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Short-range gravity and Lorentz violation
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Comparatively few searches have been performed for violations of local Lorentz invariance in the
pure-gravity sector. We show that tests of short-range gravity are sensitive to a broad class of
unconstrained and novel signals that depend on the experimental geometry and on sidereal time.

Gravity is a universal but comparatively weak force.
This makes it challenging to study and today, some 350
years after Newton’s Principia, our experimental under-
standing of gravity remains in some respects remarkably
limited. On the scale of the solar system, we are confident
that Newton’s law describes the dominant physics and
that Einstein’s General Relativity provides accurate rel-
ativistic corrections. However, on larger scales we lack a
complete and compelling understanding, as evidenced by
dark energy. On smaller scales below about 10 microns,
it is presently unknown whether gravity obeys Newton’s
law, and forces vastly stronger than the usual inverse-
square behavior remain within the realm of possibility.

Perhaps the most crucial founding principle of General
Relativity is the Einstein equivalence principle. Two of
its ingredients are the weak equivalence principle, which
essentially states that gravity is flavor independent, and
local Lorentz invariance, which states that rotations and
boosts are local symmetries of nature. Developing a deep
understanding of gravity at all scales therefore depends
on strong experimental support for these principles. The
weak equivalence principle has been widely tested, but
tests of local Lorentz invariance have been largely lim-
ited to the pure-matter sector or to matter-gravity cou-
plings [1, 2]. Here, we undertake to address this gap by
focusing on violations of local Lorentz symmetry in the
pure-gravity sector.

Effective field theory is a powerful and unique tool
for investigating physics at attainable scales when defini-
tive knowledge of the underlying physics is lacking. It
is therefore well suited for exploration of local Lorentz
invariance in gravity. Indeed, the pure-gravity sector of
the effective field theory describing general local Lorentz
violations for spacetime-based gravitation can be formu-
lated as a Lagrange density containing the usual Einstein-
Hilbert term and cosmological constant, together with an
infinite series of operators of increasing mass dimension
d representing corrections to known physics at attainable
scales [3]. To date, however, experimental searches for lo-
cal Lorentz violation [4–10] and phenomenological stud-
ies [11, 12] within this framework have been restricted
to the so-called minimal sector, consisting of terms with
operators of the lowest mass dimension d = 4.

In the present work, we initiate a systematic study of
local Lorentz violation with d > 4, introducing explicit

expressions for d = 5 and 6 and investigating prospec-
tive experimental constraints. Operators of higher mass
dimension d involve more derivatives, which translate to
corrections to the Newton force law varying as 1/rd−2.
Short-range tests of gravity therefore offer the sharpest
sensitivities to effects from operators with d > 4 and are
our focus in what follows. Moreover, as discussed below,
the predicted signals contain novel features that to date
are unexplored in experiments.
We focus here on spontaneous violation of Lorentz

symmetry [13] in spacetime theories of gravity, since
the alternative of explicit Lorentz violation is generi-
cally incompatible with conventional Riemann geometry
or is technically unnatural in such theories [3]. Sponta-
neous Lorentz violation occurs when an underlying ac-
tion with local Lorentz invariance involves gravitational
couplings to tensor fields kαβ... that acquire nonzero
background values kαβ... [14]. The field fluctuations

k̃αβ... ≡ kαβ...−kαβ... include massless Nambu-Goldstone
and massive modes that affect the physics. The presence
of nonzero backgrounds means the resulting gravitational
phenomenology violates local Lorentz invariance, and so
the backgrounds kαβ... are called coefficients for Lorentz
violation [15].
In typical post-newtonian applications, the coefficients

kαβ... are assumed small on the relevant physical scale
and constant in asymptotically flat coordinates, and the
analysis is performed at linear order in the metric fluc-
tuation hαβ and the coefficients kαβ.... Elimination of

the fluctuations k̃αβ... can be achieved by imposing the
underlying diffeomorphism invariance on the dynamics,
thereby yielding a modified Einstein equation expressed
in terms of kαβ... and quantities such as the linearized
curvature tensor [11]. The phenomenology of the mod-
ified equation can then be explored and experimental
studies performed to search for local Lorentz violation.
More explicitly, we can write the Lagrange density of

the underlying action as the sum of four terms,

L = LEH + LLV + Lk + LM, (1)

where LEH =
√−g(R−2Λ)/16πGN is the usual Einstein-

Hilbert term with cosmological constant Λ, LLV describes
the gravitational coupling to the coefficient fields and
hence is the source of phenomenological gravitational
Lorentz violation, Lk contains the dynamics of the coeffi-
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cient fields triggering the spontaneous Lorentz violation,
and LM describes the matter. The term LLV can be writ-
ten as a series involving covariant gravitational operators
of increasing mass dimension d,

