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ABSTRACT 

Rovers have been launched into space for exploration of the Moon and Mars to collect samples 

of rock and soil. To continue the explorations, the rovers need to have reliable wheels to drive 

around. However, due to the soil being soft, the wheels on the rover start to lose traction and the 

wheels sink while driving to various locations. Previous work in this field has been done 

experimentally or with the use of simulations. Only a few references report the effect of 

uncertainties in grouser simulation on the traction efficiency.  

The objective of this work was to (a) Understand the effect of uncertainties on wheel traction 

efficiency, and (b) Design a rover wheel, consider those uncertainties, and then compare results 

with deterministic optimization. The results are categorized into three different sections. The first 

section shows the result of a closed-form equation for rover traction efficiency. A closed-form 

equation was obtained using three different formulas from previous work. The second section 

provides results on a reliability analysis to understand the effects of uncertainty on traction 

efficiency. The uncertainty variables chosen were the empiric soil parameter, , the weight of the 

wheel, w, and the width of the wheel, b. The third section has a result of using the reliability-based 

design for the wheel considering those uncertainties, in which the design parameters are the 

normalized height of the grousers, , the width of the wheel, b, the radius of the wheel, r, and 

finally the weight of the wheel, w. In the reliability-based optimization there are two variables that 

are considered uncertain which are not the design parameters, the soil parameter and torque. In the 

design parameters, the radius of the wheel is considered uncertain. Once the optimized values are 

obtained, they are compared to the deterministic optimization. As a result, optimized design 

variables were obtained. 
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NOMENCLATURE 

b   Width of wheel 

DEM  Discrete element method 

D   Diameter of wheel 

FEA  Finite element analysis 

FORM  First order reliability method 

    Rolling force  

    Force in the x-direction 

   Height of grousers normalized by the radius of the wheel 

    Slip ratio in the x-direction 

    Empiric soil parameter 

JPL  Jet Propulsion Laboratory 

MCS  Monte Carlo simulations 

MER  Mars exploration rover 

MPP  Most probable point 

NASA  National aeronautics and space administration 

r   Radius of wheel 

SORM  Second order reliability method 

T   Torque 

w   Weight of wheel 

   Sinkage normalized by the radius of the wheel 

    The angle between two successive grousers 
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1 Introduction 

Grousers are features on the surface of wheels that are designed to increase the traction of 

the wheels while rolling on sand-like terrains. In terms of their function, grousers on the wheels 

of planetary rovers act similar to the tire treads on conventional automobile wheels. The 

geometry of such grousers plays a vital role while operating on planetary surfaces as shown in 

Figure 1.1. 

 

 

Figure 1.1 Wheel geometry 

 

Planetary surfaces typically consist of terrain with regolith, which can be a soft or rough 

terrain, hence proving that increasing the traction of the rover wheels is pertinent to the success 

of the rover mission. The design of the rover wheel with grousers involves the modeling of the 

interaction of the ground and terramechanics to meet the required performances of rovers in 

terms of traction and moveability on the regolith. Terramechanics is the study of soil 

properties, specifically the interaction of wheeled or tracked vehicles on various surfaces. The 

generation of enough traction to traverse loose, sand-like terrain is important to complete the 

Grouser
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missions. This thesis is focused on developing a systematic framework for the design of rover 

wheels to increase traction efficiency.  

Another contribution of this thesis work is analyzing the reliability of rover wheels 

considering the uncertainty in soil due to various soil types, the uncertainty in applied torque 

due to signal processing error, and the uncertainty in the wheel dimensions due to 

manufacturing error. Further, the rover wheels are optimized in the presence of three 

uncertainties. 

1.1 Background 

Rovers are used extensively for space exploration and sample collection missions to the Moon 

and Mars. Challenging prospective missions require rovers that have reliable wheels to navigate 

the harsh conditions of the planetary regolith. A major issue is the wheels of the rover losing 

traction due to the regolith being too soft. The tractive force, produced from the interaction 

over obstacles. Due to sinkage, rovers operating on soft soil must handle a higher resistance, and 

therefore, improving traction efficiency is a major part of achieving an optimal tractive 

performance [1].  

NASA [2] suspected that in the past there was liquid water on Mars, so Spirit and Opportunity 

were sent to distinct locations on the opposite sides of Mars. In 2003, [2] Spirit was launched to 

the south side of Mars. Spirit started running into multiple problems. One of the main problems 

occurred in 2009 when one of the wheels on Spirit became stuck in the soft soil and the other five 

wheels were unable to generate traction against the ground. The Jet Propulsion Laboratory (JPL) 

operators tried to free up the rover, but one of the other five wheels ceased functioning. In 2004, 

[3] NASA launched its twin rover, named Opportunity, to the north side of Mars. However, in 
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from the buried soil and it took them about six weeks to maneuver the rover a few inches at a time. 

The goals of both rovers were to perform geological investigations and to take photographs. 

However, while traversing on loose soil both rovers struggled and did not work due to other 

complications and damage to the wheels.  

Today NASA uses chevron and straight grousers on their wheels. For example, in 2011 [4] 

NASA launched the Curiosity rover to Mars. The wheels have 24 chevron-shaped grousers with 

cleats to help with traction. One of the issues found with the chevron-shaped grousers was the 

dama

weight of the rover, and if three grousers are damaged it indicates that the wheels have reached 

60% of their lifetime. In 2020, [5] NASA launched the Perseverance rover which has 48 straight 

grousers. The Perseverance rover wheel size was designed to be larger than the Curiosity rover 

wheel to help with traction. Both the Curiosity and Perseverance rovers are still driving on the 

surface of Mars. It is thus extremely important to design grousers for optimum performance. 

This thesis work will enable the exploration of various wheel and grouser design parameters 

through deterministic and reliability-based optimization techniques. Generally, the decisions 

regarding the shape of systems such as rovers are made during the conceptual design phase with 

the use of medium-fidelity tools. The proposed optimization framework will enhance the 

conceptual design calculations, thus eventually saving design costs and efforts.  

1.2 Reliability Method 

Reliability [6] is defined as the probability that a performance function g(X) is greater than 

zero. In other words, reliability is the probability that, while considering the uncertainties in the 

system, the performance function yields values in the safe region. Typically, safety is defined as 

the case when the performance function is positive, that is, g(X) > 0. One of the most commonly 

used reliability analysis methods is called First Order Reliability Method (FORM). In FORM, the 
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performance function g(X) is approximated by the first-order Taylor expansion about the most 

probable point (MPP). There are two steps in this method to take into consideration, the first step 

is to simplify the integrand, so that the contours become more regular and symmetric, while the 

second step is to approximate the integration boundary g(X) = 0. The Second Order Reliability 

Method (SORM) [7] uses the second-order Taylor expansion to approximate the performance 

function of the MPP. It is expected that the approximation of the performance function in SORM 

is more accurate than that in FORM. However, since SORM requires the second-order derivative, 

it is not as computationally efficient as FORM. If the number of performance functions is used for 

evaluations to measure efficiency, SORM needs more function evaluations than FORM. 

FORM and SORM will be used to estimate reliabilities of the rover wheel. FORM will be 

used for reliability-based optimization. 

1.3 Importance of Research 

Most of the ongoing research on rover wheels focuses on straight or chevron-shaped grouser 

designs. The current designs of these grousers have been causing problems such as sinking, and 

getting stuck when traversing on loose soil. Also, most articles have found solutions to  increase 

traction but have not found optimal solutions for a rover wheel design. 

In the project the geometry of the rover wheel grousers will be optimized, which will 

significantly affect the traction on loose sandy surfaces. Reliability methods will also be used to 

calculate probabilities of failure events and further optimize the wheels while considering 

uncertainties in the design and non-design parameters. To decrease the probabilities of failure 

events, a reliability-based optimization method will be used. 
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1.4 Scope of Thesis 

The thesis is split up into six different chapters and is explained below. 

Chapter 2 discusses the literature review of the different grouser designs and their results, and 

a well-known reliability method is discussed. Relevant equations and relevant review of design 

parameters are also discussed. 

Chapter 3 discusses the methodology of this thesis. This section examines the different 

methods being used to optimize the rover wheel. Those methods include structural optimization, 

reliability analysis method, and reliability-based optimization for two different cases. 

Chapter 4 discusses the deterministic structural optimization formulation that was used for 

optimizing the rover wheels where no uncertainity is involved. This was done for two cases. The 

first case is to find the optimum values for the angle between two grousers and the height of the 

grousers. The second case is to find the optimum values for the angle between two grousers, the 

height of the grousers, and sinkage.  

Chapter 5 discusses the preliminary results obtained by the First-Order and Second-Order 

Reliability methods for two different scenarios. The first scenario is when there are two 

uncertainties and the second scenario is when there are three uncertainties. The first case includes 

the empiric soil parameter, and the weight of the wheel as uncertainties. The second case includes 

the empiric soil parameter, the weight of the wheel, and the width of the wheel as uncertainties.  

Chapter 6 discusses the reliability-based optimization results. Multiple optimization iterations 

were conducted until the probability of failure decreased.  

Chapter 7 discusses the conclusion and future work. 
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2 Review of the Relevant Literature 

Rovers are used to explore different planetary surfaces that humans are unable to reach. The 

most important quality of these rovers is mobility. Mobility is an essential technology for the 

successful navigation of rover missions on lunar and planetary surfaces. 

2.1 Relevant Equations 

For planetary rovers, there have been limited guidelines for wheel design. Inotsume et al. [8] 

address the design of rigid wheels for planetary rovers in loose granular soil. The key parameters 

for grouser design were grouser height; , sinkage; , and the angle between two successive 

grousers; . Inotsume et al., ran two types of tests, the first test is doing a single and four wheeled 

experiment and the second uses the soil flow imaging technique. One of the criteria to evaluate the 

performance of a wheel they use is the traction efficiency formula. The traction efficiency formula 

indicates how efficiently the wheel can generate traction on the target soil. The traction efficiency 

is the ratio between the output and input tractive power of the wheel. Where  is the force, r is the 

radius of the wheel, T is the torque, and  is the slip ratio. 

