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The purpose of this research was to develop a novel routing model for delivery of 

medical supplies using unmanned aircraft systems, improving existing vehicle routing 

models by using patient risk as the primary minimization variable. 

The vehicle routing problem is a subset of operational research that utilizes 

mathematical models to identify the most efficient route between sets of points. Routing 

studies using unmanned aircraft systems frequently minimize time, distance, or cost as 

the primary objective and are powerful decision-making tools for routine delivery 

operations. However, the fields of emergency triage and disaster response are focused on 

identifying patient injury severity and providing the necessary care. This study addresses 

the misalignment of priorities between existing routing models and the emergency 

response industry by developing an optimization model with injury severity to measure 

patient risk. 

Model inputs for this study include vehicle performance variables, environmental 

variables, and patient injury variables. These inputs are used to construct a multi-

objective mixed-integer nonlinear programming (MOMINLP) optimization model with 

the primary objective of minimizing total risk for a set of patients. The model includes a 
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secondary aim of route time minimization to ensure optimal fleet deployment but is 

constrained by the risk minimization value identified in the first objective. This multi-

objective design ensures risk minimization will not be sacrificed for route efficiency 

while still ensuring routes are completed as expeditiously as possible. 

The theoretical foundation for quantifying patient risk is based on mass casualty 

triage decision-making systems, specifically the emergency severity index, which focuses 

on sorting patients into categories based on the type of injury and risk of deterioration if 

additional assistance is not provided. Each level of the Emergency Severity Index is 

assigned a numerical value, allowing the model to search for a route that prioritizes injury 

criticality, subject to the appropriate vehicle and environmental constraints. 

An initial solution was obtained using stochastic patient data and historical 

environmental data validated by a Monte Carlo simulation, followed by a sensitivity 

analysis to evaluate the generalizability and reliability of the model. Multiple what-if 

scenarios were built to conduct the sensitivity analysis. Each scenario contained a 

different set of variables to demonstrate model generalizability for various vehicle 

limitations, environmental conditions, and different scales of disaster response.  

The primary contribution of this study is a flexible and generalizable optimization 

model that disaster planning organizations can use to simulate potential response 

capabilities with unmanned aircraft. The model also improves upon existing optimization 

tools by including environmental variables and patient risk inputs, ensuring the optimal 

solution is useful as a real-time disaster response tool. 
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Chapter I 

Introduction  

Natural disasters affect approximately 210 million people each year, resulting in a 

global average of over 78,000 lives lost annually, according to the International Disaster 

Database (n.d.). Countries are responsible for developing tailored disaster response plans 

based on available resources, with the U.S. allocating almost $8 billion to the disaster 

relief fund in 2018 (Painter, 2019). Unmanned aircraft can be a valuable and inexpensive 

alternative to manned surveillance and delivery methods (Christie et al., 2016; Langford 

& Emanuel, 1993), and research on integrating small unmanned aircraft systems (sUAS) 

into disaster response plans have shown promising results. sUAS, commonly referred to 

as drones, are remotely piloted aircraft weighing less than 55 lb (24.95 kg) (sUAS 

Operations, 2016). In 2019, the University of Maryland used an sUAS to deliver a kidney 

to a critically ill patient needing a transplant (Freeman, 2019), demonstrating the 

reliability and feasibility of using the technology for medical delivery. UPS Flight 

Forward, a participant in the Federal Aviation Administration’s (FAA) Integration Pilot 

Program, conducted the first package delivery under Title 14 C.F.R. Part 135 when 

medical supplies were flown to WakeMed hospital in Raleigh, North Carolina, in 2019 

(FAA, 2019a). These achievements were both significant milestones in the U.S., although 

regulatory restrictions continue to slow industry growth in controlled airspace. A U.S.-

based company, Zipline International Inc., is routinely using sUAS to deliver blood to 

patients in rural Rwanda, reducing the waste of blood products by more than 95% 

(Campanaro, 2018). 
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For the purpose of this research, the terminology for unmanned aircraft is 

unmanned aircraft systems (UAS), or sUAS for small unmanned aircraft weighing under 

55 lb (24.95 kg). UAS refers to not only unmanned aircraft (UA), but the ground control 

station, antennas, and other support equipment needed to conduct flight operations. 

Historically, the term unmanned aerial vehicle (UAV) has been used as well, primarily by 

military operators and foreign entities. The term drone is seldom used within the industry, 

as it refers to platforms designed to be used in military anti-aircraft training where UA 

are routinely used as targets. However, the term has become synonymous with UAS in 

the media and general lexicon. While this study uses UAS to identify all portions of the 

unmanned system, previous studies use different terminology, and it should be 

understood that UAS, UAV, UA, and drone can be used interchangeably and are referring 

to the same type of technology.  

The U.S. non-model fleet of sUAS is projected to reach 1,550,000 units in 2025, 

with a majority (65%) expected to be consumer-grade sUAS. As regulations allow for 

increased commercial operations, the market share for professional-grade sUAS is 

projected to increase as well (FAA, 2021a). Other countries are already utilizing sUAS in 

novel ways, partly due to the lack of regulatory restrictions in countries like Brazil, 

Mexico, Japan, and developing African nations (Ison et al., 2014). A 2016 study from the 

University of San Diego on worldwide unmanned aircraft usage found the U.S. is home 

to more than one-third of all commercial drone operations, and while government 

regulation remains scattered and inconsistent, industry trends indicate growth in UAS use 

for scientific research, conservation, public safety, and emergency response (Choi-

Fitzpatrick et al., 2016). It has been established that UAS are beneficial in assisting with 
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disaster recovery efforts, although researchers have determined that UAS are not being 

appropriately utilized due to unclear risks and the inability to receive rapid approval for 

operations (Clothier et al., 2015). 

In the U.S., emergency response is managed by the Federal Emergency 

Management Agency (FEMA). According to FEMA, a successful disaster response plan 

requires coordination between local, state, and federal agencies. The plan should cover 

the four phases of emergency management: mitigation, preparedness, response, and 

recovery (FEMA, 2017). In the immediate aftermath of a natural disaster, emergency 

managers focus on providing critical care to the affected population, usually by 

establishing echelons of triage facilities from an identified “ground zero” location (Dara 

et al., 2005). This approach could leave rural areas without adequate medical attention 

from first responders, especially if environmental hazards do not allow for ground 

transportation of lifesaving medicine. According to the Rural Sociological Society, 55% 

of the population affected by Hurricane Katrina were categorized as non-metro residents 

even though a majority of the relief effort focused on the New Orleans metro area (Saenz 

& Peacock, 2006). Future disasters could follow similar trends, making optimization 

models valuable for rural emergency planning and response. Previous literature explores 

the imbalance between rural and urban communities regarding their ability to effectively 

manage the necessary emergency planning and response (Kapucu et al., 2013). This 

imbalance can be attributed to socioeconomic variables such as civic engagement and 

leadership experience, as well as environmental variables like geographic distance and 

natural boundaries. 
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Unmanned aircraft are already being used to deliver medical supplies to rural 

areas, with previous simulation models establishing the economic advantage of using 

inexpensive unmanned platforms to reduce the logistics cost per dose administered by 

20% (Haidari et al., 2016). Using sUAS to deliver medical supplies to areas that would 

not normally be accessible due to logistical limitations is critically important. However, 

coordinating multiple sUASs is a complex endeavor requiring an understanding of both 

emergency management and sUAS operations. A useful model must include stochastic 

environmental variables and vehicle performance variables to ensure each sUAS is 

loaded with the correct medicine for multiple patients while ensuring the vehicle can 

return safely prior to fuel exhaustion. Previous research attempting to model airborne 

delivery in an emergency response system (Boutilier et al., 2017; Chowdhury et al., 

2017) has been largely theoretical and does not model the necessary variables to obtain a 

practically useful solution. This study addresses this gap in the research literature by 

introducing a practical and theoretically significant optimization model with the primary 

objective of minimizing risk to injured patients awaiting medical treatment and a 

secondary objective of minimizing travel time. Minimizing the route travel time ensures 

optimal utilization of available assets, leading to reduced operating costs and additional 

flexibility for other sUAS missions. 

Statement of the Problem 

Previous studies on UAS routing have focused on optimizing spatial coverage for 

surveillance purposes (Liu et al., 2013; Liu et al., 2014) or minimizing operational costs 

for parcel delivery through vehicle routing problems (Karak & Abdelghany, 2019) and do 

not address the unique conditions present during disaster relief efforts. While some 
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researchers have attempted to model UAS routing for medical delivery (Rabta et al., 

2018), these studies have not considered important factors such as injury severity, vehicle 

limitations, uncontrollable environmental variables, and coordination between multiple 

vehicles to minimize total travel time. Optimization models need to include these 

variables to be useful for practical operation and allow emergency management personnel 

to determine the optimal routing for medicine delivery. 

Determining optimal sUAS routing to minimize risk will help first responders 

care for the greatest number of patients with respect to the severity of their injuries. 

Without an optimization model that considers injury severity, a simple routing model 

could result in suboptimal sUAS utilization for disaster response, increasing the risk of 

further patient deterioration. Traditional routing problems will usually find the shortest 

path between injured patients within the constraints of the vehicle endurance and payload 

capacity, but if the last stop on a route is an epinephrine delivery to a patient having an 

allergic reaction, the risk of that patient deteriorating is much higher than if the 

epinephrine was delivered first. An operationally useful model should consider injury 

severity and find an optimal solution based on patient risk. 

Purpose Statement 

This research study focuses on developing and validating a novel, quantitative 

optimization model to inform decision-makers on optimal sUAS vehicle routing that 

minimizes the total risk to patients in the affected area within the constraints of sUAS 

system limitations. The model also includes the secondary objective of minimizing the 

total route time utilizing a multi-objective mixed integer nonlinear programming model 

(MOMINLP) method. The model’s effectiveness, usability, and scalability are evaluated 
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through an iterative sensitivity analysis of multiple what-if scenarios to confirm model 

reliability and generalizability. 

Significance of the Study 

This study extends previous research on unmanned routing studies by improving 

on existing routing models designed for parcel delivery and other non-emergency 

operations. Current literature indicates misalignment between current routing studies 

designed to optimize cost or distance and emergency response plans designed to optimize 

the efficiency of response in relation to injury severity. This novel decision-making 

model includes environmental variables and sUAS vehicle limitations to capture the 

conditions present during disaster response in rural areas, with the objective functions of 

minimizing patient risk and route time. The validated model provides researchers with a 

tool to answer future research questions related to the study of sUAS routing and disaster 

response. The theoretical significance of this study is the provision of a framework for 

unifying the disaster-response- and vehicle-routing disciplines within decision theory by 

developing an optimization model for sUAS for emergency management. 

The practical significance of this study lies in the development of an optimization 

model that provides emergency planners with a tool to understand the capabilities of 

sUAS for medical delivery. The model is significant as a new capability to evaluate the 

benefit of purchasing additional aircraft, upgrading to more capable sUAS platforms, and 

studying the impact of varying environmental conditions. In addition to emergency 

planning, the model can assist in real-time decision-making during a natural disaster. The 

optimal route objectively determines how to minimize risk to the greatest number of 

patients and minimize travel time to those patients, increasing the effectiveness of the 
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overall disaster response to the affected rural community and ensuring proper utilization 

of sUAS technology in a disaster response plan.  

The National Preparedness System in the U.S., as defined by FEMA (2017), is 

designed to be used by the entire community, including local, state, and federal 

governments. This tiered approach to disaster planning means the practical applications 

of the model can be useful to agencies of varying scope and size. Local police agencies 

are already attempting to utilize unmanned technology in rural areas (Baumgarten, 2018), 

but coordinated sUAS response optimizing multiple aircraft for delivery or surveillance is 

not being utilized. During disaster response, local agencies are often the first to reach 

affected individuals, and this model can inform local emergency management plans. State 

agencies are also employing unmanned technology; the Arkansas Game and Fish 

Commission recently implemented a training program for utilizing sUAS for fisheries 

and wildlife management (Fernando et al., 2019). State responsibilities during emergency 

response include financial assistance and response efforts (FEMA, n.d.). On the federal 

level, FEMA utilizes the Unmanned Aircraft System Team to improve situational 

awareness through remote sensing (FEMA, 2017), indicating a commitment to employ 

sUAS for emergency response. Regardless of size and scope, these agencies utilize the 

same technology for public health and safety. This optimization model is practically 

significant to organizations responsible for the health and safety of rural populations in 

the U.S.  
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Research Questions 

This study is designed to identify the optimal sUAS routing for medical supply 

delivery to minimize the health risk, with a secondary goal of achieving the minimum 

total travel time. The research questions (RQ) are: 

RQ1 

What are the key variables related to sUAS medical delivery in rural areas during 

disaster relief efforts? 

RQ2 

What is the mathematical relationship between the decision variables and 

objective variables? 

RQ3 

What is the optimal routing solution for medical supply delivery using sUAS to 

minimize patient risk and travel time?  

RQ4 

To what extent are the optimal solutions affected by various scenarios? 

Delimitations 

This research study focuses on the variables involved in sUAS medical delivery 

during disaster response in rural areas. Urban environments are generally a focal point of 

state and federal response to natural disasters due to population density and the 

availability of hospitals and shelters, which can leave rural communities to rely on the 

resources of local agencies, private institutions, or volunteer organizations. In addition to 

limited funding, these areas can also face geographical challenges resulting in longer 

response times, especially if a natural disaster makes traditional transportation methods 
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difficult or impossible. Because of the challenges facing disaster response in sparsely 

populated and underserved communities, the model is delimited to rural environments 

where sUAS can be used as the optimal delivery method for time-critical medical 

supplies. 

Because sUAS regulations can vary significantly between countries (Ison et al., 

2014), the study is delimited to emergency response operations inside the U.S. National 

Airspace System (NAS). While the relationship between stochastic patient variables and 

deterministic vehicle variables remains valid for international locations, the model would 

require additional modification to account for regulatory changes in any environment 

outside the U.S. In the U.S., small UAS (sUAS) weighing less than 55 lb (24.95 kg) can 

legally operate at altitudes of 400 ft (121.92 m) above ground level (AGL) and below 

with waivers available for beyond line of sight operations (Operation and Certification of 

Small Unmanned Aircraft, 2016). 

The scope is also limited to sUAS and does not consider variables for larger 

platforms due to Title 14 C.F.R. §107 regulations restricting the operation of larger 

vehicles without a waiver. Part 107 restrictions for altitude, airspeed, and weight 

limitations are also considered study delimitations. Additionally, because of the 400 ft 

(121.92 m) altitude restriction for sUAS operating under Part 107, this study does not 

consider interaction with manned aircraft assisting in other disaster response missions. 

Manned-unmanned separation is considered procedural, meaning the controlling agency 

in charge of air traffic specifies separation minimums, therefore, sense-and-avoid 

technology is not necessary for this type of operation. Part 107 regulations restrict flight 

operations in instrument meteorological conditions (IMC) or under instrument flight rules 
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(IFR), which require additional onboard equipment, higher altitudes for radar coverage, 

and indirect ATC routing. While there could be value in using sUAS to deliver medical 

equipment in suboptimal weather conditions when manned aviation could not operate, 

this study is delimited to visual operations to comply with current FAA regulations. Line 

of sight requirements, access to controlled airspace, and flights over populated areas are 

not delimitations because FAA waivers exist for these types of operations. 

In the U.S., emergency responders use the Emergency Severity Index (ESI) to 

categorize patients according to risk. The ESI includes time-based checkpoints to help 

responders appropriately assess risk and assign an injury severity. For example, an injury 

requiring assistance within 60 min is categorized as an immediate injury. The study is 

delimited to patients whose injury can be categorized by the ESI, with a numerical value 

assigned to each injury level. Assigning a time-sensitive value to an injury severity 

allows for an objective assessment of overall risk in a given environment. Details on the 

theoretical foundation of injury severity and risk minimization are discussed in Chapter 

II. Numerical values for ESI categories are explained in Chapter III. 

Limitations and Assumptions 

Because sUAS reliability varies between platforms and accurate accident data is 

challenging to obtain, it is assumed that all sUAS are properly maintained and can 

complete each round-trip delivery without mechanical failure. Additionally, it is assumed 

that each mission is initiated with full fuel or battery capacity, and the endurance, speed, 

and payload capacity are equal and constant among all sUAS used. 

During emergency response operations, multiple aircraft frequently share limited 

airspace. It is assumed that the FAA coordinates procedural control of the airspace over 
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an affected area, allowing for appropriate separation between other sUAS traffic 

conducting similar deliveries and surveillance flights or manned medivac flights in the 

vicinity of the delivery area. While it is possible a patient may require multiple types of 

medicine or multiple patients with varying injury severities exist at a given location, for 

this study it is assumed that the first responders conducting the severity categorization 

report the most severe injury and the total required medicine. 

This study does not include variables to account for the possibility of air traffic 

congestion delays or conflict. The scope is limited by the types of medicine that can be 

delivered due to the size and payload capacity of the sUAS; most antibiotics, analgesics, 

antiseptics, and tranquilizers are compact and lightweight, making them optimal for 

sUAS transport. Larger equipment such as defibrillators and ventilators might not allow 

for multiple stops, depending on the weight of the equipment and payload capacity of the 

sUAS. Previous research indicates that defibrillator delivery via sUAS can reduce 

response time over traditional methods (Boutilier et al., 2017; Claesson et al., 2016), but 

the distance to the patient is a critical variable. Heavier medical equipment is included in 

the study to measure how the model evaluates the delivery of a single piece of medical 

equipment against multiple smaller deliveries to minimize overall risk. However, the 

maximum gross weight (combined airframe, fuel, and payload weight) is limited to 55 lb 

(24.95 kg) per Part 107 regulations. 

Part 107 regulations also limit spatial and environmental conditions. The FAA 

specifies that all sUAS must maintain separation minimums of 500 ft (152.4 m) below 

clouds and 2000 ft (609.6 m) horizontal separation, a maximum altitude of 400 ft (121.92 

m) AGL, and a visibility of 3 statute mi (4.83 km). The model does not consider 
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operations in adverse weather under instrument flight rules. Regulations also specify that 

each operator must maintain line of sight and only control one sUAS at a time. However, 

the model assumes the agency in charge of the disaster response has prior approval to 

conduct flights beyond visual line of sight, and the chosen sUAS platforms can safely and 

legally execute autonomous or semi-autonomous flight plans with minimal human 

intervention. 

This study does not include time windows for each patient, as the theoretical 

foundation of emergency triage risk categorization only includes general guidelines for 

required response time. These guidelines are sufficient to correlate an injury assessment 

to the risk of patient deterioration but are not sufficient to determine a precise 

individualized delivery window. Additionally, current vertical take-off and landing 

(VTOL) sUAS technology is generally not capable of achieving flight times greater than 

120 min while maintaining a realistic payload capacity for medical delivery. Vehicle 

endurance and standard triage practices require this study to be limited to fixed risk 

values for each route. 

Because disaster response efforts are usually coordinated at an Emergency 

Operations Center to ensure interagency coordination (Ryan, 2013), this study includes a 

single depot responsible for the initiation of all sUAS flight operations. While this limits 

emergency responses to patients within range of the aircraft, the model can be used 

iteratively to achieve independent solutions at additional depots if required.  

Lastly, it is assumed that sUAS transition time (climbs, descents, and time taken 

for the medicine to be unloaded) is uniform throughout the route due to the relatively low 

operating altitudes defined by FAR Part 107, and a standard time limit can be used for 
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each transition to accurately model the battery consumption and time delay during each 

delivery. While larger transport vehicles like delivery trucks or helicopters can have 

different unload times based on payload capacity and available personnel, sUAS have 

relatively small payload capacity and fly at lower altitudes, per FAA requirements. Fixed 

values for transition times have been used in other unmanned routing problems to 

accurately model these variables (Chowdhury et al., 2017; Fikar et al., 2016). 

Summary 

The purpose of Chapter I is to provide a brief but structured introduction to this 

dissertation topic. This optimization model addresses the research gap of inadequate 

routing tools for minimizing risk to a set of patients during natural disasters. The model is 

theoretically and practically significant and appropriately scoped to rural areas where 

medical delivery and disaster response efforts are uniquely challenging. The next chapter 

presents a review of the relevant extant literature.  

Definitions of Terms 

lUAS  A large unmanned aircraft system weighing 55 lb (24.95 

kg) or more including payloads, cargo, and fuel.  

sUAS   A small unmanned aircraft system weighing less than 55 lb 

(24.95 kg) including its payload, cargo, etc. (Operation and 

Certification of Small Unmanned Aircraft, 2016).  

Risk Minimization  The optimal UAS utilization to reach the greatest number 

of injured patients, using the minimal number of UAS, 

before the time horizon expires. 
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Urban   The Census Bureau considers areas populated by at least 

2,500 but less than 50,000 people to be urban clusters and 

areas of 50,000 or more people to be urban areas. 

Rural Area  All populations, housing, and territory not included within 

an urbanized area or urban cluster (Ratcliffe et al., 2016, p. 

3). 

List of Acronyms 

ATC Air Traffic Control  

C.F.R.  Code of Federal Regulations  

FAA Federal Aviation Administration  

FEMA Federal Emergency Management Agency  

ERAU Embry-Riddle Aeronautical University 

ESI  Emergency Severity Index   

IRB  Institutional Review Board 

lUAS large unmanned aircraft system 

MOMINLP Multi-Objective Mixed-Integer Nonlinear Programming  

sUAS   small unmanned aircraft system  

UA  unmanned aircraft  

UAS  unmanned aircraft system  

UAV  unmanned aerial vehicle 

VRP  vehicle routing problems 
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Chapter II 

Review of the Relevant Literature 

The current body of literature on sUAS, medical delivery, and vehicle routing 

studies is extensive. The following chapter begins with an overview of UAS history and 

significance, as well as a summary of current FAA regulations. Current research on 

mixed integer linear programming and solution algorithms is discussed, focusing 

specifically on applications in aviation. The gap in literature is identified, following a 

thorough review of UAS routing studies, concluding with a summary of common model 

variables. Lastly, emergency triage models are used to outline the theoretical foundation 

for risk minimization. 

Significance of Small UAS 

Background of Technology 

The unmanned aircraft industry began with the first pilotless flight in 1918 by 

Lawrence and Sperry, just 15 years after the Wright brothers achieved powered heavier-

than-air flight (Dalamagkidis et al., 2012). For the first half of the 20th century, 

unmanned aircraft were predominately used as target drones for both World War I and II, 

until the Cold War in the 1950s necessitated the evolution of unmanned surveillance 

aircraft. Industry development accelerated in the 1990s during the Gulf War (Gusterson, 

2016) and became a critical tool for the U.S. military in the Global War on Terrorism 

with the development of weaponized UAS (Enemark, 2014). 

The last decade has seen a rapid increase in UAS utilization, legislation, and 

research in the private and commercial sectors. In 2013, the Chinese company DJI 

released and marketed the Phantom sUAS to worldwide audiences, recording $130 
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million in sales in the first year alone (Xu & Muneyoshi, 2017). At a 2013 price point of 

$1,000 when comparable vehicles cost over $5,000 (McDonald, 2015), it is not an 

exaggeration to say DJI revolutionized the consumer-grade sUAS industry. The company 

currently holds a 77% share of consumer drone sales in the United States and has 

expanded the DJI Phantom product line to include the DJI Inspire for professional grade 

cinematography (Poland, 2020) and the DJI Matrice for professional industrial 

applications. The FAA estimates 6.4% annual growth in the recreational sUAS sector, 

although growth is slowing and will likely slow further as prices stabilize and the 

eagerness of early adopters plateaus (FAA, 2021a). The rapid rise of DJI products, and 

the hobbyist industry in general, necessitated additional FAA legislation to safely 

integrate new remote pilots into the national airspace.  

