Whistler Waves: Modeling and Observations

Daniel Williams
willd139@my.erau.edu

Follow this and additional works at: https://commons.erau.edu/edt

Part of the Plasma and Beam Physics Commons

Scholarly Commons Citation
https://commons.erau.edu/edt/652

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in PhD Dissertations and Master's Theses by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
WHISTLER WAVES:
MODELING AND OBSERVATIONS

Thesis committee:

Dr. Anatoly V. Streltsov
Committee Chair
Department of Physical Sciences

Muhammad Omer Farooq
Committee Member
Department of Physical Sciences

Dr. Muhammad O. Farooq
Committee Member
Department of Physical Sciences

Bereket Berhane
Committee Member
Department of Physical Sciences

Edwin Mierkiewicz
Graduate Program Chair
Department of Physical Sciences

Dr. John Hughes
Department Chair
Department of Physical Sciences

Dr. Karen Gaines
Dean
College of Arts and Science

Date approved: Pending
ACKNOWLEDGMENTS

This research was supported by the Air Force Office of Sponsored Research grant FA9550-19-1-0052 and FA9453-21-2-0039.

I would like to thank my family for supporting me through my pursuit of higher education.
TABLE OF CONTENTS

Acknowledgments .. iii

List of Tables ... vi

List of Figures ... vii

List of Acronyms ... ix

Chapter 1: Introduction and Background 1

Chapter 2: Observations .. 3
 2.1 Example of Narrow-Duct Event 3
 2.2 Example of Wide-Duct Event 7

Chapter 3: Theory .. 9
 3.1 Optimal Ducting Parameter 12
 3.2 Wide Ducts ... 13

Chapter 4: Simulation Model .. 15

Chapter 5: Results ... 17
 5.1 Propagation Analysis .. 17
 5.2 Statistics of Narrow-Duct Events 22
5.3 Statistics of Wide-Duct Events 29

Chapter 6: Conclusion ... 33

6.1 Conclusions from the Propagation Study 33

6.2 Conclusions from Statistical Analysis 34

Appendices .. 35

References .. 103
LIST OF TABLES

5.1 Ranges of the calculated λ_\parallel, $\lambda_{\perp 1}$, and $\lambda_{\perp 2}$ that allow for trapping of whistler-mode waves to occur with the frequencies 215.0, 285.0, 337.5, and 390.0 Hz as selected from Figure 2.1(C). The optimal parameters for each set of parameters are displayed as λ^*_\parallel, $\lambda^*_\perp 1$, and $\lambda^*_\perp 2$. 19

5.2 The most optimal and least optimal ducting λ_\parallel found from the frequencies 215.0, 285.0, 337.5, and 390.0 Hz in the high-density duct are displayed along side their ducting efficiency to allow for comparison. These percentages are found by comparing the starting and ending wave amplitude. . . . 19

B.1 Ranges of the calculated λ_\parallel, $\lambda_{\perp 1}$, and $\lambda_{\perp 2}$ that allow for trapping of whistler-mode waves to occur with the frequencies 215.0, 285.0, 337.5, and 390.0 Hz as selected from Figure 2.1(C). The optimal parameters for each set of parameters are displayed as λ^*_\parallel, $\lambda^*_\perp 1$, and $\lambda^*_\perp 2$. 41

B.2 The most optimal and least optimal ducting λ_\parallel found from the frequencies 215.0, 285.0, 337.5, and 390.0 Hz in the high-density duct are displayed along side their ducting efficiency to allow for comparison. These percentages are found by comparing the starting and ending wave amplitude. . . . 41
LIST OF FIGURES

2.1 Narrow Event Example 1 .. 5
2.2 Narrow Event Example 2 .. 6
2.3 Wide Event Example 1 .. 8
3.1 Plasma Density Function 14
3.2 Density Ratio Range ... 14
5.1 Simulation Visualization 20
5.2 Simulation Amplitudes 21
5.3 Locations of Narrow Events 24
5.4 Statistics of Narrow Events: Duct Width 25
5.5 Statistics of Narrow Events: Frequency Peaks 26
5.6 Statistics of Narrow Events: Variation of Density ... 27
5.7 Statistics of Narrow Events: Distance from Plasmapause 28
5.8 Locations of Wide Events 31
5.9 Statistics of Wide Events: Duct Widths 31
5.10 Statistics of Wide Events: Frequency Peaks 32
5.11 Statistics of Wide Events: Distance from Plasmapause 32
5.12 Statistics of Wide Events: Variation of Density 32
Abstract

The thesis presents the results of all the research from the published and in publication process research in the Journal of Geophysical Research [1]. This research focuses on whistler wave ducting events in the equatorial magnetosphere. High-density ducts are the main focus of whistler study in both studies as they are commonly observed by the Van Allen Probe satellites. A three-step procedure based on the analysis of the whistler wave dispersion relation and numerical simulations of the electron magnetohydrodynamics model. We use this model to identify the parallel and perpendicular wave numbers of the “most trapped” wave in an attempt to understand the filtering aspects of HDD. Statistical analysis was done in a separate study to determine common parameters and characteristics of narrow and wide ducting events. A total of 213 events were cataloged where 164 were narrow events. The narrow HDD were found to most commonly have a duct size between 0-50 km with a density increase of 161% in the background magnetic field range of 100-300 nT. Wide events are events were the background magnetic field and the density gradient vary in the same direction, either both increases or decreases. The results from the studies show a robust three-step procedure that was applied to an observed event as well as the common characteristics and catalog of events in which this procedure is applicable.
CHAPTER 1
INTRODUCTION AND BACKGROUND

Very-low-frequency (VLF) whistler-mode waves (whistlers) are a driving force in the distribution of the electromagnetic power and wave-particle interactions in the Earth’s magnetosphere. They are particularly important for many processes occurring in the Earth’s radiation belts. Whistlers interact with energetic electrons and can cause energization, transport, and precipitation of these particles via cyclotron resonance [2, 3]. Whistlers are frequently observed by satellites in the equatorial magnetosphere, predominately near the plasmapause [4, 5, 6, 7]. The plasmapause is a transitional region binding the cold plasma torus that forms the Earth’s plasmasphere. The plasmapause shares a boundary with the electron radiation belt which leads to explain why whistlers are so commonly observed in this region of the magnetosphere. Energetic electrons in the radiation belt are an energy source for generating whistlers [3, 8, 9, 10]. These whistlers then can become trapped in the plasmapause as the plasmapause contains many small-scale, localized density gradients which can trap and guide the VLF waves. This leads to one of the main questions about whistlers, how they can propagate over significant distance through inhomogeneous, magnetized plasma, with little attenuation.

This question has been studied extensively since the pioneering paper by Storey [11]. Many experimental studies devoted to this problem were conducted at the Siple station in Antarctica (e.g., [12]) and the High-frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska [13]. Propagation of the whistler-mode waves through plasma with varying parameters has also been studied in laboratory plasma devices [14, 15, 16, 17, 18].

These theoretical and experimental studies found that field aligned density inhomogeneities are one of the main mechanisms that allow for whistlers to propagate significant distances around the magnetosphere [12, 19, 20, 21, 22]. These inhomogeneities can be formed by the field density enhancements, known as high-density ducts (HDD), and density depletions, known as low-density ducts (LDD) [23, 24, 25, 26]. There are currently two forms of ducts, these are known as narrow or wide ducts. Narrow ducts are events where the transverse size of the inhomogeneity is small enough that the background magnetic field does not change significantly over the distance of the duct. These ducts are formed due to the behavior of the density only. Wide ducts differ from narrow ducts as the transverse size of the duct is large enough for a significant change to occur in the background magnetic field. This signifies that the gradient of the magnetic field and the gradient of the density must be taken into account when determining the parameters of the duct [27, 28, 29, 30]. The important difference between LDD and HDD are that, LDD can guide waves without any leakage, while HDD always have some leakage of the wave’s energy. This leakage depends on the parameters of the wave and the duct. A duct that can guide one whistler a significant distance with almost no leakage, will not trap a different whistler at all leaking away all the energy[31, 32, 1]. This suggest that HDD functions like a filter for whistler waves.
The first study in which I will be discussing was based on the idea that HDD behave like a filter. By observing ducting events in the magnetosphere and retrieving the parameters of the ducts, the optimal ducting parameters of the whistler based on the dispersion relation derived from electron magnetohydrodynamics (EMHD) were calculated. The range of these parameters were then simulated to determine what value in the range of the possible ducting parameters were the most trapped in the duct and therefore leaked the least amount of energy out of the duct \[1\]. These events were found and the parameters of the ducts recorded using the NASA Van Allen Probes data. The parameters required were the wave frequency, magnetic field, and plasma density. In the previously published paper, a robust 3-step procedure to identify the exact values of the wave perpendicular and parallel wavelengths. This procedure was demonstrated with application to some representative observational event to show that the 3-step procedure can be used for any event if it is within the mathematical limitations of the model.

The second study I will be discussing is a statistical analysis of both narrow and wide HDD events that is in the submission process to be published. The study focuses on observations by the NASA Van Allen Probe’s satellites in the equatorial magnetosphere. This is due to a great number of ducting events related to narrow and wide ducts occurring in the equatorial magnetosphere \[28, 33, 34, 26, 7, 30\]. Observations show that these ducting events have many similar features. This paper contains the results from the statistical study of VLF waves in the high-density ducts. Our goals were to identify primary locations where these events are observed, and quantify parameters of the high density ducts and the waves trapped in these ducts.
Observations analyzed in this study consist of the wave frequency, electron density, and background magnetic field measured by the Van Allen Probe A and B (also known as RBSP-A and RBSP-B) satellites in the equatorial magnetosphere. The data is obtained by the Electric Field and Wave (EFW) instrument [35], and the Electric and Magnetic Field Instrument Suite and Integrated Science instrument (EMFISIS) [36]. The electric field is measured in the spinning satellite coordinate system \((u, v, w)\), where the \(w\) axis is co-aligned with the spin axis of the satellite that points towards the Sun. While whistlers can be seen in the \(u, v, w\) components, the events considered will only be observed in the \(w\) component.

2.1 Example of Narrow-Duct Event

Provided below is the example event that was used for simulations [1]. Figure 2.1A shows the PSD of the \(E_w\) component of the electric field with the values displayed by the color bar. The PSD was retrieved from the EMFISIS instrument in the frequency range 100-1000 Hz. Only the \(w\)-component is being examined as the equatorial plane it corresponds to is the perpendicular component of the electric field. The density of the event is plotted as the white line over the PSD in Figure 2.1A. Below this is the background magnetic field of the event displayed in Figure 2.1B to demonstrate that the background magnetic field changes insignificantly compared to the change in density. The background magnetic field was observed to be 170.5 nT at the time of 11:17:01 UT which corresponds to the peak PSD. Over the time interval of the entire event, the magnetic field changes from 173 nT to 164 nT or by only \(\approx 5.5\%\). This change is tiny compared to the variation in density of \(\approx 70\) cm\(^{-3}\) to more than 150 cm\(^{-3}\) or by more than 100%. Figure 2.1C is a slice of the PSD at the peak value of PSD in the duct that was simulated. The four frequencies in which the procedure was tested are marked with the dotted lines and were chosen as they represent peaks in the PSD region. The exact frequencies used were 215.0, 285.0, 337.5, and 425.0 Hz where 285.0 Hz was the primary frequency focused on. The exact location of RBSP-B is shown in Figures 2.1D, 2.1E, and 2.1F. The exact position of RBSP-B during the event was on the magnetic shell line \(L = 5.592\), at MLT = 8.294, and MLat = 1.238°. The orbit of RBSP-B is displayed with the red line and the location of the satellite is displayed as the red dot on the line. These panels were created using the orbital plot tool from the Van Allen Probes Science Gateway website at https://rbspgw.jhuapl.edu.

Figure 2.2 is an event that was not run through the simulation as it was used for the statistical study that is in the submission process. Figure 2.2 is an example of a typical narrow HDD that was ducts observed by the RBSP-A satellite in the equatorial magnetosphere on 08/26/2015 from 11:15:30 to 11:20:30 UT. Figure 2.2A shows the PSD of the \(E_w\) component of the electric field with the values displayed by the color bar. The PSD was retrieved from the EMFISIS instrument in the frequency range 200-1000 Hz.
line displays the calculated ratio of n/n_1 of the observed density with the important value of $n/n_1 = 1$ marked as the magenta dotted line. This ratio is calculated for $\omega = 2.07 \times 10^3$ rad/s ($f = 330$ Hz) or the frequency that corresponds to the peak value of PSD. The importance of this is discussed in detail in the theory section. Below in Figure 2.2B, the background magnetic field and the density are displayed of the observed event. Similarly to Figure 2.1, the background magnetic field variation and the variation in density must be compared to show that this event is in fact a narrow HDD event. It was found during the event that the magnetic field changes from 202 to 214 nT or by 6% while the variation in density was from 45 cm$^{-3}$ to 81 cm$^{-3}$ or by 80%. This event was observed 3400 km interior to the plasmapause and was found to be ≈ 400 km in size.
Figure 2.1: Displayed is the example event that was modeled in the simulation. A) The Power spectral density (PSD) of E_w component of the electric field is shown above the graph with a color pallet. The electron density is displayed with a white line and was measured by the RBSP-B satellite from 10:37 to 11:47 UT on 02/27/2016. B) Displayed is the magnitude of the background magnetic field that was observed by the satellite. C) The PSD of E_w versus frequency at the time of peak PSD of 11:17:01 UT during the time interval from 11:09:00 to 11:22:00 UT. D), E), and F) displays the orbit of the satellite in GSE coordinates in the time interval of 06:47:00 to 15:47:00 UT on 02/27/2016.
Figure 2.2: Displayed is an example of a narrow high-density duct observed by the RBSP-A satellite from 11:15:30 to 11:20:30 UT on 10/26/2015. A) The Power spectral density (PSD) of E_w component of the electric field is shown above the graph with a color pallet. The electron density is displayed with a white line and was measured by the RBSP-B satellite. B) The magnitude of the background magnetic field measured by the satellite is plotted in the left axis while the observed electron density of the event is displayed on the right hand axis. The peak frequency and the range of parallel wavelengths used for the ratio calculation is shown in the top right.
2.2 Example of Wide-Duct Event

Figure 2.3 displays an example of a wide HDD event that occurred on 08/21/2015 from 08:23:00 UT to 09:54:00 UT. Figure 2.3A shows the PSD of the E_w component of the electric field with the values displayed by the color bar. The PSD was retrieved from the EMFISIS instrument in the frequency range 200-1000 Hz. The white line displays the calculated ratio of n/n_1 of the observed density with the important value of $n/n_1 = 1$ marked as the magenta dotted line. Unlike for narrow events, this ratio must also take into account the variation in the background magnetic field as it changes a significant amount during the time interval of the event. To prove this, Figure 2.3B shows the background magnetic field, displayed as the dotted blue line, changes from 500 nT to 4500 nT or 800% and the plasma density, displayed as the red line, changes from 300 to 2800 cm$^{-3}$ or 833%. The ratio n/n_1 was calculated for $\omega = 2.51 \times 10^3$ rad/s ($f = 400$ Hz) which corresponds to the max observed value of the PSD in this region. The parallel wavelength of the trapped waves are assumed to change linearly from 10.5 km to 16 km during the event. Details of the analysis of VLF waves inside wide ducts are given in [30].
Figure 2.3: Displayed is an example of a narrow high-density duct observed by the RBSP-A satellite from 8:23 to 9:54 UT on 8/21/2015. A) Power spectral density (PSD) of E_w component of the electric field displayed above the graph with a color pallet. The electron density ratio of n/n_1 is shown with a white line and was calculated based on the observed values by the RBSP-A satellite B) The magnitude of the background magnetic field measured by the satellite is plotted in the left axis while the observed electron density of the event is displayed on the right hand axis. The peak frequency and the range of parallel wavelengths used for the ratio calculation is shown in the top right.
CHAPTER 3
THEORY

Mathematical model for VLF whistler-mode waves in the magnetosphere consists of the momentum equation for electrons and Maxwell’s equation for the electric and magnetic fields [12, 37].

\[
\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{e}{m_e} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \tag{3.1}
\]

\[
\nabla \times \mathbf{B} = \mu_0 j \tag{3.2}
\]

\[
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{3.3}
\]

\[
\nabla \cdot \mathbf{B} = 0 \tag{3.4}
\]

This model assumes that the plasma is cold \((T_{e,i} = 0)\), ions are stationary, and the current is carried by the electrons only \(j = -en\mathbf{v}\); where \(\mathbf{v}\) is the electron velocity. The plasma is considered to be quasi-neutral, therefore the plasma density is constant in time and the model does not include the electron density continuity equation. The model is further simplified by the “quasi-longitudinal” approximation of the Electron Magnetohydrodynamics (EMHD). The “quasi-longitudinal” approximation simplifies the equations by excluding the displacement current in Ampere’s Law (3.2). The “quasi-longitudinal” approximation is valid for waves that satisfy the condition \(\omega < \omega_{ce} \ll \omega_{pe} [19]\) where \(\omega\) is the wave angular frequency, \(\omega_{ce}\) is the electron gyrofrequency, and \(\omega_{pe}\) is the electron plasma frequency.

