U are the maximum and minimum admissible control inputs (i.e. they

lie at the edges of the control set U). With similar characteristics, the hyperbolic tangent

gives values over the range (−1, 1):

(
¯
wk)

+
tanh = tanh(

¯
wk) =

e¯wk − e−¯
wk

e¯wk + e−¯
wk

(5.3)

which works well for cases where
¯
umax = −

¯
umin and the output can be mapped to the action

space with

¯
uk =

¯
umax · (

¯
wk)

+
tanh (5.4)

Figure 5.1 compares the sigmoid and hyperbolic tangent and clearly shows the two output

ranges. The discontinuous activation functions min(·, ·) and max(·, ·) return the element-wise

-5 0 5
-1

-0.5

0

0.5

1

sigmoid

tanh

min-max

Figure 5.1 Sigmoid, hyperbolic tangent, and min-max activation function outputs given
u ∈ R[−1,1].

minimum and maximum of the two inputs, respectively. These can be used directly with the

hidden layer output and control bounds as

¯
uk = min(max(

¯
wk,

¯
umin),

¯
umax) (5.5)

34

which will be referred to as the min-max AF.

Table 5.1 gives a comparison of the computational speed for these three output layer

clamping and scaling techniques. Clearly, the discontinuous case is the quickest, not only

because the two functions are simple but also because they require no additional scaling

step. The hyperbolic tangent function becomes suboptimal when
¯
umax ̸= −

¯
umin since two

scaling steps would need to be performed: one to map the AF output from (−1, 1) to (0, 1)

and a second to map that scaled output to the control space. Note, Table 5.1 is presented

solely for comparative purposes as the timing being performed is not rigorous.

Table 5.1 Comparative average computational time of output layer activation functions and
scaling over 106 iterations where the input at each iteration is taken to be

¯
w ∈ R1000×4 ∼ N (0, 1) and the control bounds are

¯
umax = −

¯
umin = 14.

min-max tanh sigmoid

time (10−5s) 7.685 11.71 13.47
difference (%) - 52.4 75.2

5.1.1 Output Layer Derivative and Dropout

The derivative of each AF and scaling function is given here for use in determining ∂U
∂X

and

∂U
∂θ

and will be applicable to any control policy architecture with control bound constraints.

First, the derivative of the sigmoid is taken as

∂(
¯
wk)

+
sigmoid

∂
¯
wk

=
e−¯

wk

(1 + e−¯
wk)2

(5.6)

which can be combined with the scaling function derivative

∂
¯
uk

∂(
¯
wk)

+
sigmoid

= (
¯
umax −

¯
umin) (5.7)

35

to produce the block matrix:

∂U

∂W
=


(
¯
umax −

¯
umin) · e−¯

w0

(1+e−¯
w0)2

· · · 0m

...
. . .

...

0m · · · (
¯
umax −

¯
umin) · e

−
¯
wNh−1

(1+e
−
¯
wNh−1)2

 (5.8)

where W ∈ RmNh is the trajectory of hidden layer outputs:

W :=

[
¯
w0

T · · ·
¯
wNh−1

T

]T
(5.9)

Next, the hyperbolic tangent derivative is taken as

∂(
¯
wk)

+
tanh

∂
¯
wk

= 1− tanh2(
¯
wk) (5.10)

= 1−
(
e¯wk − e−¯

wk

e¯wk + e−¯
wk

)2

(5.11)

with the simple scaling factor derivative

∂
¯
uk

∂(
¯
wk)

+
tanh

=
¯
umax (5.12)

The block matrix derivative for the hyperbolic tangent output layer is then formed as:

∂U

∂W
=


¯
umax ·

(
1−

(
e¯
w0−e−¯

w0

e¯
w0+e−¯

w0

)2)
· · · 0m

...
. . .

...

0m · · ·
¯
umax ·

(
1−

(
e¯
wNh−1−e

−
¯
wNh−1

e¯
wNh−1+e

−
¯
wNh−1

)2)
 (5.13)

Lastly, the min-max AF derivative can be written for the i-th element of the k-th time step

control input as

∂
¯
uk,i

∂
¯
wk,i

=


1 if

¯
umin,i ≤

¯
wi ≤

¯
umax,i

0 otherwise

(5.14)

36

and used to assemble the block matrix:

∂U

∂W
=


∂
¯
u0

∂
¯
w0

· · · 0m

...
. . .

...

0m · · · ∂
¯
uNh−1

∂
¯
wNh−1

 (5.15)

Figure 5.2 shows the derivatives of the sigmoid, hyperbolic tangent, and min-max AFs

over the range [−5, 5] given that u ∈ R[−1,1]. This figure explains how a poor initial guess can

severely limit the controller’s performance, especially when using the min-max output layer.

Suppose an OCS control policy were used, then the control inputs do not rely on information

from the state trajectory. Since ∂U
∂X

= 0mNh×n(Nh+1), the control trajectory is only updated

via the derivative ∂U
∂θ
. Furthermore, suppose an initial guess was given where wk > 1 ∀ k ∈

N[0,Nh−1] and the min-max output layer is used. Then, ∂U
∂θ

= 0mNh×mNh , and no updates will

occur within a gradient based optimization. Since both the sigmoid and hyperbolic tangent

AFs are based on the exponential function, their derivatives only asymptotically approach

zero as w → ∞. However, as seen in Fig. 5.2, the output layer derivative of the hyperbolic

tangent AF quickly approaches zero, which can slow the optimization process.

The issue of dropout largely plagues time varying control policies like the OCS and TG,

but some adjustments can be made to work past the issue. Stationary policies, like the

NNs implemented here and the CG feedback, are susceptible to dropout as well but their

updates rely much more on the interaction of the states and control inputs ∂U
∂X

, which reduces

the issue somewhat. Most obviously, using a continuous output layer AF would keep the

derivative from completely dropping out and fix most issues. However, given the potential

online performance increase of operating the min-max AF, other methods can be used to

keep dropout form occurring during training.

In the OCS case, the search space can simply be constrained to U . In general, θ ∈ Rp

since the output layer clamping relegates the inputs to the desirable set, but if θ ∈ U , then

no dropout will occur as
¯
umin ≤

¯
w ≤

¯
umax and the derivative of the min-max AF is defined

37

-5 0 5
0

0.2

0.4

0.6

0.8

1

sigmoid

tanh

min-max

Figure 5.2 Sigmoid, hyperbolic tangent, and min-max activation function derivatives given
u ∈ R[−1,1]

to be 1 at the boundary. In implementation, this is as easy as saturating θ by replacing

offending entries with the applicable maximum or minimum value.

In the TG case, the hidden layer output
¯
wk is a function of the system state, so limiting

the parameter space does not fix the problem. An approximation of the min-max output

layer derivative can be used in this case, which is similar to an AF known as leaky ReLU:

∂
¯
uk,i

∂
¯
wk,i

=


1 if

¯
umin,i ≤

¯
wi ≤

¯
umax,i

ϵ otherwise

(5.16)

where 0 < ϵ << 1. By replacing the zero derivative with a small number, information will

still be able to flow into the policy parameter via the small gradient. The original output

layer remains unaffected, so the control bounds are still satisfied. Using this approximation

simply allows the policy parameter to eventually learn to produce
¯
uk within the interior of

U if the boundary is not the optimal solution.

38

Table 5.2 Comparative average computational time of output layer activation function
derivatives and scaling over 106 iterations where the input at each iteration is taken to be

¯
w ∈ R1000×4 ∼ N (0, 1) and the control bounds are

¯
umax = −

¯
umin = 14.

min-max tanh sigmoid

time (10−5s) 14.37 16.73 10.93
difference (%) - 16.3 -23.9

5.2 Open-Loop Control Sequences

An OCS is a function that maps time steps to control inputs

µOCS : Θ× N[0,Nh−1] 7→ U (5.17)

and is given by

¯
uk =

(
θ[mk+1,m(k+1)]

)+
OL

(5.18)

where Θ = RmNh and (·)+ : Rm 7→ U . Given there are no additional constraints placed on

the control inputs and U = Rm, the parameter space is simply an extension of the control

space, i.e. Θ = UNh and (·)+ is an identity function. Since every input within an OCS is

an independent event, control trajectories can take on any arbitrary shape, which means

the OCS is the way to produce the true optimal solution to Problem 1 and 3. Similarly, in

Problem 4 a control policy is trained to reproduce an OCS for a single initial condition or a

range of OCSs for multiple initial conditions, since the OCS produces optimal solutions.

5.2.1 Open-Loop Control Sequence Derivative

Implementing an OCS policy architecture is straightforward as the policy derivatives

are simple. The control inputs do not depend on the states and are equal to the policy

parameter, so

∂W

∂X
= 0mNh×n(Nh+1) (5.19)

and

∂W

∂θ
= ImNh×mNh (5.20)

39

Using the chain rule with the output layer derivatives will give the derivatives required for

Eq. (4.25).

5.3 Linear Feedback Gain Based Policies

Linear feedback gains are widely used to control both linear and nonlinear systems. A

large amount of theory has been produced that shows linear feedback gains can create closed-

loop linear systems with any desired characteristics, given that the system is controllable.

Optimal controllers for linear systems often include linear feedback components, e.g. the

finite and infinite horizon LQRs. Along with the linear system theory, localized nonlinear

systems can be controlled using linear feedback gains by linearizing the system and applying

linear control theory. In some cases, a time-varying linear feedback gain can even control

the system globally. Similar to the finite horizon LQR, time-varying feedback gains can be

found with a closed form solution involving a state-dependent Riccati equation [6]. In this

section, both constant gain feedback and time-varying gain feedback are discussed.

5.3.1 Constant Gain

Constant gain feedback provides limited approximation capability and restricts the state

space in which the initial condition can reside for the system to be stabilizable but simulta-

neously simplifies the optimization by reducing the size of θ and inherently adds robustness

to the system. The CG policy maps states to control inputs

µCG : X ×Θ 7→ U (5.21)

and is given by:

¯
uk =

(
vec−1

m×n(θ)¯
xk
)+
OL

(5.22)

40

Constant Gain Derivative

The hidden layer derivatives of the CG policy are given as

∂W

∂X
=


vec−1

m×n(θ) · · · 0m×n

...
. . .

...

0m×n · · · vec−1
m×n(θ)

 (5.23)

and

∂W

∂θ
=



¯
x0

T · · · 01×n

...
. . .

...

01×n · · ·
¯
x0

T

...
...

¯
xNh−1

T · · · 01×n

...
. . .

...

01×n · · ·
¯
xNh−1

T



(5.24)

Equation (5.24) is a block matrix that can be rewritten as:

∂W

∂θ
=


∂
¯
w0

∂θ

...

∂
¯
wNh−1

∂θ

 (5.25)

where each block
∂
¯
wk

∂θ
∈ Rm×nm.

5.4 Time-Varying Gain

A TG policy maps the current state and time step to a control input

µTG : X ×Θ× N[0,Nh−1] 7→ U (5.26)

and is given by

¯
uk = (Kk

¯
xk)

+
OL . (5.27)

41

where Kk = vec−1
m×n(θ[nmk+1,nm(k+1)]) and θ ∈ RnmNh . Time-varying gains have the potential

to globally control some nonlinear systems. Given m ≤ n, any
¯
uk can be produced from any

¯
xk, and the TG policy has universal approximation capability and can perfectly reproduce

the optimal OCS.

Time-Varying Gain Derivative

The TG policy derivatives are quite similar to the CG policy derivatives, except now at

every time step there is a different feedback gain being used and the increased dimension of

θ increases the size of the derivative with respect to the policy parameter. They are given as

∂W

∂X
=


K0 · · · 0m×n

...
. . .

...

0m×n · · · KNh−1

 (5.28)

and

∂W

∂θ
=



¯
x0

T · · · 01×n · · · 01×n · · · 01×n

...
. . .

...
...

. . .
...

01×n · · ·
¯
x0

T · · · 01×n · · · 01×n

...
...

...
...

01×n · · · 01×n · · ·
¯
xNh+1

T · · · 01×n

...
. . .

...
...

. . .
...

01×n · · · 01×n · · · 01×n · · ·
¯
xNh+1

T



(5.29)

Again, this can be rewritten as

∂W

∂θ
=


∂
¯
w0

∂vec(K0)
· · · 0m×n

...
. . .

...

0m×n · · · ∂
¯
wNh−1

∂vec(KNh−1)

 (5.30)

where each block
∂
¯
wk

∂vec(Kk)
∈ Rm×n.

42

5.5 Neural Network-Based Policies

Neural networks have become widely popular for their generalized usability and power.

As everyday computers become more powerful and RL libraries become more available, the

accessibility of NN based estimation and control increases, which fuels more research. Neural

networks can approximate most functions, given the NN’s size is adjusted accordingly, and

are used not only in least squares fitting tasks but also in direct function optimization.

Within modern actor-critic RL algorithms, two NNs are used; one, the critic, is trained

using a least squares regression, while the other, the actor, is updated using the gradient of

the critic. The actor NN is trying to predict the optimal inputs to the critic and in turn,

the optimal actions for the environment. In this work, the actor NN will be used along with

analytical dynamics of the environment, as opposed to learning them via a least squares

regression.

Most of a NN is composed of hidden nodes. These hidden nodes, each equipped with

an activation function (AF), exist within some number of hidden layers. At a minimum, a

NN can have a single hidden layer, while the maximum number of layers, theoretically, is

infinite. Deep NNs have a high number of hidden layers and an issue termed the vanishing

gradient, where by means of the chain rule, the magnitude of the gradient decreases as it

backpropagates from the output layer to the input layer [40]. Single layer NNs have one

hidden layer but still have uniform approximation capability if they become infinitely wide

[41]. A layer’s width, or dimension, refers to the number of nodes in that layer. Designing

a NN requires appropriate selection of both the number of layers and the size of each one.

There are three main types of NNs: multi-layer perceptron (MLP), recurrent (RNN), and

convolutional (CNN). Multi-layer perceptron networks are the simplest and are used in both

recurrent and convolutional networks. Using simple matrix multiplication and nonlinear

activation functions, feeding data through a MLP network is straightforward:

¯
wj+1 = vec−1

hj+1×hj
(θ[i,k])

(
¯
wj
)+

+ θ[a,b] (5.31)

43

Figure 5.3 An example multi-layer perceptron neural network [1]

¯
wj ∈ Rhj is the value at the j-th layer, hj ∈ N is the dimension of the j-th layer, the range

subscript [i, k] denotes the values in θ that correspond to the j-th weights of the NN, the

range [a, b] corresponds to the j-th bias value, and (·)+ : Rhj 7→ Rhj is the AF.

5.5.1 Activation Functions

Activation functions are what give NNs their name, nonlinear characteristics, and uni-

versal approximation capabilities. Inspired by neuroscience, McCulloch and Pitts explained

the concept of an excitation threshold that must be passed for a neuron to generate an im-

pulse. Activation functions simulate this phenomenon, to some extent. Neurons in a brain

act like binary operators; once a neuron has received enough of an electrical signal, it sends

a signal to the other neurons it is attached to. Activation functions work similarly. A large

enough value will cause an AF to start producing a non-zero output, and in some cases, that

output will saturate at or asymptotically approach a maximum value. Different AFs can be

leveraged for applicable roles.

The three main roles for AFs, within this work, are separated by whether the AF is in

a input layer, hidden layer, or output layer. Output layers were previously discussed but

have been proven to be important for derivative scaling; hence, the sigmoid or hyperbolic

tangent AFs are generally used because the NN outputs are constrained to the regions (0, 1)

or (−1, 1) [43]. Similar to the output layer’s purpose of scaling the outputs of the NN,

44

the input layer scales the inputs to a range of (0, 1). This is done using a simple linear

interpolation scheme, give the boundaries of X . The hidden layers are the main ”brain”

of the NN and perform most of the function approximation. Unlike the output layer AFs,

hidden layer AFs are commonly discontinuous and have no restrictions on their output range.

However, continuous AFs are required for mathematical proofs, so both will be presented.

Input Layer

The input layer has a simple purpose of scaling the NN inputs to the range (0, 1), which

helps normalize the gradients within the neurons. Given the boundaries of the admissible

state space
¯
xmax,

¯
xmin ∈ X , the NN input is scaled using

¯
w0

k = ¯
xk −

¯
xmin

¯
xmax −

¯
xmin

(5.32)

Input Layer Derivative

The input layer is only affected by the system state, and its derivative is given by:

∂
¯
w0

k

∂
¯
xk

=
1

¯
xmax −

¯
xmin

(5.33)

Hidden Layer

The rectified linear unit (ReLU) has seen wide success in the realm of RL. The ReLU is

simple to implement and is given by

(
¯
wi)

+
ReLU =

¯
wi if

¯
wi > 0

0 otherwise

(5.34)

Note, implementing ReLU is done with an element-wise maximum: (
¯
w)+ReLU = max(

¯
w, 0).

The ReLU AF is not a continuous operator. In practice, the undefined derivative at
¯
wi = 0

is not a problem as numerical approaches will just define
∂(

¯
wi)

+
ReLU

∂
¯
wi

= 0 at
¯
wi = 0. In terms

of mathematical proofs, this discontinuity does have an effect as most proofs regarding

45

optimization problems require that derivatives of the objective function exist over the entire

admissible state space. An AF termed the swish, introduced by Ramachandran et al.,

(
¯
w)+swish = ¯

w

1 + e−¯
w

(5.35)

has similar characteristics to the ReLU but is based on the exponential function, so the swish

is smooth. Figure 5.4 compares the ReLU and swish AFs, and Table 5.3 shows a comparison

of computation times. The ReLU AF is clearly much faster since one simple function is

called as opposed to several mathematical operations.

-5 0 5

-1

0

1

2

3

4

5

ReLU

swish

Figure 5.4 Rectified linear unit (ReLU), which is widely used and discontinuous, compared
to the swish activation function, which has similar properties and is continuous.

Table 5.3 Comparative average computational time of hidden layer activation functions
over 106 iterations where the input at each iteration is taken to be

¯
w ∈ R1000×4 ∼ N (0, 1).

ReLU swish

time (10−5s) 3.305 7.351
difference (%) - 122

46

Hidden Layer Activation Function Derivatives

The hidden layer AF derivatives are given by

∂(
¯
wi)

+
ReLU

∂
¯
wi

=


1 if

¯
wi > 0

0 otherwise

(5.36)

and

∂(
¯
wi)

+
swish

∂
¯
wi

=
1 + (1 +

¯
wi)e¯

wi

(1 + e−¯
wi)2

(5.37)

Figure 5.5 shows a comparison of the ReLU and swish derivatives. Similar to the dropout

issue within the output layer, the ReLU AF is susceptible to effectively turning a neuron

off. If the weights in the NN are such that any input causes the signal to a single neuron

to be zero or less, then that neuron will never produce a signal or be trained to do so. A

previously mentioned AF, known as leaky ReLU can be used, where the neuron returns some

small value instead of zero and, therefore, never completely drops out; however, in most cases

this is not a sigificant issue. Table 5.4 shows a comparison of the computational time for the

-5 0 5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ReLU

swish

Figure 5.5 Derivative of the rectified linear unit (ReLU) and swish activation functions.

derivatives of the ReLU and swish AFs. Again, the ReLU AF is much faster to compute.

47

Table 5.4 Comparative average computational time of hidden layer activation function
derivatives over 106 iterations where the input at each iteration is taken to be

¯
w ∈ R1000×4 ∼ N (0, 1).