 

 
(2.1) 

 

By observing the soil flow from the soil imaging technique, a grouser design formula was 

derived by Skonieczny et. al [9]. The basic idea for the grouser design formula is that the resistive 

forward flow can be reduced if a grouser interacts with the soil before the wheel rim advances into 

the ground. Inotsume et al. observed increasing grouser height has a similar effect as an increase 

in wheel slip. Taller grousers create a longer gap between the wheel rim surface and the leading 

edge of the soil surface. With these observations and experimentations, a set of rough guidelines 
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were produced. In Eq 2.2,  is the angle between two grousers,  is the slip ratio,  is the 

normalized height of grousers by the radius, and  is the normalized sinkage by the radius. 

 

 
(2.2) 

 

Buchele and Lichtenheldt [10], investigate wheeled locomotion in a milli-g environment and 

specifically the wheeled locomotion of a small rover. They considered several wheel geometry 

parameters and driving scenarios were simulated using the discrete element method. According to 

Buchele and Lichtenheldt, the wheel diameter and wheel width can be optimized. The wider the 

rims the weight of the rover can be better distributed on a larger surface and can help prevent soil 

failures underneath the wheel. Therefore, the rolling force formula incorporates the wheel 

dimensions and the empiric soil parameter to help prevent soil failures.  

 

 

(2.3) 

 

Here  is the rolling force, w is the weight of the wheel, b is the width of the wheel, r is the radius 

of the wheel, and  is the empiric soil parameter. Note that the empiric soil parameter changes 

with various locations. For example, Table 2.1 shows a list of soils with their empiric soil 

parameter [11]. 

 

 

 



 

8 
 

Table 2.1 Empiric soil parameter for each soil type 

Soil Type Empiric Soil 
Parameter 

Clay (Saturated) 0.66 

Clay (Unsaturated) 0.34 

Sandy clay 0.94 

Sand (Dense) 0.3 

Rock 0.2 

 

The several types of grouser parameters Buchele and Lichtenheldt considered for optimization 

were the number of grousers, grouser radius, the height of the grousers, and the grousers curvature. 

During the simulation, they changed each of the parameters. They found that the grouser radius 

and grouser curvature have little influence on wheel sinkage. The number of grousers had a 

considerable influence on wheel locomotion capabilities while the slip and sinkage decreased, the 

grouser height had a large effect on traction. However, for the height of the grouser, they noticed 

getting an optimal value for grouser height was difficult. With increasing height, wheel slip can be 

reduced, and with taller grousers the surface contact increases. Increasing surface contact also 

means that wheel sinkage increases. Therefore, it is harder to find an optimum value for the height 

of the grousers.  

Smith et al [12], conducted a numerical study using the discrete element method to investigate 

the performance and mobility impacts of rough terrain for small vehicles. Two distinct types of 

the wheel were used, one created by Ding and the other by NASA Mars exploration rover (MER). 

Smith and Peng did a digging simulation, a smooth soil simulation, and a rough soil simulation 
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validation. Each simulation has its own set of parameters that were entered into DEM. The values 

used for the simulation were fixed and the wheel properties for each wheel is shown in Table 2.2. 

 

Table 2.2 Wheel properties 

Parameter Ding MER 

Radius (m) 0.157 0.125 

Width (m) 0.165 0.16 

Number of grousers 30 30 

Grouser width (m) 0.002 0.0021 

Torque (Nm) 10 10 

 (º) 12 12 

Sinkage ( ) 0.1 0.1 

Weight of the wheel (kg) 8.155 8.155 

 

 

2.2 Reliability Method 

Reliability analysis using first order and second order methods is well-known. Cui et al. [13] 

propose a reliable design and optimization method of the planetary gears. They calculated the 

reliability by using the coefficient of variation. That method calculates the reliability by assuming 

the tangential forces are zero. To put this in real-world application, Cui et, al. uses DEM to simulate 

the gears and the soil particles to improve the calculation efficiency and compare it with the 

traditional design. They were able to decrease the failure rate by 17.05%, however they increased 

the volume of the structure by 36.96%. Peynot [14] proposed to validate a motion-planning 

approach and demonstrate the value of planning under uncertainty for safe and reliable navigation 
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on different terrain. The goal was to minimize time or distance and avoid obstacles. Song [15] 

studies a methodology of reliability prediction for reliability assessment that is developed by 

means of a case study on lunar rover wheels. Multiple techniques were applied, and optimal design 

values were obtained to identify the failure modes in the extreme environment on the Moon. 

2.3 Gap in literature 

In most of the reviewed literature, studies were done experimentally or with DEM, and much 

less emphasis on systematic optimization of grouser geometries. There are some references where 

empirical studies are performed to estimate the effect of changing a geometric parameter of the 

grouser wheels but not a vigorous optimization. Furthermore, there are very few references that 

report the effect of the uncertainties in the grouser simulation on the traction efficiency. There is 

no closed-form equation to estimate the traction efficiency that will help in conceptual design. 

These are the gaps this thesis attempts to fill through reliability-based optimization to improve the 

rover wheel traction efficiency. The goal of this paper is to use reliability-based optimization to 

reduce the failure rate of the grousers. 
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3 Methodology 

Most of the ongoing research on rover wheels focuses on straight or chevron-shaped grouser 

designs. Also, most articles have found solutions to minimize the sinking of wheels and increase 

traction. However, these articles do not have the optimum solution for maximizing traction. Since 

the regolith is tough, the grousers should have good durability. Having good durability is important 

because the wheel can become damaged over time, which could potentially cause the mission to 

fail. The goal of this research focuses on optimizing traction by using the reliability method, 

deterministic optimization, and reliability-based optimization. 

3.1 Research Approach 

A few researchers studied tractive performance using numerical solutions. The objective of 

this thesis focuses on optimizing traction using the key parameters. First, using the key parameters 

a close-form equation is obtained. The formulas are then validated with previously done 

experimentation from the literature. There will be a total of three design variables. After verifying 

the key parameters and formulas, deterministic optimization will be conducted. The deterministic 

optimization does not have uncertain parameters. FORM and SORM will be used as reliability 

methods as preliminary results. In the equation, other variables can change and have uncertainties. 

The reliability method is conducted to consider those uncertainties. Finally, a reliability-based 

optimization will be used to solve an optimization problem with uncertainties to find the optimum 

values for a rover wheel design. The results are categorized into three different sections, the first 

result is obtaining a closed-form equation for traction efficiency, the second result is performing 

the reliability analysis, and finally the third result is using the reliability-based optimization to 

optimize a rover wheel design. 



 

12 
 

3.2 Closed-form equation 

For this thesis, a close-form equation needed to be obtained to estimate the traction efficiency, 

which was not easily available. The first equation obtained was the traction efficiency equation 

from Inotsume (Eq 2.1). However, Inostume also mentions the key parameters as the angle 

between two grousers, the normalized height of the grouser, and the normalized sinkage, so the 

grouser design formula was obtained (Eq 2.2). Since both equations have a similar variable which 

is the slip ratio, the grouser design formula was substituted in the traction efficiency formula. Next, 

Buchele and Lichtenheldt created a formula that calculated the weight of the rover, which can be 

distributed on a larger surface. This also helps prevent soil failures underneath the wheel in terms 

of a rolling force and used in the traction efficiency formula (Eq 2.3). As a result, an equation that 

incorporates soil parameters and also the wheel design parameters were obtained. The normalized 

height of the grouser is  and the normalized sinkage , where r is the radius of the wheel. 

The closed-form equation obtained is: 

 

 

(3.1) 

 

The importance of this equation is that it will help us to perform and meet the objectives of 

finding out the effect of uncertainties and to perform optimization. This will be done without DEM 

or experimentation. Finally, this closed-form equation is obtained will be used for reliability 

analysis and then the rover wheel design. 
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3.2.1 Verification 

To ensure the formulations are valid, Eq. 2.2 was plotted. The slip ratio versus traction 

efficiency and compared in Figure 3.1. This was graphed for wheel 31 (Wh31) [16], with a height 

of 15 mm. The values used for the traction formula was F = 20.35 N, T = 5.27 Nm, and r = 0.135 

m. The graphs are similar however, the orange line was done experimentally and then plotted and 

the blue line was graphed by using the formulations (Eq 3.1). A close match between the two lines 

verifies the equation for the traction efficiency. 

 

 

Figure 3.1 Comparison of Slip ratio vs Traction efficiency  
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3.3 Deterministic Optimization 

Size optimization methods can be used for a given task to redesign the wheel grousers. This is 

done by varying the geometric wheel parameters into a feasible design space. The objective was 

to minimize traction efficiency subjected to a constraint on the efficiency. The closed-form traction 

efficiency equation is used to find the feasible region and the optimum point. The first case, the 

angle between two successive grousers and the height of the height of the grousers were optimized 

and the second case, the angle between two successive grousers, the height of the grousers, and 

the normalized sinkage were optimized. The three algorithms used were SQP, Interior-point, and 

Active-set and compared by graphing. The starting point for those three algorithms were (0,0,0) 

and the midpoint between the lower and upper bounds. 

3.4 Reliability Analysis 

For the First Order Reliability Method (FORM) [17], the performance function g(U) is 

expanded at the point that has the highest contribution to the probability of integration. It is 

preferable to expand the function at the point that has the highest value of the integrand, which is 

the highest probability density. The point that has the highest probability density on the 

performance g(U) = 0 is termed the Most Probable Point (MPP) and the function will be 

approximated at the MPP, which is expressed as 

 

 
(3.2) 

 

where  stands for the norm of a vector. The MPP is denoted by . The 

minimum distance  from the limit state g(U) = 0 to the origin in U-space is called the 

reliability index. The most used MPP search algorithm uses a recursive formula and is based on 
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the linearization of the performance function. The MPP kth iteration is  and is linearized at that 

point. The linearized function becomes 

 

 (3.3) 

 

The next iteration is line, which becomes 

 

 (3.4) 

 

Where the reliability index becomes  and the next iteration reliability index becomes 

. By substituting Eq. 3.2 and Eq. 3.3 it becomes 

 

 (3.5) 

 

By rearranging 

 

 
(3.6) 

 

Therefore, the updated point becomes 

 

 
(3.7) 
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The MPP vector  is perpendicular to the curve g(U) = 0. Therefore, the direction of the gradient 

can be expressed as . Hence, the probability of function is evaluated by 

 

 (3.8) 

 

where  

Therefore, the reliability is found as  

 

 (3.9) 

 

For the Second Order Reliability Method (SORM) [17], the approximation is given by 

 

 
(3.10) 

 

where  is the Hessian matrix at the MPP, 

 

 

(3.11) 

 

After the linear transformations are completed, the performance function is simplified as  
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(3.12) 

 

where D is a  diagonal matrix whose elements are determined by the Hessian 

matrix and the U- nough, an asymptotic solution of the probability of 

failure is derived as 

 

 
(3.13) 

 

Which  denotes the i-th main curvature of the performance function g(U) at the MPP. 