FAA Legalization. To address industry growth and lack of federal guidance, the 

FAA released sUAS regulatory guidance for commercial sUAS operations under Title 14 

Part 107 in 2016, resulting in over 385,000 registered sUAS by December 2019 (FAA, 

2021a). The rules governing Part 107 operations, as provided in the FAA regulations, are:  

• The operation must be within the U.S.; 

• The unmanned aircraft must weigh less than 55 pounds; 

• The aircraft must be registered, if over 0.55 lbs.; 

• Must fly only in uncontrolled airspace; 

• Must keep the aircraft in sight (visual line of sight); 

• Must fly under 400 feet; 

• Must fly at or below 100 mph; 

• Must yield right of way to manned aircraft; 
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Additionally, all operators are required to obtain a Part 107 Remote Pilot Certificate to 

ensure an appropriate understanding of the national airspace environment. These 

regulations are designed to separate commercial operations from recreational pilots, so 

professional unmanned pilots are prepared to operate safely in the NAS.  

The FAA also provides safety guidance in Advisory Circular 91-57B for 

recreational operations, with similar limitations for airspace, altitude, and vehicle 

registration (FAA, 2019b). The FAA stipulates the advisory circular is not legally binding 

and should be considered interim guidance for recreational sUAS operation.  

The FAA accepts online waiver applications for certain types of operations that 

are outside Part 107 regulations. Night operations and operations in controlled airspace 

are the most commonly requested waivers (FAA, 2020a). Operations over 400 ft (121.92 

m), and operations beyond visual line of sight are also requested, although the rate of 

approval is much lower. The FAA reports a total of 50,582 out of 78,596 waiver requests 

have been approved, an approval rate of approximately 64%. Requests for airspace 

waivers into controlled airspace below 400 ft (121.92 m) can be requested through a 

program called Low Altitude Authorization and Notification Capability (LAANC). 

Active since May 2019, LAANC is designed to automate the approval process based on 

prospective flight location, depending on real-time analysis of temporary flight 

restrictions, notice to air missions (NOTAMs), and other airspace considerations.  

Part 107 waivers can be obtained for certain types of sUAS operations, but not for 

UAS over the 55 lb. (24.95 kg) weight limit. Approval for large UAS (lUAS) is covered 

under Title 49 U.S.C. §44807, which allow lUAS to be registered under Title 14 C.F.R. 

Part 47 and operate under Part 91 (FAA, 2021b) under risk-based safety programs. The 
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FAA reported 19 §44807 exemptions in 2019, mostly for agricultural purposes. The FAA 

2020 fiscal forecast estimates these exemptions to increase over the next half-decade as 

military use stabilizes and commercial operations accelerate (FAA, 2021a).  

Certification for commercial air carriers is outlined under Title 14 C.F.R. Part 

135. With the recent industry push for sUAS delivery operations by companies like 

Amazon and the United Postal Service (UPS), the FAA began issuing Part 135 

certifications for sUAS operations in 2019. Companies pursuing Part 135 sUAS 

certification must follow the same approval process as manned aircraft, although the 

FAA provides clarification for regulations that do not apply to UAS, such as carrying 

manuals onboard. The rigorous approval process includes a 5-phase approach that 

includes a design assessment of all safety processes and documentation, as well as a 

performance assessment for training and flight procedures (FAA, 2020b). Four types of 

Part 135 certificates are available: Single Pilot, Single Pilot In Command, Basic 

Operator, and Standard Operator. The first Part 135 single pilot certificate was issued to 

Wing Aviation, LLC in April 2019, followed by a standard 135 certificate for routine 

operations in Christiansburg, Virginia. Wing is currently partnering with FedEx, 

Walgreens, and local businesses to deliver goods to consumers within the service area 

(Hawkins, 2019). UPS Flight Forward Inc. received the first standard Part 135 certificate 

a few months prior to Wing in September 2019 and demonstrated its operational 

capability by flying medical supplies in Raleigh, North Carolina.  

San Francisco-based Zipline International, which currently conducts routine UAS 

medical deliveries in Ghana, achieved another milestone in sUAS integration into the 

NAS in early 2020. During the Covid-19 pandemic in the U.S., Zipline and Novant 
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Health were granted an emergency Part 107 waiver from the FAA to deliver medical 

supplies in North Carolina (CNBC, 2020). While only two routes were initially approved, 

the company has plans to expand to other locations. Obtaining this type of FAA waiver 

for sUAS delivery during a nationwide crisis is an important validation for the routine use 

of sUAS during the emergency response in the U.S.   

Regulatory guidance is still being refined for commercial sUAS operations as the 

FAA obtains additional data on common waiver requests. The FAA recently approved 

changes to Part 107 regulations for flights over people, night operations, and flights from 

moving vehicles (FAA, 2021c). Additionally, rule changes are under review to require 

operators to present their remote pilot certificates upon request of government officials, 

as well as verify the completion of additional training requirements every 24 calendar 

months. Another significant regulatory change currently being implemented is Remote 

Identification. Research has shown remote identification of sUAS improves situational 

awareness between manned and unmanned aircraft (Kubo et al., 2020), and is an 

important aspect of unmanned traffic management (UTM) (Ishihara et al., 2019). Critics 

have expressed concerns over the privacy of sUAS operator information (Plaza, 2019), 

and current research shows troubling trends in Part 107 compliance. A 2019 study from 

Embry-Riddle Aeronautical University (ERAU) monitored UAS activity over a 30-day 

period and found that 34% of the 271 flights exceeded the maximum allowable altitude 

under Part 107 regulations (Wallace et al., 2020). 

In addition to growth in the sUAS sector, Urban Air Mobility (UAM) is another 

important industry segment requiring research and regulation. UAM is a system of on-

demand air transportation within urban areas (Kim, 2019), with Airbus already offering 
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UAM solutions in Sao Paolo and Mexico City. Kim explains that while there is a vast 

amount of existing literature on vehicle routing problems (VRP), there are few studies on 

UAM optimization. However, with this present study limited to emergency responses in 

rural areas, UAM would not impact operations and ATC would publish Notice to Air 

Missions (NOTAMs) to ensure appropriate separation between sUAS deliveries and other 

airborne traffic in the area.  

Small UAS for Disaster Response   

UAS Industry Growth  

A study of 1,145 reported UAS operations between 2009−2015 indicated that 

12% of flights were in support of short-term emergency response and another 10% were 

for health and public safety (Choi-Fitzpatrick et al., 2016), and the rate of use increased 

significantly each year (see Figure 1). Choi-Fitzpatrick et al. hypothesize the increase is 

due to both an increase in large-scale natural disasters and innovative use of UAS 

technology. While the increase in UAS utilization is a worldwide trend, 36% of the 

operations were from the U.S. (see Figure 2) with approximately 40 reports of use for 

emergency and disaster response.  
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Figure 1 

Drone Use by Type  

 

Note. From “Up in the Air: A Global Estimate of Non-Violent Drone Use 2009-2015” by 

Choi-Fitzpatrick et al., 2016, p.14. Copyright 2016 by University of San Diego.  

 



22 

 

Figure 2 

Drone Use by Country (Choi-Fitzpatrick et al., 2016)  

 

Note. From “Up in the Air: A Global Estimate of Non-Violent Drone Use 2009-2015” by 

Choi-Fitzpatrick et al., 2016, p.18. Copyright 2016 by University of San Diego.  

 

sUAS Medical Delivery  

UAS medical delivery is particularly important for developing countries because 

inaccessible roads and poor infrastructure can not prevent airborne delivery of blood or 

medicine (Scott & Scott, 2017). However, poor road conditions can disrupt emergency 

operations in disaster-prone areas in the U.S. during emergency responses to natural 

disasters (Amin et al., 2019). Widespread sUAS medical delivery is not yet prevalent in 

the U.S., although Zipline is expanding on 2019 proof-of-concept flights to deliver 

Covid-19 medication and lab samples in North Carolina (Bright, 2020). Since 2016, 

Zipline has made over 14,000 shipments of blood and other critical medical supplies to 

low-income rural areas and is currently valued at $1.2 billion (McNabb, 2019). 
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Flirtey, the first UAS company to complete an FAA-certified delivery in the U.S. 

in 2016, announced plans to launch the first automated external defibrillator (AED) UAS 

delivery service in 2017 and received FAA approval for beyond line of sight AED 

delivery in Reno, Nevada, in 2018 (Dukowitz, 2019).  

Matternet is another leader in UAS medical delivery as the first company in the 

world to conduct routine operations over densely populated areas in Switzerland 

(Matternet, 2019). Routine operations in the U.S. began in 2019 in partnership with UPS, 

carrying laboratory tests from WakeMed hospital in Raleigh, North Carolina, to a central 

laboratory for analysis. According to Matternet, the 3-min flight can take up to 30 min by 

traditional medical courier. In 2020, UPS, CVS, and Matternet partnered to deliver 

prescription drugs to retirement communities in Florida during the Covid-19 pandemic. 

Wing, a subsidiary of Google, is also conducting routine sUAS delivery in 

Virginia. The company does not specifically focus on medical delivery, but customers in 

the service area have the option to purchase a limited selection of medical supplies, and 

Wing saw a significant increase in this area during the Covid-19 pandemic (Reichert, 

2020). The current sUAS delivery efforts in the U.S. are summarized in Table 1. 

 

Table 1 
 
Characteristics of UAS Delivery in the U.S.  
Company Collaboration Types of Delivered Supplies Payload Range 
Zipline Novant Healthcare vaccines, blood 3.0 lb 45 mi 
Flirtey N/A medicines, AEDs 4.4 lb 20 mi 
Matternet WakeMed Health, UPS medicines, blood, lab samples 4.4 lb 6 mi 
Wing FedEx, Walgreens food, medicines, household goods 3.3 lb 6 mi 
Note. UAS = unmanned aerial system; N/A = not applicable. 
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Optimization Modeling  

The core premise of linear programming is focused on optimization. Optimization 

occurs everywhere, from financial markets to engineering design, and the concept of 

finding an optimal solution is as old as human history itself (Yang, 2010). Yang explains 

Greek mathematicians solved problems that optimized time and distance, as did Kepler, 

Newton, Bernoulli, and Galileo. In 1917, Harris Hancock published one of the first 

contemporary books on optimization, called Theory of Minima and Maxima, building on 

existing concepts in the study of calculus. In the 50 years following Hancock, numerous 

researchers explored linear programming and optimization. Kantorovich (1939) 

developed a linear programming algorithm for use in the field of economics, and 

Koopman popularized the concept of shadow costs in linear programming during his 

1941 study of merchant fleet movement during World War II (Dorfman, 1984). Dorfman 

explains the field of linear programming, as we know it today, was formulated by 

Dantzig (1951) while researching procurement and training optimization for the U.S. 

military. Dantzig defined the area of study as the maximization of a linear function 

subject to linear inequality constraints. The field of linear programming exploded in the 

1970s with the advent of metaheuristic algorithms, as well as the widespread use of the 

modern computer to solve complex algorithms in business management, transport 

planning, scheduling, and communications networking (Yang, 2010).  

Optimization Methods  

The body of literature on linear optimization is quite large and reflects the broad 

operational applications of the methodology. Linear programming is one of the simplest 

methods to perform optimization, as solutions are obtained by combining and reducing 
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linear relationships to an objective function. Through the use of an objective function and 

constraints expressed as inequalities, the Simplex method of solving linear optimization 

problems can be displayed graphically (see Figure 3).  

 

Figure 3  

Simplex Method Solution  

 

Note. The constraints, visualized by the purple lines, bound the potential feasible 

solutions in the yellow area. The vertex of the yellow line (5,5) indicates the highest 

value in the constrained area, thus representing the optimal solution. From “A Review of 

the Use of Linear Programming to Optimize Diets, Nutritiously, Economically and 

Environmentally” by Van Dooren, 2018, p 48.   

 

Linear programming methods are acceptable when every variable in the equation 

exhibits a linear relationship, as is sometimes the case in problems involving inventory 

management or manufacturing. However, modeling nonlinear relationships is often 
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necessary for optimization problems in domains such as engineering and finance. The 

theory behind nonlinear programming is similar to linear programming in that the optimal 

solution is desired for a given function and constraints. However, nonlinear programming 

involves a branch of mathematics known as the calculus of variations and should be used 

if the objective function and/or any of the constraints are nonlinear (Massachusetts 

Institute of Technology  [MIT], n.d.). Linear and nonlinear methods have dozens of sub-

methods, including mixed integer programming and goal programming. Relevant 

aviation and VRP studies using these methods are discussed in additional detail in 

Chapter 3.  

Optimization Algorithms 

The discovery of linear programming was initially dominated by mathematicians 

and economists such as Koopmans in 1943 and Dantzig in 1951 (Dorfman, 1984). The 

solution space to a standard linear programming model can be defined as the point of 

intersection between a finite number of linear equations and/or inequalities (Gass, 2003). 

As operations research expanded in the 20th century and additional applications were 

explored, the need arose to model complex environments that exceed the limits of 

computational and human capability.  

Research into exact algorithms can be beneficial for certain problems where the 

precise solution is desired. For example, Toth and Vigo (1997) developed an exact 

algorithm for solving a VRP with backhaul, combining an integer programming model 

with a Lagrangian lower bound. With a maximum computational cap of 100 min, an 

exact solution for 100 customers was obtained in 29 of the 34 instances. It should be 

noted that computing power has significantly improved since 1997, but researchers were 
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using the model to identify a potential location for a supply depot, a decision that does 

not need to be made under time constraints. Baldacci et al. (2003) improved on previous 

research into exact solution methods, solving a capacitated vehicle routing problem 

(CVRP) with 135 customers using a new approach based on a two-commodity network 

flow formulation. The time limit for this study was 1 hr, an improvement in both 

processing time and model complexity over previous studies. However, the variables and 

constraints in exact studies are usually so complex that exact algorithms can only be used 

for relatively small studies. The authors explain that even the most effective exact 

algorithms are usually limited to about 50 customers for this type of study. These 

examples are only a small sample of the theoretical research being conducted on exact 

optimization algorithms. Kallehauge (2008) provides a more exhaustive literature review 

on the development of exact algorithms and their application for VRP time window 

(VRPTW) problems, including a summary of the seminal authors in traveling salesman 

problem (TSP) methods such as arc formulation, arc-node formulation, spanning tree 

formulation, and path formulation.  

For more complex problems, heuristic methods are commonly seen as an 

appropriate solution for non-deterministic polynomial-time hardness (NP-hard) linear 

programming problems. VRPs are considered NP-hard, meaning the solution time 

increases significantly with problem complexity (Seshadri, 2019). When the exact 

solution cannot be found using the available computing power, or if the solution takes an 

unacceptable amount of time to be practically useful, heuristics are commonly used 

(Cordeau et al., 2002). The Clarke-Wright savings algorithm is one of the most popular 

heuristic methods (Altinel & Oncan, 2005), and was recently used to optimize vehicle 
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capacity and fuel price for hauling sewage from wastewater treatment facilities (Passos et 

al., 2018). The sweep algorithm is another popular method in classical heuristics, 

originally developed by Gillett and Miller (1974). A modified sweep algorithm was used 

in a VRP with simultaneous pickup and delivery between two depots and multiple nodes 

(Kumar & Jayachitra, 2016), with results showing a solution can be found with over 200 

nodes. Fisher and Jaikumar (1981) developed a popular two-phase cluster-based heuristic 

method that improved on previous methods due to its flexibility and ability to always find 

a solution if one exists. The method is still being utilized and improved, as researchers 

recently found a CVRP solution by creating node clusters of equal size, then found the 

optimal solution for each cluster (Sultana et al., 2017).  

The use of metaheuristic methods has increased in the last 30 years and have 

found applications in engineering, medicine, and other sciences by utilizing a global 

search or local search in conjunction with a learning strategy to structure information and 

efficiently find near-optimal solutions (Kaveh, 2017). Local search methods include 

simulated annealing and tabu search, which search the solution space for an optimal 

solution, then proceed to search for improvements within the same neighborhood 

(Cordeau et al., 2002). Genetic algorithms, adaptive memory procedures, and particle 

swarm optimization are some of the most common global metaheuristic methods.  

Optimization applications for Aviation Research 

While optimization methods are determined by the types of variables and 

constraints in the model, solution algorithms are usually narrowly scoped for a specific 

environment being modeled. Current literature provides little guidance for selecting the 

appropriate algorithm, although Cordeau et al. (2002) explain the most important 
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attributes for algorithm selection are accuracy, speed, simplicity, and flexibility. In 

aviation research, heuristic methods are usually preferred due to the stochastic nature of 

the environment (Scala et al., 2017). Some aviation-based problem sets require flexible 

models that can be quickly solved. Examples in the existing literature include studies on 

aircraft routing (Jamili, 2017), runway conflicts (Adacher & Flamini, 2014), and airplane 

deicing coordination (Norin et al., 2012). Other problems are not as time-sensitive, 

allowing for heuristic methods that prioritize accuracy. Examples include airport 

architectural designs (Braaksma & Shortreed, 1975) and ground crew scheduling (Rodič 

& Baggia, 2017).  

Extant Routing Studies 

Traveling Salesman Problem  

The traveling salesman problem (TSP) was originally explored by British 

mathematician Thomas Kirkman and Irish mathematician W.R. Hamilton in the 1800s. In 

a paper presented to the Royal Society in 1855, Kirkman posed the question of the 

shortest route between points in a polyhedron, where the circuit passes through each point 

only once (Biggs et al., 1986). While this is often referenced as the foundational theory 

for shortest-route problems (Saji et al., 2014; Vukmirović & Pupavac, 2013), Biggs et al. 

explain that the contributions by Kirkman were theoretical and impractical due to 

complicated restrictions.  

Sir William R. Hamilton, a more famous mathematician during the period, 

expanded on Kirkman’s general routing question and founded what he called the icosian 

calculus. This mathematical formula, published in Philosophical Magazine (Hamilton, 
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1856), is the basis for all future research on routing studies, and the concept of a route 

that passes through all vertices on a graph is now known as a Hamiltonian cycle.  

Karl Menger, the famed Harvard mathematician and economist, continued the 

research of Kirkman and Hamilton when he posed “Das Botenproblem” (the messenger 

problem) at a mathematical colloquium in Vienna (Menger, 1930). He outlined a problem 

similar to the TSP, except the model involved delivering mail at each location, adding an 

additional variable for a different industry. The example TSP and solution in Figure 4 

demonstrates how 20 random points on a grid can be optimized for delivery. 

 

Figure 4 

Random Nodes and Optimal Routing  

 
 
Note. From “Business Analytics Applications for the Vehicle Routing Problem” by Blok, 

2016. 

 

Vehicle Routing Problem 

The Vehicle Routing Problem (VRP) was first discussed by Dantzig and Ramser 

(1959) as a modern approach to the TSP using the example of gasoline delivery trucks. 
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The authors explain that both problems address a set of n nodes to be visited once, with 

the vehicle or salesman returning to the starting point using the most expeditious route 

possible. Using the gasoline truck example, they developed the first computational 

algorithm for vehicle routing with a vehicle capacity constraint, and proposed the 

following Truck Dispatching Problem (TDP):  

[1] Given a, set of n "station points" Pi (i = 1, 2 ... n) to which deliveries are made 

from point Po, called the "terminal point" 

[2] A "Distance Matrix" [D] = [dij] is given which specifies the distance dij = dji 

between every pair of points (i, j = 0, 1, ... n) 

[3] A "Delivery Vector" (Q) = (qi) is given which specifies the amount qi to be 

delivered to every point Pi (i = 1, 2 ... n) 

[4] The truck capacity is C, where C > max. qi 

[5] Each station point Pi must be visited once by a connected route  

[6] The problem is to find those values of xij which make the total distance a 

minimum under the conditions specific in [2] and [5] 

Dantzig and Ramser (1959) outline the process of manually solving the route 

minimization problem while acknowledging that additional constraints or scenarios 

involving multiple trucks or varying capacities were not feasible with the available 

technology. Regardless of the relative simplicity of the algorithm, the formula is seen as 

the foundation of present-day linear programming methods, which still use the structure 

of minimizing or maximizing a variable, subject to a list of constraints.  

Increasingly complicated routing problems were solved through the development 

of heuristic methods in the 1960s. Simple VRPs are relatively straightforward to solve 
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with computer programs, but the solutions are usually heuristic because routing problems 

that accurately model a complex scenario are generally considered NP-hard. Hochba 

(1997) explains that if the optimal solution is unrealistic due to modeling or 

computational limitations, it is considered NP-hard and therefore reasonable for 

researchers to sacrifice optimality for efficiency through the use of an approximation 

algorithm. The stochastic nature of real-world delivery scheduling makes a single optimal 

solution extremely unlikely, as a traffic collision or other external factor will require 

recalculation. Heuristic methodologies acknowledge that a given solution might not be 

optimal but is acceptable when the alternative is no solution at all, or if the solution takes 

an impractical amount of time to calculate. A greedy algorithm is one common example, 

where a series of locally optimal solutions are found that contribute to a global heuristic 

solution (Black, 2005). Another heuristic method is the Clarke-Wright savings algorithm, 

in which an iterative procedure is used to select a near-optimum route (Clarke & Wright, 

1964). The authors note that their formula is very similar to the algorithm by Dantzig and 

Ramser but point out the existing design emphasizes filling trucks to maximum capacity 

instead of minimizing distance. The Clarke-Wright savings algorithm computes the 

savings of combining two customers into the same route, with the solution being the 

route with the highest savings. This method can be solved by a computer or through 

manual calculation.  

Vehicle Routing Problem Variants 

Practical application is an important benefit to routing problems, as accurate 

models that include the appropriate environmental variables can improve efficiency in 

many industries. Thus, the traditional VRP has extensive variants (Ho et al., 2008) to 
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address specific routing scenarios with different variables and constraints. A thorough 

literature review of 277 VRP studies between 2009−2015 indicated research was trending 

towards highly tailored models to accurately capture real-world variables (Braekers et al., 

2016). The authors note that generic models are used infrequently, making the literature 

for VRP variants vast. Additionally, Liu (2019) states in a review of more recent 

literature that while UAS routing studies are increasing in recent years, there is still no 

consensus on common objectives being optimized.  

VRP with capacity limits (CVRP) are common NP-hard problems to satisfy the 

order demands of a geographic location (Lin et al., 2019). A CVRP model was recently 

paired with a backtracking search algorithm to increase the efficiency of waste collection 

by 36%, reducing economic costs and environmental impacts (Akhtar et al., 2017).  

The VRP with multiple depots (VRPMD) are also common, as most real-world delivery 

services utilize a supply chain with more than one location to service a larger geographic 

area. Laporte et al. (1988) used a branch and bound tree to find an exact solution for 

VRPMD, but it is only computationally feasible under relatively few constraints (Crevier 

et al., 2007). Jordan and Burns (1984) utilized a VRPMD model to reduce the empty-

truck miles by having truckers transport goods back to their home terminals.  

The VRP with pickup and delivery (VRPPD) can also be found in many industries. A 

recent study focused on mixing pickup and delivery services in the poultry industry, as 

the locations that receive chicks are the same locations that require pickup of grown 

chickens for slaughter (Dechampai et al., 2017). 

The VRP with time windows (VRPTW) are used when deliveries must be made 

within a specific timeframe and are also referred to as time-constrained vehicle routing 
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problems (Kolen et al., 1987). The VRPTW studies have a wide range of operational 

applications as well, including bank deliveries, postal deliveries, school bus routing 

(Hashimoto et al., 2006), and military aircraft mission synchronization (Quttineh et al., 

2013). Figure 5 is a visualization of the single depot VRP variation with time windows. 

 

Figure 5 

Vehicle Routing Problem With Time Windows 

 
Note. From “From “Business Analytics Applications for the Vehicle Routing ” by Blok, 

2016.  