ReLU swish

time (10−5s) 8.113 14.82
difference (%) - 76.7

5.5.2 Single-Layer Perceptron

The single-layer perceptron (SLP) is the simplest version of a MLP network and is used

in this work to control systems as it not only has universal approximation capability but also

is simple to implement in comparison to a multi-layer network. A SLP policy could take in

the current time step, however a stationary version is considered here, so the policy simply

maps states to control inputs

µSLP : X ×Θ 7→ U (5.38)

and is given by

¯
uk =

(
A2

(
A1 (

¯
xk)

+
IL + b1

)+
HL

+ b2

)+
OL

(5.39)

where A2 := vec−1
m×h(θ[h(n+1)+2,h(m+n+1)+2]), A1 := vec−1

m×h(θ[1,nh]), b1 := θ[nh+1,h(n+1)+1], and

b2 := θ[h(m+n+1)+3,h(m+n+1)+3+m] are weights and biases formed from the policy parameter.

The hidden node size h ∈ N is the width of the SLP. To forgo the large subscripts, define

θA1 ∈ Rhn, θb1 ∈ Rh, θA2 ∈ Rmh, and θb2 ∈ Rm as

θ =



vec(A1)

b1

vec(A2)

b2


:=



θA1

θb1

θA2

θb2


(5.40)

Single-Layer Perceptron Derivative

The SLP policy derivatives are the most involved to compute as there are three separate

AFs and two matrix multiplications to consider. First, define the intermediate values
¯
w0

k ∈

48

Rn
(0,1), ¯

w1
k ∈ Rh, and

¯
w2

k ∈ Rm as

¯
w0

k := (
¯
xk)

+
IL (5.41)

¯
w1

k := A1
¯
w0

k + b1 (5.42)

¯
w2

k := A2

(
¯
w1

k

)+
HL

+ b2 (5.43)

¯
uk =

(
¯
w2

k

)+
OL

(5.44)

This definition breaks the convention given in Eq. (5.31), but is useful for the derivative

presented in this section. The trajectories W 0, W 1, and W 2 are taken to be time sequences

of their respective hidden layer values, i.e.

W 0 =


¯
w0

0

...

¯
w0

Nh−1

 W 1 =


¯
w1

0

...

¯
w1

Nh−1

 W 2 =


¯
w2

0

...

¯
w2

Nh−1

 (5.45)

First, the derivative with respect to the normalized inputs can be taken as

∂W 2

∂W 0
=


A2

∂(
¯
w1

0)
+
HL

∂
¯
w1

0
A1 · · · 0m×n

...
. . .

...

0m×n · · · A2

∂(
¯
w1

Nh−1)
+
HL

∂
¯
w1

Nh−1
A1

 (5.46)

and combining with the input and output layer derivatives with the chain rule, produces the

control derivative

∂U

∂X
=

∂U

∂W 2

∂W 2

∂W 0

∂W 0

∂X
(5.47)

The derivative with respect to the policy parameter is more involved as their are sever

components in the NN to handle. The derivative of the hidden layer output can be written

49

as the block matrix

∂W 2

∂θ
=


∂
¯
w2

0

∂θ
· · · 0m×p

...
. . .

...

0m×p · · ·
∂
¯
w2

Nh−1

∂θ

 (5.48)

where each block ¯
w2

k

∂θ
∈ Rm×p. Now, the derivative of a single time step will be presented,

which can be used to fill these blocks. The reshaping function vec(·) and its inverse vec−1(·)

are both linear operators; the output information is not altered in any way. In other words,

some differential change in the policy parameter can simply be reshaped into a differential

change in the respective component, for example

dA1 = vec−1
h×n(dθA1) (5.49)

Taking the derivative of vectors with respect to matrices is not straightforward, so vectorized

versions of the NN weighting matrices will be considered. This also satisfies the dimensions

required for updating θ. So, the goal is to find:

∂
¯
w2

k

∂θ
=

[
∂
¯
w2

k

∂θA1

∂
¯
w2

k

∂θb1

∂
¯
w2

k

∂θA2

∂
¯
w2

k

∂θA2

]
(5.50)

which can be scaled using the output layer derivatives to find ∂U
∂θ
. The derivative of the value

at the hidden layer is simple as it is a matrix multiplication:

∂
¯
w1

k

∂θA1

=


(
¯
w0

k)
T · · · 01×h

...
. . .

...

01×h · · · (
¯
w0

k)
T

 (5.51)

50

To get the hidden layer output, the previous value must be scaled by the AF derivative,

which is done using an element-wise product

∂
¯
w2

k

∂θA1

= A2

(
∂(

¯
w1

k)
+
HL

∂
¯
w1

k

· ∂¯w
1
k

∂θA1

)
(5.52)

where the matrix AF derivative is formed as

∂(
¯
w1

k)
+
HL

∂
¯
w1

k

:=


∂(

¯
w1

0,k)
+
HL

∂
¯
w1

0,k
· · · ∂(

¯
w1

0,k)
+
HL

∂
¯
w1

0,k

...
...

∂(
¯
w1

h,k)
+
HL

∂
¯
w1

h,k
· · · ∂(

¯
w1

h,k)
+
HL

∂
¯
w1

h,k

 (5.53)

Similarly, the derivative with respect to the first bias can be handled in two steps. The bias

a simple constant so the derivative at the hidden layer is the identity

∂
¯
w1

k

∂θb1
= Ih×h (5.54)

Then, the hidden layer output can be found using

∂
¯
w2

k

∂θb1
= A2

(
∂(

¯
w1

k)
+

∂
¯
w1

k

· ∂¯w
1
k

∂θb1

)
(5.55)

where the AF derivative scaling can be simplified to:

(
∂(

¯
w1

k)
+
HL

∂
¯
w1

k

· ∂¯w
1
k

∂θb1

)
=


∂(

¯
w1

0,k)
+
HL

∂
¯
w1

0,k
· · · 0

...
. . .

...

0 · · · ∂(
¯
w1

h,k)
+
HL

∂
¯
w1

h,k

 (5.56)

51

The hidden layer output is another matrix product with the second matrix weight, so the

derivative is taken as

∂
¯
w2

k

∂θA2

=


(
(
¯
w1

k)
+
HL

)T · · · 01×h

...
. . .

...

01×h · · ·
(
(
¯
w1

k)
+
HL

)T

 (5.57)

Lastly, the derivative with respect to the second bias is the identity

∂
¯
w2

k

∂θb2
= Im×m (5.58)

All of these separate components can be compiled at every time step into Eq. (5.50) and

subsequently, Eq. (5.48).

5.5.3 Convolutional Neural Network

Convolution neural networks have been shown to be extremely powerful at pattern recog-

nition. A CNN is comprised of one or more convolutional layers that feed into one or more

MLP layers. These convolutional layers work by scanning a kernel across the incoming data,

which can have any number of dimensions, and convolving the kernel with the data. This

process allows a CNN to recognize translationally invariant patterns in space as is commonly

found in image recognition. Similarly, as previously discussed, CNNs work well at playing

board games, since they essentially share the same pattern recognition problem. Another

use, more recently explored, is the ability for CNNs to estimate the states of system given

some time history of data. Wilson and Prazenica used a 1D CNN to predict the inflow states

of a rotor system based on measurements of the rotor blade states. Similarly, Kang et al.

used a 2D CNN to approximate rotorcraft dynamics. Approximating system states is, again,

essentially a pattern recognition problem.

The dimension of the CNN refers to the dimension of the the incoming data. In image

recognition, 3D CNNs may be used where two of those dimensions represent the actual image

with the third dimension containing color data such as RGB values. In 2D image recognition,

52

the images are set to a grayscale, where each pixel takes on a value between 0 and 255, and

those pixels make up the image. In terms of dynamics estimation and approximation, 2D

or 1D CNNs are generally used. 1D CNNs are considered in this work, as they ease the

computational burden and fit the dynamics estimation problem better. Kang et al. used a

2D kernel on a time history of data that convolves not only the same state over time but

also other states over that time interval. Depending on the system, this may or may not

be beneficial because the arbitrary ordering of the states in the state vector then plays a

role in the training. With a 1D CNN, each state is handled individually, which removes any

arbitrariness. A similar effect could be found by using a 2D kernel that is the same width as

the state vector dimension. In this case, all of the states would be convolved together over

time and the state vector order would not matter.

The CNN based policy maps a time-history of states to a control input:

µCNN : XNd × θ 7→ U (5.59)

where Nd ∈ N>1 is the number of data input to the CNN. The time-history input, also known

as a feature map, is assembled as

XCNN =


¯
xk−Nd+1

T

...

¯
xk

T

 (5.60)

and the input layer scaling given in Eq. (5.32) is applied to time step individually. The

forward pass through the convolutional layers of a 1D CNN is done using

¯
wj

k,i = bjk,i +

hj−1∑
l=1

conv(ψj−1
li , (

¯
wl−1

k,i)
+) (5.61)

where i is the neuron at the current layer, j is the layer, b is the bias, hj−1 is the number

53

of neurons in the previous layer, and ψ is the filter acting on the lth neuron of the previous

layer going to the ith neuron of the current layer [46]. The AFs used in MLP networks

are used here as well, along with an additional step. Prior to passing the current neuron

information
¯
wj

k to the next layer another operation, termed pooling, is performed where

a separate kernel is scanned along the data, and instead of performing convolutions, it is

common for this kernel to either select the maximum value or average all of the values. Once

the data are propagated through all of the convolutional and pooling layers, they are passed

to MLP layers. Figure 5.6 shows an example CNN equipped with ReLU AFs and a softmax

output layer, which is used for classification problems.

Figure 5.6 Example convolutional neural network used for image recognition [2]

54

6 Regulation Stability

Closed-loop stability of MPC systems has been thoroughly studied with regards to con-

ventional OCS problems and SFCLs. In [47] and [26], the basic assumptions for exploring

the regulation stability of MPC systems are explained:

Assumption 8. f(0n, 0m) = 0n and under zero control, given
¯
x0 ̸= 0, the state either

becomes unbounded or converges to zero (i.e. there are no limit cycles)

Assumption 9. ∃ U,
¯
uk ∈ U ∀ k ∈ N[0,Nh−1] such that

¯
xNh

= 0n

Assumption 10. V µ∗
(
¯
xk) = 0 ⇐⇒

¯
xk = 0n ∀ k ∈ N[0,Nh]

Assumption 11. V µ∗
(
¯
xk) ⇒ ∞ when ||

¯
xk|| ⇒ ∞ ∀ k ∈ N[0,Nh]

Assumption 12. ∃ ∂V µ∗ (
¯
xk)

∂
¯
xk

∀
¯
xk ∈ X , k ∈ N[0,Nh]

These assumptions concern the system behavior, existence of a solution, and cost function

design assumptions given in Section 3.2.1. First, if the system reaches the origin, it must

remain there without any control effort. A constraint placed on the optimization
¯
xNh

= 0n is

commonly found as this complements the assumption that the origin is an equilibrium point.

Work has been done to show how this stabilizing constraint can be relaxed, however. While

the stabilizing terminal constraint is not necessary, the existence of a control trajectory that

would satisfy that constraint is required. Essentially, Assumption 9 regards the system’s

controllability. If the system were linear, controllability could be easily determined using

the controllability Gramian; however, controllability is much harder to analyze for generic

nonlinear systems. Building on the cost function assumptions given in Section 3.2.1, the

value function must be able to properly detect the system, be radially unbounded, and have

proper positive (semi)definiteness properties. Additionally, the value function derivative

must exist over the entire admissible state space, which not only means the cost function

but also the dynamics function must have a derivative. A value function that has these

55

properties can be used as a Lyapunov function and subsequently be used to show that the

control inputs make the system dissipative.

Consider the OCS case where µ : Θ × N[0,Nh−1] 7→ U . Along the optimal trajectory X∗

of a finite horizon optimal control problem produced by the optimal OCS policy µ∗, the

value function should be decreasing. Let V µ∗

Nh
(
¯
x0) be the optimal value for an Nh time step

problem starting at
¯
x0. Then

V µ∗

Nh
(
¯
x0)− V µ∗

Nh−1(¯
x1) = L(

¯
x0,

¯
u∗0) (6.1)

Now, subtract V µ∗

Nh
(
¯
x1) from both sides and rearrange to obtain

V µ∗

Nh
(
¯
x0)− V µ∗

Nh
(
¯
x1) = L(

¯
x0,

¯
u∗0) + V µ∗

Nh−1(¯
x1)− V µ∗

Nh
(
¯
x1) (6.2)

If the right hand side of this equation is nonnegative, then the optimal value function is

nonincreasing along the optimal trajectory. Since L is a positive semidefinite function, if

0 ≤ V µ∗

Nh−1(¯
x1)− V µ∗

Nh
(
¯
x1) (6.3)

is true, then the right hand side of Eq. (6.2) is nonnegative. In [47], the following lemma

and proof are explained:

Lemma 1. If 0 < Nh < N̂h,
¯
xNh

= 0n, and
¯
xN̂h

= 0n, then V µ∗

Nh
(
¯
x0) ≥ V µ̂∗

N̂h
(
¯
x0) ∀

¯
x0

Proof. The OCS µ∗ on k ∈ N[0,Nh) gives the value V
µ∗

Nh
(
¯
x0) and terminal condition

¯
xNh

= 0n.

A new control policy

µ̂∗
k =


µ∗
k for k ∈ N[0,Nh)

0m for k ∈ N[Nh,N̂h)

(6.4)

gives the value V µ̂∗

Nh
(
¯
x0), which is equal to V µ∗

Nh
(
¯
x0), and by definition, shows V µ∗

Nh
(
¯
x0) ≥

V µ̂∗

N̂h
(
¯
x0).

56

The proof applies to finite horizon optimal control problems (one stage of a receding

horizon control problem). Additional work is required to show that a receding horizon OCS

policy results in a dissipative system. In [47] and [48] a continuous time derivation of MPC

regulation stability is given, while [49] and [50] cover discrete-time cases. Porting work from

[47] to a discrete-time system gives Theorem 1.

Theorem 1. Consider a system with Assumptions 8-12 holding and the constraint
¯
xNh

= 0n.

Then, the OCS MPC policy asymptotically stabilizes the system around the origin.

Proof. Using Bellman’s equation, two steps of the MPC problem can be written as

V µ∗

Nh
(
¯
x0) = L(

¯
x0,

¯
u∗0) + V µ∗

Nh−1(¯
x1) (6.5)

V µ∗

Nh
(
¯
x1) = L(

¯
x1,

¯
u∗1) + V µ∗

Nh−1(¯
x2) (6.6)

where two optimal control problems are being solved over Nh ∈ N length horizons with

the second starting one time step after the first. If V µ∗

Nh
(
¯
x0) ≥ V µ∗

Nh
(
¯
x1), then the system is

asymptotically stable. Subtracting the two equations yields

V µ∗

Nh
(
¯
x0)− V µ∗

Nh
(
¯
x1) ≥ L(

¯
x0,

¯
u∗0) + V µ∗

Nh−1(¯
x1)− L(

¯
x1,

¯
u∗1)− V µ∗

Nh−1(¯
x2) (6.7)

Expanding V µ∗

Nh−1(¯
x1) using Bellman’s equation again and simplifying gives

V µ∗

Nh
(
¯
x0)− V µ∗

Nh
(
¯
x1) ≥ L(

¯
x0,

¯
u∗0) + V µ∗

Nh−2(¯
x2)− V µ∗

Nh−1(¯
x2) (6.8)

If the right hand side of this equation is positive semidefinite, then the optimal value over

the Nh ∈ N horizon is nonincreasing. Using Lemma 1,

V µ∗

Nh−2(¯
x2) ≥ V µ∗

Nh−1(¯
x2) (6.9)

57

which proves the right hand side is positive semidefinite. Then,

V µ∗

Nh
(
¯
x0) ≥ V µ∗

Nh
(
¯
x1) (6.10)

and the regulating OCS MPC policy asymptotically drives the system to the origin.

In [51], it is shown how the terminal constraint
¯
xNh

= 0n can be relaxed. Finding the

exact OCS that satisfies
¯
xNh

= 0n can be quite difficult, so another piecewise control policy

is introduced, which assumes the existence of some region around the origin W ⊂ X where

the system can be stabilized using a linear feedback control law. The dual-mode control

policy is given by

µ∗
k(¯
xk) =

¯
u∗k when

¯
xk ∈ Wc

−K
¯
xk when

¯
xk ∈ W

(6.11)

where
¯
u∗k ∈ U comes from the optimal OCS, the superscript “c” denotes the complement,

and K ∈ Rm×n is a stabilizing gain. In [26], this idea is leveraged to show stability of policies

used to approximate the optimal OCS. A stabilizable region Wp is defined as

Wp(N̄h, a, P) := {
¯
xk ∈ X : V̄ µ(

¯
xi) ≤ β} (6.12)

where a ∈ R>0 is a scalar weight, P ∈ Rn×n
>0 is a state weighting matrix, N̄h > Nh is

some number of time steps greater than that required to satisfy
¯
xNh

= 0n, V̄ µ(
¯
xi, θ) =

J̄(Xµ, Uµ) =
∑i+N̄h−1

k=i

(
L(

¯
xk,

¯
uk) + a

¯
xk

TP
¯
xk
)
is the value function used to provide a bound,

and β ∈ R>0 is the bound. The ellipsoid Wp is the region where a chosen control policy can

stabilize the system, as compared to W , which is specific to a linear feedback law. From

[26], Theorem 2 explains stability of NN optimal control approximations, though it is not

necessarily relegated to only NN based policies.

Theorem 2. If Assumptions 1-7 are satisfied and the control policy is continuous with respect

to the system state, there exists a scalar ā ∈ R>0 and matrix P ∈ Rn×n
>0 such that, for any

58

N̄h ≥ Nh and for any a ≥ ā, the following properties hold:

1. There exist suitable scalars δk ∈ R>0 such that, if ||
¯
u∗k−µ(¯xk,¯θ, k)|| ≤ δk, k ∈ N[i,i+N̄h],

then
¯
xk ∈ Wp(N̄h, a, P) ∀ k ∈ N[i,i+N̄h], ¯

xi ∈ Wp(N̄h, a, P)

2. For any compact set Wd ⊂ X , there exists a finite integer T ≥ i and suitable scalars

δ ∈ R>0 such that, if ||
¯
u∗k − µ(

¯
xk,

¯
θ, k)|| ≤ δk, k ∈ N[i,i+N̄h], then

¯
xk ∈ Wd ∀ k ∈

N>T ,
¯
xi ∈ Wp(N̄h, a, P)

The proof for Theorem 2 is given in [24], and values for the suitable scalars δk are

determined in [26]. This theorem essentially states that, in finite time, an approximation of

the optimal OCS given by a control policy will drive the system to a stabilizable region of

the origin where a policy such as Eq. (6.11) can be used. If δk can be determined, then a

control policy can be selected accordingly. In [26], the width of a single layer NN is varied

to achieve suitable accuracy. A theorem and proof of similar effect is given in [28]. In

[52], a stability result is provided for discrete OCS policies acting on continuous systems

with bounded disturbances and measurement error that can be applicable to state feedback

policies.

These proofs work around the case where No = 1. A single control input
¯
uk is imple-

mented, propagating the system from
¯
xk to

¯
xk+1. The trajectory between

¯
xk and

¯
xk+1 is not

considered, just the two end points. Similarly, the actual shape of
¯
uk is not important, just

that it moves the system from
¯
xk to

¯
xk+1. The MPC approach used here involves cases where

No ≥ 1, which means the system may propagate at a higher frequency than the controller’s

operation. If the state at every No time steps is taken to be
¯
xk and that subset of the higher

frequency state trajectory has a nonincreasing cost, then the low frequency MPC system will

be stable according to Theorem 1 or 2. Assuming the control
¯
uk is the optimal OCS along

the trajectory from
¯
xk to

¯
xk+1, the cost between k and k + 1 will also be nonincreasing via

the Bellman equation and assumptions on L(
¯
xk,

¯
uk), which means the high frequency system

will also be stable. If the control
¯
uk is not optimal but has a bounded approximation error,

59

then Theorem 2 and work in [28] prove that the system will remain within the stabilizable

region W .