LLV =

√−g

16πGN
(L(4)

LV + L(5)
LV + L(6)

LV + . . .). (2)

Each term is formed by contracting the coefficient fields
kαβ... with gravitational quantities including covariant
derivatives Dα and curvature tensors Rαβγδ. Here, we
consider explicitly terms with 4 ≤ d ≤ 6, though much
of our discussion can be directly generalized to larger d.

The minimal term L(4)
LV with d = 4 is [3]

L(4)
LV = (k(4))αβγδR

αβγδ. (3)

The dimensionless coefficient field (k(4))αβγδ inherits the
symmetries of the Riemann tensor and can be decom-
posed into its traceless part tαβγδ, its trace sαβ, and its
double trace u. Within the post-newtonian treatment
outlined above, the coefficient u acts as an unobserv-
able rescaling of GN [16]. In pure gravity, the coefficient
sαβ can be removed via coordinate definitions [3], but
more generally it generates many phenomenological ef-
fects, and its 9 independent components have been con-
strained to varying degrees down to about 10−10 by nu-
merous analyses using data from lunar laser ranging [4],
atom interferometry [5, 6], short-range tests [7], satel-
lite ranging [8], precession of orbiting gyroscopes [9], pul-
sar timing [10], and perihelion and solar-spin precession
[8, 11]. The coefficient tαβγδ is absent at leading orders
in the post-newtonian expansion, and to date its 10 in-
dependent components have no known physical implica-
tions for reasons that remain mysterious (the ‘t puzzle’).
For d = 5, the general expression using curvature and

covariant derivatives is

L(5)
LV = (k(5))αβγδκD

κRαβγδ. (4)

In the linearized limit, or more generally under the oper-
ational definition of the CPT transformation [3], the ex-

pression DκRαβγδ is CPT odd. Any effects from L(5)
LV in

the nonrelativistic limit would therefore represent pseu-
dovector contributions to the associated Newton gravi-
tational force rather than conventional vector ones, and
hence they would lead to self accelerations of localized
bodies. Analogous issues are known for some CPT-odd
terms in other sectors [17]. Any stable models with terms

of the form L(5)
LV therefore cannot lead to effects on nonrel-

ativistic gravity, and so their phenomenology lies outside
our present scope.
Instead, we focus on Lorentz violation at d = 6, for

which we write L(6)
LV in the form

L(6)
LV = 1

2 (k
(6)
1 )αβγδκλ{Dκ, Dλ}Rαβγδ

+(k
(6)
2 )αβγδκλµνR

κλµνRαβγδ. (5)

The coefficient fields (k
(6)
1 )αβγδκλ and (k

(6)
2 )αβγδκλµν

have dimensions of squared length, or squared inverse
mass in natural units. In the first term, the anticommuta-
tor of covariant derivatives suffices for generality because
including the commutator would merely duplicate part

of the second term. The first four indices on (k
(6)
1 )αβγδκλ

inherit the symmetries of the Riemann tensor, as do the

first and last four indices on (k
(6)
2 )αβγδκλµν , while the

Bianchi identity implies the additional cyclic-sum con-

dition
∑

(γδκ) (k
(6)
1 )αβγδκλ = 0. The number of inde-

pendent components in (k
(6)
1 )αβγδκλ and (k

(6)
2 )αβγδκλµν

is therefore 126 and 210, respectively. The coefficients

(k
(6)
1 )αβγδκλ could arise from Lorentz-violating deriva-

tive couplings of fields to gravity in the underlying the-
ory. Models of this type are straightforward to con-
struct, although we are unaware of examples in the liter-

ature. The coefficients (k
(6)
2 )αβγδκλµν represent general

quadratic Lorentz-violating curvature couplings, specific
forms of which occur in many models as a result of in-
tegrating over fields in the underlying action that have
Lorentz-violating couplings to gravity. Examples include
Chern-Simons gravity [18, 19], the cardinal model [20],
and various types of bumblebee models [3, 21, 22].

To extract the linearized modified Einstein equation re-
sulting from the terms (5), we assume an asymptotically
flat background metric ηαβ as usual, and write the back-

ground coefficients as (k
(6)
1 )αβγδκλ and (k

(6)
2 )αβγδκλµν .