To validate the values of FORM and SORM, Monte-Carlo simulation (MCS) was conducted 

to predict the probability of different outcomes. MCS is used to estimate the possible outcome of 

an uncertain event. In FORM and SORM there are two to three uncertain variables. Once MCS 

was run, SORM and FORM were compared to each other. This paper uses reliability analysis for 

the rover case. 

3.5 Reliability-Based Optimization 

The reliability-based optimization is used to account for the randomness in structural geometry, 

material properties, etc. The purpose of a reliability-based optimization is to decrease the 

probability of failure through each iteration. Stochastic optimization considers the randomness or 

uncertainty in the data. The process for stochastic optimization is to use upper and lower bounds 

for each variable and the partial derivatives to find the optimum values for each uncertain variable. 

The process for reliability-based optimization is shown in Figure 3.2. 
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Figure 3.2 Flow chart 
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4 Deterministic Optimization 

In this section, MATLAB was utilized to get the optimum design using deterministic 

optimization.  

4.1 Preliminary results for straight grousers 

A literature review reveled that the sinkage of a wheel should be between 5% and 15% of the 

radius of the wheel so that it can be used as a safety factor for traction efficiency. This was done 

twice, once for two design variables and another for three design variables. For optimization, the 

design variables were the number of grousers and the height of the grousers. The codes used for 

this optimization are given in appendix A1. 

For the two-design variable optimization, the sinkage was kept at a constant value of 10% 

of the radius. The formulation for this is given below:  

Minimize:  

 

(4.5) 

Subjected to:  

 (4.6) 

 (4.7) 

 

Here  is the angle between grousers and  is the height of the grousers. 

The graphical solution for the feasible region is given in Figure 4.1. The optimum point for the 

graphical solution can be seen in Figure 4.2. The starting point for each method was at the origin, 

which is x = (0,0). The results for the SQP, Active Set, and Interior Point, the algorithm can be 
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seen in Figure 4.3. The codes used for this optimization are given in appendix A2.  All algorithms 

converge to the same optimum point. 

 

 

Figure 4.1 Graphical solution: feasible region 
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Figure 4.2 Graphical solution: optimum point

Figure 4.3 Comparison of Active-Set, SQP, and Interior-Point

Optimum Point

Interior-point 
starting point

SQP and Active-Set 
starting point

Optimum Point
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SQP and Active Set had the same starting position. For Interior Point the starting point was 

changed to be the midpoint between the upper bound and lower bound constraints. Hence, the 

starting point was (209, 0.1285). The MATLAB code ran again, and the results are seen in Figure 

4.4. Table 4.1 shows the comparison between them with a starting point of (0,0), and Table 4.2

shows the comparison with a starting point of (209, 0.1285). 

Figure 4.4 Comparison of methods with a starting point of (209, 0.1285)

Optimum Point

Active-Set, SQP, 
Interior-Point 
Starting point
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Table 4.1 Summary of convergences values for starting point (0,0) 

Algorithm Convergence values Number of 
Iterations 

-   (rad)  

MATLAB 
Graphical 
Solution 

-0.2504  1 0.157 ---- 

MATLAB 
fmincon: Interior 

Point 

-0.254172 1 0.157 15 

MATLAB 
fmincon: SQP 

-0.2504180  1 0.157 4 

MATLAB 
fmincon: Active 

Set 

-0.250418  1 0.157 2 

 

 Table 4.2 Summary of convergences values for starting point (3.6416, 0.1285) 

Algorithm Convergence values Number of 
iterations 

-   (rad)  

MATLAB 
Graphical 
Solution 

-0.2504 1 0.157 ---- 

MATLAB 
fmincon: SQP 

-0.2504180 1 0.157 7 

MATLAB 
fmincon: Active 

Set 

-0.250418  1 0.157 5 

MATLAB 
fmincon: Interior 

Point 

-0.2504172  1 0.157 18 

  

After the optimization of the two design variables, the next step was to use all three of the 

key parameters. The constraints for sinkage were still between 5% and 15% of the radius. The 

formulation is shown below:   
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Minimize:  

 

(4.8) 

Subjected to:  

 (4.9) 

 (4.10) 

 (4.11) 

Here  is the angle between two grousers in degrees,  is the height of the grousers, and  is 

the normalized sinkage of the wheel. 

The above formulation was then put into MATLAB to find the optimum solution. The codes 

used for this optimization are given in appendix A3. The starting point for each method was at the 

origin, which is x = (0,0,0). After running SQP, Active Set, and Interior Point, they were all put 

into a graph for comparison which can be seen in Figure 4.5. 
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Figure 4.5 Comparison of methods with an initial starting point

SQP and Active Set had the same starting position. For Interior Point was changed to be the 

midpoint between the upper bound and lower bound constraints. Hence, the starting point ends up 

being (139, 0.085667, 0.0667). The MATLAB code ran again, and the results can be seen in Figure 

4.6. Table 4.3 shows the comparison between them with a starting point of (0,0,0), and Table 4.4

shows the comparison with a starting point of (139, 0.085667, 0.0667). 

Optimum 
Point

Interior-point 
starting point

SQP and Active-Set 
starting point
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Figure 4.6 Comparison of methods with a starting point of (139, 0.085667, 0.0667)

Table 4.3 Summary of convergences values for starting point (0,0,0)

Algorithm Convergence values Number of 
Iterations 

- (rad)

MATLAB 
fmincon: 

Interior Point 

-0.2994123 1 0.157 0.05 21

MATLAB 
fmincon: SQP 

-0.2994135 1 0.157 0.05 4 

MATLAB 
fmincon: Active 

Set 

-0.299414 1 0.157 0.05 2 

Optimum 
Point

Interior-point 
starting point

SQP and Active-Set 
starting point
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 Table 4.4 Summary of convergences values for starting point (2.427, 0.085667, 0.0667) 

Algorithm  Convergence values  Number of 
Iterations  

-   (rad)   

MATLAB 
fmincon: 

Interior Point  

-0.2994135 1  0.157  0.05  24  

MATLAB 
fmincon: SQP  

-0.2994135 1  0.157  0.05  6  

MATLAB 
fmincon: Active 

Set  

-0.299414  1  0.157  0.05  4  

 

It was realized that sinkage was not a good parameter to optimize because sinkage cannot be a 

variable to design for. Therefore, the design parameters will be chosen carefully for the upcoming 

case studies. 
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5 Reliability Analysis 

Some parameters in the simulation of rover wheels may have uncertainties for example, soil 

parameter, , due to different soil types, torque, T, due to signal processing error, weight of the 

wheel, w, due to manufacturing and the amount of sensors on the wheel, the width of the wheel, 

b, due to manufacturing and tolerancing The purpose of using reliability analysis method, is to 

understand the effects of the uncertainty on traction efficiency. 

First-Order Reliability Method (FORM) will be applied to find the reliability of the traction 

with two and three uncertainties. The limit state function is the difference between traction 

efficiency and , where  is the lower limit of the expected efficiency is given by g, Eq 5.1. 

 

 

(5.1) 

 

The probability of failure is defined as the probability of the allowable tractive efficiency less than 

. 

 

 (5.2) 

 

In general, a failure event for a rover wheel could be that the wheel does not have enough force 

to pull the rover out if the wheel gets stuck. A few more events could be the wheel sinking into the 

soil more than it should. If the rover has solar panels, like Spirit, the sand could cover the solar 

panels so that enough light cannot be absorbed this causes the wheels to lose torque due to the lack 

of power being produced. We define that a failure event occurs if the efficiency drops below 0.2. 
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After using FORM, the same Most Probably Point (MPP) is used for SORM to find the probability 

of failure. To compare the accuracy of the results between FORM and SORM, Monte Carlo 

Simulation (MCS) is used. 

5.1 Two Uncertainties 

The first two uncertainty variables are the empiric soil parameter, Ku, and the weight of 

the wheel, w. The fixed values for torque, width of the wheel, and the angle between two grousers 

are taken from Table 2.2 and Table 5.1 shows the mean and standard deviation of the uncertain 

parameters with the normal distribution. The codes used for this optimization are given in appendix 

A4. 

 

Table 5.1 Normal distribution for two uncertainties 

Variable Mean Value Standard Deviation Possible reason for 
uncertainty 

 0.3 0.03 Different soil types 

w 8.155 1 The number of sensors 
on the wheels, 
manufacturing, 

tolerancing 
 

 

The limit function, g(s), is given below and the gradient of the transformed function, g(s), is 

found. The values of  and h are retrieved from Table 4.2. 

 

 

(5.3) 
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The gradient of the limit function is with respect to . The starting point of the MPP is set 

to . As a result, the search determined there were a total of 2 iterations. Table 5.2 shows 

the MPP search history and Figure 5.1 shows those results graphed until convergence. The 

transformed standard variable of  is a new point which will be used in the next iteration. 

 

Table 5.2 Most Probably Point search history for two uncertainties 

Iteration  g g (Ux, Uy) 

1 -0.4492 -2 (70.8888, 3.9117) (0.2146,0.3946) 

2 -0.8760 -2 (76.0962, 4.0912) (0.4269, 0.7650) 

 

 

 

Figure 5.1 Convergence history for two uncertainties 
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The MPP has found that at , and the reliability index is . The 

probability of failure is  

 

  

 

The reliability is  

 

  

 

Therefore, the tractive efficiency with the given inputs from Table 5.1 is about 19% reliable. 

After using FORM, the second derivative was found for each variable. The second derivative was 

used in SORM as elaborated in section 3.4. The Monte Carlo simulation (MCS) was performed 

with 100 samples for each uncertain parameter. The results of the probability are compared in 

Table 5.3. 

 

Table 5.3 Probability of failure from different methods for two uncertainties 

Method FORM SORM MCS 

 0.8095 0.81354 0.81495 

Time (s) 0.1135 0.1205 8.389 
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5.2 Three Uncertainties 

The three uncertainty variables considered are the empiric soil parameter, Ku, the weight 

of the wheel, w, and the width of the wheel, b. The fixed value for torque is taken from Table 2.2, 

and Table 5.4 which shows the mean and standard deviation with the normal distribution. The 

codes used for this optimization are given in appendix A5. 

