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Abstract 

Researcher: Dezsö V. Silagyi II 

Title: Prediction of Severity of Aviation Landing Accidents Using Support 

Vector Machine Models  

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2022 

The purpose of this study was to apply support vector machine (SVM) models to predict 

the severity of aircraft damage and the severity of personal injury during an aircraft 

approach and landing accident and to evaluate and rank the importance of 14 accident 

factors to the severity. Three new factors were introduced using the theory of 

inattentional blindness: The presence of visual area surface penetrations for a runway, the 

Federal Aviation Administration’s (FAA) visual area surface penetration policy 

timeframe, and the type of runway approach lighting.  

The study comprised 1,297 aircraft approach and landing accidents at airports 

within the United States with at least one instrument approach procedure. The dataset was 

gathered from a combination of the National Transportation Safety Board (NTSB) 

accident database, the NTSB accident reports, and the FAA’s Instrument Flight 

Procedure Gateway website. Four SVM models were developed in using the linear, 

polynomial, radial basis function (RBF), and sigmoid kernels for the severity of aircraft 

damage and another four SVM models were developed for the severity of personal injury. 

Five-fold cross-validation was used for testing the model accuracy and measures 

including evaluation of confusion matrices, misclassification rates, accuracy, precision, 
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sensitivity/recall, and F1-scores for model comparison. The best kernel models were 

selected and its model hyperparameters were optimized for the best model performance. 

The SVM models using the RBF kernel produced the best machine learning 

models, with a 96% accuracy for predicting the severity of aircraft damage (0.94 

precision, 0.95 recall, and 0.95 F1-score) and a 98% accuracy for predicting the severity 

of personal injury (0.99 precision, 0.98 recall, and 0.99 F1-score). The top predictors 

across both models were the pilot’s total flight hours, time of the accident, pilot’s age, 

crosswind component, landing runway number, single-engine land certificate, and any 

obstacle penetration. Specifically, the visual area surface obstacle penetration status 

ranked ninth across both SVM models. However, as a sub-category, an obstacle 

penetration on final approach was the seventh overall predictor and the second highest of 

the categorical predictors. The FAA visual area surface policy was ranked eighth as the 

overall factor, and the FAA policy from 2018 to 2019 was the third highest categorical 

predictor. Finally, the type of runway lighting was the sixth ranked prediction factor.  

This study demonstrates the benefit of SVM modeling using the RBF kernel for 

accident prediction and for datasets with categorical factors. It is recommended for the 

NTSB to add the collection of all three new factors into the NTSB database for future 

aviation accident research. Lastly, flight training should include information on a pilot’s 

susceptibility to inattentional blindness and the risks of potential obstacles in their flight 

path. 

Keywords: aviation, accident, SVM, support vector machines, obstacle, airport, 

safety  
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Chapter I: Introduction 

This chapter provides an overview of this study, beginning with a background of 

aviation approach landing accidents, a statement of the problem regarding obstacles on 

final approach, and the purpose of this study. Next, it discusses the study’s significance to 

the aviation industry and predictability research, which is followed by the three research 

questions guiding this study. Finally, the chapter concludes with the delimitations, 

limitations and assumptions, definitions, and acronyms. 

Background 

Commercial airlines, cargo companies, general aviation, and business aviation are 

all vulnerable to striking a tree, antenna, tower, pole, or other obstacles on the final 

approach (Huddleston, 2012; National Transportation Safety Board [NTSB], 1995, 

2019). For example, according to the NTSB, in November 1995, American Airlines 

Flight 1572 impacted multiple treetops during the non-precision final approach and 

landing at Bradley International Airport, Connecticut (NTSB, 1995). The NTSB listed the 

obstructions on final approach to runway 15, 80-foot trees, as a finding, even though the 

runway had a Visual Approach Slope Indicator (VASI). United Postal Service (UPS) 

cargo Flight 1354 clipped a powerline and trees while on approach at Birmingham, 

Alabama, in August 2013, resulting in the death of all crewmembers (Aviation Impact 

Reform, 2013). The flight data recording revealed that the flight crew failed to perceive 

the obstacles in their flight path until the captain stated that they had collided with the 

trees (NTSB, 2014). 

A general aviation flight instructor and student pilot were practicing approaches 

and landings when the student pilot flew the approach at higher-than-normal airspeeds 
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and a steeper angle because of trees at the end of the runway (Aviation Safety Reporting 

System [ASRS], 2021). The pilot was unable to stop the aircraft on the runway and 

crashed into a ditch. On September 11, 2019, two crewmembers perished when their 

business’s cargo hauling Convair 440 impacted the tops of multiple trees on final 

approach at Toledo Express Airport, Ohio (NTSB, 2019b).  

Pilot associations and the Federal Aviation Administration (FAA) both consider 

the presence of obstacles in the descent path of an aircraft on final approach as a 

significant problem (Airport Owners and Pilots Association [AOPA], 2016; Deener, 

2013). The FAA began addressing the presence of these obstacles at the end of 2013 by 

removing them or installing runway approach lighting and has spent over $42 billion 

dollars since (FAA, 2020b, 2021a, 2021b). However, aviation landing accident research 

lacked any analysis addressing obstacles on final approach and landing. 

The Aviation Landing Accident Problem  

Every year, over 400 aircraft accidents occur during final approach and landing 

(AOPA, 2018). These two phases of flight account for over 65% of all aviation accidents 

(Airbus S.A.S., 2020; Boeing, 2019; Flight Safety Foundation [FSF], 2017; International 

Air Transportation Association [IATA], 2016). As the pilot departs from the decision 

altitude (DA) on a straight-in precision approach, or the minimum descent altitude 

(MDA), on straight-in non-precision or circling approach, the runway and runway 

environment must be in sight to continue the descent to landing (FAA, 2012, 2016b, 

2016c; General Operating and Flight Rules, 2017). Typically, this transition is manually 

flown by the pilot or crew, even if automation was used up to the DA or MDA, to 

maneuver the aircraft to a position for a safe landing (Wang et al., 2018).  
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In addition, the final approach and landing phases have the highest workload and 

task saturation on a pilot or flight crew (FSF, 2017; Harris, 2011; Moriarty & Jarvis, 

2014). Therefore, this period of high task saturation and hyper focus on the runway 

and/or runway environment may cause a pilot’s or flight crew’s visual routine to be 

impacted by inattentional blindness resulting in a missed visual area surface obstacle 

penetration directly in front of the descending aircraft. 

Previous Landing Accident Research and Common Shortfalls 

Previous human factors analysis and classification system (HFACS) research on 

the risks of final approach and landing accidents confirms the concerns of high task 

saturation on pilots and flight crews (Ancel et al., 2015; Boyd, 2019; Shappell et al., 

2007; Wu, 2018). In addition, aviation landing accident research shows many common 

factors: environmental, aircraft, airport, and pilot characteristics (Baugh, 2020; 

Kushwaha & Sharma, 2014; Shappell et al., 2007; Wong et al., 2006; Wu et al., 2014). 

Unfortunately, there is insufficient evidence in previous research for the inclusion of the 

presence of obstacles on the final approach or the type of runway approach lighting. 

Boyd (2019)’s results indicated that landings with higher energy levels, due to 

steeper flight angles or higher airspeeds, result in 38% of all landing accidents and twice 

the number of severe or fatal personal injuries. However, only 4% of landing accidents 

occurred from a shallow flight angle. If no obstacles were in the path of the aircraft, the 

pilot could lower the likelihood of an accident by flying at a shallower flight angle for 

landing. Although high energy levels have higher severity of personal injury accidents, 

there is a shortfall because the presence of obstacles on the final approach was not 
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included, which may be the cause of the steeper, faster, final approach (Valdés et al., 

2011). 

 The majority of previous accident research was conducted using the NTSB 

database (Baugh, 2020; Boyd, 2019; Burnett & Si, 2017; Koteeswaran et al., 2019; 

Kushwaha & Sharma, 2014; Shappell et al., 2007; Wu et al., 2014). However, the 

database relies on the collection and input of NTSB accident investigators or investigator 

teams who analyze the findings and classify the accident into the database (NTSB, n.d.-

d). HFACS safety classifications systems may have inter-coding and intra-coding 

inconsistencies because of human interpretation of the findings and taxonomy 

standardizations (Olsen & Sharrock, 2010). The NTSB database is not immune to these 

risks in which an aircraft accident during takeoff was coded as a landing accident (NTSB, 

2015b). Many accident researchers indicated missing data in the NTSB database (Baugh, 

2020; Boyd, 2019: Burnett & Si, 2017; Kushwaha & Sharma, 2014; Wu et al., 2014). 

Therefore, this study will manually review each NTSB report for missing data and 

taxonomy accuracy, like the previous study by Boyd (2019), to reduce any risks using the 

NTSB database.  

In addition to missing data and the possibility of incorrect taxonomy, the NTSB 

database does not contain any variable information on the presence of obstacles on 

landing and the type of runway approach lighting, even when the accident investigation 

determined the aircraft impacted an obstacle on final approach and landing (NTSB, 1995, 

2014, 2017a, 2017b, 2018a, 2018b). Therefore, there is a lack of previous accident 

research about the impact obstacles on final approach and landing due to the absence of 

obstacle information in the NTSB database.  
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Inattentional Blindness and Final Approach Obstacles 

When a pilot or flight crew transitions from the DA or MDA, the focus is on 

locating the runway or the runway environment. This intense focus, along with the high 

task saturation of the final approach, may result in the pilot or flight crew missing a large 

obstacle directly in the descent gradient of the aircraft because of the vulnerability to 

inattentional blindness. The theory of inattentional blindness is when a person looks at an 

object directly in front of him/her but fails to process the presence of the obstacle due to 

focused attention (Mack & Rock, 1998; Most, 2010; Most et al., 2001; Neisser, 1979; 

Simon & Chabris, 1999). Wood and Simons (2019) state that an unexpected obstacle 

must be identified within the first 1.5 seconds of its appearance or risk inattentional 

blindness resulting in not recognizing the presence of the obstacle. Therefore, even if a 

tree or pole on final approach descent remains in view of the pilot or flight crew, it does 

not reduce the effects of inattentional blindness and could have disastrous consequences 

for the pilot and flight crew (Most, 2013). AOPA, the largest general aviation pilot 

organization, stated their concern to the FAA that any obstacle in the descent path of an 

aircraft on final approach is problematic, and the obstacle must be removed (AOPA, 

2016). 

However, AOPA’s (2016) statement was subjective because of the lack of 

supporting research establishing the connection between obstacles on final approach and 

aviation accidents.  This lack of previous research to support or refute AOPA’s (2016) 

claim exposes a gap in accident aviation research. However, if a pilot was susceptible to 

inattentional blindness, resulting in a runway incursion with a vehicle or aircraft on the 

ground, it is reasonable to assume that the same pilot, during the final approach phase, 
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would be susceptible to inattentional blindness and may miss an obstacle in the aircraft 

flight path (Kennedy et al., 2014, 2017). Research has also shown that pilots and 

automobile drivers have an increased risk of inattentional blindness during periods of 

high task saturation (Durantin et al., 2017; Kennedy et al., 2014, 2017; Murphy & 

Greene, 2015, 2016; Pugnaghi et al., 2019, 2020). Therefore, this research focuses on 

analyzing landing accidents to determine if inattentional blindness and the possibility of 

missing an obstacle on the final approach are important predictors of the severity of 

personal injury and aircraft damage. 

Statement of the Problem 

The final approach and landing phases of flight account for over 65% of all 

aviation accidents per year (Airbus S.A.S., 2020; Boeing, 2019; FSF, 2017; IATA, 2016). 

Previous research has shown that this phase has high task saturation for pilots and flight 

crews (Ancel et al., 2015; Boyd, 2019; Shappell et al., 2007; Wu, 2018). Unfortunately, 

there is a lack of previous research incorporating the presence of obstacles on final 

approach and runway approach lighting.  

However, the FAA views the presence of obstacles as a significant problem for 

pilots and flight crews during the final approach and landing and considers the 

installation of runway approach lighting to be a way to mitigate that risk. Since 2014, the 

FAA has spent over $42 billion dollars on approximately 2,300 airports to fund the 

removal of obstacles and/or the installation of runway approach lighting (FAA, 2020b, 

2021a, 2021b). This significant amount of taxpayer money has been spent on reducing 

the number of landing accidents. However, there has been insufficient evidence in current 

studies to determine if the removal of obstacles or installation of runway lighting reduces 
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the severity of personal injury or aircraft damage. Therefore, this research filled that gap 

by including variables for the presence of obstacles and for runway approach lighting. 

Purpose Statement 

The purpose of the research was to conduct a quantitative, non-experimental 

research design using the support vector machine method for supervised machine 

learning models to predict the severity of aircraft damage and the severity of personal 

injury (Edmonds & Kennedy, 2017). The study incorporated 11 variables from previous 

aviation accident research along with three new variables that had not previously been 

researched. The previously researched variables were Code of Federal Regulation 

(C.F.R.) mission category, landing runway in use, crosswind component, number of 

aircraft engines, aircraft engine type, time of the accident, pilot’s certificate, pilot’s 

rating, pilot’s total number of flight hours, pilot’s age, and number of flight crew (Baugh, 

2020; Moriarty & Jarvis, 2014; Shepell et al., 2007; Wu et al., 2014).  

In addition to those 11 variables, this study was the first to incorporate the three 

new variables of visual area surface penetrations, corresponding FAA visual area surface 

penetration policies, and runway approach lighting type. These three new variables were 

incorporated because the theory of inattentional blindness could result in the pilot or 

flight crew failing to notice something unexpected, or an unexpected object, in front of 

the aircraft on final approach and landing (Most, 2013). Inattentional blindness has been 

shown to increase the possibility of runway incursions with another aircraft or vehicles 

during landing, so it is conceivable that the same would be true for a pilot to miss a tree, 

powerline, or tower on final approach (Kennedy et al., 2014, 2017). For example, 

inattentional blindness, and a missed obstacle, may result in an accident, like American 
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Airlines Flight 1572. In addition, a pilot’s inattentional blindness may result in late 

obstacle recognition which subsequently results in an unstable approach and landing, 

culminating in an accident on landing (Martin, 2020; Moriarty & Jarvis, 2014; NTSB, 

1995).  

Incorporating all 14 variables, support vector machines (SVMs) were used to 

develop champion models to predict a multi-level severity of aircraft damage and multi-

level severity of personal injury for aviation landing accidents in the United States. The 

SVM models were tested across four kernels, two of which have not been previously 

used in aviation accident research. The researcher used the NTSB database, a manual 

review of the NTSB accident reports, and additional public websites to collect and 

analyze landing accidents in the United States between January 2014 and December 2019 

to cover the six years of the different FAA policies. 

Significance of the Study 

This study has practical and theoretical significance. The practical significance of 

the findings of this study is noteworthy to the entire aviation community. Airport owners, 

managers, airport designers, engineers, and consultants who pay for or conduct the 

removal of visual area surface obstacles are interested. If runway approach lighting is or 

is not a high predicting factor, this may help support their decision to install or not install 

runway approach lighting. 

In addition, the FAA and the International Civil Aviation Organization (ICAO) 

may use this study to update or change orders and regulations about visual area surface 

obstacle removal or aircraft approach lighting requirements. Since the dataset 
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incorporates general aviation, business, and airlines, the results can be generalized to 

all facets of the aviation industry in the U.S.  

The primary theoretical contribution of the study is that pilots and flight crews 

may gain an understanding of the dangers of inattentional blindness and its impact on 

approach and landing accident rates. This same understanding and knowledge may be 

used by aviation training companies as they update their training classes to include 

inattentional blindness awareness and recognizing visual area surface penetrations.  

Lastly, the SVM methodology, technique, and comparison of different kernels 

are beneficial because these same procedures can be applied to other facets of the 

complex aviation environment to provide better predictability (Burnett & Si, 2017). 

Aviation accident research benefits from the evaluation of the new accident 

predictors: the presence of visual area surface penetrations for a runway, the FAA’s 

visual area surface penetration policy timeframe, and the type of runway approach 

lighting. All types of predictability research, not just aviation, benefit from the general 

SVM methodology and kernel research because the research method and procedures 

could be broadly applied in other industries desiring to reduce personal injury and 

property damage. 

Research Questions 

The following research questions were investigated in this study: 

RQ1  

What support vector machine model is best for predicting the severity of aircraft 

damage and the severity of personal injury due to an aviation landing accident in the 

United States? 
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RQ2  

What are the most important predictors for predicting the severity of aircraft 

damage and the severity of personal injury due to an aviation landing accident in the 

United States? 

RQ3  

What influence do the specific factors of the presence of visual area surface 

penetrations for a runway, the FAA’s visual area surface penetration policy timeframe, 

and the type of runway approach lighting have in predicting the severity of aircraft 

damage and the severity of personal injury, due to an aviation landing accident in the 

United States? 

Delimitations 

The NTSB database contains all aviation accidents within the United States for 

this study’s timeframe of January 1, 2014, to December 31, 2019, including general 

aviation, business, and commercial (NTSB, n.d.-a). These six years of aviation accidents 

were used to cover the three different FAA policies referring to the removal of obstacles 

on the final approach (AOPA, 2016; FAA, 2013b, 2018b, 2018c; Lebar, 2016; 

Namowitz, 2016; RTCA, 2016). Therefore, one delimitation was the United States-

centric nature of the NTSB database because it does not contain every foreign aviation 

accident. However, the champion models could be used in other countries and by 

international aviation operators with any necessary adjustments specific to that country or 

operator.  
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The other delimitation was that this study used airport, environmental, and pilot 

factors. Although there are multiple factors or causes leading up to an accident, the pilot 

or flight crew are ultimately responsible for the safe operation of the aircraft.  

Limitations and Assumptions 

The study was limited to airports with at least one instrument approach procedure 

(IAP) because the FAA’s IAP paperwork was required to verify the presence of visual 

area surface obstacle penetrations (FAA, 2018c). Without an IAP, the status of visual 

area surface penetrations would be unknown. However, with the necessary adjustment to 

the champion models, the results of this study can be applied to all airports, with and 

without IAPs, to reduce the risk of landing accidents. Airports without IAPs face many of 

the same cost versus benefit challenges in installing runway approach lighting, Visual 

Glide Slope Indicators (VGSIs), or removing obstacles (FAA, 2014a, 2014b). 

It is assumed that the FAA correctly completed all the IAP visual area surface 

evaluations, took the appropriate regulatory action to amend the IAPs, correctly 

documented the results, and displayed visual area surface penetrations and approach 

runway lighting correctly on the IAP charts (FAA, 2018b). In addition, it is assumed all 

airports in the United States with IAPs have complied with the FAA requirements to 

identify and report obstacles around an airport, especially those obstacles in the visual 

area surface, whether or not they penetrate the visual area surface (FAA, 2014b). 

Summary 

The background discussed how the approach and landing phase of flight account 

for the majority of aviation accidents and how inattentional blindness impacted a pilot or 

flight crew’s ability to detect visual area surface obstacle penetrations during final 
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approach and landing (Airbus S.A.S., 2020; Boeing, 2019; FSF, 2017; IATA, 2016). 

Although the FAA has spent billions at airports to install runway approach lighting and 

remove obstacles there is no evidence that research was conducted to determine if these 

changes impacted final approach and landing accidents. This research was the first to 

incorporate visual area surface penetrations, the different FAA policies, and runway 

approach lighting, along with other factors, to conduct a holistic evaluation of factors 

impacting approach and landing accidents. Also, it used support vector machine 

modeling and four different kernel functions to develop and compare high dimensional, 

linear and non-linear algorithms. The modeling determined how these factors predict the 

severity of aircraft damage and the severity of personal injury. 

The next chapter provides a review of the relevant literature on inattentional 

blindness and aviation accidents. Then, Chapter III examines the development of the 

dataset and the use of support vector machine modeling to develop, test, fine tune, and 

validate the best model for predicting the severity of aircraft damage and another model 

for predicting the severity of personal injury. Finally, Chapters IV and V describe the 

results, followed by a discussion of the results, recommendations, and conclusion.  

Definitions of Terms 

20:1 Slope An imaginary surface that starts 200 feet prior to the approach end 

of a runway and increases one foot in altitude for every 20 feet of 

distance, until reaching the location of the DA, for precision 

approaches, or VIP, for non-precision approaches (FAA, 2018b). 

34:1 Slope An imaginary surface that starts 200 feet prior to the approach end 

of a runway and increases one foot in altitude for every 34 feet of 
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distance, until reaching the location of the DA, for precision 

approaches, or VIP, for non-precision approaches (FAA, 2018b). 

Attentional Misdirection When a person purposefully manipulates another 

person’s attention away from seeing an unexpected object (Kuhn 

& Tatler 2005; Tatler & Kuhn, 2007). 

Decision Altitude Specific altitude on a precision final approach where the 

pilot must have the runway environment in sight in order to 

continue to land (FAA, 2017).   

Hyperplane An imaginary line used by SVMs to separate a set of data points 

based on their classification (Navlani, 2019). 

Inattentional Blindness When a person either fails to perceive or fails to 

remember a large object due to a lack of focused attention (Mack 

& Rock, 1998; Most, 2010; Most et al., 2001; Neisser, 1979; 

Simon and Chabris, 1999). 

Kernel Algorithm Used by SVMs to help maximize the margin between 

classifications by transforming nonlinear separable data 

classifications into a new higher dimensional space (Berwick, 

2003; Navlani, 2019).  

Margin  The gap between the closest datapoints of different classifications 

and the hyperplane (Berwick, 2003; Navlani, 2019). The goal of a 

SVM model is to maximize this margin. 
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Minimum Descent Altitude The lowest altitude pilots are allowed to descend to 

on a non-precision final approach before having the runway 

environment in sight in order to continue to land (FAA, 2017). 

Non-Precision Approach Instrument approach that only provides lateral 

guidance (Safe, Efficient use, and Preservation of the Navigable 

Airspace, 2020). 

Obstacle Any temporary or permanent fixed object or movable object that is 

a hazard to navigation, extends above a slope or surface designed 

to protect flight operations, or is located on or around aircraft 

movement areas (ICAO, 2018).  

Precision Approach Instrument approach that provides both lateral and vertical 

guidance (Safe, Efficient use, and Preservation of the Navigable 

Airspace, 2020). 

Support Vectors These are the data points that are closest to the hyperplane 

and are most relevant to the development of the hyperplane 

(Berwick, 2003; Navlani, 2019). 

Visual Area Surface Begins 200 feet before the runway threshold and extends 

until the DA, for precision approaches, or the VDP, for non-

precision approaches. This area should not have 20:1 or 34:1 

obstacle penetration (FAA, 2018c). 

List of Acronyms 

ACARS Aircraft Communications Addressing and Reporting System  

ANN Artificial Neural Networks 
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ANOVA Analysis of Variance 

AOPA Airport Owners and Pilots Association 

ATC Air Traffic Control 

C.F.R. Code of Federal Regulations 

CT Computed Tomography 

DA Decision Altitude 

DV Dependent Variable 

FAA Federal Aviation Administration 

FSF Flight Safety Foundation 

fMRI Functional Magnetic Resonance Imaging 

HFACS Human Factors Analysis and Classification System 

IAP Instrument Approach Procedure 

IATA International Air Transportation Association 

ICAO International Civil Aviation Organization 

IV Independent Variable 

K Kernel 

KNN K-Nearest Neighbors 

NTSB National Transportation Safety Board 

MANOVA Multivariate Analysis of Variance 

MDA Minimum Descent Altitude 

NAS National Airspace System 

NOTAM Notice to Airmen 

PAPI Precision Approach Path Indicator 
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RBF Radial Basis Function 

ROS Random Over-Sampling 

RTCA Radio Technical Commission for Aeronautics 

RUS Random Under-Sampling 

SEM Structural Equation Modeling 

SEMMA Sample, Explore, Modify, Model, and Assess 

SPSS Statistical Package for the Social Sciences 

SMOTE Synthetic Minority Over-Sampling Technique 

SVM Support Vector Machine 

UTC Coordinated Universal Time 

VASI Visual Approach Slope Indicator 

VDP Visual Descent Point 

VGSI  Visual Glide Slope Indicator 
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Chapter II: Review of the Relevant Literature 

The chapter begins with an investigation of aviation landing accident research, 

followed by a discussion of the aviation landing accident factors, and a description of the 

three new variables introduced in the study. The next section provides an overview of 

support vector machines (SVM), including SVM calculations and their utilization in 

predictability research. The final sections provide an overview of the theory of 

inattentional blindness, inattentional blindness comparison to attentional misdirection, 

inattentional blindness in safety research, and how inattentional blindness supports the 

three research questions. 