6.1 Linear Feedback Control

The control policy
¯
uk = K

¯
xk, where K = vec−1

m×n(¯
θ) is a constant feedback gain, is

considered here. This control policy is attractive for its simplicity and robustness but it

lacks in approximation power. Clearly, a linear feedback control law will only be able to

stabilize the system if
¯
x0 ∈ W . Let ΘW ⊆ Θ be the set of policy parameters that produce

stabilizing feedback gains. Clearly, if a linear feedback policy is used,
¯
x0 ∈ W and θ ∈ ΘW ;

then,
¯
xk ∈ W ∀ k ∈ N[0,∞).

Assumption 13. Given a constant linear feedback policy, there exists a unique solution to

Problem 1:
¯
θ∗ = argmin

¯
θ V

µ(
¯
x0)

Empirically, it can be shown that optimal regulators, stationary horizon or receding

horizon, produce stable solutions when the optimization horizon is sufficiently large. If the

horizon were infinite, then the optimal solution would need to stabilize the system as the cost

would be infinite otherwise. In very short horizon problems, destabilizing, or at least non-

stabilizing, solutions can be produced as the control input component of the cost function

can outweigh the state trajectory or the unstable solution may cause the state trajectory to

quickly approach the origin, which can be optimal for regulation problems given the states

do not reach or overshoot the origin within the short horizon.

For example, assume a linear system will be controlled via receding horizon optimizations

of a quadratic cost with an OCS policy; then, the optimal solution at every No steps is given

by the finite horizon linear quadratic regulator (FHLQR). Given a long enough horizon

the FHLQR behaves essentially the same as the infinite horizon linear quadratic regulator

(IHLQR), because the ARE dynamics occur at the end of the horizon where the states are

likely already close to zero. Under very short horizons, however, the ARE does not reach a

constant solution, and the gains associated with the dynamic portion of the ARE solution

60

are not necessarily stabilizing. So, suppose No = 1 and Nh is short enough such that K0

does not stabilize the system. Since a single step approach is used, K0 will be implemented

repeatedly, which results in CG feedback, and the closed-loop system will not be stable. If

Nh were long enough such that the ARE reached a constant solution, then K0 ≈ K∞, where

K∞ is the IHLQR gain, and the closed-loop system will almost exactly replicate the stable

IHLQR solution.

In Lemma 2, it is shown that the linear feedback policy stabilizes nonlinear systems as

the optimization horizon approaches infinity, given that the initial condition is within the

stabilizable region W .

Lemma 2. Given
¯
x0 ∈ W and a constant linear feedback policy, there exists

¯
θ∗∞ ∈ ΘW such

that, as Nh → ∞ the solution to Problem 1
¯
θ∗ approaches

¯
θ∗∞ and produces an asymptotically

stable trajectory around the origin.

Proof. Since
¯
x0 ∈ W , there exists some gain K̄ = vec−1

m×n(¯¯
θ), ¯

¯
θ ∈ ΘW that produces an

asymptotically stable trajectory. Given ||
¯
xk|| → 0 as k → ∞, then ||

¯
uk|| → 0 and according

to Assumptions 3 and 4, L(
¯
xk,

¯
uk) → 0, which shows V µ

∞(
¯
x0, ¯

¯
θ) <∞. There is no requirement

that K̄ be the solution to Problem 1, so given Assumption 13, V µ
∞(

¯
x0,

¯
θ∗) ≤ V µ

∞(
¯
x0, ¯

¯
θ), which

shows the optimal solution to the infinite horizon problem is stabilizing. Now, consider

the value function derivative given in Eq. (4.25). Given the assumptions on L(
¯
xk,

¯
uk) and

the convergence of both
¯
xk and

¯
uk,

∂V µ(
¯
x0)

∂
¯
xk

→ 0n and
∂V µ(

¯
x0)

∂
¯
uk

→ 0m as k → ∞, which

means
∂V µ(

¯
x0)

∂X
and

∂V µ(
¯
x0)

∂U
become constant as Nh → ∞. The control policy gives ∂U

∂X
=

blkdiag
(
vec−1

m×n(¯
θ)
)
and ∂U

∂θ
= X[0,Nh−1], which are both constant as Nh → ∞. Lastly, the

dynamics derivative can be written as:

∂
¯
xk+1

∂
¯
θ

=

(
∂f(

¯
xk,

¯
uk)

∂
¯
xk

+
∂f(

¯
xk,

¯
uk)

∂
¯
uk

vec−1
m×n(¯

θ)

)
∂
¯
xk
∂
¯
θ

+
∂f(

¯
xk,

¯
uk)

∂
¯
uk ¯

xk
T (6.13)

Using Assumption 12,
∣∣∣∣∣∣∂f(¯xk,µ(

¯
xk))

∂
¯
xk

∣∣∣∣∣∣, ∣∣∣∣∣∣∂f(¯xk,µ(
¯
xk))

∂
¯
uk

∣∣∣∣∣∣ < ∞ ∀
¯
xk ∈ X , which shows

∣∣∣∣∣∣∂¯xk+1

∂
¯
θ

∣∣∣∣∣∣ <
∞ as Nh → ∞. Since

∂
¯
xk+1

∂
¯
θ

and ∂U
∂X

are bounded and all other components approach zero

61

as k → ∞, both terms of the value function derivative become constant as Nh → ∞ and

argmin
¯
θ (V

µ
Nh

(
¯
x0)) →

¯
θ∗∞.

Solving infinite horizon problems numerically is intractable, so now it is shown that there

exists some finite optimization horizon that produces a stabilizing feedback gain. While the

exact length of this horizon is unknown, this enables an empirical search to find a horizon

that is suitable. The optimal linear feedback gain, for any horizon length, depends on the

initial condition, excluding linear systems over infinite horizons, which suggests that the

optimization horizon that produces a stabilizing gain also varies with respect to the initial

condition. This is important for receding horizon control where the initial condition for the

repeated optimizations is varying throughout time.

Theorem 3. There exists N̄h ∈ N(0,∞) such that, ¯
¯
θ ∈ ΘW where ¯

¯
θ = argmin

¯
θ V

µ

N̄h
(
¯
x0)

Proof. Let the optimal control inputs
¯
u∗k come from the infinite horizon linear SFCL using

¯
θ∗∞. The optimal inputs can be approximated by a finite horizon linear SFCL using ¯

¯
θ =

argmin
¯
θ V

µ

N̄h
(
¯
x0). In Lemma 2, it is shown that the finite horizon solution converges to the

stable infinite horizon solution as N̄h → ∞. So, there exists some finite horizon N̄h ∈ N(0,∞)

such that, ||
¯
u∗k − µ(

¯
xk, ¯

¯
θ)|| < δk, δk > 0 ∀ k ∈ N[0,N̄h−1] and using Theorem 2,

¯
xk ∈ Wp ∀ k ∈

N[0,N̄h−1]. Given the control policy is a linear SFCL, Wp = W and ¯
¯
θ ∈ ΘW .

62

7 Linear Quadratic Regulator

Consider the discrete time LQR problem where the system’s states propagate with the

linear dynamics

¯
xk+1 = A

¯
xk +B

¯
uk (7.1)

and the optimal control input minimizes the quadratic cost function

J(X,U) =
1

2¯
xNh

TSNh¯
xNh

+
1

2

Nh−1∑
k=0

¯
xk

TQ
¯
xk +

¯
uk

TR
¯
uk (7.2)

where SNh
∈ Rn×n

≥0 is the terminal state weighting matrix, Q ∈ Rn×n
≥0 is the running state

weighing matrix, and R ∈ Rm×m
>0 is the control weighting matrix. Two methods are consid-

ered here: open-loop control and linear feedback control.

7.1 Open-Loop Control

Consider the OCS policy µ : Θ× N[0,Nh−1] 7→ U given by:

¯
uk = θk (7.3)

where Θ = U = RmNh , i.e. there are no control bound constraints. Now, Eq. (4.25) will

be explored using the presented dynamics, policy, and cost function. It is easy to recognize

that the states do not directly affect the control inputs and it is given that the parameter is

the OCS, which means:

∂U

∂X
= 0mNh×n(Nh+1) (7.4)

and

∂U

∂θ
=


Im×m · · · 0m×m

...
. . .

...

0m×m · · · Im×m

 (7.5)

63

Using this result and given θ = U , Eq. (4.25) can be rewritten as:

∂V µ(
¯
x0)

∂X

∂X

∂U
+
∂V µ(

¯
x0)

∂U
= 0mNh (7.6)

and explicitly defined. Taking derivatives of the cost function with respect to its inputs

yields:

∂V µ(
¯
x0)

∂
¯
xk

=

¯
xk

TQ if k < Nh

¯
xk

TS if k = Nh

(7.7)

over k ∈ N[0,Nh], and

∂V µ(
¯
x0)

∂
¯
uk

=
¯
uk

TR ∀ k ∈ N[0,Nh−1] (7.8)

These can be used to populate the terms
∂V µ(

¯
x0)

∂X
and

∂V µ(
¯
x0)

∂U
as:

∂V µ(
¯
x0)

∂X
=

[
¯
x0

TQ
¯
x1

TQ · · ·
¯
xNh−1

TQ
¯
xNh

TS

]
(7.9)

and

∂V µ(
¯
x0)

∂U
=

[
¯
u0

TR
¯
u1

TR · · ·
¯
uNh−2

TR
¯
uNh−1

TR

]
(7.10)

The term ∂X
∂U

is a block matrix and is explained well by [53]:

∂
¯
xk
∂
¯
uj

=


0n×m if k ≤ j

B if k = j + 1

A
∂
¯
xk−1

∂
¯
uj

if k > j + 1

(7.11)

64

over k ∈ N[0,Nh] and j ∈ N[0,Nh−1], which gives:

∂X

∂U
=



0 0 0 · · · 0 0

B 0 0 · · · 0 0

AB B 0 · · · 0 0

A2B AB B · · · 0 0

...
...

...
...

...

ANh−2B ANh−3B ANh−4B · · · B 0

ANh−1B ANh−2B ANh−3B · · · AB B



(7.12)

with 0 := 0m×n for brevity.

Evaluating the result of these matrices then gives:

dV µ(
¯
x0)

dθ
=



¯
u0

TR +
¯
xNh

TSNh
ANh−1B +

∑Nh−2
i=0 ¯

xi+1
TQAiB

¯
u1

TR +
¯
xNh

TSNh
ANh−2B +

∑Nh−3
i=0 ¯

xi+2
TQAiB

...

¯
uNh−2

TR +
¯
xNh

TSNh
AB +

¯
xNh−1

TQB

¯
uNh−1

TR +
¯
xNh

TSNh
B


(7.13)

Setting this equal to 0m×Nh yields the optimal control inputs as a function of the optimal

trajectory:

U∗ =



−R−1BT
(
(ANh−1)TSNh¯

xNh
+
∑Nh−2

i=0 (Ai)TQ
¯
xi+1

)
−R−1BT

(
(ANh−2)TSNh¯

xNh
+
∑Nh−3

i=0 (Ai)TQ
¯
xi+2

)
...

−R−1BT
(
ATSNh¯

xNh
+Q

¯
xNh−1

)
−R−1BTSNh¯

xNh


(7.14)

65

Now, let
¯
λk ∈ Rn be defined over k ∈ N[1,Nh] as:

¯
λk =


(ANh−k)TSNh¯

xNh
+
∑Nh−k−1

i=0 (Ai)TQ
¯
xi+k if 1 ≤ k < Nh

SNh¯
xNh

if k = Nh

(7.15)

Then, the optimal control input at every time step k ∈ N[0,Nh−1] can be written simply as:

¯
uk = −R−1BT

¯
λk+1 (7.16)

which can be substituted into Eq. (7.1):

¯
xk+1 = A

¯
xk −BR−1BT

¯
λk+1 (7.17)

This is still not useful when trying to compute the actual inputs as the value
¯
λk depends on

the trajectory. Looking back to Eq. (7.6), the term
∂V µ(

¯
x0)

∂X
∂X
∂U

can be analyzed further as the

values of
¯
λk represent this part of the derivative. Taking the derivative of that term with

respect to X yields:

∂

∂X

(
∂V µ(

¯
x0)

∂X

∂X

∂U

)
=
∂2V µ(

¯
x0)

∂X2

∂X

∂U
+
∂V µ(

¯
x0)

∂X

∂2X

∂X∂U
(7.18)

=

[
Q Q · · · Q S

]
∂X

∂U
+ 0n×nNh (7.19)

which is a constant and does not depend on X. This leads to the assumption that

λk = Sk
¯
xk ∀ k ∈ N[1,Nh] (7.20)

66

and Eq. (7.17) can be rewritten as:

¯
xk+1 = A

¯
xk −BR−1BTSk+1

¯
xk+1 (7.21)

= (I +BR−1BTSk+1)
−1A

¯
xk (7.22)

Setting Eq. (7.20) and Eq. (7.15) equal yields the system:

Sk
¯
xk = (ANh−k)TSNh¯

xNh
+

Nh−k−1∑
i=0

(Ai)TQ
¯
xi+k (7.23)

SNh¯
xNh

= SNh¯
xNh

(7.24)

The second equation is trivial as it is simply the boundary condition. Using the first equation

and working backward from Nh, a couple terms can be explicitly written:

SNh−1
¯
xNh−1 = ATSNh¯

xNh
+Q

¯
xNh−1 (7.25)

= ATSNh
(I +BR−1BTSNh

)−1A
¯
xNh−2 +Q

¯
xNh−1 (7.26)

=
(
ATSNh

(I +BR−1BTSNh
)−1A+Q

)
¯
xNh−1 (7.27)

SNh−2
¯
xNh−2 = (A2)TSNh¯

xNh
+ ATQ

¯
xNh−1 +Q

¯
xNh−2 (7.28)

= AT
(
ATSNh

(I +BR−1BTSNh
)−1A+Q

)
¯
xNh−1 +Q

¯
xNh−2 (7.29)

=
(
ATSNh−1(I +BR−1BTSNh−1)

−1A+Q
)
¯
xNh−2 (7.30)

These results give the discrete matrix Riccati equation (MRE):

Sk = ATSk+1(I +BR−1BTSk+1)
−1A+Q (7.31)

67

The full optimal solution is then written over k ∈ N[0,Nh−1] as:

θk =
¯
uk (7.32)

¯
uk = −R−1BT

¯
λk+1 (7.33)

¯
λk+1 = Sk+1

¯
xx+1 (7.34)

¯
xk+1 = (I +BR−1BTSk+1)

−1A
¯
xk (7.35)

Sk = ATSk+1(I +BR−1BTSk+1)
−1A+Q (7.36)

with the boundary conditions SNh
and

¯
x0. The control policy can be written as

¯
uk = Kk

¯
xk

where Kk = −R−1BTSk+1(I +BR−1BTSk+1)
−1A.

7.2 Linear Feedback

Now, the goal is to attain a constant optimal linear feedback gain while considering

the linear system and quadratic cost function given by Eqs. (7.1) and (7.2), respectively.

Consider the case where U = R, so Θ ⊂ R1×n. By constraining the control to a singular

input at each time, the reshaping of K to θ is avoided and the feedback law is given by:

uk = θ
¯
xk ∀ k ∈ N[0,Nh−1] (7.37)

The different components needed to evaluate Eq. (4.25) are now explored. Let SNh
= Q,

then the value function derivatives can be formed as:

∂V µ(
¯
x0)

∂X
=

[
¯
x0

TQ
¯
x1

TQ · · ·
¯
xNh−1

TQ
¯
xNh

TQ

]
(7.38)

and

∂V µ(
¯
x0)

∂U
=

[
¯
u0

TR
¯
u1

TR · · ·
¯
uNh−2

TR
¯
uNh−1

TR

]
(7.39)

which is similar to the open-loop case. Next, the control policy derivatives are taken, over

68

all time steps k ∈ N[0,Nh−1], to be

∂µ(
¯
xk)

∂
¯
xk

= θ (7.40)

∂µ(
¯
xk)

∂θ
=

¯
xk

T (7.41)

which are used to form

∂U

∂X
=


θ · · · 0 0

...
. . .

...
...

0 · · · θ 0

 (7.42)

and

∂U

∂θ
= XT

[0,Nh−1] (7.43)

Lastly, the state trajectory derivative is formed using the components

∂f(
¯
xk, uk)

∂
¯
xk

= A (7.44)

∂f(
¯
xk, uk)

∂uk
= B (7.45)

which apply for all time steps k ∈ N[0,Nh−1] and, along with the policy derivatives, give

∂X

∂θ
=



0n×n

B
¯
x0

T

ĀB
¯
x0

T +B
¯
x1

T

...∑Nh−1
i=0 Ā

i
B
¯
xTNh−1−i


(7.46)

where Ā = A+Bθ.

Using these components, the value function derivative is then found to be

dV µ(
¯
x0)

dθ
= X̃ (G+ PM)XT

[0,Nh−1] (7.47)

69

with the following definitions:

X̃ :=

[
¯
x0

T · · ·
¯
xNh−1

T

]
(7.48)

G :=


θTR + ĀTQB · · · 0n

...
. . .

...

0n · · · θTR + ĀTQB

 (7.49)

P :=


θTRθ + ĀTQĀ · · · 0n×n

...
. . .

...

0n×n · · · θTRθ + ĀTQĀ

 (7.50)

M :=



0n 0n · · · 0n 0n

B 0n · · · 0n 0n

ĀB B · · · 0n 0n

...
...

. . .
...

...

ĀNh−2B ĀNh−3B · · · B 0n


(7.51)

A detailed derivation of this result is given in Appendix B.