 

Table 5.4 Normal distribution for three uncertainties 

Variable Mean Value Standard Deviation Possible reason for 
uncertainty 

 0.3 0.03 Different soil types 

w 8.155 1 The number of 
sensors on the 

wheels, 
manufacturing 

tolerance 
b 0.165 0.0165 Manufacturing 

tolerance 
 

 

The limit function, g(s) is given below and the gradient of the transformed function, g(s), 

is found. The values of , , and  are retrieved from Table 4.4. 

 

 
(5.4) 

 

The gradient of the transformed function is with respect to . The starting point of the 

MPP is set to . As a result, the search determined there were a total of 6 iterations. 

However, the solution for iterations 5 and 6 is similar to iteration 4. Table 5.5 shows the MPP 



 

33 
 

search history and Figure 5.2 shows those results graphed until convergence. The transformed 

standard variable of  is a new point which will be used in the next iteration. 

 

Table 5.5 Most Probable Point search history for three uncertainties 

Iteration  g g (Ux, Uy, Uz) 

1 0.9865 0.5392 (8.4640, 0.4670, -7.6945) (-0.4583, -0.8430, 0.2292) 

2 1.0566 0.0339 (7.1051, 0.4172, -6.0251) (-0.4702, -0.9204, 0.2193) 

3 1.0568 0.0001 (6.9960, 0.4147, -5.9309) (-0.4670, -0.9227, 0.2177) 

4 1.0568 0.0000 (6.9932, 0.4148, -5.9315) (-0.4667, -0.9228, 0.2177) 

5 1.0568 0.0000 (6.9931, 0.4148, -5.9315) (-0.4667, -0.9228, 0.2177) 

6 1.0568 0.0000 (6.9930, 0.4148, -5.9315) (-0.4667, -0.9228, 0.2177) 

 

 

Figure 5.2 Convergence history for three uncertainties 
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The MPP has found that at , and the reliability index is 

. The probability of failure is  

 

  

 

The reliability is  

 

  

 

Therefore, the tractive efficiency with the given inputs from Table 5.4 is about 85% reliable. 

After using FORM, the second derivative was found for each of the three variables. The second 

derivative was used in SORM. The results of the probability are compared in Table 5.6 and it is 

seen that traction efficiency goes below 0.2 about 15% of the time due to the uncertainties in 

empiric soil parameter, the weight of the wheel, and the width of the wheel. The time needed for 

FORM and SORM to calculate is only a fraction when compared to MCS. For MCS 100 samples 

were taken for each uncertain parameter. 

 

Table 5.6 Probability of failure from different methods for three uncertainties 

Method FORM SORM MCS 

 0.14530 0.14136 0.15075 

Time (s) 0.1206 0.1262 7.2849 
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6 Reliability-Based Optimization 

After understanding how the certain parameters affect traction efficiency, the goal of chapter 

6 is to design a rover wheel while considering the uncertain parameters. 

After obtaining a closed-form equation for traction efficiency and running the reliability 

analysis to understand how the uncertainties affect traction efficiency, the key parameters grouser 

design was chosen as the width of the wheel, the radius of the wheel, and the normalized height of 

the grouser, as shown in Figure 6.1. 

 

 

Figure 6.1 Design parameters 

 

Volume of the rover wheels, given in Eq 6.1, was minimized subjected to a constraint on the 

probability of failure (in case of reliability optimization) or a constraint on the value of efficiency 

(in case of deterministic optimization). 

 

 (6.1) 
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The deterministic optimization has b, r, and  as the design variables and has an upper and 

lower bound limit. The thickness of the wheel is obtained from Table 2.2. Table 6.1, shows the 

initial design variables and their initial values with upper and lower bounds. The optimization 

problem is defined in Eq 6.2-6.6. 

 

Table 6.1 Initial design parameters 

Initial design 
parameters 

Initial points Deterministic 
optimization 

Reliability-based 
optimization 

  (Lower, Upper) bound (Lower, Upper) bound 

Normalized height of 
grouser,  

0.55 (0.1, 1) (0.1, 1) 

Radius of the wheel, r 
(m) 

0.175 (0.15, 0.2) (0.15, 0.2) 

Width of the wheel, b 
(m) 

0.165 (0.112, 0.218) (0.132, 0.198) 

 

 

 For reliability-based optimization, three design parameters that are considered to be uncertain. 

The two parameters that are not design variables are the empiric soil parameter,  and torque, T. 

The design variable and is considered uncertain is the width of the wheel, b. The uncertain empiric 

soil parameter mimics the changes with different locations; the uncertain torque is related to power 

variability as well as signal processing error, sensor or actuator noise; and the uncertain width of 

the wheel is related to manufacturing tolerances for the wheel. Table 6.2 shows the uncertain 

parameters with their mean value and standard deviation for reliability-based optimization 
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Table 6.2 Uncertain variables 

Uncertain variables Mean value Standard deviation Possible reason for 
uncertainty 

Soil parameter,  0.3 0.03 Change in soil in 
varies locations 

Torque, T (Nm) 60 6 Power variability, 
signal processing 
error, sensor or 
actuator noise 

Width of the wheel, 
b (m) 

0.165 0.0165 Manufacturing 
tolerances 

 

The deterministic optimizations upper and lower bound limits are not as tight as the 

reliability-based optimization because the bounds for the reliability-based optimization are on the 

mean values. The uncertain variable that has the tighter bounds is the width of the wheel. The goal 

is to minimize the volume. The optimization problem is defined in Eq 6.7-6.11. For the 

deterministic optimization the constraint is that the traction efficiency is greater than 0.5 as seen 

in Eq 6.2 and the reliability-based optimization has a constraint for the probability of failure to be 

less than 10% as seen in Eq 6.7. The purpose of minimizing the volume of the wheel is to keep the 

wheel small in size because it is better for handling and maneuvering on the terrain. Figure 6.2 and 

Figure 6.3 displays the iteration history for deterministic optimization and reliability-based 

optimization respectively. Figure 3.2 shows a flow chart on how the iterations are carried out. 

Table 6.3 shows the results by comparing deterministic optimization and reliability-based 

optimization. The codes for this reliability-based optimization are given in appendix A6, appendix 

A7, appendix A8, and appendix A9. 
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Deterministic optimization 

Minimize 

 (6.2) 

Subjected to 

(6.3) 

and 

(6.4) 

 (6.5) 

 (6.6) 

 

where  is calculated as in Eq 4.5-4.7 and Eq 4.8-4.11. Here  is width of the wheel, b,  is the 

radius of the wheel, r, and  is the normalized height of the wheel. 

 

 

Figure 6.2 Iteration history for deterministic optimization 
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Reliability-based optimization 

Minimize 

 (6.7) 

Subjected to 

(6.8) 

and 

(6.9) 

 (6.10) 

 (6.11) 

where   is obtained from FORM as explained in section 3.4 and calculated in Eq 5.2. Here  

is width of the wheel, b,  is the radius of the wheel, r, and  is the normalized height of the 

wheel. 

 

 

Figure 6.3 Iteration history for reliability-based optimization 
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Table 6.3 Comparison between deterministic and reliability-based optimization 

Parameters Deterministic Optimization Reliability-Based Optimization 

 0.5001 0.6098 

b (m) 0.1120 0.1320 

r (m)  0.1500 0.1500 

 0.3738 0.5265 

V ( ) 0.0083 0.01 

 ---- 7.4455E-5 

Time (sec) 0.571939 0.8157 

 

In conclusion, the reliability-based optimization results in a larger  and b but it ensures a 

lower probability of failure occurrence. The width of the wheel and the radius of the wheel lean 

more towards the lower bounds, while the normalized height of the grousers lean towards the 

middle of the bounds. Also, the reliability-based optimization takes about 0.8 seconds while the 

deterministic optimization takes about 0.6 seconds. Again, the normalized height of the grouser, 

, was a bit difficult to get an optimal value because as the height increases, wheel slip decreases, 

and surface contact increases. However, if the grouser height is too tall then wheel sinkage 

increases.  
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7 Conclusion and Future Work 

When rovers are sent to the Moon or Mars, multiple factors could have a negative effect on the 

wheel such as the amount of torque needed to let the rover keep moving and the size of the regolith. 

In different areas of the planet the material properties of the terrain changes. To this end, reliability-

based optimization was performed to ensure that the uncertainties in certain important parameters 

of the simulation (e.g., the soil parameter) are considered while optimizing the grouser geometries. 

After running two cases it was seen that sinkage was not a good parameter to be optimized. Sinkage 

is just a value that is a result of the design parameters. Therefore, sinkage was set to the desired 

value of 10% of the radius of the wheel, and optimum values were found at that desired value of 

sinkage. 

7.1 Conclusion 

Novelty of the presented research on rover wheels is in two areas: (a) obtaining a closed-

form equation for rover traction efficiency that can be used for reliability analysis and conceptual 

design, and (b) reliability-based optimization of rover wheels with more than 3 uncertain 

parameters (one of which is also a design variable) and with the use of a stochastic constraint. 

Design of rover wheels relies on models based either experimentation or use of 

computationally expensive analysis such as the discrete element method (DEM). As an alternative 

to these methods, we propose to use a simple closed-form equation for rover traction efficiency. 

This equation was obtained by combining two separate equations: one for the efficiency based on 

the applied torque and slip ratio, and the other related to the slip ratio and the angle between the 

wheel grousers. This equation was verified for its accuracy by comparing against previous studies. 

Further, we calculate the effect of uncertainty in the rover traction efficiency arising due to 

different sources such as soil types (which changes the empiric soil parameter value), sensor and 

actuator noise (which affects the applied torque), and manufacturing tolerances (which affect the 
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value of the weight of the wheel). This uncertainty in the traction efficiency was obtained using 

the first and second order reliability methods (FORM and SORM) and was verified using the 

Monte-Carlo simulations (MCS). It was seen that the FORM and SORM methods can estimate the 

probabilities of failure reasonably well and much efficiently than MCS. 

 Finally, we set up a reliability-based optimization to minimize the volume of the rover 

wheel while constraining the probability of failure. In essence, the optimization problem included 

a stochastic constraint on the value of the traction efficiency. To make the problem realistic, we 

choose 3 design variables out of which 1 design variable (weight of the wheel) was considered 

uncertain (to simulate the manufacturing tolerance errors). Also, there were 2 other parameters 

which were considered to be uncertain but were not design variables. 