The majority of whistler waves satisfy the condition allowing for the “quasi-longitudinal” approximation to be valid. Figure 2.1 is an example of this as the wave with the frequency \(f = 285.0\ \text{Hz}, \omega = 1.79 \times 10^3\ \text{rad/s}, \omega_{ce} = 3.00 \times 10^4\ \text{rad/s (}B_0 = 170.5\ \text{nT}), \text{and} \omega_{pe} = 6.909 \times 10^5\ \text{rad/s (}n_0 = 150\ \text{cm}^{-3})\). These values are found for every observed event as a way to confirm them as whistler events and to also allow for any observed event to be an excellent event to model. This model assumes that the plasma density is constant in the direction of the field lines and varies in the perpendicular direction, or across the ambient magnetic field. It is assumed that the ambient magnetic field is constant in all directions. Looking back to Figure 2.1 and Figure 2.2, it can be seen over the course of the event that the background magnetic field only changed by 6% and 7% respectively, which allows for the assumption that the magnetic field is homogenous across the duct. Assuming that the magnetic field and the density are homogeneous in the parallel direction due to the relative small size of the modeling region in the equatorial magnetosphere (\(\text{Mlat} \approx 1.3^\circ\)).

Assuming the background magnetic field is uniform, it is implied that \(\mathbf{v}_0 = 0\) and \(\mathbf{B} = B_0 \vec{z}\) allows Equations 3.1-3.4 to be linearized to

\[
m_e \frac{\partial \mathbf{v}}{\partial t} = q(\vec{E} + \vec{v} \times B_0 \vec{z}) \tag{3.5}
\]

\[
\nabla \times \vec{B} = \mu_0 n_0 q \mathbf{v} \tag{3.6}
\]
The curl of equation 3.5 is taken twice, after the first curl substitute in Faraday’s Law and after the second curl substitute in Ampere’s law turning equation 3.5 into

\[m_e \frac{\partial \nabla \times \nabla \times \mathbf{v}}{\partial t} = q(\mu_0 n_0 q \mathbf{v} + \nabla \times \nabla \times \mathbf{v} \times \mathbf{B}_0) \]

(3.8)

Then multiply by \(m_e^{-1} \omega_{ce}^{-1} c^2 / \omega^2 \)

\[\frac{\partial \nabla \times \nabla \times \mathbf{v}}{\partial \omega_{ce} t} = -\frac{\mu_0 n_0 q^2}{m_e} \frac{c^2}{\omega_{pe}} \frac{\partial \mathbf{v}}{\partial \omega_{te}} + \frac{qB_0}{m_e \omega_{ce}} \nabla \times \nabla \times (\mathbf{v} \times \hat{z}) \]

(3.9)

Note that since \(q = -e \) makes the coefficients in front of the second term on the right-hand side equal to -1 and the coefficients in front of the first term on the right-hand side equal to 1, equation 3.9 can be rewritten to

\[\frac{\partial}{\partial \tau} (\mathbf{v} + \nabla \times \nabla \times (\mathbf{v}) = -\nabla \times \nabla \times (\mathbf{v} \times \hat{z}) \]

(3.10)

where \(\tau = \omega_{ce} t \) is the normalized time. Assuming \(v(\mathbf{x}, \tau) = v_0 e^{i \mathbf{k} \cdot \mathbf{x} + i \tau \frac{\omega}{\omega_{ce}}} \) time dependence so

\[i \frac{\omega}{\omega_{ce}} (\mathbf{v} + i \mathbf{k} \times (i \mathbf{k} \times \mathbf{v})) = i \mathbf{k} \times (i \mathbf{k} \times (\mathbf{v} \times \hat{z})) \]

(3.11)

Further simplified using \(i \mathbf{k} \cdot \mathbf{v} = 0 \) and \(\mathbf{v} = \xi + \mathbf{k} \times \xi \) where \(\mathbf{k} \cdot \xi = 0 \) becomes

\[\frac{\omega}{\omega_{ce}} (\mathbf{v} - \mathbf{v} \times (\mathbf{k} \times \mathbf{v})) = i \mathbf{k} \times (\mathbf{k} \times (\mathbf{v} \times \hat{z})) \]

(3.12)

where

\[\mathbf{k} \times (\mathbf{k} \times \mathbf{v}) = \mathbf{k} \mathbf{k} \cdot \mathbf{v} - k^2 \mathbf{v} = -k^2 \mathbf{v} \]

(3.13)

and

\[\mathbf{k} \times (\mathbf{k} \times (\mathbf{v} \times \hat{z})) = k_z \mathbf{k} \times \mathbf{v} \]

(3.14)

so then equation 3.12 becomes

\[\frac{\omega}{\omega_{ce}} \mathbf{v} (1 + k^2) = i k_z \mathbf{k} \times \mathbf{v} \]

(3.15)

and crossing this equation with \(\mathbf{k} \) creates the second equation need

\[\frac{\omega}{\omega_{ce}} \mathbf{k} \times \mathbf{v} (1 + k^2) = -i k_z k^2 \mathbf{v} \]

(3.16)

Equations 3.15 and 3.16 are then combined into a matrix equation. The determinant is then set equal to zero
\[
\begin{bmatrix}
\frac{\omega}{\omega_{ce}} (1 + k^2) & -i k_z \\
 i k_z k^2 & \frac{\omega}{\omega_{ce}} (1 + k^2)
\end{bmatrix}
\cdot \begin{bmatrix}
\bar{v} \\
\bar{k} \times \bar{v}
\end{bmatrix} = 0
\]

(3.17)

becoming

\[
\frac{\omega^2}{\omega_{ce}} (1 + k^2)^2 - k_z^2 k^2 = 0
\]

(3.18)

which after simplified provides the wave dispersion relation

\[
k^2 = \frac{\omega_{ce} k}{\omega} + \frac{\omega_{pe}^2}{c^2} = 0.
\]

(3.19)

where \(k_z \) is replaced with \(k_\parallel \) as \(z \) is set to the direction in which the wave propagates. Here, \(k_\parallel \) and \(k_\perp \) are parallel and perpendicular to the \(B_0 \) component of the wave vector and

\[
k^2 = k_\parallel^2 + k_\perp^2
\]

(3.20)

To explain the physical meaning of ducting, we use (3.19) to express \(k_\perp \) as a function of \(\omega, k_\parallel, \omega_{ce} \) and \(\omega_{pe} \):

\[
k_{\perp,1,2} = k_\parallel \left[\frac{\omega_{ce}^2}{4\omega^2} \left(1 \mp \sqrt{1 - \frac{n}{n_2}} \right)^2 - 1 \right]^{1/2},
\]

(3.21)

where

\[
n_2 = k_\parallel^2 \frac{m_e}{\mu_0 e^2} \left(\frac{\omega_{ce}}{2\omega} \right)^2.
\]

(3.22)

Expression (3.20) shows that the wave with some particular \(\omega \) and \(k_\parallel \) can propagate in the media with some particular \(B_0 \) (or \(\omega_{ce} \)) and \(n \) (or \(\omega_{pe} \)) if,

\[
n/n_2 < 1,
\]

(3.23)

and,

\[
\frac{\omega_{ce}}{2\omega} \left(1 + \sqrt{1 - \frac{n}{n_2}} \right) > 1.
\]

(3.24)

Therefore, if the conditions (3.2, 3.24) are satisfied there must be a minimum of one whistler wave trapped in the duct with a specified \(\omega \) and real \(k_\parallel \) and \(k_\perp \). These conditions are simplified as it has been demonstrated that high-density ducts only trap waves with the \(k_\perp \) corresponding to the “-” sign in the expression (3.21) [38, 23]. This allows for the conditions for ducting to be greatly simplified as

\[
\frac{\omega_{ce}}{2\omega} \left(1 - \sqrt{1 - \frac{n}{n_2}} \right) > 1, \text{ or } n/n_1 > 1,
\]

(3.25)

where
\[n_1 = k_\parallel^2 \frac{m_e}{\mu_0 e^2} \left(\frac{\omega_{ce}}{\omega} - 1 \right) \quad (3.26) \]

However, for the condition (3.27) to be satisfied,

\[\omega < \frac{\omega_{ce}}{2} \quad (3.27) \]

Meaning that only low-frequency whistlers can satisfy these conditions and are the only waves considered in this paper. This condition (3.26) is the most important condition as if condition (3.26) is satisfied then condition (3.25) is also satisfied.

Figure 3.1 displays \(n \) as a function of \(k_\perp \) calculated from (3.19) using the retrieved parameters from the event shown in Figure 2.1. These values specifically are \(\omega = 1.79 \times 10^3 \text{ rad/s} \) (\(f = 285 \text{ Hz} \)), \(\omega_{ce} = 3.00 \times 10^4 \text{ rad/s} \) (\(B_0 = 170.5 \text{ nT} \)), and \(k_\parallel = 2\pi/\lambda_\parallel \), with \(\lambda_\parallel = 11, 12, 13, 14, \) and \(15 \text{ km} \). Every set of these parameters will be calculated to find the values of \(n_1 \) and \(n_2 \) to allow for the range of successful ducting parameters to be found for testing. It can be seen from Figure 3.1, when \(k_\perp = 0 \) that \(n_1 = n \) and that \(n_2 \) is the maximum value of \(n \) when

\[k_{\perp 1} = k_{\perp 2} = k_\parallel \left(\frac{\omega_{ce}^2}{4\omega^2} - 1 \right)^{1/2} \quad (3.28) \]

Figure 3.2A displays that no whistler can be trapped when \(n > n_2 \) and Figure 3.2B displays how there is only one wave if \(n < n_1 \) but two different waves with real \(k_{\perp 1} \) and \(k_{\perp 2} \) when \(n_1 < n < n_2 \). Figure 3.2 shows how a HDD is a localized density enhanced region where the density outside of the duct is \(n < n_1 \) and the density in the duct is in the range of \(n_1 < n < n_2 \). A whistler with \(k_{\perp 1} \) can be trapped inside a HDD with some degree of leakage [38, 23]. These plots were also made for the other selected frequencies based on Figure 2.1 to find the range of parameters that allow for some degree of ducting to occur inside the observed duct.

3.1 Optimal Ducting Parameter

A three step procedure has been created to easily determine the optimal parallel and perpendicular wave numbers of the whistler waves observed inside the high-density ducts[1]. First is to find an observed event to retrieve the required parameters from the observed duct and wave. Second is to use these retrieved parameters to calculate the range of wavelengths (or wave numbers) that would allow a whistler wave to be confined in the observed duct. Third is to run the simulation to find which parameters allow for the least energy to be leaked from the duct, or the ”most trapped” wave [1].

The Van Allen Probes allow for all the necessary parameters to be retrieve as seen in Figure 2.1. These necessary parameters are wave frequency, background magnetic field, and the electron density. To check if an observed event is a real event, \(\omega, \omega_{ce}, \) and \(\omega_{ce} \) must be calculated to confirm the event satisfies the condition that \(\omega < \omega_{ce} \ll \omega_{pe} \).

The second step is to find the ranges of trapped \(\lambda_\parallel \) and \(\lambda_\perp \) for the observed events parameters. The observed parameters are then used to calculate the range of \(l_\parallel \) (or \(k_\parallel \)) so that \(n/n_2 < 1 \) during the event and that \(n/n_1 > 1 \) inside the duct and that \(n/n_1 < 1 \) outside the duct as can be seen in Figure 3.2. Figure 3.2A is the calculated \(n/n_2 \) ratio for \(f = 285 \)
Hz and the observed electron density and the magnetic field. This figure displays that real \(k_\perp \) exists only when the parallel wavelength less than 20.5 km. Figure 3.2B displays the ratio of \(n / n_1 \), it shows that waves having parallel wavelengths within the range of 11 km to 15.5 km will be trapped inside the HDD.

The final step is to compare the simulated propagation results to select the optimal or the “most trapped” waves from these ranges. This step is achieved by running two-dimensional, time dependent simulations of the waves with varying parameters inside the duct, as discussed in Chapter 4. There are two rationales for this step: the first one is that all criteria used in this paper are obtained from the dispersion relation (3.8), derived for the case of homogeneous media. To make sure that these criteria can be applied to ducts, which by definition are very inhomogeneous structures, the predictions about wave trapping made by these criteria must be verified with simulations of the entire EMHD model. The second rationale is that high-density ducts confine VLF waves with some degree of leakage, which depends on the parameters of the wave as well as the duct [38, 32]. The satellite may cross the duct at any location close or far from the region where the waves are generated. Therefore, it is reasonable to expect that the observed waves are the ones that have minimal leakage of energy from the duct (or have a maximum amplitude in the duct). The parameters chosen to be optimal are the parameters that lose the least amplitude over the course of 200 wave periods.

3.2 Wide Ducts

For an event to be considered a wide duct, the ambient magnetic field must change significantly along side the change in density of the duct. When this occurs, the ambient magnetic field must be taken into account for the calculations of \(n_1 \) and \(n_2 \). The combination of the magnetic field and the density gradient creates a pseudo duct in which whistler waves can be trapped. The condition required for this pseudo duct to be formed is that both of the gradients are in the same direction, or simply stated, the magnetic field and density must both either increase or decrease in the same perpendicular direction. These ducts have been discussed by Woodroffe and Streltsov [28]. In the recent paper by Streltsov [30], it was shown that these ducts can be observed and some of the events were successfully recreated by simulations. Wide events were then observed and cataloged to greater understand these mostly ignored phenomena, compared to narrow events.
CHAPTER 3. THEORY

Figure 3.1: Plasma density as a function of the perpendicular wave number when \(f = 285 \) Hz, \(B_0 = 170.5 \) nT, and \(\lambda_{\parallel} = 11, 12, 13, 14, \) and \(15 \) km.

Figure 3.2: (A) The ratio \(n/n_2 \) for the waves with \(f = 285 \) Hz and \(\lambda_{\parallel} = 20.5 \) km and 23.0 km. (B) The ratio \(n/n_1 \) for the waves with \(f = 285 \) Hz and \(\lambda_{\parallel} = 11.0 \) and 15.5 km.
CHAPTER 4
SIMULATION MODEL

The discussion of the simulation model must begin with an understanding of the assumptions made and the understanding of the axis. All work in the model is done in a 2D rectangular computational domain, described with orthogonal coordinate system \((x, z)\) where the \(z\) direction and the \(x\) direction are perpendicular. The constant background magnetic field is in the \(z\) direction while the inhomogeneity in the plasma is in the \(x\) direction. The plasma density is uniform in the \(x\) direction to create the duct. The boundary conditions are periodic in the \(z\) direction, and are of a simple Dirichlet type (all quantities are set equal to 0) in the \(x\) direction. The wave is unable to propagate through the \(x\) boundaries to avoid reflections of the wave that would bounce back and interact with the duct. This is done through dissipation layers near the boundaries. The fields of \(E\), \(B\), and \(v\) are still considered to be three-dimensional vector quantities [23].

The initial conditions for the simulation are to specify waves with prescribed \(\omega\), \(\lambda_\parallel\), and \(\lambda_\perp\) standing in the \(x\) direction. The wave propagates in the \(z\) direction which has its size set equal to 1 \(\lambda_\parallel\) \((l_z = \lambda_\parallel)\). The \(z\) domain is discretized with 20 uniformly spaced grid points. The size of the \(x\) domain is defined by the size of the observed duct. The density profile is stretched from the lowest point on each edge of the duct to create an isolated duct as seen in Figures 3.2 and 5.1. This extended region contains the dissipation layers. From testing, it was discovered that the entire transverse size of the domain equal to three widths of the duct is a reasonable size for this domain. The testing also showed that allocating 1/6 of the transverse size of the domain to the size of the each dissipation layer near the boundaries in the \(x\)-direction is adequate to dampen the waves. This dampening ensures no waves bounce back into the system disturbing the ducting. As the simulation is only in two dimensions, the model does not require any input about the normal angle and the planarity of the event as it would be unnecessary information about the observed waves [1].

The duct that was modeled previously was observed by RBSP-B on 02/27/2016 from 11:09:00 and 11:22:00 UT [1]. It occurred in between \(L = 5.525\) and \(L = 5.621\) which corresponds to \(\approx 612\) km distance in the equatorial region. As previously stated, the total transverse size of the domain for the simulation was defined to be 3 \(\times\) duct size or 1836 km. For a transverse domain of this size, looking at Table 5.1, there are 2661 \(\lambda_\perp\) for the waves with \(f = 285\) Hz and \(\lambda_\parallel = 11\) km. To be able to resolve these waves with at least 5 grid points, the domain is discretized with 13,305 points. While this could be achieved, it was not necessary for the goal of providing a robust procedure and thus the domain was scaled down 12 times, so the size of the duct in the simulations is 50 km, and the total size of the domain is 150 km or 217 \(\lambda_\perp\). Note that even though the domain was scaled down, all the parameters in the simulations and observations are the same and therefore the simulated waves are the same as the observed waves. The size of the \(x\) domain is still 217 times larger than the perpendicular wavelength allowing for the same wave behavior to be expected as if the \(x\) domain was 2661 times larger. Another argument for bringing down the domain size to save on computation is the fact that all of the tested parameters are being tested in...
a domain scaled down the same amount. Therefore the comparative study between these waves is expected to still give the same outcome as the waves behaviors remain relative to each other. Scaling down our computational domain allowed us to achieve our goal with significantly less simulations.
CHAPTER 5
RESULTS

The results presented are first from the simulation results in the Propagation Analysis section [1]. The results from the statistical analysis paper, which is in the submission process, are displayed in the Statistics of Narrow-Duct Events and Statistics of Wide-Duct Events sections below.