We remark that the procedure for linearization and elim-
ination of coefficient fluctuations outlined above [11] in-

volves no fluctuations for (k
(6)
2 )αβγδκλµν because these

contribute only at nonlinear order. After some calcula-
tion, we find the linearized modified Einstein equation
can be written in the form

Gµν = 8πGN (TM )µν + 2ŝαβGα(µν)β − 1
2 ûGµν

+a(k
(6)
1 )α(µν)βγδ∂

α∂βRγδ

+4(k
(6)
2 )αµνβγδǫζ∂

α∂βRγδǫζ , (6)

where Gαβγδ ≡ ǫαβκλǫγδµνR
κλµν/4 is the double dual

of the Riemann tensor and Gαβ ≡ Gγ
αγβ is the Ein-

stein tensor. In Eq. (6), all gravitational tensors are
understood to be linearized in hµν . Also, we have in-

troduced the scalar operator û = u + (u
(6)
1 )αβ∂

α∂β and

the tensor operator ŝαβ = sαβ + (s
(6)
1 )αβγδ∂

γ∂δ, where

(u
(6)
1 )γδ ≡ (k

(6)
1 )αβαβγδ is a double trace and (s

(6)
1 )αβγδ ≡

(k
(6)
1 )αǫβǫγδ − δαβ(u

(6)
1 )γδ/4 involves a single trace. Note

that the entire contribution from the d = 4 Lorentz-
violating term (3) is contained in û and ŝαβ , along with
comparable pieces of the d = 6 derivative term. This
structure may offer some insight into the t puzzle men-
tioned above. The parameter a in Eq. (6) is a model-
dependent real number that depends on the dynamics
specified by the Lagrange density Lk.
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The modified Einstein equation (6) is likely to imply
numerous phenomenological consequences both for rela-
tivistic effects such as gravitational waves and for non-
relativistic effects in post-newtonian gravity. Here, we
consider the nonrelativistic limit with zero cosmological
constant and for an extended source with mass density
ρ(r). The modified Einstein equation for the d = 6 terms
then reduces to a modified Poisson equation of the form

− ~∇2U = 4πGNρ+ (keff)jklm∂j∂k∂l∂mU, (7)

where U(r) is the modified Newton gravitational poten-
tial. In this equation, (keff)jklm are effective coefficients
for Lorentz violation with totally symmetric indices, re-
vealing that the number of independent observables for
Lorentz violation in the nonrelativistic limit is 15. These
effective coefficients are linear combinations of the d = 6
coefficients (k

(6)
1 )αβγδκλ and (k

(6)
2 )αβγδκλµν , the explicit

form of which is somewhat lengthy and irrelevant for
present purposes and so is omitted here, but we remark
in passing that many of the independent components

(k
(6)
1 )αβγδκλ and (k

(6)
2 )αβγδκλµν appear.

To solve the modified Poisson equation (7) we can
adopt a perturbative approach, with the Lorentz-
violating term assumed to generate a small correction
to the usual Newton potential. This is consistent with
the notion that the d = 6 Lorentz-violating term (5)
represents a perturbative correction to the Einstein-
Hilbert action on the length scales of experimental in-

terest. The nonperturbative scenario with L(6)
LV domi-

nating the physics could in principle also be of interest
but involves theoretical complexities that lie outside our
present scope. Within the perturbative assumption, the
solution to the modified Poisson equation (7) can be writ-
ten as

U(r) = GN

∫
d3r′

ρ(r′)

|r − r′|

(
1 +

k(R̂)

|r − r′|2

)

+ 4
5πGNρ(r)(keff)jkjk , (8)

where R̂ = (r − r′)/|r − r′|. The quantity k = k(r̂) is
an anisotropic combination of coefficients and a function
of r̂, given by

k(r̂) = 3
2 (keff)jkjk − 9(keff)jkll r̂

j r̂k

+ 15
2 (keff)jklm r̂j r̂k r̂l r̂m. (9)