The reliability-based optimization was compared with a deterministic optimization 

wherein the constraint was set on a value of the efficiency. It was found that while the reliability-

based optimization resulted in a larger volume (that is higher heights of the grousers), it did ensure 

that the probability of failure is within the stipulated bounds.  

7.2 Future Work 

The current approach of reliability-based optimization of rover wheels, although efficient, 

relies on a simple equation of traction efficiency. The same optimization formulation can be 

extended to use DEM instead of the simple equation. This can be done using tools such as EDEM 

and LIGGGHTS. 
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9 APPENDIX 

9.1 A1  Graphical solution 

clc; 
clear all; 
close all; 
 
%Assuming Constants from Ding wheel from article 
r = 0.157; %m Radius 
D = r+r; %m Diameter 
W = 8.155; %Kg Weight of wheel only 
b = 0.165; %m 
K = 0.3; %Empiric soil parameter 
T = 10; %N/m Torque 
 
f1 = xline(57.2958, 'k','x=57'); 
f2 = yline(0.1, 'k','y=0.1'); 
f3 = xline(360, 'k','x=360'); 
f4 = yline(0.157,'k','y=0.157'); 
hold on 
x1 = linspace(0,370); 
x2 = linspace(0,0.2); 
[X1,X2] = meshgrid(x1,x2); 
F = -(((K*sqrt(W^3/(b*D^2)))/T)*r*(180./(pi*X1)).*(sqrt((1+X2).^2-(1-(0.1))^2)-
sqrt(1-(1-(0.1))^2))); 
levels = -1:0.05:1; 
contour(X1,X2,F,levels,'showtext','on'); 
hold on 
[C,h] = contour(X1,X2,F,[-0.2,-0.25,-0.3]);  
clabel(C,h) 
xlabel('x1') 
ylabel('x2') 
%title('Feasible Region using Graphical Solution') 
 
%Feasible Region 

text(150,0.12,'Feasible Region') 

9.2 A2 - Algorithm comparison (2 design variables) 

function [history,searchdir] = runfmincon 
  
% Set up shared variables with OUTFUN 
format long 
history.x = []; 
history.fval = []; 
searchdir = []; 
 
% call optimization 
%x0 = [0,0]; %Initial point 
%lb = [0.27,0.1413]; %-std 
%ub = [0.303,0.1727]; % +std 
lb = [57.2958,0.1]; %-std 
ub = [360,0.157]; % +std 
x0 = (lb+ub)/2 
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%x0 = [0,0]; 
options = optimoptions(@fmincon,'OutputFcn',@outfun,...  
    'Display','iter','Algorithm','active-set');%,'FiniteDifferenceType', 'central'); 
xsol = fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options); 
  
 function stop = outfun(x,optimValues,state) 
     stop = false; 
  
     switch state 
         case 'init' 
             hold on 
         case 'iter' 
         % Concatenate current point and objective function 
         % value with history. x must be a row vector. 
           history.fval = [history.fval; optimValues.fval]; 
           history.x = [history.x; x]; 
         % Concatenate current search direction with  
         % searchdir. 
           %searchdir = [searchdir;...  
                      %  optimValues.searchdirection']; 
%            plot(x(1),x(2),'o'); 
         % Label points with iteration number and add title. 
         % Add .15 to x(1) to separate label from plotted 'o' 
%            text(x(1)+0.0025,x(2),...  
%                 num2str(optimValues.iteration)); 
%            title('Sequence of Points Computed by fmincon'); 
         case 'done' 
             hold off 
         otherwise 
     end 
 end 
  
 function f = objfun(x) 
    % f = -
(((x(1)*sqrt(8.155^3/(0.165*0.314^2)))/45)*((0.157)/(18*(pi/180)))*(sqrt((1+x(2))^2-
(1-(0.1*0.157))^2)-sqrt(1-(1-(0.1*0.157))^2))); 
     f = -
(((0.3*sqrt(8.155^3/(0.165*0.314^2)))/10)*0.157*(180/(pi*x(1)))*(sqrt((1+x(2))^2-(1-
(0.1))^2)-sqrt(1-(1-(0.1))^2))); 
 end 
  
 function [c, ceq] = confun(x) 
     % Nonlinear inequality constraints 
%      c = [1.5 + x(1)*x(2) - x(1) - x(2); 
%          -x(1)*x(2) - 10]; 
     c = []; 
     % Nonlinear equality constraints 
     ceq = []; 
 end 
end 
 

x1AS = ([1;1])*(180/pi); 
x2AS = [0.1;0.157]; 



 

47 
 

x1SQP = ([1;1;1;1])*(180/pi); 
x2SQP = [0.1;0.15699;0.157;0.157]; 
x1IP = 
([1.99;1.943;1.7005;1.0040;1.0056;1.0027;1.0040;1.0040;1.0008;1.0008;1.0008;1.0002;1.
0002;1;1])*(180/pi); 
x2IP = 
[0.1257;0.1287;0.1569;0.1558;0.1561;0.1563;0.1563;0.1563;0.1568;0.1569;0.1569;0.157;0
.157;0.157;0.157]; 
 
figure(2) 
levels = -1:0.05:1; 
[M,c] = contourf(X1,X2,F,levels,'ShowText','on'); 
hold on  
plot(x1AS,x2AS,'bo-','LineWidth',3) 
hold on  
plot(x1SQP,x2SQP,'ro-','LineWidth',1) 
hold on  
plot(x1IP,x2IP,'ko-','LineWidth',2) 
c.LineWidth = 2; 
xlabel('x_1'); 
ylabel('x_2'); 
xlim([0,130]); 
ylim([0,0.2]) 
%title('Comparison of Algoirithms using FIMCON'); 
legend('Design Space','Active-Set','SQP','Interior-Point') 

 

9.3 A3  Algorithm comparison (3 design variables) 

function [history,searchdir] = runfmincon 
  
% Set up shared variables with OUTFUN 
history.x = []; 
history.fval = []; 
searchdir = []; 
 
% call optimization 
%x0 = [0,0,0]; 
lb = [57.2958,0.1,0.05]; 
ub = [360,0.157,0.15]; 
x0 = (lb+ub)/3; 
options = optimoptions(@fmincon,'OutputFcn',@outfun,...  
    'Display','iter','Algorithm','active-set')%,'FiniteDifferenceType', 'central'); 
xsol = fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options); 
  
 function stop = outfun(x,optimValues,state) 
     stop = false; 
  
     switch state 
         case 'init' 
             hold on 
         case 'iter' 
         % Concatenate current point and objective function 
         % value with history. x must be a row vector. 
           history.fval = [history.fval; optimValues.fval]; 
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           history.x = [history.x; x]; 
         % Concatenate current search direction with  
         % searchdir. 
           %searchdir = [searchdir;...  
                      %  optimValues.searchdirection']; 
%            plot(x(1),x(2),'o'); 
         % Label points with iteration number and add title. 
         % Add .15 to x(1) to separate label from plotted 'o' 
%            text(x(1)+0.0025,x(2),...  
%                 num2str(optimValues.iteration)); 
%            title('Sequence of Points Computed by fmincon'); 
         case 'done' 
             hold off 
         otherwise 
     end 
 end 
  
 function f = objfun(x) 
     f = -
(((0.3*sqrt(8.155^3/(0.165*0.314^2)))/10)*0.157*(180/pi*x(1))*(sqrt((1+x(2))^2-(1-
x(3))^2)-sqrt(1-(1-x(3))^2))); 
 end 
  
 function [c, ceq] = confun(x) 
     % Nonlinear inequality constraints 
%      c = [1.5 + x(1)*x(2) - x(1) - x(2); 
%          -x(1)*x(2) - 10]; 
     c = []; 
     % Nonlinear equality constraints 
     ceq = []; 
 end 
end 
 

%Assuming Constants from Ding wheel from article 
r = 0.157; %m Radius 
D = r+r; %m Diameter 
W = 8.155; %Kg Weight of wheel only 
b = 0.165; %m 
K = 0.3; %Empiric soil parameter 
T = 10; %N/m Torque 
 
%Constraints 
%x0 = [0,0,0]; 
lb = [(1*(180/pi)),0.1,0.05]; 
ub = [360,0.157,0.15]; 
x0 = (lb+ub)/3; 
 
%3D Graph 
x1AS = ([1;1])*(180/pi); 
x2AS = [0.1;0.157]; 
x3AS = [0.05;0.05]; 
x1SQP = ([1;1;1;1])*(180/pi); 
x2SQP = [0.1;0.157;0.157;0.157]; 
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x3SQP = [0.05;0.05;0.05;0.05]; 
x1IP = 
([1.99;1.9436;1.6983;1.6111;1.3572;1.0018;1.0047;1.0024;1.0041;1.0034;1.0034;1.0034;1
.0034;1.0007;1.0007;1.0007;1.0001;1.0001;1;1;1])*(180/pi); 
x2IP = 
[0.1257;0.1287;0.1569;0.1564;0.1563;0.1565;0.1565;0.1564;0.1564;0.1564;0.1564;0.1563;
0.1563;0.1569;0.1569;0.1569;0.157;0.157;0.157;0.157;0.157]; 
x3IP = 
[0.095;0.091;0.0558;0.05;0.0509;0.0506;0.0506;0.0506;0.0506;0.0507;0.0507;0.0507;0.05
07;0.0502;0.0501;0.0501;0.05;0.05;0.05;0.05;0.05]; 
 
figure 
plot3(x1AS,x2AS,x3AS,'bo-','LineWidth',3) 
hold on 
plot3(x1SQP,x2SQP,x3SQP,'ro-','LineWidth',1.5) 
hold on 
plot3(x1IP,x2IP,x3IP,'ko-','LineWidth',1) 
grid minor 
xlabel('x1') 
ylabel('x2') 
zlabel('x3') 
%title('Comparison of Algorithms using FIMCON'); 
legend('Active Set','SQP','Interior-Point') 
xlim([50,125]) 
ylim([0.1,0.2]) 
zlim([0.04,0.1]) 

 