 

Many other VRP variants exist, and the most useful models include multiple VRP 

constraints. For example, Romero-Gelvez et al. (2019) used a capacitated vehicle routing 

problem with time window (CVRPTW) model to reduce the travel time of a fleet of 

heterogeneous vehicles. The study is practically significant because it includes real-world 

variables and constraints that a delivery service would encounter and it uses Google maps 
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to model the distance matrix and a Google API to obtain real-time traffic data in the 

target city of Bogota, Colombia. A multi-depot vehicle routing problem (MDVRP) can be 

used to model package delivery scenarios with more than one pickup location (Dhall & 

Sharma, 2015) or a vehicle routing problem with backhaul (VRPB) can be used to study 

how vehicles can both deliver and pick up packages along the same route (Goetschalckx 

& Jacobs-Blecha, 1989). A study by Shankar et al. (2014) also includes multiple 

constraints to model the complexities of fleets of delivery vehicles. The researchers 

utilized a tabu search algorithm for a multi-depot capacitated vehicle routing problem 

with time window (MDCVRPTW) to obtain a near-optimal solution. Each of these 

routing problems can maximize or minimize a specific variable such as time, distance, or 

cost.  

UAS Routing Studies 

VRPs have been adopted by the aviation industry, as optimal routing and accurate 

modeling of environmental factors can significantly influence fuel burn and positively 

impact profit margins (Palopo et al., 2010). Ferguson and Dantzig (1956) demonstrated 

the application of a linear programming model for aircraft routing under uncertain 

passenger demand, followed by numerous stochastic transportation problems (Holmberg, 

1995; Szwarc, 1964; Williams, 1963) aimed at accurately modeling the complex and 

dynamic variables involved in aircraft fleet management.  

UAS vehicle routing studies have also been completed, with some of the major 

publications coming from Tianjin University of Technology, Beijing Jiatong University, 

and The Beijing Highway Design & Research Institute. Studies by Liu et al. (2014), Liu 

et al. (2013), Liu et al. (2012), and Zhang, et al. (2015) have similarities to the model 
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developed in this present study, including the number of UAS, time constraints, and 

distance. However, because the UAS utilization involves gathering imagery, these studies 

focus on providing coverage over a designated area and are not related to delivery. They 

do, however, validate the multi-objective linear programming methodology as an 

appropriate model for sUAS routing optimization.  

UAS routing studies, specifically for delivery, have also been identified, as 

companies like Amazon, Google, FedEx, and UPS are expanding into the UAS package 

delivery market. This area of study, frequently called Traveling Salesman Problem-Drone 

(STP-D) or vehicle routing problem-Drone (Poikonen et al., 2017 Schermer et al., 2019), 

contains numerous models for single-point delivery from a mobile or permanent hub. 

One specific TSP-D model currently being researched is the last-mile concept, where 

delivery trucks equipped with drones are deployed to a neighborhood or location, 

followed by a deployment of multiple drones to finish the individual deliveries for that 

coverage area (Bouman et al., 2018; Moshref-Javadi & Lee, 2017; Murray & Chu, 2015). 

These models are sometimes called the Hybrid Vehicle-Drone Routing Problem 

(HVDRP) (Karak & Abdelghany, 2019). While useful for home delivery services, most 

of these models do not account for multiple stops due to the assumed weight restriction of 

a package and vehicle limitations. One exception is modeled by Dorling et al. (2016). 

The researchers propose a multi-trip vehicle routing model for parcel delivery, 

minimizing the delivery cost subject to a time limit. However, the study focuses on 

battery power and consumption and ignores important environmental factors that affect 

sUAS endurance, making the model theoretical in nature. Sundar and Rathinam (2012) 

use an approximation algorithm to solve a VRP with multiple depots to improve 
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understanding of fuel constraints, but do not address variables affecting fuel 

consumption, thus making the model too simplistic for practical application. A recent 

study by Thibbotuwawa et al. (2020) provides a thorough classification of UAS routing 

problems, as well as a graphical taxonomy based on current studies in the field of 

research. Table 2 summarizes the findings of this study, with researchers noting that 

models including wind considerations on vehicle energy consumption are rare.  
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Table 2 

Overview of Vehicle Routing Problem Approaches Using UAS  
Author Approach Objective 

Shetty et al. (2008) General VRP + 
multi-vehicle TSP 

Maximize the total weighted service to the targets from the 
homogeneous fleet of UAVs 

Xingyin et al. 
(2016) 

VRP Minimize the maximum duration of the routes (i.e., completion 
time) 

Levy et al. (2014) Single VRP Find a path for the UAV so that each target is visited at least 
once by the vehicle, the fuel constraint is never violated along 
the path for the UAV, and the total fuel required by the UAV is 
a minimum 

Casbeer (2011) VRP with 
precedence 
constraints 

Minimize the total distance traveled by a homogeneous fleet of 
UAVs 

Klein et al. (2013) Dynamic VRP Minimize the time required to determine the location of the 
source 

Arsie & Frazzoli 
(2008) 

Dynamic VRP Minimize the expected time between the appearance of a target 
point and the time it is visited by one of the agents 

Avellaret et al. 
(2015) 

Coverage problem 
into VRP 

Minimize the time coverage of ground areas using a 
homogeneous fleet of UAVs equipped with image sensors 

Guerrero & 
Bestaoui (2013) 

TSP + capacitated 
VRP (CVRP) 

Minimize the sum of travel time among waypoints 

Wen et al. (2016) CVRP Minimize the total travel time and fleet size of the 
homogeneous fleet of UAVs 

Savuran & 
Karakaya (2016) 

Capacitated mobile 
depot VRP (C-
MoDVRP) 

Maximize the total number of targets visited by the UAV 

Murray & Karwan 
(2013) 

VRP with time 
windows (VRPTW) 

Maximize the overall effectiveness of the mission; minimize 
changes to the initial mission plan; minimize total travel time; 
minimize the use of resources, payloads, and “dummy” bases 

Guerriero et al. 
(2014) 

VRP with soft time 
windows (VRP-
STW) 

Minimize the total distances traveled by the homogeneous fleet 
of UAVs; maximize the customer satisfaction and minimize the 
number of used UAVs 

Kim et al. (2017) Multi-depot VRP 
(MDVRP) 

Minimize the operating cost of a heterogeneous fleet of UAVs; 
find the optimal number of UAV center locations 

Habib et al. (2013) MDVRP Minimize the total distances traveled by a homogeneous fleet of 
UAVs 

Note. TSP = traveling salesman problems; UAS = unmanned aerial system; UAV = 

unmanned aerial vehicle(s); VRP = vehicle routing problems. 

 

Studies involving UAS for disaster response have also been completed, 

confirming the economic feasibility of utilizing the technology to deliver medical 

supplies (Haidari et al., 2016) and the use of geospatial imaging to detect survivors 
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(Levin et al., 2016). A recent study used a linear programming method to model the 

pickup of medical samples and delivery of medicine to patients in rural areas (Kim et al., 

2017) which can be used to estimate the number of UAS vehicles to purchase for the 

operation. However, the researchers did not include environmental variables or patient 

priority, and routine sUAS delivery is currently illegal in the U.S. under Title 14 C.F.R. 

Part 107 regulations, making the model theoretical.  

Models that combine VRP and disaster response variables have not been 

thoroughly researched. Oruc and Kara (2018) combined air and ground vehicles to 

provide accurate damage assessments, optimizing the routings of small UAS and 

motorcycles for maximum ground coverage, but the study was focused on imagery 

acquisition and not the delivery of supplies. One particularly relevant study to the risk 

minimization model is a continuous approximation model that designs an environment 

for UAS distribution of supplies during natural disasters but focuses on the location of 

distribution centers to minimize overall cost (Chowdhury et al., 2017). Their model does 

include the delivery of medicine or supplies, as the researchers focused on cost 

minimization through distribution center locations and only included UAS system 

limitations to model the overall cost of delivery. They specifically explain that wind is 

not considered in their model and state future research should include environmental 

variables to assess the impact on an optimization framework.  

Another study focuses on the last-mile distribution of medical supplies during 

natural disasters but uses a linear programming model to minimize the total travel 

distance (Rabta et al., 2018). Their model includes recharging stations for the UAS and 

assumes that each location is visited once. This differs from the risk minimization 
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research because the model only considers one vehicle at a time and does not reflect the 

possibility that a vehicle might not have the payload capacity to carry the necessary 

deliverables to all locations. It does, however, include different priority subsets, 

acknowledging that certain deliverables will be identified as more urgent during disaster 

relief operations. A similar approach is used in this risk minimization study to prioritize 

patient deliveries based on injury severity. 

Wen et al. (2016) developed a multi-objective linear optimization model for 

delivering blood supplies via UAS in emergency situations, a variation of the capacity 

VRP (CVRP). Their study included variables to model the limited payload capacity of the 

vehicle and a multi-objective function, but they focused on minimizing the number of 

vehicles and total mileage. The assumption is that every location is visited once and does 

not account for environmental conditions or aircraft speed. This study is useful to identify 

the number of vehicles required to cover a specific area during natural disaster response, 

but the overly simplistic variables do not allow for practical application. 

Common Objective Functions and Constraints  

Although VRPs can be used to solve a variety of practical applications, 

commonalities can be found throughout the extant literature. True to the theoretical 

foundation of the original traveling salesman problem, maximization of efficiency, profit, 

or equipment utilization are the foundation of many aviation-based optimization 

problems. Minimization of time, distance, or fuel are also frequent objective functions in 

the aviation industry as well as unmanned VRPs. Model constraints in unmanned VRPs 

are also similar throughout the literature, as vehicle range, endurance, and payload 

capacity are constrained by technological limitations. The core premise of delivery nodes 
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and prospective routing arcs are also included in unmanned VRPs, although differences 

exist between delivery models where payload capacity is critical and surveillance models 

that frequently prioritize maximum loiter time.  

Theoretical Foundation  

Mixed-Integer Nonlinear Programming 

Mixed-integer nonlinear programming (MINLP) methods are frequently used in 

operational research due to the complexity of real-world systems. Simplistic methods 

such as linear programming can be suitable for theoretical problems or validation of new 

solution algorithms, but more advanced and practically useful models in extant literature 

usually include linear, nonlinear, and discrete variables. For example, aircraft avoidance 

is one emerging application for operations research due to the extremely complex and 

stochastic nature of in-flight routing (Cafieri & Omheni, 2017). The literature on MINLP 

methods is vast, with studies ranging from the distribution of industrial gases (You et al., 

2011) to the sustainable growth of aviation infrastructure (An et al., 2019). 

Emergency Management 

In the U.S., FEMA utilizes an all-hazards approach to emergency operations 

planning (Goss, 1998). In 2004, FEMA developed the National Incident Management 

System (NIMS) for use by individuals, families, communities, private and nonprofit 

sectors, faith-based organizations, and state, local, tribal, territorial, and federal 

governments (FEMA.com, n.d.) to ensure standardization and coordination for 

emergency response. NIMS outlines the structure of emergency operations centers 

(EOCs) and Incident Command Systems (ICS) and is built on the guiding principles of 

flexibility, standardization, and unity of effort (FEMA, 2017). FEMA explains in the 
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NIMS handbook that while the structure of emergency response in the U.S. is developed 

by local agencies, they should comply with federal guidelines in relation to resource 

management, command and coordination, and communication and information 

management (FEMA, 2017, p. 1-2).  

Jurisdictions are responsible for planning the identification, allocation, 

mobilization, and deployment of available resources prior to an emergency occurring 

(FEMA, 2017, p. 8), and a clear chain of command through a single incident manager or 

unified command team (see Figure 6).  

 

Figure 6 

ICS Organizational Chain of Command  

 
Note. ICS = Incident Command System. An example of ICS organization. From 

“National Incident Management System. 3rd edn.” by FEMA, 2017, p. 26. In the public 

domain. 
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Paired with a common hierarchy of responsibility within the ICS are standardized 

ICS facilities for incident management teams, supporting staff, first responders, and 

equipment (see Figure 7).  

 

Figure 7 

Incident Facilities   

Note. From “National Incident Management System. 3rd edn ” by FEMA, 2017, p. 32. In 

the public domain. 

 

Injury Classification 

Emergency planning for a mass casualty incident (MCI) requires a coordinated 

effort between hospitals, first responders, law enforcement, U.S. National Guard, and 

varying levels of federal support. This coordination must occur in a “convoluted, 

confused, and fragmented environment” (Hoard et al., 2005, p. 118), and frequently 

includes an overwhelming number of victims and limited time (Killeen et al., 2006). To 

standardize coordination between first responders, U.S. regulatory agencies provide 
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guidance on standard triage categories and injury assessment. Because the scope of this 

present study is limited to the U.S., risk and risk minimization is defined based on 

industry standards in the field of emergency triage. 

The U.S. Department of Health and Human Services [HHS] (2019) characterizes 

an MCI as an event where the environment is dynamic, the number of patients far 

exceeds the usual resources, and conventional triage and treatment paradigms may fail. 

For these events, the time/treater/treatment method is used to assess a patient’s likelihood 

of survival, where the first responder identifies the time required to provide intervention, 

the required healthcare provider expertise, and the required resources to stabilize the 

patient. This assessment informs the categorization of patients into the Emergency 

Severity Index (ESI) as defined by the Agency for Healthcare, Research, and Quality (see 

Table 3).  

 

Table 3 

Emergency Severity Index 
Category Definition 

Resuscitation Immediate, life-saving intervention required without delay 

Emergent High risk of deterioration or signs of a time-critical problem 

Urgent Stable with multiple types of resources needed to investigate or treat (e.g., 
lab tests plus x-ray imaging) 

Less Urgent Stable with only one type of resource anticipated (e.g., only an x-ray or only 
sutures) 

Nonurgent Stable with no resources anticipated except oral or topical medications or 
prescriptions 
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Medical Triage 

The two most common models used to assist first responders in categorizing 

injury severity are the START (simple triage and rapid treatment) model and the SALT 

(sort, assess, life-saving interventions, treatment/transport) model. The START model 

(see Figure 8) is widely used in the U.S. to identify the required level of medical care, 

while the SALT model (see Figure 9) was developed more recently in 2006 to address the 

lack of standardization in the mass casualty triage field. 

 

Figure 8 

START Model 

 
Note. START = simple triage and rapid treatment. 
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Figure 9 

SALT Model 

 

Note. SALT = sort, assess, life-saving interventions, treatment/transport. 

 

Both models are similar, although the SALT model is endorsed by the American 

College of Emergency Physicians, American College of Surgeons Committee on Trauma, 

American Trauma Society, National Association of EMS Physicians, National Disaster 

Life Support Education Consortium, and State and Territorial Injury Prevention Directors 

Association. These risk minimization techniques are widely used in the triage field to 

categorize injured patients and align with the four major categories of injury severity 

outlined by U.S. disaster response agencies. Therefore, this present study utilizes the 

four-category risk assessment model presented in Table 4 as the theoretical foundation 

for minimizing risk to a group of patients. 
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Table 4 

Risk Assessment Model  
Category Definition 

Expectant/Dead UAS-delivered medical supplies will not impact the outcome 

Immediate Medical attention is required within 60 min  

Delayed Medical attention is required within 120 min 

Minor 
Status is unlikely to deteriorate over multiple days, but risk of 
additional injury can still be minimized at a lower priority  
 

 

For this model, the target risk minimization categories are the immediate, delayed, 

and minor categories. The usefulness of the model is based on the rapid delivery of 

medical supplies to multiple patients requiring lifesaving treatment. Therefore, each of 

these categories are given a risk value for delivery and a penalty for deliveries after the 

time limit has been reached. Thus, this present study defines risk minimization as the 

optimal UAS route to achieve the lowest possible penalty for missing a patient.  

HHS specifies the timeframe for medical attention in the immediate category is 60 

min, while the delayed category states several hours. Minor injuries are unlikely to 

deteriorate over several days and therefore have the lowest risk value. This definition 

allows for model selection of patients with minor injuries only if endurance allows and 

other urgent injuries are addressed. The concept of risk minimization as it applies to this 

study is discussed further in Chapter III. 

Justification for Risk Minimization 

Objective functions focused on risk minimization are not common in existing 

literature. A study on offshore helicopter operations found that overall transportation risk 

can be reduced at the expense of increased travel time (Qian et al., 2012; Qian et al., 
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2015). This finding is an important precedent for risk minimization, as traditional routing 

studies would most likely seek to reduce overall travel time and, according to this study, 

increase passenger risk. Risk minimization has also been used in routing problems for 

logistics (Giaglis, 2004) and ground-based vehicle routing for emergency response 

(Campbell et al., 2008). The VRP study by Campbell et al. is an important theoretical 

justification for prioritizing risk minimization, as the authors explain traditional cost-

minimizing VRPs do not properly reflect the priorities of emergency responders during 

disaster relief. The Campbell et al. study focuses on alternative objective functions for 

minimization of the maximum arrival time and minimization of the average arrival time. 

However, all of these studies acknowledge the importance of quantifying total risk and 

provide precedent in the extant literature for a VRP that prioritizes risk minimization as 

the objective function (Campbell et al., 2008; Giaglis, 2004; Qian et al., 2012; Qian et al., 

2015).  

Gap in the Literature 

The review of the relevant research literature confirms the economic feasibility of 

sUAS medical supply delivery, developed simplistic VRP models to deliver scheduled 

medical supplies and blood samples, and researched cost minimization methods for UAS 

delivery. However, a gap exists in the literature because no studies combine the 

numerous vehicle routing models with environmental variables to produce a model that is 

theoretically valid and operationally useful for medical delivery using multiple sUAS. 

Additionally, extant research focuses on the optimization of vehicle utilization. This 

narrow focus results in a clear gap in research, as emergency response plans must focus 

on providing care to the highest number of patients with respect to injury severity. This 
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present study addresses this gap because its risk minimization model for post-disaster 

medical delivery using UAS is unique due to the inclusion of environmental variables to 

allow for real-world optimization calculations while acknowledging that the number of 

sUAS are limited and total travel time should be minimized as a secondary priority. 

This chapter summarizes the history of sUAS and the technological impact on the 

emergency response industry and presents a broad overview of linear programming 

methodology. Each component of a multi-objective MINLP model is explained and 

supported by previous studies to validate the research design. The theoretical foundation 

for the study is identified through industry standards for medical triage, with extant 

literature confirming the concept of quantifiable risk minimization as it pertains to natural 

disasters in the U.S. While linear programming is a common approach for vehicle routing 

problems, the literature on sUAS technology, routing studies, and emergency response 

indicates a clear gap in priorities. This research addresses the research gap by developing 

a novel model that aligns the traditional vehicle routing problem with the goals of the 

emergency response industry. 
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Chapter III 

Methodology 

This chapter details the justification for selecting a multi-objective mixed-integer 

nonlinear programming (MOMINLP) model, including the variables that justify the use 

of this method. It presents the population and sample and provides detailed descriptions 

of the research design, relevant ethical considerations, measurement instrument, and data 

analysis method.  

Research Method Selection 

This study utilizes the MOMINLP quantitative modeling methodology. The types 

of variables included in the model inform the methodology selection; each variable is 

explained in detail to justify the decision to use this specific subset of linear modeling. 

Linear Programming 

Linear programming is a broad methodology with applications in manufacturing, 

engineering, agriculture, energy, and transportation. The methodology combines elements 

of mathematics, operations research, and computer science to solve real-world industry 

problems (Mann, 2012). Decision-making in these domains can be highly complex, often 

exceeding human computational power. Software can assist in identifying the optimal 

solution to these problems, with models focusing on the minimization or maximization of 

a specific variable. The minimization or maximization function, commonly referred to as 

the objective function, is subject to a list of constraints. The general mathematical 

formula for an objective function is presented in Equation 1.  
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 (1) 

where: 

ci = the objective function coefficient corresponding to the ith variable, and 

Xi = the ith decision variable. 

 

A simple linear programming example is provided for context: An airline 

company wants to maximize profit on a 416-seat Boeing 747. Market research indicates 

the profit for each seat:  

• $350 for each first class seat sold (x) 

• $280 for each business class seat sold (y) 

• $250 for each coach class seat sold (z) 

Because the company wants to maximize profit (P), the objective function for this 

problem is P = 350x + 280y + 250z. This equation is subject to the following constraints:  

• No more than 416 seats sold (x + y + z  ≤ 416) 

• At least 5 first class seats, but no more than 20 (5 ≤ x ≤20) 

• At least 20 business class seats, but no more than 50 (20 ≤ y ≤50) 

As this example demonstrates, linear programming can be used to find the 

optimal solution for a problem in almost any industry, including aviation. While the 

optimization concept is straightforward in theory, including all the variables that 

influence a real-world system is challenging. This example of profit maximization could 

include other variables such as jet fuel consumption and crew salary, and hundreds of 
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other constraints such as budget and aircraft range, making linear programming an ideal 

methodology for solving complex optimization problems.  

As discussed in the literature review, previous linear programming models on 

sUAS routing do not include essential variables that make the model practical for 

emergency response decision-makers. Dozens of subsets of linear programming can be 

used for more specific problems, including goal programming for disaster response 

(Ortuño et al., 2011), nonlinear programming for sUAS delivery (Chang & Lee, 2018), 

and integer programming for airline passenger screening (McLay et al., 2007). 

Nonlinear Programming 

Linear programming models are used when all variables and constraints exhibit 

linear relationships, where one variable directly or inversely affects other variables at a 

constant rate. Environmental variables are included in this study, meaning a nonlinear 

relationship exists between wind speed, wind direction, and groundspeed. A headwind of 

20 kt reduces groundspeed by approximately 20 kt, and a tailwind increases the 

groundspeed by approximately 20 kt, but a crosswind of 20 kt only has a small impact on 

aircraft groundspeed and thus aircraft range. Figure 10 presents these variables modeled 

using existing mathematical calculations. The inclusion of these variables requires a 

nonlinear programming method. As discussed in the literature review, models that 

consider wind as an environmental variable affecting UAS vehicle endurance are rare 

(Thibbotuwawa et al., 2020). 
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Figure 10 

Airspeed, Groundspeed, and Wind Speed Relationship  

 
Note. The black, blue, and red lines denote horizontal component of air velocity, wind 

vector, and ground velocity vector, respectively. From “Vertical Trajectory Optimization 

for Continuous Descent Arrival Procedure ” by Park & Clarke, 2012. 

 

Mixed-Integer Programming 

Integer programming is also a common subset of linear programming. Linear 

programming models include only continuous linear variables, such as the number of 

patients at a hospital or milligrams of penicillin required to treat infections. Integer 

programming problems include only discrete variables, such as the number of beds in a 

hospital or the number of doctors in a city. The risk minimization model in this present 

study is considered mixed-integer because it includes continuous variables such as wind 

speed and discrete variables such as payload capacity and injury severity. 
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Multiple Objectives  

The risk minimization model is a multi-objective model because it includes two 

objective functions to minimize risk and travel time. More specifically, a goal 

programming methodology is utilized to ensure the model solves the primary objective of 

risk minimization first, followed by the secondary goal of route time minimization used 

to achieve the final optimal solution. For this study, the hierarchy of criticality is 

absolute, meaning the optimal primary objective will not be sacrificed to achieve a more 

optimal secondary objective. This variation is referred to as lexicographic goal 

programming (LGP) and has been previously used in transportation models (Quddoos et 

al., 2013) and models for humanitarian response after natural disasters (Ortuño et al., 

2011). 

Multi-Objective Mixed-Integer Nonlinear Programming  

The inclusion of nonlinear environmental variables, discrete and continuous 

variables, and two objective functions designates the chosen model as a multi-objective 

mixed-integer nonlinear programming (MOMINLP). This subset of linear programming 

is relatively narrow, with applications ranging from supply chain problems (Chen & Lee, 

2004; Wu et al., 2009) to construction site layout planning to minimize noise pollution 

and transport costs (Hammad et al, 2016).  

Population/Sample  

Population and Sampling Frame  

The population for this study is all U.S. rural areas, as defined by the Census 

Bureau as “all population, housing, and territory not included within an urbanized area or 

urban cluster” (Ratcliffe et al., 2016, p. 3). The Census Bureau considers areas of at least 
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2,500 and less than 50,000 people to be urban clusters and areas of 50,000 or more 

people to be urban areas. Approximately 97% of the total U.S. land cover is considered 

rural, with approximately 19% of U.S. citizens residing in these rural areas.  