7.3 Infinite Horizon Approximation Linear Feedback

Working with the problem from the last section, a simplified solution, in comparison to

the previous result, can be found for the infinite horizon LQR if a simplifying assumption is

made. The finite horizon LQR is derived through optimizing the OCS and the time varying

linear feedback control comes out as a result. Additionally, if the horizon goes to infinity,

the solution to the MRE stays constant for all time steps and a constant linear feedback gain

is found, the infinite horizon LQR. Here, the assumption is made that each control input is

independent from the others; that is to say:

dU ≈ ∂U

∂θ
dθ (7.52)

70

Then, using the chain rule, Eq. (4.12) can be written as

(
∂V µ(

¯
x0)

∂X

∂X

∂U
+
∂V µ(

¯
x0)

∂U

)
XT

[0,Nh−1] = 01×n (7.53)

For most systems, if
¯
x0 = 0n then X = 0n×Nh+1 and Eq. (7.53) would be true for any value

of θ. Assuming
¯
x0 ̸= 0n then X ̸= 0n×Nh+1, and the optimal solution relies on

∂V µ(
¯
x0)

∂X

∂X

∂U
+
∂V µ(

¯
x0)

∂U
= 01×Nh (7.54)

which is equivalent to Eq. (7.6), from the open-loop portion. However, given the linear

feedback constraint, Θ ̸= U . The problem considers searching within the parameter space

Θ = R1×n while the dynamics are constrained to

¯
xk+1 = (A+Bθ)

¯
xk (7.55)

= Ā
¯
xk (7.56)

Using Eq. (7.39), Eq. (7.54) can be written as

G+ UR = 0 (7.57)

where 0 := 01×Nh and

G :=
∂V µ(

¯
x0)

∂X

∂X

∂U
(7.58)

Note, since the control inputs are scalar values, UT = U . Then, substituting the control law

gives

G+XT
[0,Nh−1]θ

TR = 0 (7.59)

The optimal value of θ is then found as a least squares regression:

θ = −R−1GTXT
[0,Nh−1]

(
X[0,Nh−1]X

T
[0,Nh−1]

)−1
(7.60)

71

This equation is not trivial to solve as both G and X[0,Nh−1] depend on θ, but it does help

explain the general workings of this algorithm. The true optimal solution is a time varying

linear feedback gain. Given that this solution is constraining the problem to be a constant

gain, it would make sense that there is an error minimization problem within the overarching

optimal control problem. Some more work can be done to show the gain’s independence of

¯
x0 and develop a dynamic equation for determining G. Developing the value of G yields

GT = BT

[
Nh−1∑
i=0

(Ai)TQĀi+1

Nh−2∑
i=0

(Ai)TQĀi+2 · · ·
1∑

i=0

(Ai)TQĀi+Nh−1 QĀNh

]
¯
x0 (7.61)

Let S be defined as

S :=

[
Nh−1∑
i=0

(Ai)TQĀi+1

Nh−2∑
i=0

(Ai)TQĀi+2 · · ·
1∑

i=0

(Ai)TQĀi+Nh−1 QĀNh

]
(7.62)

Then, the last three terms of S can be written fully as:

SNh
= QĀNh (7.63)

SNh−1 = QĀNh−1 + ATQĀNh (7.64)

SNh−2 = QĀNh−2 + ATQĀNh−1 + (A2)TQĀNh (7.65)

A single equation can be formed to express these terms. Given the boundary condition

SNh
= QĀNh , the rest of S can be found with:

Sk = QĀk + ATSk+1 (7.66)

The state trajectory is completely determined by
¯
x0 and θ as

X[0,Nh−1] =

[
I Ā Ā2 · · · ĀNh−2 ĀNh−1

]
¯
x0 (7.67)

72

Then, to simplify this result, let Ã be defined as

Ã :=

[
I Ā Ā2 · · · ĀNh−2 ĀNh−1

]
(7.68)

Now, returning to Eq. (7.59), the values for G and X[0,Nh−1] can be substituted to obtain

¯
x0

TSTB +
¯
x0

T ÃT θTR = 0 (7.69)

Then, the optimal value of θ can be found as

θ = −R−1BTSÃT (ÃÃT)−1 (7.70)

Still, S and Ã depend on θ so the solution to this equation is not trivial. However, the total

solution is given, over k ∈ N[0,Nh−1], as:

uk = θ
¯
xk (7.71)

Ãk = (A+Bθ)k (7.72)

¯
xk+1 = (A+Bθ)

¯
xk (7.73)

Sk = QÃk + ATSk+1 (7.74)

θ = −R−1BTSÃT (ÃÃT)−1 (7.75)

given the boundary conditions
¯
x0 = x0 and SNh

= QĀNh .

A fixed point iteration technique is used to solve for θ following the scheme:

θi+1 = θi − α
(
θi +R−1BTSi(Ãi)T (Ãi(Ãi)T)−1

)
(7.76)

where i ∈ N[0,∞) is the iteration and α ∈ R(0,1) is a learning rate.

73

7.4 Linear Quadratic Gaussian

The linear quadratic Gaussian (LQG) is a combination of the LQR and Kalman filter.

The linear system in Eq. (7.1) is amended with the process noise
¯
ω ∼ N (0, σ

¯
ω) ∈ Rn and a

measurement model is added:

¯
xk+1 = A

¯
xk +B

¯
uk +

¯
ωk (7.77)

¯
yk = C

¯
xk +

¯
νk (7.78)

where
¯
yk ∈ Rr is the measurement, C ∈ Rr×n is the measurement matrix, and

¯
νk ∼

N (0, σ
¯
ν) ∈ Rr is the measurement noise. The process noise and measurement noise are

assumed to be uncorrelated, i.e. each instance of noise is an independent event. Given a

stochastic dynamic system, state trajectories come from a probability distribution within

the state space. Exact values of the state cannot be easily used within the cost function, so

the cost function is modified to include the expectation operator

J̃(X,U) = J(E [X] , U) (7.79)

The expectation operator is linear and, given deterministic values, simply returns the

same value. The weighting matrices are design variables, and the control inputs are known.

So, the expected cost can be simplified to

J̃(X,U) =
1

2¯
x̂Nh

TSNh¯
x̂Nh

+
1

2

Nh−1∑
k=0

¯
x̂k

TQ
¯
x̂k +

¯
uk

TR
¯
uk (7.80)

where
¯
x̂k = E [

¯
xk]. Taking the expectation of Eq. (7.77)

¯
x̂k+1 = A

¯
x̂k +B

¯
uk (7.81)

gives the expected state trajectory, and following the same steps as the deterministic finite

74

horizon LQR problem, the full optimal solution of θ can be written over k ∈ N[0,Nh−1] as:

θk =
¯
uk (7.82)

¯
uk = −R−1BT

¯
λk+1 (7.83)

¯
λk+1 = Sk+1

¯
x̂x+1 (7.84)

¯
x̂k+1 = (I +BR−1BTSk+1)

−1A
¯
x̂k (7.85)

Sk = ATSk+1(I +BR−1BTSk+1)
−1A+Q (7.86)

The main result is that the optimal control inputs come from a linear control law

¯
uk = Kk

¯
x̂k (7.87)

where Kk = −R−1BTSk+1

(
I +BR−1BTSk+1

)−1
A, similar to the finite horizon LQR. Com-

pared to the deterministic case, however, the expected value
¯
x̂k is used for feedback and

must be determined through other means.

For this problem, the Kalman Filter (KF) is known to be the optimal solution. [54]

thoroughly explain the KF and other means of estimation. Here, portions of the KF deriva-

tion are presented, and a detailed derivation is given in Appendix D. The state estimate is

propagated and corrected, respectively, using

¯
x̂−k+1 = A

¯
x̂k +B

¯
uk (7.88)

¯
x̂k =

¯
x̂−k + Lk

[
¯
yk − C

¯
x̂−k
]

(7.89)

where the superscript ”−” denotes an uncorrected estimate, the absence of the superscript

”−” denotes the corrected estimate, and Lk ∈ Rn×r is a feedback gain to be optimized. The

KF minimizes the covariance Pk ∈ Rn×n of the state estimates by directly optimizing the

75

time-varying feedback gain Lk

minLk
tr(Pk) ∀ k ∈ N[0,Nh] (7.90)

Using Eq. (7.88), Eq. (7.89), and the definition of covariance

Pk = E
[̄
ek
¯
ek

T
]

(7.91)

where
¯
ek =

¯
x̂k −

¯
xk is the estimation error, the dynamics of the covariance can be found.

Similar to the state estimate, the covariance is propagated and corrected at each time step

using

P−
k+1 = APkA

T + Ω (7.92)

Pk = (I − LkC)P
−
k (7.93)

Optimizing the feedback gain according to Eq. (7.90) using the covariance dynamics gives

the Kalman gain

Lk = P−
k C

T
(
CP−

k C
T + Λ

)−1
(7.94)

76

8 Simulation Environments

The PPMPC algorithm is tested within two simulation environments: cart-pole and dot

intercept. The cart-pole environment is implemented as a deterministic system that tests the

nonlinear predictive capabilities and unmodelled dynamics. The dot intercept environment

shows decision making capabilities within a stochastic environment.

8.1 Cart-Pole

The cart-pole system, which consists of a pendulum attached to a movable cart, is quite

common in both control theory and machine learning. Force inputs are applied to the cart

and can be used to control the angle of the pendulum. While the system is quite simple,

its dynamics are nonlinear and provide some unique tasks. The pendulum swing up task

Figure 8.1 Cart-pole environment

provides a challenge for predictive controllers and reinforcement learning algorithms while

balancing the upright pendulum gives a nice platform for linear control techniques. Some

research has also focused on controlling variants with multiple pendulums attached to each

other. Glück et al. present a brief history of work involving the triple cart-pole and derive a

nonlinear controller for the swing up maneuver. The regular cart-pole system, used to test

the control algorithm presented here, is described by the following two nonlinear equations:

ÿ =
f −m sinϕ(Lϕ̇2 + g cosϕ)

M +m(1− cos2 ϕ)
(8.1)

ϕ̈ =
g sinϕ+ ÿ cosϕ

L
(8.2)

77

where y is the position of the cart, ϕ is the angle between the pendulum and straight up, f

is the force applied to the cart, m is the plumb bob mass, M is the cart mass, and L is the

pendulum length. A discrete state space representation can be derived with the state vector

¯
x =

[
y ẏ ϕ ϕ̇

]T
using Euler integration:

f(
¯
xk,

¯
uk) =

¯
xk +∆tfc(

¯
xk,

¯
uk) (8.3)

where ∆t ∈ R>0 is the discrete time step and fc : X × U 7→ Rn is the continuous dynamics

function corresponding to the state vector
¯
x. The pole angle is constrained to the range

(−π, π] where zero corresponds to the pole being straight up. This constraint can be enforced

with the appropriate wrapping function on the pole angle.

8.1.1 Cart-Pole Cost Function

The cart-pole will be subject to a quadratic cost function, aimed at regulating the system.

The cart-pole dynamics are presented such that he origin corresponds to the pole pointing

straight up at the unstable equilibrium point. The cost function is given by

J(X,U) =
1

2¯
xNh

TS
¯
xNh

+
1

2

Nh−1∑
k=0

¯
xk

TQ
¯
xk +Ruk

2 (8.4)

where

S = Q =



1 0 0 0

0 0 0 0

0 0 2 0

0 0 0 0


(8.5)

78

and R = 0.001. The horizon length Nh is varied over the presented simulations. The partial

derivatives of the cost function are computed as

∂J(X,U)

∂X
=

[
¯
x0

TQ · · ·
¯
xNh−1

TQ
¯
xNh

TS

]
(8.6)

∂J(X,U)

∂U
=

[
Ru0 · · · RuNh−1

]
(8.7)

8.2 Dot Intercept

In the dot intercept environment, a single interceptor is tasked with reducing the total

incurred cost from several incoming dots. A goal is placed at a random position ytarget ∈

R[ymin,ymax] at the bottom of the play area. The vertical position is taken to be z ∈ R[zmin,zmax]

with positive being up, and the horizontal position y ∈ R[ymin,ymax] is positive to the right.

Each dot and the interceptor abide by the stochastic differential equation:

Figure 8.2 Dot intercept environment

d
¯
xi = fc(

¯
xi,

¯
ui)dt+ σi(

¯
xi,

¯
ui)dW (8.8)

where i ∈ N[0,Nd] in an index over the agents, i = 0 corresponds to the interceptor, Nd ∈ N is

the number of dots,
¯
xi = [yi ẏi zi żi]

T
,
¯
ui =

[
f i
y f i

z

]T
is the control input vector consisting

of y and z force inputs, fc : X play ×U 7→ R4 is the infinitesimal mean, σi : X play ×U 7→ R4×4

is the infinitesimal standard deviation for the i-th agent, X play ⊆ R4 is the play area for a

79

single agent, and W is a Wiener process. The dynamics given by the mean are

fc(
¯
xi,

¯
ui) = A

¯
xi +B

¯
ui +

¯
g (8.9)

where

A =



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


B =



0 0

1 0

0 0

0 1


(8.10)

and
¯
g = [0 0 0 − g]T with g being the acceleration due to gravity. Using Euler integration,

the system can be written in a discrete time form as:

¯
xik+1 = ¯

xik + f(
¯
xi,

¯
ui) + σi(

¯
xik, ¯

uik)
√
∆t

¯
wi

k (8.11)

where
¯
wi

k ∈ R4 such that ∀ j ∈ N[1,4]
¯
wi

k,j ∼ N (0, 1) with
¯
wi

k,j being the j-th element of
¯
wi

k

and the mean dynamics are propagated with

f(
¯
xi,

¯
ui) =


∆tfc(

¯
xik, ¯

uik) if
¯
xi3 > zmin[

¯
xi1 0 zmin 0

]T
otherwise

(8.12)

which includes collision detection with the bottom of the play area. In its most basic form,

the standard deviation will be used as

σi(
¯
xik) =



√
vi1(¯
xik) 0 0 0

0
√
vi2(¯
xik) 0 0

0 0
√
vi3(¯
xik) 0

0 0 0
√
vi4(¯
xik)


(8.13)

80

where vj(
¯
xik) ≥ 0 ∀

¯
xi ∈ X play, j ∈ N[1,4] are variances of the process noise in each state.

Ground collision is considered within the variance as well, so each variance is either constant

or zero:

vj(
¯
xik) =


vj if

¯
xi3 > zmin

0 otherwise

(8.14)

Note, if vj = 0 ∀ j ∈ N[1,4], then the dynamics are deterministic.

A free final time is used within the dot intercept environment. If the interceptor hits

a dot, touches the bottom of the play area, or leaves any other side of the play area, the

simulation is stopped. Additionally, if all of the dots come into contact with the ground, the

simulation is stopped. Once the simulation ends, the cost at the terminal state is evaluated.

8.2.1 Dot Intercept Cost Function

The cost function used within the dot intercept environment does not satisfy all of the

assumptions presented in Section 3.2.1, which are needed when proving regulation stability.

However, given the nature of the problem presented in the dot intercept environment, these

assumptions are not applicable, although special consideration is given to make the cost

function continuous. Subsequently, gradient-based optimization methods can be used with-

out the concern of undefined derivatives. Additionally, the cost function partially satisfies

the radially unboundedness assumptions, which helps ensure the interceptor does not leave

the play area.

The objective is to create a cost function that when used to optimize the parameters of

an adequately powerful policy (e.g. a NN), discrete decisions can be made. If the policy

being used is not capable of approximating abstract functions, decision making is likely not

attainable. Traditionally, decision making problems are solved using RL algorithms where

some differentiable approximating function is used to predict the value of using a control

input in a specific state. The policy parameters are then optimized based on this approx-

imating function, which essentially turns some abstract discrete decision making problem

into a straightforward optimization problem. Instead of simply defining the desired discrete

81

outputs, say by returning a positive reward if the correct dot is intercepted, a continuous cost

function is designed to return the lowest cost when the correct decision is made. Collision

between the interceptor and dots is evaluated by comparing the distances between the two

centers and the radii of the bodies:

√
(
¯
x01 + ¯

xi1)
2 +

√
(
¯
x03 + ¯

xi3)
2 ≤ rint + ri (8.15)

where rint, ri ∈ R>0 are the radii of the interceptor and i-th agent, respectively.

The cost function is comprised of three main components and follows the same general

structure given for the soft terminally constrained control minimization problem given by

Eq. (3.11). The cost function is given as

J(X,U) = Jdot(
¯
xNh

) + Jbounds(
¯
xNh

) + Jinputs(U) (8.16)

where the first two components are the terminal cost

ϕ(
¯
xNh

) := Jdot(
¯
xNh

) + Jbounds(
¯
xNh

) (8.17)

and the last accounts for the control inputs

Jinputs(U) =

Nh−1∑
k=0

¯
uk

TR
¯
uk (8.18)

The objective is to create a cost function that will return a minimal value when the dot that

will land closest to the target is intercepted. This is done by centering one 2D Gaussian

curve on each dot and varying the depth of each curve based on the predicted landing

location of that particular dot. Additionally, a component is added to the depth that entices

the interceptor to actively engage the dots instead of waiting for them to fall and making

an interception close to the target. Figure 8.3 shows a representation of the terminal cost

82

component. In this case, it is assumed Nd = 2, y ∈ R[−1,1], and z ∈ R[0,2]. The optimal

decision would be to intercept the dot centered on y = 0, since that curve is deeper.

Figure 8.3 Dot intercept cost function example representation.

The Nd Gaussian curves η : X play × X play 7→ R<0 are summed to create a plane with

multiple local minima:

Jdot(
¯
xNh

) =

Nd∑
i=1

η(
¯
xi,

¯
x0) (8.19)

where
¯
x0 ∈ X play is the interceptor state and

¯
xi ∈ X play is the state of the i-th dot. The 2D

Gaussian curves are evaluated as

η(
¯
xi,

¯
x0) = −δ(

¯
xi) exp

(
(
¯
x0 −

¯
xi)TCpos(

¯
x0 −

¯
xi)

2σi
dot

2

)
(8.20)

where δ : X play 7→ R>0 evaluates the predicted landing location of the i-th dot and returns

the depth for that particular curve, σi
dot ∈ R>0 is the standard deviation of the Gaussian

83

curve, and the matrix Cpos ∈ R4×4 is used to measure the y and z positions:

Cpos =



1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


(8.21)

The depth of each curve is evaluated based on a 1D Gaussian curve centered at the target,

as shown in Figure 8.4, and a z-axis component:

δ(
¯
xi) = cz(x

i
3 − zmin) + cd exp

(
(xi1,land − ytarget)

2

2σtarget2

)
(8.22)

where cz, cd ∈ R>0 are tuning coefficients,
¯
xi1,land is the predicted y landing position of the

i-th dot, and σtarget ∈ R>0 is the standard deviation. The z-axis component is a simple linear

function that decreases in value as the dots fall towards the ground, which means it is optimal

for the interceptor to actively engage the dots. Note, both the 2D and 1D Gaussian curves

used here do not represent probability distributions for any random variables. The Gaussian

curve just supplies the desired shape needed for this task. So, the standard deviations σi
dot

and σtarget are simply used to adjust the width of the curves and do not really function as

standard deviations. The predicted landing location for each dot can be found with kinematic

equations, assuming the dots have zero control inputs. Given an estimate of a dot’s current

state, or the exact state in the deterministic case, the landing position can be found with:

∆tiland =
−xi4 −

√
xi4

2 − 2gxi3

g
(8.23)

xi1,land = xi2∆t
i
land + xi1 (8.24)

A Kalman filter can be used to optimally estimate each dot’s states. The final component

comes from the position constraints. It is desirable for the interceptor to not leave the play

84

area or come into contact with the bottom of the play area, which can be viewed as the

ground. Exponential functions are used to achieve this with

Jbounds(
¯
xNh

) = e−cb(
¯
x0
1−ymin) + ecb(¯x

0
1−ymax) + e−cb(

¯
x0
3−zmin) + ecb(¯x

0
3−zmax) (8.25)

where cb ∈ R>0 is used to adjust how quickly the soft boundary constraints activate. In

Figure 8.3 the boundary cost function can be seen as the cost increases around the edges

of the play area. The larger cb becomes, the closer each exponential function approaches a

discontinuous step from 0 to ∞, which is displayed in Figure 8.4.

-1 -0.5 0 0.5 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 Decreasing Increasing c
b

Figure 8.4 Effects of varying the depth standard deviation and the boundary constraint
constant.

The standard deviation of the 2D Gaussian curves must be adjusted such that a suf-

ficiently low value is returned when a dot is intercepted while also retaining a distinction

between the dots. Given that the simulation is stopped when the distance between the inter-

ceptor and a dot is less than the sum of their radii and the position of the interceptor is used

within the cost function evaluation, the cost function will never return the global minimum

value. Since the 2D Gaussian curves are centered on the dots, if the standard deviation is too

85

small, the interceptor may not be able to enter the area where a lower cost will be observed.

For example, if the radii of the interceptor and dot were both 1.5 and the standard deviation

of the 2D Gaussian curve were set to 1, then upon collision the cost corresponding to a

Gaussian curve evaluated at three times its standard deviation is returned, which is close to

zero. If the standard is set too large, the interceptor will not be able to decipher between

two dots that are close together, as their separate Gaussian curves will merge together into

a single curve.