5.1 Propagation Analysis

Based on the peaks in frequency as seen in Figure 2.1, the simulations were performed on the four specified frequencies. For each frequency, the parallel and perpendicular wavelengths were varied based on the range that was calculated based on the ratios of density. The results from the simulations for the waves with $f = 285$ Hz and $\lambda_\parallel = 11, 12, 13, 14, 15$ km are illustrated in Figures 5.1 and 5.2. Figure 5.1 show dynamics of the E_y component of the electric field across the x-cut of the domain $E_y(x, z = l_z/2, t)$ to allow for the dynamics of the wave to be visualized. The duct that the simulation was representing is shown at the top of Figure 5.1 along with the density ratio where $1 = n/n_1$ as the magenta line. The vertical dashed red lines show the predicted boundary of the duct and continues down to the visualization to allow for each boundary of the duct to be clear seen. This boundary is determined based on the dispersion relation (3.5), where $n/n_1 > 1$. As the value of n_1 increases as the λ_\parallel decreases, the duct confining waves with $\lambda_\parallel = 11$ km should be less than the width of the duct for the waves with $\lambda_\parallel = 15$ km. The simulation succeeds in confirming this prediction.

The center of the E_y domain, $E_y(x = l_x/2, z = l_z/2, t)$, with $f = 285$ Hz and $\lambda_\parallel = 11, 12, 13, 14, 15$ km is displayed in Figure 5.2 to allow for the amplitudes of the waves to be easily compared to find which wave loses the least amplitude and therefore is the optimal λ_\parallel for the duct at this frequency. The simulation ran for ≈ 200 wave periods for significant energy leakage to occur. The simulation confirms that HDD are able to effectively trap whistler in a range of parameters such as parallel (and perpendicular) wavelengths and frequency. The waves with $\lambda_\parallel = 13$ and 14 km show that these waves are less confined in the duct than the waves with $\lambda_\parallel = 11$ and 15 km. It was concluded that the wave with $\lambda_\parallel = 11$ km retains the largest amplitude in the duct and therefore is the optimal λ_\parallel for $f = 285$ Hz in the observed duct. Analysis of these five λ_\parallel allow for the behaviors of different parameters to be observed confirming the statement that HDD function as a filter as The waves with λ_\parallel of 11 km and 15 km show a better ability to be trapped compared to waves with λ_\parallel of 12 km, 13 km and 14 km.

The simulation was ran for all four of the frequencies previously discussed but figures were not created for them as they would be redundant. Instead, Table (make table) is used to display the final results from all the simulations. Over the ≈ 200 wave periods, a percentage of retained normalized amplitude was found for every run. It was found that the most optimal situation had 90.9% of the initial wave amplitude while the least optimal
situation had 10.2\% of the initial wave amplitude. This result leads to the conclusion that the most probable wave that will be observed in this duct far away from the source region, is a wave with $f = 285$ Hz and $\lambda_{\parallel} = 11$ km. The perpendicular and parallel wavelengths of the “most trapped” wave are marked with “*” in Table 5.1. In short, the waves with frequencies 215.0, 337.5, and 390.0 Hz show that λ_{\parallel} of the most trapped waves with these frequencies are 13.00, 11.00, and 12.00 km respectfully.

Table 5.2 displays the percent efficiency of the best and worst parallel wavelength for each frequency tested based off the observed event. Table 2 allows for analysis of determining optimal parameters for ducting events based on the percentage of the wave amplitude that was retained over approximately 200 wave periods. The amplitudes of each are normalized to allow for better viewing of the results. The fact that some of the tested parameters only retained 10.2\% of the initial wave amplitude compared to retaining 90.9\% of the initial wave amplitude shows significant differences in the optimal parameters ducting ability compared to non-optimal parameters. This result leads to the conclusion that it is the most probable wave with $f = 285$ Hz, which can be detected in this duct far away from the source region. The perpendicular and parallel wavelengths of the “most trapped” wave are marked with “*” in Table 1. The source for error would be if the parallel plasma density is inhomogeneous. This does not affect the model in the equatorial region as the parallel density profile is nearly homogeneous, but would affect the results nearer to the poles and the atmosphere as the parallel density profile would change significantly. Simulations showed that the lowest frequency consistently had the highest trapping efficiency which was not expected.

From this study, the simulations were able to show consistent and robust results. the simulation was successful in showing that the dispersion relation (2.5) in the case of homogeneous plasma and constant magnetic field, is able to accurately predict the boundaries of the density inhomogeneity duct for a whistler event. The results also show that whistler ducting events can be observed by the RBSP-B satellite in the equatorial magnetosphere region. The results most importantly show that the method discussed for finding the optimal ducting parameters based on an observed duct is an accurate and valid approach which can be applied to future studies of whistler ducting events.
Table 5.1: Ranges of the calculated λ_\parallel, $\lambda_{\perp 1}$, and $\lambda_{\perp 2}$ that allow for trapping of whistler-mode waves to occur with the frequencies 215.0, 285.0, 337.5, and 390.0 Hz as selected from Figure 2.1(C). The optimal parameters for each set of parameters are displayed as λ^*_\parallel, $\lambda^*_{\perp 1}$, and $\lambda^*_{\perp 2}$.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>λ_\parallel [km]</th>
<th>$\lambda_{\perp 1}$ [km]</th>
<th>λ^*_\parallel [km]</th>
<th>$\lambda^*_{\perp 1}$ [km]</th>
<th>$\lambda_{\perp 2}$ [km]</th>
<th>$\lambda^*_{\perp 2}$ [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>215.0</td>
<td>12.75 - 18.00</td>
<td>49.40 - 9.31</td>
<td>0.60 - 0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285.0</td>
<td>11.00 - 15.50</td>
<td>40.50 - 8.04</td>
<td>0.69 - 1.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>337.5</td>
<td>10.00 - 14.25</td>
<td>44.20 - 6.85</td>
<td>0.77 - 1.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>390.0</td>
<td>9.25 - 13.50</td>
<td>40.40 - 5.83</td>
<td>0.83 - 1.40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2: The most optimal and least optimal ducting λ_\parallel found from the frequencies 215.0, 285.0, 337.5, and 390.0 Hz in the high-density duct are displayed along side their ducting efficiency to allow for comparison. These percentages are found by comparing the starting and ending wave amplitude.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>λ_\parallel [km]</th>
<th>Efficiency Percent</th>
<th>λ_\parallel [km]</th>
<th>Efficiency Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>215.0</td>
<td>13</td>
<td>90.9</td>
<td>16</td>
<td>83.3</td>
</tr>
<tr>
<td>285.0</td>
<td>11.00</td>
<td>72.7</td>
<td>13</td>
<td>49.7</td>
</tr>
<tr>
<td>337.5</td>
<td>11</td>
<td>54.5</td>
<td>13</td>
<td>26.4</td>
</tr>
<tr>
<td>390.0</td>
<td>12</td>
<td>42.1</td>
<td>10</td>
<td>10.2</td>
</tr>
</tbody>
</table>
Figure 5.1: Displayed are the dynamics of E_y in the simulations visualized for the waves with $f = 285$ Hz and $\lambda_\parallel = 11, 12, 13, 14, 15$ km.
Figure 5.2: The center line of the dynamics of E_y in the simulation domain for the waves with $f = 285$ Hz and $\lambda_\parallel = 11, 12, 13, 14, 15$ km as shown in Figure 5.1.
5.2 Statistics of Narrow-Duct Events

From the work for the paper in the publication process, two separate time intervals were examined for whistler ducting events. The first period from 4/1/2013 to 5/1/2013 (Period 1) and the second period from 7/24/2015 to 9/1/2015 (Period 2). These periods were selected as they were from two different regions of the magnetosphere. They were also selected because they had varying amounts of geomagnetic activity so that both periods could have calm and active days to see if the events behave differently based on geomagnetic activity.

During Period 1, the orbit was in the night-side magnetosphere. Period 2 had an orbit in the dusk side of the magnetosphere, or the transitional region between the day and night side. Figure 5.5 displays the orbits of the RBSP-A satellite during the two intervals. The red dots display all the events during Period 1 while the blue dots display all observed events during Period 2. Combined there were a total of 164 HDD events observed.

To find narrow HDD events that were observed by RBSP-A, a simple procedure is followed. First is to find a peak in the density. Peaks are determined by an at least 50\% increase in the density. Next, this increase is checked to see if it correlates with an increase in the PSD of the electric field. If that is the case, the potential event is checked by verifying that the wave angular frequency ω is less then the electron gyrofrequency ω_{ce}. If the event is confirmed, the parameters observed by the RBSP-A are retrieved for the event. These parameters are the size of the duct, the wave frequency, and location of the duct relative to the plasmapause. These parameters are then used to create distribution plot for analysis.

During both time periods, 78.18\% of the narrow-duct events magnetic field value all occurred in the range of 100-300 nT, and 88.28\% of these events had a peak PSD corresponding to a frequency of less than 500 Hz. Period 1 was found to have 2.03 events per day and Period 2 was found to be more active having an average of 3.7 events per day. Period 2 was also found to have larger ducts on average. Period 1 had an average duct width of 253.69 km while Period 2 had an average duct width of 427.76 km. Both of these average sizes are shifted larger due to a few outlier events. This can be seen in Figure 5.6, how approximately 70\% of observed events occur with duct widths less than 250 km but have a few 1000km or more. It can also be seen from the figure that Period 1 had 50.84\% of events occur with duct width less than 100 km while Period 2 had 42.37\% of events in this same range reinforcing the statement that Period 2 had larger ducts on average. Figure 5.6 shows that the majority of the observed events were in the ducts with a radial size less than 50 km. The graph is displayed with the events cataloged into bins where the first bar represents all events from 0-50 km, the next shows 50-100 km, and the next 100-150 km. Period 2 was also found to have a higher peak frequency on average as seen in Figure 5.7. Period 2 was found to have an average peak frequency of 320.90 Hz while Period 1 had a lower average of 240.49 Hz. It can be seen that the majority of these waves reach their maximum at frequency between $f = 200$ Hz and $f = 400$ Hz. The graph is displayed with the events cataloged into bins where the first bar represents all events from 0-100 Hz, the next shows 100-200 Hz, and the next 300-400 Hz.

From looking at the active and inactive geomagnetic days based on the DST measured on these days, no significant differences are found in the events due to the activity. Comparing the active and inactive time intervals, it was found that the active time-frame was 11.9\% higher frequency peaks than the low activity time and the duct width during the active
time was 15.3% wider than during the low activity time. This variation could be caused by a single large outlier event and no other differences were seen in the observed events.

Figure 5.8 displays the distribution of the variations of the density amplitudes in the narrow HDD events. It was found that the variation of events on average increases by 161%. The majority of events see an increase of 50 cm-3 to 150 cm-3. The observed narrow events commonly occur in areas of low density allowing for increases as small as 50 cm-3 to become percent increases of 100% or more. The graph is displayed with the events cataloged into bins where the first bar represents all events from 0-50 cm-3, the next shows 50-100 cm-3, and the next 100-150 cm-3. As seen in Figure 5.9, the distance between the observed events and the observed plasmapause is displayed. The events plotted with negative distances shows the events that occurred inside of the observed plasmapause while positive distances shows events outside or past the observed plasmapause. The graph is displayed with the events cataloged into bins where the first bar represents all events from 0-0.15 \(R_E \), the next shows 0.15-0.30 \(R_E \), and the next 0.30-0.45 \(R_E \). It was found that more events occurred inside the plasmapause in Period 1 and Period 2 was almost evenly split between inside and outside the plasmapause. Period 1 was found to have 36.7% of the events occurred outside of the plasmapause while 63.3% of the events occurred inside the plasmapause. Period 2 was found to have 54.8% of the events occurred outside of the plasmapause while 45.2% of the events occurred inside the plasmapause. It was seen that the events most commonly occur at the radial distance less than 0.15 \(R_E \) from the plasmapause.
Figure 5.3: The location of every observed event is graphed on the orbital path of RBSP-A. The day side is shown by the white side of the gradient circle in the center. The red set of points are all the events from April of 2013 and the blue set of points are all the events from August of 2015.
Figure 5.4: The widths of the narrow ducts are displayed. The events are divided into 50 km intervals with the displayed number showing the upper limit of the interval. A) All events observed during Period 1. B) All events observed during period 2. C) All narrow-duct events observed over both periods.
Figure 5.5: The frequency peaks that correlate to the region of maximum PSD of the narrow ducts are displayed. The events are divided into 100 Hz intervals with the displayed number showing the upper limit of the interval. A) All events observed during Period 1. B) All events observed during period 2. C) All narrow-duct events observed over both periods.
Figure 5.6: The variation of electron density of the narrow ducts are displayed. The events are divided into 50 cm$^{-3}$ intervals with the displayed number showing the upper limit of the interval. A) All events observed during Period 1. B) All events observed during period 2. C) All narrow-duct events observed over both periods.
Figure 5.7: The distance to the plasmapause of the narrow ducts are displayed. The negative distances display events that occurred inside of the plasmapause. The events are divided into 0.15 R_E intervals with the displayed number showing the upper limit of the interval. A) All events observed during Period 1. B) All events observed during period 2. C) All narrow-duct events observed over both periods.
5.3 Statistics of Wide-Duct Events

To identify a wide event, a modified procedure must be done compared to the previously discussed procedure. This is due to the fact that for wide events, the variation in the background magnetic field and the variation of the density both must be taken into account when finding the ratio of n/n_1 for determining if ducting is in fact occurring in a possible observed event. This relation is discussed in great detail in the recent paper by Streltsov [30]. Similarly to narrow events, a region where an unusual increase in density is first found and then check to see if it correlates to an increase in the electric field PSD. The difference is that the magnetic field variations must be taken into account when finding the ratio of n/n_1. The data for both the density and the background magnetic fields must be retrieved for the calculation to occur. When finding this ratio the parallel wavelength is a free parameter in the model, so it is adjusted to find where ducting may be occurring for the potential event [30].

For wide events, only Period 2 was used as a sufficient amount of events were observed and wide duct events are easier to observe than the narrow events. This is due to the fact that the region they can occur is restricted to small regions in the orbit of the RSBP satellites due to the required increase in magnetic field. Figure 5.10 displays the orbit of RBSP-A during Period 2 and the location of all the events recorded. A clarification must be made as at first glance the wide events seem to occur in a greater region of space but as the satellite is moving much faster during through these regions, these regions of data make up only a small portion of the observed data in one orbit. During the time interval 49 events were identified, these events are displayed as blue dots in Figure 5.10.

Figure 5.11 shows the distribution of wide event widths during Period 2. The average size of the ducts was found to be 4402 km with most events occurring having ducts smaller then 2000km. Figure 5.12 shows the distribution of the peak frequency of the observed events. The average value and the most common frequency range line up much closer here then we have seen in the other figures. The average frequency peak is 435.5 Hz and the most common range of frequency was 300-400 Hz with 400-500 Hz as the next most common range. Figure 5.13 displays all the recorded distances from the plasmapause. Unlike narrow events, all events occurred inside the plasmapause. As all events occurred inside the plasmapause, they are all displayed with positive distance as the distinction was not necessary like for the narrow events. The wide events most commonly occurred within the distance of 0.5 R_E to the plasmapause which is much farther then was common for the narrow events. Figure 5.14 shows the distribution of the variation in density over the width of a wide-duct event. This is the most unique finding of the analysis as the largest and smallest variation are just as common as each other. The average change in density is 1546 cm$^{-3}$.

It was found that 67% of the observed wide events had both a decrease in the density and background magnetic field. Another interesting finding is that multiple events were commonly observed on the same day (for example, see Figure 1 in [30]). Over the course of 37 days, 15 of them had multiple wide events be observed. There were also days where no events were observed. Looking at the two parameters that make an event a wide event, it was found that the average change in density is 1546 cm$^{-3}$, while the average change in the background magnetic field is 1825 nT. These average change values are only $\approx 18\%$
different showing how the variation in both values are important for ducting to occur in a wide HDD.
Figure 5.8: The location of every observed wide event is graphed on the orbital path of RBSP-A. The day side is shown by the white side of the gradient circle in the center.

Figure 5.9: The widths of the wide ducts are displayed. The events are divided into 1000 km intervals with the displayed number showing the upper limit of the interval.
Figure 5.10: The frequency peaks that correlate to the region of maximum PSD of the wide ducts are displayed. The events are divided into 100 Hz intervals with the displayed number showing the upper limit of the interval.