Sample Size  

Four locations fitting the Census Bureau’s definition of a rural community were 

selected for the study sample. Geographic and demographic variation were prioritized 

during the selection process to ensure the sample is representative of the entire rural 

population of the U.S. The first location for the initial model output is Purvis, 

Mississippi, with a 2010-census population of 2,175 and a population density of 554 

residents per square mile. Purvis is located in Lamar County, with approximately 60,000 

residents in an area of 500 sq mi and a density of 112 people per square mile. The South 

Mississippi State Hospital is located near Purvis, a logical location to execute medical 

disaster response in the surrounding region. Over the last decade, the area has suffered 

numerous natural disasters, including multiple tornados and hurricanes. In 1908, the 

community was also devastated by the 8th deadliest tornado outbreak in history, resulting 

in 83 deaths (approximately 10% of the population) and 340 wounded. The other sample 

locations selected are Floyd, New York, McCall, Idaho, and Winslow, Arizona. The 

entire city of Purvis is small enough to meet the Census Bureau’s definition of a rural 

area within the city limits, making it an ideal location for the initial model output. The 

other communities also have rural populations surrounding their city centers to meet the 

delimitation for this study. Table 5 presents the population data for each location in the 

sample. 
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Table 5 

Sample Population Characteristics  

Location Population Density per 
square mile Region 

Purvis, MS 2,175 572 Southwest 
Floyd, NY 3,819 109 Northeast 
McCall, ID 2,991 397 Northwest 
Winslow, AZ 9,005 693 Southwest 

 

Sampling Strategy 

The sample locations were selected by both geographic location and population to 

ensure appropriate generalizability for the model. Floyd, McCall, and Winslow have rural 

communities outside their city centers, while Purvis is small enough to be considered 

rural even in the city center. These locations, displayed in Figure 11, show separation by 

both physical location and climate. The differences in climate are captured in the model 

sensitivity analysis by using data inputs from the historical wind data at each location. 

 

Figure 11 

Sample Locations 
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Research Procedure  

Model Development Design and Procedures  

The model development process was designed to analyze previous research and 

identify the variables influencing the disaster response system, followed by model 

development and validation through multiple scenarios of increasing scope. The research 

procedure, as illustrated in  Figure 12, began with a thorough literature review of airborne 

vehicle routing studies and optimization models for medical delivery and disaster 

planning presented in Chapter II. After the decision variables and parameters were 

conceptualized, the risk minimization model was developed using LINGO Version 19.0 

software and was validated by comparing the results to a simple scenario. The model was 

then tested with hypothetical scenarios in rural areas using Microsoft Excel to assign 

values to the stochastic environmental variables based on historical wind data and the 

stochastic patient variables based on random number generators.  
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Figure 12 

Research Procedure for Optimal Solution Model Development 

 
Note.  MINLP = mixed-integer nonlinear programming. 

 

The procedure to develop and validate the model followed six steps. 

Step 1. Literature Review. As discussed in Chapter II, many UAS routing 

studies determine the optimal path without considering the appropriate variables. The 

literature review solidifies the research gap and informs the selection of variables and 

model constraints in subsequent steps. 
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Step 2. MINLP Model Conceptualization and Development. This step 

identifies the input variables and constraints used in the initial model. The objective 

function was developed, and relationships were defined based on the literature review 

outlined in Step 1. The model must be flexible to account for different constraints and 

variable values depending on the type of sUAS, available medical resources, and other 

event-specific considerations. Coding the variables and constraints into LINGO required 

an iterative process of adding data to LINGO, verifying the data through internal and 

external sources, and running the model through multiple iterations to ensure outputs 

were reliable and coded properly. 

Step 3. Monte Carlo Simulation for Environmental Variables. To compute 

travel time between any two patients in a given scenario, groundspeed must first be 

calculated. The inputs required to calculate groundspeed are sUAS heading, sUAS 

airspeed, wind direction, and wind velocity. To ensure the reliability of the formulas and 

observe the distribution of groundspeed over a large sample size, two Monte Carlo 

simulations were utilized. The mean and standard deviation for wind velocity and wind 

direction were obtained using 8760 historical data points from the first model location 

and were used as inputs for a stochastic simulation where each trial is an independent 

scenario. The second Monte Carlo simulation was deterministic, with static 

environmental variables designed to simulate the groundspeed distributions for 5,000 

patients where vehicles are subjected to the same wind conditions for every trial. For both 

simulations, the wind direction, wind speed, and aircraft speed were manipulated to 

observe the impact of changing variables on the groundspeed distribution over a large 

dataset. 



60 

 

Step 4. Obtain Initial Risk Minimization Solution. Once the necessary model 

input reliability was achieved through the use of Monte Carlo simulations and iterative 

testing during the model development, an initial optimal risk minimization solution for 

the first scenario was obtained. The output was validated against known route travel 

times for the environmental conditions used as inputs, and prioritization of injury severity 

is observable in a controlled 5-patient scenario.   

Step 5. Sensitivity Analysis on Initial Solution. To confirm the usefulness of the 

model at different scales, the model was run through multiple what-if scenarios for each 

variable. The sensitivity analysis is an important tool for disaster planning, as decision-

makers must understand the ramifications of purchasing sUAS with different payload and 

endurance limitations as these decisions are most likely cost-driven. The sensitivity 

analysis process was iterative and flexible, and additional scenarios were added based on 

the initial results.  

The sensitivity analysis also ensures decision-makers understand the total risk 

minimization values across a wide range of disaster response scenarios. With the cost of a 

human life currently valued at over $9 million (Moran & Monje, 2016), justification for 

sUAS medical delivery is strengthened through research on the impact of changing 

variables like payload capacity and endurance. Results from the initial sensitivity analysis 

demonstrate model reliability, as the scenarios are designed to be small enough that the 

optimal route can be confirmed through manual observation. Through the process of 

updating sUAS and environmental variables, the generalizability of the model can also be 

observed. 
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Step 6. Sensitivity Analysis on Additional Locations. To confirm model 

generalizability for rural environments in the U.S., three additional locations were 

selected based on population and demographics. The statistics for each location are 

discussed in the Demographics section of this chapter. The sensitivity analyses in Steps 5 

and 6 demonstrate the model is robust to changing environmental variables, vehicle 

variables, and across a variety of rural locations. 

Apparatus and Materials 

Because this research is focused on the development of an optimization model, 

gathering new data was not required. Existing historical data obtained from the National 

Oceanic and Atmospheric Administration (NOAA) Online Database 

(https://www.ncdc.noaa.gov/cdo-web/datasets) was used as the input for the Monte Carlo 

simulations for each geographic region. The rural regions were selected based on the U.S. 

Census Bureau definition, with priority given to areas that are particularly susceptible to 

natural disasters. The data source for sUAS system limitations is commercially available 

technical data. Although the model is platform-agnostic, for the purposes of model 

development and validation, industry standards were used for sUAS endurance, speed, 

and payload capacity.  

Research Design 

Solution Method  

This research employs a quantitative heuristic method to achieve optimal risk 

minimization in a novel extension of a standard VRP. Heuristic methods are widely used 

in the aviation domain (Jozefowiez et al., 2013; Thengvall et al., 2001) to solve large-

scale problems that do not have perfect solutions. Heuristic methodologies such as greedy 
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algorithms and column-based algorithms are frequently used to find the best possible 

solution under a given set of circumstances. Because this study does not attempt to 

completely eliminate risk by delivering medicine to every patient, which would likely 

result in no solution being found or an economically infeasible number of participating 

sUAS during large-scale disasters, a heuristic method is appropriate to find a solution that 

minimizes risk. Numerous heuristic methodologies are employed to solve NP-hard VRPs, 

including simulated annealing, the bee colony algorithm, or population search methods.  

This risk minimization study utilizes a capacitated VRP (CVRP) approach to 

achieve the appropriate risk minimization solution, meaning the model will constrain 

medicine weight to less than or equal to the maximum payload capacity of each vehicle. 

Thus, this research design is considered a multi-objective capacitated vehicle routing 

problem.  

The list of assumptions and justifications for the study can are presented in Table 

6. These assumptions are consistent with similar sUAS vehicle routing studies and bound 

the study to specific disaster response and medical delivery scenarios. 
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Table 6 

Model Assumptions and Justifications  
Assumption Justification 

Vehicle reliability is 100% and 
performance characteristics remain 
constant throughout the flight. 

Failure modes and statistical probabilities for commercial sUAS are 
usually unavailable, but during one maximum-endurance flight 
cycle, variables such as airspeed and transition time normally 
remain constant. 

Wind velocity and direction remain 
constant throughout the flight. 

Flight time is limited to sUAS battery life. Minimal environmental 
changes are expected during this time.  

Routing decisions are made at 
finite intervals. 

When a given number of sUAS are prepared to fly, a snapshot of 
injury location and distance is used to determine optimal risk 
minimization at a single point in time. 

The separation of manned and 
unmanned traffic will be managed 
procedurally during emergency 
response operations using FAA 
Notices to Air Missions 
(NOTAMs) and Temporary Flight 
Restrictions (TFRs).   

Instructions for temporary flight restrictions and other procedures 
for safe airspace coordination are from the FAA Emergency 
Response Plan.  

Times for preflight and loading 
required supplies are calculated at a 
fixed rate based on the number of 
sUAS executed during the mission. 

Loading a single sUAS can be done at a given rate, and additional 
sUAS are loaded at a similar fixed rate.  

Transition times (landing, 
offloading, taking off) at each 
location are calculated at fixed 
rates.  

Flight clearance for sUAS delivery are limited to under 400 ft 
(121.92 m) per FAA Part 107 regulations. A small payload size 
should minimize variation in payload offload time. These variables 
are included in the model at fixed rates.  

Each flight completes the entire 
round-trip flight from a single 
depot without mid-route refueling. 

Some sUAS routing models include refueling depots or multiple 
launch/recovery points at strategic locations to increase model 
flexibility, but coordinating logistics of refueling locations during 
disaster response is unrealistic. The range constraint limits the risk 
minimization for each flight, but it is necessary to model a realistic 
environment to ensure appropriate reliability. 

 

Decision Variables  

The decision variables for the model are the possible routes to injured patients. 

Each route is a binary variable, with 0 indicating the patient is not selected and 1 

indicating the patient is selected. The model considers the constraints and determines the 

optimal routing with the available sUAS to minimize risk. The second objective function 

of travel time minimization uses the same binary decision variable for a route being 
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selected. The number of potential routing decisions facing emergency responders will be 

too complex to calculate manually, even in relatively small scenarios. For example, 

applying the permutation formula to a scenario with one sUAS vehicle and 10 injured 

people contains 10 factorial (3,628,800) potential route combinations without even 

considering the influence of model constraints. Table 7 lists the input and output 

variables for the model, their characteristics, and scales.  

 

Table 7  

Model Parameters, Input/Output Characteristics, and Scales  
Parameter Input or Output Scale 

sUAS route  Output, Binary 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘{ 0 otherwise
1 if vehicle 𝑘𝑘 travels along arc 𝑖𝑖−j 

Injury risk  Input, stochastic Discrete 

Injury location Input, stochastic Discrete 

Medicine weight Input, stochastic Discrete 

Wind direction Input, stochastic Discrete  

Wind velocity  Input, stochastic Continuous 

Available sUAS Input, deterministic  Discrete  

Airspeed Input, deterministic  Continuous 

Payload capacity Input, deterministic Discrete 

Endurance Input, deterministic Continuous 

 

Objective Function  

The objective functions for the MINLP model are to minimize the total risk to 

injured patients and minimize travel time. The model is built to run two separate 

successive iterations using the following objective function:  

MIN = (travel time weight * total travel time) + (penalty weight * total penalty) 
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 The model then runs a submodel in the code twice with a different weighted 

value for travel time and penalty each time. The lexicographic methodology used for this 

study requires no combination of travel time weight and penalty weights, making the 

weight values binary:  

1. Risk minimization solution: MIN = (0 * total travel time) + (1 * total penalty) 

2. Constrain secondary solution: total risk = total penalty 

3. Travel time solution: MIN = (1 * total travel time) + (0 * total penalty) 

Risk Minimization 

As discussed in the literature review, the theoretical foundation for risk 

minimization is the first responder injury scale. Although first responders classify 

patients into four categories, the expectant/dead category does not apply to this model, as 

the time horizon for these patients has passed. The three other categories of immediate, 

delayed, and minor all have approximate time constraints. Immediate injuries must 

receive additional care within approximately 60 min, delayed injuries within 120 min, 

and minor injuries within several days. The risk severity for each patient can be 

quantified by an escalating scale presented in Table 8. If a delivery is not made, the value 

listed in the table is assessed as a penalty. The model is then tasked with minimizing the 

penalty assessed.  

 

Table 8 

Individual Risk Severity  
Injury Classification Risk Value 

Immediate  500 
Delayed 300 
Minor  100 
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Immediate injuries have a value of 500, meaning the model prioritizes these 

patients over all others. Delayed and minor injuries are valued at 300 and 100, 

respectively. It is important to note that these values are arbitrarily determined and a user 

can adjust these values if patient prioritization changes based on the type of emergency 

response. With the values listed in Table 8, the model will prioritize the delivery of two 

patients with delayed injury (missed delivery penalty = 600) over one patient with an 

immediate injury (missed delivery penalty = 500). However, the model was tested with 

various risk values during the model validation phase to confirm appropriate model 

flexibility. For example, if emergency responders prioritize immediate patients over any 

number of delayed patients, an absolute hierarchy of patient prioritization is possible by 

updating the risk values. For that scenario, the model user would increase the range 

between each category. Immediate injuries could be set to 1000, delayed injuries could be 

set to 100, and minor injuries could be set to 1. For these values, the model would 

acknowledge the weight of immediate injuries at a factor of 10, and it would require a 

successful delivery of 10 delayed injuries to equal one immediate injury. This model 

flexibility is a significant benefit in terms of operational usability. 

The risk severity matrix in Table 8 quantifies the total risk (Rt) of a rural area by 

summing the risk of each patient (P), identified as the primary risk minimization 

objective (f1), as shown in Equation 2: 

 

f1=(min)Rt=RS(P1)+RS(P2)+ RS(P3)+…RS(Pn) (2) 
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Travel Time Minimization 

The secondary objective (f2) of minimizing total travel time (Tt) is constrained to 

the optimal risk minimization, meaning f2 cannot increase f1. Unlike weighted goal 

programming methodologies that use a numeric goal to find an optimal solution between 

conflicting objectives, this study uses lexicographic goal programming. The primary goal 

of risk minimization is solved first, followed by a separate optimization solution using the 

potential locations from f1 as an input for f2, as shown in Equation 3. 

 

F1=(min)T=RS(P1)+RS(P2)+ RS(P3)+…RS(Pn)), f2=(min)Tt  (3) 

 

Constraints 

The list of constraints contains standard limitations for vehicle routing problems 

identified from the literature review and the relevant environmental constraints to ensure 

route completion within maximum vehicle endurance.  

• Each sUAS will depart and return to the same physical location  

• Each injury location can be visited only once 

• Route flight time will not exceed sUAS endurance 

• Maximum number of sUAS will not be exceeded 

• Patient medicine demand must not exceed payload capacity 

The decision variables and additional constraints demonstrate model complexity 

with the inclusion of stochastic environmental variables, stochastic patient data, and 

deterministic sUAS vehicle limitations. 
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In summary, this study is considered a CVRP and is solved by a MOMINLP 

model. The results are validated by real-world scenarios using industry-standard sUAS 

capabilities and average weather conditions at each location.  

Sources of the Data 

Demographic information for this research was collected using publicly available 

databases, primarily the U.S. Census Bureau 

(https://www.census.gov/library/visualizations/2010/geo/population-density-county-

2010.html) and the NOAA historical weather (https://www.ncdc.noaa.gov/cdo-

web/datasets). No original data was collected to develop the model, and demographic 

information was used solely for model validation.  

Ethical Considerations 

Because this research uses data from previous studies for the model formulation, 

no human subjects were necessary, and the Institutional Review Board (IRB) approval 

was not required. However, the practical application of this research requires decision 

makers to consider the ethical implications of choosing which patients receive potentially 

lifesaving medicine based on the model results. This consideration is outside the scope of 

the study, as the goal is model development and not model implementation with a rural 

disaster management plan.  

Measurement Instrument  

VRPs are considered NP-hard, meaning perfect solutions are generally not 

feasible under realistic constraints, and searching every potential route is not possible 

under normal computing conditions. Thus, heuristic algorithms are used to identify the 

optimal route. Even with heuristics, the process of finding an optimal solution still 
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involves analyzing hundreds or thousands of routing possibilities. Many algorithms have 

been developed to optimize this process and find a suitable balance between 

computational time and optimality. 

Multi-route improvement algorithms attempt to upgrade a feasible solution by 

exploring delivery point exchanges between routes and have been successfully 

demonstrated in multiple studies (Kindervater & Savelsbergh, 1997; Thompson & 

Psaraftis, 1993; Van Breedam, 1994). Another approach is cluster-first and route-second 

algorithms, which saves processing time by identifying geographically similar points and 

grouping them into clusters, followed by route selection on each individual cluster 

(Fisher & Jaikumar, 1981; Ryan et al., 1992).  

One of the most well-known algorithms is the Clarke and Wright savings heuristic 

(CWSH) (Clarke & Wright, 1964). This method is advantageous due to its balance 

between flexibility and efficiency (Larson & Odoni, 1981), and while newer 

metaheuristic methods can output improved optimal solutions, they require a significant 

amount of time and computing power. For the optimal solution to be practically useful, 

the results must be obtained using relatively limited computing power available in an 

emergency operations center and must be obtained in the shortest time possible. While 

this time advantage comes at the cost of accuracy, a model used for emergency response 

must find the appropriate balance between speed, accuracy, flexibility, and simplicity.  

The modeling software used for this research automatically assigns the solver 

type based on the variables included and generally will select a branch-and-bound 

technique for models with numerous integer variables. The underlying theory behind the 

branch-and-bound method is a divide-and-conquer algorithm, as searching through all 
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potential routes is inefficient and time-consuming. This technique divides the problem 

into smaller sub-problems, or “branches” that are evaluated independently, and it discards 

solutions that could not possibly contain the optimal solution for the entire problem. This 

process is called bounding and fathoming. The branch-and-bound technique can be 

summarized by the following iterative process (Hillier & Lieberman, 1995):  

Initialization: Set Z* = -∞. Apply the bounding step, fathoming step, and 

optimality test—as described below—to the whole problem. If not fathomed, classify this 

problem as the one remaining subproblem for performing the first full iteration.  

• Branching: Among the remaining subproblems, select the one that was 

created most recently (break ties according to size). Branch from the node 

for this subproblem to create two new subproblems by fixing the next 

variable at either 0 or 1.  

• Bounding: For each new subproblem, obtain its bound by applying the 

simplex method to its linear programming relaxation and rounding down 

the value of Z for the resulting optimal solution.  

• Fathoming: For each new subproblem, apply the fathoming tests and 

discard those subproblems that are fathomed by any other tests.  

While the underlying calculations for the branch-and-bound technique are 

complicated, the implementation of the heuristic is quite simple and has been widely used 

for VRPs. Utilizing this method will increase the reliability of the model over more 

obscure and untested metaheuristic algorithms.  
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Data Analysis Approach  

The reliability of the model was tested through iterative testing at a single 

location. This testing was followed by reliability and generalizability testing at three 

additional locations using the what-if scenarios.  

Reliability Assessment Method  

The reliability of the model was confirmed at multiple steps during the model 

development process. As the model was built in LINGO, each line of code was reviewed 

and verified by this researcher. The model code was then reviewed by an independent 

specialist from LINDO Systems, whose team of technicians confirmed model accuracy at 

multiple checkpoints during the construction of the final model. This process is 

visualized in Figure 13 and demonstrates thorough testing to confirm the model produces 

consistent results. During this process, a comparison was made between a simplistic 

scenario where the optimal route is obvious and an output from the LINGO computation 

being tested. Achieving the same results from both scenarios confirms the reliability of 

using a software program for more complex problems that cannot be solved manually. 

This process was repeated as new variables were added to the model to ensure the 

accuracy of the code during the build process.  
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Figure 13 

Model Reliability Workflow 
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the model, but also addresses the generalizability of the model at different scales of 

emergency response. For example, if the injury severity level for one patient is changed 

from minor to immediate and all other variables remain constant, comparing the updated 

model output with the original model output confirms the model is responding correctly 

to variation in uncontrollable inputs. This process was repeated for other controllable and 

uncontrollable variables. The specific locations and variations in model construction are 

discussed in the data analysis portion of this chapter, as well as in Chapter IV.  

Reliability of Patient Variables. Existing models are used for injury risk 

categorization because these processes are widely used in the triage field to measure 

injury severity and have been studied extensively. These triage models are outlined in 

Chapter II as the theoretical foundation for the study. The manual manipulation of risk, 

location, and medicine variables was iterative, occurring during the model build process 

outlined above, as well as the subsequent sensitivity analysis. Table 9 shows how each 

patient variable was selected and manipulated during the sensitivity analysis to confirm 

reliability. 

 

Table 9 

Selection and Manipulation of Patient Variables  
Variable Input Type Initial Model Output Sensitivity Analysis 

Number of Patients Deterministic 5 7, 15 

Injury Risk Stochastic random number generator, 
100, 300, 500 random number generator 

Injury Location Stochastic random location generator  random location generator  

Required Medicine Weight Stochastic random number generator, 
0-6 random number generator 

 

Reliability of Environmental Variables. Groundspeed is calculated using the 

wind angle in reference to the direction of travel, true airspeed, and wind velocity. Using 
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an existing formula to calculate sUAS groundspeed ensures acceptable construct 

reliability. For reliable input data during the what-if scenario testing and Monte Carlo 

simulations, NOAA databases for weather conditions were used to determine wind speed 

and direction for each location. Each location dataset was evaluated using SPSS Version 

28 to ensure no missing data were present.  

Just as the stochastic patient variables were manually manipulated during the 

sensitivity analysis on the initial output, the stochastic environmental variables were 

altered during the sensitivity analysis on additional locations. While the primary objective 

of testing different locations is to demonstrate model generalizability, changing the 

environmental conditions, as seen in Table 10, also demonstrates the reliability of the 

outputs with a variety of wind directions and speeds. While the historical data indicated 

location-specific trends for both direction and velocity, a stochastic wind direction value 

was obtained for the initial model output to demonstrate both reliability and 

generalizability. The mode of the dataset was used for the sensitivity analysis at each 

additional location. The wind velocity for the initial model output was set to roughly 95% 

of the maximum wind velocity observed in the historical data, and additional location-

specific sensitivity analyses were conducted at 5% above the minimum observed wind 

velocity and 95% of the maximum observed wind velocity at each location.  

  

Table 10 

Stochastic Environmental Variables 
Variable Input Type Initial Model Output Sensitivity Analysis 

Wind direction Stochastic Random number generator (0,360) Mode 
Wind velocity Stochastic 10 5%, 95% 
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Reliability of sUAS Variables. The input reliability of aircraft performance data 

is defined by the end-user, including airspeed, endurance, and payload capacity variables. 

The what-if scenarios also use sUAS variables from commercially available platforms, 

and environmental conditions were retrieved for each location to ensure the model is 

valid for a wide range of operational uses. This ensures future scenarios of increasing 

complexity produce reliable results, regardless of scale. Future outputs would also be 

reliable due to the objective nature of mathematics. The sUAS variables for the initial 

output and subsequent sensitivity analysis are listed in Table 11. 