9.4 A4 - Reliability Analysis (2 uncertainties) 

%% Set mean and standard deviation values 
close all; 
clear all; 
clc; 
 
n_MC = 1e6; 
mKu = 0.3; % x1 
mw = 8.155; 
%mT = 45; % x2 [N] 
%mz = 0.125; % x3 [m] 
%mh = 0.125; % x4 [m] 
%mphi = 20*(pi/180); % x5 [radians] 
sKu = mKu/10; 
sw = 1; 
%sT = 0.5; 
%sz = 0.1; 
%sh = 0.1; 
%sphi = 10*(pi/180); 
%sb = 0.2; 
eta0 = 0.2; 
D = 0.314; % Diameter of wheel 
b = 0.165; % width of wheel 
%w = 8.155; % Weight of wheel 
r = 0.157; % radius of wheel 
T = 10; %45; % Torque on wheel 
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%h = 0.157; % height of grouser is 10% the radius 
z = 0.1; %Zhat 
%phi = 1; %*(pi/180); %angle between 2 grousers is 18 degrees which is 20 grousers 
phi = 1; 
h = 0.157; %hhat 
%% Define limit state function g 
 
%Finding the partial derivatives for each variable 
%{ 
%Using formula from Graphical solution 
syms x1 x2  
g_fun0 = ((x1)/(2*T*phi))*(sqrt(x2^2/b))*(sqrt((1+h)^2-(1-z)^2)-sqrt(1-(1-z)^2))-eta0 
dgdx1_fun = vpa(diff(g_fun0,x1)) 
dgdx2_fun = vpa(diff(g_fun0,x2)) 
d2gdx21_fun = vpa(diff(dgdx1_fun,x1)) 
d2gdx22_fun = vpa(diff(dgdx2_fun,x2)) 
%} 
 
g_fun = @(x) ((180*x(1))/(2*T*phi*pi))*(sqrt(x(2)^2/b))*(sqrt((1+h)^2-(1-z)^2)-
sqrt(1-(1-z)^2))-eta0; 
dgdx_fun = @(x) 
[0.83420472593111707431784746329233*(6.0606060606060606060606060606061*x(2)^2)^(1/2); 
   
(5.0557862177643459049566512926808*x(1)*x(2))/(6.0606060606060606060606060606061*x(2)
^2)^(1/2)]; 
d2gdx2_fun = @(x) [0.0; 
    
(5.0557862177643459049566512926808*x(1))/(6.0606060606060606060606060606061*x(2)^2)^(
1/2) - 
(30.641128592511187302767583592005*x(1)*x(2)^2)/(6.0606060606060606060606060606061*x(
2)^2)^(3/2)]; 
%} 
%{ 
g_fun = @(x) ((x(1))/(2*T*phi))*(sqrt(x(2)^2/b))*(sqrt((1+h)^2-(1-z)^2)-sqrt(1-(1-
z)^2))-eta0;  
dgdx_fun = @(x) 
[0.01455960394499236254326186350336*(6.0606060606060606060606060606061*x(2)^2)^(1/2); 
    
(0.088240023909044621474314324262789*x(1)*x(2))/(6.0606060606060606060606060606061*x(
2)^2)^(1/2)]; 
d2gdx2_fun = @(x) [0.0; 
   
(0.088240023909044621474314324262789*x(1))/(6.0606060606060606060606060606061*x(2)^2)
^(1/2) - 
(0.53478802369117952408675348038054*x(1)*x(2)^2)/(6.0606060606060606060606060606061*x
(2)^2)^(3/2)]; 
%} 
 
%% Calculate Pf by FORM 
% 
% 
tic; 
m = [mKu;mw]; 
s = [sKu;sw]; 
tol = 1e-10; 
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er = 1; 
x = m; 
u = [0;0]; 
beta_old = 1; 
iter = 0; 
disp('  iter  g   beta   x(1)   x(2)   er'); 
beta_hist = []; 
g_hist = []; 
while er>tol 
    iter = iter + 1; 
    % (a) 
    g = g_fun(x); 
    dgdx = dgdx_fun(x) 
    m_g = real(g - sum(dgdx.*s.*u)); 
    s_g = real(sqrt( sum( (dgdx.*s).^2 ) )); 
    % (b) 
    beta = m_g/s_g; 
    alpha = -dgdx.*s/s_g; 
    % (c) 
    x = m + beta*s.*alpha; 
    u = (x - m)./s 
    er = abs(beta-beta_old)/beta_old; 
    beta_old = beta; 
    fprintf('%6.0f %6.4f %6.4f %6.4f %6.4f %6.4f\n',... 
        iter,g,beta,x(1),x(2),er); 
    beta_hist = [beta_hist,beta]; 
    g_hist = [g_hist,g]; 
end 
beta_FORM = beta; 
x_FORM = x; 
Pf_FORM = normcdf(-beta_FORM); 
R = 1 - Pf_FORM; 
time_FORM = toc; 
%% 
% 
% Plot convergence history for beta 
 
figure() 
set(gcf,'defaultlinelinewidth',2,'defaultaxesfontsize',13) 
plot(beta_hist,'-o'); 
xlabel('Iteration number');ylabel('$$\beta$$','Interpreter','latex'); 
title(['Convergence history. P_f=',num2str(Pf_FORM,3)]); 
legend(['Converged \beta=',num2str(beta_FORM)]); 
%% Calculate Pf using Breitung's method 
 tic; 
 dgdx = dgdx_fun(x_FORM); 
 d2gdx2 = d2gdx2_fun(x_FORM); 
 dgdu = dgdx.*s; 
 d2gdu2 = d2gdx2.*[s(1)^2,s(1)*s(2); s(2)*s(1), s(2)^2]; 
 absl_grad_g = norm(dgdu,2); 
 B = (1/absl_grad_g)*d2gdu2; 
 H0 = (1/absl_grad_g)*[-dgdu(1), -dgdu(2) ;0, 1]; 
 [H1,H2] = qr(H0'); 
 H(1,:) = H1(:,2); 
 H(2,:) = H1(:,1); 
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 HBHt = H*B*H'; 
 k1 = HBHt(1,1); 
 Pf_Breitung = normcdf(-beta_FORM)*(1 + k1*beta_FORM)^(-1/2); 
 time_Breitung = toc; 
%% Calculate Pf using Tvedt's method 
 toc; 
 A1 = Pf_Breitung; 
 A2 = (beta_FORM*normcdf(-beta_FORM) - normpdf(-beta_FORM))*... 
      ( (1 + beta_FORM*k1)^(-1/2) - ... 
        (1 + (beta_FORM + 1)*k1)^(-1/2) ); 
 A3 =  (beta_FORM + 1)*(beta_FORM*normcdf(-beta_FORM) - normpdf(beta_FORM))*... 
     ( (1 + beta_FORM*k1)^(-1/2) - ... 
       real((1 + (beta_FORM + 1i)*k1)^(-1/2))); 
 Pf_Tvedt = A1 + A2 + A3; 
 time_Tvedt = toc; 
%% Monte Carlo Simulations 
 
tic; 
%U_FORM = (x_FORM - m)./s; 
%ghat_SORM = @(U) g_fun(x_FORM) + dgdu'*(U-U_FORM) + 1/2*(U-U_FORM)'*d2gdu2*(U-
U_FORM); 
g_MC = zeros(n_MC,1); 
for i = 1:n_MC 
    x_rand = normrnd(m,s); 
    g_MC(i) = g_fun(x_rand); 
end 
time_MC = toc; 
Pf_MC = sum(g_MC<0.0)/n_MC; 
 
% tic; 
% U_FORM = (x_FORM - m)./s; 
% ghat_SORM = @(U) g_fun(x_FORM) + dgdu'*(U-U_FORM) + 1/2*(U-U_FORM)'*d2gdu2*(U-
U_FORM); 
% n_MC = 1e7; 
% g_SORM = zeros(n_MC,1); 
% for i = 1:n_MC 
%     x_rand = normrnd(m,s); 
%     g_SORM(i) = ghat_SORM((x_rand-m)./s); 
% end 
% time_MC_SORM = toc; 
% Pf_MC_SORM = sum(g_SORM<0)/n_MC; 
% %% Print Results 
% % 
% % Since the probability is of the order of 10^(-5), i.e. 1 in 100,000, a large 
number of Monte Carlo simulations have to be done to get correct result. 
% % 
 
fprintf('Sr.No.  Method         Sampling          Pf      R          Time (s)\n'); 
fprintf('1       FORM           --       %10.4E   %10.4E  
%10.4f\n',Pf_FORM,R,time_FORM); 
fprintf('2       SORM-Breitung  --       %10.4E    --         
%10.4f\n',Pf_Breitung,time_Breitung); 
fprintf('3       SORM-Tvedt     --       %10.4E    --         
%10.4f\n',Pf_Tvedt,time_Tvedt); 
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fprintf('4       FORM           MCS      %10.4E    --         

%10.4f\n',Pf_MC,time_MC); 

 

9.5 A5  Reliability Analysis (3 uncertainties) 

%% Set mean and standard deviation values 
close all; 
clear all; 
clc; 
 
n_MC = 1e6; 
mKu = 0.3; % x1 
mw = 8.155; 
%mT = 45; % x2 [N] 
%mz = 0.125; % x3 [m] 
%mh = 0.125; % x4 [m] 
%mphi = 20*(pi/180); % x5 [radians] 
sKu = mKu/10; 
sw = 1; 
%sT = 0.5; 
%sz = 0.1; 
%sh = 0.1; 
%sphi = 10*(pi/180); 
eta0 = 0.2; 
D = 0.314; % Diameter of wheel 
mb = 0.165; % width of wheel 
sb = mb/10; 
%w = 8.155; % Weight of wheel 
r = 0.157; % radius of wheel 
T = 10; % Torque on wheel 
%h = 0.157;  
%z = 0.05*r; 
%phi = 1;%*(pi/180); %angle between 2 grousers is 18 degrees which is 20 grousers 
phi = 1; 
h = 0.156999809485354; 
z = 0.05; 
 
%% Define limit state function g 
 
%{ 
syms x1 x2 x3 
g_fun0 = (((x1*sqrt(x2^3/(x3*D^2)))/T)*r*(6.28/(phi))*(sqrt((1+h)^2-(1-(z*r))^2)-
sqrt(1-(1-(z*r))^2))) - eta0; 
dgdx1_fun = vpa(diff(g_fun0,x1)) 
dgdx2_fun = vpa(diff(g_fun0,x2)) 
dgdx3_fun = vpa(diff(g_fun0,x3)) 
d2gdx21_fun = vpa(diff(dgdx1_fun,x1)) 
d2gdx22_fun = vpa(diff(dgdx2_fun,x2)) 
d2gdx23_fun = vpa(diff(dgdx3_fun,x3)) 
%} 
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g_fun = @(x) (((x(1)*sqrt(x(2)^3/(x(3)*D^2)))/T)*r*(6.28/(phi))*(sqrt((1+h)^2-(1-
(z*r))^2)-sqrt(1-(1-(z*r))^2))) - eta0; 
dgdx_fun = 
@(x)[0.046356543685876908811760443995809*((10.142399285975089950224440653537*x(2)^3)/
x(3))^(1/2); 
    