Figure 5.11: The distance to the plasmapause of the wide ducts are displayed. All the events occurred inside of the plasmapause. The events are divided into 0.5 R_E intervals with the displayed number showing the upper limit of the interval.

Figure 5.12: The variation of electron density of the wide ducts are displayed. The events are divided into 500 cm$^{-3}$ intervals with the displayed number showing the upper limit of the interval.
CHAPTER 6
CONCLUSION

This paper presents the results found from the statistical study and the wave ducting propagation of whistler waves observed in the equatorial magnetosphere by the Van Allen Probes. These combined results have added to the understanding and knowledge we have on whistler wave ducting events. The findings also show how common these events are and allow for future research to greater understand one of the common phenomena that affect the dynamics of the equatorial magnetosphere.

6.1 Conclusions from the Propagation Study

The event simulated was used as a test to provide evidence that the procedure we have developed works for a real world, observed event. The event was observed in the equatorial magnetosphere by the RBSP-B satellite on 02/27/2016. Packages of VLF waves with frequencies in the range from 100 to 1000 Hz localized inside field-aligned density enhancements, or high-density ducts, were observed. Previous studies have suggested that high-density duct functions as a filter due to how high-density ducts are able to retain waves with specific parameters while leaking away waves rapidly if their parameters do not match the specific parameters for ducting. The main goal of this study was to create and display a novel, robust 3-step procedure to identify the exact values of the wave perpendicular and parallel wavelengths and then illustrate this procedure through application to a representative observational event [1].

This goal was achieved by developing a simple three-step procedure based on the values that can be retrieved from the Van Allen Probes to calculate the parallel and perpendicular wave numbers of the whistler-mode wave trapped in the observed duct. These known parameters are the frequency propagating in the high-density duct, the background magnetic field and the density values. This three-step procedure is:

1. From \(n, B, \) and \(\omega \) identify the range of \(\lambda_\parallel \) providing wave trapping in the duct
2. From \(n, B, \omega, \) and \(\lambda_\parallel \) identify the range of corresponding \(\lambda_\perp \).
3. From 2D EMHD simulations identify \(\lambda_\parallel \) and \(\lambda_\perp \) of the “most trapped” wave.

This process was used on the event displayed in Figure 2.1. The results display a reliable and consistent way of determining wavevectors of the VLF waves for multiple frequencies selected based on the regions of peak PSD in the electric field.

The model is applicable for events that occur over relatively short distances along the magnetic field lines in the equatorial magnetosphere. As the limitation to the model is that it assumes that the background magnetic field and the plasma density are homogeneous in field aligned direction, which is a reasonable assumption over relatively short distances in the equatorial magnetosphere. Therefore, the model breaks down at low altitudes where
the magnetic field and the plasma density change rapidly along the field lines. This study focuses on the region in which the model is adequate for our purposes.

6.2 Conclusions from Statistical Analysis

From analysing a large amount of data from a long and varied time interval of data from the Van Allen Probes, major conclusions were drawn. The most important conclusion is that ducting or trapping of VLF waves in regions of enhanced plasma density is a common phenomena in the Earth’s magnetosphere.

Narrow high-density ducts are formed by the enhancements of the plasma density where the background magnetic field varies a relatively insignificant amount compared to the variation of plasma density over the course of the duct. The ducts are normally small in size and the background magnetic field normally changes less than 6%-10% over the width of the duct. Therefore the duct only occurs due to the variation in density. Over the two periods observed, a total of 169 events were analyzed leading to the major findings that the narrow HDD events occur inside and outside of the plasmasphere mostly inside the radial distance 0.15 R_E from the plamapause, have a duct width of less than 50 km, the density variation most commonly increases 50 cm$^{-3}$ to 150 cm$^{-3}$, and lastly that the frequency peaks are most often in the range of 200-400 Hz.

Wide ducts are formed by the enhancements of the plasma density where the background magnetic field varies a comparable or significant amount compared to the variation of plasma density over the course of the duct and normally require that the parallel wavelength of the trapped waves changes inside the duct. Over the two periods observed, a total of 49 events were analyzed leading to the major findings that the wide events occur inside of the plasmasphere at the radial distance 0.5 R_E from the plamapause, have a duct width between 0-1000 km, the density variation on average is 1546 cm$^{-3}$, the magnetic field varies an average of 1825 nT, and lastly that the frequency peaks are most often in the range of 400-500 Hz.
Figure A.1: Displayed is the example event that was modeled in the simulation. A) The Power spectral density (PSD) of E_{w} component of the electric field is shown above the graph with a color pallet. The electron density is displayed with a white line and was measured by the RBSP-B satellite from 10:37 to 11:47 UT on 02/27/2016. B) Displayed is the magnitude of the background magnetic field that was observed by the satellite. C) The PSD of E_{w} versus frequency at the time of peak PSD of 11:17:01 UT during the time interval from 11:09:00 to 11:22:00 UT. D), E), and F) display the orbit of the satellite in GSE coordinates in the time interval of 06:47:00 to 15:47:00 UT on 02/27/2016.
Figure A.2: Displayed is an example of a narrow high-density duct observed by the RBSP-A satellite from 11:15:30 to 11:20:30 UT on 10/26/2015. A) The Power spectral density (PSD) of E_w component of the electric field is shown above the graph with a color pallet. The electron density is displayed with a white line and was measured by the RBSP-B satellite. B) The magnitude of the background magnetic field measured by the satellite is plotted in the left axis while the observed electron density of the event is displayed on the right hand axis. The peak frequency and the range of parallel wavelengths used for the ratio calculation is shown in the top right.
Figure A.3: Displayed is an example of a narrow high-density duct observed by the RBSP-A satellite from 8:23 to 9:54 UT on 8/21/2015. A) Power spectral density (PSD) of E_w component of the electric field displayed above the graph with a color pallet. The electron density ratio of n/n_1 is shown with a white line and was calculated based on the observed values by the RBSP-A satellite B) The magnitude of the background magnetic field measured by the satellite is plotted in the left axis while the observed electron density of the event is displayed on the right hand axis. The peak frequency and the range of parallel wavelengths used for the ratio calculation is shown in the top right.
APPENDIX B
RESULTS
Table B.1: Ranges of the calculated λ_{\parallel}, λ_{\perp_1}, and λ_{\perp_2} that allow for trapping of whistler-mode waves to occur with the frequencies 215.0, 285.0, 337.5, and 390.0 Hz as selected from Figure 2.1(C). The optimal parameters for each set of parameters are displayed as λ_{\parallel}^*, $\lambda_{\perp_1}^*$, and $\lambda_{\perp_2}^*$.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>λ_{\parallel} [km]</th>
<th>λ_{\perp_1} [km]</th>
<th>λ_{\perp_2} [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>215.0</td>
<td>12.75 - 18.00</td>
<td>49.40 - 9.31</td>
<td>0.60 - 0.90</td>
</tr>
<tr>
<td></td>
<td>13.00</td>
<td>32.76</td>
<td>0.62</td>
</tr>
<tr>
<td>285.0</td>
<td>11.00 - 15.50</td>
<td>40.50 - 8.04</td>
<td>0.69 - 1.04</td>
</tr>
<tr>
<td></td>
<td>11.00</td>
<td>40.50</td>
<td>0.69</td>
</tr>
<tr>
<td>337.5</td>
<td>10.00 - 14.25</td>
<td>44.20 - 6.85</td>
<td>0.77 - 1.21</td>
</tr>
<tr>
<td></td>
<td>11.00</td>
<td>14.24</td>
<td>0.86</td>
</tr>
<tr>
<td>390.0</td>
<td>9.25 - 13.50</td>
<td>40.40 - 5.83</td>
<td>0.83 - 1.40</td>
</tr>
<tr>
<td></td>
<td>12.00</td>
<td>7.72</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Table B.2: The most optimal and least optimal ducting λ_{\parallel} found from the frequencies 215.0, 285.0, 337.5, and 390.0 Hz in the high-density duct are displayed along side their ducting efficiency to allow for comparison. These percentages are found by comparing the starting and ending wave amplitude.

<table>
<thead>
<tr>
<th>f [Hz]</th>
<th>λ_{\parallel} [km]</th>
<th>Efficiency Percent</th>
<th>λ_{\parallel} [km]</th>
<th>Efficiency Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>215.0</td>
<td>13</td>
<td>90.9</td>
<td>16</td>
<td>83.3</td>
</tr>
<tr>
<td>285.0</td>
<td>11.00</td>
<td>72.7</td>
<td>13</td>
<td>49.7</td>
</tr>
<tr>
<td>337.5</td>
<td>11</td>
<td>54.5</td>
<td>13</td>
<td>26.4</td>
</tr>
<tr>
<td>390.0</td>
<td>12</td>
<td>42.1</td>
<td>10</td>
<td>10.2</td>
</tr>
</tbody>
</table>
Figure B.1: Displayed are the dynamics of E_y in the simulations visualized for the waves with $f = 285$ Hz and $\lambda_\parallel = 11, 12, 13, 14, 15$ km.
Figure B.2: The center line of the dynamics of E_y in the simulation domain for the waves with $f = 285$ Hz and $\lambda_\parallel = 11, 12, 13, 14, 15$ km as shown in Figure 5.1.
Figure B.3: The location of every observed event is graphed on the orbital path of RBSP-A. The day side is shown by the white side of the gradient circle in the center. The red set of points are all the events from April of 2013 and the blue set of points are all the events from August of 2015.
Figure B.4: The widths of the narrow ducts are displayed. The events are divided into 50 km intervals with the displayed number showing the upper limit of the interval. A) All events observed during Period 1. B) All events observed during period 2. C) All narrow-duct events observed over both periods.
Figure B.5: The frequency peaks that correlate to the region of maximum PSD of the narrow ducts are displayed. The events are divided into 100 Hz intervals with the displayed number showing the upper limit of the interval. A) All events observed during Period 1. B) All events observed during period 2. C) All narrow-duct events observed over both periods.
Figure B.6: The variation of electron density of the narrow ducts are displayed. The events are divided into 50 cm$^{-3}$ intervals with the displayed number showing the upper limit of the interval. A) All events observed during Period 1. B) All events observed during period 2. C) All narrow-duct events observed over both periods.
Figure B.7: The distance to the plasmapause of the narrow ducts are displayed. The negative distances display events that occurred inside of the plasmapause. The events are divided into 0.15 R_E intervals with the displayed number showing the upper limit of the interval. A) All events observed during Period 1. B) All events observed during period 2. C) All narrow-duct events observed over both periods.
Figure B.8: The location of every observed wide event is graphed on the orbital path of RBSP-A. The day side is shown by the white side of the gradient circle in the center.

Figure B.9: The widths of the wide ducts are displayed. The events are divided into 1000 km intervals with the displayed number showing the upper limit of the interval.
APPENDIX B. RESULTS

Figure B.10: The frequency peaks that correlate to the region of maximum PSD of the wide ducts are displayed. The events are divided into 100 Hz intervals with the displayed number showing the upper limit of the interval.

Figure B.11: The distance to the plasmapause of the wide ducts are displayed. All the events occurred inside of the plasmapause. The events are divided into 0.5 R_E intervals with the displayed number showing the upper limit of the interval.

Figure B.12: The variation of electron density of the wide ducts are displayed. The events are divided into 500 cm$^{-3}$ intervals with the displayed number showing the upper limit of the interval.
C.1 Convert File
Program Convert

Integer, Parameter :: nx=2001, nz=20000
Integer, Parameter :: nx1=1001, nz1=2000

Real*8 :: Ex (nx , nz), Ey (nx , nz), Ez (nx , nz)
Real*8 :: Ex1(nx1, nz1), Ey1(nx1, nz1), Ez1(nx1, nz1)

open (10,file='Exfield.dat',status='old')
open (20,file='Eyfield.dat',status='old')
open (30,file='Ezfield.dat',status='old')

read (10,*) n1, n2
read (10,*) Ex

read (20,*) n1, n2
read (20,*) Ey

read (30,*) n1, n2
read (30,*) Ez

close (10); close (20); close (30)

do k = 1 , nz1
 k1 = k*10
 do i = 1 , nx1
 !
 i1 = (i-1)*2 + 1
 i1 = i
 Ex1(i,k) = Ex(i1,k1)
 Ey1(i,k) = Ey(i1,k1)
 Ez1(i,k) = Ez(i1,k1)
 end do
end do

open (10,file='ExfieldS.dat',status='unknown')
open (20,file='EyfieldS.dat',status='unknown')
open (30,file='EzfieldS.dat',status='unknown')

write (10,11) nx1, nz1
write (10,12) Ex1

write (20,11) nx1, nz1
write (20,12) Ey1

write (30,11) nx1, nz1
write (30,12) Ez1

close (10); close (20); close (30)

11 Format (2(i5,1x))
12 Format (10(e12.5,1x))
End Program Convert
C.2 Input File
7.02e-06 ! time step in s
10 10000 11 ! times
150000.0 ! X size of the domain (in m)
11000.0 ! Z size of the domain (in m)
285.0 ! Wave frequency (in Hz)
11000.0 ! Parallel wavelength (in m)
150.0 ! Density for dispersion relation
1 ! number of the perp. wavelength (1 or 2)
0.001 ! amplitude of the E field in the antenna
0.333 ! X-size of the Antenna
6.0 ! Antenna exponent (2, 4, or 6)
0.17 ! Size of the dissipation layer
10.0 ! Ampl. for dissipation
1.55 ! Weight for SOR
0 ! Key (1/0) for convection
C.3 Main
MODULE Global_Data
SAVE

Integer, Parameter ::
& nx =1501, nxS=nx+1,
& nx1=nx-1, nx2=nx-2, nx3=nx-3, nx4=nx-4,
& nz=21, nzS=nz+1,
& nz1=nz-1, nz2=nz-2, nz3=nz-3, nz4=nz-4,
& kb=1 , kb1=kb+1, kb2=kb+2,
& kt=nz, kt1=kt-1, kt2=kt-2

Real*8 ::
& StepX, StepZ, StepX12, StepZ12,
& StepXX12, StepZZ12, StepXZ12,
& D1X , D2X , D3X , D4X ,
& D1Z , D2Z , D3Z , D4Z ,
& DD1X, DD2X, DD3X, DD4X, DD0X,
& DD1Z, DD2Z, DD3Z, DD4Z, DD0Z,
& X_WORK(1:nx,1:nz), Y_WORK(1:nx,1:nz),
& Z_WORK(1:nx,1:nz),
& DeN(1:nx,1:nz), DenV(1:nx,1:nz), BB(1:nx,1:nz)

Real*8 ::
& SOR0X(1:nx,1:nz), SOR1X(1:nx,1:nz),
& SOR0Y(1:nx,1:nz), SOR1Y(1:nx,1:nz),
& SOR0Z(1:nx,1:nz), SOR1Z(1:nx,1:nz),
& RRX(1:nx,1:nz), RRY(1:nx,1:nz), RRZ(1:nx,1:nz),
& EECX(nx,nz), EECY(nx,nz), EECZ(nx,nz),
& C1_SOR, C0_SOR, Eps_SOR

Integer ::
& I_SOR, Imax_SOR

Real*8, Parameter ::
& ccc0=299790.0E+3, pi=3.14159265D0, Pi2 = 2.d0*pi,
& mu_0=3.14159265D0*4.0E-7, e_0=1.6022E-19,
& m_e=9.10940E-31, eps_0=8.8542E-12, extr1=-3.d0,
& extr2=3.d0, two=2.d0, D8=8.D0, D16=16.D0,
& D30=30.D0, D85=0.5D0

End Module Global_Data
* This is a version of whist10pd.f with a higher (4) order of
* the derivatives
*

*
Use global_data

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

Real*8 ::
 EX(1:nx,1:nz), EY(1:nx,1:nz), EZ(1:nx,1:nz),
 BX(1:nx,1:nz), BY(1:nx,1:nz), BZ(1:nx,1:nz),
 VX(1:nx,1:nz), VY(1:nx,1:nz), VZ(1:nx,1:nz),
 BX_P(1:nx,1:nz), BY_P(1:nx,1:nz), BZ_P(1:nx,1:nz),
 VX_P(1:nx,1:nz), VY_P(1:nx,1:nz), VZ_P(1:nx,1:nz),
 Dis(1:nx,1:nz)

Real*8, TARGET ::
 rpvx1(1:nx,1:nz), rpvx2(1:nx,1:nz), rpvx3(1:nx,1:nz),
 rpvx4(1:nx,1:nz),
 rpvy1(1:nx,1:nz), rpvy2(1:nx,1:nz), rpvy3(1:nx,1:nz),
 rpvy4(1:nx,1:nz),
 rpvz1(1:nx,1:nz), rpvz2(1:nx,1:nz), rpvz3(1:nx,1:nz),
 rpvz4(1:nx,1:nz),
 rpbx1(1:nx,1:nz), rpbx2(1:nx,1:nz), rpbx3(1:nx,1:nz),
 rpbx4(1:nx,1:nz),
 rpby1(1:nx,1:nz), rpby2(1:nx,1:nz), rpby3(1:nx,1:nz),
 rpby4(1:nx,1:nz),
 rpbz1(1:nx,1:nz), rpbz2(1:nx,1:nz), rpbz3(1:nx,1:nz),
 rpbz4(1:nx,1:nz)