 

Table 11 

sUAS Variable Values  
Variable  Input Type   Routing Model (Mississippi)  Sensitivity Analysis  
Available sUAS Deterministic   1 3 
Airspeed (mph) Deterministic   22 35 
Payload capacity Deterministic   10 15, 20 
Endurance (minutes) Deterministic   100 150 

 

Validity Assessment Method 

sUAS variables. Inputs for aircraft performance data during the model testing and 

validation phase were based on currently available sUAS capabilities. Because sUAS 

delivery is not widespread, many platforms are being custom-built by large multinational 

corporations who can afford the research and development costs. Amazon is currently 

testing a multirotor sUAS designed to carry a 5 lb (2.27 kg) package up to 15 mi (24.14 

km) (Lardinois, 2019). Wing, owned by Google, is partnering with FedEx to develop an 

sUAS that can travel up to 60 mph (96.56 kph) and carry a 3 lb (1.36 kg) payload up to 6 

mi (4.8 km) (Murphy, 2019). UPS, however, is approaching delivery service differently 
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by partnering with Matternet, a Swiss company specializing in commercial drone 

technology. The Matternet M2 is currently authorized by the Swiss Aviation Authority to 

operate delivery services over cities and was the first platform approved by the FAA for 

unmanned Part 135 certification. The M2 has a range of 12 mi (19.32 km) and a payload 

capacity of 6 lb (2.72 kg), which is adequate to carry lightweight defibrillators along with 

other medical supplies.  

For model construction and validation, no specific vehicle was used for the inputs 

of sUAS vehicle variables. While the M2 is a potential candidate for medical delivery 

after natural disasters because it is commercially available and has been certified by 

multiple federal aviation agencies, the battery limitations make delivery operations in 

rural areas difficult to execute. Instead of testing the model with one platform, a variety 

of vehicle capabilities were selected through a review of the existing technology. As 

technology advances and capabilities increase, the model allows for this expansion 

because these model constructs are manually entered by decision-makers. Adjusting the 

values of airspeed, payload capacity, and endurance during the sensitivity analysis 

demonstrates model generalizability throughout a wide range of platforms.  

Patient Variables. Because the location, risk value, and medicine weight are all 

stochastic and obtained through random generators, these variables remain valid 

regardless of scenario location. However, the number of patients requires further analysis 

to determine model generalizability during disaster responses of differing magnitudes. 

For the sensitivity analysis, additional model outputs were obtained for seven and 15 

patients to demonstrate model generalizability throughout varying scales of disaster 

response.  
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Environmental Variables. The location-specific sensitivity analysis for wind 

direction and wind velocity was conducted to determine how different environmental 

conditions would affect the optimal risk minimization route. The wind values for each 

location were selected based on 1 year of hourly environmental data from NOAA. 

Windspeed values at 5% and 95% of the total yearly distribution were calculated in SPSS 

Version 28 and used as the input variables to calculate travel time at each location during 

low wind and high wind conditions.  

The sensitivity analysis results ensure the model is reliable and generalizable to 

different locations, environmental conditions, sUAS vehicles, and scope of emergency 

response. The results are discussed in detail in Chapter IV. 

Demographics 

External validity is addressed in the model validation phase through multiple 

what-if scenarios of varying complexity and location. The four rural locations are Purvis, 

Mississippi; Winslow, Arizona; McCall, Idaho; and Floyd, New York. According to the 

U.S. Census Bureau, the median age in rural communities is 51, and the median 

household income is $52,386. The average age of all four sample communities is 45, and 

the median salary of the sample locations is $51,678. Purvis and Floyd have relatively 

low average age and income, while McCall and Indian Wells have higher average ages 

and incomes. This broad sample of age, income, and geographic locations confirms the 

model can be useful in multiple disaster response scenarios within the U.S. 

Modeling and Data Analysis Process  

Following the identification of model variables, objective functions, and 

constraints, the data was coded into the appropriate LINGO syntax. For the baseline 
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model validation, one sUAS vehicle and five randomly generated points were used to 

create the scenario. An online random point generator was utilized to identify the distance 

and bearing from the center point (sUAS hub), and the RANDBETWEEN formula in 

Microsoft Excel was used to randomly assign one of the injury severity categories. An 

example dataset is shown in Table 12 and Figure 14.  

  

Table 12 

Random Injury Location and Severity  
Distance Bearing Severity 

23.7538 232.253° Delayed  
21.6651 89.155° Minor  

9.5199 291.378° Expectant/Dead  
5.0835 53.298° Minor  

15.946 130.286° Immediate  
26.6462 224.436° Immediate  
24.4493 65.562° Expectant/Dead  

3.1829 140.286° Minor  
17.6877 35.982° Minor  
26.2124 56.31° Minor  
10.2486 4.248° Expectant/Dead  
26.5086 207.831° Immediate  
14.2634 45.552° Expectant/Dead  
18.5367 286.648° Minor  
23.6032 119.452° Delayed  
19.0847 38.581° Delayed  
24.8456 224.426° Delayed  
24.2104 236.343° Delayed  
20.7218 55.801° Minor  
17.041 227.281° Minor  

Note. Strikeouts indicate patients reported as expectant/dead which will not be included 

in the model. 
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Figure 14 

Randomly Generated Patient Locations  

 

 

To determine the secondary objective of total travel time, the groundspeed of the 

sUAS must be calculated and converted to a travel time matrix for LINGO to calculate an 

optimal solution. The required variables to determine groundspeed are airspeed, heading, 

distance, wind speed, and wind direction. The relationship between these variables can be 

visualized in Figure 15, with corresponding mathematical calculations listed in the 

formulas below.   
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Figure 15  

Trigonometric relationship between wind and aircraft  

 

Note. β is the offset angle, θ is the difference between wind direction and desired bearing. 

VPG is the resultant groundspeed vector, VPA is the airspeed vector, and VAG is the wind 

velocity vector. By Nave (n.d.). In the public domain.  

 

Airspeed is a deterministic input, and sUAS heading and distance were 

determined by trigonometric calculations. The randomly generated location data was 

transferred to an excel spreadsheet in latitude/longitude format, where the relative 

heading between every combination of patient locations was calculated using Equation 4.  

 

Heading = degrees(atan2(cos(radians(lat1))*sin(radians(lat2))-
sin(radians(lat1))*cos(radians(lat2))*cos(radians(lon1-lon2)),sin(radians(lon2-
lon1))*cos(radians(lat2)))) (4) 

 

To determine groundspeed, the trigonometric function in Equation 5 was applied 

to each true course value.  

 

Groundspeed = true airspeed*cos(radians(true course+degrees(asin(wind 
velocity*sin(radians(wind direction-true course))/true airspeed))-true course))-
wind velocity*cos(radians(wind direction-true course)) (5) 
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The final step in calculating the travel time between each patient is the distance 

calculation between each point. Using the latitude and longitude of both points, plus the 

radius of the earth at 3443.8985 nautical miles, the formula in Equation 6 was used.  

 

Distance = acos[(sin(lat_place_1*pi()/180)*sin(lat_place_2*pi()/180)+cos 
(lat_place_1*pi()/180) *cos(lat_place_2*pi()/180)*cos(lon_place_2*pi()/180-
lon_place_1*pi()/180)) ] *3443.8985 (6) 

 

Equations 4 to 6 that calculate distance and groundspeed between two points allow for 

one final calculation to be made: Travel time= distance/speed 

The complete formula for travel time is as presented in Equation 7. 

 

Travel time = (acos[(sin(lat_place_1 * pi()/180) * sin(lat_place_2 * pi()/180) + 
cos(lat_place_1 * pi()/180) * cos(lat_place_2 * pi()/180) * cos(lon_place_2 * 
pi()/180-lon_place_1 * pi()/180)) ] * 3443.8985) / true airspeed * cos(radians(true 
course + degrees(asin(wind velocity * sin(radians(wind direction-true course)) / 
true airspeed))-true course))-wind velocity * cos(radians(wind direction-true 
course)) (7) 
 

Using Equations 4−7, the travel time matrix was built and transferred to LINGO 

to generate an optimal solution. To ensure the model remains useful to first responders, 

the maximum allowable computation time was limited to 180 s, or 5% of the available 

time to reach a patient with an immediate injury. Calculation times outside of this 

window are considered operationally unusable and would require model adjustments to 

reduce the calculation time to acceptable values under 180 s.  

Model results are displayed in Chapter IV for each iteration of the reliability and 

generalizability test and will include the output for both objective functions. For risk 

minimization, results will be displayed as a penalty for each missed delivery. This value 
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is compared to the total available risk minimization in a given set of patients to 

objectively evaluate the optimal route for a given set of inputs and constraints. A risk 

reduction of 100% would indicate that all patients received the appropriate medication.  

Summary   

The model constructed for this research utilizes the variables outlined in the 

literature review to build a mathematical formula designed to output the optimal sUAS 

routing to minimize risk, with a secondary goal of minimizing travel time. The routing 

solution is constrained by vehicle limitations, environmental conditions, patient location, 

and injury severity. Risk minimization is calculated based on these variables, followed by 

a secondary calculation to minimize total travel time for a given optimal risk 

minimization value.  
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Chapter IV 

Results 

The purpose of this study was to develop a risk minimization model for rural area 

medical deliveries after a natural disaster. To answer the research questions posed in 

Chapter I, a mathematical model was constructed to identify the relationships between 

the two objective functions and model constraints. The mathematical model was then 

coded into LINGO Version 19.0 with a combination of deterministic and stochastic 

inputs. The deterministic variables were obtained by reviewing extant literature on 

current sUAS capabilities and limitations such as vehicle endurance, airspeed, and 

payload capacity. The stochastic inputs were selected by evaluating historical climate 

data from Purvis, Mississippi, followed by an analysis of the dataset in SPSS Version 28 

to confirm the completeness of the dataset and observe the descriptive statistics and 

distribution. The mean and standard deviation values from the historical climate data 

were then used as input variables for two Monte Carlo simulations to observe the 

groundspeed distribution in a large dataset. The results of the simulation, discussed later 

in the chapter, confirm the distribution is similar to the groundspeed values used in the 

LINGO model, demonstrating the mathematical formulas used to calculate the 

groundspeed input values are reliable. 

After achieving an initial output, multiple what-if scenarios were conducted to 

evaluate the sensitivity of the model to changing environmental variables and a variety of 

sUAS capabilities. The results of the sensitivity analysis are used to demonstrate model 

generalizability across a wide range of disaster response scenarios.   
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Mathematical Model  

The following mathematical model is an adaption of the standard CVRP 

formulation (Markov, 2015), updated to reflect the novel risk minimization variable in 

this study. The Markov formula has been validated in previous studies and adapted for 

similar routing models (Markov et al., 2017; Markov et al., 2020).  

A group of sUAS K = (k1,…,km) are available to transport medicine to a set of 

patients P. Let G = (P,A) be a graph where P = (P0, …Pn+1) is the set of vertices 

representing patients (p), with p ∈ P, and A = {(Vi,Vj): i ≠  j ∧ i, j ∈ V} be a set of arcs 

representing the available routes that must start and end at the depot (i=0).  

Each patient p has:  

• A risk score Rp. The sum of Rp for a set of patients = RT, representing the 

total risk value set P.   

• A required deliverable demand qi representing the requested medicine 

weight at location i.   

• A fixed transition time z to land, unload medicine, depart for the next 

location. 

Each sUAS vehicle k has:  

• A travel time t from patient i to j 

• A maximum payload capacity Q 

• A maximum endurance ke 

• Each vehicle will depart and return to the depot i=0  

Xijk is a binary variable, Xijk = 1 indicates that the sUAS k flies from i  to j, 

otherwise, Xijk = 0 
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Yik is a binary variable, Yik = 1 indicates that the sUAS k visits node i and fulfills 

the deliver requirement qi, otherwise, Yik = 0 

Uik is the cumulative demand serviced by vehicle k when arriving at node i. 

 

 (8) 

Equation 8 is the objective function to minimize total patient risk (RT) where Rp is 

the risk value at a patient location and Xijk = 1 if sUAS k visits patient p along route i,j, 

otherwise Xijk = 0.  

 

 (9) 

Equation 9 is the objective function to minimize the sum of mission durations for 

all routes where sUAS k visits patient p along route i,j, with tij representing the time from 

i to j, and z representing the fixed constant for landing, unloading medicine, and resuming 

forward flight, subject to Equations 10−19.  

 

  (10) 

Equation 10 ensures a patient only receives at most one delivery from a vehicle k. 

Unlike traditional CVRP models, this equation does not guarantee each patient receives a 

visit; only that the maximum number of visits cannot exceed 1.  

   



86 

 

 (11) 

Equation 11 is a path flow constraint to ensure continuity within a selected route. 

Each vehicle k must arrive and depart the same number of patient locations.  

  

 (12) 

Equation 12 is also a path flow constraint and ensures each vehicle k can only 

leave the depot once. The depot is identified as i= 0. The first three constraints can be 

summarized that for all sUAS vehicles k in the set K, a selected route must leave the 

depot i= 0 once, visit a patient p no more than once, and end at the same depot i= 0 where 

the route originated. 

 

                             (13) 

Equations 13 is a coupling constraint to ensure Yik is linked to the binary decision 

variable Xijk.  

 

          (14) 

 

                   (15) 

Equations 14 and 15 ensure Xijk and Yik are binary variables, as both the route Xijk  

and the delivery Yik are either selected or not selected on a given route for vehicle k.  
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                (16) 

Equations 16 is a subtour elimination constraint, linking the node demand for qj  

with the cumulative demand Uik in a big-M fashion where: 

Uik = Cumulative demand serviced by vehicle k when arriving at node i. 

qj = Requested medicine weight at location j.  

Q = Vehicle payload capacity  

   

                                (17) 

Equations 17 is also a subtour elimination constraint, and provides the lower 

bound for Uik, ensuring vehicle capacity Q is not exceeded for a selected route where:  

qi = Requested medicine weight at location i. 

Uik = Cumulative demand serviced by vehicle k when arriving at node i. 

Q = Vehicle payload capacity 

 

                    (19) 

 Equation 19 ensures the total route travel time does not exceed vehicle endurance 

Ke where:  

tij = Travel time from patient i to patient j.  

z = Fixed transition time to land, unload, and resume flight.  
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ke = Maximum endurance for vehicle k  

 

Input Variables 

Purvis Mississippi was selected as the location for M1 due to the flexibility 

provided by the entire city being categorized as a rural area. The three other locations are 

tested during the sensitivity analysis to confirm model generalizability. Five patient 

locations were identified within a 10-mi radius using an online random point generator. 

In Purvis, the local hospital was selected as the center point and depot, as emergency 

operations centers are frequently collocated with hospitals in disaster response plans. The 

center point (depot) and five simulated patient locations, listed P1−P5, are displayed in 

Figure 16. The complete list of model variables for the initial model scenario can be 

found in Table 13. The specific details for each patient are listed in Table 14. 
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Figure 16  

Patient Locations  

 

 

Table 13 

Initial Model Variables  
Variable Value 
Location  Mississippi 
Patients  5 
Wind direction 270 
Wind velocity (mph)  10 
Payload capacity  10 
Total required medicine weight (sum of patient requirements in scenario) 20 
Total patient risk (sum of patient risk in scenario) 1,300 
Airspeed (mph) 22 
Endurance (minutes) 100 
Available sUAS vehicles  1 
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Table 14 

Initial Model Patient Locations   

 Longitude Latitude Penalty Value  Medicine Weight  
Patient 1 -89.4599 31.1181 300 3 
Patient 2 -89.3820 31.1776 100 6 
Patient 3 -89.4971 31.1689 300 5 
Patient 4 -89.4721 31.1124 100 4 
Patient 5 -89.4132 31.2356 500 2 

   1,300 20 
 

For the initial scenario M1, Patient 5 has the highest risk value and the lightest 

medicine weight. Patient 2 has the lowest risk value and the heaviest medicine weight. 

The values in Table 14 were altered during the sensitivity analysis to demonstrate model 

generalizability, with results discussed later in this chapter.  

Monte Carlo Simulation for Environmental Variables  

The values for all deterministic variables were selected based on a literature 

review of currently available commercial sUAS. The environmental variables, however, 

require a different approach to ensure the model is robust to a variety of potential 

environmental conditions and the groundspeed calculations used to determine travel time 

are accurate. The effects of wind velocity and wind direction on sUAS groundspeed are 

particularly important, as groundspeed will determine if the vehicle is able to complete a 

given route before maximum endurance is exceeded. To demonstrate input reliability for 

these stochastic variables, two Monte Carlo simulations were used, each with 5,000 trials. 

The descriptive statistics for the simulated dataset and actual dataset used for the M1 

results can be found in Appendix A.  
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Stochastic Simulation 

The first test for input reliability is a stochastic simulation where every trial is 

independent. The data found in Figure 17 show the distribution for the heading to a 

patient location using the =RANDBETWEEN(0,360) formula in Excel, as there is no 

way to predict what heading a patient will be located at in relation to the depot. As 

expected for a randomly selected heading, the distribution is uniform. 

 

Figure 17 

sUAS Heading Distribution: Stochastic Simulation  

 

Note. sUAS = small unmanned aircraft system. 

 

This uniform distribution can be compared to the data used in a 7-patient scenario where 

groundspeeds are calculated using seven randomized patient locations (see Figure 18). 

 



92 

 

Figure 18 

sUAS Headings for the 7-Patient Scenario 

 

Note. sUAS = small unmanned aircraft system. 

 

The data for the 7-patient scenario only includes 56 data points compared to the 5,000 

data points in the simulation, but both datasets have a similar distribution, as expected.  

Wind direction and wind velocity for a given location are not random, and trends 

in weather patterns are published by NOAA in an online database for historical climate 

data. Hourly wind data were obtained for an entire calendar year resulting in 8,760 data 

points. The descriptive statistics for the nearest weather station to the four model 

locations can be found in Tables 15 and 16. The wind velocity values of 5% and 95% are 

included because the sensitivity analysis was conducted using these wind intervals to 

demonstrate model generalizability across a wide range of location-specific wind 

conditions. Histograms for velocity and direction at each location can be found in 

Appendix B.  
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Table 15 

Descriptive Statistics Results for Hourly Wind Velocity (miles per hour) 
Location M IQR SD Median Min Max Skewness Kurtosis 5% 95% 

Jackson, MS 6.30 3.3 2.068 6.3 2.0 10.7 0.036 -0.837 3.0 9.7 
Syracuse, NY 8.41 3.0 2.006 8.8 4.0 12.7 -0.259 -0.805 4.9 11.5 
Boise, ID 7.83 2.0 1.474 7.4 4.9 11.7 0.78 -0.406 6.0 10.8 
Winslow, AZ 7.66 3.8 2.834 6.9 3.7 15.9 0.975 0.189 4.5 13.8 
Note. IQR = Interquartile range. 

Table 16 

Descriptive Statistics for Hourly Wind Direction (miles per hour) 
Location M IQR SD Median Min Max Skewness Kurtosis 

Jackson, MS 146 84 80.715 139 1 360 0.705 0.107 
Syracuse, NY 257 31 28.581 262 160 314 -0.724 0.150 
Boise, ID 204 177 87.38 150 1 360 0.382 -1.513 
Winslow, AZ 215 52 39.046 225 7 359 -0.927 1.671 

Note. IQR = Interquartile range. 

 

Because Purvis, Mississippi is used for the initial model, the stochastic simulation 

trials included a random wind velocity and direction within the normal distribution by 

inputting the mean and standard deviation for Purvis. The wind direction formula for 

each of the 5,000 trials in the stochastic simulation is: NORM.INV(RAND(),146,80.715) 

The wind velocity formula for each of the 5000 trials in the stochastic simulation is: 

NORM.INV(RAND(),6.3,2.0678) 

Stochastic Simulation Results 

The simulation groundspeed distribution is displayed in Figure 19 and actual 

groundspeeds for the initial model using the seven patient locations are illustrated in 

Figure 20.  
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Figure 19  

Stochastic Simulation Histogram: Groundspeed 

 
 

Figure 20 

Actuals Histogram: Groundspeed 
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The groundspeed distribution on the 5,000 simulated trials has a skewness of .032 

and a kurtosis of -0.935, compared to the skewness of 0.297 and kurtosis of -1.299 from 

the 56 data points for the 7-patient scenario. Because the mathematical equations used for 

both datasets are the same, differences in the distribution can be attributed to the 

difference in sample size. The simulation data was transferred from Excel to SPSS for 

further evaluation of the distribution. In the simulation options, SPSS has an option to 

automatically identify the distribution that most accurately fits the input data, which was 

used to evaluate the distribution of multiple Monte Carlo Simulation outputs. As 

expected, the fit statistics varied significantly depending on the simulation output; over a 

sample size of 10 trials, SPSS identified the distribution as lognormal 5 times, uniform 3 

times, and gamma 2 times. This demonstrates the stochastic nature of the environmental 

variables as they influence vehicle groundspeed over a large dataset.  

Deterministic Simulation  

The same 5,000 trial simulation process was completed for a deterministic 

scenario, where the trials are not independent. Instead, the deterministic simulation uses 

the same wind direction and wind speed for all trials, simulating the environmental 

conditions of a specific day for all 5,000 iterations. The airspeed is also deterministic and 

uniform for all trials. Only the patient distance, which is limited to a 10-mi radius from 

the depot and required sUAS heading is stochastic. The formula used to obtain a 

randomized patient distance is:  

= RAND()*10+0 

And the formula used to obtain a randomized sUAS heading is: 

= RANDBETWEEN(0,360) 
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Deterministic Simulation Results  

The comparison output for the 5,000-trial deterministic simulation can be found in 

Figure 21 and again compares the simulation to the actual initial dataset in Figure 20.  

 

Figure 21 

Deterministic Simulation  

 
 

Like the stochastic simulation, the same formulas were used for both groundspeed 

calculations. The simulation skewness is 0.249, compared to 0.297 for the model output. 

The kurtosis of the simulation is -1.458, similar to the platykurtic results of the model 

output at -1.299. The number of trials with very high or very low groundspeeds 

demonstrate the nonlinear relationship between wind direction and vehicle heading in a 

scenario with randomized headings. Depending on the size of the airspeed and wind 

velocity vectors, the law of cosines is applied through the groundspeed formula shown in 

Equation 19 that was used for the simulation trials.  
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=TAS*COS(RADIANS(HDG+DEGREES(ASIN(Wind 
Velocity*SIN(RADIANS(Wind Direction-HDG))/TAS))-HDG))-Wind 
Velocity*COS(RADIANS(Wind Direction-HDG))  (19) 

 

A simple way to interpret the simulated groundspeed graph for the deterministic 

scenario is a traditional cosine wave. Changing the airspeed and wind direction simply 

alters the period and amplitude of the simulation data. The results of the deterministic and 

stochastic Monte Carlo simulations demonstrate the random nature of the groundspeed 

variables in a large dataset, confirming the utilization of stochastic patient locations, 

distances, and wind values in the LINGO model.    

Initial Model Results  

Following confirmation of input reliability from the Monte Carlo simulation 

results and confirmation of coding accuracy from external experts, an initial model run 

(M1), was obtained in a relatively simplistic scenario. The M1 output is used as a baseline 

for the sensitivity analysis discussed later in this chapter to confirm model 

generalizability through the use of multiple what-if scenarios. The complete LINGO code 

used to obtain these results can be found in Appendix C.  

The results from M1 are displayed in Figure 22. The optimal route for risk 

minimization is to travel to Patient 5, followed by Patient 3, and return to the depot. The 

total route travel time with the wind conditions set to 10 kt at a direction of 270º is 89 

min and includes a 2-min transition time at each location. The total penalty for missing 

Patients 1, 2, and 4 is 500, for a total risk minimization value of 800. The total runtime to 

obtain both objective functions was 0.63 s to run 1,199 iterations.  
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Figure 22 

Initial Model Results  

  

 

A traditional routing problem with no vehicle or capacity restraints would return 

the shortest travel time to visit all five patients. For the set of patients in this scenario, the 

shortest travel time is 129.7 min, which includes a 2-min transition time at each location 

to account for unloading and reinitiating flight. If the model is limited by all the 

constraints listed in the above table except risk, the model returns a route to Patients 4 

and 1, mirroring the results of a traditional capacitated vehicle routing problem. 

Delivering medicine to Patient 4 and Patient 1 only reduces the risk by 400, which is only 

50% of the risk reduction obtained by M1. Comparing the results of a traditional routing 
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problem to the results of this model demonstrates the extent to which this model 

realistically captures the variables that impact sUAS delivery during disaster response. 