Aviation Accidents on Landing 

As the pilot departs from the DA or MDA, the runway and runway environment 

must be in sight to continue the descent to landing (FAA, 2012, 2016b, 2016c; General 

Operating and Flight Rules, 2017). This transition is typically manually flown by the 

pilot or crew even if automation was used up to the DA or MDA (Wang et al., 2018). 

Between 2008 and 2018, 3,608 general aviation accidents have occurred during the 

approach and landing (AOPA, 2018). In commercial aviation, approach and landing 

accounts for roughly 65% of accidents and almost half of all fatalities (Boeing, 2019; 

FSF, 2017; IATA, 2016). The phase of flight from approach to landing has the highest 

workload and task saturation on a pilot or flight crew (FSF, 2017; Harris, 2011; Moriarty 

& Jarvis, 2014). Therefore, this period of high task saturation and hyper focus on the 

runway and/or runway environment may cause a pilot’s or flight crew’s visual routine to 

be impacted by inattentional blindness resulting in a missed visual area surface obstacle 

penetration directly in front of the descending aircraft. 
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Lasty, research has shown that landings with higher energy levels due to steeper 

flight angles or higher airspeeds result in 38% of the landing accidents (Boyd, 2019). 

However, if no obstacles were present, the pilot could lower the likelihood of an accident 

by flying a shallower flight angle for landing. Only 4% of landing accidents occurred 

from a shallow flight angle (Boyd, 2019). In addition, steeper final approaches result in 

twice the number of severe or fatal injuries. Many of these accidents can be contributed 

to the presence of visual area surface obstacles requiring the flight crew to avoid them or 

cause an actual collision with the aircraft. These obstacles may also result in steeper final 

approaches and landing overruns (Valdés et al., 2011). 

Aviation Landing Accident Factors 

Aviation landing accident research shows that there are many factors that seem to 

be common among general aviation and commercial airlines. These factors, listed in the 

following sections, include environmental, aircraft, airport, and pilot characteristic 

(Baugh, 2020; Kushwaha & Sharma, 2014; Shappell et al., 2007; Wong et al., 2006; Wu 

et al., 2014). This study combined the significant landing accident factors from previous 

research with the new variables of the presence of visual area surface penetrations, the 

FAA’s visual area surface penetration policy timeframe, and the type of runway approach 

lighting. 

Environmental Factors  

 Environmental factors include anything external to the aircraft including, but not 

limited to, light, weather, noise, atmospheric conditions, volcanic ash, and temperature 

(Kushwaha & Sharma, 2014). In aviation, environmental factors such as weather, 

crosswind component, lighting, and time of day are commonly listed as factors impacting 
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aviation accident rates (Baugh, 2020; Kushwaha & Sharma, 2014; Shappell et al., 2007; 

Wong et al., 2006). 

Wong et al. (2006) used the NTSB database to assess four types of takeoff and 

landing accidents at nine major airports in the months of February, May, August, and 

November. The environmental factors reviewed were airport ceiling and visibility, 

general weather, temperature, crosswind component, and tailwind component. Chi-square 

and t-test statistical results showed landing accidents were more likely to occur at airports 

with instrument meteorological conditions rather than visual meteorological conditions. 

The results support this study, because obstacles around an airport could pose a potential 

safety hazard as aircraft arrive on an instrument approach procedure. However, they 

found no significant difference in crosswind component, which was contrary to their 

literature review. Even with their results, their literature research revealed the need for a 

crosswind component variable in this study. 

Although the goal was to look only at the specific months of seasonal change, the 

location of the nine major airports differed across the United States, resulting in different 

seasonal changes. Therefore, Wong et al. (2006) could have analyzed additional airports 

and gathered accident data for all twelve months. Lastly, the researchers only conducted 

statistical analysis and did not conduct any type of predictive analysis. 

The accident time of day variable was shown to be significant with aviation 

accidents for airlines and on-demand commuter aircraft (Shappell et al., 2007). Shappell 

et al. (2007) reviewed the NTSB database for 1,020 commercial accidents from 1990 to 

2002. The statistical analysis showed accidents were five times more likely to occur when 

the pilot’s visibility was diminished during nighttime, dusk, and dawn. Although the 
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research did not include general aviation or business aircraft and did not focus 

specifically on landing accidents, the research supported the necessity for time of day to 

be included as a variable in this research.    

Aircraft Factors 

Additional categories of aircraft type, C.F.R. mission type, and the number of 

engines on the aircraft also factor into aviation accidents because of the complexity of the 

aircraft, flight deck instruments, and type of mission (Shappell et al., 2007). This 

increased complexity may result in the pilot multitasking or being distracted from 

primary functions. These same issues, plus environmental and human factors, contributed 

to unstable approaches in commercial airlines and increased inattentional blindness 

(Moriarty & Jarvis, 2014).  

For example, Boyd (2019) evaluated the aircraft’s engine type and number to 

discover that single piston-engine aircraft were statistically more likely to have greater 

descent and landing airspeed resulting in an unsafe situation and higher injury severity. 

The research covered general aviation aircraft landing accidents at runways shorter than 

three thousand feet in length, from 1997 to 2016, using the NTSB database. Although the 

research included several aircraft variables, only a statistical evaluation was conducted, 

instead of predictability. Another shortfall was the limit to only runways less than three 

thousand feet, which eliminated many general aviation landing accidents. However, this 

study still included the variables of aircraft engine type and number of engines because of 

their statistical findings. 

Moriarty and Jarvis (2014) conducted a qualitative study interviewing 25 airline 

pilots from one airline. The pilots were asked eight questions about stabilized precision 
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instrument approaches and the interaction with the aircraft, air traffic control, and crew 

members. Coding the interviews with NVivo 9 software, they discovered only a few 

pilots were adhering to the airline’s standard operating procedures for stabilized 

approaches. Instead, competing priorities between air traffic control’s desire for 

sequencing and the crew’s desire to descend as fast as possible to the lowest allowed 

altitude increased the crew’s task saturation. The increased task saturation also increased 

the crew’s risk of inattentional blindness and exposed them to possible obstacles on final 

approach. In addition, the researchers uncovered how pilots were reluctant to go around 

from an unstable approach if the pilot or crew believed they could regain aircraft control. 

Although the study was limited to a single airline and a small sample the research 

supports the pilot’s high task saturation on final approach and the human factors impact 

between the pilot and aircraft. This supported the use of variables in this study of mission 

category, number of engines, and aircraft engine type because these variables may 

increase complexity for the pilot and crew. 

Airport Factors 

To support the earlier discussion of the crosswind component, this research 

included the landing runway in use as a tool for calculating the crosswind component 

(Wong et al., 2006). The crosswind component was computed by calculating the sine of 

the difference between the wind direction and the landing runway, then multiplied against 

the wind velocity (FAA, 2014a). Although the landing runway in use could be kept as a 

hidden value in the calculation, it was included as a separate airport variable. 
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Pilot Characteristic Factors 

Human factors research about aviation accidents lists factors such as pilot flight 

hours, pilot certificate, pilot rating, number of crew in the aircraft, and age of the pilot 

(Baugh, 2020; Shappell et al., 2007; Wu et al., 2014). As the pilot’s experience increases, 

the risk for an accident typically decreases, which is why airlines and business aviation 

typically have fewer accidents than general aviation. However, airlines and business 

aviation are still susceptible to multiple human factors that impact unstable approaches 

(Moriarty & Jarvis, 2014). Therefore, these human factors variables were used in this 

study. 

Specifically, Boyd (2019) conducted a Pearson Chi-Squared test to evaluate the 

different pilot and aircraft variables on high-speed landing accidents. In addition to the 

aircraft variables mentioned earlier, the research evaluated a pilot’s highest certificate, 

pilot’s rating, and pilot’s total time. Through a combination of 1,392 surveyed pilots and 

235 NTSB landing accidents, the lower the pilot’s flight time, the more statistically 

significant the likelihood of a high-speed landing. However, the higher the pilot’s flight 

time also revealed the pilot was more likely to attempt to recover a high-speed landing 

and continue the landing instead of initiating a go-around. Therefore, this research used 

variables of pilot total flight hours, certificate, and rating. 

Using data mining techniques, Koteeswaran et al. (2019) reviewed 1,379 aviation 

accidents in all phases of flight from 1919 to 2014 using the FAA aviation accident 

dataset. Reviewing for 231 features, their top accident feature was pilot error followed by 

landing accidents. Although Koteeswaran et al.’s (2019) study did not look at specific 

accident variables, pilot error can result from numerous variables including pilot’s age 
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and experience (Kennedy et al., 2010). One factor reviewed by Koteeswaran et al. (2019) 

was crew resource management, which was found to lower the risk of an aviation 

accident. Koteeswaran et al.’s (2019) results supported the variable for number of flight 

crew in this study because having multiple crew members may offset the severity of 

personal injury or aircraft damage during final approach and landing accidents because 

multiple crew members may be more likely to detect obstacles on final and not be as 

susceptible to inattentional blindness (Carpenter, 2001; Kreitz, Furley, et al., 2015 ). 

Pilot’s flight hours were also listed as a factor in research about general aviation 

accidents during all phases of flight (Baugh, 2020). Using the NTSB database, 26,387 

accidents were pulled from 1998 to 2018. The data were evaluated using a combination 

of text mining and various machine learning models for a data, text, or combination 

model for predicting personal injury severity. Logistic Regression resulted in the best 

predictive model for the severity of personal injury with the lowest misclassification rate 

of 0.098. In addition, two of the top six variables were weather and pilot total flight 

hours, which were included in this study.  

However, Baugh’s (2020) predictive study differs from the Code of Federal 

Regulations and FAA, which separates personal injury into the four categories of none, 

minor, serious, and fatal (FAA, 2018b; “Notification and Reporting of Aircraft Accidents 

or Incidents”, 2020). Instead of using a complex machine learning model to evaluate a 

multi-level dependent variable (DV), Baugh (2020) changed the DV into a binary 

variable by combining fatal and severe accidents into one level and combining minor and 

none into the other level. A minor injury is hospitalization of up to 48 hours, first degree 

burns, or external cuts, which no pilot would consider equal to an accident with no 
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injuries (FAA, 2018b; “Notification and Reporting of Aircraft Accidents or Incidents”, 

2020). The researcher also included all phases of general aviation accidents, which 

explains why four of the top six significant variables apply to enroute phase of flight and 

does not apply to takeoff or landing (Baugh, 2020). Lastly, Baugh’s (2020) research 

successfully evaluated 21 different machine learning techniques; however, neither 

support vector machines nor kernel techniques were used in any of the 21 methods.  

Another predictive research on personal injury and general aviation accidents in 

all phases of flight, used multiple machine learning techniques and various models 

composed of 64 variables (Burnett & Si, 2017). The research concluded that artificial 

neural networks had the highest predictability of accident fatalities and the highest 

predictability of a combination of accident injuries and fatalities. However, the 

research did not include accidents with minor or no personal injuries. Although the 

study did include support vector machine models with linear and polynomial kernels, 

the sigmoid or RBF kernels were not evaluated. The research also did not evaluate the 

sensitivity or importance of each factor. However, in the development of the different 

models, the variables included pilot certification, pilot’s age, pilot’s total flight hours, 

pilot rating, time of day, number of aircraft engines, and type of aircraft engine. 

New Accident Variables 

Three new variables, status of visual area surface penetrations, FAA visual area 

surface policy timeframe, and runway lighting types, were incorporated in this research. 

All three of these variables have not been assessed in previous aircraft accident research 

because the variables are not part of the NTSB database and thus require manual research 
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and coding (NTSB, n.d.-b). Therefore, the following section discusses their inclusion in 

this study. 

Status of Visual Area Surface Penetrations. Although the majority of the final 

approach may be flown in clouds, the FAA (2012, 2017, 2020a) requires pilots and flight 

crew to be clear of clouds to begin descent from the DA on a precision approach, or 

MDA on a non-precision approach, through the landing. Since this maneuver from the 

DA or MDA to landing is conducted visually by the pilot, the FAA (2012, 2017, 2020a) 

also requires the pilot to see and avoid any ground obstacles (i.e., trees, towers, and 

buildings) that may be in the flight path of the aircraft. Even autopilot, or other 

automation, used for stabilized descent on the final approach does not guarantee the 

avoidance of obstacles (Huddleston, 2012).   

During the visual maneuver from DA or MDA to landing, the FAA (2018c) has a 

visual area surface, as shown in Figure 1, that should be clear of ground obstacles. The 

visual area surface exists for precision approaches, non-precision approaches, and 

circling approaches. If an obstacle does exist in the visual area surface and the pilot or 

flight crew experience inattentional blindness, an accident may result (Durantin et al., 

2017; Kennedy et al., 2014, 2017). The flight crew of American Airlines Flight 1572 may 

have experienced inattentional blindness, which is why they did not perceive the 80-foot-

tall trees that penetrated the visual area surface by 55 feet (NTSB, 1995). 
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Figure 1 

Circling and Straight-in Visual Area from FAA Order 8260.3D 

 
Note. The Visual Area begins 200 feet before the runway threshold and extends, as 

shown, until the DA, for precision approaches, or the VDP, for non-precision approaches 

and circling approaches. This area should not have 20:1 or 34:1 obstacle penetration 

(FAA, 2018c). 

 

Previous research examined the impacts of inattentional blindness on flight crews 

during all phases of flight. Durantin et al. (2017) concluded that during times of high task 

saturation, pilots who suffered from inattentional blindness resulted in significantly 

missing flight deck cues and warnings. In addition, the likelihood of inattentional 

blindness increased when the pilots were also displaying poor flying performance; for 

example, struggling to stay on the final approach course or keeping the aircraft on a 

stable descent to landing. Research on runway incursions concluded that participants 

were prone to inattentional blindness on landing in both high task saturation (manual 

flying) scenarios and low task saturation (full automation) scenarios (Kennedy et al., 

2014, 2017). Just as a pilot was unable to recognize an impending collision with a vehicle 

or aircraft on a runway, it is possible that a pilot would be just as susceptible to 

inattentional blindness and fail to notice a tree, pole, or tower directly in the flight path of 
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the aircraft. Even if the pilot was slightly affected by inattentional blindness and had a 

delayed recognition of the obstacle on final approach, the late recognition could result in 

an unstable approach that concludes with an accident on landing, as shown in Figure 2 

(Martin, 2020). 

Figure 2 

Unstable Approach as a Result of Late Recognition of Trees on Final 

 
Note. The pilot’s inattentional blindness may cause late recognition of obstacles on final 

approach, thus culminating in an unstable approach and an accident (Martin, 2020). 

 

When a pilot or flight crew notices an obstacle in the visual area surface or 

directly in the flight path, the presence of the obstacle could increase pilot task saturation 

during an already critical phase of flight (FSF, 2017; Harris, 2011; Huddleston, 2012; 

Moriarty & Jarvis, 2014). This may impact pilots because when transitioning visually 

from the DA, on a precision approach, or MDA, on a non-precision straight-in or circling 

approach, a pilot and crew’s primary focus is on the runway and the runway environment 

(FAA, 2012, 2016b, 2016c; General Operating and Flight Rules, 2017). Airline Owners 

& Pilots Association (AOPA, 2016) stated the increased risk of obstacle penetrations to 

the visual area surface was unacceptable and called on airport owners and managers to 

remove all of the penetrations. Their reasoning aligns with the theory of inattentional 
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blindness because a 20:1 or 34:1 obstacle penetration in the visual area surface 

penetration was an unexpected object directly in front of the flight path of the aircraft and 

may not be perceived by the pilot resulting in an accident. Even if the pilot detects the 

obstacle late, the aircraft is placed into an unsafe situation which could result in a hard 

landing, overrun, or landing accident (Valdés et al., 2011; Wong et al., 2006). 

FAA Visual Area Surface Policy Timeframe. The final approach and landing 

phases of flight are only a fraction of the entire mission; however, this short phase 

accounts for roughly 65% of commercial aviation fatalities and almost 400 general 

aviation accidents per year (AOPA, 2018; Boeing, 2019; FSF, 2017; IATA, 2016). The 

FAA has launched numerous initiatives over the past couple of decades to reduce 

aviation accidents. With the support of the General Aviation Joint Steering Committee 

(2016), the FAA launched a goal to reduce general aviation accidents by 10% from 2009 

to 2018. In the 2010s, the FAA also had yearly initiatives to reduce aviation fatalities for 

business and commercial aviation (Performance.gov, n.d.).  

In September 2013, the Instrument Landing System (ILS) approach at New 

York’s LaGuardia Airport was out of service, impacting major airlines and flight 

operations in the Northeast of the United States (National Business Aviation Association 

[NBAA], 2013). This instrument approach was shut down because an obstacle was 

erected that penetrated the visual area surface, rendering the final approach unsafe.  

Therefore, in November 2013, due to political pressure and the FAA’s desire to 

decrease approach and landing accidents, the FAA developed a two-year interim policy 

period to protect an aircraft on an Instrument Approach Procedure (IAP) as it descended 

from the DA or MDA to the runway (Deener, 2013; FAA, 2013b). The interim policy 
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stated that no obstacles should penetrate the 20:1 or 34:1 slopes in the visual area surface, 

as shown in Figure 1 (FAA, 2019b). These 20:1 and 34:1 slopes were imaginary surfaces 

that started 200 feet prior to the approach end of the runway and increased one foot for 

every 20 feet or 34 feet until the location of the DA or, for MDA non-precision 

approaches, the visual descent point (VDP). This area would be evaluated by the FAA at 

least every two years to prevent obstacles from being built or vegetation growing into the 

potential flight path of a landing aircraft (FAA, 2018b). 

Unfortunately, some airports could not or chose not to adhere to the FAA interim 

policy to prevent obstacles from penetrating the visual area surface, or to remove 

obstacles that already penetrated the visual area surface. For example, an airport may not 

be able to remove trees due to environmental concerns, impacting endangered species, or 

historic preservation (Bruggers, 2016; Hart, 2018). Other times, trees which were once 

lowered have since regrown (Lyte, 2014). Lastly, some airport owners or property 

owners refuse to allow their trees to be lowered or obstacles to be removed (Gannon, 

2009; Ryser, 2016). Therefore, the interim policy outlined a process that the airport 

owner or manager had to follow if the airport had a runway end with a 20:1 or 34:1 visual 

area surface penetration (FAA, 2013b). If the airport did not adhere to the interim policy, 

then the FAA stated they would issue a Notice to Air Missions (NOTAM) removing 

night operations to that runway (FAA, 2016b).  

 During the interim policy period, the FAA asked the Radio Technical 

Commission for Aeronautics (RTCA) to evaluate and recommend improvements to their 

interim policy. The RTCA evaluated the FAA’s visual area surface obstacle penetration 

plan, mitigation procedures, and risk reduction for low visibility and night operations 
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(FAA, 2013a). The FAA’s interim policy letter was effective on January 6, 2014. A 

month later, the RTCA recommended the FAA retain the low, medium, and high-risk 

categories for visual area surface penetrations but suggested the FAA conduct additional 

stakeholder outreach (RTCA, 2014). As part of the outreach, the FAA reminded all of 

their federal airport personnel, state agency airport personnel, individual airport owners, 

and individual airport managers to protect the visual area surface from obstacle 

penetrations (FAA, 2015). Lastly, the RTCA required the FAA to provide them all of the 

data and results once the two-year interim policy period was completed. These results 

included the FAA’s evaluation of every airport runway end’s visual area surface that had 

at least one IAP in the National Airspace System (NAS). During the interim period, the 

FAA evaluated over 16,000 IAPs at over 3,000 airports.  

After the two-year interim policy ended in January 2016, the FAA moved to an 

assessment period with new policy guidance based on the results from the interim period 

(AOPA, 2016; Lebar, 2016; Namowitz, 2016; RTCA, 2016). During the two-year 

assessment period, the FAA allowed airport owners and managers 30 days to remove or 

light any visual area surface obstacle penetrations once they were discovered. If the 

airport owner or manager needed an extension to the 30-day policy, a request needed to 

be submitted to an FAA review board for approval. The FAA again reviewed over 16,000 

IAPs at over 3,000 airports during this period. 

After the two-year assessment phase ended in January 2018, the FAA moved to a 

final policy state where they added visual area surface guidance into their airport and 

instrument procedures development orders and regulations (FAA 2018b, 2018c). The 

final policy included an increase in IAP’s visibility and removal of the VDP for non-
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precision approaches when an obstacle penetrated the visual area surface. Although the 

FAA considered these steps a solution, AOPA (2016) stated any solution that allows 

obstacles to penetrate the visual area surface was problematic and should not be allowed. 

The FAA changed the policy toward visual area surface penetrations three times 

over a six-year period from 2014 to 2020 (AOPA, 2016; FAA, 2013b, 2018b, 2018c; 

Lebar, 2016; Namowitz, 2016; RTCA, 2016). Changing aviation policy may have a 

significant impact on aviation landing accidents (Ancel et al., 2015). Previous human 

factors analysis and classification system research has shown how changes to FAA 

aircraft maintenance policies and oversight have shown to be a factor in maintenance 

accidents. The changes in policy resulted in confusion or misapplication in the airline 

companies’ management conditions. The AOPA stated the FAA’s interim policy, 2014 to 

2016, was helpful but lacked easy to understand language for the general aviation pilots, 

and hoped the assessment period policy, 2016 to 2018, would provide much needed 

clarification (Namowitz, 2016). The AOPA did not state after the assessment period 

policy was published if the new policy solved the ambiguities in the interim policy. 

Therefore, the FAA Visual Area Surface Policy Timeframe variable were added to the 

study to determine if changing policies had an impact on the understanding or removal of 

visual area surface penetration by pilots and airport owners and operators.  

Runway Lighting Types. The new factor of runway lighting types is included 

because of how environment lighting can factor into aviation accidents (Baugh, 2020; 

Shappell et al., 2007; Wong et al., 2006). As mentioned previously, Shappell et al. (2007) 

conducted a human factors analysis and classification system of airlines and commuter 

aircraft accidents in all phases of flight. Time of day was considered a significant factor 
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for these accidents. To mitigate this increased safety risk of night, dawn, and twilight 

approach and landing, airport owners and managers may choose to install runway 

lighting.  

In addition to the environmental impact of lighting, inattentional blindness 

correlates to the presence and type of runway lighting because if an unexpected object is 

outside of the focus of the primary task, the inattentional blindness rates are significantly 

higher than if the object is inside the primary task focus (Kreitz et al., 2020). At an 

airport, runway lighting is installed to assist pilots during approach and landing, to find 

the airport in low light and low visibility weather conditions, and to establish lower 

visibility minimums (FAA, 2012, 2016b, 2016c). However, runway lighting types may 

have an unintentional negative consequence because the presence of the lighting could 

cause pilots to focus on the airport lighting type instead of focusing on the broader 

runway environment, thus inadvertently impacting the pilot’s visual routine. This failure 

to notice something unexpected, or an unexpected object, can have serious consequences 

for pilots on approach and landing (Most, 2013). Therefore, the new variable for runway 

lighting type was included in this research to determine if the type of runway lighting 

installed predicts aircraft damage or personal injury. 

Visual Routines 

Since a pilot must have the runway and runway environment in sight to depart the 

MDA or DA, identification of the runway, runway environment, and any obstacles in the 

aircraft’s glide path requires visual observation (FAA, 2012, 2016b, 2016c; General 

Operating and Flight Rules, 2017). However, Ullman (1996) states that there are four 

main problems with visual routines. The first problem is identifying the basic set of 
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operations that compose a visual routine (i.e., comparing one shape to another). Second is 

the integration of the different basic operations. Next is how the different operations are 

triggered and what determines their order. Last is how new visual routine operations are 

created and merged with known operations.  

Roelfsema et al. (2000) stated that even if an object is seen, there are still 

possibilities of neuron delays impacting the ability of the person to see and process the 

seeing of the object. Therefore, pilots and flight crews experienced in visual routines on 

landing are still susceptible to missing an object on final approach and landing. Research 

confirmed this suspicion, showing how participants suffered from inattentional blindness 

by not visually detecting a possible runway incursion on landing (Kennedy et al., 2014, 

2017). 

Support Vector Machines  

This section covers an overview of machine learning, then an overview of support 

vector machines (SVM). This is followed by SVM calculations and previous SVM 

predictability research.  