Real*8, POINTER ::
 p_vx1(:,,:), p_vx2(:,,:), p_vx3(:,,:), p_vx4(:,,:),
 p_vy1(:,,:), p_vy2(:,,:), p_vy3(:,,:), p_vy4(:,,:),
 p_vz1(:,,:), p_vz2(:,,:), p_vz3(:,,:), p_vz4(:,,:),
 p_bx1(:,,:), p_bx2(:,,:), p_bx3(:,,:), p_bx4(:,,:),
 p_by1(:,,:), p_by2(:,,:), p_by3(:,,:), p_by4(:,,:),
 p_bz1(:,,:), p_bz2(:,,:), p_bz3(:,,:), p_bz4(:,,:),
 p_work(:,,:)

Real*8, Allocatable ::
 DuctX(:,), B_in(:,),
 ExA(:,), EyA(:,), EzA(:,), BxA(:,), ByA(:,), BzA(:,),
& ExM(:,:), EyM(:,:), EzM(:,:), Dens(:), Dist(:)

Character*5 :: name1, name2, name3,
& name4, name5, name6,
& name7, name8, name9, Num(10)*1

Num=(/'0','1','2','3','4','5','6','7','8','9'/)

NULLIFY (p_vx1, p_vx2, p_vx3, p_vx4,
& p_vy1, p_vy2, p_vy3, p_vy4,
& p_vz1, p_vz2, p_vz3, p_vz4,
& p_bx1, p_bx2, p_bx3, p_bx4,
& p_by1, p_by2, p_by3, p_by4,
& p_bz1, p_bz2, p_bz3, p_bz4,
& p_work)

*

* Input Parameters *

*
open (20,file='rbsp_dat_new3.dat',status='old')
read (20,*) ht
read (20,*) ntime1, ntime2, ntime3
read (20,*) SizeX ! Sizes of the BOX in m
read (20,*) SizeZ ! Sizes of the BOX in m
read (20,*) Omega ! Wave frequency (in Hz)
read (20,*) wLz ! Wavelength in X
read (20,*) D000 ! Density for the Disp. Relation
read (20,*) Key_Kx ! Number of the perpendicular wavelength
read (20,*) AmpA ! Ampl of the Antenna
read (20,*) SizeA ! X-size of the Antenna
read (20,*) GradA ! Gradient of the Antenna (4 or 6)
read (20,*) SizeDis ! size of the dissipation layer (1/6-1/8)
read (20,*) AmpC ! ampl. of dissipation
read (20,*) C1_SOR ! Weight function for SOR
read (20,*) Key_Conv ! Key to activate convective term

close (20)
icen = nx/2.0 + 1
kcen = nz/2.0 + 1
icount1 = 0
icount2 = 0
iten = 5
ht5 = ht * iten
nw = ntime1 * ntime2 / iten + 2

ALLOCATE (DuctX(nx), ExA(nw), EyA(nw), EzA(nw),
& BxA(nw), ByA(nw), BzA(nw),
& ExM(nx,nw), EyM(nx,nw), EzM(nx,nw))

rpvx1 = 0.0; rpvx2 = 0.0; rpvx3 = 0.0; rpvx4 = 0.0
rpvy1 = 0.0; rpvy2 = 0.0; rpvy3 = 0.0; rpvy4 = 0.0
rpvz1 = 0.0; rpvz2 = 0.0; rpvz3 = 0.0; rpvz4 = 0.0

p_vx1 => rpvx1
p_vx2 => rpvx2
p_vx3 => rpvx3
p_vx4 => rpvx4

p_vy1 => rpvy1
p_vy2 => rpvy2
p_vy3 => rpvy3
p_vy4 => rpvy4

p_vz1 => rpvz1
p_vz2 => rpvz2
p_vz3 => rpvz3
p_vz4 => rpvz4

rpbx1 = 0.0; rpbx2 = 0.0; rpbx3 = 0.0; rpbx4 = 0.0
rpby1 = 0.0; rpby2 = 0.0; rpby3 = 0.0; rpby4 = 0.0
rpbz1 = 0.0; rpbz2 = 0.0; rpbz3 = 0.0; rpbz4 = 0.0

p_bx1 => rpbx1
p_bx2 => rpbx2
p_bx3 => rpbx3
\[\begin{align*}
\text{p_bx4} & \rightarrow \text{rpbx4} \\
\text{p_by1} & \rightarrow \text{rpby1} \\
\text{p_by2} & \rightarrow \text{rpby2} \\
\text{p_by3} & \rightarrow \text{rpby3} \\
\text{p_by4} & \rightarrow \text{rpby4} \\
\text{p_bz1} & \rightarrow \text{rpbz1} \\
\text{p_bz2} & \rightarrow \text{rpbz2} \\
\text{p_bz3} & \rightarrow \text{rpbz3} \\
\text{p_bz4} & \rightarrow \text{rpbz4}
\end{align*} \]

* ******************** Space

\[
\begin{align*}
\text{StepX} &= \frac{\text{SizeX}}{\text{float}(\text{nx}-1)} \\
\text{StepZ} &= \frac{\text{SizeZ}}{\text{float}(\text{nz})} \\
\text{StepXX} &= \frac{1.0}{\text{StepX} \times \text{StepX}} \\
\text{StepZZ} &= \frac{1.0}{\text{StepZ} \times \text{StepZ}} \\
\text{StepXX12} &= \frac{1.0}{(12.0 \times \text{StepX} \times \text{StepX})} \\
\text{StepZZ12} &= \frac{1.0}{(12.0 \times \text{StepZ} \times \text{StepZ})} \\
\text{StepX12} &= \frac{1.0}{(12.0 \times \text{StepX})} \\
\text{StepZ12} &= \frac{1.0}{(12.0 \times \text{StepZ})} \\
\text{StepXZ12} &= \text{StepX12} \times \text{StepZ12}
\end{align*}
\]

\[
\begin{align*}
\text{Work} &= 280.0 \times \text{StepX} \\
\text{D1X} &= \frac{224.0}{\text{Work}} \\
\text{D2X} &= -\frac{56.0}{\text{Work}} \\
\text{D3X} &= \frac{32.0}{\text{Work} \times 3.0} \\
\text{D4X} &= -\frac{1.0}{\text{Work}}
\end{align*}
\]

\[
\begin{align*}
\text{DD0X} &= -\frac{14350.0}{\text{Work} \times 9.0} \\
\text{DD1X} &= \frac{896.0}{\text{Work}} \\
\text{DD2X} &= -\frac{112.0}{\text{Work}} \\
\text{DD3X} &= \frac{128.0}{\text{Work} \times 9.0} \\
\text{DD4X} &= -\frac{1.0}{\text{Work}}
\end{align*}
\]

\[
\begin{align*}
\text{DDXX12} &= \frac{1.0}{(12.0 \times \text{StepX} \times \text{StepX})} \\
\text{DDZZ12} &= \frac{1.0}{(12.0 \times \text{StepZ} \times \text{StepZ})} \\
\text{DDXZ12} &= \frac{1.0}{(12.0 \times \text{StepX})} \\
\text{DDZZ12} &= \frac{1.0}{(12.0 \times \text{StepZ})}
\end{align*}
\]

\[
\begin{align*}
\text{Work} &= 560.0 \times \text{StepX} \times \text{StepZ} \\
\text{D1Z} &= \frac{224.0}{\text{Work}} \\
\text{D2Z} &= -\frac{56.0}{\text{Work}} \\
\text{D3Z} &= \frac{32.0}{\text{Work} \times 3.0} \\
\text{D4Z} &= -\frac{1.0}{\text{Work}}
\end{align*}
\]

\[
\begin{align*}
\text{DD0X} &= -\frac{14350.0}{\text{Work} \times 9.0} \\
\text{DD1Z} &= \frac{896.0}{\text{Work}} \\
\text{DD2Z} &= -\frac{112.0}{\text{Work}} \\
\text{DD3Z} &= \frac{128.0}{\text{Work} \times 9.0} \\
\text{DD4Z} &= -\frac{1.0}{\text{Work}}
\end{align*}
\]
DD3Z = 128.D0/Work/9.D0
DD4Z =- 1.D0/Work
DD0Z =-14350.D0/Work/9.D0

**
*************** Time
**

ht24 = ht/24.0

ab_1 = 55.*ht24
ab_2 = -59.*ht24
ab_3 = 37.*ht24
ab_4 = -9.*ht24

am_1 = 9.*ht24
am_2 = 19.*ht24
am_3 = -5.*ht24
am_4 = ht24

**

**
** First step: T = 0
**

ExM = 0.d0
EyM = 0.d0
EzM = 0.d0

X_WORK = 0.d0
Y_WORK = 0.d0
Z_WORK = 0.d0

!
! Density inside the domain
!

open (10,file='Dens_Bfield_In.dat',status='old')
read (10,*) n_dens
Allocate (Dens(n_dens), B_in(n_dens), Dist(n_dens))
read (10,*) Dist
read (10,*) Dens ! in cm-3
read (10,*) B_in ! in nT
close (10)

 x = - StepX
do i = 1 , nx
\[x = x + \text{StepX} \]

\begin{verbatim}
 do j = 1 , n_dens-1
 if (x .ge. Dist(j) .and. x .le. Dist(j+1)) then
 arg = (x-Dist(j))/(Dist(j+1)-Dist(j))
 Den(i,1) = Dens(j) + (Dens(j+1)-Dens(j)) * arg
 BB (i,1) = B_in(j) + (B_in(j+1)-B_in(j)) * arg
 end if
 end do
 Goto 700
end do

700 continue
end do

 do k = 2 , nz
 Den(:,k) = Den(:,1)
 BB (:,k) = BB (:,1)
 end do

 Den = Den*1.0E+6
 BB = BB *1.0E-9
 D000 = D000 * 1.0E+6

 open (10,file='Density_Out.dat',status='unknown')
 write (10,52) nx,nz
 write (10,50) Den
 close (10)

 open (10,file='Bfield_Out.dat',status='unknown')
 write (10,52) nx,nz
 write (10,50) BB
 close (10)

 DenV = 1.d0/(mu_0*e_0*Den) ! Parameter to calculate the RHP
 ! for Velocity

**

**

**
**
** Antenna
**

SizeA = SizeA*SizeX*0.5d0

x = - StepX - SizeX/2.0D0

do i = 1 , nx
 x = x + StepX
 arg = x / SizeA
 DuctX(i) = 1.0/exp(arg**GradA)
end do

** Wave's Parameters *

B000 = BB(nx/2+1,kb)

EmE = e_0 / m_e
Omega_PE = sqrt(D000*e_0*EmE/eps_0)
Omega_CE = EmE * B000
 ALPHA = Omega_PE / ccc0
 ALPHA = ALPHA * ALPHA
 Omega = Pi2 * Omega
 wKz = Pi2 / wLz

work1 = 0.5d0 * Omega_CE / Omega
work1 = work1 * work1

work2 = (wKz*Omega_CE/Omega)**2.d0
work2 = work2*m_e/e_0/e_0/4.0d0/mu_0
work2 = D000/work2
work2 = sqrt(1.d0 - work2)

wKx1 = wKz*sqrt(work1*(1-work2)**2.0 - 1.d0)
wKx2 = wKz*sqrt(work1*(1+work2)**2.0 - 1.d0)

wKx22 = wKx2 ! For output only

wLx1 = Pi2 / wKx1
wLx2 = Pi2 / wKx2
wKx = wKx1
if (Key_Kx .eq. 2) wKx = wKx2

wKx2 = wKx* wKx
wKz2 = wKz* wKz
wK2 = wKx2 + wKz2
wK = sqrt(wK2)

**

** Dissipation *

**
AmpC = AmpC * Omega

X11 = SizeDis*SizeX
X22 = SizeX - X11
Dis = 0.0

 x = -StepX

Do i = 1 , nx
 x = x + StepX
 if (x < X11)
 & Dis(i,kb) = AmpC*((x-X11)/X11)**2.0
 if (x > X22)
 & Dis(i,kb) = AmpC*((x-X22)/X11)**2.0
 End Do

Do k = 2 , nz
 Dis(:,k) = Dis(:,kb)
End Do

**

** Parameters SOR *

**
Imax_SOR = 1e+4
Eps_SOR = 1.0e-8

do i = 1 , nx
 do k = 1 , nz
 EECX(i,k) = EmE - DenV(i,k)* DD0Z
 EECY(i,k) = EmE - DenV(i,k)*(DD0X + DD0Z)
 EECZ(i,k) = EmE - DenV(i,k)* DD0X
 end do
IF (C1_SOR == 0.0) then
print *,' Start SOR training'
print *,' SOR training is complete '
else
print *,' SOR is not trained '
C0_SOR = 1.0 - C1_SOR
end if

*** Initial Conditions for E, B, V & RHPs

AmpEy = AmpA
AmpEx = AmpEy * Omega * (((Omega_CE/Omega)**2.0 - 1.0) & 1) / Omega_CE
AmpEz = AmpEx * wK2 * wKx / (ALPHA + wKx2)
AmpBx = - AmpEy * wKz / Omega
AmpBy = -(AmpEz * wKx - AmpEx * wKz) / Omega
AmpBz = - AmpEy * wKz / Omega
AmpVx = wKz * (AmpEx * wKz - AmpEz * wKx) / Omega
AmpVy = - AmpEy * (wKx2 + wKz2) / Omega
AmpVz = wKx * (AmpEx * wKz - AmpEz * wKx) / Omega

SizeZ2 = SizeZ/2.00
SizeX2 = SizeX/2.00

end do
time = time + ht
 t1 = time * Omega

 x = - StepX - SizeX2

 do i = 1 , nx
 x = x + StepX

 X_Cos = Cos(x * wKx) * DuctX(i)
 X_Sin = Sin(x * wKx) * DuctX(i)

 C X_Cos = Cos(x * wKx) ! TEST
 C X_Sin = Sin(x * wKx) ! TEST

 z = - StepZ - SizeZ2

 do k = 1 , nz
 z = z + StepZ
 z1 = z * wKz - t1

 Z_Cos = Cos(z1)
 Z_Sin = Sin(z1)

 C Ex(i,k) = AmpEx * X_Cos * Z_Sin
 C Ey(i,k) = AmpEy * X_Cos * Z_Cos
 C Ez(i,k) = AmpEz * X_Sin * Z_Cos

 Bx(i,k) = AmpBx * X_Cos * Z_Cos
 By(i,k) = AmpBy * X_Cos * Z_Sin
 Bz(i,k) = AmpBz * X_Sin * Z_Sin

 Vx(i,k) = AmpVx * X_Cos * Z_Cos * DenV(i,k)
 Vy(i,k) = AmpVy * X_Cos * Z_Sin * DenV(i,k)
 Vz(i,k) = AmpVz * X_Sin * Z_Sin * DenV(i,k)

 end do

 end do

 IF (Key_Conv == 1) CALL Convect (Vx, Vy, Vz)

 RRRX = -EmE * (Vy*(Bz+BB)-Vz*By) - X_WORK
 RRRY = EmE * (Vx*(Bz+BB)-Vz*Bx) - Y_WORK
 RRRZ = -EmE * (Vx*By - Vy*Bx) - Z_WORK

 SOR1X = Ex
 SOR1Y = Ey
SOR1Z = Ez
CALL SolverE
SELECT CASE (J)
 CASE (1)
 CALL RHP_V
 P_vx4 = RRX
 P_vy4 = RRY
 P_vz4 = RRZ
 CALL RHP_B
 P_bx4 = RRX
 P_by4 = RRY
 P_bz4 = RRZ
 CASE (2)
 CALL RHP_V
 P_vx3 = RRX
 P_vy3 = RRY
 P_vz3 = RRZ
 CALL RHP_B
 P_bx3 = RRX
 P_by3 = RRY
 P_bz3 = RRZ
 CASE (3)
 CALL RHP_V
 P_vx2 = RRX
 P_vy2 = RRY
 P_vz2 = RRZ
 CALL RHP_B
 P_bx2 = RRX
 P_by2 = RRY
 P_bz2 = RRZ
 CASE (4)
 CASE DEFAULT
END SELECT
end do
print *,' Initialization is complete '
DEALLOCATE (DuctX)

** PRINT INFO ***

open (30,file='INFO',status='unknown')
write (30,900)
write (30,901) B000*1.0e+9, D000*1.0e-6
write (30,902) SizeX, SizeZ
write (30,903) wKz, wLz
write (30,904) wKx1, wLx1
write (30,905) wKx22, wLx2
write (30,906) Omega, Omega/Pi2
write (30,907) Omega_PE, Omega_CE

900 format(1x,' PARAMETERS:')
901 format(1x,' Bo (nT) ',e12.4,3x,'N (cm-3) ',e12.4)
902 format(1x,' Size X (m) ',e12.4,3x,'Size Z (m) ',e12.4)
903 format(1x,' WNum Z (rad/m) ',e12.4,3x,'Wlength Z (m) ',e12.4)
904 format(1x,' WNum1 X (rad/m) ',e12.4,3x,'Wlength1 X (m) ',e12.4)
905 format(1x,' WNum2 X (rad/m) ',e12.4,3x,'Wlength2 X (m) ',e12.4)
906 format(1x,' Omeg (r/s) ',e12.4,3x,'Freq. (Hz) ',e12.4)
907 format(1x,' Omeg_P (r/s) ',e12.4,3x,'Omeg_CE (r/s) ',e12.4)

close (30)

**
* Multisteps *
**

* do iii = 1 , ntime1 ! The Main III Loop
 Ima_SOR = 0
 do jjj = 1 , ntime2 ! The Main JJJ Loop
 *
 *
 **
 **
 **
 **
 **
 **
CALL RHP_V

 P_vx1 = RRX
 P_vy1 = RRY
 P_vz1 = RRZ

CALL RHP_B

 P_bx1 = RRX
 P_by1 = RRY
 P_bz1 = RRZ

! ! X components
!
Vx_P = Vx + ab_1*p_vx1 + ab_2*p_vx2
& + ab_3*p_vx3 + ab_4*p_vx4

Bx_P = Bx + ab_1*p_bx1 + ab_2*p_bx2
& + ab_3*p_bx3 + ab_4*p_bx4

! ! Y components
!
Vy_P = Vy + ab_1*p_vy1 + ab_2*p_vy2
& + ab_3*p_vy3 + ab_4*p_vy4

By_P = By + ab_1*p_by1 + ab_2*p_by2
& + ab_3*p_by3 + ab_4*p_by4

! ! Z components
!