The potential (8) contains the conventional Newton po-
tential and a correction term that varies with the inverse
cube of the distance. The final piece is a contact term
that becomes a delta function in the point-particle limit,
in parallel with the usual dipole contact term in electro-
dynamics.
The inverse-cube behavior of the potential leads to an

inverse-quartic gravitational field g = ∇U . The rapid
growth of the force at small distances suggests that the

best sensitivities to Lorentz violation could be achieved
in experiments on short-range gravity [23], which mea-
sure the deviation from the Newton gravitational force
between two masses. Next, we consider the signals in
experiments of this type.
In an Earth-based laboratory, measurements of the

force between two masses are instantaneously sensitive
to the coefficients (keff)jklm in the local frame. How-
ever, the laboratory frame is noninertial, so the Earth’s
rotation about its axis and revolution about the Sun in-
duce variations of these coefficients with sidereal time
T . The canonical frame adopted for reporting results
from experimental searches for Lorentz violation is the
Sun-centered frame [1, 24], with Z axis along the direc-
tion of the Earth’s rotation and X axis pointing towards
the vernal equinox 2000. Neglecting the Earth’s boost,
which is of order 10−4, the transformation from the Sun-
centered frame (X,Y, Z) to the laboratory frame (x, y, z)
can be accomplished using a time-dependent rotation
RjJ , where j = x, y, z and J = X,Y, Z. For example,
taking the laboratory z axis pointing to the local zenith
and the x axis pointing to local south, the rotation ma-
trix is

RjJ =




cosχ cosω⊕T cosχ sinω⊕T − sinχ
− sinω⊕T cosω⊕T 0

sinχ cosω⊕T sinχ sinω⊕T cosχ


 , (10)

where the angle χ is the colatitude of the laboratory and
ω⊕ ≃ 2π/(23 h 56 min) is the Earth’s sidereal frequency.
The T -dependent coefficients (keff)jklm in the laboratory
frame are then given by

(keff)jklm = RjJRkKRlLRmM (keff)JKLM (11)

in terms of constant coefficients (keff)JKLM in the Sun-
centered frame.
The sidereal variation of the laboratory-frame coeffi-

cients implies that the modified potential U and force
between two masses measured in the laboratory frame
vary with time T . For example, the modified potential
due to a point mass M takes the form

U(r, T ) =
GNM

r

(
1 +

k(r̂, T )

r2

)
(12)

away from the origin, where Eq. (11) is used to express
the combination k(r̂, T ) in Eq. (9) in terms of coefficients
(keff)JKLM in the Sun-centered frame. The modified
force therefore depends both on direction and on side-
real time, which leads to striking signals in short-range
experiments. For example, the time dependence in Eq.
(11) implies that the effective gravitational force between
two bodies can be expected to vary with frequencies up
to and including the fourth harmonic of ω⊕. Also, the
direction dependence of the laboratory-frame coefficients
(keff)jklm implies an asymmetric dependence of the sig-
nal on the shape of the bodies. A few simple results
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valid in conventional Newton gravity, such as the con-
stancy of the force at any point above an infinite plane
of uniform mass density, still hold for the potential (12).
However, for the finite bodies used in experiments it is
typically necessary to determine the potential and force
via numerical integration. Indeed, simple simulations for
experimental configurations such as two finite planes [25]
or a plane and a sphere [26] reveal that shape and edge
effects play an important role in determining the sensi-
tivity of the experiment to the coefficients for Lorentz
violation.

The modified potential (12) involves an inverse-cube
correction to the usual Newton result. Its time and orien-
tation dependence means that existing experimental lim-
its on spherically symmetric inverse-cube potentials can-
not be immediately converted into constraints on the co-
efficients (keff)JKLM , as typical experiments collect data
over an extended period and disregard the possibility
of orientation-dependent effects. Establishing definitive
constraints on the coefficients (keff)JKLM for Lorentz vi-
olation will therefore require new experimental analyses.
Next, we illustrate some of the issues involved by consid-
ering briefly one particular example: the EötWash limit
on inverse-cube potentials obtained using a torsion pen-
dulum [27, 28].

The apparatus in this experiment consists of a test-
mass bob in the shape of a disk with 42 cylindrical holes
arranged in two concentric circles, suspended by a fiber
through its center and normal to its plane. A similar
disk serving as the source mass is placed below and ro-
tated, thereby producing a periodic torque on the upper
disk of strength and harmonic signature determined by
deviations from the inverse square law. The experiment
yielded a limit [28] on a spatially homogeneous and time-
independent inverse-cube potential that in the present
context can be interpreted as a constraint on an aver-
aged coefficient given by 〈k(r̂, T )〉 < 1.3 × 10−10 m2 at
the 68% confidence level. The averaging involves both
spatial and time smearing, which cannot be performed
exactly without careful modeling of the apparatus and
incorporating the time stamps for the data. Nonetheless,
a crude estimate for the type of constraint that would
emerge from a detailed reanalysis can be obtained by
modeling the apparatus using a numerical simulation in-
volving 21 point masses on a ring above another 21 point
masses on a second ring rotating at fixed frequency. Us-
ing the transformation (10) for colatitude χ ≃ 42◦ and
averaging the results over a sidereal day reveals that in
this simple simulation only six independent coefficients
control the averaged Lorentz-violating torque, and they
appear in the combination