Model Reliability and Validity 

The sensitivity analysis for the model requires multiple what-if scenarios on each 

variable, which can be found in Table 17. Iterative sensitivity testing in small scenarios 

allow for observation of results with clear changes in optimality following the 

manipulation of a single variable. Reliability can be defined as a measure of model 

consistency over multiple iterations, while validity is a measure of model accuracy over 

multiple scenarios. Because this research is focused on developing a novel stochastic 

model and not improving an existing model, model reliability and generalizability will be 

evaluated.  The structured process of building and testing the initial model increases 

reliability through iterative testing as each new variable is added. Model generalizability, 

however, requires additional sensitivity analysis through multiple what-if scenarios. As 

these scenarios are conducted, model reliability is also continually demonstrated through 

additional model iterations.  

The results presented in Table 17 are a sample of scenarios to demonstrate the 

process of confirming model reliability and generalizability. As each variable is tested, a 

new value is used for the model input. The stochastic patient variables (injury risk value, 

injury location, required medicine weight) were tested during the initial model 

construction and verification process. The stochastic environmental variables and 

deterministic vehicle variables were evaluated during the sensitivity analysis. Observing 

the expected changes to the optimal route in these scenarios demonstrates model 

reliability, with future scenarios maintaining the same level of reliability due to the 
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objective nature of mathematics. The process of testing the range of acceptable values for 

each variable also demonstrates model generalizability for a wide range of potential 

disaster response scenarios.  

 

Table 17  

Sensitivity Analysis Values  

Variable Input Type Initial Model Confirmatory Test 
Injury risk Stochastic Random number generator  Model verification 
Injury location Stochastic Random location generator  Model verification 
Medicine weight Stochastic Random number generator  Model verification 
Wind direction Stochastic 270 Scenario 5 
Number of patients  Deterministic 5 Scenario 3 
Wind velocity  Stochastic 10 Scenario 2, 5 
Available sUAS Deterministic 1 Scenario 4 
Airspeed Deterministic 22 Scenario 1 
Payload capacity Deterministic 15 Scenario 4 
Fuel capacity Deterministic 100 Scenario 1 

 

Scenario 1: Vehicle Performance Improvement  

The initial model had an endurance of 100 min, which limits the route to two 

patients. Increasing the endurance to 150 min is a simple change to observe model 

reliability, as well as demonstrate generalizability for a range of sUAS endurance 

capabilities. The results of this change can are provided in Figure 23. 
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Figure 23 

Endurance Increase   

 

 

Increasing vehicle endurance allows for all five patients to receive medicine, with 

a total route time of 129.70 min. If the vehicle endurance is reduced to the original value 

of 100 but the speed is increased to 35 mph (56.32 kph), there is a similar result. All 

patients receive a delivery and the total route time is reduced to 78.6 min. These 

scenarios demonstrate the value of modeling potential disaster response scenarios before 

they occur; disaster management agencies can observe potential outcomes depending on 

the sUAS vehicles available. Testing these vehicle limits demonstrates model reliability 

because the effect of changing airspeed and endurance can be observed. This process also 
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demonstrates model generalizability for more capable aircraft that could be available in 

the future.  

Scenario 2: Environmental Changes  

Increasing the wind value by 50% increases sUAS travel time significantly. Table 

18 contains the travel time matrix used as the input for the initial scenario M1, and Table 

19 contains the travel time matrix when wind velocity is increased from 10 mph (16.09 

kph) to 15 mph (24.14 kph) The wind direction remains the same at heading 270º. 

 

Table 18 

M1 Travel Times  
 Depot Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 

Depot 0 25.0 8.2 34.2 30.9 22.1 
Patient 1 14.8 0 21.0 26.7 6.3 35.9 
Patient 2 21.1 44.1 0 54.9 50.3 26.9 
Patient 3 12.8 15.6 20.7 0 17.2 23.1 
Patient 4 16.9 2.6 23.5 24.6 0 37.4 
Patient 5 25.7 49.7 17.6 48.1 54.9 0 

 

Table 19 

50% Wind Increase Travel Times 
 Depot Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 

Depot 0 37.5 7.2 58.6 47.4 25.3 
Patient 1 14.6 0 19.4 40.1 10.5 38.3 
Patient 2 35.8 70.9 0 94.0 81.2 38.7 
Patient 3 11.1 15.4 17.9 0 18.1 21.4 
Patient 4 16.4 2.4 21.6 34.7 0 39.1 
Patient 5 33.3 69.1 18.1 76.9 78.0 0 

 

It is important to note the relationship between the sUAS heading, wind direction, 

and wind velocity. The relationship is nonlinear, and a 50% increase or decrease is not 

expected for each value due to the possibility of wind coming at a 90º angle related to 
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sUAS heading. The model output for a wind value of 15 mph (24.14 kph) is shown in 

Figure 24. 

  

Figure 24  

Wind Increase Results  

 

 

The roundtrip travel time to visit Patient 2 and Patient 5 is 85.2 min. The travel 

time table for this scenario lists the travel time to Patient 3 at almost an hour, 60% of the 

vehicle endurance to make this one delivery. Furthermore, because Patient 5 has the 

highest risk value, the model prioritizes this delivery. Patient 2 has the lowest risk, but 

deliveries to the other three patients requires a flight directly into the 15 mph (24.14 kph) 
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headwind and the model output confirms these deliveries cannot be made. Thus, the 

highest risk patient receives medicine, along with Patient 2 as the only other location that 

is reachable in these conditions.  

 The travel time in a no-wind scenario is listed in Table 20. As shown in the table, 

without winds affecting travel time the time to reach a patient is the same length as the 

time to return from that location. The model output, as shown in Figure 25, finds a travel 

time of exactly 100 min, which coincidentally is the exact endurance limit for the sUAS 

in this scenario.  

 

Table 20  

Zero-Wind Travel Times  
 Depot Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 

Depot 0 17.1 11.8 18.7 20.4 21.3 
Patient 1 17.1 0 27.1 18.2 3.6 37.6 
Patient 2 11.8 27.1 0 30.0 30.6 19.3 
Patient 3 18.7 18.2 30.0 0 18.3 29.7 
Patient 4 20.4 3.6 30.6 18.3 0 40.4 
Patient 5 21.3 37.6 19.3 29.7 40.4 0 
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Figure 25  

Wind Decrease Results 

 

 

Patient 2 has the lowest risk value and does not receive medicine in this scenario. 

The total risk minimization is therefor 1,200 out of a possible 1,300 for all five patients.  

Scenario 3: Patient Complexity  

To demonstrate generalizability and reliability in more complex scenarios, this 

scenario includes a 40% increase in patients. For five patients, there are 15 potential route 

combinations (i.e., 5 + 4 + 3 + 2 + 1). Adding two additional patients increases the route 

combinations to 28, effectively doubling the complexity of the model. The two additional 

patients are visualized in Figure 26 and the associated risk and medicine requirements are 
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listed in Table 21. All other values mirror the initial model scenario. As a reminder, the 

initial model results returned a route of D-P5-P3-D.  

 

Figure 26 

7-Patient Scenario 

 

 

Table 21 

7-Patient Risk and Delivery Requirements 

 Longitude Latitude  Risk Value  Medicine Weight  
Patient 1 -89.4599 31.1181 300 3 
Patient 2 -89.3820 31.1776 100 6 
Patient 3 -89.4971 31.1689 300 5 
Patient 4 -89.4721 31.1124 100 4 
Patient 5 -89.4132 31.2356 500 2 
Patient 6 -89.4564 31.2128 100 3 
Patient 7 -89.4349 31.1820 500 5 

   1,900 28 
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The results in Table 21 demonstrate a complex scenario where the two additional patients 

increase total risk by 68%. It is important to recognize that the total required medicine 

weight of 28 is more than the payload capacity of one vehicle. Additionally, Patient 7 has 

the highest risk value while also requiring a high medicine weight.  

 As expected, the model output found in Figure 27 demonstrates the prioritization 

of Patient 5 and Patient 7, as they have the highest risk values. Patient 6 and Patient 3 are 

also visited for a total travel time of 95.3 min and a risk minimization of 1,400 out of the 

1,900 possible in this scenario.  
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Figure 27 

7-patient Results  

 

 

To obtain this solution, the model took 2.94 s and ran a total of 20,654 iterations. 

This is a significant increase from the original M1 values of .63 s and 1,199 iterations, but 

still well within the 3-min threshold for calculating a useful solution.  

Scenario 4: sUAS Vehicles  

To demonstrate the value of adding a second sUAS, the 7-patient scenario was 

used to demonstrate a complex scenario with additional patients and additional sUAS. All 
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other vehicle and environmental values were the same, with the only difference from 

Scenario 3 being one extra vehicle. The model output in Figure 28 shows two separate 

routes, with all seven patients receiving medicine for a risk minimization of 1,900 and a 

total travel time for both vehicles is 158.5 min.  

 

Figure 28 

Multiple sUAS Results  

 

Note. sUAS = small unmanned aircraft system. 

 

Scenario 4 can be used to demonstrate the value of the model for planning 

purposes. In this scenario with two vehicles and seven patients, an organization might be 
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interested in a less expensive vehicle with 50% of the payload capacity (VHCAP = 10). 

The model provides the ideal route, as shown in Figure 29, in less than a second, with the 

optimal route for two sUAS visiting five of the seven patients. The organization could 

then use the model to simulate the use of an extra vehicle, each with the reduced payload 

capacity (sUAS = 3). The results of this scenario are displayed in Figure 30 and confirm 

all deliveries are possible with three individual routes with a total travel time of 209 min 

between all three vehicles.  

 

Figure 29 

Reduced Payload Capacity Results  
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Figure 30 

Reduced Payload Capacity and Increased sUAS Results 

 

Note. sUAS = small unmanned aircraft system. 

 

Scenario 5: Multiple Locations 

The initial model run included a wind velocity of 10 kt at a heading of 270º. To 

demonstrate appropriate model generalizability with these stochastic variables, the model 

was tested with a range of headings and wind velocity values from different locations 

around the country. This is a particularly important element of the sensitivity analysis, as 

it confirms the generalizability of the model in other rural areas in the United States. 

While patient data for a given emergency will always be stochastic and the vehicle 

variables will not change based on location, the environmental conditions must be 
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thoroughly tested to ensure generalizability. The input reliability is tested through the use 

of the Monte Carlo simulations, and the output generalizability is tested in this scenario. 

Histograms displaying the normal distribution of wind velocity and wind direction at the 

four locations are in Appendix B.  

Because the patient location in a given scenario is randomized, the sUAS heading 

from a patient i to patient j is arbitrary as well, and the same set of random patient 

locations can be utilized for each new location. Furthermore, while the wind direction 

distribution at each location is different due to the impact of surrounding terrain and 

localized weather patterns, the relationship between an unpredictable patient location and 

a known wind direction remains unpredictable. Therefore, running the model with a fixed 

set of patients and varying wind direction and wind speed values demonstrates model 

reliability and model generalizability, as the only variables being tested are 

environmental. For each location, the mode of the wind direction dataset is used, as this is 

the most frequently occurring value in the historical NOAA data. For the wind velocity, 

the values of 5% and 95% of the historical dataset were used. The values used for the 

location-based sensitivity analysis are listed in Table 22 and the results are listed in Table 

23. 

   

Table 22 

Wind Values for Different Locations 
Location 5% Wind Velocity 95% Wind Velocity Wind Direction Mode 

Jackson, MS 3.0 9.7 155 
Syracuse, NY 4.9 11.5 255 
Boise, ID 6.0 10.8 132 
Winslow, AZ 4.5 13.8 241 
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Table 23 

Wind Sensitivity Analysis Results  

Location Wind Velocity 
(mph) 

Wind 
Direction 

 Objective 
1 

Objective 
2 

Patients 
Visited Route 

Mississippi 3.0 155º  95.4 200 3 1,3,5 
Mississippi 9.7 155º  86.4 500 2 3,5 
New York 4.9 255º  97.4 200 3 1,3,5 

New York 11.5 255º  96.6 500 2 3,5 
Idaho 6.0 132º  98.6 200 3 1,3,5 
Idaho 10.8 132º  88.9 500 2 3,5 
Arizona 4.5 241º  97.2 200 3 1,3,5 
Arizona 13.8 241º  80.5 700 2 2,5 

 

In the low wind scenarios, there is no difference in the optimal route as the three 

patients with the highest injury value are prioritized and the differing wind values are not 

significant enough to impact the outcome; only small variations in total route time are 

observed. However, in high wind scenarios the sUAS is unable to travel to Patient 1 and 

return within the vehicle endurance constraint of 100 min. In the high wind scenario in 

Arizona, the optimal route includes Patient 2 (risk value = 100) instead of Patient 3 (risk 

value = 300). Patient 3 is due west of the depot, and with a wind direction of 241º and a 

velocity of 13.8 kt, the sUAS has a direct headwind traveling to Patient 3. The vehicle 

cannot deliver to Patient 5 (risk value = 500) and Patient 3 under these conditions and 

instead can only deliver to Patient 5 and Patient 2. 

 Running multiple wind scenarios using values from 8,760 hour-by-hour historical 

data points further demonstrates model generalizability in a variety of potential 

environmental conditions. Moreover, because the location-specific wind values can be 

compared with static depot and patient locations, small changes in optimal routing can be 

observed and attributed to the changing environmental variables to demonstrate model 

reliability as well. 
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Scenario 6: Maximum Calculation Time  

Through multiple iterations of sensitivity analysis, each solution was achieved 

within the 180-second limit on a machine with an i5 6th-gen processor and 8Gb RM, the 

model took less than 6 s for all scenarios. This time limit was implemented to ensure 

operational usefulness for time-sensitive deliveries, and the results of the first five 

scenarios indicate further analysis is necessary to determine the upper limit of model 

complexity. A scenario was built with 15 patients and four sUAS vehicles to determine if 

a measurable increase in processing time could be determined. While testing the 

maximum solution time was not a planned step in the sensitivity analysis, the extremely 

low solution times obtained in the initial output and subsequent scenarios indicate the 

model might be able to quickly solve increasingly complex scenarios, demonstrating 

additional generalizability for large-scale disaster response.  

A groundspeed matrix was developed by randomly generating a travel time value 

between 0-60. Because the Monte Carlo simulation results indicate a uniform travel time 

distribution over the 5,000 trials, selecting a random travel time was acceptable for this 

scenario. Randomly generated patient locations were also obtained to visualize the results 

displayed in Figure 31. The model took 5.33 s to run the 24,282 iterations required to 

obtain the optimal solution for 15 patients and four sUAS vehicles, a 748% increase over 

the initial model solution time of .63 s. While the solution time for this scenario is 

measurably higher than the initial model run with five patients and one sUAS, the 

relatively low calculation time further demonstrates model generalizability in complex 

scenarios with a high number of patients and sUAS vehicles.  
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Figure 31  

15-Patient Scenario Results   

 
 
 

Summary 

These scenarios are a small sample of the potential solutions the model can 

provide decision-makers in the disaster response industry. The results of the sensitivity 

analyses are presented in Table 24 to clearly observe the changes in the primary and 

secondary objective functions.  
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Table 24  

Summary of Sensitivity Analysis Results   

Scenario 
Risk 

Minimization 
(visited/total) 

Optimal 
Route 
(min) 

Route Notes 

M1 800/1300 89 3,5 Baseline model output.  

VHDIST = 150 1300/1300 129.7 1,2,3,4,5 Distance increased from 100 to 150 
min and all deliveries completed. 

TAS = 35 1300/1300 78.6 1,2,3,4,5 sUAS airspeed increased from 22 to 
35kts and all deliveries completed. 

Wv = 15 600/1300 85.2 2,5 Wind velocity increased from 10 to 
15 kt and two deliveries completed. 

Wv = 0 1200/1300 100 1,3,4,5 Wind velocity decreased from 10 to 0 
kt and four deliveries completed.  

P = 7 1400/1900 95.3 3,5,6,7 Patients increased from 5 to 7 and 
four deliveries completed.  

VHNUMB = 2 1900/1900 158.5 1,2,3,4,5,6,7 
Patients increased to 7, vehicles 
increased from 1 to 2, and all 
deliveries completed.  

VHCAP = 10 1700/1900 137.3 1,3,5,6,7 

Patients increased to 7, vehicles 
increased to 2, payload capacity 
reduced from 20 to 10, and five 
deliveries completed.  

VHNUMB = 3 1900/1900 209 1,2,3,4,5,6,7 
Patients increased to 7, payload 
capacity reduced to 10, and sUAS 
increased to 3.  
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Chapter V 

Discussion, Conclusions, And Recommendations 

This chapter discusses the results of this research and how they serve to answer 

the research questions. The practical and theoretical contributions are discussed, as are 

the conclusions drawn from the study. The limitations of the research and 

recommendations for future research are also provided.  

Discussion  

The study was aimed at developing and validating a quantitative optimization 

model to inform decision-makers on the optimal sUAS vehicle routing to minimize total 

risk and route travel time within the constraints of vehicle limitations. The model has 

improved existing vehicle routing studies by including environmental variables and 

patient risk values to create a novel routing model for post-disaster sUAS medical 

delivery in rural areas. The findings of the study are discussed in relation to the research 

questions listed in Chapter I. 

RQ1 

Research Question 1 asks What are the key variables related to sUAS medical 

delivery in rural areas during disaster relief efforts? Existing VRP research focusing on 

UAS routing and delivery was used to develop an initial list of vehicle-specific variables 

that impact vehicle endurance and payload capacity. Combined with this researcher’s 

industry knowledge and discussions with subject matter experts in the field of autonomy, 

a list of key variables was created to answer RQ1 (see Table 25). 
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Table 25 

Variable Values  
Variable Input Type Initial Model Confirmatory Test 

Injury risk  Stochastic    Random number generator  Model verification 
Injury location Stochastic    Random location generator  Model verification 
Medicine weight Stochastic    Random number generator  Model verification 
Wind direction Stochastic    270 Scenario 5 
Number of patients  Deterministic 5 Scenario 3 
Wind velocity  Stochastic    10 Scenario 5 
Available sUAS Deterministic   1 Scenario 4 
Airspeed Deterministic   22 Scenario 1 
Payload capacity Deterministic   15 Scenario 4 
Fuel capacity Deterministic   100 Scenario 1 

 

These key variables can be grouped into three categories: scenario variables, 

vehicle variables, and environmental variables. The scenario variables are unknown prior 

to a natural disaster and are randomized for the purposes of model development and 

sensitivity analysis. The scenario variables are injury demand, injury risk, injury location, 

and required medicine weight. While demand and location are relatively common 

variables in existing routing studies, risk is used in the primary objective function as the 

variable to be minimized and is an important novel variable in this research. The vehicle 

variables are deterministic and can be updated by a user to match the limitations of the 

vehicle to be modeled. The deterministic variables are available sUAS, airspeed, payload 

capacity, and endurance. The environmental variables were selected because of their 

effect on aircraft groundspeed and, therefore, aircraft endurance. The environmental 

variables are wind direction and wind velocity, which required a Monte Carlo simulation 

to ensure the values used for the initial model and sensitivity analysis are valid. 
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RQ2 

Research Question 2 asks What is the mathematical relationship between the 

decision variables and objective variables? A thorough literature review of extant routing 

studies uncovered a research gap for medical delivery models, with no existing studies 

including patient risk as an input variable or objective function. The variables identified 

in RQ1 were organized into a mathematical function to address the research gap and 

answer RQ2. The optimization model was built around an objective function to minimize 

total patient risk (Rt) for a given set of patients (P). The variables from RQ1 are listed in 

Table 26. The table includes a simplistic explanation of how each variable is utilized to 

build the objective function and constraints and answer RQ2. 

 

Table 26 

Variable-Model Relationships 
Variable Model Relationship Explanation 

injury risk  objective function To minimize total risk.  
required medicine weight constraint Required medicine weight for route must be less 

than payload capacity. payload capacity constraint 
available sUAS input 

Number of routes must not exceed available sUAS. 
injury location input 
endurance  constraint Route time must be less than aircraft endurance.  
wind direction input Input for groundspeed calculations to determine 

vehicle endurance limitation. Validated through 
Monte Carlo simulation. 

wind velocity  input 
airspeed input 

injury demand  input Model is not constrained by number of injured 
patients; deliveries are not mandatory. 

 

The relationships between the variables are illustrated in a flow chart in Figure 32 

to observe the answer to RQ2 and demonstrate how each input was utilized. 

 



120 

 

Figure 32  

Variable Relationships Diagram  

 
 

Injury location and sUAS location are used to calculate the required travel 

distance and relative heading. A groundspeed calculation can be computed with the 

necessary heading, airspeed, wind velocity, and wind direction. These four variables can 

be visualized as a vector and magnitude for the trigonometric groundspeed calculations in 

Figure 33. To validate the groundspeed calculations and compare the historical wind data 

to the distribution of a large dataset, a Monte Carlo simulation was utilized. 
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Figure 33 

Groundspeed Vectors  

 

 

To calculate travel time between the two patients, time = distance x groundspeed. 

Travel time is a primary input for the mathematical model, and the relationship between 

travel time and fuel capacity is noted in the flow chart (see Figure 31); the mathematical 

model uses flight time as a constraint for travel time (travel time ≤  endurance), with the 

fuel capacity defining the maximum possible travel time for a given vehicle.  

Total risk for a given set of patients can be calculated by adding the number of 

patients and their individual risk values, and the resulting total risk value is used for the 

objective function in the mathematical model. Medicine weight and payload capacity are 

also required, and the relationship between the two (medicine weight ≤ payload capacity) 

is displayed in the flow chart as well. Lastly, the number of sUAS is an input into the 

mathematical model; however, the input is not dependent on any other variables.  

The output of the mathematical model is dependent on the weighted value of the 

two objective functions. As described in Chapter III, these weights are binary. The 

primary risk minimization objective receives the full weighted value for the first 

calculation, followed by a subsequent calculation with travel time weight receiving the 

full weighted value and is constrained by the results of the first calculation, such that: 

Total risk value for minimization solution  ≥  Total risk value for travel time solution. 
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The optimal solution for the two objective functions will therefore contain a total risk 

minimization value as well as a travel time to complete the route as expeditiously as 

possible. The relationship between these variables is the foundation for the mathematical 

formulation discussed in Chapter III, followed by the LINGO coding and reliability 

testing to obtain the initial model result for a 5-person scenario in Purvis, Mississippi.  

RQ3  

Research Question 3 asks What is the optimal routing solution for medical supply 

delivery using sUAS to minimize patient health risk? To answer this question, the 

objective functions and constraints were used to determine the optimal route for risk 

minimization. Additional constraints were added to the list of variables to ensure the 

model output would return a complete route, and each patient would only be visited once. 

These constraints are not specific to the novel risk minimization model but are generic 

VRP constraints to ensure the formulas are bound by route-specific requirements. The 

full list of mathematical constraints can be found in Chapter IV.  

To find the optimal routing solution for a given set of patients, deterministic 

values for the vehicle variables were selected based on commercially available sUAS 

platforms. Stochastic scenario variables were selected through random location and 

number generators. Stochastic environmental variables were selected based on historical 

weather data at the initial model location in Purvis, Mississippi. The initial model output, 

M1, had an optimal risk minimization value of 800 out of 1,300. A secondary objective 

function was developed to ensure that after identifying an optimal route for risk 

minimization, the model would then prioritize sUAS travel time. The secondary solution 

for minimum travel time uses the primary objective as the input, so at no time will the 
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optimal risk minimization solution be compromised in favor of improving the secondary 

objective. For the initial model solution M1, the optimal secondary solution is 89 min to 

complete the route. The risk values, required delivery weight, and optimal route for this 

scenario are found in Figure 34.  

 

Figure 34 

Optimal Routing Solution Map  

 

 

RQ4 

Research Question 4 asks To what extent are the optimal solutions affected by 

various scenarios? To answer this question, multiple what-if scenarios were conducted to 

determine how robust the model was to changing variables. In each scenario, one variable 

was changed at a time to clearly observe the result of the variable being tested. These 
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scenarios demonstrate model reliability, as more complicated calculations will be equally 

reliable due to the objective nature of mathematics. The scenarios also demonstrate 

model generalizability across a wide range of potential variable inputs. Environmental 

variables, vehicle variables, and scenario variables were all tested to ensure optimal 

solutions can be found using a variety of sUAS platforms to respond to a variety of 

potential disaster response scenarios. 