The standard deviation of the 1D Gaussian curve used in part to evaluate the depth of

the 2D curves can be adjusted to define the area around the target in which it is undesirable

for a dot to land. Given the standard deviation is sufficiently large, the policy should learn to

intercept the dot that will land closest to the target anywhere within the admissible y-range.

The standard deviation of the curve can also be reduced so that the interceptor should learn

to only intercept dots that will land within a subset of the y-range. Within Figure 8.4 it

can be seen that for the small standard deviation case, a dot landing farther than 0.5 units

away from the target will produce no extra depth in its 2D curve. In the largest standard

deviation case, a dot would need to land in excess of 1 unit away from the target to produce

little depth in its 2D curve.

Consider Eq. (8.16), two of the terms are solely functions of the system state and one

only depends on the control inputs. Hence, the cost derivative with respect to the state and

control trajectories can be written as

∂J(X,U)

∂X
=
∂Jdot(

¯
xNh

)

∂X
+
∂Jbounds(

¯
xNh

)

∂X
(8.26)

∂J(X,U)

∂U
=
∂Jinputs(U)

∂U
(8.27)

The latter equation is straight forward to evaluate as the cost is quadratic with respect to

the control inputs:

∂Jinputs(U)

∂U
=

[
¯
u0

TR · · ·
¯
uNh−1

TR

]
(8.28)

86

Now, the two state dependent components will be evaluated individually. First, only the

terminal state is used for both components, so the partial derivative of the terminal state

with respect to the state trajectory can be written as

∂
¯
xNh

∂X
=

[
0n×n · · · 0n×n In

]
(8.29)

where
∂
¯
xNh

∂X
∈ Nn×nNh . The 2D Gaussian curve component derivative can be written as a

summation of individual derivatives

∂Jdot(
¯
xNh

)

∂
¯
xNh

=

Nd∑
i=1

∂η(
¯
xi,

¯
x0)

∂
¯
xNh

(8.30)

where each curve’s derivative can be expanded as

∂η(
¯
xi,

¯
x0)

∂
¯
xNh

=



∂η(
¯
xi,

¯
x0)

∂
¯
x0 04×4 · · · 04×4

04×4 ∂η(
¯
xi,

¯
x0)

∂
¯
x1 · · · 0n×n

...
...

. . .
...

04×4 04×4 · · · ∂η(
¯
xi,

¯
x0)

∂
¯
xNd


(8.31)

The derivative will be evaluated in terms of the individual agents’ states and reassembled to

form the entire state vector. First, define the curve

N i
dot(¯

xNh
, σi

dot) := exp

(
(
¯
x0 −

¯
xi)TCpos(

¯
x0 −

¯
xi)

2σi
dot

2

)
(8.32)

Then the interceptor and dot components can be computed with

∂η(
¯
xi,

¯
x0)

∂
¯
x0

= −δ(
¯
xi)N i

dot(¯
xNh

, σi
dot)

(
¯
x0 −

¯
xi)TCpos

σi
dot

2 (8.33)

and

∂η(
¯
xi,

¯
x0)

∂
¯
xi

= N i
dot(¯

xNh
, σi

dot)

(
δ(
¯
xi)

(
¯
x0 −

¯
xi)TCpos

σi
dot

2 − ∂δ(
¯
xi)

∂
¯
xi

)
(8.34)

87

The depth is a function of the dots’ estimated landing positions. The assumption is made that

perfect state information exists for each dot, and, regardless of the system’s true stochastic

process, a deterministic parabolic trajectory is followed to the ground from the current state.

The derivative of the depth can then be written as

∂δ(
¯
xi)

∂
¯
xi

=

[
0 0 cz 0

]
+

cdexp

(
(xi1,land − ytarget)

2

2σtarget2

)
(xi1,land − ytarget)

σtarget2
∂xi1,land
∂
¯
xNh

(8.35)

where
∂xi1,land
∂xNh

=

[
∂xi

1,land

∂xi
1

∂xi
1,land

∂xi
2

∂xi
1,land

∂xi
3

∂xi
1,land

∂xi
4

]
(8.36)

and each component can be evaluated. First, the initial y-position acts as a simple offset, so

∂xi1,land
∂xi1

= 1 (8.37)

The y-velocity is assumed to be constant, which gives

∂xi1,land
∂xi2

= ∆tiland (8.38)

The quadratic equation, which is used to calculate the time to land ∆tiland, depends on the

two z-axis states. Using the chain rule, the two z-axis derivatives can be written as

∂xi1,land
∂xi3

= xi2
∂∆tiland
∂xi3

(8.39)

∂xi1,land
∂xi3

= xi2
∂∆tiland
∂xi4

(8.40)

where

∂∆tiland
∂xi3

=
1√

xi4
2 − 2gxi3

(8.41)

88

and

∂∆tiland
∂xi4

= −1

g

1 +
xi4√

xi4
2 − 2gxi3

 (8.42)

Lastly, the soft boundary constraints are solely a function of the interceptor position, which

is contained within the interceptor state. The interceptor state can be extracted from the

full state vector with

∂
¯
x0

∂
¯
xNh

=

[
I4 04×4 · · · 04×4

]
(8.43)

and the boundary constraint derivative is written as

∂Jbounds(
¯
xNh

)

∂
¯
x0

=

[
∂Jbounds(

¯
xNh

)

∂x0
1

0
∂Jbounds(

¯
xNh

)

∂x0
3

0

]
(8.44)

where

∂Jbounds(
¯
xNh

)

∂x01
= cb

(
ecb(x

0
1−ymax) − ecb(x

0
1−ymin)

)
(8.45)

and

∂Jbounds(
¯
xNh

)

∂x03
= cb

(
ecb(x

0
3−zmax) − ecb(x

0
3−zmin)

)
(8.46)

The soft boundary constraints are designed such that the cost function will return large

values when the interceptor has left the play area. Increasing the value of cb increases

the constraining effect that these bounds have, as the returned value will grow much faster.

When considering numerical optimization, the derivative of these bounds it is then important

to consider. If the magnitude of the derivative increases dramatically with respect to the

interceptor position, extremely large changes in θ can be made, which will inevitably make

the optimization fail. If the value of cb is too low, then the bounds will not work as a sharp

constraint and may affect the overall interception performance.

89

9 Simulation Results

9.1 Nonlinear Oscillator

In Chapter 1, the advantage of using the PPMPC method within a simple nonlinear

system is explored for a single initial condition. A side effect of the nonlinear dynamics

and finite horizon is that the optimal control gain depends on the initial condition as seen

in Figure 9.1. The MPC problem is not well posed at
¯
x(0) = 02, as this is a fixed point,

-4 -2 0 2 4
0

2

4

6

8

10 K
1,MPC

K
2,MPC

K
1,

K
2,

-2 -1 0 1 2
0

200

400

600

800

MPC

LQR

Figure 9.1 Nonlinear oscillator regulation with the linear quadratic regulator and model
predictive control derived linear feedback gains. Left shows the value of gains derived and
right shows the resulting cost given a varying initial displacement with zero initial speed.

so any value of K will result in the same trajectory of
¯
x(t) = 02 ∀ t ∈ [0,∞). However,

within Figure 9.1, it is clear that the MPC gain converges to the LQR gain when the

initial condition approaches 02. As the initial displacement increases, the linearization error

increases, which causes the difference in the LQR and MPC costs to increase. While the

MPC performance is only slightly better than the LQR, even at larger initial displacements,

this shows that calculating optimal feedback gains using MPC can give lower cost solutions

than the linearized counterpart. Given a more regnant nonlinear component, the benefit of

MPC will be more prevalent as seen in later sections of this chapter.

90

9.1.1 Constant Gain Regulation over Finite Horizons

It has been shown that time-varying linear state feedback control produces optimal so-

lutions for regulation of linear systems over finite horizons with quadratic cost functions.

Constant gain policies are attractive in their ease of implementation and the straightforward

assessment of closed-loop stability. In Section 6.1, it is shown that the optimal solution linear

feedback gain converges to a constant solution as the optimization horizon approaches infin-

ity and there exists some finite horizon in which the optimal CG policy stabilizes the system

around the origin. Figure 9.2 shows not only how the solution to Problem 3.17 converges to

the IHLQR solution as Nh → ∞ but also how the solution to Problem 4, the infinite horizon

assumption (IHA) presented in Section 7.3, and FHLQR converge.

0 2 4 6 8
50

55

60

65

70

75

80

MPC

LS

IHA

FHLQR

IHLQR

0 2 4 6 8
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Figure 9.2 Linear oscillator regulation with varying constant gain policy techniques and the
time-varying finite horizon linear quadratic regulator solution. Left shows the the total cost
observed by each policy, and the right shows the magnitude of the closed-loop eigenvalues.

Figure 9.2 presents the total cost observed by each control policy over the increasing op-

timization horizon and the magnitude of the closed-loop eigenvalues for the linear oscillator

created when b = 0. The FHLQR is known to be the true optimal solution and, as expected,

observes the lowest cost across the range of optimization horizons. The MPC solution is

bounded by the FHLQR and IHLQR, which is also expected. Since the MPC solution is

optimized with respect to the the finite horizon, a better performing solution is produced in

91

comparison to the infinite horizon solution. The two approximation methods LS and IHA

produce solutions that vary from being slightly better to worse than the IHLQR. Both the

LS and IHA policies are optimized without direct regard for the system dynamics, which sig-

nificantly hinders performance. However, it can be seen that both the LS and IHA solutions

converge to the IHLQR solution as the horizon approaches infinity.

9.2 Stationary Horizon Cart-Pole Regulation

Optimal policies can be determined offline and implemented online similar to explicit

MPC, which significantly reduces online computational requirements. Regulation of the

cart-pole using a variety of control policy architectures is considered in this section for

varying initial conditions, and the performance of the control policies is compared in terms

of both minimal cost function output and modelling error handling. The cart-pole offers

unique dynamics that allow the polices to be tested in not only nearly linear but also fully

nonlinear contexts.

9.2.1 Pole Stabilization

The cart-pole system is regulated from an initial condition of
¯
x0 = [1 0 4π/18 0]T over a

1 second using both linear control theory derived policies and various PPMPC derived control

policies. The FHLQR provides viable solutions at an optimization horizon of Nh = 101 with

the nonlinear dynamics model linearized around the origin. The IHLQR is not included as it

does not stabilize the system given the large initial pole angle. Similarly, as the optimization

horizon is increased, the FHLQR performance degrades quickly as it converges to the IHLQR

solution. The FHLQR is derived using the classical methods, but a saturation function is

used to constrain the outputs to the admissible region, which also degrades the performance.

In comparison, the PPMPC derived policies are optimized with the saturation functions

active, which improves overall performance as not only are the nonlinear dynamics better

handled but also the nonlinear input saturation functions are taken into account.

The PPMPC approach is used to find an optimal OCS, CG, TG, and NN policy. Ad-

ditionally, the OCS state-control trajectory is used to perform a nonlinear least squares

92

Table 9.1 Optimal regulation cost of the cart-pole system over 1 second using various
control policies (Nh = Ns = No = 101, ∆t = 0.01s) with

¯
x0 = [1 0 4π/18 0]T and the

weights S = Q = diag({1 0 2 0}), R = 0.001.

Controller FHLQR OCS TG NN CG LS

Cost 30.7618 27.8194 27.8255 28.3434 30.4748 38.1267

regression and find another optimal CG policy, which within the context of this example is

referred to as the LS policy. The OCS, CG, and TG policies use the discontinuous min-max

output layer; however, the derivatives used within training are handled differently. In the

OCS case, the derivative at the boundary is assumed to be the identity, and if any control

input moves outside of the admissible control range during a training step, that control in-

put is artificially returned to the boundary. In the CG case, no special actions are generally

required unless the entire control trajectory were to lie on a boundary. Since the policy pa-

rameters directly affect all the control inputs, training information can be passed throughout

the horizon. The TG policy is trained using the leaky ReLU method, where the derivatives

at and beyond the boundaries are assumed to be some small positive constant. The NN

policy is implemented as a SLP and uses a sigmoid output layer to help with derivative

scaling.

Table 9.1 shows the total cost incurred by each control policy. All policies perform

similarly except for the LS policy, which is a CG architecture trained using a nonlinear

least-squares regression with the OCS state-control trajectory. In direct comparison to the

the CG policy, found by solving Problem 1, the LS policy performs poorly, clearly showing

the advantage of direct optimization of the policy parameters as opposed to the least squares

regression. As expected, the OCS policy returns the lowest cost and the TG policy returns

a similar result, up to some numerical precision. If m ≤ n, i.e. there are at most the same

number of control inputs as states, the TG policy has universal approximation power and

can perfectly replicate the optimal OCS. In this example, m = 1 and n = 4, and it is clear

that, at a particular time step, there exists some gain Kk that maps
¯
x∗k to

¯
u∗k. Hence, the

TG policy returns a value comparable to the OCS policy. Numerical optimization results

93

in some discrepancy. Similarly, the a SLP NN with 64 hidden nodes is implemented and

returns an equally comparable cost. Given Nh = 101, a SLP network with 101 hidden nodes

could theoretically act as a TG policy and return the exact optimal solution. At 64 hidden

nodes, some approximation is made but the overall solution is almost identical.

0 0.2 0.4 0.6 0.8 1
-20

-10

0

10

20

(a)

LQR

OCS

NN

CG

TG

LS

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

(b)

0 0.5 1

10
-4

28

29

30

Figure 9.3 Optimal regulation of the cart-pole system over 1 second using various control
policies (Nh = Ns = No = 101, ∆t = 0.01s) with

¯
x0 = [1 0 4π/18 0]T and the weights

S = Q = diag({1 0 2 0}), R = 0.001.

Figure 9.3 shows the control inputs and instantaneous state values throughout the sim-

ulation. The optimal solution reaches both the maximum and minimum of the admissible

control input range. As noted before, the control inputs calculated by the FHLQR are sat-

urated to remain within the admissible range, which hinders its performance. Additionally,

this saturation could lead to the IHLQR failing to control the system. The CG policy pre-

sented performs better than the FHLQR, even though it is not a time-varying policy, because

the control input constraints are considered during the optimization. This problem shows

that a simple feedback policy can be trained to perform almost as well as the OCS policy,

given that the initial state is within the stabilizable region W . Additionally, Fig. 9.3 shows

the poor performance of the LS policy as it does not track any of the other results.

94

Table 9.2 Average regulation cost of the cart-pole system over 1 second using various
control policies (Nh = Ns = No = 101, ∆t = 0.01s) with

¯
x0 = [0 0 ϕ0 0]T where

ϕ0 ∼ U(−π/18, π/18) and the weights S = Q = diag({1 0 2 0}), R = 0.001 over 5000
trials.

Controller FHLQR IHLQR TG NN CG LS

Cost 0.8288 0.8821 0.8268 0.8722 0.8634 1.686

9.2.2 Stabilization with Stochastic Initial Condition

Another useful application of offline policy determination is finding optimal policies over

a range of initial conditions. A TG, NN, and CG policy are optimized by solving Problem 2

assuming that
¯
x0 = [0 0 ϕ0 0]T , where ϕ0 ∼ U(−π/18, π/18) is the initial pole angle (π/18 =

10◦) and U(a, b) is a uniform distribution over [a, b]. Table 9.2 shows a comparison of

the policies’ performance including the FHLQR, IHLQR, and a CG policy found via LS

regression of the FHLQR state-control trajectory. In this case, the initial condition
¯
x0 =

[0 0 0.1392 0]T is in close proximity to the origin (0.1392rad ≈ 8◦) and the linear controllers

work well. The FHLQR state-control trajectory is nearly optimal as seen by its relative

performance in Table 9.2 and Fig. 9.4, so for the sake of computation time, the LS policy

is not trained using OCS state-control trajectories. The TG, NN, and CG policies were

trained using the ADAM gradient descent method where the gradient was approximated

using Eq. (4.28). The number of samples Nb was varied from 1000 to 3000, depending on the

size of the policy parameter. The available memory limits Nb as the components of Eq. 4.25

can become quite large, even for a single trajectory, but computing Nb derivatives in parallel

increases the memory usage more. Computing the expected derivative via serial batches of

samples that can be combined to produce Nb in total will relieve memory issues but increase

computation time.

A TG policy is trained offline with the uniformly distributed random initial condition

¯
x0 = [y0 0 ϕ0 0]T where y0 ∼ U(−1, 1) and ϕ0 ∼ U(−4π/18, 4π/18). For this larger region of

the state space, a CG policy no longer effectively controls the system. Given the deterministic

initial condition
¯
x0 = [1 0 4π/18 0]T , it is shown in Sec. 9.2.1 that the CG policy controls

95

0 0.2 0.4 0.6 0.8 1
-20

-10

0

10

20

(a)

IHLQR

FHLQR

NN

CG

TG

LS

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

(b)

Figure 9.4 Sample regulation of the cart-pole system over 1 second using various control
policies (Nh = Ns = No = 101, ∆t = 0.01s) with

¯
x0 = [0 0 0.1392 0]T in (a), and the

average state values of the control policies over 5000 trials in (b) with the weights
S = Q = diag({1 0 2 0}), R = 0.001.

the system in a nearly optimal fashion. However, controlling the system over a range of

the state space requires more approximating power, which the CG policy does not have.

In comparison, the TG policy has significantly more approximating power as there are Nh

feedback gains being determined. Figure 9.5 shows a comparison of the trained TG policy

and the FHLQR. A sample control trajectory is given where
¯
x0 = [0.8532 0 0.5957 0]T . The

TG policy, while providing a more optimal solution in terms of the cost function (V TG(
¯
x0) =

16.39 and V FHLQR(
¯
x0) = 17.74), produces an erratic control trajectory that is likely not

optimal. However, over 5000 trials with sampled uniformly distributed
¯
x0, the TG policy

return an average cost of 6.84 while the FHLQR returns 7.54. Even without saturating the

FHLQR inputs, i.e. allowing the FHLQR to break the control constraints, the average cost

returned is 7.05, which is still higher than the trained TG policy.

9.2.3 Constant Gain State Feedback Convergence

In Section 6.1 it is shown that, given the initial condition
¯
x0 is in the stabilizable regionW

then the optimal constant gain feedback policy over an infinite horizon stabilizes the system

around the origin. Additionally, it is shown that there exists some finite optimization horizon

96

0 0.2 0.4 0.6 0.8 1
-20

-10

0

10

20

(a)

LQR

TG

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

(b)

Figure 9.5 Sample regulation of the cart-pole system over 1 second using a time-varying
linear feedback policy and the finite horizon linear quadratic regulator

(Nh = Ns = No = 101, ∆t = 0.01s) with
¯
x0 = [0.8532 0 0.5957 0]T in (a), and the average

state value of the two policies over 5000 trials in (b) with the weights
S = Q = diag({1 0 2 0}), R = 0.001.

0 2 4 6
20

22

24

26

28

30

32

(a)

0 2 4 6
0.75

0.8

0.85

0.9

0.95

1

1.05

(b)

Figure 9.6 Total cost and closed-loop eigenvalues convergence of the cart-pole system
controlled by a constant linear state feedback policy over an increasing optimization

horizon with the initial condition
¯
x0 = [1 0 4π/18 0]T .

such that a stabilizing policy is produced. Figure 9.6 shows the total cost and magnitude

of the closed-loop eigenvalues over increasing horizon length. Note, the policy is optimized

for the nonlinear system but the eigenvalues are computed using a linearized system. As

expected, the incurred cost initially increases as there are simply more time steps to sum over,

97

and eventually the cost converges to a constant value, which occurs when the system begins

to reach the origin within the horizon. The convergence of the cost shows that the system

is stabilized as the cost would be increasing otherwise. The magnitude of the closed-loop

eigenvalues gives similar information as short horizons do not produce stabilizing policies,

but given minor increases in the optimization horizon, the eigenvalues converge to constant

stable values.