Vz_P = Vz + ab_1*p_vz1 + ab_2*p_vz2
& + ab_3*p_vz3 + ab_4*p_vz4

Bz_P = Bz + ab_1*p_bz1 + ab_2*p_bz2
& + ab_3*p_bz3 + ab_4*p_bz4

**

** E field I *

**
IF (Key_Conv == 1) CALL Convect (Vx_P, Vy_P, Vz_P)
RRX = -EmE * (Vy_P*(Bz_P+BB)-Vz_P*By_P) - X_WORK
&
 -Dis * Vx_P
RRY = EmE * (Vx_P*(Bz_P+BB)-Vz_P*Bx_P) - Y_WORK
&
 -Dis * Vy_P
RRZ = -EmE * (Vx_P*By_P - Vy_P*Bx_P) - Z_WORK
&
 -Dis * Vz_P

CALL SolverE

if (I_SOR > Ima_SOR) Ima_SOR = I_SOR

* ***
* Re-organization of POINTERS
* ***
*
 p_work => p_vx1
 p_vx1 => p_vx4
 p_vx4 => p_vx3
 p_vx3 => p_vx2
 p_vx2 => p_work

 p_work => p_vy1
 p_vy1 => p_vy4
 p_vy4 => p_vy3
 p_vy3 => p_vy2
 p_vy2 => p_work

 p_work => p_vz1
 p_vz1 => p_vz4
 p_vz4 => p_vz3
 p_vz3 => p_vz2
 p_vz2 => p_work

 p_work => p_bx1
 p_bx1 => p_bx4
 p_bx4 => p_bx3
 p_bx3 => p_bx2
 p_bx2 => p_work

 p_work => p_by1
 p_by1 => p_by4
 p_by4 => p_by3
 p_by3 => p_by2
 p_by2 => p_work
p_work => p_bz1
p_bz1 => p_bz4
p_bz4 => p_bz3
p_bz3 => p_bz2
p_bz2 => p_work

**

** Corrector *

**

** Right hand Parts *

**
CALL RHP_V

P_vx1 = RRX
P_vy1 = RRY
P_vz1 = RRZ

CALL RHP_B

P_bx1 = RRX
P_by1 = RRY
P_bz1 = RRZ

!
! X componnents
!

Vx = Vx + am_1*p_vx1 + am_2*p_vx2
& + am_3*p_vx3 + am_4*p_vx4

Bx = Bx + am_1*p_bx1 + am_2*p_bx2
& + am_3*p_bx3 + am_4*p_bx4

!
! Y componnents
!

Vy = Vy + am_1*p_vy1 + am_2*p_vy2
& + am_3*p_vy3 + am_4*p_vy4

By = By + am_1*p_by1 + am_2*p_by2
& + am_3*p_by3 + am_4*p_by4

!
Z components

\[
V_z = V_z + a_{m_1}p_{v_z1} + a_{m_2}p_{v_z2} \\
& \quad + a_{m_3}p_{v_z3} + a_{m_4}p_{v_z4}
\]

\[
B_z = B_z + a_{m_1}p_{b_z1} + a_{m_2}p_{b_z2} \\
& \quad + a_{m_3}p_{b_z3} + a_{m_4}p_{b_z4}
\]

**

** E field II *

**

IF (Key_Conv == 1) CALL Convect (Vx, Vy, Vz)

RRX = -EmE * (Vy*(Bz+BB)-Vz*By) - X_WORK \\
& -Dis * Vx

RRY = EmE * (Vx*(Bz+BB)-Vz*Bx) - Y_WORK \\
& -Dis * Vy

RRZ = -EmE * (Vx*By - Vy*Bx) - Z_WORK \\
& -Dis * Vz

CALL SolverE

if (I_SOR > Ima_SOR) Ima_SOR = I_SOR

icount1 = icount1 + 1

if (icount1 == iten) then

 icount1 = 0
 icount2 = icount2 + 1

 ExA(icount2) = SOR1X(icen,kcen)
 EyA(icount2) = SOR1Y(icen,kcen)
 EzA(icount2) = SOR1Z(icen,kcen)

 ExM(:,icount2) = SOR1X(:,kcen)
 EyM(:,icount2) = SOR1Y(:,kcen)
 EzM(:,icount2) = SOR1Z(:,kcen)

 BxA(icount2) = Bx(icen,kcen)
 ByA(icount2) = By(icen,kcen)
 BzA(icount2) = Bz(icen,kcen)

end if

end do ! End of The Main JJJ Loop
print *, 'Step # ', iii, ' Max # of itter. ', Ima_SOR

if (iii >= ntime3) then
 name1 = 'vx000'
 name2 = 'vy000'
 name3 = 'vz000'

 name4 = 'ex000'
 name5 = 'ey000'
 name6 = 'ez000'

 name7 = 'bx000'
 name8 = 'by000'
 name9 = 'bz000'

 iw = iii/1000
 C name1(2:2) = Num (iw + 1)
 C name2(2:2) = Num (iw + 1)
 C name3(2:2) = Num (iw + 1)
 C name4(2:2) = Num (iw + 1)
 C name5(2:2) = Num (iw + 1)
 C name6(2:2) = Num (iw + 1)
 C name7(2:2) = Num (iw + 1)
 C name8(2:2) = Num (iw + 1)
 C name9(2:2) = Num (iw + 1)

 iw1 = (iii - iw*1000)/100
 name1(3:3) = Num (iw1 + 1)
 name2(3:3) = Num (iw1 + 1)
 name3(3:3) = Num (iw1 + 1)
 name4(3:3) = Num (iw1 + 1)
 name5(3:3) = Num (iw1 + 1)
 name6(3:3) = Num (iw1 + 1)
 name7(3:3) = Num (iw1 + 1)
 name8(3:3) = Num (iw1 + 1)
 name9(3:3) = Num (iw1 + 1)

 iw2 = (iii - iw*1000 - iw1*100)/10
 name1(4:4) = Num (iw2 + 1)
 name2(4:4) = Num (iw2 + 1)
 name3(4:4) = Num (iw2 + 1)
 name4(4:4) = Num (iw2 + 1)
 name5(4:4) = Num (iw2 + 1)
 name6(4:4) = Num (iw2 + 1)
name7(4:4) = Num (iw2 + 1)
name8(4:4) = Num (iw2 + 1)
name9(4:4) = Num (iw2 + 1)
iw3 = iii - iw*1000 - iw1*100 - iw2*10
name1(5:5) = Num (iw3 + 1)
name2(5:5) = Num (iw3 + 1)
name3(5:5) = Num (iw3 + 1)
name4(5:5) = Num (iw3 + 1)
name5(5:5) = Num (iw3 + 1)
name6(5:5) = Num (iw3 + 1)
name7(5:5) = Num (iw3 + 1)
name8(5:5) = Num (iw3 + 1)
name9(5:5) = Num (iw3 + 1)

open (20, file=name1, status='unknown')
write (20,52) nx,nz
write (20,50) Vx
close (20)

open (20, file=name2, status='unknown')
write (20,52) nx,nz
write (20,50) Vy
close (20)

open (20, file=name3, status='unknown')
write (20,52) nx,nz
write (20,50) Vz
close (20)

open (20, file=name4, status='unknown')
write (20,52) nx,nz
write (20,50) Ex
close (20)

open (20, file=name5, status='unknown')
write (20,52) nx,nz
write (20,50) Ey
close (20)

open (20, file=name6, status='unknown')
write (20,52) nx,nz
write (20,50) Ez
close (20)

open (20, file=name7, status='unknown')
write (20,52) nx,nz
write (20,50) Bx
close (20)

open (20, file=name8, status='unknown')
write (20,52) nx,nz
write (20,50) By
close (20)

open (20, file=name9, status='unknown')
write (20,52) nx,nz
write (20,50) Bz
close (20)

end if

End Do ! End of The Main III Loop

open (20, file='EBfields.dat', status='unknown')
write (20,52) icount2

time = 0
do i = 1 , icount2
 time = time + ht5
 write (20,50) time, ExA(i), EyA(i), EzA(i),
 & BxA(i), ByA(i), BzA(i)
end do

close (20)

open (20, file='Exfield.dat', status='unknown')
write (20,52) nx,icount2
write (20,50) ExM
close (20)

open (20, file='Eyfield.dat', status='unknown')
write (20,52) nx,icount2
write (20,50) EyM
close (20)

open (20, file='Ezfield.dat', status='unknown')
write (20,52) nx,icount2
write (20,50) EzM
close (20)

50 format (10(1x,e11.5))
51 format (1x, i6)
52 format (1x,2i6)
58 format (1x,5i6)
99 format (1x,5F16.7)

END
Subroutine SolverE

* *
* Itterative solver based on SOR method *
* *

Use global_data

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

I_SOR = 0

760 I_SOR = I_SOR + 1

if (i_sor > Imax_SOR) then
 print *,' Emergency: Iterations diverge !!!'
 stop
end if

Sor0X = Sor1X
Sor0Y = Sor1Y
Sor0Z = Sor1Z

do i = 1 , nx

 ip1 = i + 1 ; if (ip1 > nx) ip1 = ip1 - nx
 ip2 = i + 2 ; if (ip2 > nx) ip2 = ip2 - nx
 ip3 = i + 3 ; if (ip3 > nx) ip3 = ip3 - nx
 ip4 = i + 4 ; if (ip4 > nx) ip4 = ip4 - nx

 im1 = i - 1 ; if (im1 < 1) im1 = im1 + nx
 im2 = i - 2 ; if (im2 < 1) im2 = im2 + nx
 im3 = i - 3 ; if (im3 < 1) im3 = im3 + nx
 im4 = i - 4 ; if (im4 < 1) im4 = im4 + nx

do k = 1 , nz

 kp1 = k + 1 ; if (kp1 > nz) kp1 = kp1 - nz
 kp2 = k + 2 ; if (kp2 > nz) kp2 = kp2 - nz
 kp3 = k + 3 ; if (kp3 > nz) kp3 = kp3 - nz
 kp4 = k + 4 ; if (kp4 > nz) kp4 = kp4 - nz

 km1 = k - 1 ; if (km1 < 1) km1 = km1 + nz
km2 = k - 2 ; if (km2 < 1) km2 = km2 + nz
km3 = k - 3 ; if (km3 < 1) km3 = km3 + nz
km4 = k - 4 ; if (km4 < 1) km4 = km4 + nz

W1U = D1X*(Sor1Z(ip1,kp1)-Sor1Z(im1,kp1)) &
+ D2X*(Sor1Z(ip2,kp1)-Sor1Z(im2,kp1)) &
+ D3X*(Sor1Z(ip3,kp1)-Sor1Z(im3,kp1)) &
+ D4X*(Sor1Z(ip4,kp1)-Sor1Z(im4,kp1))

W2U = D1X*(Sor1Z(ip1,kp2)-Sor1Z(im1,kp2)) &
+ D2X*(Sor1Z(ip2,kp2)-Sor1Z(im2,kp2)) &
+ D3X*(Sor1Z(ip3,kp2)-Sor1Z(im3,kp2)) &
+ D4X*(Sor1Z(ip4,kp2)-Sor1Z(im4,kp2))

W3U = D1X*(Sor1Z(ip1,kp3)-Sor1Z(im1,kp3)) &
+ D2X*(Sor1Z(ip2,kp3)-Sor1Z(im2,kp3)) &
+ D3X*(Sor1Z(ip3,kp3)-Sor1Z(im3,kp3)) &
+ D4X*(Sor1Z(ip4,kp3)-Sor1Z(im4,kp3))

W4U = D1X*(Sor1Z(ip1,kp4)-Sor1Z(im1,kp4)) &
+ D2X*(Sor1Z(ip2,kp4)-Sor1Z(im2,kp4)) &
+ D3X*(Sor1Z(ip3,kp4)-Sor1Z(im3,kp4)) &
+ D4X*(Sor1Z(ip4,kp4)-Sor1Z(im4,kp4))

W1D = D1X*(Sor1Z(ip1,km1)-Sor1Z(im1,km1)) &
+ D2X*(Sor1Z(ip2,km1)-Sor1Z(im2,km1)) &
+ D3X*(Sor1Z(ip3,km1)-Sor1Z(im3,km1)) &
+ D4X*(Sor1Z(ip4,km1)-Sor1Z(im4,km1))

W2D = D1X*(Sor1Z(ip1,km2)-Sor1Z(im1,km2)) &
+ D2X*(Sor1Z(ip2,km2)-Sor1Z(im2,km2)) &
+ D3X*(Sor1Z(ip3,km2)-Sor1Z(im3,km2)) &
+ D4X*(Sor1Z(ip4,km2)-Sor1Z(im4,km2))

W3D = D1X*(Sor1Z(ip1,km3)-Sor1Z(im1,km3)) &
+ D2X*(Sor1Z(ip2,km3)-Sor1Z(im2,km3)) &
+ D3X*(Sor1Z(ip3,km3)-Sor1Z(im3,km3)) &
+ D4X*(Sor1Z(ip4,km3)-Sor1Z(im4,km3))

W4D = D1X*(Sor1Z(ip1,km4)-Sor1Z(im1,km4)) &
+ D2X*(Sor1Z(ip2,km4)-Sor1Z(im2,km4)) &
+ D3X*(Sor1Z(ip3,km4)-Sor1Z(im3,km4)) &
+ D4X*(Sor1Z(ip4,km4)-Sor1Z(im4,km4))

Work1 = D1Z*(W1U - W1D) + D2Z*(W2U - W2D) &
+ D3Z*(W3U - W3D) + D4Z*(W4U - W4D)

