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Abstract 

Researcher: Denis McDonald 

Title: Ultrasonic NDT Methods for the Evaluation of Post-Tensioned Systems with Flexible Fillers 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Civil Engineering 

Year: 2022 

Non-destructive evaluation of post-tensioned structures with flexible fillers is desperately 

needed due to their rapid implementation in the State of Florida, primarily in roadway structures. 

This study provides an overview of existing evaluation methods for traditional post-tensioned 

structures with cementitious grouts and further explores two promising methods to be applied to 

flexible filler systems. The first method, diffuse ultrasound spectroscopy, indirectly evaluates post-

tensioned structures by quantifying the severity of microcracking in the structure. Microcrack 

detection is accomplished by processing received waveforms generated with a pitch-catch 

transducer configuration. The second method, coda-wave interferometry, measures the velocity 

variation at the tail end of waveforms, known as the coda, between varying stress states of a 

structure. The velocity variation can be correlated to cracking events, structural yielding, and stress 

level changes. First, preliminary testing was done for both methods to find the optimal test setup 

and validate the methods' efficacy. Algorithms were developed for both promising methods using 

the preliminary testing data for development. Next, the methods underwent experimental testing 

composed of direct compression and 3-point load testing on normally reinforced and post-

tensioned small-scale beams. The experiments show the methods' effectiveness in indirectly 

evaluating the health of the post-tensioning system with flexible fillers. Overall, the two methods 

prove to be very promising and are recommended to be explored in further studies.  
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Chapter I: Introduction 

1.1. Statement of the Problem 

This research focuses on identifying a solution for evaluating post-tensioned (PT) systems 

with flexible fillers in transportation applications.  Typical applications include tendons in 

segmental bridges, PT I-beams, hammerhead piers, straddle–bent piers, and C-piers. This 

evaluation method must be non-destructive and provide insight into the condition of the PT system, 

which tends to be damaged by external forces such as water ingress. When combined with voids 

in the filler material, these external conditions can cause rapid corrosion of the PT tendon and, 

therefore, must be detected early to avoid costly structural repairs. Despite decades of research, 

the FDOT still lacks a reliable method outside visual inspections to perform NDE on CG or FF 

post-tensioning systems.  

1.2. Applications of Flexible Fillers 

After several events of deficient performance with cementitious grout systems, the FDOT 

provided guidance regarding the use of flexible fillers in the 2016 Structural Design Guidelines 

(FDOT, 2016). The permitted applications are as follows: 

1. External tendons 

2. Tendons with vertical deviation greater than 20' 

3. Tendons in I-beams 

4. Tendons in U-Girders 

5. Strand tendons with predominantly vertical geometry 

6. Continuity tendons in segmental box girders 



 

2 

 

Later, the FDOT modified a list of exceptions where flexible fillers could not be used 

(FDOT, 2021). These changes affirm the use of flexible filler PT systems in Florida's future PT 

transportation structures. The list of exceptions includes: 

1. Top slab cantilever longitudinal tendons in segmental box girders 

2. Top slab transverse tendons in segmental box girders 

3. Tendons that are draped 2' or less in post-tensioned slab-type superstructures 

The FDOT provided further information on why these exceptions still exist, mainly citing 

the lack of structural rigidity provided by the flexible fillers and the proximity to the roadway of 

the outlined conditions (FDOT, 2021).  

1.3. Objectives 

This research aims to identify promising non-destructive evaluation methods for use on 

flexible filler post-tensioned systems throughout Florida. This objective will be split into five 

secondary goals. 

1. Perform background research into NDE methods used on traditional grouted PT systems, 

which may translate well into use on flexible fillers, and isolate one or two promising 

techniques for scale testing. 

2. Perform preliminary testing to identify hardware, set up procedures, and access the needs 

of the algorithms used to analyze the data collected. 

3. Develop the algorithms to analyze the data gathered from preliminary testing for use in 

small-scale beam testing. 
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4. Perform small-scale testing of the chosen methods using two scale beams and analyze the 

data gathered from these experiments. 

5. Using the data gathered, provide recommendations for the further implementation of these 

methods, or describe alternative options for future flexible filler NDE. 

1.4 Methodology 

The first step in this process will be to gather information from previous studies and then 

choose the two most promising methods for the applications of flexible fillers. From there, a 

knowledge base is collected on how to carry out experiments, including the equipment needed, 

sensor development or placement, and the development of any necessary algorithms. Small-scale 

testing will then be carried out, first on a small reinforced concrete block undergoing direct 

compression, then on small-scale reinforced beams, one being a traditionally reinforced and the 

other a post-tensioned beam. These beams will be tested via three-point loading until cracking.  
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Chapter 2: Relevant Literature 

2.1. Non-Destructive Testing used on Cementitious Grouts 

Though there has been little research into the in-service inspection of PT systems with 

flexible fillers, there is an extensive body of knowledge regarding the inspection of traditional 

grouted PT specimens. This work will focus on identifying corrosion on the steel strands and 

finding areas in which the grout does not protect the strands, such as deterioration or voids in the 

grout. As both phenomena are likely to occur in FF tendons, these research papers are a solid 

foundation for inspecting FF systems. Listed in the following subsections will be some of the most 

used methods of identifying issues with CG systems. 

2.1.1 Magnetic Flux Leakage 

Magnetic flux leakage (MFL) relies on the interaction between ferrous materials 

and magnetic fields. Magnetic flux leakage applies this interaction to find stresses in 

ferrous materials such as steel, which can be caused by either cross-sectional loss in 

reinforcement strands or oxidation of strands. The MFL method relies on magnetically 

saturating the strands. When areas with section loss or corrosion are saturated, the magnetic 

flux is forced to flow through the air as it becomes the least resistant path (Azizinanmini, 

2012). This leakage can be quantified by measuring the vertical component of the magnetic 

field flowing through the air with a Hall Effect sensor. These inspection methods have been 

used repetitively in many industrial fields, such as nuclear power, cable-stay bridges, 

segmental box beam bridges, PT bridges, natural gas, and oil pipelines. With the successful 

implementation of non-destructive inspection in these fields, it is expected that applying 

these methods to PT bridges with flexible fillers will be fruitful. 
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A study performed by Hurlebaus utilizing this method implemented a commercial 

device by NDT Technologies Inc. to test the feasibility of this approach on external PT 

ducts (Figure 1). The device was moved along the duct to identify these using prepared 

samples for multiple types of tendons and duct defects. The data from this device is then 

sent to a portable unit for data analysis. The results from this study test for MFL were 

encouraging for metal and HDPE ducts. The metric used for research, in this case, was 

LMA or loss of metallic area. The results from this study indicate a strong success rate in 

identifying metallic faults in PT ducts (Hurlebaus, Hueste, Karthik, & Terzioglu, 2016). 

 
Figure 1 MFL Device for the detection of grout voids and strand defects (Hurlebaus, Hueste, Karthik, & Terzioglu, 2016) 

2.1.2. Magnetic Flux Method – Permanent Magnet 

Active methods for MFL inspection involve using a mobile device consisting of 

two permanent or electric magnets, along with hall-effect sensors to find areas of corrosion 

or cross-section loss in steel tendons. As this device is moved along the length of the 

tendon, it saturates the steel between the two magnets, which induces a magnetic field 

within the tendon. If the tendon being inspected has regions of corrosion or section loss, 

the device will identify magnetic field leakages from the tendon as it moves atop them. 
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Such a device was designed and prototyped for the Virginia Transportation Research 

Council (VTRC) for use on prestressed concrete box bridges. 

Active MFL methods show promise in situations where large sections of corrosion 

or area loss may be present in a tendon because active methods are unable to detect minor 

defects. However, they are portable, cheap, and easily used by inspection crews. These 

small devices are to be run along the surface of the PT duct and can detect tendon loss at 

an approximate resolution of 0.1 inches with 2 inches of cementitious cover (Chase, 2020). 

In this study, section loss was detected by comparing the flux densities in the x and y planes 

as read by the Hall Effect sensors. As the variation between the two density plots increases, 

it can be inferred that the section loss is also growing at a relative rate (Chase, 2020). This 

result can also be seen from laboratory results from the same study where their data 

correlates with the prepared tendon samples. 

A similar unit as the one produced for the VTRC was used in a study by the 

University of Toledo to inspect operational prestressed box bridges. Using their sensor, the 

UT could find a linear relationship between the magnetic flux readings from their Hall 

Effect sensor and the level of deterioration of the steel strands in question (Fernandes & 

Nims, 2014). These findings were then confirmed on other operating bridges in Ohio. 

Using the results from the experiments, it is possible to accurately find and diagnose 

sections of steel strands with deterioration. However, success has been had with inspecting 

strands with minimal to no other mild reinforcing steel, which is not a practical inspection 

case regarding internal PT ducts.  

A study performed by Nanjing University of Aeronautics and Astronautics found a 

solution to minimize the effects of interfering ferrous materials during an MFL inspection. 
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This solution is a signal processing method that utilizes the moving average method. This 

method operates by averaging several points from the input signal to produce each point in 

the output signal (Xu, Wang, & Wu, 2012). In simpler terms, this method averages the data 

points collected from a high sample rate sensor to remove MFL variations caused by mild 

reinforcing steel that may get in the way of internal PT ducts. The differences between the 

original and filtered results where the peaks in the filtered results correlate to the areas of 

section loss in the measured strand, which can be easily seen from the program output. 

2.1.3. Magnetic Flux Method – Solenoid 

This process utilizes a coil of wire set around the tendon in question, and an external 

source magnetizes the tendon to gather readings on the condition of the tendon. The coil 

of wire can be run along the duct length if there is no obstruction. This method can find 

defects in the tendon, such as corrosion or section loss (Hurlebaus, Hueste, Karthik, & 

Terzioglu, 2016). The main advantage of this method is the accuracy at which the coil 

device can locate the point of interest. Testing was performed on multiple prepared 

specimens with varying degrees of section loss, breakage, or voids in the tendon or PT 

duct. This method can detect defects in the tendon at a minimum of 0.2% cross-sectional 

loss (Hurlebaus, Hueste, Karthik, & Terzioglu, 2016). Testing also proved what was 

expected; with regards to this method being unable to detect voids of the grout material, it 

should also be noted that metal ducts significantly hindered this method. Overall, this 

method was very effective in identifying tendons that had no damage and could often detect 

areas of loss in the tendon. This study's data indicates a strong solenoid-type MFL NDE 

performance in identifying section loss, corrosion, and breakage of tendons within HDPE 

ducts. It is also able to locate tendons that are in good condition. The main drawback of 
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this method is the amount of time needed for wrapping the cable around the duct and the 

complete access required to perform the testing, and its limited use on only external PT 

tendons. 

2.1.4. Sonic/ Ultrasonic Pulse Velocity 

The pulse velocity method relies on sending either sonic or ultrasonic waves 

through the material and comparing the calculated time of travel against the recorded time 

of travel for the waves through the material (Hurlebaus, Hueste, Karthik, & Terzioglu, 

2016). This data can then be used to interpret what type of material defects occurred for 

the wave's travel time to change. Hurlebaus tested this method on internal ducts of both 

HDPE and metal construction. This testing used SPV and UPV sensors on opposing ends 

of the concrete surrounding the ducts. The wave was then sent and received by the sensors. 

Though SPV and UPV methods are proven, no conclusive data was able to be gathered due 

to the minor nature of the defects of interest compared to the distance the wave travels. 

Therefore, it is somewhat inconclusive with respect to the usability of the method. 

2.1.5. Electrochemical Impedance Spectroscopy 

Electrochemical Impedance Spectroscopy (EIS)  relies on passing a low amplitude 

voltage through the steel in varying frequencies. The impedance of the cementitious filler 

can be found by measuring the signal amplitude and phase shift. In the Hurlebaus study, 

four holes were drilled into the HDPE pipe of the prepared external tendons for electrodes 

to be placed. These holes would later be filled with an HDPE welding substance. A portable 

power source powers the electrodes, and the electrodes are fed to a potentiostat. The 

readings from the potentiostat are then processed using a notebook computer to discover 

flaws in the tendon (Hurlebaus, Hueste, Karthik, & Terzioglu, 2016). This method was 
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successful in positively identifying the broken and corroded strands within the prepared 

tendon. While relatively cost-effective, this method is somewhat invasive are it requires 

drilling into the HDPE duct. Also, this method is limited to external PT ducts. 

2.2. Promising Methods 

These methods are the most promising method for NDE of flexible fillers found during the 

literature review for this paper. They were selected for their effectiveness, ease of use, and 

accessibility, along with a vast body of information already available for these methods. 

2.2.1. Diffuse Ultrasound 

Diffuse ultrasound is an adaptation of traditional ultrasonic pulse-echo (UPE) 

methods, which usually operate below the threshold of 50kHz. The limit on traditional UPE 

is motivated by the reduction of wave scattering within the material; this is especially true 

for non-homogeneous materials such as concrete, which is an amalgamation of sand, rocks, 

cement, and sometimes other admixtures. If higher frequency waves are used with UPE on 

concrete structures, say at or above 50kHz, the waves will scatter on the distinct aggregates 

and binder material, making the received signal noisy and challenging to analyze for useful 

information. 

Diffuse ultrasound takes advantage of this scattering by closely looking at the 

properties of the end or coda of the returned waveform. Since DU relies on the scattering 

of the induced wave, high-frequency transducers are employed to maximize scattering. The 

focus of the literature review on this method is the application of DU to find microcracking 

of concrete, which would indicate a loss of PT force, allowing for an increase of tension in 

the PT structure. 
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One of the earliest studies of DU in concrete structures was performed by 

Anugonda in the early 2000s. This study identified that peak ultrasonic diffusivity and 

dissipation range could be centered on a frequency of 500kHz (Anugonda, Wiehn, & 

Turner, 2001). The diffusivity of a material is a measured quantity indicative of the 

microstructure of the material. At the same time, dissipation will characterize the 

viscoelastic properties of the material; both quantities will be subject to change as there is 

an increase of damage to the structure (Anugonda, Wiehn, & Turner, 2001). As high-

frequency waves are being used, the wavelength is on a scale comparable to the individual 

aspects of the concrete material; this, in turn, allows for attenuation of the wave via 

dissipative mechanisms. As this attenuation occurs, the response of the material, concrete, 

in this case, becomes a combination of coherent and incoherent (diffuse) energy. The 

attenuation allows the returned waveform to be characterized by the following diffuse 

waveform equation in Equation 1, as outlined in the paper (Anugonda, Wiehn, & Turner, 

2001). 

 
Equation 1 Diffuse waveform equation (Anugonda, Wiehn, & Turner, 2001) 

In this equation, diffusivity is represented by D, dissipation is represented by σ, and 

E0 is the initial energy. Using a non-linear regression fit, the data received by the receiving 

transducer can fit the equation. This fitting procedure will result in values for the three 

parameters: D, σ, and E0, which will allow for the characterization of the material and 

damages to said material (Anugonda, Wiehn, & Turner, 2001). According to this paper, an 

increase of microcracking in the concrete due to damage (Figure 2), such as loss of PT 
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force, would be flagged via a decrease in the diffusivity (D) because the wave will have a 

longer propagation path, therefore, decreasing the value of D. 

Based on the same principles as the Anugonda research, a study by Quiviger 

proposed using two identical 500kHz transducers in a pitch-catch configuration to identify 

micro-cracking in samples with simulating cracking. These experiments were performed 

with notched concrete specimens to test DU's sensitivity to size variations of cracks. The 

two 500 kHz transducers were placed on a planar surface with the emitter a series of pulses 

and the receiver recording and then averaging the series of pulses to assist in noise 

reduction of the signal (Quiviger, Payan, Chaix, Garnier, & Salin, 2011). The processing 

of the averaged waveform followed the same steps as the Anugonda study, resulting in the 

same trends where the diffusivity value decreased proportionally to the size of the notch in 

the samples. This study concluded that DU could differentiate between different damage 

severity levels with excellent reliability (Quiviger, Payan, Chaix, Garnier, & Salin, 2011). 

 
Figure 2 Experimental Setup showing how waves scatter in concrete between source and receiver (Anugonda, Wiehn, & 

Turner, 2001) 
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Another study using diffuse ultrasound for concrete focused on the analysis of 

prepared specimens by simulating microcracking using glass fibers at differing 

percentages. This study focused on the effectiveness of different received frequency bands 

at identifying the advent of microcracking in samples. The setup for this study is like the 

Quiviger study, using two 500kHz transducers in a pitch-catch configuration. The emitting 

transducer in this setup was pulsed 500 times, then received by the paired transducer, and 

averaged for signal clarity (Ahn, Myoungsu, Popovics, & Weaver, 2019). The input and 

output signals were amplified in this setup to assist with the activation of the transducer 

and the processing of the received signal. As for processing, Ahn used a modified version 

of the diffuse waveform equation to fit the testing setup better. The equation used can be 

seen in Equation 1Equation 2. 

 

Equation 2 Diffuse waveform equation by Ahn for curve fitting analysis (Ahn, Myoungsu, Popovics, & Weaver, 2019) 

One of the significant differences in this equation is the use of C0, which is a 

constant related to the initial energy of the wave, with D and σ being the same. Aside from 

the varied waveform equation for the curve fitting Ahn, a similar processing approach as 

both Anugonda and Quiviger, this process can be seen in Figure 3.  



 

13 

 

 
Figure 3 Algorithm process used by Ahn for finding the values of dissipation and diffusion (Ahn, Myoungsu, Popovics, & 

Weaver, 2019) 

The reasoning behind the non-standard use of the cosine bell curve is to separate 

the received waveform into window sections centered around 200, 300, and 400 kHz. 

These individual components were compared and found to have varying energy densities. 

It was found that though the energy densities of these components varied, the trend of 

decreasing diffusivity with an increase in microcracking continued as expected (Ahn, 

Myoungsu, Popovics, & Weaver, 2019). Ahn used the windowed diffusivity results to 

calculate an average value for the diffusivity. A trend for the dissipation coefficient being 

as the simulated damage increases, the value of the dissipation coefficient would increase 

proportionally  (Ahn, Myoungsu, Popovics, & Weaver, 2019). This study shows that 

diffuse ultrasound can detect slight changes in microcracking along with trends of both 

dissipation and diffusivity coefficients via curve-fitting and other processing without 

regard for the distance between transducers (Figure 4). 
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Figure 4 Results from Ahn's study show a decrease in diffusivity with respect to an increase in damage (Ahn, Myoungsu, 

Popovics, & Weaver, 2019) 

2.2.3. Coda-wave Interferometry 

A study by Anugonda speaks of how the analysis of scattered waves in a non-

homogenous material such as concrete can show both the state of the concrete’s 

microstructure and the material's stress level (Anugonda, Wiehn, & Turner, 2001). CWI 

focuses on analyzing the returned waveform for time shifts between different stress levels, 

meaning that the velocity of the scattering wave through the concrete will be a function of 

stress level. 

In a study by Larose, the effect of weak stress level changes on the coda-wave is 

measured. The measurement was accomplished by pulsing a transducer and measuring the 

coda of the wave returned to another transducer. According to Larose, as the stress level 

within the concrete increases, there will be a positive shift of the coda wave due to the 
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velocity change of the wave as material stress increases (Larose & Hall, 2009). An example 

of the coda of a wave is shown in Figure 5. 

 
Figure 5 Coda-wave example waveform 

The red portion of the waveform shown in Figure 5 is considered the coda-wave, 

which is the portion of the wave that arrives after the initial pulse is received. The coda 

wave can be identified as the waveform portion after the first major trough. The shift of 

the coda wave compared to waveforms taken at differing stress levels can be expressed as 

a velocity variation of the waveform. This velocity variation will increase when there is a 

shift in the stress experienced by the structure from which readings are collected  (Larose, 

et al., 2006). 

A study by Stähler provides a practical application-based approach to CWI on a 

concrete bridge. The study focuses on the construction of a concrete bridge and the 

identification of small velocity changes induced by changing stress states in the structure 

(Stahler & Sens-Schonfelder, 2011). Using a cross-correlation formula (Equation 3) to 
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compare the initial conditions to further tests, Stähler was able to identify the time lag of 

the coda-wave.  

 
Equation 3 Cross-correlation formula for CWI 

Stähler performed direct compression experiments on a non-reinforced concrete 

block with pitch-catch transducers for measurements. During stressing in the initial test of 

the study, an almost linear stress-velocity relationship was seen. During the second loading, 

an increase in the velocity-stress relationship was experienced, which can be explained by 

the formation of cracking within the sample (Stahler & Sens-Schonfelder, 2011). 

In a study by Zhang, an application of CWI with a direct tensile test was explored, 

where linear stress-velocity changes were expected in the opposite slope of direct 

compression testing. The velocity changes were shown clearly in the direct tensile testing, 

along with important information about the behavior of CWI in relation to previous 

maximum applied forces. The first behavior is the range in which the concrete has already 

experienced that loading level where the velocity decrease is based solely on the 

acoustoelastic effect due to no new microcrack formation (Zhang, et al., 2012). The second 

behavior is when the load is increased past its previous maximum and is affected by both 

the acoustoelastic effect and the effects of microcracking. In the study by Planès, this effect 

is spoken of in more detail, called the Kaiser effect, being a memory effect observed in 

concrete where additional microcracking will occur when the applied stress overtops the 

historical maximum (Planes & Larose, 2013). 
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Zhang utilized the same cross-correlation method to identify the time lag of the 

waveforms as Stähler with the same level of success. Under the level of tensile stress 

exerted in these experiments, the propagation velocity decreased by as much as 0.248% 

through both the influence of microcracking and the acoustoelastic effect. This study found 

that monitoring a concrete specimen’s damage level can be achieved by analyzing the 

effective acoustoelastic coefficient, which is found using the time lag value via cross-

correlation of waveforms at varying stress levels. 

 An advantage of this method is its ability to identify stress level changes due to 

temperature fluctuations which cannot be analyzed using standard deformation-based 

sensors, such as strain gauges (Planes & Larose, 2013). A significant challenge of most 

displacement-based methods such as this will be the need for an initial measurement for 

use as a reference value. However, comparison along multiple locations on a prestressed 

structure could show differences in sections with proper and degraded levels of post-

tensioning force. 
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Chapter 3: Test Setup 

The setups for the diffuse ultrasound and coda-wave interferometry testing are very similar 

in terms of the equipment used. The equipment used for data collection, as well as the 

corresponding settings for the equipment, will be discussed in detail in this section. Multiple tests 

were completed to investigate different bonding methods for the transducers.  The porous nature 

of concrete made it difficult to mechanically couple the two sets of transducers. The bonding issues 

will be explored in the transducer bonding section of this chapter. 

The foundation for both algorithms was taken from the Anugonda, Ahn, and Planès papers. 

Each required specific adjustments for either diffuse ultrasound analysis or coda wave 

interferometry. This process will be outlined in detail in the algorithm section of this chapter. 

3.1. Data Collection Equipment 

The basis for the testing setups was mainly derived from the testing plan outlined in 

the Ahn study.  Modifications included an additional set of transducers for coda-wave 

interferometry and varied amplification for both pre- and post-amplifications for the emitting 

and receiving transducers for each test type. A flow chart (Figure 6) and a list of the individual 

equipment pieces will follow in the list below: 
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Figure 6 Experimental test equipment flowchart 

3.1.1 Waveform Generator – Siglent SDG1032x 

This waveform generator was chosen due to its output maximum of 20 volts peak 

to peak and the variety of waveforms preloaded on the device. For the two tests, diffuse 

ultrasound analysis and coda wave interferometry, a square pulse was utilized, which was 

repeated 50 times at a frequency of 50hz. The individual square pulses had a pulse width 

of 2.5 microseconds with an amplitude between 2 and 3.5 volts depending on the specimen. 

Another benefit of this device is its ability to output square waves in groups to assist with 

averaging over 50 test samples per data set. 
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3.1.2 Pre-Amplifier – Tabor Electronics 9100A 

The pre-amplifier chosen for these experiments was the Tabor Electronics 9100A, 

which amplifies the input square wave up to 400 volts peak to peak depending on the input 

amplitude of the wave. The output from this device was sent directly to the excitation 

transducer. This amplifier was needed as the two chosen transducers have high activation 

voltages. This device takes the input square wave and increases the peak voltage to, on 

average, 150 volts which are enough to activate both the 50 and 500 kHz transducers used 

for coda-wave interferometry and diffuse ultrasound, respectively, all the while keeping 

the fidelity of the waveform generator’s square pulse.  

3.1.3 Transducers 

a. Olympus 500kHz 

This transducer, used for the diffuse ultrasound, was chosen due to its similarity to 

the transducer used in the Ahn study. The 500kHz transducer from Olympus produces the 

high frequency needed for the signal to bounce off the concrete aggregate allowing for the 

detection of microcracking in the concrete’s microstructure.  

b. James NDT 50kHz 

The James NDT transducer used for the coda-wave interferometry testing was 

chosen due to its 50kHz frequency and high power, which gives consistent results for the 

stress level evaluation of the coda-wave method. 

3.1.4 Post-Amplifier – Stanford Research Systems Model 560 

The SRS Model 560 amplifier was used as the post-amplifier, allowing for the 

Picoscope to receive the signal from the receiving transducer. The device has a variable, low 
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noise amplification, which ranges from 1 to 5000 times amplification, along with a high-pass 

filter, further reducing signal noise. Low signal noise is vital when using such high frequencies 

in a non-homogeneous material such as concrete. The variable amplification provided by the 

Model 560 allowed for the received signal to be fine-tuned for greater signal homogeneity 

between specimen types. 

3.1.5 Digital Oscilloscope – PicoScope 4000A 

The digital oscilloscope used for these experiments is the PicoScope 4000A, an 8-

channel oscilloscope capable of capturing 80 mega-samples per second. The second of 

these features was the prime reason for this device’s selection, as the frequency range for 

the transducer being used is between 50 and 500 kHz. It was necessary for a very high 

capture rate. The 80 MS/s capabilities of this oscilloscope allowed for the capture of 

detailed waveforms from the receiving transducer providing well over the needed Nyquist 

frequency. 

Another benefit of this oscilloscope is its software, which allows for a streamlined 

capture of data points during the beams' loading and unloading process for scale testing 

(these beams will be described in detail in chapter four of this document). The features that 

are essential to these ultrasound experiments are the math channel and trigger features. The 

math channels of the Picoscope software allowed for waveform averaging before exporting 

to the processing algorithms, significantly increasing the algorithm’s efficiency. The 

trigger feature allowed for the capture of the returned waveform using the initial pulse from 

the waveform generator to act as an initial flag, which was routed into the oscilloscope 

resulting in the capture of the received signal. 



 

22 

 

3.2. Transducer Bonding and Placement 

A primary concern discovered during the early testing stages was the transducers' 

placement and how they should be bonded to the surface of the concrete specimens. 

Referencing the Ahn study, the transducer could be placed anywhere between 90mm and 

120mm (Ahn, Myoungsu, Popovics, & Weaver, 2019). However, the optimal transducer 

distance can vary from sample to sample and depends on the amount of energy supplied to the 

transducer. As for the bonding of the transducers to the concrete surface, there are many 

methodologies, ranging from traditional ultrasonic couplant to cyanoacrylate glue as used by 

Ahn. Both variables must be kept constant and chosen to maximize the energy transfer from 

the transducer through the medium and back to the transducer. 

Testing to isolate and identify these variables was performed on a 2-inch-thick slab of 

unreinforced concrete with no loading applied and a reinforced beam segment undergoing 

direct compression testing. The method employed to grade the effectiveness of each bonding 

method and placement distance was to maximize the received waveform amplitude while 

maintaining signal fidelity and minimizing the factor of post-amplification.  

3.2.1 Transducer Bonding 

The bonding of the transducers to the surface of the concrete specimens has two 

metrics for success: how well the method can mechanically couple the transducer to the 

specimen and how well the method can fill surface voids to prevent unwanted signal 

variations. 

The transducers need to be mechanically coupled with the specimen to allow for 

proper excitation of the specimen. The variable k represents the coefficient for 
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electromechanical coupling. It can be described mathematically as a function of the 

mechanical energy transferred into the specimen divided by the electrical energy supplied 

to the transducer, the exact equation for which can be seen in Equation 4 (Uchino, 2017). 

By increasing the coefficient of electromechanical coupling, there will be an inherent 

increase in the energy imparted into the concrete.  This will minimize the need for post-

amplification of the signal and provide higher fidelity. The bonding method must also be 

able to support the self-weight of the transducer while still providing electromechanical 

coupling. 

 
Equation 4 Equation for electromechanical coupling 

The bonding methods outlined in this section can be separated into assisted and unassisted 

bonding methods. The assisted bonding mediums are non-hardening and therefore require 

the use of an external mounting mechanism to hold the transducer to the surface of the 

specimen. These coupling methods are the ultrasonic gel couplant and petroleum jelly. The 

unassisted bonding methods are hardening and therefore do not require an external 

apparatus to affix the transducers to the specimen. These bonding methods are paraffin 

wax, thickened cyanoacrylate glue, and quick-set epoxy. The results of testing each of these 

methods will be outlined in the list below. 

3.2.1.1 Ultrasonic Gel Couplant 

This couplant is the most traditional method of coupling transducers to 

specimens as it provides excellent void filling. However, it is primarily used in 

circumstances where the surface of the material being examined is smooth and non-

porous. Throughout the testing of this coupling method, one problem remained 
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constant. Concrete, a porous material, constantly leached the water content out of the 

gel couplant reducing its effectiveness in transferring ultrasound into the concrete 

specimen. As the testing planned later in the experimental procedure called for long 

periods of continuous load testing, this factor alone eliminated this couplant type from 

consideration.  

It should be noted that within the time where the gel couplant has not yet 

deteriorated via lack of water content, the results from ultrasonic testing were very 

consistent. The couplant also provided excellent signal fidelity and did not require 

excessive amounts of post-amplification. The signal quality depended on the transducer 

being affixed firmly to the surface of the specimen with external pressure from the 

fixture shown in Figure 8.  

Figure 7 shows how the amplitude and signal quality drastically decreases after 

the couplant is left to sit and then retested after 30 minutes. This test was performed 

with 500kHz transducers placed 2 inches apart with a post-amplification of 100 times. 

 
Figure 7 500kHz transducer test 30 minutes apart with ultrasonic gel couplant 
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The testing with this couplant led to the understanding that a non-water-based 

couplant would be necessary for ultrasound testing on concrete due to its porous and 

water leeching tendencies. 

3.2.1.2 Petroleum Jelly 

Based on the understanding that a non-water-based couplant must be employed 

for ultrasound testing on concrete, the next step was an oil-based couplant. Petroleum 

jelly (PJ) was chosen for this application due to its ease of procurement, its inert 

characteristics, and its similar viscosity to the ultrasonic couplant. Since PJ is a non-

hardening bonding solution, an external mount was required to attach the transducers 

to the surface of the concrete samples. This apparatus was designed using 3-D solid-

modeling software and fabricated using a 3-D printer (Figure 8).  Figure 8 

 
Figure 8 Example of the external mount for the non-hardening bonding methods with 50kHz transducers 
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Petroleum jelly has a much longer working time and is suitable for the long-

term testing of the small-scale beam.  As for the effectiveness in terms of surface void 

filling and signal quality, the petroleum jelly is on par with freshly applied ultrasonic 

gel couplant. Figure 9 shows the positive region of two received waveforms using 

50kHz transducers with 5x amplification, with the test spaced 24 hours apart. The 

orange line is the initial test, and the blue line is the second test. 

 
Figure 9 Waveform of 24-hour endurance test for petroleum jelly couplant 

The only drawback to testing with petroleum jelly couplant is the lack of self-

adhesion to the surface of the specimen. Petroleum jelly requires significant prep work 

before the transducers can be placed on the surface of the concrete and the feasibility 

of this method is entirely dependent on the time available and the willingness to affix 

the mount to the sample permanently. 
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3.2.1.3 Paraffin Wax 

The next step in the bonding experiments is to move onto couplants that can 

harden and therefore do not need external support to hold the transducers to the 

specimen. Paraffin wax is a middle ground between non-hardening methods and more 

aggressive adhesives. Removing the transducers after they are affixed is a simple matter 

of applying heat to soften the wax. To use the wax on the concrete, it must be first 

heated to 140 degrees Fahrenheit, which is near the upper limit of temperatures that can 

cause damage to concrete. Another complication is the rapid solidification of the wax 

upon contact with the concrete due to the specimen’s large thermal mass, which 

resulted in a short working time. As for the mechanical coupling and signal quality with 

this bonding method, the paraffin wax was tough to work with and often would result 

in significant air voids between the transducer and the specimen. This fact, combined 

with lackluster results from testing, eliminated this bonding method from further 

testing.  

3.2.1.4 Thickened Cyanoacrylate Glue 

 A thickened cyanoacrylate glue is chosen as the next medium to evaluate in the 

unassisted bonding method category.  Advantages of this medium include a 15-minute 

working time and its ability to be de-bonded using acetone.  

The concrete surface needed to be smoothed using sanding disks for proper 

adhesion when using the thickened super glue. Without proper sanding, the pits in the 

concrete surface would not be filled by the couplant, and the waveform would not be 

effectively transmitted into the specimen. Also, as a compressive load is applied to a 
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specimen where the super glue is being utilized, the couplant tends to fail, allowing for 

the transducer to decouple from the specimen.  

Even when the thickened cyanoacrylate glue is used under perfect conditions, 

the received signal is still weak and lacks distinct signal features. The glue layer 

between the transducer and concrete is too thick and has a varied density, which 

impedes ultrasound transmission through the specimen. An example received 

waveform from an ideal test with a 50kHz transducer setup with an unamplified input 

amplitude of 3 volts, compared to a standard 2 volts, can be seen in Figure 10. 

 
Figure 10 Waveform from Cyanoacrylate couplant testing 

As seen in Figure 10, the maximum amplitude of the waveform is like the 

expected 1.5 volts as seen from the traditional ultrasonic gel couplant. The returned 

waveform’s proper amplitude was achieved with a higher-than-normal input amplitude 

of 3 volts. The signal fidelity was high, and the waveform shape was also proper. 

Overall, the main reasoning behind this method not being further explored 

throughout the small-scale testing was the lack of reliability when applying loads to the 
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specimens. Without confidence that the transducers can be coupled throughout loading 

cycles, this couplant was deemed unsuitable for the applications in this study. 

3.2.1.5 Quick Set Epoxy 

An ordinary quick set epoxy was chosen to remedy the issues faced while 

testing the thickened cyanoacrylate glue. Epoxy was not the first choice when looking 

at the mechanical coupling of the transducers to concrete because of the permanent 

nature of epoxy. A sizeable force must be applied to break the bond to remove the 

transducers from the specimens’ surface. In the case of the testing performed during 

the bonding tests, a piece of wood and a mallet were used to shear the transducers off 

the face of the sample when the testing came to completion. 

  The quick-set epoxy held the transducers firmly to the face of the concrete 

with no issues of decoupling. The signal fidelity during testing with the epoxy was 

high, with little amplification needed for either the 50 or 500kHz transducers. This 

coupling method provided consistent results while load testing and has no deterioration 

over time like other coupling methods. This method was selected for testing the scale 

beam specimens produced for this study due to its simple effectiveness and ability to 

have consistency across multiple loading tests.  

3.2.2 Transducer Placement 

Placement of the transducers has important effects on the resulting waveform 

received for processing. The further away the transducers are from each other, the less 

energy is directly received, but in trade, there is more scattering, resulting in more apparent 

feature characterization. The initial placement of the transducers came from the Ahn study, 
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describing 90mm to 120mm between transducers (Ahn, Myoungsu, Popovics, & Weaver, 

2019). However, some studies, such as the one by Deroo, recommend a planar distance of 

as little as 46mm between transducers (Deroo, Kim, Qu, Sabra, & Jacobs, 2010). The 

Zhang study proposed placing the transducers across from each other on the sample 

(Zhang, et al., 2012). The Larose study further endorsed the cross method where 

transducers were placed across from one another for CWI testing (Larose & Hall, 2009) 

As for the diffuse ultrasound setup using the 500kHz transducers, a cross method 

is being implemented due to the experimental success found in these preliminary 

experiments, along with the prior endorsement by both the Zhang and Larose studies. 

For the coda-wave interferometry testing, a planar approach will be taken. Though 

the two studies by Ahn and Deroo use small distances between their transducers, the 

experiments on the small-scale specimens in this study will be spaced at 4 inches from the 

center. The larger spacing is because the transducers used in these experiments are higher 

energy and can be placed further from one another without a penalty to the received signals. 

The increased spacing promotes flexibility while testing small-scale beams, mainly 

allowing the placement of transducers on either side of the loading head in the 3-point 

loading test. 

3.3. Data Processing 

Two separate algorithms exist for processing the diffuse ultrasounds and coda-wave 

interferometry. Both algorithms were implemented in MATLAB and function independently. 

The process and background for creating these algorithms are described in sections 3.3.1 and 

3.3.2. 
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Each time the transducers are fired, 50 samples will be collected and averaged, resulting 

in a single waveform with decreased noise. The waveforms will be averaged before being 

passed into the algorithms for additional processing.  

3.3.1. Diffuse Ultrasound 

The goal of the data processing for the diffuse ultrasound method is to isolate the 

diffusivity and dissipation coefficients for each dataset. The coefficients from tests at 

differing points can provide insight into the state of microcracking in the samples. An 

increase in microcracking can indicate that the PT system is undergoing damage. 

3.3.1.1. First Iteration 

The inspiration for the first method employed to find the coefficients of 

diffusion and dispersion came from the Ahn study. This processing technique is in the 

flowchart shown in Figure 3, which consists of a time-frequency analysis of the data.  

The first step following averaging the data set is to perform a fast Fourier 

transform on the data. The Fourier transform changes the data from a time domain to a 

frequency domain. From here, the program will apply a Hanning window to the 

transformed data set to isolate three frequency windows, 200-300kHz, 300-400kHz, 

and 400-500kHz. The program then uses an inverse Fourier transform on the windowed 

signals in the frequency domain to bring them back to a time domain. Then windowed 

signals back in the time domain are converted to their absolute value and squared; the 

absolute value and squaring results in a plot of the ultrasounds energy density with 

respect to time. The algorithm then takes the logarithmic form of the energy density 

dataset per windowed section. The logarithmic form of the energy density of each 
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frequency window is then curve fit to the diffuse ultrasound equation in Equation 5. 

The curve fitting provides solutions for the coefficients of dissipation and diffusivity, 

allowing for the characterization of microcracking in the test sample. 

 
Equation 5 Diffuse ultrasound equation used by Ahn for curve fitting windowed energy density plots (Ahn, Myoungsu, 

Popovics, & Weaver, 2019) 

The first iteration of the diffuse ultrasound processing algorithm provided 

inconsistent data when comparing the energy density of the frequency windows. 

Instead of the energy density of the windowed frequency ranges following a 

decreasing energy density trend as the frequency increased, the energy density 

stayed similar across all frequency windows. Figure 11 shows the overlap of the 

energy density per windowed section. 

 
Figure 11 Diffuse Ultrasound Algorithm First Iteration Energy Density vs. Time Plot 
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The most likely culprit of the non-distinct frequency bands is that the Fourier 

transform was being applied to the whole signal simultaneously. The second iteration 

of this program with a varied approach to using the Fourier transform was necessary. 

3.3.1.2. Second Iteration 

The second iteration of the diffuse ultrasound algorithm begins with the aim of 

finding a solution to the equation in Equation 2. To calculate the coefficients of 

diffusivity and dissipation and to curve fit the equation, the algorithm divides the 

averaged signal received from testing into time intervals of 50 microseconds with 90% 

overlapping the previous interval. The program takes the integral of the particular time 

intervals over the frequency bandwidth of interest, in this case, 500kHz. The energy 

density of each time interval is associated with the instant of time at the center of the 

interval. The algorithm then plots the values of energy density with respect to time. 

Curve fitting of the diffuse ultrasound equation to this plot will find the coefficient for 

both dissipation and diffusivity. The two coefficients will identify trends in 

microcracking of the specimens during testing. 

This algorithm has proven to work effectively in finding both coefficients of 

interest. Therefore, the small-scale testing with direct compression and 3-point beam 

load testing will use this version. 

3.3.2. Coda-Wave Interferometry 

The algorithm for identifying the time lag of concurrent datasets to perform CWI 

is a more straightforward process than that of diffuse ultrasound. The first iteration of this 

algorithm worked as planned and therefore did not need a revision. 
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The algorithm first ingests a series of files correlating to one cyclical loading test 

of the small-scale specimens. The algorithm places the ingested files in order, then a time 

interval corresponding to the waveform area representing the clearest delay between wave 

arrivals is taken and linked to its corresponding load. The program uses a cross-correlation 

function based on the one seen in Equation 3, correlating each progressive load increase 

and eventual decrease to the initial zero load reading. The algorithm then calculates the 

percent change of the wave velocity for quantification of concrete damage. The plot of the 

relative velocity change vs. the corresponding load values shows the trend of increasing 

time lag when the sample is in tension and decreasing time lag when the sample is in 

compression (Gondim & Haach, 2021). 

Initial testing with this algorithm shows linear relationships between an increase in 

tension and an increase in time for the coda-wave to arrive. Features also appear when 

expected, such as jumps in the time lag when cracking or yielding occurs. The CWI 

algorithm described in this section is used in further testing on small-scale specimens in 

this study due to the success in preliminary testing.  

3.4. Test Specimens 

The experiments for this study will begin with the creation of three specimens for 

testing and verification of the diffuse ultrasound and coda-wave interferometry methods. These 

testing methods will be direct compression testing, 3-point load testing of a simply reinforced 

beam, and 3-point load testing of a post-tensioned beam with plain reinforcing. 

The direct compression testing will involve a 12-inch cut section from a 5-foot beam 

identical to the one used in the 3-point load testing. A Tinus and Olsen universal testing 
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machine will be applying loading to the beam cutting, which is on its end. The petroleum jelly 

bonding method with external mounting holds the 50kHz transducers in a planar configuration 

with 4 inches of separation and the 500kHz transducers at a cross configuration across the 

beam center.  

The normally reinforced 3-point load testing will occur on a 5-foot long beam with a 

4.75x3.5-inch cross-section. The beam reinforcement consists of four #3 bars and shear 

reinforcement via 14 eight-inch stirrups at 1.75-inch spacing on each beam side. Epoxy bonds 

the 50 and 500kHz transducers, with the 50kHz transducers centered on the beam with 4-inch 

spacing and the 500 kHz transducers placed in the cross configuration at the beam's center 

point. A Tinus and Olsen universal testing machine and a 3-point load testing frame will be 

the apparatus used for the beam loading (Figure 12). 

 
Figure 12 Image showing the 3-point load testing frame and the Tinus and Olsen universal testing machine 

The post-tensioned 3-point load testing will also occur on a 5-foot long beam with a 

4.75x3.5-inch cross-section. The beam reinforcement consists of four #3 bars and shear 
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reinforcement via 14 eight-inch stirrups at 1.75-inch spacing on each beam side with the 

addition of a 3/8 inch threaded rod for post-tensioning. The application of post-tensioning force 

via the tightening of two nuts on either end of the beam is quantified by a load cell sandwiched 

between the metal plate on the beam end and the nut used for tensioning. The epoxy bonding 

method will be utilized for the 50 and 500kHz transducers, with the 50kHz transducers 

centered on the beam with 4-inch spacing and the 500 kHz transducers placed in the cross 

configuration at the beam's center point. A Tinus and Olsen universal testing machine and a 3-

point load testing frame will be the apparatus used for the beam loading (Figure 12). 
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Chapter 4: Experimental Work 

In the initial planning stages for this study, both small-scale and full-scale experiments 

were intended to be completed. However, time constraints applied due to the COVID-19 pandemic 

meant that the full-scale experiments could not be conducted. Therefore, the extent of the 

experimental works for this was limited to small-scale testing of the two methods. The general 

plans for full-scale testing will be discussed as a direction for possible future work. 

4.1. Small Scale Specimens 

The small-scale testing for all specimens was performed using a Tinius Olsen universal 

testing machine to apply load.  The data was captured from the transducers using the Picoscope 

software packaged with the digital oscilloscope. Each small-scale specimen was broken into 

testing groups by specimen type/test type; these testing groups were further broken down into 

loading cycles. The naming convention for each test will follow the format of (Testing 

Group).(Loading Cycle). 

4.1.1. Beam-blocks 

Testing for the beam blocks involved data collection for the diffuse ultrasound and 

coda-wave interferometry methods. Both transducer sets were attached to the beam blocks 

using an external mounting bracket with petroleum jelly as the coupling medium. The 

50kHz transducers were affixed to the 4.75-inch-wide face of the blocks in a planar 

configuration at a distance of 4-inches. The 500kHz transducers were placed across the 

thin distance of the block at the bottom of the beam.  

The load testing procedure involved two loading cycles of interest, one with the 50 

kHz transducers and one test with the 500kHz transducers. These direct compression tests, 
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performed in the Tinus and Olsen machine, applied force to the specimen in 1,500-pound 

increments; at each increment, a transducer pulse was fired, and a set of data was collected 

until a peak loading of 15,000 pounds was reached. At this point, the sample was unloaded 

at increments of 3,000 pounds; again, a transducer pulse was fired, and data was collected 

at each increment until 0 pounds of force was applied to the sample. This exact procedure 

was followed for each of the two tests, one 50kHz test followed by a 500kHz transducer 

test. These tests are labeled as 1.1 and 1.2; the first number relates to the testing group, and 

the second is the test’s time-correlated place in the group. The specific settings used with 

the equipment can be seen in Table 1, and an image of the testing setup can be seen in 

Figure 13. 

Parameters 50 kHz Test (1.1) 500 kHz Test (1.2) 

Unamplified Pulse Amplitude (V) 3 2.5 

Pulse Width (μs) 2.5 1 

Post-Amplification 1 100 

Number of Pulses 50 50 

Frequency of Pulses (Hz) 50 50 

Sampling Rate (MS/s) 10 10 

Table 1 Parameters for 50 and 500 kHz testing on Block Specimens 
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Figure 13 Testing setup for small-scale block testing 

4.1.2. Beams 

The scale-beam testing applied the same principles as block testing. The specimen 

is loaded and unloaded in increments with transducer pulses, and data is collected at each 

point. For the scale beams, the transducers, both 50 and 500 kHz, were epoxied directly to 

the face of the beam. The loading increments for each beam and loading cycle varied from 

test to test, though the parameters for the recording equipment stayed mostly steady across 

all trials. The testing was completed using the Tinus and Olsen machine and a 3-point load 

testing frame. The frame consisted of a steel beam with metal rollers on each end 

corresponding to the end of the small-scale concrete beams and a rounded loading head at 

the center point of the beam. 
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4.1.2.1. Simply Reinforced 

Testing on the small-scale simply reinforced beam involved diffuse ultrasound 

and coda-wave interferometry methods with one diffuse ultrasound test and three coda-

wave interferometry tests for a total of 4 tests. The 50kHz transducers were centered 

on the bottom of the beam with 4-inches of center-to-center spacing. The 500kHz 

transducers were placed at the bottom center of the beams’ sidewall. As stated 

previously, all transducers were epoxied directly to the surface of the beam. The setting 

used on the data collection equipment for the load testing can be found in Table 2. 

Parameters 
50 kHz Test  

(2.1) 

500 kHz Test  

(2.2) 

50kHz Tests  

(2.3, 2.4) 

Unamplified Pulse 

Amplitude (V) 
3 2.5 3 

Pulse Width (μs) 2.5 1 2.5 

Post-Amplification 5 100 1 

Number of Pulses 50 50 50 

Frequency of Pulses (Hz) 50 50 50 

Sampling Rate (MS/s) 10 10 10 

Table 2 Data collection parameters for simply-reinforced beam load testing 

Load test 2.1 involved 50kHz transducers and a loading increment of 50 pounds 

until 350 pounds and unloading at 50-pound increments until 0 pounds; this loading 

cycle was performed twice. Load test 2.2, involving the 500kHz transducers, followed 

the same loading cycle as test one. Load test 2.3 aimed to bring the beam to a state of 

cracking and followed a loading increment of 100 pounds until 400 pounds, then an 

increment of 50 pounds until 3,000 pounds; the unloading process involved 200-pound 
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increments until the beam was completely unloaded. Load test 2.4 aimed to load the 

beam until yielding; therefore, the increment of loading was 100 pounds until 3,100 

pounds, then 50 pounds until 3,350 pounds; the unloading of the beam followed in 

increments of 100 pounds until fully unloaded. For tests 3 and 4, displacement data for 

the loading cycles was also taken to correlate later to the coda-wave interferometry 

data. 

4.1.2.1. Post Tensioned 

Testing for the small-scale post-tensioned beam occurred in two portions, 

tensioning of the beam and 3-point load testing. For both test modes, the transducers, 

both 50 and 500kHz, were coupled to the surface of the beam using epoxy. The 

placement of the transducer was identical to the plain reinforced beam and is as follows. 

The 50kHz transducers were centered on the bottom of the beam at 4-inches from the 

center. The 500kHz transducers were placed at the bottom center of the beams’ 

sidewall. The 3-point testing was completed using the Tinus and Olsen machine and a 

3-point load testing frame. The frame consisted of a steel beam with metal rollers on 

each end corresponding to the end of the small-scale concrete beams and a rounded 

loading head at the center point of the beam. 

The post-tensioning for this small-scale beam was accomplished by tightening 

a threaded rod placed through the center of the beam. The tensioning cycle was 

measured using a force cell placed on the threaded rod (Figure 14), which was 

connected to a multimeter for tension readings.  
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Figure 14 Picture showing load cell used for post-tensioning measurements on scale-beam 

The loading cycle 3.1 tensioned the rod in increments of 1000 pounds from 

0 to 7000 pounds and then de-tensioned to 1000 pounds, then increased tensioning 

to 8000 pounds in 1000 pound increments. For each increment of the tensioning 

cycle, the 50kHz transducers were used to collect data for coda-wave 

interferometry testing. The data collection equipment settings can be seen in Table 

3. 
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Parameters 
50 kHz Tensioning Tests  

(3.1) 

Unamplified Pulse 

Amplitude (V) 
2 

Pulse Width (μs) 2.5 

Post-Amplification 5 

Number of Pulses 50 

Frequency of Pulses (Hz) 50 

Sampling Rate (MS/s) 10 

Table 3 Parameters for data collection for small-scale tensioning tests 

For the 3-point load testing of the PT-beam, a total of 5 trials were 

performed, 4 with the 50kHz transducers and 1 with the 500 kHz transducers. The 

first test, 4.1, was conducted with the 50kHz transducers; the loading was applied 

and then unapplied at increments of 50 pounds from 0 to a maximum of 350 back 

down to 0 pounds. The second test, 4.2, was conducted with the 500kHz 

transducers; the loading was applied and then unapplied at increments of 50 pounds 

from 0 to a maximum of 350 back down to 0 pounds. The third test, 4.3, utilized 

the 50kHz transducers; the loading increment for the test was 50 pounds from 0 to 

350 back to 0 pounds. Test 4.4 used loading increments of 100 pounds up to a 

maximum of 1200 pounds, then increments of 200 pounds down to 0 pounds of 

force. At this point, one of the coils inside the main pre-amplifier burnt out, and a 

similar replacement was sourced to conduct the final two tests. The replacement 

pre-amplifier was calibrated to mimic the original device’s amplification perfectly. 

The fifth test, 4.5, aimed to bring the beam to a state of cracking; therefore, the 

loading reached a maximum of 2,200 pounds at an increment of 100 pounds; the 
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beam was then unloaded at an increment of 200 pounds until it was completely 

unloaded. For all tests on the PT-beam displacement, measurements were taken 

simultaneously with the test. Figure 15 provides an image of the beam setup, and 

Table 4 will give the parameters used in the data collection equipment for all tests. 

 
Figure 15 Picture showing the 3-point load testing setup for the PT-scale-beam 

 

Parameters 
50 kHz Tests  

(4.1, 4.3, 4.4, 4.5) 
500kHz Test (4.2) 

Unamplified Pulse 

Amplitude (V) 
2.5 2.5 

Pulse Width (μs) 2.5 2.5 

Post-Amplification 5 20 

Number of Pulses 50 50 

Frequency of Pulses (Hz) 50 50 

Sampling Rate (MS/s) 10 10 

Table 4 Data collection parameters for load testing the small-scale PT-Beam 
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4.2. Large Scale Specimens 

Due to time constraints, large-scale testing could not be included in this study. 

However, the general framework for implementing diffuse ultrasound and coda-wave 

interferometry in large-scale specimens will be discussed for the benefit of future studies. 

For any large-scale beam-type specimen, it would be recommended that both 50 and 

500kHz transducers be epoxied to the centermost point of the tension critical face. The spacing 

between 50kHz transducer would be consistent with the small-scale testing at 4-inches of 

center-to-center space. For 500kHz transducers, instead of being placed in a cross 

configuration like in small-scale testing, they would be placed on the tension face of the beam 

like the 50kHz transducers; the spacing for the 500kHz transducers would need to be smaller 

than their counterparts due to their lower energy nature. Therefore, a spacing of 2-inches center 

to center would be recommended for the 500kHz transducers. 

The data collection equipment would be identical to the small-scale experiments 

discussed in this report. The setting used, such as amplitude, amplification, and pulse width, 

may need to be adjusted according to the size and material properties of the specimen. The 

method of load testing would need to be scaled in accordance with the size of the full-scale 

specimen along with the load increments used. Aside from these differences, the testing 

methods follow the same trends as those described in the small-scale testing section of this 

chapter. 
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Chapter 5: Results and Discussion 

5.1. Coda-Wave Interferometry 

The outcomes being sought for Coda-wave interferometry for the NDE of PT flexible 

filler systems is an indirect evaluation of the health of the post-tensioning system. For CWI, 

this means having damage feature recognition from the stress level and, therefore, the phase 

shift of waves being passed through the specimen. These features can either be the 

identification of substantial cracking or yielding of the materials in the flexible filler system. 

The specimens used for these tests and testing procedures are outlined in detail in Chapter 4 of 

this document. 

5.1.1. Beam Block Testing 

The beam block specimens’ testing will show the general feasibility and efficacy 

of the CWI testing setup for identifying damage features relevant to flexible filler PT 

systems. These features would be identified via the relative velocity change plots generated 

by the CWI algorithm and would take the form of deviations in the slope or shape of the 

plots. 

1. Test 1.1 

The importance of Test 1.1, whose results can be seen in Figure 16, is the movement 

of the relative velocity change in the negative direction during direct compression loading, 

the consistent slope change with progressive loading, and the clear differentiation between 

the starting and ending points of the loading cycle. The velocity variation is expected to 

move in the negative direction when in compression as the wave properties predict faster 

arrival times when a specimen is experiencing compression. This effect is clearly shown 
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in the plot for Test 1.1 and, therefore, is the first step in validating the effectiveness of the 

testing setup. The plot’s curved shape and the shifted endpoint compared to the initial test 

point show the expected effect of the concrete’s memory of damage. The general trend of 

the increasing slope with respect to increasing stress further proves that the testing setup 

used for CWI in this study is operating correctly and therefore is applicable to further use 

on small-scale specimens. 

 
Figure 16 Small-scale Beam-block, Direct Compression, Coda-wave Interferometry Test 1.1  - Graph of Relative Velocity 

vs. Stress 

5.1.2. Beam Testing 

After validating the testing setup with the beam block testing, the next step is small-

scale beam testing in both normally reinforced and PT beams. These beams will undergo 

3-point load testing, described in Chapter 4. In these tests, the same damage features as the 

beam blocks are expected to appear in addition to possible cracking and yielding of the 

beams. These damage features are expected to cause dramatic changes in the relative 

velocity change vs. load plots and, in a real-world application, point to the deterioration of 

the PT flexible filler system. 
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5.1.2.1. Normally Reinforced 

1. Test 2.1 

This test acted as the preliminary validation for the application of the 

transducers to the new specimen and the 3-point load test on the beams. This test 

consisted of a two-cycle loading, reaching approximately 350 psi each time. This 

loading was chosen due to its probability of not cracking the specimen in any way, 

allowing for direct comparison between the cycles. The plot shown in Figure 17 shows 

the relative velocity change vs. stress plots for both load cycles. As expected, the two 

plots mimic each other near-perfectly aside from the shifting caused due to concretes 

tendency to have a memory for loading and damage. The damage most likely to be 

causing the shift would be microcracking caused by the first load cycle. 

It should be noted that as the stress increases, the relative velocity change moves 

in the positive direction. This shift indicates the area in which the transducers are placed 

in tension. This indication is correct as the transducers are placed on the bottom of the 

beam, which undergoes tension when in a 3-point load test. The repeat nature of the 

shifts in the expected direction proves both the CWI setup’s efficacy on the beam 

specimens and foreshadows that if extensive damage such as cracking or yielding 

should occur, then there will be a significant observable change in the plots.  
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Figure 17 Small-scale Normally Reinforced Beam, 3-Point Load, Coda-wave Interferometry Test 2.1 - Graph of Relative 

Velocity vs. Stress 

2. Test 2.3 

The purpose of Test 2.3 was to bring the normally reinforced beam to the point 

of cracking, which would hopefully reflect on the relative velocity change plot. For this 

test, displacement data for the loading cycle was also collected to be compared to the 

relative velocity change plot to coordinate signal features. As shown in Figure 18, as 

the stress applied to the beam approaches 2500 psi, the displacement vs. stress graph 

data shows a slight shift reflected in the relative velocity change plot by a sizeable 

horizontal change between data collection points. This shift points to the onset of 

cracking in the specimen, which is confirmed by the effect on the displacement plot. 

As expected, when this cracking occurred, the time taken for the waveform to travel 

between transducers was slightly increased, resulting in a significant shift in the relative 

velocity.  
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Another relevant feature of this plot is the significant shift between start and 

end points, which confirms that CWI is sensitive to the effects of compression and 

tension over time and damage to the specimen.  

 
Figure 18 Small-scale Normally Reinforced Beam, 3-Point Load, Coda-wave Interferometry Test 2.3  - Graph of Relative 

velocity change vs. Stress and Displacement vs. Stress 

3. Test 2.4 

After Test 2.3, the next logical step would be to observe beam yielding, which 

is the goal of Test 2.4. This test will hopefully show a drastic and varied response to 

the yielding of the beam when compared to cracking, which was observed previously. 

The results of Test 2.4 can be seen in Figure 19 and show the expected harsh response 

to yield. As the stress approaches and exceeds, 3000 psi, an evident change in the 

displacement plot is seen, which is a clear sign of yielding due to the drastic slope 

change. The change in the displacement plot is reflected even more drastically in the 

relative velocity change vs. stress plot; as 3000 psi of stress is reached, the relative 

velocity change becomes near horizontal over the remainder of the increasing load 

portion of the test. This signal feature should be easily identified in further tests and is 

varied enough from the feature caused by cracking.  
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Figure 19 Small-scale Normally Reinforced Beam, 3-Point Load, Coda-wave Interferometry Test 2.4  - Graph of Relative 

velocity change vs. Stress and Displacement vs. Stress 

5.1.2.2. Post Tensioned 

1. Test 3.1 

The first test for the PT scale beam involved the tensioning process outlined in 

Chapter 4. This test was implemented to validate the sensitivity of CWI to the 

tensioning and de-tensioning of a simulated PT strand, which is a full-scale application 

that could be an indicator of PT failure. This observation was successful, as can be seen 

in Figure 20. The relative velocity change plot vs. the loading moved in the negative 

direction during tensioning and in the positive direction during de-tensioning, which 

was as expected. Also, the second tensioning brought the beam up to the final 400 psi 

of PT force, closely following the slope and shape of the first cycle up until the previous 

maximum. This provides a positive insight into the consistency and sensitivity of the 

CWI method to the application and removal of post-tensioning force. 
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Figure 20 Small-scale PT Beam, Tensioning, Coda-wave Interferometry Test 3.1  - Graph of Relative velocity change vs. 

Stress 

2. Test 4.1 

The first of the 2-point load tests on the PT small-scale specimen were test 4.1, 

which had the goal of matching the displacement vs. stress plot to the relative velocity 

change vs. stress graph for use as a control to compare against damage features caused 

by excessive loading. Both plots in Figure 21 follow the same trends as the normally 

reinforced beam, which underwent the loading process with one key distinction. The 

distinction is the reduction in the shift between starting and ending points. This is 

expected as the post-tensioning present in this specimen serves to increase the elastic 

nature of the specimen. Furthermore, this test proves the proper attachment of the 

transducers to the beam and application of CWI to this specimen by the closely matched 

plots of the displacement vs. stress and relative velocity change vs. stress plots. 
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Figure 21 Small-scale PT Beam, 3-Point Load, Coda-wave Interferometry Test 4.1  - Graph of Relative velocity change vs. 

Stress and Displacement vs. Stress 

3. Test 4.3 

This test is a direct recreation of test 4.1 with no test before it reaching above a 

maximum of 350 psi. The results shown in Figure 22 illustrate the same outcomes as 

Test 4.1 and validate the effectiveness and repeatability of CWI. As seen previously, 

the displacement vs. load and relative velocity change vs. stress plots follow the same 

slope and shape trends as expected from the previous testing. No evidence of additional 

damage to the concrete could be witnessed, which is expected due to no extreme 

loading being applied before this test. 
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Figure 22 Small-scale PT Beam, 3-Point Load, Coda-wave Interferometry Test 4.3 - Graph of Relative velocity change vs. 

Stress and Displacement vs. Stress 

4. Test 4.4 

Following the normally reinforced scale specimen testing, this test will seek to 

increase loading to identify damage features in the plots. Figure 23 shows the 

displacement plots and relative velocity change vs. stress. Contrary to the normally 

reinforced beam, the two plots do not follow each other for the entirety of the loading 

cycle; instead, as the loading approaches and exceeds 600 psi, the relative velocity 

change plot begins a vertical trend. This trend can be attributed to the post-tensioned 

reinforcement being mobilized, resulting in less and less tension in the bottom-most 

portion of the beam where the transducers are placed. Since the maximum stress of 

1200 psi did not yet reach the calculated cracking point of this specimen, there is no 

damage feature found on the plots of either displacement or relative velocity change. 

This test proves a distinction between the mobilization of PT reinforcement and 

actual damage features, which would display on the output relative velocity change plot 

as a nearly horizontal line. Another notable outcome is the small shift in the relative 

velocity change between starting and ending points which is consistent with what is 

expected of PT reinforced beams and specimens. As stated in the results of Test 4.1, 
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the PT reinforcement provides more elasticity to the beam allowing for a closer return 

to the original state of the beam prior to loading when compared to a non-post-

tensioned specimen. 

 
Figure 23 Small-scale PT Beam, 3-Point Load, Coda-wave Interferometry Test 4.4  - Graph of Relative velocity change vs. 

Stress and Displacement vs. Stress 

5. Test 4.5 

The final test on the small-scale PT specimen aimed to induce cracking within the 

specimen; yielding was not explored for this specimen due to the large load expected 

to be required to do so. Figure 24 shows the displacement and relative velocity change 

vs. stress plots. These plots both show damage indicators for cracking; the displacement 

plot shows a starting at 1500 psi, indicating that cracking occurs in the beam. As 

experienced with the normally reinforced beam, the coinciding effect on the relative 

velocity change plot is significantly more prominent. As experienced in Test 4.4, there 

is a near-vertical slope of the line while the PT reinforcement is being mobilized, and 

then as the beam is cracked, there is a horizontal trend to the plot. This change in the 

slope proves the variation between the two effects and can be used effectively to 

identify the two features. Though not tested, it would be expected for the yielding of 
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the beam to provide a longer lasting and more prominent horizontal trend in the relative 

velocity change vs. load plot. 

 
Figure 24 Small-scale PT Beam, 3-Point Load, Coda-wave Interferometry Test 4.5  - Graph of Relative Velocity vs. Stress 

and Displacement vs. Stress 

5.2. Diffuse Ultrasound 

The outcome being sought for diffuse ultrasound evaluation for the NDE of PT flexible 

filler systems is an indirect evaluation of the health of the post-tensioning system. For DU, this 

means having damaged feature recognition from increases in microcracking. This feature can 

indicate increased loading on the structure in question or a decrease in the effectiveness of the 

post-tensioned reinforcement allowing for more tension in the concrete. 

5.2.1. Block Testing 

The beam block specimens’ testing will show the general feasibility and efficacy 

of the DU testing setup for identifying damage features relevant to flexible filler PT 

systems. These features would be identified via the coefficient of diffusivity plots 

generated by the DU algorithm. They would take the form of decreases in the diffusivity 

of the material due to an increase in the size or quantity of microcracking. 
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1. Test 1.3 

The beam-block test serves the same purpose as it did with the CWI testing, to validate 

the effectiveness of this method and the equipment setup used to carry out testing. It was 

expected for an increase in microcracking to occur as the concrete was damaged from the 

direct compression testing. This trend can be clearly seen in Figure 25 via the diffusivity 

vs. stress plot. The diffusivity coefficient of a material is expected to decrease due to an 

increase in microcracking size and presence. Due to the presence of this effect, it can be 

assumed that the testing setup derived for DU testing was appropriate. It can also be seen 

that as the loading was reduced in the second half of the loading cycle, the coefficient of 

diffusivity increased again but did not return to its prior level before loading; both of these 

effects were expected as the microcracking in the specimen receded with the unloading of 

the beam-block. 

 
Figure 25 Small-scale Beam-block, Direct Compression, Diffuse Ultrasound Test 1.3  - Graph of Coefficient of Diffusivity 

vs. Stress 

A plot of the integration values of the intervals is shown in Figure 26 for this test's zero 

load initial point. On this plot is the best fit line, which is used to find the diffusivity value 
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for the specified load point. The value for diffusivity is the coefficient D in Equation 2. 

The value D affects the slope of the decaying leg of the logarithmic function. As the value 

of diffusivity increases, the slope of the decaying leg of the logarithmic function increases. 

Therefore, as there is an increase in damage to the concrete, the general slope of the interval 

integration plot for a specific load point will also increase. 

 

Figure 26 Interval Integration Plot with Best Fit Curve for Diffuse Ultrasound Spectroscopy 

 

5.2.2. Beam Testing 

After validating the testing setup with the beam block testing, the next step is small-

scale beam testing in both normally reinforced and PT beams. These beams will undergo 

3-point load testing, described in Chapter 4. In these tests, the same damage features as the 

beam-blocks. Drastic increases in microcracking presence could indicate deterioration of 

the PT system in full-scale structures. 
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5.2.2.1. Normally Reinforced 

1. Test 2.2 

Due to unknown circumstances in the testing process for the normally reinforced 

specimen, the data collected during the loading cycle could not provide any meaningful 

insight into the effectiveness of the DU method. The data points received followed no 

trends and seemed to randomly change slope and position without regard to the applied 

load. In future work, more testing on normally reinforced specimens would need to be 

done to identify the reasons behind the issues faced during these experiments. Due to 

time constraints, no further test could be completed after the defunct data for this 

specimen was discovered. 

5.2.2.2. Post Tensioned 

1. Test 4.2 

Testing on the post-tensioned proved to be more fortunate than the normally 

reinforced beam. Test 4.2 was a loading and unloading cycle up to approximately 350 

psi, resulting in no cracking of the specimen. Figure 27 shows the expected decrease 

in the coefficient of diffusivity that was also seen in Test 1.3. The presence of this 

trend in correlation to the displacement vs. stress plot shows that the decrease in the 

diffusivity coefficient occurred solely from the variation in microcracking caused by 

the loading cycle. The endpoint having a lower value of diffusivity than the starting 

point also proves the increase in microcracking in the structure from the load test.  
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Figure 27 Small-scale PT Beam, 3-Point Load, Diffuse Ultrasound Test 4.2 - Graph of Coefficient of Diffusivity vs. Stress 

and Displacement vs. Stress 
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Chapter 6: Conclusions and Future Work 

6.1 Future work 

As previously stated, the planned full-scale testing could not be completed due to time 

constraints and extraneous circumstanced experience due to the COVID-19 pandemic. Since the 

methods tested during this research showed extremely promising small-scale results, it is highly 

recommended that work is continued in the future.  

Large-scale testing would be the next logical step in the progression of this project. This 

testing would allow for a better application of the sensors to real-world scale concrete structures. 

The importance of this step would be to see how the sensors and equipment used to react to a much 

larger body of concrete and reinforcing steel, mainly to see if more powerful transducers are 

needed to excite the larger mass of concrete to receive signals that are representative of the entire 

body of the specimen. The large-scale specimens would also allow for a larger range of PT forces 

and applied loads which would gauge the sensitivity of both CWI and DU. 

After large-scale testing is performed to fine-tune the equipment used for data collection, 

a better method of quantifying the data received would need to be researched and implemented. A 

preliminary recommendation would be to implement a self-learning algorithm trained with an 

initial dataset with desired input and output data specified. This algorithm would ideally be able 

to output basic outputs to direct more invasive evaluation techniques. These outputs could take the 

form of simple text stating, ‘Damage Likely’ or ‘Damage Unlikely’ or could go as far as 

identifying major and minor cracking or expected PT system failure. 

A more unrealistic recommendation would be to implement constant monitoring on 

structures with flexible filler PT systems. This continuous monitoring would provide a much larger 
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dataset for the self-learning algorithm and produce more accurate and specific results tailored to 

the structure type in which the PT system is implemented. 

Implementing these recommendations for CWI and DU would provide a robust system for 

identifying PT system health in structures that implement post-tensioning with flexible fillers. 

6.2 Conclusion 

In this study, varying methods of NDE evaluation of flexible filler post-tensioned systems 

have been explored. Due to their effectiveness in evaluating concrete damage features, diffuse 

ultrasound and coda-wave interferometry were chosen for further research and experimental 

testing. This experimental testing consisted of normally reinforced concrete and post-tensioned 

concrete undergoing compression and 3-point load testing 

Diffuse ultrasound was an effective method of indirectly evaluating the health of post-

tensioned systems with flexible fillers. From the experimental testing, completed trends of the 

diffusivity coefficient were found to follow the previous research and decrease with an increase in 

microcracking severity.  

Traditionally, constant monitoring would have to be done to compare how the diffusivity 

progressed with time and loading variations. However, it would be possible to implement this 

method into the routine biannual inspection performed by the FDOT on structures. By their nature, 

post-tensioned structures are large in size; multiple measurements could be taken and compared 

over varying areas of the structure. The measurements could be compared against one another to 

determine the relative health of certain PT strands via the value of diffusivity acquired from the 

tests. If the values are divergent enough during testing, further, more destructive testing could be 

ordered to evaluate the structure. Though this testing was generally successful, testing on the 
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small-scale normally reinforced beam provided defunct results for no understandable reason; 

therefore, more testing into diffuse ultrasound is highly encouraged before implementing this 

method. Primarily, large-scale testing would tell how this method could be realistically 

implemented in routine inspections. 

Coda-wave interferometry proved to be the most effective method for evaluating the 

condition of flexible filler post-tensioned systems tested in this study. The experimental testing 

showed that CWI could identify multiple signal features, including cracking, yielding, tensioning 

force, and mobilization of post-tensioned reinforcement. These results were most impressive when 

compared to traditional deflection testing. The results of CWI, relative velocity change plots, were 

significantly more sensitive to changes in the structure. Small shifts in the deflection plots were 

correlated to large and easily identifiable changes in relative velocity change plots.  

As with diffuse ultrasound, CWI is traditionally observed as a monitoring type of NDE 

where constant measurements are taken to be compared against one another. Like DU, CWI 

measurements can be taken at multiple places on a post-tensioned structure and then compared to 

one another to allow for comparative analysis of how specific PT elements on a structure are 

behaving. If the plots are divergent enough during testing, further, more destructive testing could 

be ordered to evaluate the structure. It would be recommended that large-scale testing be 

performed on CWI before implementing this method. 

Both methods explored in this paper are highly promising for evaluating post-tensioned 

systems using flexible fillers. Further research into the implementation of these methods is highly 

recommended due to their outstanding performance in small-scale testing.
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