9.2.4 Swing-Up Maneuver

Depending on the initial pole angle, the cart-pole offers both simple regulation and com-

plex nonlinear regulation. When the pole passes horizontal, control inputs have an opposite

effect on its angular acceleration. The swing-up maneuver entails the initial pole angle

ϕ0 = π starts with the pole pointing down and the controller regulating the system. Three

policies are trained to regulate the system: an OCS, a NN, and a TG. The genetic algorithm

was used to optimize the OCS and NN policy parameters. Since the TG policy has universal

approximation power, a LS regression is performed to make the TG controller reproduce

the OCS controller’s solution. For this example, the NN policy is implemented as a SLP

with 512 hidden nodes. Figure 9.7 shows the pole angle and cart position along with the

instantaneous cost.

0 0.5 1 1.5 2 2.5
-1

0

1

2

3

(a)

OCS

NN

TG

, rad

y, m

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

(b)

0 0.5 1

10
-3

240

241

242

Figure 9.7 Cart-pole swing up maneuver using nonlinear and time-varying control policies.

98

There are two main issues that need to be addressed when performing this maneuver.

First, as previously mentioned, the controller must be nonlinear or time-varying as the sign

of the control power changes when the pole passes π/2. The second issue involves the pi-to-pi

wrapping assumed to be used within the model. If the initial condition is
¯
x0 = [0 0 π 0]T

there are two optimal trajectories that return the same cost. The controller can initiate

the motion, swing-up the pole in either direction, and incur the same cost as the pi-to-pi

wrapping induces some symmetry. Without the pi-to-pi wrapping, every initial condition

has its own unique optimal state-control trajectory, but depending on the physical goal of

the controller, the pi-to-pi wrapping makes the system operate in a more straightforward

manner. Both ϕ = 0 and ϕ = 2π correspond to the pole pointing up. With the wrapping

function included, ϕ = 2π becomes ϕ = 0 and the controller understands that the pole is

pointed straight up. Without the wrapping, if the initial angle is started outside of −π to

π range, extra motion and maneuvers will be used to regulate the system. For instance,

if ϕ0 = 6π, then the controller would need to perform three full rotations in the negative

direction to regulate the system.

9.3 Receding Horizon Cart-Pole Regulation with Modelling Error

Taking the trained policies from Section 9.2.1, Fig. 9.8 shows their relative performance

given varying error in the pole length modelling. Clearly, the NN policy is not robust

to unmodelled dynamics as it performs poorly even with slight variation in pole length.

The LS policy is the most robust as its solution varies only slightly over the range of the

modelling error. Interestingly, the OCS is mildly robust in comparison to the linear feedback

policies. Given that the OCS has no feedback component, it might be assumed that it would

perform poorly given modelling error. The CG policy performs nominally if the pole becomes

shorter but begins to fail when the length error exceeds 0.4m, approximately. As the pole

length decreases, the system reacts to inputs faster and requires less aggressive forces to

be controlled, since the moment arm of the plumb bob mass decreases. Therefore, the CG

policy stabilizes the system, although not optimally, when the pole is shorter than what is

99

modelled within the controller. Oppositely, as the moment arm of the plumb bob increases,

the system reacts to inputs slower and requires larger forces to control, which means at some

point the CG policy will begin to fail as the system will not respond appropriately to its

inputs.

-0.1 -0.05 0 0.05 0.1
-4

-2

0

2

4

(a)

-0.1 -0.05 0 0.05 0.1
-100

0

100

200

300

400

500

(b)

LQR

OCS

NN

CG

TG

LS

Figure 9.8 Regulation of the cart-pole system over 1 second using various control policies
(Nh = Ns = No = 101, ∆t = 0.01s) with varying amounts of pole length modelling error,
the initial condition

¯
x0 = [1 0 4π/18 0]T , and the weights S = Q = diag({1 0 2 0}),

R = 0.001.

Figure 9.9 shows the cart-pole regulated using two receding horizon controllers: one with

an OCS policy and one with a CG policy. The effects of pole length modelling error on

the controllers’ comparative performance is explored with modelling errors of 0.07m, 0m,

−0.07m, and −0.15m in (a), (b), (c), and (d) of Fig. 9.9, respectively. The initial condition

¯
x0 = [1 0 4π/18 0]T and optimization horizon Nh = 101 parallel that of the example shown

in Sec. 9.2.1. As seen in Fig. 9.8, both the OCS and CG policies regulate the system poorly

when the modelling error is 0.07m. Using receding horizon control introduces an implicit

state feedback that increases the robustness of the controller, which is prevalent in (a) of

Fig. 9.9 where both controllers effectively regulate the system. Both controllers induce some

moderate oscillations at the beginning of the simulation, but the OCS policy reduces the

amplitude of the oscillations faster than the CG policy. In (b), the nominal case, there

100

is some discrepancy between the two trajectories, but generally, they are the same, which

is expected given the results in Sec. 9.2.1 where the CG policy performed similarly to the

OCS policy. As the modelling error becomes negative, it is expected that the CG policy

will perform better than the OCS policy, and this is the case, although to a lesser degree

at −0.07m. With moderate negative error, the OCS controller exhibits some small scale

oscillations not seen with the CG controller, while at large negative error, −0.15m, the OCS

policy fails to stabilize the system. The CG controller successfully stabilizes the system in

both cases with little transient oscillation.

Since each control input of the OCS policy is not constrained by a state-feedback function,

it can deliver very aggressive corrections to systems that are not following the predicted

trajectory. If a single step receding horizon strategy is used, i.e. No = 1, the OCS policy will

most likely produce the most robust solutions. However, in this example, optimizations are

performed every 10 simulation steps, which allows a build up of error prior to the controller

optimizing the policy again. The state feedback component of the CG policy adds some

inherent robustness as the control trajectory is not fixed. Clearly, the CG policy will not

work in all cases, as seen in Fig. 9.8, but given some knowledge about potential issues that

could arise within a system and the relative frequency between the dynamics and controller

optimization, a suitable policy can be chosen to handle those scenarios.

9.4 Dot Interception with Stochastic Initial Conditions

Two control policies are trained within the dot intercept environment to intercept one

of two dots: a 1D CNN and 2-layer MLP network. The CNN policy is implemented with

a single convolutional layer equipped with convolutional kernels of size 2, ReLU activation

functions, average pooling with 1D kernel size 2, and 8 channels. The convolutional layer

takes in 5 time steps of data and feeds into a SLP network with 64 nodes and ReLU activation

functions. The MLP network is 2 layers of 128 nodes with ReLU activation functions. The

horizontal play area is set to [−1, 1] with the vertical range [0, 3]. The target remains at the

fixed location (0, 0), and the target standard deviation σtarget, used to determine which dot

101

0 1 2 3 4 5
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a)

OCS

CG

0 1 2 3 4 5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b)

0 1 2 3 4 5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(c)

0 1 2 3 4 5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(d)

Figure 9.9 Receding horizon control of the cart-pole system using an OCS and CG policy
with Nh = 101, No = 10, and varying error in pole length modelling error. In (a), (b), (c),

and (d), the pole modelling error is 0.07m, 0m, −0.07m, and −0.15m, respectively.

should be intercepted, is set to 0.1. During training, the dots are initialized within the top

and right 20% of the play area with radius r1, r2 = 0.02m. Their initial vertical velocity

is sampled from a uniformly distributed random curve over the range [0, 1]m/s. Each dot

randomly receives an initial horizontal velocity sampled from a normally distributed curve

with standard deviation 0.1m/s and either a mean of 1m/s or 2m/s. At the start of each

trial, one dot is randomly selected to receive a horizontal velocity that results in it landing

102

within the region of 3σtarget ([−0.3, 0.3]m), which corresponds to an initial horizontal velocity

with mean 1m/s, and one dot receives a velocity with 2m/s that will cause it to overshoot

the target. Each policy should then learn to recognize which dot will land within the 3σ

range and intercept it. The interceptor is initialized with no velocity, a centered horizontal

position, and a vertical position two times greater than its radius rint = 0.03m.

0 2 4 6 8 10
65

70

75

80

85

90

95

100

S
u

cc
es

sf
u

l
In

te
rc

ep
ti

o
n

 (
%

) CNN

MLP

0 2 4 6 8 10
0

10

20

30

40

P
er

fo
rm

an
ce

 D
ec

re
as

e
(%

)

Figure 9.10 Dot interception using a 1D CNN and 2-layer MLP network with unmodelled
process noise and the standard deviation σw = diag ({0.001, 0.01, 0.001, 0.01}) scaled from

0 to 10.

Figure 9.10 shows the interception performance of the two policies given an increasing

amount of unmodelled process noise. Each policy is trained with stochastic initial con-

ditions and deterministic dynamics, and when tested in these conditions over 1000 trials,

the CNN policy intercepted the correct dot 98% of time while the MLP policy intercepted

the correct dot 95.8% of the time. This small discrepancy, and the occasional failure of

both policies to intercept the dot, are likely due to training. However, both learn to

intercept the correct dot almost all of the time. Adding process noise to the dots sig-

nificantly changes these results. The process noise is added by scaling the base values

σ
¯
w = diag({0.001, 0.01, 0.001, 0.01}) from 1 to 10 (i.e. when scaled by 5 the standard devi-

ation is σ
¯
w = diag({0.005, 0.05, 0.005, 0.05})). Unexpectedly, the MLP policy proves more

103

robust to the process noise than the CNN policy as seen on the right side of Fig. 9.10. When

the standard deviation is scaled by 10 and given as σ
¯
w = diag({0.01, 0.1, 0.01, 0.1}), the

MLP policy performs 20.6% worse while the CNN policy performs 32.4% worse. Note, the

trend lines presented are quadratic fits given for comparison purposes. When the process

noise is scaled by 10, the 3σw bounds on the dot and interceptor position process noise are

within the same range as the radii of the dots themselves. This implies that, the process

noise alone could cause the interceptor to miss regardless of the control inputs.

Within the cost function described in Sec. 8.2.1, a term is added with the purpose of

enticing the interceptor to actively engage the dots by moving upward. As seen in Fig. 9.12,

the CNN policy fails to move upward any considerable amount and intercepts the dot near its

starting position. The trial depicted shows the interceptor move only slightly to intercept the

dot, which would be optimal without the addition of the vertical position based component

of the cost function. This moderate amount of motion can be observed over all trials with

the CNN policy. It essentially learned to move the interceptor as little as possible. In

comparison, the MLP network seen in Fig. 9.13 waits some time for the dot to fall and then

actively engages it above the target. The more aggressive nature of the MLP policy could

lend itself to performing better when the dots are subject to process noise as it may more

actively track the dot to be intercepted.

9.5 Dot Interception with Process Noise

Another CNN policy of similar design to Sec. 9.4 is trained with not only random initial

conditions but also stochastic dynamics. The CNN is extended to take in 11 time steps of

data instead of the previous 5 and trained with the dots subjected to normally distributed

zero mean process noise of standard deviation σ
¯
w = diag({0.01, 0.1, 0.01, 0.1}). The envi-

ronment characteristics remain identical to the previous section; most notably, the radii of

the interceptor rint = 0.03m and dots r1, r2 = 0.02m are of comparable size to the position

process noise that the bodies are subject to. For the interceptor to intercept a dot, it must

position itself within 0.05m of the dot being intercepted. Given the process noise standard

104

deviation, if both the vertical and horizontal position noises sampled when the interceptor

is about to contact the dot lie on the 3σw bound with appropriate directions, then the inter-

ceptor and dot could move 2
√
0.032 + 0.032 ≈ 0.085m away from each other and cause the

interceptor to miss.

Figure 9.11 shows percentages of interception and performance decrease of the CNN

trained with fixed process noise over varying standard deviations. In this case, the CNN

performs much better than the policies presented in Sec. 9.4. Taking in more time steps not

only allows the CNN to analyze the mean trajectory of the dots better but also increases

the overall size of the CNN, which increases its approximating capabilities. Given the fixed

kernel size of 2, a CNN taking in 5 times steps of data performs 4 convolutions, while the

CNN taking in 11 times steps performs 10. This increase in computations obviously affects

the computation time and only minimally affects the performance with zero process noise.

However, given the standard deviation σ
¯
w = diag({0.01, 0.1, 0.01, 0.1}), the larger CNN

only performs 6.7% worse than the deterministic case as compared to the previous 32.4%

deterioration.

0 2 4 6 8 10
80

85

90

95

100

S
u

cc
es

sf
u

l
In

te
rc

ep
ti

o
n

 (
%

)

0 2 4 6 8 10
-2

0

2

4

6

8

P
er

fo
rm

an
ce

 D
ec

re
as

e
(%

)

Figure 9.11 Dot interception using a 1D CNN trained with fixed process noise over trials
with varying standard deviation σw = diag ({0.001, 0.01, 0.001, 0.01}) scaled from 0 to 10.

105

t = 0s t = 0.30s

t = 0.60s t = 0.75s

Figure 9.12 Sample trial of dot interception with no process noise using the 1D CNN policy
that takes in 5 time steps of data.

106

t = 0s t = 0.30s

t = 0.60s t = 0.69s

Figure 9.13 Sample trial of dot interception with no process noise using the 2-layer MLP
policy.

107

t = 0s t = 0.30s

t = 0.60s t = 0.66s

Figure 9.14 Sample trial of dot interception with process noise of standard deviation
σw = diag ({0.01, 0.1, 0.01, 0.1}) using the 1D CNN policy that takes in 11 time steps of

data.

108

10 Conclusion

A model predictive control method is presented that encompasses not only receding

horizon but also stationary horizon optimal control problems. The method, termed param-

eterized policy model predictive control (PPMPC), focuses on optimizing the parameters

of a fixed structure policy, which includes conventional open-loop control sequences (OCSs)

and state-feedback control laws. The control policy parameters are optimized with respect

to a value function, which acts as a constrained cost function. Given the system dynamics,

control policy, policy parameters, and an initial condition, the state and control trajectories

can be computed over the optimization horizon. Evaluating a chosen cost function with the

state and control trajectory produces the value of following the control policy from that ini-

tial condition. The policy parameters are then optimized to provide a minimal value. Note,

not all policies can produce the true optimal solution given by an OCS policy, but solutions

are considered optimal when the chosen policy is performing optimally. Since the dynamics

and control policy are included in the value function, no functional constraints need to be

placed on the problem unless there are some other desired outcomes like state bounds or

closed-loop stability assurance. The control policies can then be determined offline, similar

to explicit model predictive control, or online with new optimizations occurring every set

number of simulation steps.

The PPMPC method resembles the deterministic policy gradient algorithm where a fixed

policy, most commonly a deep neural network (NN), is used to optimize the output of an-

other function that is being trained to reproduce the state-action values of a system. In this

case, the policy is used to optimize a known value function with an analytical derivative,

which enables closed-loop stability assurance for receding horizon problems given that the

chosen control policy can replicate the optimal OCS trajectory to within some accuracy [26].

A common approach to optimizing state-feedback polices is to solve the OCS problem for a

single initial condition or range of initial conditions, then perform a least-squares (LS) regres-

sion on the state and control trajectories with the desired state-feedback policy. As discussed

109

in [28], the LS approximation error has a large effect on the closed-loop performance of the

policy. Assuming the chosen policy has nearly-universal or actual universal approximation

capability, like an adequately sized NN or time-varying linear feedback gain (TG), the LS

approach will produce an acceptable result. However, when considering policies with low

approximation power, e.g. a constant linear feedback gain (CG), optimizing the policy pa-

rameters with respect to the value function directly, such as within the deterministic policy

gradient algorithm, produces much better results in terms of value function optimality and

subjective system performance.

Leveraging work from [26], it is shown that the infinite horizon optimal CG policy regu-

lates nonlinear systems assuming that the system is stabilizable and the initial condition lies

within a stabilizable region. Furthermore, it is shown that there exists some finite optimiza-

tion horizon that produces a stabilizing feedback gain. It is well known that increasing the

optimization horizon of an OCS policy produces “more stable” results. Assuming regulation

is the objective, if more time steps are being considered via increasing the horizon length

and the states are not approaching the origin, the cost will continue to increase. However,

through implementation of the optimal OCS policy, it can be observed that the total cost

converges to a constant finite value as the optimization horizon increases, assuming that

there exists some stabilizing solution. The optimal CG policy acts in the same way; as

the optimization horizon is increased, the feedback gain converges to a constant value and

produces a constant cost.

Commonly, physical systems have control input limits, which are normally accounted for

in conventional OCS optimal control problems by placing a functional constraint on the opti-

mization. Linear optimal control methods, which inherently do not include nonlinear control

bound constraints, can either be tuned in such a way that the control inputs produced do

not violate the input limits or a saturation function can be placed on the linear controller,

which will degrade its performance. By including the control boundaries within the policy

and subsequently the value function, the policy parameters are optimized with respect to

110

those control bounds, along with the system dynamics and policy structure, at the expense

of rendering linear state-feedback functions nonlinear in nature. Solving the optimal control

problem with the control constraints intrinsically satisfied by the control policy negates the

need for the use of Lagrange multipliers within the optimization; however, since even linear

control policy architectures become nonlinear given a saturation function, special consid-

eration must be given during optimization. The complexity of solving the optimal control

problem with nonlinear functional constraints is not completely negated, but basic gradient-

based or gradient-free optimizations can be used, given that the nonlinearities within the

control policy are handled accordingly.

The value function derivative is presented for a generic cost function, dynamic system, and

control policy. Given the structure of the derivative, comparing implementations of several

control policies is straightforward. The derivative of each component, i.e. the cost function,

system dynamics, and control policy, are separated such that altering one does not affect the

others. Hence, optimizing a control policy simply requires inputting the related derivatives

for that control policy and using them to evaluate the state and control trajectories. Within

gradient-free optimization methods, the implementation is even more straightforward as

all that is required is for the control policy to be implemented within the system model.

Assuming a specific cost function, dynamic system, and control policy have been chosen,

simplifications can be performed to decrease the computational burden. The dynamic system

derivative ∂X
∂U

, in particular, can become quite large and computationally burdensome as both

X and U grow with respect to the optimization horizon and the derivative is calculated using

its own dynamic system given by Eq. 4, meaning the elements of the block matrix cannot be

completely calculated in parallel like the control policy derivative ∂U
∂X

. Note, if the control

policy contained some time dependent adapting component described by a dynamic system,

for example, then the control policy derivative ∂U
∂X

would also not be fully parallelizable.

Given a linear system and quadratic cost, the classical finite horizon linear quadratic reg-

ulator (FHLQR), a simplified derivative for optimal CG policies over finite horizons, and an

111

infinite horizon approximation with a CG policy are presented. Assuming the control policy

is an OCS without any boundary constraints, i.e. U = Rm, the FHLQR is derived using the

presented value function derivative for verification of the method. Instead of first defining

Lagrange multipliers as is done with the Euler-Lagrange approach, a backwards look at the

optimal control inputs reveals the matrix Riccati equation when using the value function

derivative, which works similarly to the dynamic programming approach. An assumption is

made about the solution to the Riccati equation, which then introduces the typical definition

of the Lagrange multipliers; however, only the first Karush-Kuhn-Tucker condition is used

to find this definition. A closed form solution for optimal CG policies over finite horizons

was not determined, although a simplified value function derivative is given. Within the

simplified derivative, it is clear that even within a linear-quadratic context, the optimal CG

policy for a finite horizon relies on the initial condition. Even making an infinite horizon

approximation, where the state and control trajectory are assumed to no longer be directly

coupled, an iterative root finding algorithm must be used to find the optimal feedback gain.