Work2 = DD1Z*(Sor1X(i,km1) + Sor1X(i,kp1)) &
+ DD2Z*(Sor1X(i,km2) + Sor1X(i,kp2)) &
+ DD3Z*(Sor1X(i,km3) + Sor1X(i,kp3))
\[
\begin{align*}
\text{Sor1X}(i,k) &= (\text{RRX}(i,k) - \text{DenV}(i,k) \times (\text{Work1} - \text{Work2})) / \text{EECX}(i,k) \\
\text{Sor1Y}(i,k) &= \frac{(\text{RRY}(i,k) + \text{DenV}(i,k) \times (\text{DD1X} \times (\text{Sor1Y}(i,kp1) + \text{Sor1Y}(i,km1)) \quad & \\
& + \text{DD2X} \times (\text{Sor1Y}(i,kp2) + \text{Sor1Y}(i,km2)) \quad & \\
& + \text{DD3X} \times (\text{Sor1Y}(i,kp3) + \text{Sor1Y}(i,km3)) \quad & \\
& + \text{DD4X} \times (\text{Sor1Y}(i,kp4) + \text{Sor1Y}(i,km4)) + \text{DD1Z}(\text{Sor1Y}(i,k) + \text{Sor1Y}(i,kp1) + \text{Sor1Y}(i,km1)) \quad & \\
& + \text{DD2Z}(\text{Sor1Y}(i,k) + \text{Sor1Y}(i,kp2) + \text{Sor1Y}(i,km2)) \quad & \\
& + \text{DD3Z}(\text{Sor1Y}(i,k) + \text{Sor1Y}(i,kp3) + \text{Sor1Y}(i,km3)) \quad & \\
& + \text{DD4Z}(\text{Sor1Y}(i,k) + \text{Sor1Y}(i,kp4) + \text{Sor1Y}(i,km4))) / \text{EECY}(i,k) \\
W1U &= \text{D1X} \times (\text{Sor1X}(i,km1) - \text{Sor1X}(i,km2)) \\
& + \text{D2X} \times (\text{Sor1X}(i,km2) - \text{Sor1X}(i,km3)) \\
& + \text{D3X} \times (\text{Sor1X}(i,km3) - \text{Sor1X}(i,km4)) \\
& + \text{D4X} \times (\text{Sor1X}(i,km4) - \text{Sor1X}(i,km1)) \\
W2U &= \text{D1X} \times (\text{Sor1X}(i,km2) - \text{Sor1X}(i,km3)) \\
& + \text{D2X} \times (\text{Sor1X}(i,km3) - \text{Sor1X}(i,km4)) \\
& + \text{D3X} \times (\text{Sor1X}(i,km4) - \text{Sor1X}(i,km1)) \\
& + \text{D4X} \times (\text{Sor1X}(i,km1) - \text{Sor1X}(i,km2)) \\
W3U &= \text{D1X} \times (\text{Sor1X}(i,km3) - \text{Sor1X}(i,km4)) \\
& + \text{D2X} \times (\text{Sor1X}(i,km4) - \text{Sor1X}(i,km1)) \\
& + \text{D3X} \times (\text{Sor1X}(i,km1) - \text{Sor1X}(i,km2)) \\
& + \text{D4X} \times (\text{Sor1X}(i,km2) - \text{Sor1X}(i,km3)) \\
W4U &= \text{D1X} \times (\text{Sor1X}(i,km4) - \text{Sor1X}(i,km1)) \\
& + \text{D2X} \times (\text{Sor1X}(i,km1) - \text{Sor1X}(i,km2)) \\
& + \text{D3X} \times (\text{Sor1X}(i,km2) - \text{Sor1X}(i,km3)) \\
& + \text{D4X} \times (\text{Sor1X}(i,km3) - \text{Sor1X}(i,km4)) \\
W1D &= \text{D1X} \times (\text{Sor1X}(i,km1) - \text{Sor1X}(i,km2)) \\
& + \text{D2X} \times (\text{Sor1X}(i,km2) - \text{Sor1X}(i,km3)) \\
& + \text{D3X} \times (\text{Sor1X}(i,km3) - \text{Sor1X}(i,km4)) \\
& + \text{D4X} \times (\text{Sor1X}(i,km4) - \text{Sor1X}(i,km1)) \\
W2D &= \text{D1X} \times (\text{Sor1X}(i,km2) - \text{Sor1X}(i,km3)) \\
& + \text{D2X} \times (\text{Sor1X}(i,km3) - \text{Sor1X}(i,km4)) \\
& + \text{D3X} \times (\text{Sor1X}(i,km4) - \text{Sor1X}(i,km1)) \\
& + \text{D4X} \times (\text{Sor1X}(i,km1) - \text{Sor1X}(i,km2)) \\
W3D &= \text{D1X} \times (\text{Sor1X}(i,km3) - \text{Sor1X}(i,km4)) \\
& + \text{D2X} \times (\text{Sor1X}(i,km4) - \text{Sor1X}(i,km1)) \\
& + \text{D3X} \times (\text{Sor1X}(i,km1) - \text{Sor1X}(i,km2)) \\
& + \text{D4X} \times (\text{Sor1X}(i,km2) - \text{Sor1X}(i,km3))
\end{align*}
\]
W4D = D1X*(Sor1X(ip1,km4)-Sor1X(im1,km4))
& + D2X*(Sor1X(ip2,km4)-Sor1X(im2,km4))
& + D3X*(Sor1X(ip3,km4)-Sor1X(im3,km4))
& + D4X*(Sor1X(ip4,km4)-Sor1X(im4,km4))

Work1 = D1Z*(W1U - W1D) + D2Z*(W2U - W2D)
& + D3Z*(W3U - W3D) + D4Z*(W4U - W4D)

Work2 = DD1X*(Sor1Z(im1,k) + Sor1Z(ip1,k))
& + DD2X*(Sor1Z(im2,k) + Sor1Z(ip2,k))
& + DD3X*(Sor1Z(im3,k) + Sor1Z(ip3,k))
& + DD4X*(Sor1Z(im4,k) + Sor1Z(ip4,k))

Sor1Z(i,k) = (RRZ(i,k) - DenV(i,k) * (Work1 - Work2)) / EECZ(i,k)
Sor1X(i,k) = C1_SOR*Sor1X(i,k) + C0_SOR*Sor0X(i,k)
Sor1Y(i,k) = C1_SOR*Sor1Y(i,k) + C0_SOR*Sor0Y(i,k)
Sor1Z(i,k) = C1_SOR*Sor1Z(i,k) + C0_SOR*Sor0Z(i,k)

End do
end do

work1 = MAXVAL(ABS(sor1X - sor0X))
work0 = MAXVAL(ABS(sor1X)

if (work1 > Eps_SOR*work0) GOTO 760

work1 = MAXVAL(ABS(sor1Y - sor0Y))
work0 = MAXVAL(ABS(sor1Y)

if (work1 > Eps_SOR*work0) GOTO 760

work1 = MAXVAL(ABS(sor1Z - sor0Z))
work0 = MAXVAL(ABS(sor1Z)

if (work1 > Eps_SOR*work0) GOTO 760

End Subroutine SolverE

*
**

**
*
Subroutine RHP_V
*
*
The subroutine calculates Laplace of E
Use global_data

do i = 1 , nx

 ip1 = i + 1 ; if (ip1 > nx) ip1 = ip1 - nx
 ip2 = i + 2 ; if (ip2 > nx) ip2 = ip2 - nx
 ip3 = i + 3 ; if (ip3 > nx) ip3 = ip3 - nx
 ip4 = i + 4 ; if (ip4 > nx) ip4 = ip4 - nx

 im1 = i - 1 ; if (im1 < 1) im1 = im1 + nx
 im2 = i - 2 ; if (im2 < 1) im2 = im2 + nx
 im3 = i - 3 ; if (im3 < 1) im3 = im3 + nx
 im4 = i - 4 ; if (im4 < 1) im4 = im4 + nx

do k = 1 , nz

 kp1 = k + 1 ; if (kp1 > nz) kp1 = kp1 - nz
 kp2 = k + 2 ; if (kp2 > nz) kp2 = kp2 - nz
 kp3 = k + 3 ; if (kp3 > nz) kp3 = kp3 - nz
 kp4 = k + 4 ; if (kp4 > nz) kp4 = kp4 - nz

 km1 = k - 1 ; if (km1 < 1) km1 = km1 + nz
 km2 = k - 2 ; if (km2 < 1) km2 = km2 + nz
 km3 = k - 3 ; if (km3 < 1) km3 = km3 + nz
 km4 = k - 4 ; if (km4 < 1) km4 = km4 + nz

 W1U = D1X*(Sor1Z(ip1,kp1)-Sor1Z(im1,kp1))
 & + D2X*(Sor1Z(ip2,kp1)-Sor1Z(im2,kp1))
 & + D3X*(Sor1Z(ip3,kp1)-Sor1Z(im3,kp1))
 & + D4X*(Sor1Z(ip4,kp1)-Sor1Z(im4,kp1))

 W2U = D1X*(Sor1Z(ip1,kp2)-Sor1Z(im1,kp2))
 & + D2X*(Sor1Z(ip2,kp2)-Sor1Z(im2,kp2))
 & + D3X*(Sor1Z(ip3,kp2)-Sor1Z(im3,kp2))
 & + D4X*(Sor1Z(ip4,kp2)-Sor1Z(im4,kp2))

 W3U = D1X*(Sor1Z(ip1,kp3)-Sor1Z(im1,kp3))
 & + D2X*(Sor1Z(ip2,kp3)-Sor1Z(im2,kp3))
 & + D3X*(Sor1Z(ip3,kp3)-Sor1Z(im3,kp3))
 & + D4X*(Sor1Z(ip4,kp3)-Sor1Z(im4,kp3))

 W4U = D1X*(Sor1Z(ip1,kp4)-Sor1Z(im1,kp4))
 & + D2X*(Sor1Z(ip2,kp4)-Sor1Z(im2,kp4))
 & + D3X*(Sor1Z(ip3,kp4)-Sor1Z(im3,kp4))
 & + D4X*(Sor1Z(ip4,kp4)-Sor1Z(im4,kp4))

 W1D = D1X*(Sor1Z(ip1,km1)-Sor1Z(im1,km1))
 & + D2X*(Sor1Z(ip2,km1)-Sor1Z(im2,km1))
 & + D3X*(Sor1Z(ip3,km1)-Sor1Z(im3,km1))
\begin{align*}
W2D &= D1X*(Sor1Z(ip1,km2) - Sor1Z(im1,km2)) \\
&+ D2X*(Sor1Z(ip2,km2) - Sor1Z(im2,km2)) \\
&+ D3X*(Sor1Z(ip3,km2) - Sor1Z(im3,km2)) \\
&+ D4X*(Sor1Z(ip4,km2) - Sor1Z(im4,km2)) \\
W3D &= D1X*(Sor1Z(ip1,km3) - Sor1Z(im1,km3)) \\
&+ D2X*(Sor1Z(ip2,km3) - Sor1Z(im2,km3)) \\
&+ D3X*(Sor1Z(ip3,km3) - Sor1Z(im3,km3)) \\
&+ D4X*(Sor1Z(ip4,km3) - Sor1Z(im4,km3)) \\
W4D &= D1X*(Sor1Z(ip1,km4) - Sor1Z(im1,km4)) \\
&+ D2X*(Sor1Z(ip2,km4) - Sor1Z(im2,km4)) \\
&+ D3X*(Sor1Z(ip3,km4) - Sor1Z(im3,km4)) \\
&+ D4X*(Sor1Z(ip4,km4) - Sor1Z(im4,km4))
\end{align*}

\begin{align*}
RRX(i,k) &= D1Z*(W1U - W1D) + D2Z*(W2U - W2D) \\
&+ D3Z*(W3U - W3D) + D4Z*(W4U - W4D) \\
&- DD1Z*(Sor1X(i,kp1) + Sor1X(i,km1)) \\
&- DD2Z*(Sor1X(i,kp2) + Sor1X(i,km2)) \\
&- DD3Z*(Sor1X(i,kp3) + Sor1X(i,km3)) \\
&- DD4Z*(Sor1X(i,kp4) + Sor1X(i,km4)) \\
&- DD0Z* Sor1X(i,k)
\end{align*}

\begin{align*}
RRY(i,k) &= DD1X*(Sor1Y(ip1,k) + Sor1Y(im1,k)) \\
&+ DD2X*(Sor1Y(ip2,k) + Sor1Y(im2,k)) \\
&+ DD3X*(Sor1Y(ip3,k) + Sor1Y(im3,k)) \\
&+ DD4X*(Sor1Y(ip4,k) + Sor1Y(im4,k)) \\
&+ Sor1Y(i,k) * (DD0X + DD0Z) \\
&+ DD1Z*(Sor1Y(i,kp1) + Sor1Y(i,km1)) \\
&+ DD2Z*(Sor1Y(i,kp2) + Sor1Y(i,km2)) \\
&+ DD3Z*(Sor1Y(i,kp3) + Sor1Y(i,km3)) \\
&+ DD4Z*(Sor1Y(i,kp4) + Sor1Y(i,km4))
\end{align*}

\begin{align*}
W1U &= D1X*(Sor1X(ip1,kp1) - Sor1X(im1,kp1)) \\
&+ D2X*(Sor1X(ip2,kp1) - Sor1X(im2,kp1)) \\
&+ D3X*(Sor1X(ip3,kp1) - Sor1X(im3,kp1)) \\
&+ D4X*(Sor1X(ip4,kp1) - Sor1X(im4,kp1))
\end{align*}

\begin{align*}
W2U &= D1X*(Sor1X(ip1,kp2) - Sor1X(im1,kp2)) \\
&+ D2X*(Sor1X(ip2,kp2) - Sor1X(im2,kp2)) \\
&+ D3X*(Sor1X(ip3,kp2) - Sor1X(im3,kp2)) \\
&+ D4X*(Sor1X(ip4,kp2) - Sor1X(im4,kp2))
\end{align*}

\begin{align*}
W3U &= D1X*(Sor1X(ip1,kp3) - Sor1X(im1,kp3)) \\
&+ D2X*(Sor1X(ip2,kp3) - Sor1X(im2,kp3)) \\
&+ D3X*(Sor1X(ip3,kp3) - Sor1X(im3,kp3)) \\
&+ D4X*(Sor1X(ip4,kp3) - Sor1X(im4,kp3))
\end{align*}
\[
W4U = D1X*(Sor1X(ip1,kp4)-Sor1X(im1,kp4)) \\
& + D2X*(Sor1X(ip2,kp4)-Sor1X(im2,kp4)) \\
& + D3X*(Sor1X(ip3,kp4)-Sor1X(im3,kp4)) \\
& + D4X*(Sor1X(ip4,kp4)-Sor1X(im4,kp4)) \\
\]

\[
W1D = D1X*(Sor1X(ip1,km1)-Sor1X(im1,km1)) \\
& + D2X*(Sor1X(ip2,km1)-Sor1X(im2,km1)) \\
& + D3X*(Sor1X(ip3,km1)-Sor1X(im3,km1)) \\
& + D4X*(Sor1X(ip4,km1)-Sor1X(im4,km1)) \\
\]

\[
W2D = D1X*(Sor1X(ip1,km2)-Sor1X(im1,km2)) \\
& + D2X*(Sor1X(ip2,km2)-Sor1X(im2,km2)) \\
& + D3X*(Sor1X(ip3,km2)-Sor1X(im3,km2)) \\
& + D4X*(Sor1X(ip4,km2)-Sor1X(im4,km2)) \\
\]

\[
W3D = D1X*(Sor1X(ip1,km3)-Sor1X(im1,km3)) \\
& + D2X*(Sor1X(ip2,km3)-Sor1X(im2,km3)) \\
& + D3X*(Sor1X(ip3,km3)-Sor1X(im3,km3)) \\
& + D4X*(Sor1X(ip4,km3)-Sor1X(im4,km3)) \\
\]

\[
W4D = D1X*(Sor1X(ip1,km4)-Sor1X(im1,km4)) \\
& + D2X*(Sor1X(ip2,km4)-Sor1X(im2,km4)) \\
& + D3X*(Sor1X(ip3,km4)-Sor1X(im3,km4)) \\
& + D4X*(Sor1X(ip4,km4)-Sor1X(im4,km4)) \\
\]

\[
RRZ(i,k) = D1Z*(W1U - W1D) + D2Z*(W2U - W2D) \\
& + D3Z*(W3U - W3D) + D4Z*(W4U - W4D) \\
& - DD1X*(Sor1Z(ip1,k) + Sor1Z(im1,k)) \\
& - DD2X*(Sor1Z(ip2,k) + Sor1Z(im2,k)) \\
& - DD3X*(Sor1Z(ip3,k) + Sor1Z(im3,k)) \\
& - DD4X*(Sor1Z(ip4,k) + Sor1Z(im4,k)) \\
& - DD0X* Sor1Z(i ,k)
\]

end do
end do

RRX = RRX * DenV
RRY = -RRY * DenV
RRZ = RRZ * DenV

End Subroutine RHP_V

*
**

**
*
Subroutine RHP_B
*
*
The suroutine calculates right-hand-part of the Faraday's law

Use global_data

do i = 1 , nx

 ip1 = i + 1 ; if (ip1 > nx) ip1 = ip1 - nx
 ip2 = i + 2 ; if (ip2 > nx) ip2 = ip2 - nx
 ip3 = i + 3 ; if (ip3 > nx) ip3 = ip3 - nx
 ip4 = i + 4 ; if (ip4 > nx) ip4 = ip4 - nx
 im1 = i - 1 ; if (im1 < 1) im1 = im1 + nx
 im2 = i - 2 ; if (im2 < 1) im2 = im2 + nx
 im3 = i - 3 ; if (im3 < 1) im3 = im3 + nx
 im4 = i - 4 ; if (im4 < 1) im4 = im4 + nx

do k = 1 , nz

 kp1 = k + 1 ; if (kp1 > nz) kp1 = kp1 - nz
 kp2 = k + 2 ; if (kp2 > nz) kp2 = kp2 - nz
 kp3 = k + 3 ; if (kp3 > nz) kp3 = kp3 - nz
 kp4 = k + 4 ; if (kp4 > nz) kp4 = kp4 - nz
 km1 = k - 1 ; if (km1 < 1) km1 = km1 + nz
 km2 = k - 2 ; if (km2 < 1) km2 = km2 + nz
 km3 = k - 3 ; if (km3 < 1) km3 = km3 + nz
 km4 = k - 4 ; if (km4 < 1) km4 = km4 + nz

 RRX(i,k) = D1Z*(Sor1Y(i,kp1) - Sor1Y(i,km1))
 & + D2Z*(Sor1Y(i,kp2) - Sor1Y(i,km2))
 & + D3Z*(Sor1Y(i,kp3) - Sor1Y(i,km3))
 & + D4Z*(Sor1Y(i,kp4) - Sor1Y(i,km4))