Machine Learning Overview 

 Machine learning can be grouped into three different categories: supervised 

learning algorithms, unsupervised learning algorithms, and semi-supervised learning 

algorithms (Franchitti, n.d.). Unsupervised machine learning techniques include 

clustering, artificial neural networks, and radial basis functions. Semi-supervised machine 

learning techniques combine functions from the previous two categories, that is, 

clustering and regression. Supervised machine learning techniques include different types 

of regression, k-nearest neighbors (KNN), support vector machines, decision trees, 
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random forest, gaussian, and Bayesian. Therefore, support vector machines are a 

supervised machine learning algorithm used for solving problems that involve two group 

classifications (Franchitti, n.d.; Stecanella, 2017).  

Support Vector Machine Overview 

Support vector machines are a machine learning technique based on Vapnik’s 

statistical learning theory, which allows for the generalization of multidimensional 

calculations (Vapnik, 1999). These multidimensional calculations, sometimes referred to 

as a black box because of the obscure or hidden processes, are used to determine the 

relationship between the input factors, independent variables (IVs), and outcomes, DVs 

(Dinov, 2018). The goal of SVM is to create a separation, called a margin, between 

categorical classification starting with the lowest dimension, two-dimension linear 

regression, and progressively increasing dimensions to three-dimensional space, four-

dimensional space, and incrementally onward (Berwick, 2003; Navlani, 2019). Each 

increase in dimension is evaluated to maximize the margin between categorical 

classifications (Gandhi, 2018). This margin maximization concept is calculated for each 

variable to create a model that has a high accuracy of prediction (Dibike et al., 2001; 

Jeeva, 2018). The goal of SVM is to maximize the margin, the yellow shaded area, as 

depicted in Figure 3 (Marius, 2020). 
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Figure 3 

Support Vector Machine Mechanics 

 
Note. 𝓌 is the vector perpendicular to the hyperplane (red line); 𝓍 is the input vector; b is 

the bias used to separate the two classifications (Marius, 2020). 

 
 

Support Vectors. SVM begins with the opposing categorical data points that are 

closest to each other and are most relevant to the development of the hyperplane 

(Berwick, 2003; Navlani, 2019). These datapoints are used to create perpendicular 

support vectors that influence the development and orientation of the hyperplane. In 

Figure 2, the support vectors are the two blue dots and one green dot shown with a dark 

circular outline and are on the edge of the margin, or yellow area. 

Margin. The margin is the gap between the closest datapoints, or support vectors, 

of different classifications (Berwick, 2003; Navlani, 2019). This is the yellow shaded 

area shown in Figure 2. The goal of a SVM model is to maximize this margin. 

Hyperplane. The hyperplane is an imaginary line that separates a set of data point 

based on their classification (Navlani, 2019). The hyperplane is in the margin and is 



36 

 

depicted as the red line in Figure 2. The hyperplane acts as a decision boundary. Future 

datapoints that fall on one side of the hyperplane or the other are then classified as the 

attributes of that category. Therefore, in a margin maximization concept, the optimum 

hyperplane is established. 

Kernels. A kernel algorithm helps SVM incrementally transform nonlinear 

classifications into separable data through the use of mathematical algorithms (Berwick, 

2003; Navlani, 2019). SVM begins at the lowest dimension, two-dimensions, and 

progressively increases dimensions based on the specific kernel formula to transform the 

nonlinear classifications into a higher than three-dimensional space. Support vector 

machines models use a variety of different kernel algorithms to help maximize the 

margin between classifications. The four most common kernel calculations are the linear 

kernel, polynomial kernel, sigmoid kernel, and RBF kernel, as shown in Table 1 (Erdem 

et al., 2016; Jiang et al., 2016; Lin & Lin, 2003; Sánchez-González et al., 2018; Vapnik, 

1999; Yang et al., 2019).  

Table 1 

Common Kernel Functions Used in Support Vector Machines 

Kernel Formula 
Linear kernel    𝐾ሺ𝑥, 𝑥ᵢሻ ൌ 𝑠𝑢𝑚ሺ𝑥 ൉ 𝑥ᵢሻ 
Polynomial kernel    𝐾ሺ𝑥, 𝑥ᵢሻ ൌ ൫ሺ𝑥 ൉ 𝑥ᵢሻ ൅ 1൯ᵈ 
Sigmoid kernel 𝐾ሺ𝑥, 𝑥ᵢሻ ൌ tanh ሺ𝛾ሺ𝑥ᵀ ൉ 𝑥ᵢሻ ൅ 𝑟ሻ 
Radial basis function (RBF) kernel 𝐾ሺ𝑥, 𝑥ᵢሻ ൌ exp ሺ- ǀǀ𝑥 െ 𝑥ᵢǀǀଶ/2𝜎ଶ) 

 
Note. D is the degree polynomial, and γ and σ are the kernel parameters. Therefore, this 

study used all four kernel functions on each factor to find the maximized margin. 
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Figure 4 provides a depiction of the four different kernels (Marius, 2020; Scikit-learn, 

2020). To answer all of the research questions, this study used all four common kernel 

functions to find the maximized margin for each variable and model. 

Figure 4 

Depiction of the Four Kernel Functions Used in this Study 

 
Note. Adapted from “Support Vector Machines” by Scikit-learn, 2020 (https://scikit-

learn.org/stable/modules/svm.html). In the public domain. 

 

Support Vector Machine Calculations 

Support vector machines classify an individual data point as ሺ𝑥, 𝑦ሻ, or for an 

infinite amount of datapoints as ሺ𝑥௜ ,𝑦௜ሻ, as seen in Equation 4, where 𝑖 is each individual 

data point in a dataset up to the last data point 𝑁 (Vapnik, 1999). To calculate a 

hyperplane,  

𝑤 ∗ 𝑥 െ 𝑏 ൌ 0 (1) 



38 

 

where: 

𝑤 = vector perpendicular to the hyperplane. 

𝑥  = input vector. 

𝑏 = bias used to separate the two classifications. 

Sometimes this same formula is expressed by the addition of 𝑏, however the 

outcome is identical. For each new data point, if 𝑤 ∗ 𝑥 ൐ 𝑏, then the data point would 

belong to one of the classifications, while if 𝑤 ∗ 𝑥 ൏ 𝑏, then the data point would belong 

to the opposite classification (Melgani & Bruzzone, 2004). To calculate the optimum 

hyperplane (theta, θ),  

𝜃ሺ𝑤ሻ ൌ  ଵ
ଶ
∥ 𝑤 ∥ଶ (2) 

Since the optimum hyperplane is not automatically known, the solution to 

optimize the hyperplane lies in the Lagrangian (L) and Euler-Lagrange equations which 

subtracts potential energy (T) from kinetic energy (V) (Morin, 2007): 

𝐿 ൌ 𝑇 െ 𝑉 (3) 

 Substituting the Lagrangian formula for the hyperplane: 

𝐿 ൌ ଵ

ଶ
∥ 𝑤 ∥ଶെ  ෌ 𝛼௜ሾሺ𝑤 ∗ 𝑥௜ െ 𝑏ሻ𝑦௜ െ 1ሿ

ே

௜ୀଵ
 (4) 

where: 

𝛼௜ = Lagrange multipliers. 

𝛼௜ is replaced by 𝛼௜଴ at the optimum hyperplane where vector 𝑤଴ meets the 

requirements (Vapnik, 1999): 

෌ 𝛼௜଴𝑦௜ ൌ 0      𝑎𝑛𝑑   
ே

௜ୀଵ
𝛼௜଴ ൒ 0  𝑎𝑛𝑑  𝒾 ൌ1, 2, 3, …, N (5) 

At the optimum hyperplane location, using the Euler-Lagrange equation, the 

requirements are written (Dibike et al., 2001; Morin, 2007; Vapnik, 1999): 
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 డ௅
డ௫
ൌ  డ௅ ሺ௪బ,௕బ,௔బሻ

డ௕
ൌ 0   and డ௅ ሺ௪బ,௕బ,௔బሻ

డ௪
ൌ 0 (6) 

In addition, the support vectors at the optimum hyperplane location are: 

𝑤଴ ൌ ෌ 𝛼௜଴𝑦௜𝑥௜ 
ே

௜ୀଵ
𝑎𝑛𝑑 𝛼௜଴ ൒ 0 (7) 

Substituting 𝑤଴ into the above Lagrangian equation, still assuming 𝛼௜଴ ൒ 0, 

results in: 

𝑤ሺ𝑎ሻ ൌ ∑ 𝛼௜ 
ே
௜ୀଵ – ଵ

ଶ
෍ 𝛼௜𝛼௝𝑦௜𝑦௝ሺ𝑥௜ ∗  𝑥௝ሻ

ே

௜,௝
 (8) 

 This can then be displayed as a function in the original dimension using Equation 

1 as: 

𝑓ሺ𝑥ሻ ൌ 𝑠𝑖𝑔𝑛 ሺ𝑤଴ ∗ 𝑥 െ 𝑏଴ሻ (9) 

Substituting 𝑤଴ for the support vectors at the optimum hyperplane at the original 

dimension:  

𝑓ሺ𝑥ሻ ൌ 𝑠𝑖𝑔𝑛 ቀ෌ 𝛼௜଴𝑦௜ሺ𝑥௜ 
ே

௜ୀଵ
∗ 𝑥ቁ ൅ 𝑏଴) (10) 

When dealing with categorical data classification, SVM allows the adjustment of 

the hyperplane width through the parameter 𝐶 (Fan, 2018; Kuhn & Johnson, 2016; Scikit-

learn, 2022d; Vapnik, 1999).  

𝜃ሺ𝑤ሻ ൌ 𝑚𝑖𝑛 ଵ
ଶ
∥ 𝑤 ∥ଶ൅ 𝐶 ∑ 𝜁 ே

௜ୀଵ   𝑎𝑛𝑑   𝜁 ൒ 0 (11) 

A low value of 𝐶 produces a larger margin while a larger value of 𝐶 produces a 

hyperplane with a smaller margin width (Fan, 2018; Scikit-learn, 2022d, Wang, 2014). 

The change of 𝐶 is a tradeoff between data categorical errors in the training set or test set. 

A low 𝐶 value may have more errors in the training model while performing better with a 

test set. Conversely, with categorical data, a high 𝐶 allows SVM to develop a model with 

improved nonlinear data separation at the risk of possible overfitting with numerous 
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errors in the test set. When optimizing a SVM model, 𝐶 is one of the adjustable 

parameters in Google Colaboratory (2022).  

The benefit of SVM is the ability to change the classification of categories from 

the original dimension into increased or higher dimensions using various kernel (K) 

functions (Dibike et al., 2001; Morin, 2007; Vapnik, 1999). Therefore, transitioning the 

support vector function at the original dimension to any higher dimension using a kernel 

function can be shown as: 

𝑓ሺ𝑥ሻ ൌ 𝑠𝑖𝑔𝑛 ቀ෌ 𝛼௜଴𝑦௜𝐾ሺ𝑥௜ 
ே

௜ୀଵ
∗ 𝑥ቁ ൅ 𝑏଴) (12) 

Any type of K function can be used in this formula to change the categorization to 

a higher dimension. In this research, the four kernel algorithms to be tested, as shown in 

Table 1, were the four most common kernel calculations: linear kernel, polynomial 

kernel, sigmoid kernel, and RBF kernel, as shown in Table 1 (Erdem et al., 2016; Jiang et 

al., 2016; Lin & Lin, 2003; Sánchez-González et al., 2018; Vapnik, 1999; Yang et al., 

2019). Google Colaboratory (2022), similar to many python applications, has default 

values for the different kernel parameters. The application allows the user to change the 

value of the kernel parameters γ and σ to optimize the kernel’s performance in the SVM 

model. 

Therefore, the purpose of SVM is to maximize the hyperplane for the categorical 

separation in higher dimensional space (Melgani & Bruzzone, 2004; Vapnik, 1999): 

𝑤ሺ𝑎ሻ ൌ ∑ 𝛼௜ 
ே
௜ୀଵ – ଵ

ଶ
෍ 𝛼௜𝛼௝𝑦௜𝑦௝𝐾ሺ𝑥௜ ∗  𝑥௝ሻ

ே

௜,௝
 (13) 

 ෌ 𝛼௜଴𝑦௜ ൌ 0 
ே

௜ୀଵ
𝑎𝑛𝑑 𝛼௜଴ ൒ 0 𝑎𝑛𝑑  𝒾 ൌ1, 2, 3, …, N 
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Support Vector Machines in Predictability Research 

Machine Learning in Aviation. The use of SVM in aviation accident research 

has only occurred over the past few years. Burnett and Si (2017) evaluated aviation 

fatalities using SVM, KNN, Artificial Neural Networks (ANN), and Decision Trees. 

These different prediction techniques were used to appraise general aviation accidents 

from 1975 to 2002. Comparing over 64 different variables, their research concluded 

that ANN had the highest predictability of fatalities and the combination of injuries 

and fatalities. Although ANN had a percentage of approximately 91% for fatalities 

and 78% for injuries and fatalities, it only outperformed the other machine learning 

techniques by 1%-4%. Decision Trees and KNN had the lowest predictability percent 

for both evaluations. However, Burnett and Si’s research only used SVM modeling 

with the linear and polynomial kernels and did not evaluate the sigmoid or RBF 

kernels. Although they did not report on specific individual factors’ ability to predict 

injuries and fatalities, they did state the likelihood these modern machine learning 

techniques are able to provide better predictability in the complex aviation 

environment. They also stated the research should be conducted using more recent 

accident data than 2002. 

 Around the same time, Koteeswaran et al. (2019) compared many of these same 

machine learning techniques on aviation accidents from 1991 to 2014. Their dataset, 

based on the Flight Safety Foundation, evaluated only aviation accidents that had listed 

both a primary and secondary cause. Instead of researching only human factors impacting 

accidents, this study focused on all factors: 231 reported probable causes, such as engine 

fire, wing icing, fatigue, and corrosion. They concluded that pilot error was the leading 
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cause of accidents followed by crashing during the landing phase. K-Nearest Neighbors 

has the highest predictability over SVM and ANN; however, at over 99% accurate, the 

KNN model risked overfitting. 

 Of late, various machine learning techniques were used to identify maintenance 

hazards with the aircraft’s auxiliary power unit (Zhou et al., 2020). There were 1,244 

events in the Aircraft Communications Addressing and Reporting System (ACARS) 

dataset used across 10 different parameters. Applying a 10-fold cross-validation, their 

predictability research discovered that SVM had the highest accuracy over Decision 

Trees, Artificial Neural Networks, Logistic Regression, KNN, and Linear Discriminant. 

In other aviation research, SVM has been used to evaluate the impacts of fatigue in 

Air Traffic Controllers (Shen et al., 2020). Using the RBF kernel and a six-fold cross-

validation, SVM predicted fatigue accuracy higher than almost 93% in Air Traffic 

Controllers. 

Support Vector Machines in Accident Research. Although the full use of 

SVM for predicting aviation accidents has yet to be utilized, SVM has been widely 

used in modeling automobile accidents and their injury severity. Li et al. (2008) stated 

SVM offered both the best performance for predicting automobile accidents, the 

fastest results, and reduced the risk of overfitting. Their research compared four 

variable factors during 88 traffic accidents in Texas. The RBF kernel was used to 

compare three different training and validation sample sizes. The training size of 80% 

had the best prediction accuracy. Based on their findings, the authors suggested 

continued evaluation against other highway datasets. 
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Li et al. (2012) continued their automobile accident research by analyzing 

approximately 5,500 automobile crashes across 10 variables to determine if SVM was 

suitable in predicting injury severity levels. Injury severity was listed as the DV 

broken up into five categories ranging from no injury to a fatality. The RBF kernel 

produced the best prediction behavior using 80% of the data toward the training set. 

The leading factors impacting injury severity levels were the number of freeway lanes 

and the type of business/residential area surrounding the intersection. This study was 

the closest in similarity to Li et al.’s (2012) research except using aviation landing 

accidents instead of freeway intersection accidents.  

Gaps in the Literature 

Research of the predictability of aircraft accidents in all phases of flight currently 

exists and is expected to continue (Burnett & Si, 2017; Valdés et al., 2011). However, as 

previously discussed, there is a limited amount of research predicting aviation accidents 

using SVM (Burnett & Si, 2017; Koteeswaran et al., 2019). Burnett and Si (2017), 

Baugh (2020), and Koteeswaran et al. (2019), who explored aviation accidents across 

all phases of flights, restricted their dataset to general aviation only and were subject 

to a lack of current accident data. They also adjusted their DV to a binary variable 

instead of the original multi-level variable as defined by the FAA (2018b; 

“Notification and Reporting of Aircraft Accidents or Incidents”, 2020). In addition, 

SVM kernels were limited to the linear and polynomial kernels and did not explore 

the RBF or sigmoid kernels. Therefore, this study narrows the focus of aviation accidents 

to those that occurred only during the approach and landing phase and explores all four 

SVM kernels to predicted severity as a multi-level DV. 
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The reason for narrowing to the approach and landing phase of flight was because 

this portion has resulted in 3,608 general aviation accidents between 2008 and 2018 and 

roughly 65% of accidents, and half of all fatalities, in commercial aviation (AOPA, 2018; 

Boeing, 2019; FSF, 2017; IATA, 2016). Koteeswaran et al. (2019) stated that landing 

accidents were the second ranked attribute of aviation accidents behind pilot error. The 

closest approach and landing research was flight simulator experiments that determined 

participant susceptibility to inattentional blindness when flying an approach and landing 

manually or with automation (Kennedy et al., 2014, 2017). These studies used analysis of 

variance (ANOVA) to determine if there was a significant difference and did not do any 

modeling for predictability. Therefore, this research combined general aviation, business, 

and airline missions because they all have the highest percentage of accidents during the 

final approach and landing. In addition, this same phase of flight imposes a high task 

saturation on pilots and flight crews, causing a higher likelihood of inattentional 

blindness. 

Not only did this research narrow the focus of aviation accidents, but this research 

also introduced factors that have not been previously researched. The theory of 

inattentional blindness supports the addition of the three new factors of visual area 

surface penetrations, runway lighting, and FAA policy timeframe because of the 

possibility of the pilot or flight crew missing an obstacle directly in the flight path of the 

aircraft. These three new factors were incorporated with previous factors to develop a 

holistic model to predict aviation accidents on final approach and landing. Lastly, 

previous research on automobile accidents has shown the ability for SVM to accurately 

predict the severity of injury (Li et al., 2012). Therefore, the research method and design 
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filled the gap in research by creating a comprehensive model, using factors never 

evaluated before, to predict both the severity of aircraft damage and the severity of 

personal injury. 

Theoretical Framework – Inattentional Blindness 

The human factors theory of inattentional blindness is demonstrated when a 

person looks at something unexpected directly in front of him/her but fails to notice it due 

to preoccupation (Mack & Rock, 1998; Most, 2010; Most et al., 2001; Neisser, 1979). 

Simon and Chabris (1999) define inattentional blindness as a person either failing to 

perceive or failing to remember a large object due to a lack of focused attention. This 

identification of an unexpected object must occur during the first 1.5 seconds the object 

appeared, or most likely the participant continued to suffer from inattentional blindness 

no matter how long the unexpected object remained in view (Wood & Simons, 2019). 

When transitioning from DA, for precision approaches, or MDA, for non-

precision straight-in or circling approaches, a pilot’s primary focus is on the runway and 

the runway environment. Inattentional blindness could cause the pilot to miss a large 

obstacle directly in the descent gradient of the aircraft, such as a tree or pole. Even 

though a tree or pole is a large object and may remain in view, it does not reduce the 

possibility of inattentional blindness. This failure to notice an unexpected object could 

have serious consequences for the pilot and flight crew (Most, 2013). 

Inattentional Blindness Research 

In one of the earliest inattentional blindness studies, participants counted the 

number of passes by a basketball team but failed to notice a woman carrying an umbrella 

walking through the back of the scene (Neisser, 1979). Simons and Chabris (1999) 
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reproduced the study but replaced the woman carrying an umbrella with a person in a 

gorilla costume. Almost half of the participants failed to notice the gorilla while counting 

passes. The researchers determined that the ability to notice an unexpected object, like an 

obstacle in the flight path on final approach, is dependent on how difficult the primary 

task is for the participant. Unfortunately for pilots, special proximity of the unexpected 

event does not deter inattentional blindness, which means even if a pilot detects events 

around the aircraft and runway, the pilot may not see an obstacle directly in the flight 

path. 

One could argue that the gorilla study does not impact pilots because pilots are 

engaged in a routine occurrence, flying an approach and landing, as opposed to an 

unexpected event. However, expert radiologists were asked to review chest computed 

tomography (CT) scans for lung-nodule detection, a routine task for radiologists (Drew et 

al., 2013). In one of the CT scan groupings, the image of a gorilla, 48 times larger than 

any lung-nodule, was inserted into the area of the lung. To avoid a sudden onset, the 

gorilla image was faded into the position in the lung during multiple image slices of the 

lungs. The same thing was repeated with the gorilla fading out of the lung over multiple 

CT slides. Even with the gorilla in multiple images and 48 times larger than any lung-

nodule, 83% of the expert radiologists suffered from inattentional blindness and did not 

see the gorilla. Eye track monitoring showed that many of the radiologists looked directly 

at the gorilla but still did not observe the gorilla. Therefore, even experts conducting 

routine operations, such as expert pilots flying an approach and landing, are vulnerable to 

inattentional blindness. 
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Similar to the gorilla studies, Oktay and Congoz (2018) tested participants on 

their ability to recognize Zorro during a video. The difference is that Oktay and Congoz 

changed the backgrounds of the videos to show a positive background scenario, neutral 

scenario, and negative scenario. Participants did not notice Zorro in the positive 

background 60% of the time and negative background 58% of the time. When the 

background was empty (neutral), participants did not notice Zorro 48% of the time, 

which was the lowest inattentional blindness of the study. This could impact how a pilot 

recognizes obstacles on approach, depending on whether the pilot considers the airport 

scenario as a positive or negative background. Unfortunately, there are no scenarios for 

pilots where the background is clutter free, or neutral. 

To determine how different stimuli threats impact inattentional blindness, 

researchers conducted an experiment asking participants to identify different symbols and 

displays while interjecting threatening and non-threatening words (Beanland et al., 2018). 

After the experiment, each participant was asked to describe the different symbols, 

displays, and possible words. The researchers found that 22% of the participants 

recognized at least one word, 19% recognized the threatening word, 11% recognized the 

non-threatening word, and only 8% recognized both. Therefore, the researchers 

concluded that although all groups were impacted by inattentional blindness, participants 

were more likely to recognize a threat over a non-threat. This could benefit pilots if the 

pilots perceived the landing phase as a threat. 

This experiment was repeated using pictures of threatening spiders instead of 

random objects (New & German, 2015). Again, all participants were affected by 

inattentional blindness; the threatening spiders were discovered more often than the 
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neutral objects and pictures. However, the results from Stothart et al. (2017) stated that 

there was no significant difference in the amount of inattentional blindness between the 

high and low threat groups. Their research, comparing high cost (threat) and low cost 

(non-threat) words and pictures, found that all groups were equally influenced by 

inattentional blindness. 

Lastly, if the unexpected object is outside of the focus of the primary task, the 

inattentional blindness rates are significantly higher than if the object is inside the focus 

of the primary task (Kreitz et al., 2020). This may impact pilots because during the 

landing phase, pilots are focused on the runway end instead of a broader runway 

environment scan. Therefore, the pilot could miss an unexpected object in the flight path 

of the aircraft and even more likely to miss an obstacle slightly off the flight path, such as 

a tree or telephone pole, while also missing the tree branch or telephone wire directly in 

the flight path. 

However, not all experiments provided significant differences in inattentional 

blindness. Research attempting to distinguish if personality traits impacted inattentional 

blindness did not find a significant impact on inattentional blindness levels (Kreitz 

Schnuerch, et al., 2015). Also, a person’s cognitive ability did not differentiate 

inattentional blindness levels (Kreitz, Furley, et al., 2015). Finally, if a participant was 

given multiple classic attention capture practice problems prior to the inattentional 

blindness experiment, the added perception knowledge did not improve inattentional 

blindness levels (Wright et al., 2018). These studies show that participants of every age, 

cognitive ability, and persona are susceptible to inattentional blindness.  
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Inattentional Blindness versus Attentional Misdirection 

Researchers of the theory of inattentional blindness have differing opinions than 

those of the theory of purposeful attention misdirection. Attentional misdirection is when 

a person purposefully manipulates another person’s attention away from seeing an 

unexpected object (Kuhn & Tatler 2005; Tatler & Kuhn, 2007). For example, magicians 

use attentional misdirection to prevent an audience from seeing how a magic trick was 

accomplished.  