The PPMPC method is used to regulate the cart-pole with various initial conditions

and control policy architectures. Over a stationary horizon of 1 second with the continuous

cart-pole dynamics model discretized at ∆t = 0.01s, i.e. the horizon is comprised of 101

time steps, several control policies were implemented, and most produced similar results.

The control policies used were an OCS, a CG, a TG, and a CG LS approximation of the

optimal OCS. The control input weighting was low in comparison to the state weighting,

which resulted in the optimal solution being aggressive and quickly regulating the system.

The CG policy was able to almost replicate the true optimal OCS solution. Considering the

control boundary saturation functions were active, i.e. the control limits were being reached,

the power of directly optimizing the policy parameters is clearly shown as one solution, the

CG, containing a total of 4 values to be computed, performed nearly as well as the OCS

solution where each of the 100 control inputs was determined independently. This is even

more evident in the receding horizon simulations where the CG solution not only performed

112

nearly identical to the OCS solution in the nominal case but also completely mitigated some

modelling error in an off-nominal case.

The poor performance of the LS solution is clearly shown within the cart-pole simulations.

A CG policy is trained using a LS regression and the optimal OCS state-control trajectory.

Given the low approximation power of the CG policy, there is significant error within the

LS regression. Since the CG policy is not able to accurately reproduce the OCS control

trajectory, it cannot reproduce the OCS state trajectory. Additionally, the policy uses

the states to calculate the control inputs, meaning when the OCS state trajectory is not

reproduced, significantly more error propagates through the system. This phenomenon can

be seen not only in the deterministic case but also in the stochastic case where several optimal

state-control trajectories are used. In all of these cases, the direct CG solution performed

significantly better.

Stationary time varying horizons are used to find optimal NN based policies within the dot

intercept environment. Performance of a CNN policy and a MLP policy are compared given

unmodelled process noise. It was assumed that the CNN layer would better handle noise as

it brings in a time history of data that could be used to better deduce the mean trajectory.

However, it was shown, for a particular case, that the MLP policy, which only observes the

current state, was more robust to the unmodelled process noise. The MLP solution was much

more proactive in intercepting the dots as it actively moved the interceptor upward. The

CNN solution seemed to input the least amount of control power possible as it barely moved

the interceptor. This discrepancy could be the reason that the MLP solution was able to

track the dots subject to process noise as it was not only more aggressive in maneuvering but

also shortened the distance that the dot had to drift away from its nominal trajectory. An

additional CNN that brought in over twice the number of time steps of data, in comparison to

the first CNN, was trained with the process noise present. This larger CNN maneuvered the

dot in a similar manner to the deterministic MLP solution and performed significantly better

when subjected to process noise. The increase in performance is likely from a combination

113

of training the policy in a stochastic environment and the increased approximation power of

the larger convolutional layer.

The main purpose within the dot intercept environment is not necessarily to show that

a NN can be trained to intercept a body in a parabolic trajectory, e.g. an enemy missile.

The purpose is to show how discrete decisions can be made by designing a continuous differ-

entiable cost function. Typically, decision problems are solved using RL algorithms where

a discrete reward is given when the correct choice is made and the critic function approxi-

mates the reward signal in a differentiable way, which allows the policy to be updated via

a gradient. However, this process does not lead to any stability proofs being available as

the approximation of the reward function has unknown characteristics. It is assumed within

optimal control proofs that the cost function is radially unbounded and non-decreasing, con-

ditions that the cost function used within the dot intercept environment does not meet.

However, some approximations could be made to argue that within some local region the

cost function is radially unbounded and non-decreasing, and local stability proofs could po-

tentially be reasoned. Assuring that control policies will make correct discrete decisions is

vitally important to the mechanization of the world.

The PPMPC method was assessed by regulating the cart-pole system. Analyzing refer-

ence trajectory tracking capabilities of the method and training complex nonlinear policies

to track complex trajectories would extend the work provided here. The compounding error

effect seen within LS based policies was explored empirically but no definite proofs were

given, or have been found, that show the LS solution performs only as well as the direct

solution. The NN based policies within the dot intercept environment were trained under a

narrow scope of initial conditions. Ideally, the interceptor would be able to make decisions

given that the dots start anywhere in the play area and the target initializes anywhere along

the bottom. Training the policies given those conditions produced limited results. Addition-

ally, training a policy that could control multiple interceptors working cooperatively could

show significant increase the performance of the algorithm.

114

REFERENCES

[1] Mohamed, H., Negm, A., Zaharan, M., and Saavedra, O., “Assessment of Artificial

Neural Network for Bathymetry Estimation Using High Resolution Satellite Imagery in

Shallow Lakes: Case Study El Burullus Lake,” International Water Technology Journal,

Vol. 5, No. 4, 2015, pp. 248–259.

[2] Saha, S., “A Comprehensive Guide to Convolutional Neural Networks - the ELI5 way,”

, 2018. URL https://towardsdatascience.com/a-comprehensive-guide-to-...

convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[3] Richalet, J., Rault, A., Testud, L., and Papon, J., “Model Predictive Heurisitc Control:

Applications to Industrial Processes,” Automatica, Vol. 14, 1978, pp. 413–428. https:

//doi.org/10.1016/0005-1098(78)90001-8.

[4] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, L., Huang, A., Guez, A.,

Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre,

L., van den Driessche, G., Graepel, T., and Hassabis, D., “Mastering the Game

of Go Without Human Knowledge,” Nature, Vol. 550, 2017, pp. 354–359. https:

//doi.org/10.1038/nature24270.

[5] Lewis, F., Vrabie, D., and Syrmos, V., Optimal Control, 3rd ed., John Wiley & Sons,

Inc., 2012.

[6] Burghart, J., “A Technique for Suboptimal Feedback Control of Nonlinear Systems,”

Transactions on Automatic Control, Vol. 14, No. 5, 1969, pp. 530–533. https://doi.org/

10.1109/TAC.1969.1099251.

[7] Heydari, A., and Balakrishnan, S., “Closed-form Solution to Finite-horizon Suboptimal

Control of Nonlinear Systems,” International Journal of Robust and Nonlinear Control,

Vol. 25, 2020, pp. 2687–2704. https://doi.org/10.1002/rnc.3222.

115

https://towardsdatascience.com/a-comprehensive-guide-to-... convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-... convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://doi.org/10.1016/0005-1098(78)90001-8
https://doi.org/10.1016/0005-1098(78)90001-8
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1109/TAC.1969.1099251
https://doi.org/10.1109/TAC.1969.1099251
https://doi.org/10.1002/rnc.3222

[8] Nanavati, R. V., Kumar, S. R., and Maity, A., “Suboptimal Closed-form Feedback

Control of Input-affine Non-linear Systems,” Control Theory & Applications, Vol. 14,

No. 15, 2020, pp. 2064–2075. https://doi.org/10.1049/iet-cta.2019.1249.

[9] Misra, G., and Bai, X., “Output-Feedback Stochastic Model Predictive Control for

Glideslope Tracking During Aircraft Carrier Landing,” Journal of Guidance, Control,

and Dynamics, Vol. 42, No. 9, 2019. https://doi.org/10.2514/1.G004160.

[10] Wilson, E., and Prazenica, R., “Autonomous Autorotation of a Multirotor Vehi-

cle Using Output Feedback Model Predictive Control with Online Learning,” Ad-

vances in Feedback Control Architectures for Autonomous Systems I, AIAA, 2021.

https://doi.org/10.2514/6.2021-0379.

[11] Alessio, A., and Bemporad, A., “A Survey on Explicit Model Predictive Control,” Non-

linear Model Predictive Control. Lecture Notes in Control and Information Sciences,

Vol. 384, edited by L. Magni, D. Martino, and F. Allgöwer, Springer, Berlin, 2009, pp.

345–369. https://doi.org/10.1007/978-3-642-01094-1 29.

[12] Rawlings, J. B., and Mayne, D. Q., Model Predictive Control: Theory and Design, Nob

Hill Publishing, 2009.

[13] Hovland, S., Gravdahl, T., and Willcox, K. E., “Explicit Model Predictive Control for

Large-Scale Systems via Model Reduction,” Journal of Guidance, Control, and Dynam-

ics, Vol. 31, No. 4, 2008. https://doi.org/10.2514/1.33079.

[14] Chen, J., Chen, Y., Tong, L., Peng, L., and Kang, Y., “A Backpropagation Neural

Network-Based Explicit Model Predictive Control for DC-DC Converters With High

Switching Frequency,” Journal of Emerging and Selected Topics in Power Electronics,

Vol. 8, No. 3, 2020, pp. 2124–2142.

[15] Suykens, J., Vandewalle, J., and Moor, B. D., “Opitmal Control by Least Squares

116

https://doi.org/10.1049/iet-cta.2019.1249
https://doi.org/10.2514/1.G004160
https://doi.org/10.2514/6.2021-0379
https://doi.org/10.1007/978-3-642-01094-1_29
https://doi.org/10.2514/1.33079

Support Vector Machines,” Neural Networks, Vol. 14, 2001, pp. 23–35. https://doi.org/

10.1016/S0893-6080(00)00077-0.

[16] Sánchez-Sánchez, C., and Izzo, D., “Real-Time Optimal Control via Deep Neural Net-

works: Study on Landing Problems,” Journal of Guidance, Control, and Dynamics,

Vol. 41, No. 5, 2018. https://doi.org/10.2514/1.G002357.

[17] Chen, S., Saulnier, K., Atanasov, N., Lee, D., Kumar, V., Pappas, G., and Morari,

M., “Approximating Explicit Model Predictive Control Using Constrained Neural Net-

works,” AACC, American Control Conference, 2018.

[18] Sutton, R., and Barto, A., Reinforcement Learning: An Introduction, 2nd ed., MIT

Press, 2018.

[19] Eisenberg, B. R., and Sage, A. P., “Closed Loop Optimization of Fixed Configuration

Systems,” International Journal of Control, Vol. 3, 1966, pp. 183–194. https://doi.org/

10.1080/00207176608921377.

[20] Kleinman, D. L., and Athans, M., “The Design of Suboptimal Linear Time-Varying

Systems,” IEEE Transactions on Automatic Control, Vol. AC-13, 1968, pp. 150–159.

https://doi.org/10.1109/TAC.1968.1098852.

[21] Colombo, R., Gennari, F., Annem, V., Rajendran, P., Thakar, S., Bascetta, L., and

Gupta, S., “Parameterized Model Predictive Control of a Nonholonomic Mobile Manip-

ulator: A Terminal Constraint-Free Approach,” IEEE 15th International Conference

on Automation Science and Engineering, 2019. https://doi.org/10.1109/COASE.2019.

8843088.

[22] Parisini, T., and Zoppoli, R., “Multi-Layer Neural Networks for the Optimal Control

of Nonlinear Dynamic Systems,” IFAC Design Methods of Control Systems, 1991, pp.

393–398.

117

https://doi.org/10.1016/S0893-6080(00)00077-0
https://doi.org/10.1016/S0893-6080(00)00077-0
https://doi.org/10.2514/1.G002357
https://doi.org/10.1080/00207176608921377
https://doi.org/10.1080/00207176608921377
https://doi.org/10.1109/TAC.1968.1098852
https://doi.org/10.1109/COASE.2019.8843088
https://doi.org/10.1109/COASE.2019.8843088

[23] Parisini, T., and Zoppoli, R., “Neural Networks for Feedback Feedforward Nonlinear

Control Systems,” IEEE Transactions of Automatic Control, Vol. 5, No. 3, 1994, pp.

436–449. https://doi.org/10.1109/72.286914.

[24] Parisini, T., and Zoppoli, R., “A Receding-horizon Regulator for Nonlinear Systems

and a Neural Approximation,” Automatica, Vol. 31, No. 10, 1995, pp. 1443–1451.

https://doi.org/10.1016/0005-1098(95)00044-W.

[25] Zoppoli, R., and Parisini, T., “Neural Approximations for Finite- and Infinite-Horizon

Optimal Control,” Neural Systems for Control, edited by O. Omidvar and D. L. Elliot,

Academic Press, 1997, Chap. 12, pp. 317–351.

[26] Parisini, T., and Zoppoli, R., “Nonlinear Stabilization by Receding-Horizon Neural

Regulators,” International Journal of Control, Vol. 70, 1998, pp. 341–362. https://doi.

org/10.1080/002071798222271.

[27] Pin, G., Filippo, M., Pellegrino, F., Fenu, G., and Parisini, T., “Approximate Model

Predictive Control Laws for Constrained Nonlinear Discrete-Time Systems: Analysis

and Offline Design,” International Journal of Control, Vol. 86, No. 5, 2013, pp. 804–

820. https://doi.org/10.1080/00207179.2012.762121.

[28] Zoppoli, R., Sanguineti, M., Gnecco, G., and Parisini, T., Neural Approximations for

Optimal Control and Decision, 1st ed., Springer, 2020.

[29] Bellman, R., “Dynamic Programming,” Science, Vol. 153, No. 3731, 1966, pp. 34–37.

https://doi.org/10.1126/science.153.3731.34.

[30] Zhou, Y., van Kampen, E.-J., and Chu, Q., “Incremental Approximate Dynamic Pro-

gramming for Nonlinear Adaptive Tracking Control with Partial Observability,” Journal

of Guidance, Control, and Dynamics, Vol. 41, No. 12, 2018. https://doi.org/10.2514/1.

G003472.

118

https://doi.org/10.1109/72.286914
https://doi.org/10.1016/0005-1098(95)00044-W
https://doi.org/10.1080/002071798222271
https://doi.org/10.1080/002071798222271
https://doi.org/10.1080/00207179.2012.762121
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.2514/1.G003472
https://doi.org/10.2514/1.G003472

[31] Bertsekas, D., Dynamics Programming and Optimal Control, Vol. 1, Athena Scientific,

2017.

[32] Bertsekas, D., Dynamics Programming and Opitmal Control, Vol. 2, Athena Scientific,

2012.

[33] Watkins, C., “Learning From Delayed Rewards,” Ph.D. thesis, King’s College, 1989.

[34] Balakrishnan, S., and Biega, V., “Adaptive-Critic-Based Neural Networks for Aircraft

Optimal Control,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 4, 1996.

https://doi.org/10.2514/3.21715.

[35] Farshidian, F., Hoeller, D., and Hutter, M., “Deep Value Model Predictive Control,” ,

2019.

[36] Saerens, M., and Soquet, A., “Neural Controller Based on Back-Propagation Algo-

rithm,” IEE Proceedings-F, Radar and Signal Processing, Vol. 138, 1991, pp. 55–62.

[37] Kingma, D. P., and Ba, J., “ADAM: A Method for Stochastic Optimization,” 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[38] Holland, J., Adaptation in Natural and Artificial Systems, 1st ed., University of Michigan

Press, 1975.

[39] Affenzeller, M., Winkler, S., Wagner, S., and Beham, A., Genetic Algorithms and

Genetic Programming: Modern Concepts and Practical Applications, 1st ed., CRC

Press/Taylor & Francis Group, 2009.

[40] Roodschild, M., nas, J. G. S., and Will, A., “A New Approach For the Vanishing

Gradient Problem on Sigmoid Activation,” Progress in Artificial Intelligence, Vol. 9,

2020, pp. 351–360. https://doi.org/10.1007/s13748-020-00218-y.

119

https://doi.org/10.2514/3.21715
https://doi.org/10.1007/s13748-020-00218-y

[41] Park, J., and Sandberg, I., “Universal Approximation Using Radial-Basis-Function Net-

works,” Neural Computation, Vol. 3, No. 2, 1991, pp. 246–257. https://doi.org/10.1162/

neco.1991.3.2.246.

[42] McCulloch, W., and Pitts, W., “A Logical Calculus of the Ideas Immanent in Nervous

Activity,” Bulletin of Mathematical Biophysics, Vol. 5, 1943, pp. 115–133. https://doi.

org/10.1007/BF02478259.

[43] Kim, D., “Normalization Methods for Input and Output Vector in Backpropagation

Neural Networks,” International Journal of Computer Mathematics, Vol. 71, No. 2,

1999, pp. 161–171. https://doi.org/10.1080/00207169908804800.

[44] Ramachandran, P., Zoph, B., and Le, Q. V., “Searching for Activation Functions,” ,

2019. ArXiv:1710.05941v2.

[45] Kang, Y., Chen, S., Weng, X., and Cao, Y., “Deep Convolutional Identifier for Dy-

namic Modeling and Adaptive Control of Unmanned Helicopter,” IEEE Transactions

on Neural Networks and Learning Systems, Vol. 30, No. 2, 2019. https://doi.org/10.

1109/TNNLS.2018.2844173.

[46] Ince, T., Kiranyaz, S., Eren, L., Askar, M., and Gabbouj, M., “Real-Time Motor Fault

Detection by 1-D Convolutional Neural Networks,” IEEE Transactions on Industrial

Electronics, Vol. 63, 2016, pp. 7067–7075. https://doi.org/10.1109/TIE.2016.2582729.

[47] Chen, C., and Shaw, L., “On Receding Horizon Feedback Control,” Automatica, Vol. 18,

No. 3, 1982, pp. 349–352. https://doi.org/10.1016/0005-1098(82)90096-6.

[48] Mayne, D., and Michalska, H., “Receding Horizon Control of Nonlinear Systems,” IEEE

Transactions of Automatic Control, Vol. 35, No. 7, 1990, pp. 814–824. https://doi.org/

10.1016/0005-1098(82)90096-6.

120

https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1080/00207169908804800
https://doi.org/10.1109/TNNLS.2018.2844173
https://doi.org/10.1109/TNNLS.2018.2844173
https://doi.org/10.1109/TIE.2016.2582729
https://doi.org/10.1016/0005-1098(82)90096-6
https://doi.org/10.1016/0005-1098(82)90096-6
https://doi.org/10.1016/0005-1098(82)90096-6

[49] Keerthi, S., and Gilbert, E., “Optimal Infinite-Horizon Feedback Laws for a General

Class of Constrained Discrete-Time Systems: Stability and Moving-Horizon Approxi-

mations,” Journal of Optimization Theory and Applications, Vol. 57, No. 2, 1988, p.

265–293. https://doi.org/10.1007/BF00938540.

[50] Grüne, L., and Pannek, J., Nonlinear Model Predictive Control: Theory and Algorithms,

2nd ed., Springer, 2017. https://doi.org/10.1007/978-3-319-46024-6.

[51] Michalska, H., and Mayne, D., “Robust Receding Horizon Control of Constrained Non-

linear Systems,” IEEE Transactions of Automatic Control, Vol. 38, No. 11, 1993, pp.

1623–1633. https://doi.org/10.1109/9.262032.

[52] Dontchev, A., Kolmanovsky, I., Krastanov, M., Veliov, V., and Vuong, P., “Approximat-

ing Optimal Finite Horizon Feedback by Model Predictive Control,” Sytems & Control

Letters, Vol. 139, No. 104666, 2020. https://doi.org/10.1016/j.sysconle.2020.104666.

[53] Dalamagkidis, K., Valavanis, K., and Piegl, L., “Nonlinear Model Predictive Control

with Neural Network Optimization for Autonomous Autorotation of Small Unmanned

Helicopters,” IEEE Transactions on Control Systems Technology, Vol. 19, No. 4, 2010,

pp. 818–831. https://doi.org/10.1109/TCST.2010.2054092.

[54] Crassidis, J., and Junkins, J., Opitmal Estimation of Dynamic Systems, 2nd ed., CRC

Press/ Taylor & Francis Group, 2012.