Conclusions  

Theoretical Contribution 

The primary theoretical contribution of this study is the development of a novel 

vehicle routing model that includes variables unique to the disaster response 

environment. As discussed in this chapter, the conclusions from RQ1 and RQ2 

demonstrate the theoretical contribution of the model by identifying and organizing the 

variables into a mathematical formula. During this process, patient injury severity was 

identified as a novel variable. The relationship between injury severity and other included 

variables is particularly important, as it is used to quantify total risk and is optimized in 

the primary objective function. The inclusion of injury severity provides the emergency 

management industry with a tool that aligns with the goals of first responders. 

To ensure the model is useful for disaster management professionals, the 

theoretical foundation of this study is based on the START and SALT emergency triage 

models used by first responders in the U.S. These models, combined with the Emergency 

Severity Index, are used to assign objective values to patients based on injury severity 

and are directly correlated to the possibility of a patient succumbing to their injuries. This 

theoretical foundation was established through a thorough literature review, followed by 



125 

 

the development of a mathematical model that includes injury severity as well as 

traditional vehicle limitations such as endurance, payload capacity, and airspeed. The 

inclusion of these variables and the development of the mathematical model addresses the 

research gap identified in Chapters I and II, as prior routing models do not include the 

necessary variables to accurately model vehicle route optimization when the objective is 

unrelated to traditional objective functions such as distance, time, or cost.  

The risk minimization model for post-disaster medical delivery using unmanned 

aircraft systems also furthers the existing body of knowledge by combining vehicle 

variables with environmental variables to obtain total route travel time. As most routing 

studies do not include environmental variables, the inclusion of wind velocity and wind 

direction is an important theoretical contribution. Combining patient variables, vehicle 

variables, and environmental variables to minimize patient risk is a novel contribution to 

the field of transportation routing studies. The model can be used as a foundation for 

future research on sUAS route optimization, risk minimization for emergency response, 

or future transportation studies that require the inclusion of stochastic environmental 

variables to measure travel time accurately. 

Practical Contribution 

The inclusion of environmental variables makes the optimal route useful in 

various practical real-world scenarios due to the impact of wind direction and wind 

velocity on aircraft performance. Existing routing models rarely include environmental 

wind variables due to the increased complexity of the optimization calculation. While 

simplifying the number of variables usually allows for larger scenarios to be solved, this 

limits the usability and generalizability of the results. This is particularly true for sUAS 
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operations, where relatively slow speeds and limited battery life increase the impact of 

wind velocity on a given route. The initial model output developed for RQ3 and the 

sensitivity analysis developed for RQ4 provide a clear example of the practical 

contribution of this model. 

The optimal route for M1 included two patients with a total risk minimization 

value of 800. The total travel time is 89 min with a 10-kt wind from heading 270º. As 

described in the sensitivity analysis, the scenario without wind returns a delivery route to 

four patients, with a total travel time of 100 min, the exact endurance of the sUAS 

vehicle. Table 27 compares the M1 output and zero-wind sensitivity analysis scenario. 

 

Table 27 

Comparison of Wind Scenarios  

Scenario Risk Minimization 
Value 

Patient 
Route 

Route Travel Time 
(Wind Included) 

Route Travel Time 
(Wind Excluded) 

M1 800/1300 3,5 89 min 105 min 
Zero Wind 1,200/1,300 5,3,4,1 100 min 100 min 

 

While the zero-wind scenario was primarily used to demonstrate the reliability of 

wind variables calculations and generalizability across a range of wind conditions, it also 

demonstrates the practical contribution of this model. If a 10 kt wind is present at the 

time of flight, the actual travel time to patients 5,3,4, and 1 is 105 min. This exceeds 

maximum endurance for the vehicle, and the sUAS will crash prior to completing the 

route. Comparing these two scenarios demonstrates the importance of including 

environmental input variables to ensure the model is a practically useful tool for disaster 

response.  
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The current model can also be used for disaster planning with the inclusion of the 

relevant environmental variables, vehicle variables, and patient variables. Organizations 

at the federal, state, and local level are responsible for developing cohesive disaster 

response plans, and decisions made by these organizations could be influenced by budget, 

available resources, and location-specific considerations such as the availability of 

hospitals and schools for disaster response. The sensitivity analysis conducted for this 

study is an example of the practical contribution of the model for planning purposes. 

Organizations can measure the impact of purchasing additional sUAS, upgrading to more 

capable platforms, or specific environmental conditions at a rural location. Also, most 

importantly, the impact of these decisions can be quantified in terms of the total risk 

minimization for a given scenario.   

The practical contributions listed above can be utilized by numerous organizations 

working in the emergency management industry. As discussed in Chapter I, the primary 

organization responsible for disaster prevention and response is FEMA. And while 

FEMA is an important federal organization, they are primarily tasked with allocating 

funds, creating policy, and directing resources for coordinated emergency response. 

Local and State agencies will also directly benefit from the practical contributions of this 

study, as they are responsible for planning and executing local disaster response 

procedures. These organizations will most likely be making decisions surrounding 

implanting unmanned technology in their communities and will benefit from an objective 

tool to measure the effectiveness of different sUAS platforms.  

Private companies are also frequently contracted to conduct unmanned operations 

and are another beneficiary of the risk minimization model. While many small companies 
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operating sUAS have talented pilots and capable aircraft, routine sUAS operations in the 

U.S. is not frequent enough to require the development of fleet decision-making tools for 

companies with limited funds and resources. A publicly available model will assist these 

companies in providing a service to local communities looking to implement unmanned 

technology in their disaster response plans.  

Private companies could modify the model formula for other business cases as 

well. Using this approach for non-emergency response would be possible, the values 

given to each patient would most likely represent something other than risk. For example, 

a company could assign values to each customer based on how much they are willing to 

pay for shipping; a customer paying a $5 delivery fee for food or a product could be 

prioritized over a customer paying $3 for shipping. However, this type of operation 

would most likely require significant modification to the mathematical code. For 

example, the current approach of absolute risk prioritization followed by a second 

objective function minimizing distance would fit the non-emergency use case. However, 

a company attempting this type of operation would still benefit from this research by 

having a valid and reliable model to use as a starting point. Non-emergency deliveries 

would most likely make a small modification to the existing code to apply a weight to 

each objective function, resulting in a more traditional goal-programming approach.  

Limitations 

The sensitivity analysis for multiple locations demonstrates model generalizability 

for rural areas in the U.S. but does not include urban areas. However, urban areas are 

generally the focal point of widescale disaster response, as the aftermath of Hurricane 

Katrina demonstrates. This could leave underserved communities vulnerable when 
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traditional transportation methods are unavailable. While the model does not consider 

additional factors that could be present in urban environments, 97% of the U.S. is 

considered rural, and the variables included in the model were specifically designed to 

model the conditions in these locations.  

The current model is also limited to operations in the U.S., as other countries 

could have conflicting regulations governing the operations of sUAS. This study was 

specifically designed for operations in airspace controlled by the FAA, under the 

guidance of Title 14 C.F.R. Part 91.137, detailing how Temporary Flight Restrictions 

(TFRs) in the vicinity of disaster areas can be used to restrict airspace access to aircraft 

participating in emergency response activities. The Emergency Severity Index, used as 

the theoretical foundation for risk minimization, is also specific to emergency operations 

in the United States. While these factors limit the study to U.S. locations, the model was 

designed to capture the variables present in this environment. 

Recommendations  

Heuristics  

As stated in Chapter III, the use of heuristic algorithms is generally preferred to 

solve NP-hard problems, especially when a time-constrained solution is required to 

remain operationally useful for medical deliveries. For this study, the branch-and-bound 

method was used to balance accuracy and flexibility. However, even in the most 

complicated 15-patient scenario tested in this study, a solution was returned in 

approximately 5 s. Because the solution threshold for this study was set to 180 s, 

additional research to expand the upper limits of model complexity is recommended. This 

study was limited to rural environments where population density is low, but 
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understanding how the current branch-and-bound heuristic methodology handles 

additional patients could indicate the model is useful for urban environments or areas of 

higher population density.  

The other technique for solving routing problems is an exact solution framework. 

Exact algorithms are normally used to baseline the effectiveness of newly proposed 

heuristic frameworks, as solutions frequently require significant computing power and 

take hours to solve complex scenarios. However, with improvements in computing 

technology and advancements in the field of exact algorithms, it is possible that an exact 

algorithm could be obtained in a realistic timeframe for large-scale medical delivery. As 

described in Chapter III, LINGO uses a branch-and-bound heuristic. Expanding on this 

model by researching an exact solution method would require a different software 

package but could improve the overall accuracy and reliability of the output if solution 

times remain low. Chapter III also describes the computational architecture of this study, 

specifically with the wind variation calculations being made in Excel instead of LINGO. 

Allowing the LINGO calculation to be based on a simple table containing the travel time 

between each point significantly reduces the complexity of the model, thus reducing the 

calculation time. However, this is at the expense of additional steps in the solution 

process, as a user now needs to use separate programs to input the necessary values to 

obtain a solution.  

Neural Networks and Simulations   

Neural networks and other advanced solution methods have increased in 

popularity as computing power becomes more readily available. These types of solutions 

have been used to solve vehicle routing problems (Steinhaus et al., 2015), and require 
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significantly more advanced coding techniques. These heuristic solution methods will 

allow researchers to include environmental conditions in the same calculations as all 

other routing constraints, which will result in a more streamlined process for end-users in 

addition to an algorithm that can handle larger and more complex scenarios.  

Similarly, using methods more capable than Lingo will allow researchers to 

utilize a more holistic Monte Carlo simulation method. One important limitation of the 

LINGO software is requiring a user to click the ‘calculate’ button each time to obtain a 

solution. If a researcher was interested in comparing 1000 solutions using a randomly 

selected wind direction, it would require a significant amount of manual labor and time to 

obtain and compile the data. While this study utilized a Monte Carlo simulation for one 

specific variable calculation (groundspeed) to demonstrate random heading and wind 

values resulted in random groundspeed outputs, other VRP studies have used Python 

scripts to obtain a routing solution for a given set of input values. This approach can then 

be repeated hundreds or thousands of times using a looping script in the code, giving 

researchers access to metadata on the important delivery information. For example, for 

5,000 delivery iterations, you could easily determine how many scenarios resulted in 

100% of patient deliveries or how many scenarios resulted in less than 50%  of patient 

deliveries. These confidence intervals are a powerful planning tool for first responders 

and would be an excellent future research opportunity.  

A Monte Carlo Simulation approach using a Python script could also be used to 

measure model improvement. This research provides a new tool for the disaster 

management industry, but future improvements using the previously mentioned heuristic 

approaches should be evaluated for improvements in accuracy and solution time. For 
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example, a comparison between the current branch-and-bound algorithm and a neural 

network algorithm would require a more advanced research approach that allowed for 

iterative model runs to objectively measure solution time and solution accuracy over a 

large number of model runs. It is important to note that developing an approach to 

evaluate confidence intervals over thousands of runs will most likely take a significant 

amount of computing power and time and would not be designed for first responders to 

use in a post-disaster environment. Instead, it would be used as a planning and research 

tool to evaluate how changes in variable values and stochastic scenarios such as 

equipment failure or changing wind conditions might impact the success of route 

completion.  

Time Windows  

The inclusion of time limits is included in some traditional VRP models where 

locations have a defined window for the delivery to be completed. This significantly 

increases model complexity but is necessary for problems such as aircraft fleet routing or 

the delivery of perishable goods. Time windows were not included in this study because 

the theoretical foundation for risk minimization is based on time constraints that are 

normally outside the scope current of sUAS endurance limits. As technology improves, it 

could be possible to utilize an aircraft with the appropriate payload capacity and 

endurance where time windows would be required. However, this would also require first 

responders to change how they conduct medical triage. The current triage protocol is to 

sort patients into groups based on injury severity, and while patients are categorized 

based on the time required to receive additional care, a precise time is not assigned to 

each patient. Adding time windows to the study would require first responders to set an 



133 

 

‘earliest’ and ‘latest’ requirement for each patient, which could be difficult to estimate. 

Adding this responsibility would also raise a number of ethical questions, especially 

when a first responder is only aware of a small subset of patients they have seen. 

Standardizing time windows could prove difficult without a full operational picture of the 

number and extent of patient injuries. However, if sUAS endurance improvements allow 

for increased flight time and first responder protocol changes to clearly define time 

windows, the model can be expanded to include this variable. 

Multi-Depot  

The current model includes one depot where all sUAS begin and end their 

delivery route. This model can be run multiple times with different inputs for coverage 

over a larger area. With solution times under 5 s, it is feasible for an incident commander 

to coordinate boundaries between depots and have each depot obtain their own solution, 

as diagramed in Figure 35. 

 

Figure 35 

Separate Model Solutions  
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However, future research could expand on the existing model by incorporating multiple 

depots in the same model iteration, as depicted in Figure 36. This would increase model 

complexity and most likely increase solution time but could demonstrate a new 

operational use for emergency responders in large-scale disaster scenarios.   

Figure 36 

Multi-Depot Single Solution 

 
 

Urban Environments with Route Deviations 

This study was delimited to rural environments to address the possibility of 

inadequate medical support from local, state, and federal entities. However, future 

research could incorporate additional variables that accurately model urban 

environments. Other than population density, the main difference between urban and 

rural environments is the existence of obstacles and non-compliant air traffic. In rural 

environments, emergency response will most likely include a temporary flight restriction 

to ensure any air traffic in the vicinity is participating in a coordinated response to the 

emergency. This might not be a realistic expectation in urban environments, especially if 



135 

 

the response area is close to a major airport. Additional stochastic variables should be 

added to account for unplanned route deviations to accurately model this type of 

environment. 

Heterogenous Fleets 

The current model assumes that the agency coordinating the disaster response 

utilizes a homogenous fleet of sUAS vehicles. Fleet routing models utilizing a set of 

heterogeneous ground vehicles is a well-researched topic (Singhtaun & Tapradub, 2019; 

Wang & Wen, 2020). Recent studies have been conducted in the aviation sector as well 

(Zhang & Chen, 2021). If the disaster response field adopts unmanned technology for 

medical deliveries, coordination between multiple agencies at the local, state, and federal 

levels could eventually require a model that can handle a heterogeneous fleet. While this 

addition will increase model complexity to account for different payload capacities, 

airspeeds, and endurance limitations, improvements in computer processor technology 

might allow for a more complex model without sacrificing model processing time.   

Other Deliveries  

The model developed in this study is narrowly scoped to medical delivery in rural 

areas during emergency response. While the study is centered around the feasibility of 

most medicines being a realistic size and weight to be transported by sUAS, future 

research could explore the possibility of delivering other items. For example, vehicle 

routing for non-emergency medical delivery could be explored if a different theoretical 

foundation was developed to measure risk minimization. If the FAA increases the 

maximum allowable UAS weight, platforms like the Bell Autonomous Transport Pod 

(see Figure 37) could be utilized for both civilian and military deliveries.  
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Figure 37  

Bell Autonomous Transport Pod  

 

 

One of the potential military applications for a platform with a payload capacity 

of 70 lb (31.75 kg) and a 100 mph (160.93 kph) maximum speed is ammunition delivery. 

The risk variable could be repurposed to measure the needs of a specific unit on the 

battlefield and allow the model to determine the optimal route to complete autonomous 

resupply missions. The new variables would need further research and validation, but the 

model developed in this study can be used as the foundation for future delivery studies. 

The model can be modified for a variety of civilian applications as well. As 

discussed in Chapter II, routing models for other types of delivery have been developed 

but are not always inclusive of all the necessary environmental variables, limiting the 

accuracy and operational usability of the routing solutions. Future studies can replicate 

the structure of this study by calculating the environmental variables separately from the 

modeling software, ensuring solution times remain low. Alternatively, a more robust code 

can be developed to combine all of the calculations into one script using a program such 

as Python. Either approach would need to be thoroughly researched to understand the 

impact on solution time and solution accuracy. Regardless of how environmental 
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variables are built into the model structure for more complicated scenarios, this study can 

be expanded to other non-emergency delivery scenarios as well. For example, the model 

could be modified to identify optimal routes for picking up medical samples from 

patients who are unable to travel to a hospital, or for UAM passenger pickup and dropoff 

routing optimization. While these scenarios require a different theoretical foundation for 

assigning values to each pickup or dropoff location, it would be possible to use a majority 

of the existing LINGO code to identify the optimal route of a fleet of UAM vehicles to 

pick up passengers based on the amount of money each passenger paid for the trip. This 

is essentially removing the Emergency Severity Index as the basis for prioritization and 

replacing it with expected profit from selecting a given location.  

Improved User Interface  

The construction and validation of the risk minimization model for post-disaster 

medical delivery using unmanned aircraft systems was completed in LINGO, which is a 

flexible and powerful modeling software tool. However, it is not intuitive for users who 

are not familiar with operational research or the syntax of model inputs. The groundspeed 

calculation is a relatively straightforward trigonometric relationship between airspeed, 

wind speed, and wind direction. LINGO is not configured to handle these types of 

calculations; thus, required the use of Excel formulas for this study. It is acceptable for an 

academic study, but future research should explore a front-end user interface and develop 

the appropriate software to accept basic user inputs for vehicle limitations and 

environmental conditions. Such an interface would allow first responders to quickly and 

accurately update the necessary variables to obtain an optimal route. 
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Additional Variables 

This study includes all the appropriate variables to reliably model the conditions 

during post-disaster medical delivery in rural areas using sUAS. However, as the model 

is adapted for different use cases or more specific sUAS platforms, additional variables 

could be added to the model to increase accuracy. As discussed earlier in the chapter, 

future research opportunities include modeling more complex scenarios, and additional 

computing power and modeling software could also allow for stochastic environmental 

functions such as changing wind direction or changing wind velocity while the sUAS is 

en route. This would require additional data for the likelihood of a stochastic event 

occurring, but publicly available wind data could provide the necessary information on 

the possibility of wind direction and velocity changing over time for a specific area.  

Future research will focus on specific sUAS airframes to increase model accuracy 

as specific use cases are developed, although it should be noted that this will also 

decrease the generalizability of the resultant model. For example, an emergency 

management organization in Craig, Colorado, could add a variable for performance 

decrease at high density altitudes due to the rural community being located at 6200’ 

MSL, and potentially include stochastic temperature variables to reflect the significant 

climatological differences between the summer and winter seasons. This would require 

the model to consider vehicle-specific performance characteristics but would increase the 

validity of the model for a specific sUAS vehicle in a specific location.  

Some sUAS vehicles could necessitate the addition of variables as well. For 

example, a certain airframe might have the capability to carry a significant amount of 

weight due to the thrust and lift generated but is limited by the volume available in the 
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payload bay. For this theoretical platform, it is possible the limiting factor is the volume 

of medicine compared to the volume of available payload space.  

These opportunities for future research can expand on the existing study by 

exploring increasingly complex scenarios for the same population of rural areas in the 

U.S. and allow first responders to utilize the model for larger affected populations. Future 

research can also focus on a narrower scope for specific locations and platforms. Any 

mathematical changes or additional model variables should be followed by iterative and 

rigorous reliability and validity assessments to ensure model outputs are acceptable.   
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Appendix A 
 

Monte Carlo Simulation Descriptives 

Table 1A 

Stochastic Simulation Descriptives  

Statistics 

 
Groundspeed 

Simulated 

Groundspeed 

Actual 

N Valid 5000 56 

Missing 0 4944 

Mean 29.8155 20.6239 

Std. Error of Mean .06664 .88048 

Median 29.7573 19.5984 

Mode 16.95a 12.01a 

Std. Deviation 4.71216 6.58892 

Variance 22.204 43.414 

Skewness .032 .297 

Std. Error of Skewness .035 .319 

Kurtosis -.935 -1.299 

Std. Error of Kurtosis .069 .628 

Range 24.96 19.98 

Minimum 16.95 12.01 

Maximum 41.91 31.99 

a. Multiple modes exist. The smallest value is shown 
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Table 2A 

Deterministic Simulation Descriptive Statistics  

 
Groundspeed 

Simulated 

Groundspeed 

Actual 

N Valid 5000 56 

Missing 0 4944 

Mean 27.411 29.011 

Std. Error of Mean .0983 .8772 

Median 25.006 28.286 

Mode 25.1 20.0a 

Std. Deviation 6.9527 6.5646 

Variance 48.341 43.094 

Skewness .563 .214 

Std. Error of Skewness .035 .319 

Kurtosis -1.185 -1.340 

Std. Error of Kurtosis .069 .628 

Range 20.0 20.0 

Minimum 20.0 20.0 

Maximum 40.0 40.0 

Sum 137054.0 1624.6 

Percentiles 25 20.990 23.480 

50 25.006 28.286 

75 33.789 34.072 

a. Multiple modes exist. The smallest value is shown 
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Appendix B 

Historical Environmental Data  

 
Figure 1B 

Arizona 

 

 



159 

 

Figure 2B 

Idaho 
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Figure 3B 

New York  
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Figure 4B 

Mississippi 
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Appendix C 

M1 Model Algorithm and Input Data  

MODEL: 
! A Vehicle Routing Problem (VRP) for sUAS medical delivery; 
 
 SETS: 
 ! Definitions  
 
Parameters:  
   Q   is the amount of medicine required at patient location I, 
   VHNUM  is the maximum available sUAS,  
   VCAP  is the vehicle payload capacity in grams 
   VMAXT  is the total travel time available for a vehicle, 
   VAL  is the value for visiting city i  
 
Variables:  
   Y(I,J)    is a binary variable: 1 if some vehicle travels from 
location I to J, else 0 
   U(I)   is the accumulated deliveries at location I  
   T(I)    is the accumulated time at location I 
   Wv    is the wind velocity  
   Wd    is the wind direction 
   TAS    is the sUAS airspeed  
   GS    is the sUAS groundspeed from location I to location J 
   LOADCUM(j) is cumulative load on trip just after city j 
   DISTCUM(j) is cumulative distance on trip just after city j 
   ZIN(K)     is binary: 1 if city K is visited 
   CITYBGN    is the index of the depot 
   TRANSPOSE  is binary: 1 if DISTANCE matrix should be transposed 
   INFLAG(i)  is 1 if city i is to be included in the problem 
   BACK21ST   is 1 if trip must return to depot 
   RUNTIME(i) is the time spent visiting city i 
 
Time-based parameters: 
   RUNTIME  is the transition time to land, unload, and take off at 
location k,  
   Ttot    is the accumulated travel time at city I  
  ; 
  
   CITY: Q, U, TD, TME, TML, TMV, TMA, DB4,DFT  
     , RUNTIME, INFLAG, ISREALLY, SFLAG 
     , VAL      
     , TimEarl, TimLate  
     , XCORD, YCORD 
     , LOADCUM, DISTCUM 
     , ZIN; 
   CXC( CITY, CITY): DIST, X, FLO, DistNoWind, HDG, Wv,Wd 
      , DISTANCE   ! Changeover time, excluding runtime; 
      ,  CMBDIST    ! The final distance matrix; 
      ,    Y    ! Y( I, J) = 1 if CXC I, J is in tour; 
   ; 
   CITYBGN( CITY);    ! Identify city, or depot, at which 
tour begins; 
   VHTYP: VHNUM, VHCAP, VHDIST, TAS;  ! Different vehicle types; 
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  DUMMY/1..1/; ! For excluding/isolating a CALC or SUBMODEL. 
      @FOR( DUMMY | 0: 
         code to be excluded.. 
          ); 
   
   CXCSUB(CXC): dcity, acity, arrohd;  ! Arcs in routes used, for 
graphing solution; 
 ENDSETS 
 