Attentional misdirection researchers criticize inattentional blindness research 

stating that the unexpected object, like a gorilla appearing during teams passing 

basketballs, does not mirror real life, whereas studying magicians and audience eye 

movement closely imitates real life (Kuhn & Tatler 2005; Kuhn et al., 2008; Tatler & 

Kuhn, 2007). In essence, these researchers state that the theories of inattentional 

blindness and attentional misdirection are actually the same in application. In these 

attentional misdirection experiments, participants’ eye movements were monitored; those 

who did not know the magic trick were compared to those who were informed of the 

upcoming misdirection (but not where or how the misdirection would occur). As 

expected, those participants who knew of the misdirection looked toward that location 

significantly earlier than those who were not informed. This confirmed that a person’s 

attention remained primarily on the object even when the magician tried to divert the 

participant’s eyes away from the object.  

In response to these theory of attentional misdirection experiments, Memmert 

(2010) countered that the two theories are not similar and proposed four distinctions 

between the two theories. First was that the attentional misdirection theory provided 
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foreshadowing of the unexpected event compared to the inattentional blindness, which 

allowed no foreshadowing. Second, inattentional blindness experiments were full-

attention trials that provided the entire scenario for the participant to view compared to 

the attentional misdirection trials that only accounted for the participant observing the 

specific trick instead of also mirroring the same conditions without misdirection. 

Memmert’s third difference stated that there was no workload assigned to the participants 

in the attentional misdirection experiments. The inattentional blindness experiments 

included the opportunity for the participant to be distracted by a primary task while the 

attentional misdirection experiment asked the participants to watch the magician. Lastly, 

the inattentional blindness experiments involved an unexpected object, something not 

relevant to the primary task, to test participant’s perception, while the attentional 

misdirection experiments’ unexpected object was part of the magic trick and not actually 

unexpected. Therefore, Memmert concluded that inattentional blindness and attentional 

misdirection were not the same. 

After Memmert published his argument, Kuhn and Tatler (2011) rebutted the four 

differences stating that the magician’s ability to create misdirection removed any 

difference of foreshadowing and no foreshadowing. In addition, the researchers of 

attentional misdirection compared the eye movements of the group that were told to look 

for the unexpected object and the participants that were not told. Their third rebuttal was 

that an unexpected object, such as a gorilla, was so unexpected that participants did not 

recognize it because it was not realistic to any real-world scenarios. Lastly, Kuhn and 

Tatler (2011) stated the purpose of a magician was to keep the audience from knowing 

the method of the trick and thus creating the unexpected event. Their refutation 
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concluded again stating that the theory attentional misdirection was similar to the theory 

of inattentional blindness. 

While the argument between attentional misdirection and inattentional blindness 

transpired, Most (2010) suggested that the disagreement highlighted at least two different 

forms of inattentional blindness, spatial inattentional blindness and central inattentional 

blindness. Spatial inattentional blindness was defined as the concealed misdirection of a 

participant’s attention, while central inattentional blindness was defined as a failure of a 

later stage in visual processing and visual memory which prevents the participant from 

recognizing the unexpected event. Therefore, instead of completely separating or 

combining attentional misdirection and inattentional blindness, Most (2010) posited that 

these experiments revealed two of the different types of inattentional blindness. Whether 

the different experiments showed single or multiple facets of inattentional blindness, 

there is no magician purposely moving the attention of the pilot away from perceiving an 

obstacle in the flight path. Therefore, the theory of inattentional blindness remained the 

theoretical framework for this study. 

Inattentional Blindness in Aviation  

The main aviation study of inattentional blindness was a flight simulator 

experiment for runway incursion detection (Kennedy et al., 2014, 2017). The experiment 

measured the relationship between flight deck automation and inattentional blindness. 

Using non-pilots, each participant was asked to fly, in random order, a final approach and 

landing configured for full automation, partial automation, and no automation. During the 

landing phase, multiple aircraft and vehicles were in view, but there was either an aircraft 

or vehicle which created a runway incursion event. After the flight simulator, each 
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participant filled out a questionnaire to determine what was perceived or not perceived to 

evaluate inattentional blindness. Each type of automation configuration was flown twice. 

The overall number of inattentional blindness occurrences were 70% during the first 

approach, and decreased to 50% on the second approach. Partial automation approaches 

had the lowest inattentional blindness on the first attempt, and full automation had the 

lowest inattentional blindness on the second attempt. Only full automation had a 

significant decrease in inattentional blindness between the first and second attempt, most 

likely because the participants recognized their automation complacency on the first 

attempt. However, none of the approach types had a significant difference in inattentional 

blindness compared to the other approach types. Therefore, the researchers concluded 

both high and low workload conditions induced inattentional blindness. 

Researchers have also studied air traffic controllers, their display screens, and 

their warnings for the possibility of inattentional blindness (Imbert et al., 2014). The 

current display plus four different displays, with varying visual and notification designs, 

were used to determine each setup’s ability to capture the controller’s attention and 

reduce inattentional blindness. This included eye movement tracking, performance 

measures, and other reports to determine where the controller’s attention was focused. 

The results showed controllers did not respond as well to color or animation, but instead 

to different methods of aircraft notification symbols (e.g., pulsating box). Unfortunately, 

these notification symbols impaired other task performance. Therefore, it was identified 

that controllers were impacted by inattentional blindness in their current system display 

design and recommended a new design that balanced notifications and performance.  
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Another aviation study close to inattentional blindness was about inattentional 

deafness: flight deck auditory warnings missed by pilots during increased workload 

conditions (Durantin et al., 2017). Researchers conducted a flight simulation experiment 

where pilots were asked to fly an air racecourse and then asked to push a button on their 

joystick when they heard the audible warning. To map brain activity, the participants 

donned a functional magnetic resonance imaging (fMRI). The fMRI revealed a 

significantly increased activity in the superior medial frontal cortex and right inferior 

frontal gyrus when inattentional deafness occurred. If the participants also displayed poor 

flying performance (e.g., missed air racing gates), the pilots were more likely to also have 

inattentional deafness.  

Inattentional Blindness in Drivers 

Unlike aviation, inattentional blindness has been studied more robustly in 

automobile drivers. Pammer et al. (2018) conducted an experiment to test the 

inattentional blindness of automobile drivers and their failure to detect motorcycles. 

Through three different experiments, the researchers showed participants different city 

driving scenarios on laptop computers while interjecting pictures of motorcycles and 

taxis. From their experiments, they discovered participants had double the likelihood of 

failing to notice the motorcycle over the taxi. If the motorcycle was placed at an 

intersection by itself, with the possibility of an accident, the participants had a 

significantly higher detection rate. However, if both a taxi and a motorcycle were at the 

same intersection posing the same threat, participants recognized the taxi while 

inattentional blindness impacted the recognition of the motorcycle. Therefore, the 
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experiment showed automobile drivers have a high probability of inattentional blindness 

sharing the road with motorcyclists.  

Color may also play into inattentional blindness. Most and Astur (2007) 

conducted driving simulator experiments where they used different colored arrows telling 

the driver which way to turn. They also interjected motorcycles with either the same 

color or different color than the arrow at the same intersection. Their research concluded 

collision rates were higher when the motorcycle was a different color than the direction 

arrow. This matched non-driving experiments that showed participants had a larger 

inattentional blindness when the unexpected obstacle was a completely different color 

than the stimuli, rather than unexpected objects with the same or slightly different colors 

than the stimuli (Horstmann & Ansorge, 2016; Webster et al., 2018). Unfortunately, 

obstacles on final approach may not be the same color as the runway.  

In addition to color, researchers experimented to determine if age impacted the 

level of inattentional blindness in drivers (Saryazdi et al., 2019). The experiments used 

driving simulations to determine if the participants noticed different stimuli (i.e., people, 

vehicles, advertisements, and more) on the side of the road. Results showed both young 

and older adults suffered from inattentional blindness. However, older adults had a higher 

level of inattentional blindness than younger drivers, and older adults did not improve 

throughout each experiment as the younger drivers did. In other research, children also 

suffered from inattentional blindness (Zhang et al., 2018). These studies suggest that 

pilots of all ages are susceptible to inattentional blindness. Even as pilots gain experience, 

typically making them safer, their increase in age may contribute to higher levels of 

inattentional blindness, offsetting that experience. 
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The same type of driving scenarios were used in additional experiments to 

determine task loading and inattentional blindness (Murphy & Greene, 2015, 2016; 

Pugnaghi et al., 2019, 2020). These experiments aligned with other research that showed 

drivers had a higher probability of inattentional blindness when under a heavy task load 

versus a low task load. When a higher task load was combined with other types of stimuli 

(e.g., heat, noise, etc.), the participants over-corrected their driving during the scenarios 

and showed increased inattentional blindness levels (Dattel et al., 2015). This same 

combination of high task load and additional stimulus may impact pilots on final 

approach and landing because of additional stimuli of aircraft noise, flight deck 

instruments, and possible changes of flight deck temperatures. 

Inattentional Blindness and Smartphones 

In addition to testing inattentional blindness in drivers, researchers experimented 

on the inattentional blindness of pedestrians. Pai (2016) had participants cross an 

intersection while texting, listening to music, talking on the phone, or without phone use. 

In addition to videoing their crossing behaviors, an unexpected stimulus of a clown was 

added to the intersection. The video displayed participants of all three types of 

distractions had a significantly higher rate of failure to look both ways and obey traffic 

lights when crossing the intersection. In addition, all three types of distractions had 

significant inattentional blindness, missing the clown, compared to the pedestrians not 

engaged with their phones. Texting participants had the highest rate of inattentional 

blindness. Therefore, this study demonstrates phone use of any kind can cause both 

distractions and inattentional blindness.  
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This finding was verified in a second study including popular gaming apps, which 

showed how both texting and playing gaming apps cause significant inattentional 

blindness for pedestrians (Chen & Pai, 2018). Pilots and flight crews on final approach 

are already engaged in multitasking between flight controls, radio calls, and 

concentrating on the runway environment. During this same phase, pilots may use 

additional tools to assist in displaying the instrument approach, such as electronic flight 

bags, tablets, or digital flight deck displays, which may inadvertently increase the risk of 

inattentional blindness. 

Research Questions and Support 

This study used a combination of previous aviation accident variables along with 

additional variables not previously researched. The first and second research questions 

explored aviation accidents by evaluating a dataset from January 1, 2014, to December 

31, 2019 (Burnett & Si, 2017; Koteeswaran et al., 2019). This research used SVM to 

evaluate the predictability of the severity of personal injury and the severity of aircraft 

damage. Unlike other aviation accident research, this research restricted the dataset to the 

approach and landing phase. In addition, this study combined the lessons learned from 

research on the severity of personal injury during automobile accidents with a new output 

variable of severity of aircraft damage. Lastly, the predictability was evaluated using 

multiple kernels to determine which algorithm had the most accurate prediction of 

severity of aircraft damage and severity of personal injury.  

The third research question specifically evaluated the three new variables to 

determine their impact on the predictability of aircraft damage and personal injury. The 

status of the visual area surface penetrations can create unexpected events and increased 
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task saturation during an already critical final approach and landing phase of flight (FSF, 

2017; Harris, 2011; Huddleston, 2012; Moriarty & Jarvis, 2014). This reasoning aligns 

with the theory of inattentional blindness because a 20:1 or 34:1 obstacle penetration in 

the visual area surface penetration is an unexpected object directly in front of the flight 

path of the aircraft.  

Since 2012, the FAA has changed policy related to visual area surface penetration 

three times (AOPA, 2016; FAA, 2013b, 2018b, 2018c; Lebar, 2016; Namowitz, 2016; 

RTCA, 2016). Previous research has shown how FAA aircraft maintenance policies and 

oversight are a factor in maintenance accidents (Ancel et al., 2015). It is currently 

unknown if changing policies had an impact on the understanding or removal of visual 

area surface penetration by airport owners and operators. Therefore, the different FAA 

policies referring to the removal of obstacles on the final approach was added as part of 

the third research question for this study.  

The new variable of runway lighting was included because of inattentional 

blindness and because environment lighting can factor in aviation accidents (Baugh, 

2020; Shappell et al., 2007; Wong et al., 2006). Inattentional blindness relates to the 

presence and type of runway lighting because if the unexpected object is outside of the 

focus of the primary task, the inattentional blindness rates are significantly higher than if 

the object is inside the primary task focus (Kreitz et al., 2020). This may impact pilots 

because when transitioning from the DA to MDA, a pilot and crew’s primary focus is on 

the runway and the runway environment (FAA, 2012, 2016b, 2016c; General Operating 

and Flight Rules, 2017). To assist a pilot in locating the runway and runway environment, 

many airports use a runway lighting system. The brightness of a runway lighting system 
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allows the airport to also have lower approach minimums. However, this brightness could 

cause pilots to focus on the runway lighting system, instead of focusing on the broader 

runway environment, thus inadvertently impacting the pilot’s visual routine. This change 

in visual routine may cause a pilot to miss a visual surface obstacle penetration in the 

flight path of the aircraft. This failure to notice something unexpected, or an unexpected 

object, can have serious consequences for pilots on approach and landing (Most, 2013). 

Therefore, the third research question determined if inattentional blindness and the 

FAA’s policy timeframe, presence of obstacles, and the type of runway lighting effect the 

pilots’ ability to avoid obstacles, thus predicting the severity of aircraft damage and the 

severity of personal injury. 

Summary 

Although there is existing research predicting aviation accidents and addressing 

the factors causing those accidents, there is limited research using SVM methodology. 

Following a review of aviation landing accident literature was an overview of SVM and 

machine learning in aviation. Next was a history of the theory of inattentional blindness 

succeeded by a comparison to attentional misdirection. This subsequent section details 

how inattentional blindness supports the different research questions as a result of a pilot 

missing a visual area surface penetration while focused on the runway environment. 

Therefore, the theory of inattentional blindness supported the addition of these factors as 

possible predictors to the severity of personal injury and the severity of aircraft damage 

resulting from aviation landing accidents. 
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Chapter III: Methodology 

This chapter outlines the methodology for predicting the severity of aircraft 

damage and for predicting the severity of personal injury for aircraft landing accidents 

using support vector machines (SVMs). It also covers the population and variables used 

in the aircraft landing accident dataset followed by how the dataset was gathered, 

organized, cleaned, and coded. With a completed dataset, the next sections outline the 

SVM workflow to develop and test the models for prediction. 

Research Method Selection 

The purpose of this study was to develop a classification model using SVM 

methodology to predict the severity of aircraft damage and the severity of personal injury 

during aviation landing accidents. Additionally, all input variables were evaluated for 

factor contribution and sensitivity (Burnett & Si, 2017; Valdés et al., 2011).  

This study was comprised of N = 1,297 approach and landing accidents. Support 

vector machines have the ability to evaluate medium to small data, combined with 

SVM’s ability to quickly separate nonlinear variables with the different kernel 

algorithms, thus allows SVM to have a faster processing time for real life evaluations (De 

Luca, 2020; Dibike et al., 2001; Jeeva, 2018; Vapnik, 1999). Since this research had 

categorical variables such as approach runway lighting type, visual area surface 

penetrations, FAA policy timeframe, aircraft mission, pilot rating, and the output factors 

of personal injury and aircraft damage, SVM was deemed appropriate as a machine 

learning method for classification.  

In addition, SVM, although not the only machine learning technique to be able to 

evaluate multi-level variables, was the only machine learning method that had been used 
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by researchers to predict three or more categorical levels of the severity of personal 

injuries (Li et al., 2012). Support vector machines were used previously, assessing 326 

automobile accidents using the RBF kernel to evaluate 18 IVs, many categorical, for a 

five-level severity of personal injury scale. Researchers found SVM accurately predicted 

the correct injury severity approximately 80% of the time (Li et al., 2012). Although the 

study lacked a larger amount of data, the researchers concluded the severity of personal 

injury could be predicted by SVM.  

Similarly to Li et al.’s (2012) research, the goal of this study was to evaluate a 

four-level DV and compare the predictability of four different kernel functions. 

Therefore, SVM methodology was selected because the dataset had various numerical 

and categorical variables.  

Population/Sample 

The database population and sampling timeframes for this study are presented in 

this section. 

Population and Sampling Frame 

The population is all approach and landing accidents. For this study, the 

representative sample of the population was all aviation accidents during the approach 

and landing phase of flight in the United States at an airport with at least one instrument 

approach procedure from 2014 through 2019. The data were collected from a variety of 

databases and public websites, beginning with an initial data pull from the NTSB (n.d.-a) 

database. Then additional variables were coded into the accident dataset with information 

from the FAA’s Instrument Flight Procedures Gateway website (FAA, n.d.-b), 

AirNav.com (n.d.), and reading the individual NTSB accident reports (n.d.-c). This study 
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did not consider foreign accidents because the information is not available in the NTSB 

database (n.d.-a). 

To ensure the findings can be generalized for pilots and flight crews, the 

researcher removed any non-pilot caused accidents (e.g., gear malfunction or engine 

failure). These types of accidents were removed because they have no possibility of 

influence by the pilot’s inattentional blindness during the approach or landing. Even 

though the aircraft malfunctions were removed, aircraft manufacturers and aircraft 

designers can use the results of this study to improve machine and human interfaces to 

reduce the possibility of inattentional blindness. 

The sampling timeframe for this study consisted of approach and landing aviation 

accidents in the United States from January 1, 2014, to December 31, 2019. This sample 

was chosen to cover the two years of the FAA’s interim visual area surface 

memorandum, the two years of the FAA’s assessment period, and the first two years of 

the FAA’s final policy period (AOPA, 2016; FAA, 2013b, 2018b, 2018c; Lebar, 2016; 

Namowitz, 2016; RTCA, 2016).  

Data Collection Process 

The data were collected from the NTSB database and filtered for only aircraft 

accidents or incidents that occurred on approach or landing in the United States (NTSB, 

n.d.-a). Although the majority of the variables were in the NTSB database, each accident 

was reviewed as part of the analysis to prevent missing data (NTSB, n.d.-c). From this 

review, the reason and location of the accidents were evaluated for applicability to this 

study. In addition, the manual review added, or confirmed, the landing runway number, 

wind direction and velocity (to calculate crosswind component), local time of the 
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accident, the pilot’s age, the pilot’s total flight hours, the pilot’s certificate, and the pilot’s 

rating. Once completed, the FAA’s Instrument Flight Procedures Gateway (FAA, n.d.) 

website was used to determine if the airport had at least one IAP. The Instrument Flight 

Procedures Gateway (FAA, n.d.-b) was then used to annotate in the dataset the status of 

any visual area surface penetrations and the type of approach runway lighting for the 

runway of record for the accident. If the approach runway lighting was not listed by the 

FAA, then AirNav.com (n.d.) was used to code the variable in the dataset. Once all of 

this information was combined, the dataset collection was completed. 

Design and Procedures 

To determine predictability of the severity of personal injury and the severity of 

aircraft damage during aviation landing accidents, this study used a quantitative, non-

experimental, research design using SVM (Edmonds & Kennedy, 2017). This was 

selected as the most appropriate type of statistical analysis because of the multitude of 

ordinal and interval factors/IVs involved in aviation landing accidents. Also, as discussed 

earlier, SVM was compared to other types of machine learning techniques, and had the 

ability to separate categorical variables into higher than three-dimensional space using 

kernel algorithms (Byrne, 2016; Jeeva, 2018).  

Ethical Consideration 

The NTSB database removed all of the pilot’s personal identification information 

from the accident reports to prevent any type of ethical repercussions (NTSB, n.d.-a). The 

dataset contained the airport’s three letter identification code, airport name, city, and 

state. This airport name, city, state, or code was not used in the computations or results, 

but was required to discover each accident’s landing runway, runway lighting type, and 
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status of the visual area surface penetrations. The NTSB accident reports contained the 

name of the accident investigator, but this name was not collected as part of the dataset 

(see Appendix B). Also, the FAA Instrument Approach Procedure forms contained 

names of individuals from the FAA, but this information was not collected as part of the 

dataset (see Appendix A). Only the status of the visual area surface penetrations and 

runway lighting types were retrieved from those forms, thereby eliminating any 

possibility of personal ramifications. There would be minimal positive or negative impact 

to the FAA based on the results and their interim, assessment, or final policies. Therefore, 

the ethical considerations for this research were minimum since the information was 

pulled from public websites.  

Measurement Instrument 

The dataset was collected in Microsoft Excel. Once complete, the descriptive 

statistics were compiled using IBM’s Statistical Package for the Social Sciences (SPSS) 

statistics software (IBM, n.d.). The remainder of the study and all of the research 

questions were originally attempted in Anaconda Navigator suite of tools (Anaconda Inc., 

2021) but completed using Google Colaboratory (2022) using Scikit-learn python coding 

(Pedregosa et al., 2011). 

Variables and Scales 

The IVs for this study were the status of visual area surface penetrations, mission 

C.F.R. category, approach runway lighting types, landing runway in use, crosswind 

component, number of aircraft engines, aircraft engine type, FAA policy timeframe, time 

of the accident, pilot’s certificate, pilot’s rating, pilot’s total number of flight hours, and 
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pilot’s age. The DVs were severity of aircraft damage and the severity of personal injury. 

All variables are listed in Table 2. 

Table 2 

Variables of the Dataset  

Variable Scale or Categorical Type 
Status of visual area surface penetrations (IV) 3 Categories Nominal 
Mission C.F.R. category (IV) 4 Categories Nominal 
FAA Visual Area Surface Policy Timeframe (IV) 3 Categories Nominal 
Runway lighting types (IV) 6 Categories Nominal 
Landing runway in use (IV) 01 to 36 Interval 
Crosswind Component (IV) 0.00 to 180.00 Interval 
Aircraft engine type (IV) 3 Categories Nominal 
Number of aircraft engines (IV) 1 to 8 Interval 
UTC time of accident (IV) 0001 to 2400 Interval 
Pilot’s certificate (IV) 6 Categories Nominal 
Pilot’s rating (IV) 3 Categories Nominal 
Pilot’s total number of flight hours (IV) Unlimited Ratio 
Pilot’s age (IV) Unlimited Ratio 
Number of flight crew (IV) 4 Categories Interval 
Severity of aircraft damage (DV) 4 Categories Ordinal 
Severity of personal injury (DV) 4 Categories Ordinal 

Note. IV = Independent variable or predictors. DV = Dependent variable or target 

variable.  

 

 For the categorical input variables, the goal of SVM was to maximize the margin 

between categorical classification, starting with the lowest dimension and progressively 

increasing into a higher dimensional space (Berwick, 2003; Navlani, 2019). Each DV 

category was evaluated separately. Therefore, each DV had four separate evaluations by 

the machine, one for each ranking.  

Definition of Variables and Constructs. This section provides the definitions for 

each variable used in this study. 
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Status of Visual Area Surface Penetrations (IV). The status of the visual area 

surface penetration was listed as either an obstacle penetration of the 34:1 surface, both 

20:1 and 34:1 surface, or no surface penetrated. These surfaces defined the number of 

feet from the threshold (20 feet or 34 feet) for every one foot in elevation. Therefore, 

when the 20:1 surface was penetrated, the 34:1 surface was also penetrated. These 

surfaces were evaluated by the FAA during IAP development and were documented on 

the IAP forms and charts shown in Appendix A (FAA, 2018b, 2018c).  

Mission Code of Federal Regulation Category (IV). The C.F.R. establishes the 

type of operations for an aircraft owner or company (NTSB, n.d.-b). This is broken into 

C.F.R. Parts 91, 121, 135, and 137. The typical general aviation aircraft operates under 

14 C.F.R. Part 91 (General Operating and Flight Rules, 2017). Domestic airlines operate 

under 14 C.F.R. Part 121 (Operating Requirements: Domestic, Flag, and Supplemental 

Operations, 2020). Smaller commercial aircraft operate under 14 C.F.R. Part 135 

(Operating Requirements: Commuter and On Demand Operations and Rules Governing 

Persons On Board Such Aircraft, 2020). Lastly, agriculture aircraft operate under 14 

C.F.R Part 137 (Agricultural Aircraft Operations, 2020).  