(0.70524986336986653660847222568155*x(1)*x(2)^2)/(x(3)*((10.1423992859750899502244406
53537*x(2)^3)/x(3))^(1/2)); 
    -
(0.23508328778995551220282407522718*x(1)*x(2)^3)/(x(3)^2*((10.14239928597508995022444
0653537*x(2)^3)/x(3))^(1/2))]; 
d2gdx2_fun = @(x) [0.0; 
    
(1.4104997267397330732169444513631*x(1)*x(2))/(x(3)*((10.1423992859750899502244406535
37*x(2)^3)/x(3))^(1/2)) - 
(10.729388566014846158418467639437*x(1)*x(2)^4)/(x(3)^2*((10.142399285975089950224440
653537*x(2)^3)/x(3))^(3/2)); 
    
(0.47016657557991102440564815045437*x(1)*x(2)^3)/(x(3)^3*((10.14239928597508995022444
0653537*x(2)^3)/x(3))^(1/2)) - 
(1.1921542851127606842687186266041*x(1)*x(2)^6)/(x(3)^4*((10.142399285975089950224440
653537*x(2)^3)/x(3))^(3/2))]; 
 
%% Calculate Pf by FORM 
tic; 
m = [mKu;mw;mb]; 
s = [sKu;sw;sb]; 
tol = 1e-10; 
er = 1; 
x = m; 
u = [0;0;0]; 
beta_old = 1; 
iter = 0; 
disp('  iter  g   beta   x(1)   x(2)    x(3)     er'); 
beta_hist = []; 
g_hist = []; 
while er>tol 
    iter = iter + 1; 
    % (a) 
    g = g_fun(x); 
    dgdx = dgdx_fun(x) 
    m_g = real(g - sum(dgdx.*s.*u)); 
    s_g = real(sqrt( sum( (dgdx.*s).^2 ) )); 
    % (b) 
    beta = m_g/s_g; 
    alpha = -dgdx.*s/s_g; 
    % (c) 
    x = m + beta*s.*alpha; 
    u = (x - m)./s 
    er = abs(beta-beta_old)/beta_old; 
    beta_old = beta; 
    fprintf('%6.0f %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f\n',... 
        iter,g,beta,x(1),x(2),x(3),er); 
    beta_hist = [beta_hist,beta]; 
    g_hist = [g_hist,g]; 



 

55 
 

end 
beta_FORM = beta; 
x_FORM = x; 
Pf_FORM = normcdf(-beta_FORM); 
R = 1 - Pf_FORM; 
time_FORM = toc; 
%% 
% 
% Plot convergence history for beta 
 
figure() 
set(gcf,'defaultlinelinewidth',2,'defaultaxesfontsize',13) 
plot(beta_hist,'-o'); 
xlabel('Iteration number');ylabel('$$\beta_{HL}$$','Interpreter','latex'); 
title(['Convergence history. P_f=',num2str(Pf_FORM,3)]); 
legend(['Converged \beta_{HL}=',num2str(beta_FORM)]); 
%% Calculate Pf using Breitung's method 
tic; 
dgdx = dgdx_fun(x_FORM); 
d2gdx2 = d2gdx2_fun(x_FORM); 
dgdu = dgdx.*s; 
%d2gdu2 = d2gdx2.*[s(1)^2,s(1)*s(2); s(2)*s(1), s(2)^2]; 
d2gdu2 = d2gdx2.*[s(1)^2,s(1)*s(2),s(1)*s(3); s(2)*s(1),s(2)^2,s(2)*s(3); 
s(3)*s(1),s(3)*s(2),s(3)^2]; 
%absl_grad_g = norm(dgdu,2); 
absl_grad_g = norm(dgdu,3); 
B = (1/absl_grad_g)*d2gdu2; 
%H0 = (1/absl_grad_g)*[-dgdu(1), -dgdu(2) ;0, 1]; 
H0 = (1/absl_grad_g)*[-dgdu(1), -dgdu(2), -dgdu(3) ;0, 0, 1]; 
%[H1,H2] = qr(H0'); 
[H1,H2,H3] = qr(H0'); 
H(1,:) = H1(:,2); 
H(2,:) = H1(:,3); 
H(3,:) = H1 (:,1); 
HBHt = H*B*H'; 
k1 = HBHt(1,1,1); 
Pf_Breitung = normcdf(-beta_FORM)*(1 + k1*beta_FORM)^(-1/2); 
time_Breitung = toc; 
 
%% Calculate Pf using Tvedt's method 
toc; 
A1 = Pf_Breitung; 
A2 = (beta_FORM*normcdf(-beta_FORM) - normpdf(-beta_FORM))*... 
      ( (1 + beta_FORM*k1)^(-1/2) - ... 
        (1 + (beta_FORM + 1)*k1)^(-1/2) ); 
A3 =  (beta_FORM + 1)*(beta_FORM*normcdf(-beta_FORM) - normpdf(beta_FORM))*... 
     ( (1 + beta_FORM*k1)^(-1/2) - ... 
       real((1 + (beta_FORM + 1i)*k1)^(-1/2))); 
Pf_Tvedt = A1 + A2 + A3; 
time_Tvedt = toc; 
 
%% Monte Carlo Simulations 
 
tic; 
%U_FORM = (x_FORM - m)./s; 
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%ghat_SORM = @(U) g_fun(x_FORM) + dgdu'*(U-U_FORM) + 1/2*(U-U_FORM)'*d2gdu2*(U-
U_FORM); 
g_MC = zeros(n_MC,1); 
for i = 1:n_MC 
    x_rand = normrnd(m,s); 
    g_MC(i) = g_fun(x_rand); 
end 
time_MC = toc; 
Pf_MC = sum(g_MC<0.0)/n_MC; 
 
% tic; 
% U_FORM = (x_FORM - m)./s; 
% ghat_SORM = @(U) g_fun(x_FORM) + dgdu'*(U-U_FORM) + 1/2*(U-U_FORM)'*d2gdu2*(U-
U_FORM); 
% n_MC = 1e7; 
% g_SORM = zeros(n_MC,1); 
% for i = 1:n_MC 
%     x_rand = normrnd(m,s); 
%     g_SORM(i) = ghat_SORM((x_rand-m)./s); 
% end 
% time_MC_SORM = toc; 
% Pf_MC_SORM = sum(g_SORM<0)/n_MC; 
% %% Print Results 
% % 
% % Since the probability is of the order of 10^(-5), i.e. 1 in 100,000, a large 
number of Monte Carlo simulations have to be done to get correct result. 
% % 
 
fprintf('Sr.No.  Method         Sampling          Pf      R          Time (s)\n'); 
fprintf('1       FORM           --       %10.4E   %10.4E  
%10.4f\n',Pf_FORM,R,time_FORM); 
fprintf('2       SORM-Breitung  --       %10.4E    --         
%10.4f\n',Pf_Breitung,time_Breitung); 
fprintf('3       SORM-Tvedt     --       %10.4E    --         
%10.4f\n',Pf_Tvedt,time_Tvedt); 
fprintf('4       FORM           MCS      %10.4E    --         
%10.4f\n',Pf_MC,time_MC); 

 

9.6 A6  Deterministic optimization 

function [history,searchdir] = 
runfmincon_Vol_Deterministic(lb,ub,x0,v_fun,eta0,Ku,T,w,zHat,phi) 
 
% Set up shared variables with OUTFUN 
history.x = []; 
history.fval = []; 
searchdir = []; 
 
% Mimimize Volume 
options = optimoptions(@fmincon,'OutputFcn',@outfun,... 
    'Display','iter','Algorithm','interior-point');%,'FiniteDifferenceType', 
'central'); 
% 
nc = @(x) nonlin_con(x,eta0,Ku,T,w,zHat,phi); 
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% 
xsol = fmincon(v_fun,x0,[],[],[],[],lb,ub,nc,options); 
 
%{ 
% optFun = @(U) norm(U,2); 
nc = @(x) nonlin_con(x,g_fun,dgdx_fun); 
[x_opt,min_volume] = fmincon(optfun,x0,[],[],[],[],lb,ub,nc,options); 
%} 
 
    function stop = outfun(x,optimValues,state) 
        stop = false; 
 
        switch state 
            case 'init' 
                hold on 
            case 'iter' 
                % Concatenate current point and objective function 
                % value with history. x must be a row vector. 
                history.fval = [history.fval; optimValues.fval]; 
                history.x = [history.x; x]; 
                % Concatenate current search direction with 
                % searchdir. 
                %searchdir = [searchdir;... 
                %  optimValues.searchdirection']; 
                %            plot(x(1),x(2),'o'); 
                % Label points with iteration number and add title. 
                % Add .15 to x(1) to separate label from plotted 'o' 
                %            text(x(1)+0.0025,x(2),... 
                %                 num2str(optimValues.iteration)); 
                %            title('Sequence of Points Computed by fmincon'); 
            case 'done' 
                hold off 
            otherwise 
        end 
    end 
%{ 
    function f = objfun(x) 
        %f = -
(((0.3*sqrt(8.155^3/(x(1)*(2*x(2))^2)))/10)*x(2)*((6.28)/(1))*(sqrt((1+x(3))^2-(1-
(0.1))^2)-sqrt(1-(1-(0.1))^2))); 
        %f = (2*pi*r*b)+(360*r*b*h^hat) 
        %Volume as the objective function 
        f = (2*pi*x(2)*x(1)) + (360*x(2)*x(1)*x(3)) 
    end 
%} 
    function [c, ceq] = nonlin_con(x,eta0,Ku,T,w,zHat,phi) 
              
        % Nonlinear equality constraints 
        ceq = 0; 
        % Nonlinear inequality constraints 
        %Consider splitting into multiple terms 
        c = eta0-geteta(x,Ku,T,w,zHat,phi); 
         
    end 
end 
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clear; 
close all; 
% clc; 
% 
tic 
thickness = 0.002; % m 
lb = [0.112,0.15,0.1]; %b (wheel width) and r (radius of wheel) and h^hat (height of 
grousers)  
ub = [0.218,0.2,1]; 
x0 = (lb+ub)/3; 
eta0 = 0.2; 
Ku = 0.3; 
T = 10; 
zHat = 0.1; 
phi = 12; 
w = 8.155; 
%stnd = [0.02;0.05;0.05];  
 
%the g_fun 
% 2Pirb + 360rbh^hat 
v_fun = @(x) (pi*x(2)^2*x(1)) + (30*x(2)*x(1)*x(3)*thickness); 
%dvdx_fun = @(x) [2*pi*x(2) + 360*x(2)*x(3); 
 %   2*pi*x(1) + 360*x(1)*x(3); 
  %  360*x(1)*x(2)]; 
 
[history,searchdir] = 
runfmincon_Vol_Deterministic(lb,ub,x0,v_fun,eta0,Ku,T,w,zHat,phi);%,dvdx_fun) 
 
figure() 
set(gcf,'defaultlinelinewidth',2,'defaultaxesfontsize',13) 
plot(history.fval,'-o');  
xlabel('Iteration number');ylabel('Volume'); 
title('Iteration history'); 
 
etafinal = geteta(history.x (end,:),Ku,T,w,zHat,phi) 
b_final = history.x(end,1) 
r_final = history.x(end,2) 
h_hat_final = history.x(end,3) 
%w_final = history.x(end,4) 
volume_final = history.fval(end) 
toc 

 

9.7 A7  Reliability-based optimization 

runfmincon_Vol_ReliabilityBased.m [MATLAB] 

function [history,searchdir] = 
runfmincon_Vol_ReliabilityBased(lb,ub,x0,v_fun,mean_Ku,mean_T,stnd,g_fun_hHat,dgdx_fu
n_hHat,Pf_min) 
 
% Set up shared variables with OUTFUN 
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history.x = []; 
history.fval = []; 
searchdir = []; 
 
%dvdx_fun = @(x) [2*pi*x(2) + 360*x(2)*x(3); 
%    2*pi*x(1) + 360*x(1)*x(3); 
%    360*x(1)*x(2)]; 
%{ 
g_fun = @(x) geteta(x) - 2.0; 
dgdx_fun = @(x) [(4770475938498913*pi*(19^(1/2)/10 - ((x(3) + 1)^2 - 
81/100)^(1/2)))/(422212465065984000*x(1)^2*x(2)*(4770475938498913/(35184372088832*x(1
)*x(2)^2))^(1/2)); 
    (4770475938498913*pi*(19^(1/2)/10 - ((x(3) + 1)^2 - 
81/100)^(1/2)))/(211106232532992000*x(1)*x(2)^2*(4770475938498913/(35184372088832*x(1
)*x(2)^2))^(1/2)) - (pi*(19^(1/2)/10 - ((x(3) + 1)^2 - 
81/100)^(1/2))*(4770475938498913/(35184372088832*x(1)*x(2)^2))^(1/2))/6000; 
    (x(2)*pi*(2*x(3) + 
2)*(4770475938498913/(35184372088832*x(1)*x(2)^2))^(1/2))/(12000*((x(3) + 1)^2 - 
81/100)^(1/2));]; 
%} 
nc = @(x) nonlin_con(x,mean_Ku,mean_T,stnd,g_fun_hHat,dgdx_fun_hHat,Pf_min); 
 
%x0 = [0,0]; 
options = optimoptions(@fmincon,'OutputFcn',@outfun,... 
    'Display','iter','Algorithm','interior-point');%,'FiniteDifferenceType', 
'central'); 
 
xsol = fmincon(v_fun,x0,[],[],[],[],lb,ub,nc,options); 
 
 
% 
 
    function stop = outfun(x,optimValues,state) 
        stop = false; 
 
        switch state 
            case 'init' 
                hold on 
            case 'iter' 
                % Concatenate current point and objective function 
                % value with history. x must be a row vector. 
                history.fval = [history.fval; optimValues.fval]; 
                history.x = [history.x; x]; 
                % Concatenate current search direction with 
                % searchdir. 
                %searchdir = [searchdir;... 
                %  optimValues.searchdirection']; 
                %            plot(x(1),x(2),'o'); 
                % Label points with iteration number and add title. 
                % Add .15 to x(1) to separate label from plotted 'o' 
                %            text(x(1)+0.0025,x(2),... 
                %                 num2str(optimValues.iteration)); 
                %            title('Sequence of Points Computed by fmincon'); 
            case 'done' 
                hold off 
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            otherwise 
        end 
    end 
% 
    function [c, ceq] = 
nonlin_con(x,mean_Ku,mean_T,stnd,g_fun_hHat,dgdx_fun_hHat,Pf_min) 
              
        % Nonlinear equality constraints 
        ceq = 0; 
        % Nonlinear inequality constraints 
        m = [x(1);mean_Ku;mean_T];%x(4)]; 
        h_hat = x(3); 
        g_fun = @(s) g_fun_hHat(s,h_hat); 
        dgdx_fun = @(s) dgdx_fun_hHat(s,h_hat); 
        c = GetPf(m,stnd,g_fun,dgdx_fun) - Pf_min;  
    end 
end 

 

clear; 
close all; 
% clc; 
tic 
thickness = 0.002; % m 
lb = [0.132,0.15,0.1]; %b (wheel width) and r (radius of wheel) and h^hat (height of 
grousers)  
ub = [0.198,0.2,1]; 
x0 = (lb+ub)/3; 
eta0 = 0.2; 
Pf_min = 0.1; 
% 
v_fun = @(x) (pi*x(2)^2*x(1)) + (30*x(2)*x(1)*x(3)*thickness); 
% mean_b = 0.165: This is also a design variable 
mean_Ku = 0.3; 
mean_T = 10; 
stnd = [0.0165; 0.03; 1.0]; % stnd_b, stnd_Ku, stnd_T 
% h_hat = 0.1; 
zHat = 0.1; 
phi = 12; 
w = 8.155; 
g_fun_hHat = @(s,h_hat) s(2) / (2 * s(3) * phi * (pi/180)) * sqrt(w^3/s(1)) * ( sqrt( 
(1+h_hat)^2 - (1-zHat)^2 ) - sqrt( 1 - (1-zHat)^2 ) ) - eta0; 
% 
dgdx_fun_hHat = @(s,h_hat) [-(1/2)* s(2) / (2 * s(3) * phi * (pi/180)) * 
sqrt(w^3/s(1)^3) * ( sqrt( (1+h_hat)^2 - (1-zHat)^2 ) - sqrt( 1 - (1-zHat)^2 ) ) ; 
                           1 / (2 * s(3) * phi * (pi/180)) * sqrt(w^3/s(1)) * ( sqrt( 
(1+h_hat)^2 - (1-zHat)^2 ) - sqrt( 1 - (1-zHat)^2 ) ) ; 
                     -1* s(2) / (2 * s(3)^2 * phi * (pi/180)) * sqrt(w^3/s(1)) * ( 
sqrt( (1+h_hat)^2 - (1-zHat)^2 ) - sqrt( 1 - (1-zHat)^2 ) )]; 
 
[history,searchdir] = 
runfmincon_Vol_ReliabilityBased(lb,ub,x0,v_fun,mean_Ku,mean_T,stnd,g_fun_hHat,dgdx_fu
n_hHat,Pf_min); 
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figure() 
set(gcf,'defaultlinelinewidth',2,'defaultaxesfontsize',13) 
plot(history.fval,'-o');  
xlabel('Iteration number');ylabel('Volume'); 
title('Iteration history'); 
% 
b_final = history.x(end,1) 
r_final = history.x(end,2) 
h_hat_final = history.x(end,3) 
%w_final = history.x(end,4) 
eta_final = geteta(history.x (end,:),mean_Ku,mean_T,w,zHat,phi) 
% 
g_fun = @(s) g_fun_hHat(s,h_hat_final); 
dgdx_fun = @(s) dgdx_fun_hHat(s,h_hat_final); 
Pf_final = GetPf(history.x (end,:),stnd,g_fun,dgdx_fun) 
volume_final = history.fval(end) 

toc 

9.8 A8  Traction efficiency equation 

function eta = geteta (x,Ku,T,w,zHat,phi) 
b = x(1); 
% r = x(2) (not used) 
h_hat = x(3); 
%Constants 
%Ku = 0.3; 
%T = 10; 
%zHat = 0.1; 
%phi = 1; 
%w = x(4); 
%w = 8.155; 
 
% x(1) = b, x(2) = r, x(3) = h^hat 
 
eta = Ku / (2 * T * phi * (pi/180)) * sqrt(w^3/b) * ( sqrt( (1+h_hat)^2 - (1-zHat)^2 
) - sqrt( 1 - (1-zHat)^2 ) ) ; 
 
end 

 

9.9 A9  Probability of failure equation 

function [Pf_FORM,GradPf_FORM] = GetPf(m,s,g_fun,dgdx_fun) 
% m = [mKu;mw]; % Means 
% s = [sKu;sw]; % Std deviations 
tol = 1e-10; 
er = 1; 
m = m(:); 
s = s(:); 
x = m(:); 
u = [0;0;0]; 
beta_old = 1; 
iter = 0; 
disp('  iter  g   beta   x(1)   x(2)   x(3) er'); 
beta_hist = []; 
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g_hist = []; 
while er>tol 
    iter = iter + 1; 
    % (a) 
    g = g_fun(x); 
    dgdx = dgdx_fun(x); 
    m_g = g - sum(dgdx.*s.*u); 
    s_g = sqrt( sum( (dgdx.*s).^2 ) ); 
    % (b) 
    beta = m_g/s_g; 
    alpha = -dgdx.*s/s_g; 
    % (c) 
    x = m + beta*s.*alpha; 
    u = (x - m)./s; 
    er = abs(beta-beta_old)/beta_old; 
    beta_old = beta; 
    fprintf('%6.0f %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f\n',... 
        iter,g,beta,x(1),x(2),x(3),er); 
    beta_hist = [beta_hist,beta]; 
    g_hist = [g_hist,g]; 
end 
beta_FORM = beta; 
x_FORM = x; 
Pf_FORM = normcdf(-beta_FORM); 
% 
if nargout  > 1 
    dgdx_final = dgdx_fun(x_FORM); 
    s_g = sqrt( sum( (dgdx_final.*s).^2 ) ); 
    dbeta_dmu = dgdx_final/s_g; 
    GradPf_FORM = -normpdf(beta_FORM)*dbeta_dmu; 
end 
% 
end 
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