 DATA: 
TOLRELOPT = 0.01; ! Set ending relative optimality tolerance; 
TIME2ROPT = 600;  ! Time in seconds to apply optimality tolerance; 
TIMETOT  = 180;   ! Upper limit on solve time seconds; 
BACK21ST = 1 ;   ! > 0 means must do a changeover back to first at 
end; 
VHTYP = 1..1;  ! The different vehicle types; 
VHCAP = 10;    ! Max capacity of each vehicle type; 
VHDIST= 100;  ! Distance limit for each vehicle type; 
VHNUM = 1;    ! Number vehicles available of each vehicle type; 
 
CITY= C00  C01  C02 C03 C04 C05; 
Q=  0    3    6 5 4 2; 
VAL=  0 200 100 200 100 300; 
 
CITYBGN = C00;  ! First city; 
!TimEarl = 0 ;  ! Earliest arrival;  
!TimLate = 99999; ! Latest arrival; 
!TMV= 1000;  ! Visit time at stop k; 
INFLAG= 1;    ! INFLAG(j) = 0 if city j is not to be included in 
this problem instance. Else 1 ; 
RUNTIME=2;   ! RUNTIME(j) = time spent at city j; 
 
 
! DISTMTYP = 0: explicit distance matrix, 
             1: x-y coordinates, Manhattan/L1 metric, 
             2: x-y coordinates, Euclidean distance, 
             3: latitude-longitude, great circle distances; 
 
DISTMTYP = 0;  
DISTANCE=  
 
0 25.0 8.2 34.2 30.9 22.1  
14.8 0 21.0 26.7 6.3 35.9  
21.1 44.1 0 54.9 50.3 26.9  
12.8 15.6 20.7 0 17.2 23.1  
16.9 2.6 23.5 24.6 0 37.4  
25.7 49.7 17.6 48.1 54.9 0  
 
 
 
;    
 
 
XCORD, YCORD =  
 
-89.4253 31.1663  
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-89.4599 31.1181  
-89.382 31.1776  
-89.4971 31.1689  
-89.4721 31.1124  
-89.4132 31.2356  
   
 
;    
ENDDATA 
 
 
SUBMODEL sUAS_OpStp: 
!  Parameters: 
!    DISTMAX = distance upper limit for the trip, 
     NUMC = number cities, including depot, in the problem, 
     CMBDIST( i, j) = distance or time from city i to city j, 
     CFIRST = index of depot city, 
     LenWgt = Weight applied to minimizing tour length, 
     PenWgt = Weight applied to minimizing penalty for missed stops; 
 
 
; 
 
  ! Minimize Distance and penalties; 
   MIN = LenWgt* TourLen + PenWgt* TourPen; 
     TourLen = @SUM( CXC( i, j)| i #LE# NUMC #AND# j #LE# NUMC: 
CMBDIST( i, j)* Y( i, j)); 
     TourPen = @SUM( CITY( I)  | i #LE# NUMC #and# i #NE# CFIRST: 
VAL(i)*(1 - ZIN( i))); 
     TourPen <= TourPenUL;  ! Upper limit on tour penalty; 
 
  !  a vehicle does not travel inside itself,...; 
   @FOR( CITY(k) | k #LE# NUMC :  
       Y( k, k) = 0;  ! City cannot go to itself next; 
       @BIN( ZIN( k)); ! Either visit k or not; 
          ); 
 
  ! For each city k, except depot....; 
   @FOR( CITY( k)| k #LE# NUMC #AND# k #NE# CFIRST: 
  ! a vehicle must enter city K from some city I, together 
    their demands cannot exceed vehicle capacity... ; 
    [MTXNTRO] @SUM( CITY( i) |  i #LE#  NUMC #AND# i #NE# k #AND# ( i 
#EQ# CFIRST #OR# 
                 Q( i) + Q( k) #LE# VCAP): Y( i, k)) = ZIN( k); 
 
  ! a vehicle must leave K after service to some city J; 
     [MTXITO] @SUM( CITY( j)| j #LE#  NUMC #AND# j #NE# k #AND# ( j 
#EQ# CFIRST #OR# 
                 Q( j) + Q( k) #LE# VCAP): Y( k, j)) = ZIN( k); 
 
  ! LOADCUM( k) is at least amount needed at K, but can't  
    exceed vehicle capacity; 
     @BND( 0, LOADCUM( k), VCAP); 
 
  ! If i precedes k, then can bound LOADCUM( k) - LOADCUM( i); 
     @FOR( CITY( i)| i #LE# NUMC #AND# i #NE# k #AND# i #NE# CFIRST:  
      [ULO] LOADCUM( k) >= LOADCUM( i) + Q(k)  ! Case: i precedes k; 
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                - ( Q( k) + Q( i))* Y( k, i) ! Case: k precedes i; 
                - VCAP*(1- Y(i,k) - Y(k,i)) ; ! Case: neither above; 
         ); 
      ); 
 
! If i precedes k, then can bound DISTCUM( k) - DISTCUM( i); 
  ! For each city k, except depot....; 
   @FOR( CITY( k)| k #le# NUMC #AND# k #NE# CFIRST: 
     DISTCUM( k) >= CMBDIST( CFIRST, k)* ZIN( k); ! Assumes triangle 
inequality; 
     @FOR( CITY( i)| i #LE#  NUMC #AND# i #NE# k #AND# i #NE# CFIRST:  
      [MTZUDO] DISTCUM( k) >= DISTCUM( i) + CMBDIST( i, k)       ! 
Case: i precedes k; 
                - ( CMBDIST( i, k) + CMBDIST( k, i))* Y( k, i) ! Case: 
k precedes i; 
                - DISTMAX*(1- Y( i, k) - Y( k, i)) ;           ! Case: 
neither above; 
         ); 
 
 
 
! Cut based on CMBDIST( ) satisfying the triangle inequality; 
      [OSMCUTRIMO] DISTCUM( k) >= @SUM( CITY( i) | i #LE#  NUMC #AND# i 
#NE# k #AND# i #NE# CFIRST: 
                             ( CMBDIST( CFIRST, i) + CMBDIST( i, k))* 
Y( i, k)); 
 
      DISTCUM( k) + CMBDIST( k, CFIRST) <= DISTMAX; ! Assumes triangle 
inequality; 
    ); 
 
   ! Make the Y's binary; 
   @FOR( CXC( i, j) | i #LE#  NUMC #AND# j #LE#  NUMC : @BIN( Y(i,j))); 
 
   ! Maximun number vehicles allowed; 
    @SUM( CITY( j) | j #LE#  NUMC #AND# j #NE# CFIRST: Y( CFIRST, j)) 
<= VEHNMAX; 
 
! Some cuts;   
!  Minimum no. vehicles required, fractional  
    and rounded up; 
   VEHCLF = @SUM( CITY( I)| i #LE#  NUMC #AND# I #NE# CFIRST: Q( I))/ 
VCAP; 
   VEHCLR = @FLOOR( VEHCLF +.9999); ! Min vehicles needed if all cities 
must be visited; 
 
! Must send enough vehicles out of depot; 
!Key; !  @SUM( CITY( j) | j #LE#  NUMC #AND# j #NE# CFIRST: Y( 
CFIRST,j)) >= VEHCLR; 
  VCAP * @SUM( CITY( j) | j #LE#  NUMC #AND# j #NE# CFIRST: Y( 
CFIRST,j)) >=  
         @SUM( CITY( i)| i #LE#  NUMC #AND# I #NE# CFIRST: Q( I)* ZIN( 
i)) ; 
! Some Gomory cuts on the 'send enough vehicles' cut; 
!  Need a separate trip for each city requiring > 0.5 truck; 
    @SUM( CITY( j) | j #LE#  NUMC #AND# j #NE# CFIRST: Y( CFIRST,j)) >=  
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    @SUM( CITY( i) | i #LE#  NUMC #AND# I #NE# CFIRST #AND# 2* Q( I) 
#GT# VCAP: ZIN( i)) ; 
 
   @FOR( CITY( k) | k #LE#  NUMC #AND# k #NE# CFIRST: 
! A cut: If K is 1st stop, then LOADCUM( k) = Q( k); 
!Key;     LOADCUM( k) <= VCAP - ( VCAP - Q( k)) * Y( CFIRST, k); 
 
! A cut: If K is not 1st stop...; 
!Key;     LOADCUM( k) >= Q( k) * ZIN( k) 
           + @SUM( CITY( i)| i #LE#  NUMC #AND# i #NE# CFIRST: Q( i) * 
Y( i, k)); 
! A cut: If K is not last stop...; 
!Key;     LOADCUM( k) <= VCAP 
           - @SUM( CITY( i)| i #LE#  NUMC #AND# i #NE# CFIRST: Q( i) * 
Y( k, i)); 
        ); 
 
  !  3 item knapsack cuts,( 2 item case Q(i) + Q(j) #GT# VCAP already 
taken care of); 
!Weak; @FOR( CITY( i) | i #LE#  NUMC #AND# i #NE# CFIRST: 
        @FOR( CITY( j) | j #LE#  NUMC #AND#  j #GT# i: 
          @FOR( CITY( k) | k #LE#  NUMC #AND# k #GT# j #AND# Q( i) + Q( 
j) + Q( k) #GT# VCAP: 
               Y( i, j) + Y( j, i) + Y( i, k) + Y( k, i) + Y( j, k) + 
Y( k, j) <= 1; 
              ); 
             ); 
          ); 
 
! Subtour size 2 cuts,( Case Q(i) + Q(j) #GT# VCAP already taken care 
of); 
!Key;  @FOR( CITY( i) | i #LE#  NUMC #AND# i #NE# CFIRST: 
        @FOR( CITY( j) | j #LE#  NUMC #AND# j #GT# i #AND# Q( i) + Q( 
j) #LE# VCAP: 
            Y( i, j) + Y( j, i) <= 1; 
            ); 
          ); 
 
 ! Subtours of size 3 cuts,( Case Q(i) + Q(j) #GT# VCAP already taken 
care of); 
!Key; @FOR( CITY( i) | i #LE#  NUMC #AND# i #NE# CFIRST: 
        @FOR( CITY( j) | j #LE#  NUMC #AND# j #GT# i #AND# j #ne# 
CFIRST #AND# Q( i) + Q( j) #LE# VCAP: 
          @FOR( CITY( k) | k #LE#  NUMC #AND# k #GT# j #AND# k #ne# 
CFIRST : 
               Y( i, j) + Y( j, i) + Y( i, k) + Y( k, i) + Y( j, k) + 
Y( k, j) <= 2; 
              ); 
             ); 
          ); 
 
 ! Subtours of size 4 cuts,( Case Q(i) + Q(j) + Q( k) #GT# VCAP already 
taken care of); 
!Key; @FOR( CITY( i) | i #LE# NUMC #AND# i #NE# CFIRST: 
        @FOR( CITY( j) | j #LE# NUMC #AND# j #GT# i #AND# j #ne# CFIRST 
#AND# Q( i) + Q( j) #LE# VCAP: 
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          @FOR( CITY( k) | k #LE# NUMC #AND# k #GT# j #AND# k #ne# 
CFIRST #AND# Q( i) + Q( j) + Q( k) #LE# VCAP: 
            @FOR( CITY( h) | h #LE# NUMC #AND# h #GT# k #AND# h #ne# 
CFIRST : 
                Y( i, j) + Y( j, i) + Y( i, k) + Y( k, i) + Y( i, h) + 
Y( h, i) 
              + Y( j, k) + Y( k, j) + Y( j, h) + Y( h, j) 
              + Y( k, h) + Y( h, k) <= 3; 
              ); ); ); ); 
ENDSUBMODEL 
 
PROCEDURE SETUPDISTMAT: 
!  Setup standard from-to distance matrix from whatever initial form 
the data are supplied; 
 ! Outputs: 
   NUMC = number of cities in problem, based on INFLAG, 
   ISREALLY(j) = original index of city j in reduced problem based on 
INFLAG( ), 
   CMBDIST( i, j) = effective distance from i to j, including any visit 
time                       
; 
  N = @SIZE( CITY); ! Number cities in the full problem; 
  NUMC = N; 
 
! distmtyp = 0: explicit distance matrix, 
             1: x-y coordinates, Manhattan/L1 metric, 
             2: x-y coordinates, Euclidean distance, 
             3: latitude-longitude, great circle distances, 
             4: explicit matrix but also X-Y coordinates for graphing;  
 
! If using X-Y coordinates Manhattan/L1 metric, compute the distance 
matrix; 
  @IFC( distmtyp #eq# 1: 
    @for( CXC(i,j) | i #le# j: 
      DISTANCE( i,j) = @abs( xcord(i) - xcord( j)) + @abs( ycord(i) - 
ycord(j)); 
      DISTANCE(j,i) = DISTANCE(i,j); 
        ); 
      ); 
 
! If using X-Y coordinates Euclidean metric, compute the distance 
matrix; 
  @IFC( distmtyp #eq# 2: 
    @for( CXC(i,j) | i #le# j: 
      DISTANCE( i,j) = (( xcord(i) - xcord( j))^2 + (ycord(i) - 
ycord(j))^2 )^0.5; 
      DISTANCE(j,i) = DISTANCE(i,j); 
        ); 
      ); 
 
 @ifc( DISTMTYP #eq# 3: 
! This portion calculates the distance matrix DIST(i,j) assuming XCORD 
and YCORD 
   are the longitude and latitude in degrees; 
   D2R = @PI()/180; ! Degrees to radians conversion factor; 
 ! Compute Great Circle Distances. Radius of earth = 6371 km. 
  Notice this simplifies if YCORD(i) = YCORD(j) or XCORD(i) = XCORD(j); 
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   @FOR( CXC(i,j): 
     @IFC( i #EQ# j: distance(i,j) = 0;! Get rid of trivial roundoff; 
       @ELSE  
        distance( i,j) = 
6371*@acos(@sin(D2R*YCORD(i))*@sin(D2R*YCORD(j))+@cos(D2R*YCORD(i))*@co
s(D2R*YCORD(j)) 
                  *@cos(@ABS(D2R*(XCORD(i)-XCORD(j))))); 
         ); 
       ); 
      ); ! End Lat-long distance calculation; 
 
 
 ! Index of first/depot city; 
 @FOR( CITYBGN( k): CFIRST = k); 
! @write( CITyBGN( CFIRST),' is the depot with index= ', CFIRST, 
@NEWLINE( 1)); 
 
@for( dummy | 0: 
!  Write out part of the distance matrix; 
   @for(city(j): 
     @write( @format( city(j),'7s')); 
       ); 
   @write( @newline(1)); 
   @for( city(i) | i #le# 24: 
      @for( city(j) | j #le# 24: 
        @write( @format( distance(i,j), '7.2f')); 
          ); 
       @write( ' ',city(i),@newline(1)); 
        ); 
     ); 
 
 
  ! Do an in-place transpose if requested; 
  @IFC( TRANSPOSE: 
    @FOR( CXC( i,j) | i #LT# j #AND# j #LE# NUMC: 
      TEMP = DISTANCE(i,j); 
      DISTANCE(i,j) = DISTANCE(j,i); 
      DISTANCE(j,i) = TEMP; 
        ); 
      ); 
 
 ! Check if CFIRST makes sense; 
  @IFC( CFIRST #GE# 1 #AND# CFIRST #LE# N: 
    @IFC( INFLAG( CFIRST) #EQ# 1: 
      Status = 0; 
        ); 
     @ELSE 
       Status = 1; 
      ); 
  @IFC( Status #GT# 0: 
     @WRITE(' ERROR: First task, ',CFIRST,' is not in active 
set.',@NEWLINE(1)); 
     CFIRST = 1;  
      ); 
 
  ! If need not do changeover back to CFIRST, set its changeover = 0; 
  @IFC( BACK21ST #EQ# 0: 
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    @FOR( CITY(i): 
      DISTANCE(i,CFIRST) = 0; 
        ); 
      ); 
 
  ! Strip out the cities with INFLAG(j) = 0; 
    NUMC = 0; 
     
!  @write('ALPHA: INFLAG(2), INFLAG(3)= ', INFLAG(2), ' ', INFLAG( 3), 
@newline(1)); 
  @FOR( CITY( j) | INFLAG( j) #GE# 1: 
    NUMC = NUMC + 1; 
    ISREALLY( NUMC) = j; 
!    @WRITE('  j to NUMC, CFIRST = ',j,', ',NUMC,', Q( j)= ',  Q( j), 
@NEWLINE(1)); 
    @IFC( j #EQ# CFIRST: CFIRST = NUMC); 
    RUNTIME( NUMC) = RUNTIME( j); 
    Q( NUMC) = Q( j);             ! Move demands down; 
    VAL( NUMC) = VAL( j);         ! Move values of visiting down; 
    TimEarl( NUMC) = TimEarl( j); ! Move time windows down; 
    TimLate( NUMC) = TimLate( j); 
!    @write( 'NUMC,Q(NUMC)= ',NUMC,' ', Q(NUMC), @newline(1)); 
    @FOR( CITY( k): 
     DISTANCE( k, NUMC) = DISTANCE( k, j); ! Move col j early; 
     DISTANCE( NUMC, k) = DISTANCE( j, k); ! Move row j early; 
       ); 
 
! Assume Demands greater than vehicle capacity have been handled 
beforehand; 
! Subtract out obvious full loads; 
!    @IFC( Q( NUMC) #GT# VCAP: 
        QOVER( NUMC) = @FLOOR( Q( NUMC)/ VCAP); ! Number full loads 
over; 
!        Q( NUMC) = Q( NUMC) - VCAP* QOVER( NUMC); ! Remaining partial 
load; 
!      @ELSE 
        QOVER( NUMC) = 0; 
!        ); 
! Special case where Q = VCAP;  
      ); 
 
   @WRITE( ' This problem has number cities/products(including depot)= 
', NUMC, @NEWLINE(1)); 
 
   ! Turn off non-selected cities; 
   @FOR( CXC(i,j) | i #GT# NUMC #OR# j #GT# NUMC: 
      y(i,j) = 0; 
       ); 
 
  TOTRUN = @SUM( CITY(j) | j #LE# NUMC: RUNTIME(j)); 
    
  ! Adjust for run time. Time from start of changeover to finish of run 
of task; 
  @FOR( CXC( i, j) | i #LE# NUMC #AND# j #LE# NUMC: 
    CMBDIST( i, j) = DISTANCE(i,j) + RUNTIME(j); 
      ); 
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 ! Write distance matrix; 
  @ifc( 0: 
   @write(' Here is the distance matrix:', @newline(1)); 
   @for( city(i) | i #le# numc: 
     @write( @format( city(i), '8s')) 
       );  
  @write( @newline(1)); 
   @for( city( i) | i #le# numc: 
     @for( city( j) | j#le# numc: 
       @write( @format( cmbdist(i,j),'8.3f')); 
         ); 
     @write( ' ', city(i), @newline(1)); 
       ); 
      ); 
endprocedure 
 
PROCEDURE DoReportArc: 
      NROUTES = 0; 
  ! Write a listing of the routes; 
      @FOR( CITY( j):  
        @IFC( Y( CFIRST, j) #GT# .5:  ! Is j a 1st city on a route?; 
          NROUTES = NROUTES + 1; 
          DISTCUMTRP = 0; 
          LOADCUMTRP = Q( j); 
          @WRITE( @NEWLINE( 2), 'ROUTE ', NROUTES, ':', @NEWLINE(  1));  
          @WRITE('           FROM           TO    LENGTH     LOAD', 
@NEWLINE( 1)); 
          @WRITE('------------------------------------------------', 
@NEWLINE( 1)); 
          @WRITE( '   ', @FORMAT( CITY( 1),'12s'), ' ', 
            @FORMAT( CITY( j),'12s'),   
            @FORMAT( DISTCUMTRP, '10.1f'), ' ', @FORMAT( 
LOADCUMTRP,'8.0f'), @NEWLINE( 1) 
          ); 
          IPOS = J; ! Find remaining cities in trip until returning to 
CFIRST; 
          @WHILE( IPOS #NE# CFIRST: 
            NLOOPS = NLOOPS + 1; 
            @FOR( CITY( J2): 
              @IFC( Y( IPOS, J2) #GT# .5:  
                DISTCUMTRP = DISTCUMTRP + CMBDIST( IPOS, J2); 
                @IFC( J2 #NE# CFIRST: 
                  LOADCUMTRP = LOADCUMTRP + Q( J2); 
                  @WRITE( '   ', @FORMAT( CITY( IPOS),'12s'), ' ', 
                    @FORMAT( CITY( J2),'12s'),   
                    @FORMAT( DISTCUMTRP, '10.1f'), ' ', @FORMAT( 
LOADCUMTRP,'8.0f'), @NEWLINE( 1) 
                       ); 
                @ELSE 
                  @WRITE( '   ', @FORMAT( CITY( IPOS),'12s'), ' ', 
                    @FORMAT( CITY( CFIRST),'12s'),   
                    @FORMAT( DISTCUMTRP, '10.1f'), @NEWLINE( 1) 
                   ); 
                ); 
                IPOS = J2; 
                @BREAK; 
              ); );  ); ); ); 
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ENDPROCEDURE 
 
PROCEDURE DoGraphArc: 
 ! Display a graph of the routes; 
       DISTOT = 0; ! Total distance in all trips; 
 ! Loop over arcs used; 
   @FOR( CXC( i, j) | i #LE# NUMC #AND# j #LE# NUMC #AND# Y( i, j) #GT# 
0.5: 
       iprev = isreally( i); 
       jprev = isreally( j); 
       DISTOT = DISTOT + CMBDIST( i, j); 
       @INSERT( cxcsub, iprev, jprev); 
       dcity( iprev, jprev) = iprev;  ! Departure city; 
       acity( iprev, jprev) = jprev;  ! Arrival city; 
       arrohd( iprev, jprev) = 1; ! Put arrowheads on this arc; 
          ); 
   @CHARTNETNODE(  
        'Optimal Route, Total Travel Time= ' + @format( DISTOT,'8.2f')    
! Title of chart; 
      , 'Longitude', 'Latitude' ! Labels for horizontal and vertical; 
      , 'Patients'      ! Legend for arc set 1; 
      , xcord, ycord        ! Coordinates of the nodes; 
      , dcity, acity, arrohd);          ! Node pairs of arcs actually 
used; 
 
 
ENDPROCEDURE 
 
 CALC:; 
  @SET( 'TERSEO',1);    ! Output level (0:verb, 1:terse, 2:only errors, 
3:none); 
  @SET( 'IPTOLR', TOLRELOPT); ! Set ending relative optimality 
tolerance; 
  @SET( 'TIM2RL', TIME2ROPT); ! Time in seconds to apply optimality 
tolerance; 
  @SET( 'TATSLV', TIMETOT);   ! Solver time limit in seconds (0:no 
limit) for @SOLVE's; 
 
!  @write(' Setup distance matrix', @newline(1)); 
  SETUPDISTMAT; ! Setup distance matrix; 
  VCAP = VHCAP(1);     ! This assumes only one vehicle type; 
  DISTMAX = VHDIST(1); ! This assumes only one vehicle type; 
  VEHNMAX = VHNUM(1); ! This assumes only one vehicle type; 
 
!LS***; 
! First put all the weight on minimizing the penalty for uncovered 
stops; 
  LenWgt = 0; 
  PenWgt = 1; 
! @GEN(SUAS_OpStp);  ! Generate the scalar equivalent; 
  @SOLVE( SUAS_OpStp); 
  ISTAT = @STATUS(); 
  @write( 'Status for Min Penalty solve = ', ISTAT,' Penalty= ', 
TourPen, @newline( 1)); 
 
! Now constrain the Penalty for missed stops; 
  TourPenUL = TourPen; 
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! and minimize the length; 
  LenWgt = 1; 
  PenWgt = 0; 
  @SOLVE( SUAS_OpStp); 
  ISTAT = @STATUS(); 
  @write( 'Status for Min Tour length solve = ', ISTAT,' Tourlength= ', 
TourLen, @newline( 1)); 
 
    @IFC( ISTAT #EQ# 0 #OR# ISTAT #EQ# 4: 
!   Do a report based on a solution stored in the arc variables Y( i, 
j); 
      DoReportArc; 
!   Do a graph of the solution stored in the arc variables Y( i, j); 
      DoGraphArc; 
    ); 
 ENDCALC 
 
 END 
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