FAA Visual Area Surface Policy Timeframe (IV). The aircraft accidents were 

grouped into one of three two-year periods based on the type of policy the FAA had in 

effect about visual area surface obstacle penetrations. Accidents from January 1, 2014, to 

December 31, 2015, were coded into the interim policy category (FAA, 2013b). Aviation 

accidents from January 1, 2016, to December 31, 2017, were coded in the assessment 

period category (AOPA, 2016; Lebar, 2016; Namowitz, 2016; RTCA, 2016). The last 
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category was coded as the FAA final policy from January 1, 2018, to December 31, 2019 

(FAA, 2018b, 2018c). 

Runway Lighting Types (IV). Runway approach lighting were composed of 

different VGSI and approach lighting systems (FAA, 2012, 2016b, 2016c). This variable 

had six categories: no approach lighting, Precision Approach Path Indicator (PAPI) 

system with two lights, PAPI system with four lights, Visual Approach Slope Indicator 

(VASI) system with two lights, VASI system with four lights, and approach lighting 

system. This variable was coded for multiple selections if an approach lighting system 

also had a VGSI. 

Landing Runway in Use (IV). This was the approach landing runway at the time 

of the accident. The runway numbers ranged from 01 to 36 and were retrieved from the 

NTSB database and NTSB accident reports (See Appendix B). 

Crosswind Component (IV). This was the amount of crosswind, in knots, for the 

landing runway at the time of the accident. The wind direction and wind velocity were 

retrieved from the NTSB database. Crosswind component was computed by calculating 

the sine of the difference between the wind direction and the landing runway, then 

multiplied against the wind velocity (FAA, 2014). Results were reported to the nearest 

hundredths. Winds reported as “calm” during the time of the accident were coded at three 

knots and 20 degrees off of the landing runway (FAA, 2020a).  

Aircraft Engine Type (IV). This was the type of engines on the aircraft listed on 

the accident report (NTSB, n.d.-b). The NTSB database and NTSB accident reports listed 

engine types as reciprocating, turbo fan, turbo jet, and turbo prop.  Some reports stated 
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the aircraft model instead of the engine type. When this occurred, the aircraft model was 

researched, and the engine type was coded appropriately. 

Number of Aircraft Engines (IV). This was the number of engines on the aircraft 

listed on the accident report (NTSB, n.d.-b). This information was provided by the NTSB 

database and NTSB accident reports.  

Coordinated Universal Time (UTC) of Accident (IV). This variable was added to 

account for different risks associated with night landings (FAA, 2016b). This variable 

was retrieved from the NTSB accident reports and logged as UTC, a 24-hour format from 

0000 to 2359 hours.  

Pilot’s Certificate (IV). This was the certificate held by the pilot as defined in the 

C.F.R. (General Definitions, 2020). The NTSB reports the information of the pilot flying 

the aircraft at the time of the accident. For example, if a student was flying the aircraft 

with a flight instructor, pilot in command, the student’s information was reported as the 

pilot while the flight instructor was listed as a second pilot. A pilot’s certificate ranged 

from the lowest, student, to sport pilot, recreational pilot, private pilot, commercial pilot, 

and then the highest certificate, airline transport pilot (Certification: Pilots, Flight 

Instructors, and Ground Instructors, 2020). Only the pilot’s highest certification was 

recorded. Pilots that held an additional flight instructor certificate were coded as both 

flight instructor and the highest of the certificates held above.  

Pilot’s Rating (IV). This was the rating held by the pilot flying the aircraft at the 

time of the accident as defined in the C.F.R. (General Definitions, 2020). Pilot ratings 

ranged from single-engine, multiengine, instrument, or a combination thereof 

(Certification: Pilots, Flight Instructors, and Ground Instructors, 2020).  
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Pilot’s Total Number of Flight Hours (IV). This was the total number of flight 

hours, rounded to the nearest whole number, for the pilot, controlling the aircraft at the 

time of the accident, as defined in the C.F.R. (General Definitions, 2020). Total number 

of flight hours was listed as one of the significant human factors for predicting aviation 

accidents (Baugh, 2020; Burnett & Si, 2017; Liu et al., 2013). 

Pilot’s Age (IV). This was the age of the pilot flying the aircraft at the time of the 

accident as defined in the C.F.R. and reported as a whole number from the NTSB 

accident report (General Definitions, 2020). Age was considered one of the human 

factors that impacted the predictability of aviation accidents (Baugh, 2020; Burnett & Si, 

2017; Liu et al., 2013).  

Number of Flight Crew (IV). This was the total number of the flight crew in the 

flight deck at the time of the accident.  

Severity of Aircraft Damage (DV). The FAA and49 C.F.R list aircraft damage in 

four categories: none, minor, substantial, and destroyed (FAA, 2018b; “Notification and 

Reporting of Aircraft Accidents or Incidents”, 2020). Aircraft with minor damage were 

repaired easily before the aircraft was restored to airworthy condition. Substantial 

damage was structural or impacted the aircraft’s flight characteristics. Lastly, destroyed 

aircraft were impracticable or impossible to repair to airworthy conditions. 

Severity of Personal Injury (DV). The FAA 49 C.F.R list individual injury during 

an aviation accident as none, minor, serious, and fatal (FAA, 2018b; “Notification and 

Reporting of Aircraft Accidents or Incidents”, 2020). Minor injury was a hospitalization 

of up to 48 hours, first degree burns, or external cuts. Serious injury was the loss of a 

limb, bone fracture, second- or third-degree burns, or more than 48 hours of 
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hospitalization. Fatal injury was the death of a crew member or passenger. If an accident 

had multiple levels of personal injury, only the highest severity was coded. Each accident 

was weighted and coded as one person to prevent an airline accident from skewing 

results.  

Data Analysis Approach 

The SEMMA process consists of five steps to prepare and assess a database or 

dataset: Sample, Explore, Modify, Model, and Assess (SAS Institute, 2013). The first 

step, Sample, was used to develop a sample of the dataset to ensure it contains the input 

variables and information needed for the research. For this research, the NTSB database 

was used to begin the development of a sample dataset (NTSB, n.d.). For the second step, 

the entire sample dataset was compiled and explored for anomalies like missing variables 

(SAS Institute, 2020). Once the NTSB sample dataset was downloaded from the NTSB 

database, the information was combined with data manually gathered from the NTSB 

accident reports, FAA’s Instrument Flight Procedures (IFPs) Gateway website, and 

AirNav.com website (AirNav.com, n.d.; FAA, n.d.-b; NTSB, n.d.-c). After this was 

completed for a sample dataset, this process was repeated to compile the entire dataset 

covering 1 January 2014 through 31 December 2019.  

Once the entire dataset was assembled and explored, during the Modify step the 

dataset was cleaned and filtered to remove aviation approach and landing accidents that 

did not occur at an airport or were not due to an approach or landing problem. For 

example, aircraft that attempted to land on a road or open field because of an engine 

failure, engine fire, aircraft ran out of fuel, or controlled flight into terrain, are removed 

from the dataset. Aviation accidents due to aircraft malfunction, gear malfunctions, 
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collision with an animal on the runway, or pilot failure to lower the gear, are also 

removed from the dataset. The next organization and cleaning of the dataset removed 

accidents at airports that did not have at least one IAP because an IAP was required to 

determine if there were any visual area surface penetrations.  

The last organization step was to partition the dataset into a training dataset and 

validation dataset (Shmueli et al., 2016). Although there was no required partition 

percentage, previous research recommends partitioning 80% toward the training dataset 

and the remaining 20% for the validation dataset (Draelos, 2020; Li et al., 2008, 2012). 

Therefore, for this research, an 80% training and 20% validation partition is used. In 

addition, for this research, multiple dataset partitions were evaluated using the confusion 

matrix to determine error rate and avoid overfitting (Yang et al., 2019). Confusion matrix 

evaluated observations into true positives, true negatives, false positives, and false 

negatives to calculate the accuracy of each training set (Nalepa & Kawulok, 2018; Scikit-

learn, 2021). Once this was completed, the dataset was ready for the final two SEMMA 

steps: Model and Assess using SVM. 

The SVM process for the final two SEMMA steps, Model and Assess the dataset, 

consisted of retraining the models, evaluation of the models, and cross-validation (Scikit-

learn, 2019). Once the specific training partition was selected, the partition and the 

various kernel functions were coded into the SVM to evaluate each variable separately 

for the prediction. The SVM machine modeling starts at a low dimension and 

systematically increased to a higher dimension to maximize the margin between the 

categories (Yang et al., 2019). Then, the SVM model coding maximized the margin and 

evaluated the specific factors for the predictability against the DV (Li et al., 2012). After 
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completing this for each individual factor, the SVM model was coded to report each 

model’s accuracy, precision, sensitivity, and F1-score.  

To Assess the model, a cross-validation was coded into the SVM to evaluate the 

model’s ability to predict (Brownlee, 2018; Igel et al., 2008; Scikit-learn, 2019). Based 

on the results of the cross-validation, the researcher adjusted the SVM and kernel 

parameters and repeated the process until a model with the lowest cross-validation error 

rate was designed. The model was then validated using the validation partition to 

calculate the accuracy of the prediction (Hair et al., 2010; Nalepa & Kawulok, 2018).  

Support Vector Machines (SVM) Model Development 

The first SVM models were developed using the initial workflow. After the 

dataset was augmented, the machine learning models were coded using the final SVM 

workflow and optimization.  

Initial SVM Workflow. Using the workflow in Figure 5, the SVM models were 

coded into Google Colaboratory (2022) and ready to separate positive and negative 

samples from each variable/factor to create a hyperplane and develop different predictive 

models (Dibike et al., 2001; Jeeva, 2018; Scikit-learn, 2019).  
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Figure 5 

Initial Support Vector Machine Workflow 

 
 

With a completed dataset, the first step in the SVM workflow was to load the 

dataset into Google Colaboratory (2022), shuffle the dataset, and divide the dataset into 

the training and validation partition. Since this was the first research using SVM to 

predict aviation landing accidents, there was not equivalent research to predetermine the 

optimum partition percentage. The closest research about injury severity in automobile 

accidents compared multiple partitions splits (Li et al, 2008; Li et al., 2012). The 

automobile accident research discovered that the 80% training to 20% validation 

provided the highest accuracy. Therefore, this study also used an 80% training partition 

and 20% test partition for both the severity of personal injury and the severity of aircraft 

damage of aviation landing accidents. Then, the confusion matrix was used to determine 

minimum error rate while avoiding overfitting (Yang et al., 2019). Confusion matrix 

evaluated observations into true positives, true negatives, false positives, and false 
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negatives to calculate the accuracy of each training set (Nalepa & Kawulok, 2018; Scikit-

learn, 2021).  

After the appropriate training partition was selected, the next step was to process 

the training partition in SVM using the kernel functions on each variable to 

systematically increase categorization from a low dimension to a higher dimension to 

find the minimum error rate and maximum margin (Yang et al., 2019). The kernel 

evaluation began with the linear kernel, and then increasingly progressed through the 

polynomial kernel, sigmoid kernel, and finally the RBF kernel. The kernel with the 

maximized margin was recorded for each factor.  

Once each factor was evaluated to maximize the margin between the variable’s 

categories, the SVM was coded to evaluate the specific IV for the predictability against 

the specific DV (Li et al., 2012). After each variable was evaluated for predictability 

separately, the SVM models were coded to create a model based on the separate 

prediction accuracies, or misclassification rates. Once a model was developed, the 

researcher programed the SVM to do a cross-validation of the model, discussed in the 

next section, to evaluate the model’s ability to predict (Brownlee, 2018; Igel et al., 2008; 

Scikit-learn, 2019). Based on the results of the cross-validation, the SVM model 

parameters and kernel parameters were adjusted before restarting the evaluation and 

cross-validation again. To ensure reliability, in addition to the cross-validation, the final 

model was evaluated through the use of the validation partition to determine each 

model’s confusion matrix, classification report, and misclassification rate or accuracy to 

discover which model was the best for predicting the severity of aircraft damage (Hair et 
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al., 2010). This process was also used to develop the best model for predicting the 

severity of personal injury.  

Final SVM Workflow. After development and testing of the initial SVM models, 

analysis revealed the models were heavily impacted due to the slanted dataset towards 

substantial aircraft damage and no personal injury. Therefore, the SVM workflow was 

adjusted to incorporate dataset augmentation and optimization (see Figure 6). 

Figure 6 

Final Support Vector Machine Workflow 

 

 

Unlike the initial SVM workflow, the dataset was shuffled in Microsoft Excel and 

then split into the training and test partitions The same 80/20 split was used. Once the 

training partition was separated, the dataset was augmented (to be discussed in further 

detail in the next section) to provide roughly the same amount of none, minor, 

substantial, and destroyed aircraft damage accidents. Once complete, the augmented 
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training partition and the original test partition were loaded into Google Colaboratory 

(2022) for SVM development. 

The SVM model development, use of kernels, and cross validation remain the 

same as the initial workflow. After comparing the final models for the severity of aircraft 

damage and the severity of personal injury, the SVM models with the highest accuracy, 

precision, sensitivity/recall, and F1-score are selected (Geron, 2017; Kuhn & Johnson, 

2016). That specific model and kernel will then be optimized by adjusting the SVM 

parameter and kernel parameter to fine tune the model and improve predictability. Once 

the models are optimized, they are compared to the test dataset and again evaluated for 

reliability and validity. The models are compared and the best model for predicting the 

severity of aircraft damage and the best model for predicting the severity of personal 

injury are chosen.  

SVM Model Optimization. Support vector machine models allow for 

optimization through modifying the 𝐶 parameter. The 𝐶 parameter adjusts the width of 

the margin surrounding the hyperplane. Low value of 𝐶 produces a larger margin, while a 

larger value of 𝐶 produces a smaller margin (Fan, 2018; Scikit-learn, 2022d, Wang, 

2014). The value for the 𝐶 parameter also teaches the SVM model how it handles 

misclassifications of data. Since SVM goal is to maximize the margin, a low 𝐶 value 

allows the model to accept individual misclassified data points thus having a model with 

low variance and high bias (Albon, 2017; Brownlee, 2021b; Fan, 2018; Kumar, 2018). 

However, a large 𝐶 value assumes any misclassified point as a penalty and therefore 

attempts to not allow any misclassified data points thus producing a model with high 

variance and low bias.  
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As stated earlier, one of the benefits of SVM is the ability to separate categorical 

data through the use of different kernels. Many of the kernels, but not all, have a variable 

that can be adjusted within the coding (Albon, 2017; Brownlee, 2021b; Fan, 2018; 

Kumar, 2018). For the polynomial kernel, 𝑑 is the kernel parameter, while γ is the 

sigmoid kernel parameter and σ is the RBF kernel parameter. Some researchers use γ and 

σ interchangeably between the RBF and sigmoid kernels (Geron, 2017; Kuhn & Johnson, 

2016).  

For the polynomial kernel, 𝑑 is the degree of freedom. When 𝑑 is a value of one, 

the polynomial kernel and linear kernels match (Fan, 2018; Scikit-learn, 2020). As 𝑑 is 

increased, the kernel changes the hyperplane to a more complex shape attempting to 

separate the categorical data. There is no maximum for the 𝑑 parameter, however, the 

higher the value the increased risk of overfitting. 

 Both the sigmoid and RBF kernels can use gamma (γ or σ) to optimize the kernel 

(Wang, 2014; Vapnik, 1999). By increasing the value of gamma, the hyperplane 

increases conformity to the support vectors, thus attempting to limit the amount of 

misclassified data points (Albon, 2017; Brownlee, 2021b; Fan, 2018; Kumar, 2018).  The 

gamma parameter can range from any positive value above zero with no maximum. 

However, as gamma increases, there is a risk of overfitting as the SVM model attempts to 

separate each categorical data point individually rather than as a whole (Geron, 2017; 

Kuhn & Johnson, 2016; Scikit-learn, 2022d).  

Once the initial SVM models, with either the linear, polynomial, RBF, or sigmoid 

kernel, are developed and compared, the one with the best ability to predict is selected. 

Then, the selected SVM model is optimized by incrementally increasing the SVM and 
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kernel parameters, either through manually changing the value or coding a loop function 

in Google Colaboratory (Geron, 2017; Google, 2022; Kuhn & Johnson, 2016; Scikit-

learn, 2022d). Once the optimized SVM model outputs are compared, the best 

performing model must be evaluated using the test dataset to ensure overfitting did not 

occur and the model achieved approximately the same accuracy, precision, 

sensitivity/recall and F1-scores.  

Data Augmentations 

 Before and during SVM model development, the dataset underwent 

augmentations of normalization and expansion. 

Variable Normalization. After the dataset was collected, the variables of pilot’s 

total number of flight hours, crosswind component, and pilot’s age required 

normalization. Normalization is when a variable scale is converted from the raw data to a 

common scale while keeping the range differences between events (Jiang et al., 2016; 

Kuhn & Johnson, 2016; Microsoft, 2021). Flight hours ranged from six hours to 40,000 

hours. Crosswinds ranged from 3 knots, calm, to 39 knots. Pilot’s age ranged from 16 

years old to 91 years old. All three variables were normalized to a scale from 0.0 to 1.0 

range using the following formulas: 

𝐹𝑙𝑖𝑔ℎ𝑡 𝐻𝑜𝑢𝑟 𝑁𝑜𝑟𝑚 ൌ ி௟௜௚௛௧ ு௢௨௥௦

ெ௔௫ ி௟௜௚௛௧ ு௢௨௥௦
 (14) 

𝐶𝑟𝑜𝑠𝑠𝑤𝑖𝑛𝑑 𝑁𝑜𝑟𝑚 ൌ ஼௥௢௦௦௪௜௡ௗ௦

ெ௔௫ ஼௥௢௦௦௪௜௡ௗ௦
 (15) 

𝑃𝑖𝑙𝑜𝑡 𝐴𝑔𝑒 𝑁𝑜𝑟𝑚 ൌ ௉௜௟௢௧ ஺௚௘

ெ௔௫ ௉௜௟௢௧ ஺௚௘
 (16) 

These new variables were used in the SVM modeling in place of the original 

values. 
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Dataset Expansion. Augmenting a dataset for machine learning is not considered 

uncommon, especially when dealing with categorical variables. (Geron, 2017; Kuhn & 

Johnson, 2016). For example, a medical study attempting to predict a rare form of cancer 

would not expect a balanced dataset but would expect almost all patients to test negative 

for cancer (Leevy et al., 2018). Therefore, this study considered three types of dataset 

augmentation: Gathering additional accident data outside the 2014 – 2019 range; data-

algorithm methods; or data-sampling methods (Leevy et al., 2018). For this study, the 

major levels were no personal injury and substantial aircraft damage while the rest were 

considered as minor or limited levels. 

Since the goal of aviation safety is to eliminate fatalities, expanding the years 

would only gather more data with the expected same level percentages (FAA, 2021c). 

Thus, the first data augmentation method would not solve the imbalance. The data-

algorithm method, synthetic minority over-sampling technique (SMOTE), uses a random 

sample from the minor levels to develop an algorithm (Korstanje, 2021). Once the 

algorithm is developed, SMOTE creates new events, or in this study, accidents, to 

remove the offset balance between the DV levels. This method was not used because 

creating random data could impact the factor importance of the three new variables.    

 The data-sampling methods are broken down into random over-sampling (ROS) 

and random under-sampling (RUS) (Leevy et al, 2018). RUS would randomly remove 

accident data from the major severity levels. Randomly removing data were not 

considered viable for this study because there were concerns it would impact the three 

new variables in the study.  
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After the elimination of SMOTE and RUS, ROS was the remaining augmentation 

available. Random over-sampling increases the minor or limited without modifying or 

varying the internal characteristics of an event or accident (Hayati et al., 2021). Leevy et 

al. (2018), stated that ROS yielded better results than SMOTE or RUS for machine 

learning modeling. Random over-sampling could be accomplished through random 

selection or using a fixed method (Khoshgoftaar et al., 2007; Van Hulse et al., 2007). 

Random selection duplicates exampling in the minority class through random selection 

while fix method duplicates examples through a user directed selection (Brownlee, 

2021a; Korstanje, 2021). For multi-level DVs with multiple minor levels, fixed method is 

preferred because random selection may only increase some, not all, of the minor levels. 

Therefore, for this dataset, the ROS fixed method was used on each minor level through 

user specified duplication of accident data. 

Reliability Assessment Method 

Cross-Validation. Cross-validation, sometimes called k-fold cross-validation, is a 

technique to evaluate a model’s performance or ability to predict and, if necessary, adjust 

the model’s hyperparameters (Brownlee, 2018; Igel et al., 2008; Scikit-learn, 2019). This 

process eliminates one of the concerns with SVM, which is the potential for overfitting 

the predictability of the data (Sánchez-González, 2018; Vapnik, 1999). Overfitting is 

when the matching learning program goes from dataset point to dataset point to create a 

training model that has a very high predictability or “fit”, but then fails to allow for 

enough generality to be used against any other dataset. To avoid overfitting, SVM uses 

the k-fold cross-validation to split the training dataset into different sections and then 

develops multiple models using all but one of the sections (Brownlee, 2018; Igel et al., 
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2008; Scikit-learn, 2019). Once the models are developed, they are compared on their 

estimation and performance (Kuhn & Johnson, 2016).  

The k-fold cross-validation process evaluates a specific model’s ability to predict 

the desired DV, for example, the severity of aircraft damage or the severity of personal 

injury. The model is evaluated against only one DV at a time. To cross-validate, SVM 

takes the entire dataset and splits it into equal partition subsets and then randomly assigns 

each event to one of the subsets. There is no formal number of subsets (k) to split, but 

typically a k of 10 is used to reduce the bias of technique, that is, the difference between 

estimating and true performance (Kuhn & Johnson, 2016). Each model subset is 

evaluated for cross-validation performance and cross-validation error. Then, the subset 

with the lowest error rate is used to retrain the original SVM model developed using the 

training partition (Hastie et al., 2008). For this study, based on the size of the dataset, a 

k of five was used to avoid overfitting. 

Validity Assessment Method 

This study desires a predictive model with low misclassification rate, high 

accuracy, high precision, high sensitivity/recall, high specificity, and high F1-score. 

There is no desire to have only a high precision or only a high sensitivity/recall because 

incorrectly assessing a non-injury accident as fatal or a fatal accident as non-injury is not 

deemed acceptable (Branco, et al., 2015; Brownlee, 2020a; Geron, 2017; Kuhn & 

Johnson, 2016; Leevy, et al., 2018; Sofaer et al., 2019).  

Confusion Matrix. A confusion matrix records the true positive, false positive, 

true negative, and false negative returns for the specific model (Geron, 2017; Kuhn & 

Johnson, 2016; Scikit-learn, 2021). These results are then used to calculate the precision, 
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recall, F1-score, and specificity. For a binary classification, Table 3 depicts the confusion 

matrix (Kuhn & Johnson, 2016).  

Table 3 

Binary Confusion Matrix Example  

  Actual Values 

P
re

di
ct

ed
 V

al
ue

s 

 
Positive 

(1) 
Negative 

(0) 
Positive 

(1) 
TP FP 

Negative 
(0) 

FN TN 

 

Note. TP = True positive; FP = False positive; FN = False negative; TN = True negative. 

 

However, for a multi-class DV, the confusion matrix expands the display by the 

number of columns and rows equal to the number of levels in the DV (Kuhn & Johnson, 

2016; Mohajon, 2020). The true positive, false positive, true negative, and false negative 

are separately calculated for each level as shown in Table 4. 

Table 4 

Multi-Class Confusion Matrix Example 

                Aircraft Damage Actual Values 

A
ir

cr
af

t 
D

am
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e 
P
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V

al
ue
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 None Minor Substantial Destroyed 
None A B C D 
Minor E F G H 

Substantial I J K L 
Destroyed M N O P 

 

 

With a multi-class DV, the confusion matrix calculations are as follows: 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ൌ 𝐴 (17) 
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𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ൌ 𝐹 ൅ 𝐺 ൅ 𝐻 ൅ 𝐽 ൅ 𝐾 ൅ 𝐿 ൅ 𝑁 ൅ 𝑂 ൅ 𝑃 (18) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 ൌ 𝐵 ൅ 𝐶 ൅ 𝐷 (19) 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ൌ 𝐸 ൅ 𝐼 ൅ 𝑀 (20) 

For simplicity, a confusion matrix table can be graphically displayed as a black 

and white image in Google Colaboratory (Geron, 2017). The darker the square, the worse 

the machine learning model predicted true positives. Conversely, the whiter the square 

the better the model predicted true positives. A balanced confusion matrix image displays 

white squares on a diagonal from upper left to lower right, reflecting a model that 

accurately predicted high true positive values (see Figure 7).   

Figure 7 

Multi-Class Confusion Matrix Image Example 

   Optimum Performance    Poor Performance 
 

             

 

The optimum performing machine learning model on the left contains a pure 

white diagonal from upper left to lower right. This reveals a model that correctly 

predicted 100% true positives. However, a 100% performing model is unrealistic. The 

right confusion matrix image contains a model that correctly predicted the true positives 

for the first level of the DV, however it poorly predicted the true positives on levels two 
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through four. The different shades of gray show the false positives in the model, where it 

incorrectly predicted a true positive. 

Misclassification Rates. Finally, the validation partitioned data evaluates using 

the final model to assess for predictability of the severity of personal injury and the 

severity of aircraft damage as a result of aviation landing accidents. Validity is tested by 

comparing the predicted model developed using the training partition with the validation 

partition (Yang et al., 2019). These models evaluate using misclassification rates, which 

display the number of correct and incorrect predictions by the final SVM model (Nalepa 

& Kawulok, 2018). The lower the misclassification rates, the higher the accuracy of 

prediction (Hair et al., 2010; SAS Institute, n.d.). Misclassification rates are evaluated for 

each DV at the four different levels from none to fatal/destroyed. The final SVM model 

composition reveals which input factors have the most impact on predictability of the 

severity of aircraft damage and the severity of personal injury, answering the second and 

third research questions. At the same time, the best models answered the first research 

question for both the predictability of the severity of aircraft damage and the severity of 

personal injury. 

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 ൌ ሺி௉ାிேሻ

ሺ்௉ା்ேାி௉ାிேሻ
 (21)  

Accuracy. The opposite of misclassification rates. Although there is no set 

minimum accuracy for a good model, a minimum of 80% accuracy is used for this study 

(Geron, 2017; Kuhn & Johnson, 2016). To calculate accuracy:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ 1.0 െ𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (22) 
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Sensitivity/Recall. Considered the true positive rate, sensitivity, also referred to 

as recall, is the rate that a specific model correctly predicts the outcome (Kuhn & 

Johnson, 2016; Mohajon, 2020). To calculate sensitivity/recall: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ ்௉

ሺ்௉ାிேሻ
 (23) 

Where TP is the number of true positive results and FN is the number of false 

negative results.  

Specificity. Another validity calculation is the specificity rate, or true negative 

rate (Kuhn & Johnson, 2016; Mohajon, 2020). To calculate specificity: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ ்ே

ሺ்ேାி௉ሻ
 (24) 

Where TN is the number of true negative results and FP is the number of false 

positive results. For medical research, where the goal is disease free patients (i.e., true 

negatives), specificity is a great indicator (Parikh, et al., 2009). However, for multi-level 

DVs, specificity cannot be used as a single source validation. In this study, random 

selection produced a model with a specificity of 75%, the ability to select a true negative 

in three out of the four variable levels. 

Precision. This determines the ability of the model to correctly predict positive 

results (Kuhn & Johnson, 2016; Mohajon, 2020). To calculate precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ ்௉

ሺ்௉ାி௉ሻ
 (25) 

When the precision and sensitivity/recall both perform well (i.e., close to one), 

then the model is predicting accurately (Scikit-learn, 2022a). 

F1-Score. This combines the results of precision and sensitivity/recall to create a 

holistic evaluation of the model (Kuhn & Johnson, 2016; Mohajon, 2020). F1-score 

ranges from best (one) to worst (zero). To calculate F1-score: 
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𝐹1 െ 𝑆𝑐𝑜𝑟𝑒 ൌ 2 ∗
ሺோ௘௖௔௟௟∗௉௥௘௖௜௦௜௢௡ሻ

ሺோ௘௖௔௟௟ା௉௥௘௖௜௦௜௢௡ሻ
 (26) 

Classification Report. This report is a combination of accuracy, precision, 

sensitivity/recall, and F1-score for the DV (Kohli, 2019; Kuhn & Johnson, 2016; Scikit-

learn, 2022a). For this study, the classification report displayed four sets of values since 

severity of personal injury and severity of aircraft damage are both a four level multi-

class DV. 

Factor Contribution and Sensitivity Analysis 

Once the SVM models are reviewed for reliability and validity, the next process is 

to code the factor importance by analyzing factor contribution and sensitivity. Factor 

importance determines the value of a specific variable in development of the predictive 

model (Kuhn & Johnson, 2016). The factor importance for the severity of aircraft damage 

and the severity of personal injury are developed separately using python coding and 

Google Colaboratory (Geron, 2017; Google, 2022).  

Although there are numerous ways to code factor importance, the Scikit-learn 

random forest classifier is widely used and considered stable and versatile both for 

categorical and integral variables because it uses multiple trees to develop the factor 

importance (Booth, et al., 2021; Malik, 2020; Ronaghan, 2018; Zhao, et al., 2022). 

Random forest classifier uses the number of tree nodes used by a specific variable and 

weighs it against the number of samples in the training partition which use the specific 

node (Brownlee, 2020b; Geron, 2017; Gupta & Sehgal, 2021). The larger the sensitivity 

analysis value, the more important the specific value is to the predicted model. The total 

of all factor importance values equals one, allowing a simplistic yet powerful evaluation. 
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For the specific Scikit-learn calculations to determine factor importance, the 

machine learning algorithm uses random forest classifier to calculate each node, 

assuming a binary tree (Gupta & Sehgal, 2021; Ronaghan, 2018; Shen, et al., 2007). The 

basis for the classifier begins with the gini index (Geron, 2017; Kuhn & Johnson, 2016; 

Strobl et al., 2007). Gini index determines the impurities for a particular node (𝐺௜ ൌ 0 is a 

pure node) which determines how a node on the random forest classifier branches 

(Burnett & Si, 2017; Geron, 2017; Schott, 2019; Scikit-learn, 2022b).  

𝐺௜ ൌ 1 െ∑ ൫𝑝௜,௞൯
ଶ௡

௞ୀଵ   (27) 

where: 

𝑝௜,௞ = The frequency or ratio of the particular class 𝑘 in the 𝑖௧௛ node of the tree. 

𝑛 = The number of classes. 

From there, Scikit-learn uses the gini index to develop an algorithm for the node 

importance (Geron, 2017; Ronaghan, 2018; Saini, 2021; Scikit-learn, 2022b). The node 

importance at a specific node is: 

𝑛𝑖௝ ൌ
ே೟
ே
ሾ𝐺௜ െ ቀ

ே೟ሺೝ೔೒೓೟ሻ
ே೟

∗  𝐺௜ሺ௥௜௚௛௧ሻቁ െ ቀ
ே೟ሺ೗೐೑೟ሻ
ே೟

∗  𝐺௜ሺ௟௘௙௧ሻቁሿ (28) 

where: 

𝑁௧ = The number of rows for a specific node. 

𝑁 = The total number of rows in the data. 

𝑁௧ሺ௟௘௙௧/௥௜௚௛௧ሻ = Number of nodes in the left/right node split. 

Once calculated, the feature importance is calculated using the node importance 

as follows: 

𝑓𝑖௜ ൌ
∑ ௡௜ೕೕ:೙೚೏೐ ೕ ೞ೛೗೔೟ೞ ೚೙ ೑೐ೌ೟ೠೝ೐ ೔

∑ ௡௜ೖೖℇೌ೗೗ ೙೚೏೐ೞ
 (29) 
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To ensure the feature importance is normalized between zero and one, the 

following calculation is applied: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑓𝑖௜ ൌ
௙௜೔

∑ ௙௜ೕೕℇೌ೗೗ ೑೐ೌ೟ೠೝ೐ೞ
 (30) 

Finally, the random forest algorithm calculates the final factor importance by 

averaging the factor importance calculations for a specific variable across all of the trees: 

𝐹𝑓𝑖௜ ൌ
∑ ௡௢௥௠௔௟௜௭௘ௗ௙௜೔ೕℇೌ೗೗ ೟ೝ೐೐ೞ

்
 (31) 

where: 

𝑇 = The total number of trees in the random forest. The final factor importance is 

then displayed in Scikit-learn as individual values for each variable and combined in a 

graph. 

Summary 

Chapter III covered the use of SVM as the basis of the research methodology. 

Support vector machines are a relatively new process used for creating prediction models 

that require in-depth analysis and higher calculations than many other forms of machine 

learning techniques (Byrne, 2016; Craven & Shavlik, 1997; Vapnik, 1999). This chapter 

discussed the use of SVM as the appropriate machine learning technique and how it 

aligned to previous research of approximately 5,500 automobile crashes across ten 

variables (Li et al., 2012). That research predicted personal injury severity as the DV 

ranging from no injury to a fatality. Similarly, this study had a DV for severity of 

personal injury and a DV for severity of aircraft damage across fourteen IVs.  

Next, the chapter covered the development of the aircraft landing accident dataset 

based on many of the previous factors found to influence aviation accidents, including 

accidents on landing, which had not been evaluated with complex SVM machine learning 
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techniques. The chapter defined the different variables of this dataset and how the dataset 

was initially formed by pulling aircraft landing accident information from the NTSB 

database. Then, the dataset was expanded through manual additions from the FAA 

website, including area surface penetrations, runway approach lighting, and FAA 

obstacle policy timeframe. Although many of these variables, including the two DVs, 

were categorical, SVM had the ability to use the different kernel functions to separate 

categorical variables and maximize the margins of each category (Dibike et al., 2001; 

Jeeva, 2018; Vapnik, 1999).  

Once the dataset was complete, Chapter III discussed the SVM workflow to 

develop, test, and validate each SVM model. This workflow started with partitioning the 

dataset into various training and validation sets and evaluating the multiple training and 

validation sample sizes to find out which proportion produces the best model (Li et al., 

2008). It also discussed processing the training dataset using one of the four different 

kernel functions and concluded with the reliability and validation process measuring 

cross-validation and misclassification rates. Finally, the chapter discussed the use of 

SVM models to answer each of the research questions.  

Therefore, Chapter III covered how SVM was the correct model for predicting the 

severity of aircraft damage and predicting the severity of personal injury. Chapters IV 

and V describe and discuss the results, recommendations, and conclusion.  
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Chapter IV: Results 
 

The purpose of this research was to develop SVM models to predict the severity 

of personal injury and the severity of aircraft damage from an aircraft accident on 

approach and landing.  At the same time, the researcher sought to evaluate the statistical 

findings for factor importance of 14 different variables to the severity including three 

new variables the status of visual area surface penetrations, corresponding FAA visual 

area surface penetration policies, and runway approach lighting type. This chapter 

analyzes the results from the different SVM models developed per the methodology, 

SEMMA process, and SVM workflow outlined in Chapter III.     

Dataset Collection and Organization 

The initial NTSB database pull had 6,806 accidents. During the Modify step in 

the SEMMA process, the dataset was cleaned and filtered to remove accidents that did 

not occur at an airport or did not occur during approach and landing. For example, a pilot 

that attempted an emergency landing on a road or open field because of an engine failure, 

engine fire, or fuel starvation, were removed from the dataset. In addition, accidents that 

occurred at an airport without at least one IAP were also removed. As discussed in 

Chapter III, this study required an airport to have at least one IAP to determine if the 

accident runway had visual area surface penetrations. This cleaning removed 3,738 

accidents from the dataset. 

Next, a manual review was conducted of the remaining 3,068 NTSB accident 

records to examine the HFACS accident taxonomy, confirm the landing runway, wind 

direction, wind velocity, and code any missing values from the initial NTSB database 

pull. During this evaluation, 1,771 accidents were removed from the dataset because the 
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accidents had the wrong taxonomy (i.e., the accident occurred after takeoff on a touch-

and-go, occurred while taxiing to/from the runway, etc.), were due to mechanical failure 

prior to landing (i.e., engine failure, gear failure, etc.), or could not have occurred 

because of inattentional blindness and obstacles (i.e., fuel starvation, failure to lower the 

landing gear, collision with an animal on the runway, etc.). The final dataset was 

comprised of N = 1,297 approach and landing accidents at airports with at least one IAP.  

This amount of data were considered to be sufficient to allow SVM to develop 

models to create high reliability for prediction because the amount of data is similar to 

previous studies used to predict automobile accidents using SVM (Li et al., 2008; Li et 

al., 2012). Lastly, the sample size of N = 1,297 was large enough to allow SVM to 

separate each categorical variable to develop the different predictive models (Dibike et 

al., 2001; Jeeva, 2018). 

Demographics Results 

With the dataset complete, the sample size of N = 1,297 was loaded into SPSS 

(IBM, n.d.) for statistical analysis. The age of the pilots ranged from 16 to 91 (M = 53.90, 

SD = 17.01) years with frequencies as shown in Figure 8. The pilot’s total number of 

flight hours were between six and 40,000 (M = 2836.45, SD = 5397.38) hours. 



91 

 

Figure 8 

Frequency of Variable: Pilot’s Age Distribution 

 
 

The pilot’s certificate ranged from student to airline transport pilot and included 

flight instructor certificate. When the pilot held multiple certificates, only the highest 

certificate, from student to airline transport pilot, was coded. However, when a pilot held 

an additional flight instructor certificate, both the highest, from student to airline 

transport pilot, and flight instructor were coded. Figure 9 shows the frequency and 

distribution of the pilot’s certificate and Appendix C has the actual numbers.  
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Figure 9 

Frequency of Variable: Pilot’s Certificate 

 

Note. ATP = Airline Transport Pilot; ATPFL = Airline Transport Pilot plus Flight 

Instructor; COMM = Commercial; COMMFL = Commercial plus Flight Instructor; 

PRIVATEFL = Private plus Flight Instructor; SPORTFL = Sport plus Flight Instructor. 

 

An addition to the pilot’s certificate, the variable of pilot’s rating was able to have 

multiple selections. Pilot’s rating was coded as single-engine, multiengine, instrument, or 

a combination. If the pilot held both a single-engine and multiengine, then only the higher 

rating of multiengine was coded. Instrument rating was added in addition to single-engine 

or multiengine rating. Figure 10 depicts the frequency of the pilot’s rating, and the 

specific numbers are located in Appendix C. 
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Figure 10 

Frequency of Variable: Pilot’s Rating 
 

 
Note. MULTI = Multiengine; MULTINST = Multiengine with Instrument; SINGLE = 

Single-engine; SINGLEINST = Single-engine with Instrument 

 

Lastly, the majority of the landing accidents had only one crew member in the 

aircraft (𝑛 ൌ 1274) while only 𝑛 ൌ 23 had two crew members (M = 1.02, SD = 0.13). 

There were no reported accidents with more than two crew members.  

Descriptive Statistics 

This study proposed three new variables that had not been used in previous 

research: status of visual area surface penetrations, runway lighting types, and FAA 

visual area surface policy timeframe. Status of visual area surface penetrations were 

coded based on the worst obstacle penetration for the landing runway of the accident. 

This information was retrieved from the FAA’s Instrument Flight Procedures Gateway 
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website (FAA, n.d.-b). Each IAP form, as show in Appendix A, was manually reviewed 

for the obstacle penetration status and subsequently manually coded into the dataset as 

both a 20:1 and 34:1 obstacle surface penetration, only a 34:1 obstacle surface 

penetration, or no obstacle surface penetrations. Figure 11 and Table 5 depict the 

frequency results of this variable. 

Figure 11 

Frequency of Variable: Status of Visual Area Surface Penetrations 

 
 
Note. There were no missing data for the status of visual area surface penetrations 

variable. 
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Table 5 

Numerical Table of Status of Visual Area Surface Penetrations  

Type of Visual Area Surface Penetration N  Percentage 
No Obstacle Penetrations 399 30.8% 
Only 34:1 Obstacle Penetrations 339 26.1% 
Both 20:1 & 34:1 Obstacle Penetrations 559 43.1% 
Total 1297 100.0% 

Note. There were no missing data for the status of visual area surface penetrations 

variable.  

 

Of the dataset landing accidents, the majority (43.1%) of the landing runways had 

both 20:1 and 34:1 obstacle penetrations of the visual area surface. Overall, 69.2%, (898) 

of the landing runways had an obstacle penetration of the visual surface. The researcher 

broke down this variable and compared it to the different DVs, severity of personal injury 

and severity of aircraft damage. Table 6 shows the dispersion of the status of visual area 

surface penetrations against the different categories of severity of aircraft damage.  

Table 6 

Frequency of Status of Visual Area Surface Penetrations Compared to Severity of 

Aircraft Damage  

Severity of Aircraft Damage 
Both 20:1 & 34:1 

Penetrations 
No 

Penetration 
Only 34:1 

Penetration 
None 1 1 0 
Minor 2 3 1 
Substantial 541 384 326 
Destroyed 15 11 12 

Note. There were no missing data for the status of visual area surface penetrations or 

severity of aircraft damage variables.  
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Of the 1,251 approach and landing accidents, 96.5% resulted in substantial 

aircraft damage. When the aircraft was substantially damaged, 43.2% (541) of those 

accidents had a landing runway with both a 20:1 and 34:1 obstacle penetration. Sixty-

nine percent (867) of the landing runways had an obstacle penetration. No matter the 

amount of aircraft damage, the landing runway was more likely to have an obstacle 

penetration than no obstacle penetration. Only minor aircraft damage had an equal 

amount of landing runways with an obstacle penetration compared to no obstacle 

penetration (three total). 

When comparing the status of visual area surface penetration to the severity of 

personal injury, the statistics are similar to aircraft damage. Table 7 displays the 

comparison of these two variables. The majority of approach and landing accidents did 

not result in an injury (1,060 accidents or 81.7%). However, as seen in the severity of 

aircraft damage, the majority of accidents had both 20:1 and 34:1 obstacle penetrations. 

Specifically, 69.0% (731) of accidents with no personal injury, 71.3% (97), of accidents 

with a minor personal injury, 62.2% (45) of accidents with serious personal injury, and 

75.0% (42) of accidents with a fatal injury had a runway with at least one obstacle 

penetrating the visual area surface. 
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Table 7 

Frequency of Status of Visual Area Surface Penetrations Compared to Severity of 

Personal Injury  

Severity of Personal Injury 
Both 20:1 & 34:1 

Penetrations 
No 

Penetration 
Only 34:1 

Penetration 
None 442 329 289 
Minor 70 39 27 
Serious 22 17 6 
Fatal 25 14 17 

Note. There were no missing data for the status of visual area surface penetrations or 

severity of personal injury variables. 

 

The next new variable introduced in this study was the runway lighting types. 

Figure 12 and Appendix C show the frequency distribution of this variable. The majority 

of approach and landing accidents did not result in an injury (1,060 accidents or 81.7%). 

However, as seen in the severity of aircraft damage, the majority of accidents had both 

20:1 and 34:1 obstacle penetrations. Specifically, 69.0% (731) of accidents with no 

personal injury, 71.3% (97) of accidents with a minor personal injury, 62.2% (45) of 

accidents with serious personal injury, and 75.0% (42) of accidents with a fatal injury had 

a runway with at least one obstacle penetrating the visual area surface. 



98 

 

Figure 12 

Frequency of Variable: Runway Lighting Types 

 
Note. ALS = Approach Lighting System. PAPI = Precision Approach Path Indicator. 

VASI = Vertical Approach Slope Indicator. There were no missing data for the runway 

lighting types variable. 

 

The most common type of approach lighting was a four light PAPI system 

followed by a two light PAPI system. The least common lighting scenario was a runway 

with an approach lighting system with a two light VASI system. These statistics were 

expected because the FAA stated in 1985 that the PAPI systems were to replace the 

VASI systems (Federal Funding of Visual Glideslope Indicators, 1985). At that time, the 

PAPI systems were expected to cost an airport approximately $7,000 less than the VASI 

systems. Therefore, almost 35 years later, the PAPI systems are widely used at airports in 

the United States. 
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The third new variable for this study was the FAA visual area surface policy 

timeframe.  Since each timeframe covered a two-year period, it was expected that each 

timeframe had roughly the same number of approach and landing accidents. However, 

Figure 13 and Appendix C show that the middle, two-year assessment policy period had 

93 more accidents than the initial interim policy and 67 more accidents than the final 

policy period.  

Figure 13 

Frequency of Variable: FAA Visual Area Surface Policy Timeframe 
 

 
Note. Each policy period began on January 1st of the first year and ended on December 

31st of the following year. There were no missing data for the FAA visual area surface 

policy timeframe variable. 

 

Although not a specific variable for this study, Appendix C displays the frequency 

of landing accidents by the individual states. California had the highest number of 
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landing accidents at 144 while Maine had the least number of accidents at three. Every 

state had landing accidents except for Delaware. 

The remaining six variables were mission C.F.R. category, landing runway in use, 

crosswind component, aircraft engine type, number of aircraft engines, and UTC time of 

accident. Table 8 depicts the frequency of the mission C.F.R. category depicting that 

general aviation accidents comprised of 96.5% of all approach and landing accidents in 

this dataset.    

Table 8 

Numerical Table of Mission C.F.R. Category  

Aircraft’s Mission (14 C.F.R.)  N  Percentage 
Part 91 – General Aviation 1252 96.5% 
Part 135 – Business Aviation 18 1.4% 
Part 137 – Agricultural Aviation 5 0.4% 
Part 121 – Airline Aviation 22 1.7% 
Total 1297 100.0% 

Note. There were no Part 129 accidents – foreign air carriers or cargo – in the dataset. 

There were no missing data for the mission C.F.R. category variable.  

  

 The next variable was the landing runway in use. Figure 14 and Appendix C 

display the frequency based on the two-digit runway designator (i.e., runway 180 was 

recorded as runway 18). All runway directions were represented in the dataset. Runway 

18 had the highest number of approach and landing accidents with 64 (4.9%). The next 

highest was runway 17 with 56 accidents (4.3%). The lowest was runway 06 at 16 

accidents (1.2%), and then runway 02 with 18 accidents (1.4%). 
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Figure 14 

Frequency of Variable: Landing Runway in Use 
 

 
Note. Runway approach ends are designated from 010 to 360 and were recorded from 01 

to 36. There were no missing data for the landing runway in use variable. 

 

Crosswind component was the next IV which was a combination of the reported 

wind speed, in knots, and wind direction. The reported wind velocity ranged from calm 

up to 39 knots. Calm winds had the highest frequency at 248 accidents. One thousand 

forty-seven accidents (80.7%) occurred with a reported wind of 10 knots or less. Only 30 

accidents (2.3%) had a reported wind of 20 knots or greater. 

Computed crosswind component values began at zero, directly down the landing 

runway, and have no maximum amount. For this dataset, the crosswind component 

ranged from zero to 33.77 (M = 4.58, SD = 4.09) knots with frequencies as shown in 

Figure 15. The specific numerical amounts are in Appendix C. Eight hundred fifty-nine 
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landing accidents(66.2%) had a crosswind component of five knots or less. Two hundred 

seventy-nine of the landing accidents(21.5%) had a direct crosswind component between 

six to 12 knots. 

Figure 15 

Frequency of Variable: Crosswind Component 
 

 
Note. Crosswind component was calculating using the sine of the difference between the 

wind direction and the landing runway, then multiplied against the wind velocity (FAA, 

2014a). There were no missing data for the crosswind component variable. 

 

Variable for aircraft engine type also had no missing values. Table 9 displays the 

frequency. Reciprocating, propeller aircraft dominated the approach and landing 

accidents accounting for 92.4%. 
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Table 9 

Numerical Table of Aircraft Engine Type  

Type of Engine on the Accident Aircraft N  Percentage 
Reciprocating 1199 92.4% 
Turbo Fan 39 3.0% 
Turbo Jet 5 0.4% 
Turbo Prop 54 4.2% 
Total 1297 100.0% 

Note. There were no missing data for the aircraft engine type variable.  

 

 The number of aircraft engines, as shown in Table 10, ranged from zero to three 

(M = 1.10, SD = 0.31) engines. These frequencies follow the same trend with the majority 

of approach and landing accidents occurring in general aviation aircraft with a 

reciprocating engine.  

Table 10 

Numerical Table of Number of Aircraft Engines  

Number of Aircraft Engines N  Percentage 
1 1165 89.8% 
2 130 10.0% 
3 2 0.2% 

Total 1297 100.0% 

Note. There were no missing data for the number of aircraft engines variable.  

 

Coordinated Universal Time (UTC) values range from midnight, four zeros, to 

2359 (M = 1634.39, SD = 599.08) hours. All 24 hours were represented in the dataset. 

The frequencies are displayed in Figure 16 and the specific numerical amounts are in 

Appendix C. The highest time occurrence of accidents, 44 accidents(3.4%), occurred at 
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1900 hours. The hours of 1500, 1630, 1700, 1730, 1800, 2000, and 2030 all had accidents 

counts between 30 and 35. When the variable was transformed into hour groupings, 2000 

to 2059 hours had the highest number at 133 accidents(10.3%). The frequency display of 

this transformed variable is in Appendix C. The time period between 1400 hours and 

2359 accounted for 1,069 accidents(82.4%). This confirms previous research on the risks 

of night landings (FAA, 2016b; Shappell et al., 2007). 

Figure 16 

Frequency of Variable: UTC Time of Accident 
 

 
Note. The NTSB accident reports record time in the UTC 24-hour format from four zeros 

to 2359. There were no missing data for the UTC time of accident variable. 

 

Finally, the two DVs for this study were the severity of aircraft damage and the 

severity of personal injury. Table 11 and Table 12 display the frequency of the accidents. 
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Every NTSB accident report included both the severity of aircraft damage and the 

severity of personal injury.  

Table 11 

Numerical Table of Severity of Aircraft Damage  

Severity of Aircraft Damage N  Percentage 
None 2 0.2% 
Minor 6 0.5% 
Substantial 1251 96.5% 
Destroyed 38 2.9% 
Total 1297 100.0% 

Note. There were no missing data for the severity of aircraft damage variable.  

 

Table 12 

Numerical Table of Severity of Personal Injury  

Severity of Personal Injury N  Percentage 
None 1060 81.7% 
Minor 136 10.5% 
Serious 45 3.5% 
Fatal 56 4.3% 
Total 1297 100.0% 

Note. There were no missing data for the severity of personal injury variable.  

 

 The majority of aircraft were substantially damaged at 1,251 (96.5%) while the 

majority of accidents had no injuries at 1,060(81.7%). When both DVs are compared to 

each other, 1,051 accidents(81.0%) had no personal injury and substantial aircraft 

damage (see Table 13). Understandably, fatal injuries corresponded to either a 

substantially damaged or destroyed aircraft.  
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Table 13 

Frequency of Severity of Aircraft Damage Compared to Severity of Personal Injury  

Severity 
Personal 
Injury: 
None 

Personal 
Injury: 
Minor 

Personal 
Injury: 
Serious 

Personal 
Injury: 
Fatal 

Aircraft Damage: None 1 0 1 0 
Aircraft Damage: Minor 5 1 0 0 
Aircraft Damage: Substantial 1051 129 39 32 
Aircraft Damage: Destroyed 5 6 5 24 

Note. There were no missing data for the severity of personal injury or severity of aircraft 

damage variables.  

 

Missing Data and Outliers 

After all of the NTSB aircraft accident reports and websites were manually 

reviewed and coded, there was no missing data in the dataset. There was one possible 

outlier where the NTSB accident report stated the pilot’s total number of flight hours as 

40,000 (NTSB, 2017c). This value was the highest of all total flight hours and 8,294 

flight hours more than the second highest total of 31,706 hours. However, the pilot held 

an air transport pilot with flight instructor certificate. Even though it is possible the 

accident investigator approximated the pilot’s total number of flight hours, it is also 

possible the accident investigator talked directly to the pilot after the accident since there 

were no personal injuries. Therefore, this accident remained in the dataset. 

Initial SVM Evaluation Results 

The completed dataset was loaded into Google Colaboratory (2022) for the 

development of the severity of personal injury SVM model. The initial python coding 

using Scikit-learn (2020) evaluated the dataset, variables, and added the three normalized 
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variables. From there, the dataset was shuffled, since the Excel dataset was in 

chronological order by date. Then a stratified split was used to ensure both the training 

and test partitions had the same percentage of each level of personal injury severity. To 

develop the SVM classification models, the four different kernels were applied separately 

to the training partition to create four separate SVM models. Finally, a five-fold cross-

validation was used on the training partition to develop and fine tune the models to select 

the best predictive model and then evaluated against the test partition. 

The severity of aircraft damage prediction models produced an initial accuracy 

between 96% and 97%. However, the confusion matrices for the training partitions and 

the classification reports for the test partitions showed that all of the models were skewed 

towards substantial aircraft damage (see Table 14 and Table 15). The confusion matrix 

image shown in Figure 17 reveals that instead of the expected white diagonal from upper 

left to lower right, the image reveals a model that correctly predicted substantial aircraft 

damage while incorrectly predicting the other three levels of damage. 

Figure 17 

Initial Severity of Aircraft Damage Training Confusion Matrix  

 

Note. Results shown are with the linear kernel. However, all kernels had similar results.  
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Table 14 

Initial Severity of Aircraft Damage Training – Numerical Confusion Matrix  

  Actual Values 
Severity of Aircraft Damage None Minor Substantial Destroyed 

P
re

di
ct

ed
 

V
al

ue
s 

None 0 0 2 0 
Minor 0 0 5 0 
Substantial 6 9 985 0 
Destroyed 0 1 28 0 

Note. Results shown are with the linear kernel. However, all kernels had similar results.  

 

Table 15 

Initial Severity of Aircraft Damage Test Classification Report  

Severity of Aircraft 
Damage 

Precision 
Sensitivity 

/ Recall 
F1-

Score 
Specificity Support 

 None 0.00 0.00 0.00 1.00 0 
Linear Minor 0.00 0.00 0.00 1.00 1 
 Substantial 0.96 0.99 0.98 0.00 250 
 Destroyed 0.00 0.00 0.00 0.97 8 
       

Accuracy   0.96  259 
Macro Average 0.24 0.25 0.25 0.99 259 

Weighted Average 0.93 0.96 0.94 1.00 259 

Note. Results shown are with the linear kernel. However, all kernels had similar results.  

 

Similarly, the severity of personal injury SVM models produced a prediction 

accuracy between 82% and 84%. However, the training confusion matrix (see Figure 18 

and Table 16) and the test classification report (see Table 17) showed that the model 

development and test were skewed towards no personal injury. The lack of a white 
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diagonal from upper left to lower right reveals a model that correctly predicted no 

personal injury while incorrectly predicting the other three levels. 

Figure 18 

Initial Severity of Personal Injury Training Confusion Matrix  

 

Note. Results shown are with the linear kernel. However, all kernels had similar results.  

 

Table 16 

Initial Severity of Personal Injury Training Numerical Confusion Matrix 

  Actual Values 
Severity of Personal 

Injury 
None Minor Serious Fatal 

P
re

di
ct

ed
 

V
al

ue
s 

None 840 0 1 0 
Minor 113 0 0 0 
Serious 37 0 0 0 
Fatal 45 0 0 0 

Note. Results shown are with the linear kernel. However, all kernels had similar results. 
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Table 17 

Initial Severity of Personal Injury Test Classification Report  

Severity of Personal 
Injury 

Precision 
Sensitivity 

/ Recall 
F1-Score Specificity Support 

 None 0.84 0.99 0.91 0.00 217 
Linear Minor 0.00 0.00 0.00 0.89 24 
 Serious 0.00 0.00 0.00 0.96 8 
 Fatal 0.00 0.00 0.00 0.96 10 
       

Accuracy   0.83  259 
Macro Average 0.21 0.25 0.23 0.70 259 

Weighted Average 0.70 0.83 0.76 0.12 259 

Note. Results shown are with the linear kernel. However, all kernels had similar results.  

 

These results showed that the linear kernel SVM model predicted almost all 

correct for no personal injury and had an accuracy of 83%. However, the model was 

incorrect for minor, serious, and fatal injuries. Note that the precision, sensitivity/recall, 

and F1-scores are zero percent for minor, serious, and fatal injuries.  

When comparing machine learning models, neither accuracy percentage nor 

misclassification rate can be the sole basis for validation (Brownlee, 2020a; Geron, 2017; 

Phy, 2019). The preeminent models have high accuracy, high precision, high 

sensitivity/recall, and high F1-scores (Kuhn & Johnson, 2016; Geron, 2017; Sofaer et al., 

2019). For this study, a model high in all four areas accurately predicted the correct 

injury level of an accident, true positive, and correctly eliminated the incorrect injury 

levels, false positives.  Unfortunately, imbalanced datasets are subject to false accuracy 

percentages or misclassification rates as in this initial model development (Branco, et al., 

2015; Brownlee, 2020a; Geron, 2017; Kuhn & Johnson, 2016; Sofaer et al., 2019). In 
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effect, the initial linear model for the severity of personal injury assumed that every 

accident, except one, resulted in no personal injury and therefore failed validity. 

The initial attempt to develop the SVM models was not considered successful. 

The tilted dataset towards no personal injury(81%), and substantial aircraft damage(97%) 

at first looked successful because the SVM model’s accuracy percentage for the severity 

of personal injury was in the low 80s and the SVM model’s accuracy for aircraft damage 

was in the low 90s. The results were almost exactly the same no matter which kernel was 

used in the SVM model.  

However, machine learning models should not be evaluated on accuracy or 

misclassification rates alone but need to be evaluated along with the confusion matrix, 

precision, sensitivity/recall, and F1-scores (Geron, 2017; Kuhn & Johnson, 2016). When 

evaluating the confusion matrix and classification reports, it was apparent the SVM 

models assumed every aviation accident resulted in substantial aircraft damage and no 

injury (see Figure 17, Figure 18, Table 14, and Table 16). For predicting the severity of 

aircraft damage, the confusion matrices reveal a model with significant false positives for 

none, minor, and destroyed aircraft damage. Similarly, on predicting the severity of 

personal injury, Table 16 and Figure 18 show the classification matrix where the SVM 

model had significant false positives for minor, serious, and fatal injuries. This was 

confirmed with values of zero, shown in Table 15, for the none, minor, and destroyed 

damage, and in Table 17, for the minor, serious, and fatal injury precision, 

sensitivity/recall, and F1-scores.   

Unlike previous aviation accident research, this study desired to use all four levels 

of the personal injury and aircraft damage variables. However, this lopsided dataset may 
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be why many previous researchers evaluated the severity of personal injury as a binary 

variable (Baugh, 2020; Burnett & Si, 2017; Koteeswaran et al., 2019; Kushwaha & 

Sharma, 2014; Wu et al., 2014). However, to support this study’s goal to evaluate 

severity on a four multi-level scale required the dataset to be augmented. 

Database Augmentation Results 

To begin the augmented dataset process, the initial SVM workflow (see Figure 5) 

was stopped and the final SVM workflow (see Figure 6) was initiated. First, the original 

dataset was shuffled in Microsoft Excel and then 80% of the dataset was separated into a 

training partition and 20% was moved into a separate Excel file for the test partition. 

Next, the training partition was augmented using random over-sampling (ROS) because 

ROS is known to produce better results than random under-sampling and synthetic 

minority over-sampling technique (SMOTE) (Korstanje, 2021; Leevy et al., 2018). In 

addition to ROS, the dataset was augmented using the fixed method by duplication of 

accident data similar to the augmentation of medical research databases for predicting 

illnesses (Khoshgoftaar et al., 2007; Van Hulse et al., 2007). The augmentation occurred 

once for the severity of aircraft damage and separately for the severity of personal injury 

resulting in two separate augmented datasets. This process was followed instead of 

augmenting the entire dataset and then splitting into two partitions, to avoid sampling 

bias or overfitting by reducing similar events in both the training and test partitions. 

Therefore, the training partitions were augmented differently for each DV to 

ensure all four levels of severity were equally represented at around 1,000 accident 

events. For the three categories with the lowest data samples, the accident data were 

duplicated to approximately 900 to 1,000 events for each level of aircraft damage and 
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700 to 900 for each level of personal injury. The largest severity percentage was not 

augmented. Table 18 and Table 19 show data sample size after the augmentation 

Table 18 

Augmented Numerical Table of Severity of Aircraft Damage  

Severity of Aircraft Damage N  Percentage 
None 972 25.2% 
Minor 972 25.2% 
Substantial 1000 25.9% 
Destroyed 912 23.7% 
Total 3856 100% 

 

Table 19 

Augmented Numerical Table of Severity of Personal Injury  

Severity of Personal Injury N  Percentage 
None 846 24.9% 
Minor 959 28.2% 
Serious 720 21.2% 
Fatal 878 25.8% 
Total 3403 100.0% 

 

Reliability and Validity Testing Results 

With the augmented datasets, the severity of aircraft damage and severity of 

personal injury SVM models were developed and tested for reliability and validity. First, 

each specific kernel was applied to the SVM model. Then, a five-fold cross-validation 

was used against the training partition to test model reliability (see Table 20 and Table 

21). Even though the four kernels performed differently, the low standard deviation 

between each cross-validation run reveals a consistent performance by the different SVM 

models against the training partition (Brownlee, 2018; Geron, 2017; Kuhn & Johnson, 
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2016; Scikit-learn, 2019). Therefore, all of the different SVM models were considered 

reliable.  

Table 20 

Severity of Aircraft Damage Cross-Validation  

Kernel Run 1 Run 2 Run 3 Run 4 Run 5 Ave. SD 
Linear   88.46% 89.23% 87.42% 86.51% 87.43% 87.83% 0.01 
Polynomial   94.42% 90.66% 92.35% 90.27% 92.72% 92.09% 0.02 
RBF  97.92% 96.63% 97.92% 98.31% 97.27% 97.61% 0.01 
Sigmoid 75.75% 74.58% 74.19% 73.15% 74.55% 74.44% 0.01 

Note. RBF = Radial basis function. Ave. = Average.  

 

Table 21 

Severity of Personal Injury Cross-Validation  

Kernel Run 1 Run 2 Run 3 Run 4 Run 5 Ave. SD 
Linear   45.96% 48.38% 46.76% 45.29% 49.71% 47.22% 0.02 
Polynomial   52.57% 59.59% 53.97% 56.18% 58.97% 56.25% 0.03 
RBF  78.41% 80.88% 79.41% 80.29% 76.18% 79.03% 0.02 
Sigmoid 28.63% 28.09% 29.85% 31.47% 32.65% 30.14% 0.02 

Note. RBF = Radial basis function. Ave. = Average. 

 

After the cross-validation was completed, the SVM models were coded for 

prediction against the test partition and evaluated for validity using confusion matrices 

and classification reports. For the severity of aircraft damage, the linear, polynomial, and 

RBF kernel training models showed confident confusion matrices (see Appendix C). 

However, for the severity of personal injury, only the polynomial and RBF kernel 

training models displayed an optimistic confusion matrix (see Appendix C). Previous 
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research analyzing the polynomial and RBF kernels assessed them as great kernels for 

separating non-linear data (Jiang et al., 2016; Navlani, 2019). 

Confusion matrices and classification reports were used to test the validity of the 

models by displaying the misclassification rates, sensitivity, and specificity for the test 

partition. For the severity of aircraft damage, the RBF kernel model provided the highest 

accuracy at 93% while the polynomial was second with 92% (see Table 22). There was 

no concern of overfitting for any of the models because of the high precision, 

sensitivity/recall, specificity, and F1-score, meaning the model was able to predict both 

true and false positives (Geron, 2017; Kuhn & Johnson, 2016; Sofaer et al., 2019). 

Table 22 

Severity of Aircraft Damage Validity  

 

Note. RBF = Radial basis function. Precision, sensitivity/recall, specificity, and F1-score 

shown are an average across the four levels of severity. Full results are in Appendix C.  

 

For the severity of personal injury, the RBF kernel had the highest accuracy, 

precision, sensitivity/recall, specificity, and F1-score (see Table 23). The polynomial 

kernel provided high precision and specificity, but poor accuracy, sensitivity/recall, and 

F1-score. 

Kernel 
Mis-

classification 
Rate 

Accuracy Precision 
Sensitivity 

/ Recall 
Specificity 

F1-
Score 

Linear   0.20 0.80 0.71 0.86 0.88 0.76 
Polynomial   0.08 0.92 0.94 0.86 0.96 0.88 
RBF  0.07 0.93 0.90 0.98 0.95 0.93 
Sigmoid 0.53 0.47 0.40 0.56 0.79 0.41 
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Table 23 

Severity of Personal Injury Validity   

Kernel 
Mis-

classification 
Rate 

Accuracy Precision 
Sensitivity 

/ Recall 
Specificity 

F1-
Score 

Linear   0.47 0.53 0.54 0.54 0.84 0.53 
Polynomial   0.43 0.57 0.81 0.56 0.87 0.58 
RBF  0.19 0.81 0.81 0.82 0.94 0.81 
Sigmoid 0.71 0.29 0.29 0.29 0.76 0.29 

Note. RBF = Radial basis function. Precision, sensitivity/recall, specificity, and F1-score 

shown are an average across the four levels of severity. Full results are in Appendix C.  

 

Prediction Results 

Best Prediction Models 

The first step in addressing research question one was to develop, fine tune, and 

evaluate the best models for the severity of aircraft damage and the severity of personal 

injury. The goal of the selected models was to have a low misclassification rate, high 

accuracy, high precision, high sensitivity/recall, high specificity, and high F1-score. 

Although some research, for example medical, prefer a high precision or a high 

sensitivity/recall, this study desired a predictive model that had both high precision and 

high sensitivity/recall (Branco et al., 2015; Brownlee, 2020a; Geron, 2017; Kuhn & 

Johnson, 2016; Leevy, et al., 2018; Sofaer et al., 2019). This way the predictive models 

would correctly ascertain an accident’s specific level of aircraft damage and personal 

injury, without favoring a true positive or false positive. 

For the severity of aircraft damage, the RBF kernel model produced the highest 

accuracy at 93%, while also producing the correct level of aircraft damage. The linear 
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model and polynomial model also had an accuracy of 80% and 92% respectively. The 

polynomial model had the highest recall for the aircraft substantially damaged level, 0.98, 

however, it was lacking in recall for the destroyed damaged level, at 0.47, as shown in 

Table 22 and Appendix C. Since both the polynomial and RBF models had above 90% 

accuracy, Figure 19 shows a side-by-side comparison of their confusion matrix image 

(Geron, 2017).  

Figure 19 

Confusion Matrix Image Comparison for Severity of Aircraft Damage: Polynomial 
Verses RBF  
 
       Polynomial      RBF 

  

Note. See Appendix D for all four kernel confusion matrix images.  

 

The side-by-side confusion matrix shows that the SVM model with the 

polynomial kernel was sporadic at predicting the destroyed aircraft damage level, while 

the SVM model with the RBF kernel cleanly predicted all four levels of severity. 

Therefore, through all four individual levels, the RBF kernel produced the best holistic 

model for predicting the severity of aircraft damage. Since the SVM model with the RBF 

kernel at the default values for σ and 𝐶 predicted at a 93% for both the training and test 
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sets, the next step was to optimize the SVM models with the RBF kernels. Once 

optimized the new models were evaluated against the training and test partitions for 

improved prediction ability without overfitting. Table 24 shows the different optimized 

SVM models using the RBF kernels against the default RBF kernel. 

Table 24 

Optimization of SVM Model with RBF Kernel for Severity of Aircraft Damage (Test)   

 
σ     𝐶 M. R. Accuracy Precision 

Sensitivity 
/ Recall 

F1-
Score 

Default 0.03 1 0.07 0.93 0.90 0.98 0.93 
Optimization 

A 
0.04 1 0.06 0.94 0.92 0.94 0.93 

Optimization 
B 

0.04 5 0.04 0.96 0.94 0.94 0.94 

Optimization 
C 

0.04 10 0.05 0.95 0.94 0.94 0.94 

Optimization 
D 

0.05 1 0.04 0.96 0.94 0.95 0.94 

Optimization 
E 

0.05 5 0.04 0.96 0.94 0.94 0.94 

Optimization 
F 

0.05 10 0.04 0.96 0.94 0.94 0.94 

Optimization 
G 

0.1 1 0.10 0.90 0.92 0.72 0.78 

Optimization 
H 

0.1 5 0.11 0.89 0.92 0.71 0.78 

Optimization 
I 

0.1 10 0.10 0.90 0.93 0.71 0.78 

Optimization 
J 

10 100 0.26 0.74 0.18 0.25 0.21 

Note. M.R. = Misclassification Rate. RBF = Radial basis function. Precision, 

sensitivity/recall, specificity, and F1-score shown are an average across the four levels of 

severity.  
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Initially each optimized SVM model with RBF kernel continued to improve 

against the training partition with Optimization G through J predicting 100% of the 

training partition. However, when comparing the same optimized models against the test 

set, Optimization G through J models were subject to overfitting as shown by the low 

accuracy, precision, sensitivity/recall, and F1-scores (Geron, 2017; Kuhn & Johnson, 

2016; Sofaer et al., 2019). Figure 20 shows how the test accuracy drops even though the 

training accuracy improves revealing overfit models.  

Figure 20 

Severity of Aircraft Damage Training Versus Test Optimization  
 

 

Note. X axis reflects Table 24 Optimized models. 

 

From comparing Table 24 and Figure 20, SVM models with RBF Optimization B, 

D, E, and F appear identical; however, the Optimization D model has a slightly higher 

sensitivity/recall of 0.95 compared to 0.94 of the other models. It also had more true 

positive results for the destroyed level of damage than the other models (see Figure 21, 
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Table 25, Table 26, and Appendix C). Therefore, the SVM model using the RBF 

Optimization D kernel had the best predictability for the severity of aircraft damage 

during approach and landing accidents. 

Figure 21 

RBF Optimization D Confusion Matrix Image Severity of Aircraft Damage 
 

 

 

Table 25 

Optimization D Model for Aircraft Damage – Numerical Confusion Matrix 

  Actual Values 
Severity of Aircraft Damage None Minor Substantial Destroyed 

P
re

di
ct

ed
 

V
al

ue
s 

None 20 0 0 0 
Minor 0 25 5 0 
Substantial 0 1 241 8 
Destroyed 0 0 0 38 
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Table 26 

Optimization D Model for Aircraft Damage – Classification Report  

 
Severity of  

Aircraft Damage 
Precision 

Sensitivity 
/ Recall 

F1-Score Support 

 None 1.00 1.00 1.00 20 
 Minor 0.96 0.83 0.89 30 
 Substantial 0.98 0.96 0.97 250 
 Destroyed 0.83 1.00 0.90 38 
      

Accuracy   0.96 338 
Macro Average 0.94 0.95 0.94 338 

Weighted Average 0.96 0.96 0.96 338 
 

 

The next step in addressing the first research question was to evaluate the best 

model for predicting the severity of personal injury. All four kernels had much lower 

accuracy percentages predicting the severity of personal injury than the previous severity 

of aircraft damage (see Table 23 and Appendix C). The polynomial kernel had the 

highest precision for the serious and fatal personal injury levels. However, the accuracy, 

recall, and F1-scores broached concerns. The RBF kernel model had an accuracy 

significantly better than the other kernels and was the only model with an accuracy above 

the desired goal of 80%. In addition, the RBF kernel model had high precision, 

sensitivity/recall, F1-score, and specificity displaying the validity and well roundedness 

of the model. Figure 22 shows the confusion matrix image of the RBF model. 
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Figure 22 

Default RBF Confusion Matrix Image Severity of Personal Injury   

  

Note. See Appendix D for all four kernel confusion matrix images. 

 

Although the SVM model with the RBF kernel had the highest prediction 

accuracy at 81%, the next step was to optimize the model by adjusting the default values 

for σ and 𝐶. Table 27 shows the results of some of the optimization models with the 

complete list of all optimization models in Appendix C. 
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Table 27 

Optimization of SVM Model with RBF Kernel for Severity of Personal Injury (Test)  

 
σ     𝐶 M. R. Accuracy Precision 

Sensitivity 
/ Recall 

F1-
Score 

Default 0.03 1 0.19 0.81 0.81 0.82 0.81 
Optimization 

A 
0.1 1 0.12 0.88 0.87 0.93 0.89 

Optimization 
B 

0.6 10 0.02 0.98 0.99 0.98 0.98 

Optimization 
C 

0.65 10 0.02 0.98 0.99 0.98 0.99 

Optimization 
D 

0.65 20 0.02 0.98 0.99 0.98 0.99 

Optimization 
E 

0.7 10 0.02 0.98 0.99 0.98 0.99 

Optimization 
F 

10 1000 0.41 0.59 0.88 0.41 0.44 

Note. M.R. = Misclassification Rate. RBF = Radial basis function. Precision, 

sensitivity/recall, specificity, and F1-score shown are an average across the four levels of 

severity. This is a sample of the different optimization models. A complete list is in 

Appendix C.  