[55] Glück, T., Eder, A., and Kugi, A., “Swing-up Control of a Triple Pendulum on a

Cart With Experimental Validation,” Automatica, Vol. 49, No. 3, 2013, pp. 801–808.

https://doi.org/10.1016/j.automatica.2012.12.006.

[56] Wilson, E., and Prazenica, R., “Autonomous Autorotation of Tilt Rotor Aircraft Using

Nonlinear Model Predictive Control,” UAS Guidance, Navigation, and Control, AIAA,

2020. https://doi.org/10.2514/6.2020-1488.

121

https://doi.org/10.1007/BF00938540
https://doi.org/10.1007/978-3-319-46024-6
https://doi.org/10.1109/9.262032
https://doi.org/10.1016/j.sysconle.2020.104666.
https://doi.org/10.1109/TCST.2010.2054092
https://doi.org/10.1016/j.automatica.2012.12.006
https://doi.org/10.2514/6.2020-1488

PUBLICATIONS

• Wilson, E and Prazenica, R. “Autonomous Autorotation of Tilt Rotor Aircraft Us-

ing Nonlinear Model Predictive Control”. UAS Guidance, Navigation, and Control,

SciTech 2020. DOI: 10.2514/6.2020-1488

• Wilson, E and Prazenica, R. “Autonomous Autorotation of a Multirotor Vehicle Using

Output Feedback Model Predictive Control with Online Learning”. Advances in Feed-

back Control Architectures for Autonomous Systems I, SciTech 2021. DOI: 10.2514/6.2021-

0379

• Wang, J., Wilson, E., and Velasquez A. “Consensus-Based Value Iteration for Mul-

tiagent Cooperative Control” IEEE Conference on Decision and Control, 2021. DOI:

10.1109/CDC45484.2021.9682831

• Wilson, E and Prazenica, R. “Fixed Structure Policy Based Model Predictive Control”.

Guidance and Control Architectures for Autonomous Systems VI, SciTech 2022. DOI:

10.2514/6.2022-1378

• IN REVIEW: Wilson, E and Prazenica, R. “Fixed Structure Policy Based Model Pre-

dictive Control”. AIAA Journal of Guidance, Control, and Dynamics.

122

APPENDIX A - System Derivative

Consider the discrete nonlinear dynamics function

¯
xk+1 = f(

¯
xk,

¯
uk) (1)

where
¯
xk ∈ Rn and

¯
uk ∈ Rm are the system state and control input at time step k ∈ N,

respectively. A nonlinear feedback control law µθ : Rp × Rn 7→ Rm is parameterized by

θ ∈ Rp and maps the current state to a control input:
¯
uk = µθ(

¯
xk). The derivative of the

dynamics with respect to this control parameter comes from two components: a change in

the state and a change in the control inputs. The derivative can be written as:

∂
¯
xk+1

∂θ
=
∂f(

¯
xk,

¯
uk)

∂
¯
xk

∂
¯
xk
∂θ

+
∂f(

¯
xk,

¯
uk)

∂
¯
uk

∂
¯
uk
∂θ

(2)

Now, the derivative of the control input is explored further. Taking the derivative of the

control policy gives:

∂
¯
uk
∂θ

=
∂µθ(

¯
xk)

∂θ
+
∂µθ(

¯
xk)

∂
¯
xk

∂
¯
xk
∂θ

(3)

Substituting this back into (2) and rearranging yields:

∂
¯
xk+1

∂θ
=

(
∂f(

¯
xk,

¯
uk)

∂
¯
xk

+
∂f(

¯
xk,

¯
uk)

∂
¯
uk

∂µθ(
¯
xk)

∂
¯
xk

)
∂
¯
xk
∂θ

+
∂f(

¯
xk,

¯
uk)

∂
¯
uk

∂µθ(
¯
xk)

∂θ
(4)

123

APPENDIX B - Constant Gain Value Function Derivative

Given the discrete linear system

¯
xk+1 = A

¯
xk +Buk (5)

where
¯
xk ∈ Rn is the system state at time step k, A ∈ Rn×n is the dynamics matrix, B ∈ Rn×1

is the control matrix, and uk ∈ R is the control input, the goal is to find a constant gain

feedback control law that minimizes the cost function

J =
1

2¯
xNh

TQ
¯
xNh

+
1

2

Nh−1∑
k=0

¯
xk

TQ
¯
xk +Ruk

2 (6)

subject to the system dynamics and Uk = θ
¯
xk, where θ ∈ R1×n is a vector of unknown

parameters, Q ∈ Rn×n
≥0 is the state weighting matrix, and R ∈ R>0 is the control weighting

parameter. The condition of first order optimality requires

dV µ(
¯
x0)

dθ
= 01×n (7)

where the derivative is given by:

dV µ(
¯
x0)

dθ
=
∂V µ(

¯
x0)

∂X

∂X

∂θ
+
∂V µ(

¯
x0)

∂U

(
∂U

∂θ
+
∂U

∂X

∂X

∂θ

)
(8)

The required components for computing this derivative are given in section 7.2.

Now, the derivative will be evaluated term by term. First, consider the control derivative

124

portion:

∂U

∂θ
+
∂U

∂X

∂X

∂θ
=



¯
x0

T

¯
x1

T + θB
¯
x0

T

¯
x2

T + θ
(
ĀB

¯
x0

T +B
¯
x1

T
)

...

¯
xTNh−1 + θ

∑Nh−2
i=0 ĀiB

¯
xTNh−2−i


(9)

Multiplying this term to the value-control derivative

∂V µ(
¯
x0)

∂U

dU

dθ
= u0R

¯
x0

T + u1R
(
¯
x1

T + θB
¯
x0

T
)
+ · · ·

+ UNh−1R

(
¯
xTNh−1 + θ

Nh−2∑
i=0

ĀiB
¯
xTNh−2−i

)
(10)

The second term of the derivative can now be expanded as

∂V µ(
¯
x0)

∂X

∂X

∂θ
=

¯
x1

TQB
¯
x0

T +
¯
x2

TQ
(
ĀB

¯
x0

T +B
¯
x1

T
)
+ · · ·

+
¯
xNh

Q
N−1∑
i=0

ĀiB
¯
xTNh−1−i (11)

These two terms can now be added to get the total derivative

dV µ(
¯
x0)

dθ
=

Nh−1∑
i=0

¯
xi

T
(
θTR + ĀTQB

)
¯
xi

T+

Nh−2∑
i=0

i−1∑
j=0

¯
xi

T
(
θTRθ +

¯
ATQĀ

)
Āi−j−1B

¯
xj

T (12)

125

Lastly, this can be rewritten in terms of matrix products as:

dV µ(
¯
x0)

dθ
=

[
¯
x0

T · · ·
¯
xTNh−1

]

θTR+ ĀTQB · · · 0n

...
. . .

...

0n · · · θTR+ ĀTQB

+


θTRθ + ĀTQĀ · · · 0n×n

...
. . .

...

0n×n · · · θTRθ + ĀTQĀ





0n 0n · · · 0n 0n

B 0n · · · 0n 0n

ĀB B · · · 0n 0n

...
...

. . .
...

...

ĀNh−2B ĀNh−3B · · · B 0n






¯
x0

T

...

¯
xTNh−1

 (13)

126

APPENDIX C - Cart-pole Derivative

Here, the cart-pole dynamics derivatives are presented. First, consider the Euler dis-

cretization:

∂f(
¯
xk,

¯
uk)

∂
¯
xk

= In +∆t
∂fc(

¯
xk,

¯
uk)

∂
¯
xk

(14)

∂f(
¯
xk,

¯
uk)

∂
¯
uk

= ∆t
∂fc(

¯
xk,

¯
uk)

∂
¯
uk

(15)

The continuous time state space model of the cart-pole dynamics is:

fc(
¯
x,
¯
u) =

[
x2 ÿ x4 ϕ̈

]T
(16)

where ÿ and ϕ̈ are given by Eqs. (8.1) and (8.2), respectively. The Jacobian of the continuous

time model is given by:

∂fc(
¯
xk,

¯
uk)

∂
¯
xk

=



0 1 0 0

0 0 ∂ÿ
∂x3

∂ÿ
∂x4

0 0 0 1

0 0 ∂ϕ̈
∂x3

∂ϕ̈
∂x4


(17)

where the partial derivative entries are expanded as follows. Let ÿ(
¯
x, u) =

α(
¯
x,u)

β(
¯
x)

, then

α(
¯
x, u) = u−m sinx3

(
Lx4

2 + g cosx3
)

(18)

β(
¯
x) =M +m

(
1 + cos2 x3

)
(19)

and

∂ÿ

∂x3
=

∂α(
¯
x,u)

∂x3
β(
¯
x)− α(

¯
x, u)

∂β(
¯
x)

∂x3

β(
¯
x)2

(20)

127

These two partial derivatives are given as:

∂α(
¯
x, u)

∂x3
= −m

(
Lx4

2 + g cosx3
)
cosx3 +mg sin2 x3 (21)

∂β(
¯
x)

∂x3
= −2m cosx3 sinx3 (22)

The other derivatives needed for the Jacobian are then given by:

∂ÿ

∂x4
=

1

β(
¯
x)

(2Lx4 (u−m sinx3)) (23)

∂ϕ̈

∂x3
=

1

L

(
∂ÿ

∂x3
cosx3 − ÿ sinx3 + g cosx3

)
(24)

∂ϕ̈

∂x4
=

1

L

∂ÿ

∂x4
cosx3 (25)

Lastly, the control derivative is given by:

∂fc(
¯
x, u)

∂u
=

[
0
∂ÿ

∂u
0

1

L

∂ÿ

∂u
cosx3

]T
(26)

with

∂ÿ

∂u
=

1

β(
¯
x)

(Lx4
2 + g cosx3) (27)

128

APPENDIX D - Dot Intercept Derivative

The dot intercept environment is described by simple parabolic motion with ground

collision detection and process noise. The derivative of the k+ 1 state with respect to the k

state can be written as

∂
¯
xik+1

∂
¯
xik

= I4 +
∂f(

¯
xik, ¯

uik)

∂
¯
xik

+
∂σi(

¯
xik, ¯

uik)

∂
¯
xik

√
∆t

¯
wi

k (28)

Note, the component
∂σi(

¯
xi
k,¯
ui
k)

∂
¯
xi
k

is not a trivial computation as the standard deviation σi(
¯
xik, ¯

uik)

is matrix valued. However, considering the case where the standard deviation is either a

constant value or zero, dependent on ground collision, the system state has no effect on the

process noise, and the last term is simply evaluated to be zero:

∂σi(
¯
xik, ¯

uik)

∂
¯
xik

√
∆t

¯
wi

k = 04×4 (29)

The system’s mean dynamic derivative can be written as

∂f(
¯
xi,

¯
ui)

∂
¯
xik

=


∆t

∂fc(
¯
xi
k,¯
ui
k)

∂
¯
xi
k

if
¯
xi3 > zmin

04×4 otherwise

(30)

which includes a discontinuous step when agent i makes contact with the ground. Some

continuous approximations of the ground interaction can be made using a sigmoid function

to alleviate the issue of discontinuity. The sigmoid maps to a range of (0, 1) and, given some

tuning, can be used to approximate discrete changes in the system dynamics as used by [56].

Consider the sigmoid approximation (SA) function

(
¯
xi3)

+
SA =

1

1 + e−cs(
¯
xi
3−ymin)

(31)

129

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Increasing c
s

Figure 1 Sigmoid used for discrete step approximation assuming ymin = 0.

where
¯
xi3 ∈ R is the z-position of agent i and cs ∈ R>0 is a tuning variable. As cs increases the

sigmoid will act more like a discrete step from 0 to 1, similar to how the boundary constraints

are implemented. Figure 1 shows the effect of varying the value of cs given ymin = 0. Again,

similar to the boundary constraints, high values of cs can result in extremely large derivatives,

which may have a significant impact on numerical optimization. However, given the simple

parabolic trajectory that the agent follows and the SA being based on the z-position, the

derivative of the SA can be neglected.

Using the SA, the derivative of the system’s mean dynamics can be written as

∂f(
¯
xi,

¯
ui)

∂
¯
xik

= ∆t

[
(
¯
xi3)

+
SA

∂fc(
¯
xik, ¯

uik)

∂
¯
xik

+ fc(
¯
xik, ¯

uik)
∂(
¯
xi3)

+
SA

∂
¯
xik

]
(32)

The second term can be expanded as

fc(
¯
xik, ¯

uik)
∂(
¯
xi3)

+
SA

∂
¯
xik

=

[
04 04 fc(

¯
xik, ¯

uik)
∂(
¯
xi
3)

+
SA

∂
¯
xi
3,k

04
]

(33)

which adds a dependence on the z-position that does not exist in the true system dynamics.

130

Ignoring this term yields

∂f(
¯
xi,

¯
ui)

∂
¯
xik

≈ ∆t(
¯
xi3)

+
SA

∂fc(
¯
xik, ¯

uik)

∂
¯
xik

(34)

and allows the SA function to just act as a switch that either passes derivative information

or zeroes it out. The continuous dynamics derivative is taken to be

∂fc(
¯
xik, ¯

uik)

∂
¯
xik

= A (35)

Considering the constant or zero standard deviation as previously discussed, the control

input also has no impact on the process noise, so the derivative with respect to the control

input is written as

∂
¯
xik+1

∂
¯
uik

=
∂f(

¯
xik, ¯

uik)

∂
¯
uik

(36)

where

∂f(
¯
xi,

¯
ui)

∂
¯
uik

=


∆t

∂fc(
¯
xi
k,¯
ui
k)

∂
¯
ui
k

if
¯
xi3 > zmin

04×2 otherwise

(37)

The same SA function can be used to make a continuous approximation of this function:

∂f(
¯
xi,

¯
ui)

∂
¯
uik

≈ ∆t(
¯
xi3)

+
SA

∂fc(
¯
xik, ¯

uik)

∂
¯
uik

(38)

where

∂fc(
¯
xik, ¯

uik)

∂
¯
uik

= B (39)

131

APPENDIX E - Kalman Filter

The Kalman filter derivation from [54] is given here. The state estimate ˆ
¯
xk ∈ Rn is

propagated and updated using

¯
x̂−k+1 = A

¯
x̂k +B

¯
uk (40)

¯
x̂k =

¯
x̂−k + Lk

[
¯
yk − C

¯
x̂−k
]

(41)

where ˆ
¯
x−k denotes the state estimate prior to updating with the filter, ˆ

¯
xk is the corrected

estimate of the state, A ∈ Rn×n is the linear dynamics matrix, B ∈ Rn×m is the linear control

matrix,
¯
uk ∈ Rn is the known control input, Lk ∈ Rn×r is the Kalman gain,

¯
yk ∈ Rr is the

state measurement, and C ∈ Rr×n is the measurement matrix of the model
¯
yk = C

¯
xk+

¯
νk with

¯
νk ∼ N (0r, σ

¯
ν) ∈ Rr being the uncorrelated zero mean normally distributed measurement

noise of standard deviation σ
¯
ν . The goal is to find an optimal value of Lk such that the error

¯
ek is regulated. Let the error terms be defined as

¯
ek :=

¯
x̂k −

¯
xk (42)

¯
e−k :=

¯
x̂−k −

¯
xk (43)

which can be substituted into the dynamics to obtain

¯
e−k+1 = A

¯
ek −

¯
wk (44)

where
¯
wk ∼ N (0n, σ

¯
w) ∈ Rn is the uncorrelated zero mean normally distributed process

noise with standard deviation σ
¯
w. The covariance Pk is expanded using Eq. (44) as

132

P−
k+1 = E

[
¯
e−k+1¯

e−k+1
T
]

(45)

= E
[
(A

¯
ek −

¯
ωk)

(̄
ek

TAT −
¯
ωk

T
)]

(46)

= E
[
A
¯
ek
¯
ek

TAT
]
− E

[
A
¯
ek
¯
ωk

T
]
− E

[
¯
ωk
¯
ek

TAT
]
+ E

[
¯
ωk

¯
ωk

T
]

(47)

= APkA
T + Ω (48)

where Ω := E
[
¯
ωk

¯
ωk

T
]
. Equation (48) is used to propagate the covariance matrix forward

in time. This propagated covariance must be updated using the Kalman gain similar to the

estimated state. Consider the estimate update equation and measurement model

¯
x̂k =

¯
x̂−k + Lk

[
C
¯
xk +

¯
νk − C

¯
x̂−k
]

(49)

= (I − LkC)
¯
x̂−k + LkC

¯
xk + Lk

¯
νk (50)

This can be written in terms of estimation error as

¯
ek = (I − LkC)

¯
x̂−k ++LkC

¯
xk + Lk

¯
νk −

¯
xk (51)

= (I − LkC)
¯
e−k + Lk

¯
νk (52)

which can then be used with the covariance definition

Pk = E
[̄
ek
¯
ek

T
]

(53)

Substituting and gathering terms gives

Pk = E
[
(I − LkC)

¯
e−k ¯
e−k

T
(I − LkC)

T
]
+ E

[
(I − LkC)

¯
e−k ¯
νk

TLk
T
]

+ E
[
Lk

¯
νk
¯
e−k

T
(I − LkC)

T
]
+ E

[
Lk

¯
νk
¯
νk

TLk
T
]

(54)

133

which is simplified to

Pk = (I − LkC)P
−
k (I − LkC)

T + LkΛLk
T (55)

where Λ := E
[
¯
νk
¯
νk

T
]
. The diagonal elements of the covariance matrix are the squared errors

of each state estimate. Hence, minimizing the trace of the covariance matrix will regulate

the estimation error:

minLk
tr(Pk) ∀ k ∈ N[0,Nh] (56)

Interestingly, this is another example of a fixed structure policy optimization. In this case,

the update equation is assumed to take the form of Eq. (41), and the optimization of the

time varying gain Lk is performed to produce the Kalman gain:

Lk = P−
k C

T
(
CP−

k C
T + Λ

)−1
(57)

134

	Stochastic Model Predictive Control via Fixed Structure Policies
	Scholarly Commons Citation

	tmp.1651164317.pdf.UJk6r

	Text4: May 2022
	Text3: Elias Wilson
	Text2: FIXED STRUCTURE POLICIES
	Text1: STOCHASTIC MODEL PREDICTIVE CONTROL VIA
	Text14:
	Text13: Member, Dr. Sergey Drakunov
		2022-04-23T10:42:09-0500
	Sergey V. Drakunov

		2022-04-26T12:10:46-0400
	Sirish Namilae

		2022-04-22T23:04:01-0400
	K. Merve Dogan

		2022-04-22T16:53:12-0400
	Troy A. Henderson

		2022-04-22T14:21:00-0400
	Morad Nazari

		2022-04-22T13:17:54-0400
	Richard J. Prazenica

	Text12: Member, Dr. K. Merve Dogan
	Text11: Member, Dr. Troy Henderson
	Text10: Member, Dr. Morad Nazari
	Text9: Chair, Dr. Richard Prazenica
	Text8: This Dissertation was prepared under the direction of the candidate’s Dissertation Committee Chair, Dr. Richard Prazenica, Department of Aerospace Engineering, and has been approved by the members of the Dissertation Committee. It was submitted to the Office of the Senior Vice President for Academic Affairs and Provost, and was accepted in the partial fulfillment of the requirements for the Degree of Doctor of Philosophy in
Aerospace Engineering.
	Text7: Elias Wilson
	Text6: FIXED STRUCTURE POLICIES
	Text5: STOCHASTIC MODEL PREDICTIVE CONTROL VIA
	Date_3:
	Date_2:
	Date:

