Combined Search for Lorentz Violation in Short-Range Gravity

Cheng-Gang Shao
Huazhong University of Science and Technology

Yu-Jie Tan
Huazhong University of Science and Technology

Wen-Hai Tan
Huazhong University of Science and Technology

Shan-Qing Yang
Huazhong University of Science and Technology

Jun Luo
Huazhong University of Science and Technology

See next page for additional authors

Follow this and additional works at: https://commons.erau.edu/publication

Part of the Cosmology, Relativity, and Gravity Commons

Scholarly Commons Citation

This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
Authors
Cheng-Gang Shao, Yu-Jie Tan, Wen-Hai Tan, Shan-Qing Yang, Jun Luo, Michael Edmund Tobar, Quentin G. Bailey, and et al.

This article is available at Scholarly Commons: https://commons.erau.edu/publication/611
Combined search for Lorentz violation in short-range gravity

Cheng-Gang Shao, Yu-Jie Tan, Wen-Hai Tan, Shan-Qing Yang, and Jun Luo
MOE Key Laboratory of Fundamental Physical Quantities Measurements, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

Michael Edmund Tobar
School of Physics, University of Western Australia, Crawley, WA 6009, Australia

Quentin G. Bailey
Physics Department, Embry-Riddle Aeronautical University, Prescott, AZ 86301, U.S.A.

J.C. Long, E. Weisman, Rui Xu, and V. Alan Kostelecký
Physics Department, Indiana University, Bloomington, Indiana 47405, U.S.A.
(Dated: March 2016; accepted for publication in Physical Review Letters)

Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10^{-9} m^2, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.

General relativity offers an impressive description of gravity at the classical level. A key ingredient in its construction is local Lorentz invariance, which insures rotation and boost symmetry in a freely falling frame. However, achieving a consistent unification of gravity with quantum physics may require modifications of the foundations of general relativity. These modifications could induce observable violations of Lorentz invariance, arising in an underlying unified theory such as strings [1]. Experimental tests of Lorentz symmetry in gravity therefore have the potential to offer insight about the structure of physics beyond general relativity [2, 3].

One interesting option for investigating Lorentz violation in pure gravity is offered by short-range experiments at the submillimeter scale [4]. Effective field theory for Lorentz violation in gravity [2] provides a generic and model-independent approach to studying possible experimental signals of Lorentz violation. Applying this method reveals that quadratic curvature derivatives and quadratic curvature couplings can produce novel signals in experiments on short-range gravity [6]. Most of these couplings remain experimentally unexplored and have a priori unknown sizes, with even comparatively large Lorentz violation remaining viable in certain ‘counter-shaded’ models [7], so direct searches without preconceived notions of sensitivity are essential.

Short-range experiments at Indiana University (IU) [8] and Huazhong University of Science and Technology (HUST) [9] have achieved sensitivities at the level of 10^{-7} to 10^{-8} m^2 to individual coefficients controlling these types of gravitational local Lorentz violation. However, any one short-range experiment measures only nine signal components, which is insufficient to constrain simultaneously all the predicted effects. In this work, we present a combined analysis of results from tests of short-range gravity based on four different experimental designs performed at HUST (HUST-2015 [10] and HUST-2011 [9]) and at IU (IU-2012 and IU-2002 [8]). Our analysis yields the first independent measures of all 14 accessible coefficients for Lorentz violation, consistent with no effect at the level of 10^{-9} m^2.

The Lorentz-violating quadratic curvature derivatives and couplings produce a perturbative correction to the Newton gravitational potential between two test masses m_1, m_2 that is inverse cubic and varies with orientation and sidereal time T [6]. Its explicit form is

$$V_{LV}(\vec{r}) = -G_N \frac{m_1 m_2}{|\vec{r}|^3} \mathbf{k}(\vec{r}, T),$$

where the vector $\vec{r} = \vec{x}_1 - \vec{x}_2$ separates m_1 and m_2, and

$$\mathbf{k} = \frac{3}{2}(\mathbf{k}_{eff})_{jkjk} - 9(\mathbf{k}_{eff})_{jkij} \vec{r}^i \vec{r}^j + \frac{15}{2} (\mathbf{k}_{eff})_{jkilm} \vec{r}^j \vec{r}^k \vec{r}^l \vec{r}^m$$

involves the projection \vec{r}^j of the unit vector along \vec{r} in the jth direction. The nonrelativistic coefficients $(\mathbf{k}_{eff})_{jklm}$ for Lorentz violation have dimensions of squared length and are totally symmetric, thus containing 15 independent degrees of freedom. However, the rotation invariant $(\mathbf{k}_{eff})_{jkjk}$ produces only a contact correction to the usual Newton force, so only 14 of them are independently measurable in short-range experiments.

The coefficients $(\mathbf{k}_{eff})_{jklm}$ take different forms in different inertial frames, so a canonical Sun-centered celestial-equatorial frame [2, 11] is conventionally adopted to report experimental results, with the Z axis along the direction of the Earth’s rotation and the X axis pointing to the vernal equinox. The coefficients can be taken constant in this frame [12], but the rotation of the...
Earth implies that the coefficients in a laboratory frame change with time and therefore produce sidereal signals in experimental data \[^{[13]}\]. Neglecting the Earth’s boost $\beta_\oplus \simeq 10^{-4}$, the conversion from the Sun-centered frame (X, Y, Z) to a laboratory frame (x, y, z) with x axis pointing to local south and z axis to the zenith can be implemented by the time-dependent rotation

$$R^{ij} = \begin{pmatrix} \cos \chi \cos \omega_\oplus T & \cos \chi \sin \omega_\oplus T & -\sin \chi \\ -\sin \omega_\oplus T & \cos \omega_\oplus T & 0 \\ \sin \chi \cos \omega_\oplus T & \sin \chi \sin \omega_\oplus T & \cos \chi \end{pmatrix},$$

(3)

where $\omega_\oplus \simeq 2\pi/(23 \, \text{h} \, 56 \, \text{m})$ is the sidereal frequency. The laboratory colatitude χ is $\chi \simeq 1.038$ rad for HUST-2015 and HUST-2011, $\chi \simeq 0.887$ rad for IU-2012, and $\chi \simeq 0.872$ rad for IU-2002. The relation between the laboratory coefficients $(\mathcal{F}_{\text{eff}})_{jklm}$ and the coefficients $(\bar{k}_{\text{eff}})_{JKLM}$ in the Sun-centered frame is therefore

$$(\mathcal{F}_{\text{eff}})_{jklm} = R^{ij} R^{jk} R^{kl} R^{lm} (\bar{k}_{\text{eff}})_{JKLM}.$$ (4)

It follows that the time oscillations of the inverse-cube potential \[^{[1]}\] contain harmonic frequencies up to $4\omega_\oplus$.

Most experimental tests of the gravitational inverse-square law adopt a planar test-mass geometry to reduce conventional effects from Newton gravity. The Lorentz-violating force between two parallel plates can be calculated by numerical integration. Since only four harmonic frequencies appear, the signal from any one short-range experiment can contain at most nine Fourier components, including the DC response. Two or more experiments are therefore required to measure simultaneously all 14 independent Lorentz-violating degrees of freedom. Here, we achieve this using data from the recent experiment HUST-2015 \[^{[10]}\] and from the earlier experiments IU-2012 \[^{[8]}\], HUST-2011 \[^{[9]}\], and IU-2002 \[^{[14]}\]. Since the relevant methodologies for the latter three are described in detail elsewhere \[^{[8, 9, 14, 14]}\], we focus here on the corresponding analysis for HUST-2015.