ksimulation ≡ (keff)XXZZ + (keff)Y Y ZZ

+0.4(keff)XXXX + 0.4(keff)Y Y Y Y

+0.8(keff)XXY Y + 0.3(keff)ZZZZ . (13)

As expected for an averaging analysis, the torque is
found to mimic closely that obtained using a spheri-
cally symmetric inverse-cube potential. Using Eqs. (9)
and (11) together with the above experimental con-
straint on 〈k(r̂, T )〉, we can deduce the crude constraint
|ksimulation| ∼< 10−11 m2. Although only an approxima-
tion to an exact analysis, this procedure does give a feel
for the sensitivity to Lorentz violation currently attain-
able in tests of short-range gravity.
Given the novel features of short-range tests of local

Lorentz violation in gravity and the wide variety of exper-
iments in the literature, it is useful to identify a measure
serving as a rapid gauge of the reach of a given exper-
iment. As seen above, a definitive answer to this ques-
tion requires careful simulation of the experiment, but a
rough estimate can be obtained by taking advantage of
the common practice for experiments testing short-range
gravity to report results in terms of two parameters α, λ
appearing in a potential modified by a Yukawa-like term,
UYukawa = GNM(1+αe−r/λ)/r. Comparing this Yukawa
form with the potential (12) indicates that experiments
attaining sensitivities to α and λ at distances r ≈ λ can
be expected to have sensitivities to Lorentz violation of
order |k(r̂, T )| ≈ αλ2/e and hence using Eq. (9) a coeffi-
cient reach of order

|(keff)JKLM | ≈ αλ2/10. (14)

Note, however, that sensitivity to the perturbative
Lorentz violation considered here implies that the ex-
periment must be able to detect usual Newton gravity,
which is the case for only a subset of experiments re-
ported in the literature. Note also that different experi-
ments are typically sensitive to distinct linear combina-
tions of (keff)JKLM .
Within this perspective, the most interesting short-

range experiments are those at small λ that are sensitive
to the usual Newton force. For example, the EötWash
experiment described above achieves sensitivity of order
α ≃ 10−2 at λ ≃ 10−4 m, which suggests a reach for
Lorentz violation of order |(keff)JKLM | ≃ 10−11 m2, in
agreement with the estimate from the simulation (13).
As another example, the Wuhan experiment [29] attains
α ≃ 10−3 at λ ≃ 10−3 m, for which Eq. (14) gives
the estimate |(keff)JKLM | ≃ 10−10 m2. Similarly, the
early Irvine experiment [30] achieved α ≃ 3 × 10−3 at
λ ≃ 10−2 m, yielding an approximate reach of order
|(keff)JKLM | ≃ 3×10−8 m2. In contrast, the Indiana ex-
periment [25] sits on the cusp of the perturbative limit,
achieving α ≃ 1 at λ ≃ 10−4 m and hence having an
estimated sensitivity of order |(keff)JKLM | ≃ 10−9 m2.
In some gravity theories with violations of Lorentz in-

variance, the predicted effects can be comparatively large
while escaping detection to date [31]. The above esti-
mated sensitivities suggest terms in the pure-gravity sec-
tor with d > 4 are interesting candidates for such coun-
tershaded effects because the Planck length ≃ 10−35 m
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lies far below the range accessible to existing laboratory
experiments on gravity. In any case, short-range tests
of gravity offer an excellent opportunity to search for
local Lorentz violation involving operators with d > 4,
thereby establishing the Einstein equivalence principle
for the pure-gravity sector on a complete and firm ex-
perimental footing.
We thank Ricardo Decca and Josh Long for valuable

discussions. This work was supported in part by the De-
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[1] V.A. Kostelecký and N. Russell, Data Tables for Lorentz

and CPT Violation, 2015 edition, arXiv:0801.0287v8.
[2] C.M. Will, Liv. Rev. Rel. 17, 4 (2014).
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