 RRY(i,k) = D1X*(Sor1Z(ip1,k) - Sor1Z(im1,k))
 & + D2X*(Sor1Z(ip2,k) - Sor1Z(im2,k))
 & + D3X*(Sor1Z(ip3,k) - Sor1Z(im3,k))
 & + D4X*(Sor1Z(ip4,k) - Sor1Z(im4,k))
 & - D1Z*(Sor1X(i,kp1) - Sor1X(i,km1))
 & - D2Z*(Sor1X(i,kp2) - Sor1X(i,km2))
 & - D3Z*(Sor1X(i,kp3) - Sor1X(i,km3))
 & - D4Z*(Sor1X(i,kp4) - Sor1X(i,km4))

 RRZ(i,k) = D1X*(Sor1Y(ip1,k) - Sor1Y(im1,k))
 & + D2X*(Sor1Y(ip2,k) - Sor1Y(im2,k))
 & + D3X*(Sor1Y(ip3,k) - Sor1Y(im3,k))
 & + D4X*(Sor1Y(ip4,k) - Sor1Y(im4,k))

end do
end do
RRZ = - RRZ

End Subroutine RHP_B

*
**

**
*

Subroutine Convect (Vx, Vy, Vz)
*
* The subroutine calculates X convective term in the
* momentum equation
*

Use global_data

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

Real*8 ::
& Vx(nx,nz), Vy(nx,nz), Vz(nx,nz)

do i = 1 , nx

 i1 = i + 1 ; if (i1 > nx) i1 = 1
 i2 = i - 1 ; if (i2 < 1) i2 = nx

do k = 1 , nz

 k1 = k + 1 ; if (k1 > nz) k1 = 1
 k2 = k - 1 ; if (k2 < 1) k2 = nz

Vx_L = Vx(i2,k) + Vx(i,k)
Vx_R = Vx(i1,k) + Vx(i,k)
Vz_D = Vz(i,k2) + Vz(i,k)
Vz_U = Vz(i,k1) + Vz(i,k)

if (Vx_L > 0) then
 i_L = i2
 else
 i_L = i
 end if

if (Vx_R > 0) then
 i_R = i
 else
 i_R = i1
 end if

if (Vz_D > 0) then

k_D = k2
 else
 k_D = k
 end if

if (Vz_U > 0) then
 k_U = k
else
 k_U = k1
end if

X_WORK(i,k) = (Vx_R*Den(i_R,k)*Vx(i_R,k)
& - Vx_L*Den(i_L,k)*Vx(i_L,k))/StepX
& + (Vz_U*Den(i,k_U)*Vx(i,k_U)
& - Vz_D*Den(i,k_D)*Vx(i,k_D))/StepZ

Y_WORK(i,k) = (Vx_R*Den(i_R,k)*Vy(i_R,k)
& - Vx_L*Den(i_L,k)*Vy(i_L,k))/StepX
& + (Vz_U*Den(i,k_U)*Vy(i,k_U)
& - Vz_D*Den(i,k_D)*Vy(i,k_D))/StepZ

Z_WORK(i,k) = (Vx_R*Den(i_R,k)*Vz(i_R,k)
& - Vx_L*Den(i_L,k)*Vz(i_L,k))/StepX
& + (Vz_U*Den(i,k_U)*Vz(i,k_U)
& - Vz_D*Den(i,k_D)*Vz(i,k_D))/StepZ

end do

end do

X_WORK = D05 * X_WORK / Den
Y_WORK = D05 * Y_WORK / Den
Z_WORK = D05 * Z_WORK / Den

End Subroutine Convect
clc
clear

me = 9.1094e-31;
qe = 1.6022e-19;
mu0 = pi*4.0e-7;
const = me/(mu0*qe*qe);

j = 888;

b = load('wideb.mat', 'data');
n = load('widen.mat', 'data');

b = cell2mat(struct2cell(b));
n = cell2mat(struct2cell(n));

figure
plot(n)

figure
plot(b)

q_par1 = 10500; %parallel wavelength in m
q_par2 = 16000; %parallel wavelength in m
omega = 400; %freq in Hz

step_size = (q_par2 - q_par1)/(j-1);

omega = 2*pi*omega;
qqq1 = const*q_par2;

for i = 1: j
 q_par(i) = q_par1 + step_size * (i-1);
 q_par(i) = 2 * pi / q_par(i);
 q_par2(i) = q_par(i) * q_par(i) * 1e-6;
 qqq1(i) = const * q_par2(i);
 omega_ce(i) = 176*b(i);
 ratio(i) = omega_ce(i)/omega;
 nl(i) = qqq1(i) * (ratio(i)-1);
end

nl = nl.';
for i = 1: j
 non1(i) = n(i)/n1(i);
end

figure
plot(non1);
APPENDIX E
EVENT CATALOG

E.1 Narrow Catalog
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Start</th>
<th>B [nT]</th>
<th>n peak [cm⁻³]</th>
<th>f range [Hz]</th>
<th>f [Hz]</th>
<th>change in n</th>
<th>MLT</th>
<th>Lshell</th>
<th>mlt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2013-04-02 6:57:00.323487 to 6:59:47.301862</td>
<td>153</td>
<td>150</td>
<td>77</td>
<td>140</td>
<td>70</td>
<td>470</td>
<td>102</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-02 7:16:01.099319 to 7:24:08.320010</td>
<td>147</td>
<td>144</td>
<td>57</td>
<td>170</td>
<td>70</td>
<td>770</td>
<td>44</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>4/3/2013</td>
<td>2013-04-03 7:30:33.186333 to 7:33:03.152260</td>
<td>745</td>
<td>695</td>
<td>630</td>
<td>210</td>
<td>90</td>
<td>1050</td>
<td>430</td>
<td>760</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-03 16:49:51.697184 to 16:52:01.190930</td>
<td>503</td>
<td>484</td>
<td>350</td>
<td>200</td>
<td>110</td>
<td>480</td>
<td>292</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-07 23:24:51.745315 to 23:30:39.807296</td>
<td>143.5</td>
<td>147</td>
<td>80</td>
<td>310</td>
<td>90</td>
<td>700</td>
<td>22</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>4/8/2013</td>
<td>2013-04-08 0:43:50.371715 to 0:45:36.405518</td>
<td>259</td>
<td>263</td>
<td>200</td>
<td>190</td>
<td>90</td>
<td>380</td>
<td>150</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-08 15:36:06.386685 to 15:44:23.795370</td>
<td>159</td>
<td>153</td>
<td>190</td>
<td>600</td>
<td>280</td>
<td>1100</td>
<td>165</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-08 16:59:20.243053 to 17:14:53.589463</td>
<td>147</td>
<td>152</td>
<td>183</td>
<td>570</td>
<td>280</td>
<td>1350</td>
<td>150</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-10 3:38:45.397643 to 3:46:22.133539</td>
<td>162</td>
<td>160</td>
<td>105</td>
<td>600</td>
<td>70</td>
<td>950</td>
<td>70</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-10 4:25:19.628842 to 4:32:55.12297</td>
<td>158</td>
<td>159.5</td>
<td>35</td>
<td>240</td>
<td>60</td>
<td>600</td>
<td>18</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-10 4:34:59.451083 to 4:42:37.466709</td>
<td>159</td>
<td>161.5</td>
<td>38</td>
<td>230</td>
<td>40</td>
<td>700</td>
<td>22</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-10 6:11:53.632004 to 6:18:24.478324</td>
<td>248</td>
<td>262</td>
<td>170</td>
<td>100</td>
<td>60</td>
<td>500</td>
<td>85</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-12 20:02:29.093618 to 20:26:27.592069</td>
<td>155</td>
<td>170</td>
<td>180</td>
<td>200</td>
<td>100</td>
<td>650</td>
<td>92</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-13 20:09:45.147892 to 20:25:18.915089</td>
<td>228</td>
<td>201</td>
<td>270</td>
<td>100</td>
<td>60</td>
<td>1100</td>
<td>200</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013-04-13 21:44:06.677094 to 21:54:48.735026</td>
<td>142.5</td>
<td>141</td>
<td>115</td>
<td>170</td>
<td>70</td>
<td>900</td>
<td>84</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Time</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>2015-07-29 16:30:31</td>
<td>1323228</td>
<td>151.7</td>
<td>152</td>
<td>64</td>
<td>500</td>
<td>50</td>
<td>1900</td>
<td>27</td>
<td>64</td>
<td>16.75599</td>
</tr>
<tr>
<td>2015-07-29 16:57:17</td>
<td>1467744</td>
<td>151.7</td>
<td>152.5</td>
<td>48</td>
<td>1000</td>
<td>90</td>
<td>1750</td>
<td>29</td>
<td>48</td>
<td>16.37468</td>
</tr>
<tr>
<td>2015-07-30 8:42:01</td>
<td>513579</td>
<td>273</td>
<td>253</td>
<td>242</td>
<td>270</td>
<td>160</td>
<td>1300</td>
<td>163</td>
<td>240</td>
<td>17.04066</td>
</tr>
<tr>
<td>2015-07-30 9:39:41</td>
<td>761257</td>
<td>186.5</td>
<td>184.3</td>
<td>113</td>
<td>280</td>
<td>160</td>
<td>1700</td>
<td>69</td>
<td>113</td>
<td>17.0855</td>
</tr>
<tr>
<td>2015-07-30 9:56:48</td>
<td>250938</td>
<td>174</td>
<td>171.7</td>
<td>92.5</td>
<td>230</td>
<td>170</td>
<td>1500</td>
<td>63</td>
<td>92.5</td>
<td>15.35214</td>
</tr>
<tr>
<td>2015-07-30 11:02:40</td>
<td>710098</td>
<td>159</td>
<td>160</td>
<td>80</td>
<td>610</td>
<td>180</td>
<td>1510</td>
<td>47</td>
<td>84</td>
<td>16.39563</td>
</tr>
<tr>
<td>2015-07-31 5:43:18</td>
<td>940205</td>
<td>158</td>
<td>176</td>
<td>70</td>
<td>210</td>
<td>100</td>
<td>1650</td>
<td>40</td>
<td>70</td>
<td>16.44234</td>
</tr>
<tr>
<td>2015-07-31 5:45:54</td>
<td>511068</td>
<td>161</td>
<td>162.5</td>
<td>70</td>
<td>380</td>
<td>90</td>
<td>1400</td>
<td>47</td>
<td>70</td>
<td>16.87425</td>
</tr>
<tr>
<td>2015-07-31 5:49:16</td>
<td>796053</td>
<td>163.5</td>
<td>166</td>
<td>75</td>
<td>290</td>
<td>90</td>
<td>1330</td>
<td>47</td>
<td>77</td>
<td>15.62094</td>
</tr>
<tr>
<td>2015-07-31 5:55:03</td>
<td>813958</td>
<td>167</td>
<td>175</td>
<td>76</td>
<td>210</td>
<td>100</td>
<td>2000</td>
<td>30</td>
<td>76</td>
<td>15.62094</td>
</tr>
<tr>
<td>2015-07-31 6:10:05</td>
<td>680895</td>
<td>182.3</td>
<td>192</td>
<td>79</td>
<td>290</td>
<td>30</td>
<td>2350</td>
<td>40</td>
<td>79</td>
<td>15.62094</td>
</tr>
<tr>
<td>8/1/2015 19:16:03</td>
<td>863611</td>
<td>350</td>
<td>383</td>
<td>220</td>
<td>260</td>
<td>40</td>
<td>1050</td>
<td>110</td>
<td>240</td>
<td>15.94047</td>
</tr>
<tr>
<td>8/3/2015 12:01:19</td>
<td>710546</td>
<td>168</td>
<td>169</td>
<td>85</td>
<td>90</td>
<td>50</td>
<td>960</td>
<td>57</td>
<td>86</td>
<td>15.94047</td>
</tr>
<tr>
<td>8/5/2015 19:26:26</td>
<td>074515</td>
<td>166</td>
<td>172</td>
<td>84</td>
<td>220</td>
<td>130</td>
<td>550</td>
<td>52</td>
<td>84</td>
<td>16.73472</td>
</tr>
<tr>
<td>8/6/2015 12:36:45</td>
<td>557210</td>
<td>150</td>
<td>146.5</td>
<td>77</td>
<td>110</td>
<td>70</td>
<td>710</td>
<td>52</td>
<td>77</td>
<td>16.197763</td>
</tr>
<tr>
<td>8/6/2015 12:57:36</td>
<td>664956</td>
<td>142.5</td>
<td>136</td>
<td>150</td>
<td>140</td>
<td>30</td>
<td>880</td>
<td>50</td>
<td>165</td>
<td>16.39563</td>
</tr>
<tr>
<td>8/8/2015 18:54:01</td>
<td>899889</td>
<td>970</td>
<td>820</td>
<td>470</td>
<td>320</td>
<td>90</td>
<td>1500</td>
<td>180</td>
<td>470</td>
<td>16.39563</td>
</tr>
<tr>
<td>8/10/2015 21:07:00</td>
<td>549789</td>
<td>198</td>
<td>192</td>
<td>102</td>
<td>90</td>
<td>40</td>
<td>1180</td>
<td>28</td>
<td>102</td>
<td>15.96716</td>
</tr>
<tr>
<td>8/7/2015 16:35:59</td>
<td>132521</td>
<td>150</td>
<td>155</td>
<td>64</td>
<td>110</td>
<td>40</td>
<td>530</td>
<td>47</td>
<td>77</td>
<td>16.80506</td>
</tr>
<tr>
<td>8/7/2015 16:47:03</td>
<td>071605</td>
<td>150</td>
<td>155</td>
<td>64</td>
<td>110</td>
<td>40</td>
<td>530</td>
<td>47</td>
<td>77</td>
<td>16.976</td>
</tr>
</tbody>
</table>
2015-08-28 08:02:44.428254 to 08:06:29.867340

2015-08-28 13:24:27.230084 to 13:32:15.880013

2015-08-28 18:06:15.921728 to 18:11:17.705944
E.2 Wide Catalog
<table>
<thead>
<tr>
<th>Date</th>
<th>Start Time</th>
<th>End Time</th>
<th>B (nT)</th>
<th>n peak (cm(^{-3}))</th>
<th>f range [Hz]</th>
<th>f [Hz]</th>
<th>change in n</th>
<th>MLT</th>
<th>Lshell</th>
<th>Lmin</th>
<th>Lmax</th>
<th>interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/27/2015</td>
<td>5:22:53:42.150813</td>
<td>23:39:00:664013</td>
<td>535</td>
<td>1700</td>
<td>250</td>
<td>1500</td>
<td>560</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/3/2015</td>
<td>5:30:17:49.77164</td>
<td>10:26:28.697126</td>
<td>1321</td>
<td>808</td>
<td>800</td>
<td>1300</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/7/2015</td>
<td>6:17:32:50.386563</td>
<td>12:45:17.931254</td>
<td>1840</td>
<td>1078</td>
<td>135</td>
<td>310</td>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/10/2015</td>
<td>6:10:48:50.59193</td>
<td>15:09:37.958154</td>
<td>1856</td>
<td>2660</td>
<td>220</td>
<td>100</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/11/2015</td>
<td>11:56:44.722842</td>
<td>6:38:50.589465</td>
<td>6530</td>
<td>930</td>
<td>1750</td>
<td>1300</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/13/2015</td>
<td>13:12:12 to 13:39</td>
<td></td>
<td>1500</td>
<td>258</td>
<td>600</td>
<td>40</td>
<td>530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/18/2015</td>
<td>17:20:08.652123</td>
<td>7:35:10.880206</td>
<td>2052</td>
<td>4348</td>
<td>1700</td>
<td>1600</td>
<td>430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/18/2015</td>
<td>18:32:21.699943</td>
<td>8:45:33.650284</td>
<td>4760</td>
<td>2390</td>
<td>180</td>
<td>20</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/20/2015</td>
<td>20:45:06.002548</td>
<td>4:30:01.891847</td>
<td>1510</td>
<td>4810</td>
<td>110</td>
<td>170</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/20/2015</td>
<td>20:55:47.167281</td>
<td>6:12:35.137346</td>
<td>1774</td>
<td>860</td>
<td>720</td>
<td>400</td>
<td>505</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/21/2015</td>
<td>21:08:27.51.98148</td>
<td>8:58:09.838731</td>
<td>3271</td>
<td>984</td>
<td>140</td>
<td>180</td>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/22/2015</td>
<td>22:25:23.982812</td>
<td>2:45:01.233783</td>
<td>3640</td>
<td>1090</td>
<td>160</td>
<td>200</td>
<td>960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/23/2015</td>
<td>23:41:42.520088</td>
<td>22:03:01.971349</td>
<td>1061</td>
<td>2210</td>
<td>160</td>
<td>80</td>
<td>2150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2015-08-26 11:46:05.674807 to 12:32:26.893990 355 1115 1100 1500 250 129 1222
2015-08-26 14:13:01.922324 to 14:27:13.656327 2325 1312 1900 0 1300 300 2905 199 22.39962 1.876133 -6.41983
REFERENCES