The basic design and the operation of the experiment HUST-2015 are described in Ref. \[^{[10]}\]. A bilaterally symmetric I-shaped pendulum is suspended next to an attractor disk with eightfold symmetry. The pendulum contains two pure-tungsten test masses, together with two additional tungsten pieces designed to compensate the Newton gravitational force at the signal frequency. The attractor disk consists of eight tungsten source masses and eight compensation masses. The centers of the attractor disk and the torsion pendulum are aligned, and the distance between the surfaces of the test and source masses is maintained at 295 μm. The pendulum twist is controlled using a feedback technique, by applying differential voltages to the two capacitive actuators on the pendulum. In the presence of Lorentz violation, rotating the attractor disk generates a torque. The signal and disturbance frequencies are well separated, so a high measurement resolution can be achieved. The apparatus is designed to produce approximate null measurements by double compensating for both the test and the source masses. When the attractor disk rotates at frequency $f_0 = 2\pi/(3846.12 \, \text{s})$, the nominal signal torque oscillates at frequency $8f_0$. The torque is maximal when the source and test masses are face to face and minimal when they are offset. However, the Lorentz-violating force between two finite flat plates is dominated by edge effects \[^{[8]}\], so the Lorentz-violating torque oscillates primarily at the frequency $16f_0$ and is an order of magnitude larger than the signal at $8f_0$. The resolution of the pendulum is calibrated gravitationally by rotating a nearby copper cylinder at frequency $f_c = 2\pi/(400 \, \text{s})$, chosen to be close to $8f_0 \simeq 2\pi/(481 \, \text{s})$ but sufficiently offset to be readily distinguished from it.

Data were acquired from December 2014 to August 2015, during a period of over 2000 hours. To extract the signal, the recorded data were separated into slices according to the modulation period, $\Delta T = 3846.12 \, \text{s}$. For each slice, the Lorentz-violating torque τ_{LV} was extracted by fitting the measured torque $\tau^z(T)$ as

$$\tau^z(T) = \tau_{LV}(T) \cos(32\pi f_0 T + \varphi),$$

(5)

where the initial phase φ is set by the operation of the experiment. We take $\tau_{LV}(T)$ as approximately constant in each data slice because $\omega_\oplus \Delta T \ll 1$ and so any sidereal variation within each ΔT is negligible. The upper panel of Fig. \[^{[1]}\] displays the extracted torque τ_{LV} as a function of time. Each point represents the mean of the measurement in ΔT without error, which is dominated by statistical uncertainty. In the Sun-centered frame, the time origin $T = 0$ is defined as the vernal equinox 2000. For the analysis, it suffices to use a convenient shifted time T_\oplus with origin set when local east coincides with the Y axis of the Sun-centered frame \[^{[1]}\]. The lower panel of Fig. \[^{[1]}\] shows the Fourier spectrum of the torque.

Using Eqs. \[^{[11]}\] and \[^{[22]}\], the Lorentz-violating acceleration at any position due to the source can be obtained...
over the geometry of the test mass. The data are fitted
masses can then be extracted by a further integration
The Lorentz-violating signal between the source and test
obtained by combining HUST and IU data \[8–10\].

\[L_{V} = \frac{1}{4} \alpha \beta \gamma \delta \kappa \lambda \mu \nu \]

\[C_0 = -0.20 \pm 2.40, \quad -0.22 \pm 1.90, \quad -31 \pm 120, \quad 12 \pm 203 \]

\[C_1 = 0.00 \pm 0.08, \quad 0.13 \pm 0.44, \quad -77 \pm 170, \quad 34 \pm 123 \]

\[S_1 = -0.01 \pm 0.08, \quad -0.40 \pm 0.45, \quad -7 \pm 154, \quad 98 \pm 242 \]

\[C_2 = -0.01 \pm 0.08, \quad -0.04 \pm 0.45, \quad 16 \pm 154, \quad 66 \pm 278 \]

\[S_2 = -0.09 \pm 0.08, \quad 0.20 \pm 0.45, \quad -151 \pm 167, \quad -52 \pm 139 \]

\[C_3 = 0.01 \pm 0.08, \quad -0.30 \pm 0.45, \quad -164 \pm 144, \quad 207 \pm 141 \]

\[S_3 = 0.06 \pm 0.08, \quad 0.25 \pm 0.45, \quad 181 \pm 176, \quad -144 \pm 216 \]

\[C_4 = 0.04 \pm 0.08, \quad -0.06 \pm 0.45, \quad 2 \pm 142, \quad 26 \pm 223 \]

\[S_4 = -0.03 \pm 0.08, \quad 0.05 \pm 0.45, \quad -10 \pm 165, \quad 74 \pm 159 \]

<table>
<thead>
<tr>
<th>Mode</th>
<th>HUST-2015</th>
<th>HUST-2011</th>
<th>IU-2012</th>
<th>IU-2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_0)</td>
<td>-0.20 ± 2.40</td>
<td>-0.22 ± 1.90</td>
<td>-31 ± 120</td>
<td>12 ± 203</td>
</tr>
<tr>
<td>(C_1)</td>
<td>0.00 ± 0.08</td>
<td>0.13 ± 0.44</td>
<td>-77 ± 170</td>
<td>34 ± 123</td>
</tr>
<tr>
<td>(S_1)</td>
<td>-0.01 ± 0.08</td>
<td>-0.40 ± 0.45</td>
<td>-7 ± 154</td>
<td>98 ± 242</td>
</tr>
<tr>
<td>(C_2)</td>
<td>-0.01 ± 0.08</td>
<td>-0.04 ± 0.45</td>
<td>16 ± 154</td>
<td>66 ± 278</td>
</tr>
<tr>
<td>(S_2)</td>
<td>-0.09 ± 0.08</td>
<td>0.20 ± 0.45</td>
<td>-151 ± 167</td>
<td>-52 ± 139</td>
</tr>
<tr>
<td>(C_3)</td>
<td>0.01 ± 0.08</td>
<td>-0.30 ± 0.45</td>
<td>-164 ± 144</td>
<td>207 ± 141</td>
</tr>
<tr>
<td>(S_3)</td>
<td>0.06 ± 0.08</td>
<td>0.25 ± 0.45</td>
<td>181 ± 176</td>
<td>-144 ± 216</td>
</tr>
<tr>
<td>(C_4)</td>
<td>0.04 ± 0.08</td>
<td>-0.06 ± 0.45</td>
<td>2 ± 142</td>
<td>26 ± 223</td>
</tr>
<tr>
<td>(S_4)</td>
<td>-0.03 ± 0.08</td>
<td>0.05 ± 0.45</td>
<td>-10 ± 165</td>
<td>74 ± 159</td>
</tr>
</tbody>
</table>

TABLE I: Fourier amplitudes (2\(\sigma \), units 10\(^{-16} \) Nm for HUST and 10\(^{-16} \) N for IU).

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>((k_{\alpha \beta})_X.X.X.X.)</td>
<td>6.4 ± 3.29</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_X.X.Y.Y.)</td>
<td>0.0 ± 8.1</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_X.X.Z.Z.)</td>
<td>-2.0 ± 2.6</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_X.Y.Y.Y.)</td>
<td>-0.9 ± 10.9</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_X.Y.Z.Z.)</td>
<td>1.1 ± 1.2</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_Y.Z.Z.Z.)</td>
<td>-2.6 ± 17.1</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_Y.Y.Y.Y.)</td>
<td>3.9 ± 8.1</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_X.Y.Y.Z.)</td>
<td>-0.6 ± 1.2</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_X.Y.Z.Z.)</td>
<td>-1.0 ± 1.0</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_X.Z.Z.Z.)</td>
<td>-8.1 ± 10.3</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_Y.Y.Y.Y.)</td>
<td>7.0 ± 32.9</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_Y.Y.Z.Z.)</td>
<td>0.3 ± 2.6</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_Y.Z.Z.Z.)</td>
<td>-2.5 ± 17.1</td>
</tr>
<tr>
<td>((k_{\alpha \beta})_Y.Z.Z.Z.)</td>
<td>3.6 ± 10.2</td>
</tr>
</tbody>
</table>

TABLE II: Independent coefficient values (2\(\sigma \), units 10\(^{-9} \) m\(^2\)) obtained by combining HUST and IU data \[9\].

via an integral over the geometry of the source mass.

The Lorentz-violating signal between the source and test
masses can then be extracted by a further integration
over the geometry of the test mass. The data are fitted
to a Fourier series in the sidereal time \(T_{\oplus}\).

\[n_{LV}(T_{\oplus}) = C_0 + \sum_{m=1}^{4} \frac{\sin(m\omega_{\oplus}\Delta T/2)}{m\omega_{\oplus}\Delta T/2} \times [C_m \cos(m\omega_{\oplus}T_{\oplus}) + S_m \sin(m\omega_{\oplus}T_{\oplus})] \]

(6)

In this expression, the Fourier amplitudes are functions
of the test mass and source mass geometry, the
laboratory colatitude, and the coefficients \((k_{\alpha \beta})_{JKLM}\)
in the Sun-centered frame. For a sinusoidal signal at
frequency \(m\omega_{\oplus}\), the data average over \(\Delta T\) intervals
leads to an attenuation of the amplitude by the factor
\(1 - \sin(m\omega_{\oplus}\Delta T/2)/m\omega_{\oplus}\Delta T/2\), which is approximately
zero.

Table II displays the measurements of the nine signal
Fourier components. The results for the HUST-2015 ex-
periment extracted from the fit (6) are shown in the sec-
ond column. The third column contains the results from
the HUST-2011 analysis [9], while the fourth and fifth
columns show those from the IU-2012 and IU-2002 anal-
yses. Note that the HUST data are torque amplitudes
while the IU data are force amplitudes, with similar rel-
ative errors.

The HUST-2015 apparatus was designed to detect a
non-Newton force at 8\(f_0\), for which the Newton force is
compensated by the design. However, the present work
uses the data at frequency 16\(f_0\) for which the Newton
force is imperfectly compensated. The errors arise from
uncertainties in the dimensions and locations of the test
and source masses. This leads to a comparatively large
systematic error that is restricted to the DC Fourier com-
ponent \(C_0\) of the 16\(f_0\) signal and can be seen in the lower
panel of Fig. 1. In general, experiments searching for
sidereal signals are susceptible to systematic errors aris-
ing from mundane diurnal variations. For HUST-2015,
the dominant contribution of this type is due to tem-
perature fluctuations. This affects the torque in two
main ways. First, it changes the dimensions and rela-
tive positions of the pendulum and the attractor, which
leads to a variation of the amplitude of the 16\(f_0\) Newton-
ian torque. The temperature is recorded synchronously
throughout the data collection. For a typical tempera-
ture dataset taken over a period of 9.5 days in March
2015, only diurnal and semidiurnal variations with am-
plitudes of 3.8 ± 1.3 mK and 4.9 ± 0.7 mK are evident.

The largest variation of the geometric parameters is the
relative height between the pendulum and the attractor,
which is about 0.04 \(\mu\)m, resulting in a negligible var-
atiation of < 0.006 × 10\(^{-16}\) Nm in the amplitude of
the 16\(f_0\) Newtonian torque. Second, the temperature fluc-
tuation changes the equilibrium position of the torsion
balance. This leads directly to a torque variation, with
a temperature-to-torque coefficient of (1.1 ± 0.2) × 10\(^{-12}\)
Nm/K. However, the relevant concern is the diurnal and
harmonic variations of the amplitude of the 16\(f_0\) signal,
which are < (2 ± 2) \(\mu\)K, resulting in a torque noise of
< 0.06 × 10\(^{-16}\) Nm at the 2\(\sigma\) level. This is included
in the statistical errors listed in Table I. In effect, the
total noise is stable in the frequency band relevant to
the Lorentz-violating signal, so the uncertainties for the
modes \(C_m\) and \(S_m\) are the same size and dominated by
statistics. The net results of this error budgeting are
shown in Table III.
Coefficient	Measurement	Coefficient	Measurement	Coefficient	Measurement
$k_1^{(6)}_{XTXTXX}$ | -0.8 ± 6.3 | $k_1^{(6)}_{XYXYXY}$ | -0.2 ± 36.3 | $k_1^{(6)}_{XYZYYZ}$ | -3.2 ± 2.9
$k_1^{(6)}_{XTXTXY}$ | 1.6 ± 2.3 | $k_1^{(6)}_{XYXYYX}$ | 1.4 ± 1.8 | $k_1^{(6)}_{XYTTXX}$ | 0.1 ± 9.9
$k_1^{(6)}_{XTXTXZ}$ | 1.2 ± 1.2 | $k_1^{(6)}_{XYXZZZ}$ | -1.8 ± 7.6 | $k_1^{(6)}_{YTTXY}$ | 1.3 ± 2.3
$k_1^{(6)}_{XTYTYy}$ | -0.4 ± 27.6 | $k_1^{(6)}_{XYXXZX}$ | 3.2 ± 3.7 | $k_1^{(6)}_{YTTYXZ}$ | 1.4 ± 1.5
$k_1^{(6)}_{XTYTYY}$ | -1.2 ± 1.5 | $k_1^{(6)}_{XYXYYX}$ | 0.1 ± 1.5 | $k_1^{(6)}_{YTTYYY}$ | -3.1 ± 11.8
$k_1^{(6)}_{XTYTYZ}$ | 2.2 ± 12.4 | $k_1^{(6)}_{XYXZZX}$ | -1.5 ± 1.5 | $k_1^{(6)}_{YTTYYZ}$ | -0.5 ± 12
$k_1^{(6)}_{XYYTXT}$ | 0.0 ± 8.1 | $k_1^{(6)}_{XYXYYX}$ | -1.0 ± 1.5 | $k_1^{(6)}_{YTYTZZ}$ | 2.8 ± 14.1
$k_1^{(6)}_{XYYTYT}$ | -0.1 ± 6.9 | $k_1^{(6)}_{XYXZZY}$ | 0.8 ± 4.5 | $k_1^{(6)}_{YTYZZX}$ | -3.2 ± 3.7
$k_1^{(6)}_{XYYTZT}$ | -1.6 ± 1.8 | $k_1^{(6)}_{XYXZZZ}$ | -1.4 ± 1.8 | $k_1^{(6)}_{YTZZXY}$ | 0.8 ± 1.8
$k_1^{(6)}_{XYYTYT}$ | -4.0 ± 8.1 | $k_1^{(6)}_{XYXYYY}$ | 1.7 ± 3.7 | $k_1^{(6)}_{YTZZX}$ | 1.6 ± 1.5
$k_1^{(6)}_{XYTYTY}$ | 0.8 ± 1.8 | $k_1^{(6)}_{XYXYYZ}$ | 1.5 ± 1.5 | $k_1^{(6)}_{YTYTYZ}$ | -0.3 ± 2.6
$k_1^{(6)}_{XYTYTZ}$ | 3.2 ± 2.9 | $k_1^{(6)}_{XYXZZZ}$ | -1.4 ± 2.6 | $k_2^{(6)}_{YTYTZZ}$ | -3.6 ± 10.2
$k_1^{(6)}_{XYTXXT}$ | 2.0 ± 2.6 | $k_1^{(6)}_{XYXZZZ}$ | -0.5 ± 27.6 | $k_1^{(6)}_{YTTYYY}$ | -0.5 ± 27.6
$k_1^{(6)}_{XYTXXY}$ | 1.7 ± 3.7 | $k_1^{(6)}_{XYXZZX}$ | -20.5 ± 5.2 | $k_1^{(6)}_{YTYTYY}$ | -3.2 ± 3.7
$k_1^{(6)}_{XYTXXZ}$ | 1.6 ± 1.5 | $k_1^{(6)}_{XYXZXX}$ | 1.5 ± 1.5 | $k_1^{(6)}_{YTYTYZ}$ | 0.2 ± 9.8
$k_1^{(6)}_{XTTXXZ}$ | 8.1 ± 10.3 | $k_1^{(6)}_{XYXZZZ}$ | -0.2 ± 36.3 | $k_1^{(6)}_{XXZZXX}$ | 2.2 ± 2.0
$k_1^{(6)}_{XTTXXY}$ | 3.2 ± 2.9 | $k_1^{(6)}_{XYXZZZ}$ | 2.0 ± 5.7 | $k_1^{(6)}_{XYXXYY}$ | 0.6 ± 10.9

TABLE III: Constraints (2σ, units 10^{-9} m³) on 59 independent coefficients ($k_1^{(6)}$) taken one at a time.
curvature derivatives and couplings in Lorentz-violating gravity. The relationship is

\[
\langle k_{\text{eff}} \rangle_{JKLM} = -2\langle k_1 \rangle_{T(JTKLM)} - 2\langle k_1 \rangle_{N(JKNLM)} - 2\langle k_1 \rangle_{NTNT(JK\delta L\mu)} - \langle k_1 \rangle_{NPNP(JK\delta L\mu)} + 8\langle k_2 \rangle_{T(JTkTLTM)} + 8\langle k_2 \rangle_{N(JNKLPM)} + 16\langle k_2 \rangle_{T(JTKNLNM)},
\]

(7)

where the symmetry indicated by the parentheses is on the spatial indices \(JKL M \) only, and \(T \) is the temporal index. The parameter \(a \) used in Eq. (6) of Ref. [6] has been set to zero, which is possible without loss of generality [17]. Counting coefficients reveals that Eq. (7) involves 63 of the 126 independent degrees of freedom in \((k_1)_{\alpha\beta\gamma\delta\kappa\lambda} \) and 78 of the 210 independent degrees of freedom in \((k_2)_{\alpha\beta\gamma\delta\kappa\lambda\mu\nu} \). However, some of these are rotation invariants and hence cannot be detected via sidereal studies, implying that our analysis achieves sensitivity to 59 independent degrees of freedom in \((k_1)_{\alpha\beta\gamma\delta\kappa\lambda} \) and 72 in \((k_2)_{\alpha\beta\gamma\delta\kappa\lambda\mu\nu} \). Using Eq. (7), we can transform the 14 independent measurements given in Table II into limits on a conveniently chosen set of 59 + 72 = 131 independent coefficients taken one at a time, following standard procedure in the field [2]. This procedure yields the measurements shown in Tables III and IV.

To summarize, a combined analysis of data from the short-range experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 constrains simultaneously and independently 14 combinations of coefficients for Lorentz violation, consistent with no effect at the level of \(10^{-9} \text{ m}^2 \). This represents an improvement of an order of magnitude over previous experimental analyses, achieving sensitivity to 131 independent types of Lorentz-violating quadratic curvature derivatives and couplings. The results presented in this work complement recent limits obtained on 25 independent coefficients [18] from gravitational Čerenkov radiation and on 39 independent coefficients [17] from the gravitational-wave event GW150914 [19]. They also complement experimental searches for a Lorentz-violating inverse-square law [20, 29].

This work was supported by the National Natural Science Foundation of China (11275075, 11352523, and 91436212) and 111 project (B14030), by the Australian Research Council Grant DP160100253, by the United States National Science Foundation under grants PHY-1207656 and PHY-1402890, by the United States Department of Energy under grant DE-SC0010120, and by the Indiana University Center for Spacetime Symmetries.