 

SVM models using the RBF kernel were developed with σ values between 0.1 

and 0.8 and 𝐶 values between 1 and 100 (see Appendix C). All of these models fell 

between the 81% defaulted value model and increased up to the 98% of the Optimization 

B, C, D, and E models. Above the Optimization C model, there was no improvement in 

accuracy, precision, sensitivity/recall, or F1-scores as shown by Optimization D and E 

models in Table 27. When comparing all of the optimization models between the training 

and the test accuracy, Figure 23 shows how the models start to overfit as the accuracy for 
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the test partition begins to drop even though the training partition accuracy approaches or 

equals 100%.  

Figure 23 

Severity of Personal Injury Training Versus Test Optimization  
 

 

Note. X axis reflects Table 27 optimized models. 

 

 The SVM models with parameters σ and 𝐶 higher than Optimization C model are 

at risk for overfitting or were subjected to overfitting. Therefore, the Optimization C 

model achieves the best prediction at the lowest parameter values. Optimization C 

model’s confusion matrix and numerical values are shown in Figure 24 and Table 28. 

The full classification report for Optimization C is shown in Table 29. 
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Figure 24 

Optimization C Model’s Confusion Matrix for Personal Injury  
 

 

 

Table 28 

Optimization C Model for Personal Injury – Numerical Confusion Matrix  

  Actual Values 
Severity of Personal 

Injury 
None  Minor Serious Fatal 

P
re

di
ct

ed
 

V
al

ue
s 

None 210 3 0 0 
Minor 5 132 0 0 
Serious 0 0 45 0 
Fatal 1 0 0 53 
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Table 29 

Optimization C Model for Personal Injury – Classification Report  

 
Severity of  

Personal Injury 
Precision 

Sensitivity 
/ Recall 

F1-
Score 

Support 

 None 0.97 0.99 0.98 213 
 Minor 0.98 0.96 0.97 137 
 Serious 1.00 1.00 1.00 45 
 Fatal 1.00 0.98 0.99 54 
      

Accuracy   0.98 449 
Macro Average 0.99 0.98 0.99 449 

Weighted Average 0.98 0.98 0.98 449 
 

The classification report in Table 29 reveals the optimized model has both a high 

precision, sensitivity/recall, and F1-score. Therefore, even though this Optimization C 

SVM model using the RBF kernel has increased the accuracy for predicting the severity 

of personal injury, there is no concern of overfitting because of the high precision, high 

sensitivity/recall, and high F1-score confirm the model’s ability to predict both true 

positives and true negatives (Geron, 2017; Kuhn & Johnson, 2016; Sofaer et al., 2019). 

Therefore, the best model for predicting the severity of personal injury was the 

Optimization C SVM model using the RBF kernel. 

Most Important Factors 

The second question was to evaluate each model for the most important factors 

influencing that model. All of the categorical values had to be coded with dummy 

variables into subcategories for the SVM. Therefore, the initial model’s statistical 

findings for factor importance had each subcategory separate. The top five factors for the 

severity of aircraft damage were flight hours, the subcategory single engine certificate, 

time of day, pilot’s age, crosswind component, runway number, and the subcategory of 
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any obstacle penetration on approach (see Appendix C). For the severity of personal 

injury, the top factors were the time of day, pilot’s flight hours, crosswind component, 

pilot’s age, runway number, and the subcategory of any obstacle penetration on approach 

(see Appendix C). 

However, it was apparent that the interval and ratio variables were at the top of 

both factor lists. Therefore, to fairly evaluate a factor’s importance against an interval or 

ratio variable, the individual subcategory results were combined. Table 30, Figure 25, and 

Figure 26 show how each factor influenced the models. 

Table 30 

Factor Importance   

Variable Importance for 
Severity of 

Aircraft Damage 

Importance for 
Severity of 

Personal Injury 

Combined 
Importance 

Status of visual area surface 
penetrations 

0.081 0.057 0.138 

Mission C.F.R. category 0.053 0.006 0.059 
FAA Visual Area Surface Policy 
Timeframe 

0.096 0.065 0.161 

Runway lighting types 0.076 0.099 0.175 
Landing runway in use 0.067 0.103 0.17 
Crosswind Component 0.078 0.124 0.202 
Aircraft engine type 0.043 0.018 0.061 
Number of aircraft engines 0.014 0.014 0.028 
UTC time of accident 0.114 0.136 0.25 
Pilot’s certificate 0.157 0.045 0.202 
Pilot’s rating 0.083 0.052 0.135 
Pilot’s total number of flight hours 0.122 0.134 0.256 
Pilot’s age 0.101 0.123 0.224 
Number of flight crew 0.022 0.001 0.023 
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Figure 25 

Factor Importance Severity of Aircraft Damage  
 

 
Note. Variables are shown at their categorical level 

 
Figure 26 

Factor Importance Severity of Personal Injury  
 

 
Note. Variables are shown at their categorical level 
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Therefore, the leading five factors for the severity of aircraft damage were the 

pilot’s certificate, number of flight hours, time of day, pilot’s age, and the FAA’s obstacle 

policy. For the severity of personal injury, the top five factors were the time of day, 

pilot’s number of flight hours, crosswind component, pilot’s age, and approach runway 

number.   

Evaluating the Three New Variables 

The final research question regarded the statistical findings for factor importance 

of the three new variables: the presence of visual area surface penetrations for a runway, 

the FAA’s visual area surface penetration policy timeframe, and the type of runway 

approach lighting. Runway lighting type had the highest factor importance at a combined 

weight of 0.175, followed by the FAA visual area surface policy timeframe at 0.161, and 

status of visual area surface penetrations at 0.138 (see Table 31). When separated into the 

sub-category level, the highest of the new variables was any obstacle penetration at 0.097 

followed by the FAA policy from 2018 to 2019 at 0.067. Table 32 reveals how these 

three factors and their sub-categories compared against the remaining variables. Only the 

FAA policy timeframe was in the top five of the 14 variables for factor influence. 

However, when evaluating the subcategories, the presence of any obstacle on final 

approach was the highest subcategory for severity of personal injury and second highest 

for severity of aircraft damage with a combined importance as second highest (see Table 

31, Table 32, and Appendix C).  
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Table 31 

New Variable’s Factor Importance   

Variable / 
Sub-Category 

Importance for 
Severity of 

Aircraft Damage 

Importance for 
Severity of 

Personal Injury 

Combined 
Importance 

Runway lighting types 0.076 0.099 0.175 
FAA Visual Area Surface Policy 
Timeframe 

0.096 0.065 0.161 

Status of visual area surface 
penetrations 

0.081 0.057 0.138 

    
Any Obstacle Penetration 0.056 0.041 0.097 
2018 – 2019 FAA Policy 0.047 0.020 0.067 
20:1 Obstacle Penetration Only 0.033 0.025 0.058 
2014 – 2015 FAA Policy 0.028 0.023 0.051 
PAPI 2 0.026 0.024 0.050 
2016 – 2017 FAA Policy 0.022 0.023 0.045 
No Obstacle Penetration 0.025 0.016 0.041 
34:1 Obstacle Penetration Only 0.023 0.016 0.039 
PAPI 4 0.013 0.023 0.036 
Approach Lighting System 0.013 0.015 0.028 
No Lighting 0.010 0.016 0.026 
VASI 2 0.008 0.012 0.020 
VASI 4 0.005 0.010 0.015 
Note. Appendix C contains all sub-categories. 

 

Table 32 

New Variable’s Factor Importance Ranking   

Variable /  
Sub-Category 

Importance 
Ranking for 
Severity of 

Aircraft Damage 

Importance 
Ranking for 
Severity of 

Personal Injury 

Combined 
Ranking 

Status of visual area surface 
penetrations 

7 of 14 8 of 14 8 or 14 

FAA Visual Area Surface 
Policy Timeframe 

5 of 14 7 of 14 7 of 14 

Runway lighting types 9 of 14 6 of 14 6 of 14 
    
Any Obstacle Penetration on 
Approach 

7 of 39 (#2 sub- 
category) 

6 of 39 (#1 
sub-category) 

7 of 39 (#2 
sub-category) 
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20:1 Obstacle Penetration Only 10 of 39 7 of 39 9 of 39 
34:1 Obstacle Penetration Only 16 of 39 18 of 39 16 of 39 
No Obstacle Penetration 14 of 39 17 of 39 15 of 39 
2014 – 2015 FAA Policy 13 of 39 10 of 39 11 of 39 
2016 – 2017 FAA Policy 19 of 39 9 of 39 14 of 39 
2018 – 2019 FAA Policy 8 of 39 13 of 39 8 of 39 
Approach Lighting System 23 of 39 20 of 39 22 of 39 
PAPI 2 14 of 39 8 of 39 12 of 39 
PAPI 4 22 of 39 11 of 39 17 of 39 
VASI 2 30 of 39 24 of 39 29 of 39 
VASI 4 34 of 39 25 of 39 32 of 39 
No Lighting 26 of 39 15 of 39 23 if 39 

 

Summary 

Chapter IV covered the development of the database per the Chapter III 

methodology, SEMMA process, data cleaning, organization, and augmentation, and SVM 

workflow. The chapter also covered the demographic and descriptive statistics, and well 

as the results of the different SVM models. The last section of the chapter covered the 

three research questions and provided the results for each question. 

For the first research question, the RBF kernel models performed the best for both 

the severity of aircraft damage and the severity of personal injury. The next question was 

answered by the top factors for the predicting the severity of aircraft damage. These were 

the pilot’s certificate, pilot’s number of flight hours, time of day, pilot’s age, and the 

FAA’s obstacle policy. Similarly, the top factors to predict the severity of personal injury 

were the time of day, pilot’s number of flight hours, crosswind component, pilot’s age, 

and approach runway number. Lastly, the final research question specifically evaluated 

the statistical findings for factor importance of the three new variables. The presence of 

an obstacle penetration was the first or second subcategory for influencing both SVM 

models.  



132 

 

Therefore, Chapter IV covers the results from the development of the different 

SVM models. Chapter V begins with discussing these results, followed by the conclusion 

and recommendations.      
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Chapter V: Discussion, Conclusions, and Recommendations  

This chapter discusses the results from the development of the different SVM 

models to predict the severity of personal injury and severity of aircraft damage from an 

aircraft accident on approach and landing.  The first section discusses the development, 

organization, cleaning, and augmentation of the dataset. The next section discusses the 

results from Chapter IV, including the three research questions, and is followed by the 

conclusion and recommendations.  

Discussion 

This section discusses five general areas: database organization and cleaning, the 

SVM model development process, and the three research questions.  

Dataset Cleaning and Organization 

The dataset underwent multiple types of cleaning and organization for this study. 

Through initial research, it was expected that the database pull from the NTSB would 

have approximately 2,400 accidents since general aviation alone has roughly 400 

approach and landing accidents per year (AOPA, 2018; Boeing, 2019; FSF, 2017; IATA, 

2016). However, the initial NTSB download had 6,806 accidents over the six-year period, 

which was almost triple the expected accidents.  

In addition, 3,738 (54.9%) of the accidents occurred at airports without an IAP. 

These had to be removed because without an IAP the obstacle penetration status could 

not be verified. The FAA reports that 1,226 of the 5,211 public airports have close in 

obstacles, or 23.5% (Bureau of Transportation Statistics, 2021; FAA, n.d.-a). Therefore, 

the researcher considered using those airports either by either assuming all of them had 

obstacle penetrations or randomly assigning 23.5% of the accidents with obstacle 
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penetrations. However, both of these assumptions had the potential to skew the results. 

Therefore, all accidents at airports without an IAP were removed. 

Initially, it was not surprising that 1,771 accidents were removed from the dataset 

because they were not applicable to this research (i.e., an accident was due to an engine 

failure, a pilot ran out of fuel, collided with wildlife, gear malfunction, etc.). However, 

there was also a significant number of accidents that had the wrong taxonomy. For 

example, the NTSB labeled an accident as occurring on landing when in actuality, the 

aircraft departed the end of the runway because the pilot’s door opened during initial 

takeoff roll and the pilot failed to stop the aircraft on the runway (NTSB, 2015b). The 

NTSB also classified an accident as occurring on landing when a pilot miscalculated the 

fuel required resulting in fuel starvation and engine failure on route to the destination 

airport (NTSB, 2015a). These two accidents, and more, were listed as a taxonomy of 

accidents on approach and landing. This incorrect taxonomy was a large section of the 

removed accidents. Had the accidents at the airports that do not have at least one IAP 

been manually reviewed, the number of incorrect taxonomies would have been higher.   

Dataset Augmentation 

Data augmentation provides value to machine learning methods when the initial 

dataset is lopsided by increasing the size of the training partition to provide more events 

to train the models (Geron, 2017; Khoshgoftaar et al., 2007; Van Hulse et al., 2007). 

Without the augmentation, the various SVM models were taught to predict the severity of 

personal injury as no personal injury and the severity of aircraft damage as substantial 

aircraft damage (see Table 22, Table 23, Figure 17, Figure 18, and Appendix C). These 

initial SVM models were not realistic for the real world, nor were they generalizable. 
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Therefore, data augmentation of the training partition provided enough events in all four 

levels of severity SVM models that could predict the multi-level DV.   

However, even with the positive results across the accuracy, precision, 

sensitivity/recall, specificity, and F1-scores of the data augmented SVM models, there 

was concern that the augmented dataset may lead to sampling bias, overfitting, or 

unrealistic SVM models. To avoid sampling bias, the dataset could not be augmented, 

prior to splitting into a training and test partition. This would have allowed both the 

training and testing datasets to have significant overlapping events and increased the 

possibility of overfitting (Ding et al., 2019; Lemley et al., 2017). To eliminate concerns 

that an augmented dataset would develop an unrealistic model, the ROS fixed method 

allowed the training partitions to have realistic events similar to previous researchers 

flipping, cropping, rotating, or blurring images to increase the dataset allowing the 

trained SVM models to remain generalizable and applicable to the real world (Geron, 

2017; Lemley et al., 2017; Lo et al., 2021). The augmented training partition provided an 

advantage over the non-augmented by developing SVM models with improved accuracy 

over the original SVM trained models.  

Therefore, to avoid developing an SVM model potentially trained and tested 

against the same data, avoiding sampling bias, overfitting, and an unrealistic model, the 

machine learning workflow did not follow the normal import of a single dataset to split 

into the training and test partitions in Google Colaboratory (2022) as shown in Figure 6 

(Dibike et al., 2001; Geron, 2017; Jeeva, 2018; Kuhn & Johnson, 2016; Scikit-learn, 

2019). Instead, the original dataset was first separated into a training and test partitions 

using the 80/20 split. From there, the training partition was augmented (see Figure 6). 
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Finally, the augmented training partition and the test partition were imported into Google 

Colaboratory (2022) for SVM development, training, and testing.  

Using the augmented datasets provided enough training events to forge SVM 

models that evaluate each level of severity, thus improving the results over the original 

models, which had assumed the same severity level for each accident. First, the 

augmented dataset results were not the same for the SVM models with the linear, 

polynomial, sigmoid, and RBF kernels. Second, the classification reports showed a 

variety of results for each level of severity. SVM models, with the different kernels, all 

had multi-level precision, sensitivity/recall, and F1-scores (see Appendix C). Lastly, the 

confusion matrices showed all four levels of severity were analyzed by the SVM model 

and varied across the different kernels. Therefore, the augmented dataset results showed a 

significant improvement in predicting the four levels of severity compared to the initial 

datasets. 

First Research Question 

With the augmented dataset, the four SVM models with the different kernels were 

trained and tested. The SVM model using the RBF kernel performed the best at 93% (see 

Table 22).  However, the SVM model using the polynomial kernel also well exceeded the 

researcher’s goal of 80% accuracy with a test prediction accuracy of 92%. However, 

when compared side-by-side between the model with the RBF kernel and the model with 

the polynomial kernel, the confusion matrix shows that the polynomial kernel struggled 

with the severity levels of substantial and destroyed aircraft damage. Therefore, the SVM 

model with the RBF kernel was chosen for further optimization. 
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The SVM model with the Optimization D RBF kernel was selected as the highest 

predator of the severity of aircraft damage (see Table 24, Figure 21, and Appendix C). 

Not only did the 96% accuracy well exceed the researcher’s threshold of 80%, but the 

model also had sensitivity/recall scores between 0.83 and 1.00 (see Table 26). Recall 

measures how well a machine learning model correctly predicts the positive outcome, the 

and correct level of severity. In addition, the SVM model with the RBF kernel also had 

precision values between 0.83 and 1.00, which means that when the model predicted a 

positive return, the model predicted that return correctly. With an average specificity of 

0.98, the model correctly predicted when the accident was not a specific level of severity 

(i.e., false positives). Lastly, the confusion matrix confirms the classification report that 

the SVM model with the Optimization D RBF kernel accurately predicted all four levels 

of the severity of aircraft damage (see Figure 21 and Appendix C). 

 Compared to previous limited research on predicting aircraft damage, this model 

exceeds the 93% prediction accuracy for aircraft damage due to wildlife strikes or the 

78% accuracy for bird strikes (Misra, Toppo, & Mendonca, 2022; Misra & Toppo, n.d.). 

The SVM model using the Optimization D RBF kernel model accuracy of 96% is also 

similar to previous general accident prediction modeling with accuracies between 91% 

and 99% (Koteeswaran et al., 2019). Therefore, the SVM with Optimization D RBF 

kernel prediction model successfully answered the first part of research question one. 

 The SVM model using the RBF kernel also had the highest prediction for the 

severity of personal injury at 81%, just about the researcher’s threshold of 80% (see 

Table 23 and Appendix C). Compared to previous aviation machine learning research, 

where personal injury was a binary DV, accuracy percentages ranged from 70% up to 
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90% (Baugh, 2020; Burnett & Si, 2017). Thus, the 81% achieved in this research is 

between previous binary DV modeling. In addition, the results are similar to other 

multi-level DV modeling. Li et al. (2008, 2012) achieved an SVM precision accuracy 

of 83% for their multi-level DV modeling for the severity of personal injury in 

automobile accidents.  

Even though the SVM model with RBF kernel met the threshold of 80%, 

nonetheless, there was room for optimization. Through adjustments to the 𝐶 and 

gamma parameters, different optimized outcomes were examined against the training and 

test partitions. Each parameter was adjusted separately and then combined and fine-

tuned. Table 27 shows a variety of the models that were developed. Optimization C 

model was chosen as the best performing model because it had the lowest 𝐶 and gamma 

parameter values for the models that predicted at a 98% accuracy. Similar to the severity 

of aircraft damage, the Optimization C model classification report and confusion matrix 

were evaluated to ensure the model predicted all four levels of severity (see Table 28, 

Table 29 and Figure 24). Further optimization of the parameters led to an increase in the 

training accuracy, precision, sensitivity/recall, and F1-scores. However, Figure 23 and 

Table 27 show that these optimization models were overfitted because the results against 

the test partition had decreased accuracy, precision, sensitivity/recall, and F1-scores. 

Therefore, the Optimized C SVM model with the RBF kernel successfully answered 

the second part of research question one for the severity of personal injury. 

Second Research Question 

The second research question was to find the most important factors used in the 

development of the machine learning models to predict the severity of aircraft damage 
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and the severity of personal injury. The majority of the top five factors for both models, 

pilot’s age, pilot’s total flight time, crosswinds, runway number, and time of day, 

mirrored previous research (Baugh, 2020; Kushwaha & Sharma, 2014; Shappell et al., 

2007; Wong et al., 2006; Wu et al., 2014). For personal injury prediction, crosswind 

component was third, and runway number was fifth, while these two variables were 

eighth and ninth for predicting aircraft damage.  Two remaining factors for the model for 

the severity of aircraft damage were pilot certificate, which was the top factor in 

importance, and the FAA obstacle penetration policy, which was the fifth most important. 

When reviewing the tables in Appendix C for subcategory factor importance, it is 

apparent that the non-categorical and non-binary variables are in the top six of both 

models. This raised concerns that when categorical values are changed into dummy 

variables, they may lose importance because the subcategories are not linked (i.e., the 

models do not link obstacle 20:1 penetration, obstacle 34:1 penetration, and no obstacle 

penetration as part of obstacle penetration status). Therefore, to evaluate a holistic view 

of the predictive factors, Table 33 depicts the top 10 variables, which consist of five ratio 

or interval variables and five nominal subcategory variables. 
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Table 33 

Holistic Factor Importance: Top 1 through 10   

Variable Combined Factor Importance for Both 
Models 

Pilot’s Total Flight Hours 0.25582 
Time of Accident 0.24984 
Pilot’s Age 0.22406 
Crosswind Component 0.20195 
Landing Runway Number 0.16916 
Single-Engine Land Certificate 0.13338 
Any Obstacle Penetration 0.09676 
FAA Policy 2018 – 19 (final) 0.06670 
FAA Policy 2014 – 15 (interim) 0.06268 
20:1 Obstacle Penetration 0.05758 

Note. Full results of the individual models are in Appendix C.  

 

 Therefore, the top factors for predicting both the severity of aircraft damage and 

the severity of personal injury are pilot’s total flight hours, time of the accident, pilot’s 

age, crosswind component, landing runway number, if the pilot had a single-engine land 

certificate, if the approach runway had an obstacle penetration, and the FAA visual area 

surface policy. The factor importance for the single-engine land certificate was similar to 

Boyd (2019), who stated that accidents in a single-engine aircraft were likely to result in 

higher injury severity. 

Third Research Question 

The third research question was to determine the perdition contribution and 

sensitivity analysis for the three new factors in predicting the severity of aircraft damage 

and the severity of personal injury due to aviation landing accidents. The three new 

factors were the presence of visual area surface penetrations for a runway, the FAA’s 

visual area surface penetration policy timeframe, and the type of runway approach 
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lighting. In Table 31, when viewing the three new variables at a categorical level, the 

FAA policy had the highest importance among the three. FAA policy was fifth in 

importance for predicting aircraft damage and seventh for importance for personal injury. 

Obstacle penetration status was seventh for aircraft damage and eighth for personal 

injury. Runway lighting was ninth for aircraft damage and sixth for personal injury. 

However, when looking at Table 31, Table 32, Table 33, and Appendix C, the holistic 

predictive models, visual area surface obstacle penetration status was the seventh highest 

overall predictor and the second highest nominal categorical predictor. The FAA visual 

area surface policy was the third and fourth highest categorical factors and the overall 

eighth and ninth predictors. The first subcategory for runway lighting, PAPI two, was the 

seventh highest categorical factor. 

 The high importance of the visual area surface obstacle penetration aligns with 

the theory of inattentional blindness – missing an obstacle directly in front of a pilot. 

Many accident reports indicated that a pilot, from private to airline transport ratings, 

impacted an obstacle on final (NTSB, 2017a, 2018a, 2018b). For example, on a clear day 

in Missouri, an experienced commercial pilot collided with power lines half a mile from 

the runway (NTSB, 2017b). Even if the aircraft did not strike an obstacle, inattentional 

blindness might be the root of the pilot’s late recognition of the obstacle causing a steep, 

unstable approach, resulting in an accident (NTSB, 2019a). Therefore, the factor 

importance of the presence of a penetration visual area surface obstacle may be linked to 

the pilot’s inattentional blindness. This also supports AOPA’s (2016) concern that any 

obstacle in the visual area surface was concerning and should not be allowed by FAA 

policy. 
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Conclusions 

The purpose of this study was to develop a predictive model using SVM 

algorithms for the severity of aircraft damage and the severity of personal injury, while 

also evaluating three new variables. The SVM model with RBF kernel function predicted 

the severity of aircraft damage with 96% accuracy along with precision, sensitivity/recall, 

and F1-scores in the upper 90s. A second RBF kernel based SVM model predicted the 

severity of personal injury with 98% accuracy with high precision, sensitivity/recall, and 

F1-scores. The statistical findings for factor importance were evaluated for each model 

independently and holistically. This included evaluating three new variables due to 

inattentional blindness: status of visual area surface penetrations, runway lighting types, 

and FAA visual area surface policy timeframe.  

Theoretical Contributions 

This study added three new variables to aviation accident research using the 

theory of inattentional blindness. Similar to results from inattentional blindness and 

runway incursion (Kennedy et al., 2014, 2017), these results show that inattentional 

blindness and the presence of visual area surface penetrations are important factors in 

predicting the severity of aviation accidents. This study fills the gap in aviation accident 

literature by incorporating the three new variables with previous important factors to 

provide a holistic model to predict the severity of aircraft damage and the severity of 

personal injury in aircraft approach and landing accidents. It is recommended that all 

three new variables are included in any future aviation accident research.  
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Practical Contributions 

The results of this study show the importance of removing visual area surface 

obstacles at airports because obstacle penetration was the second highest factor of 

importance for a categorical variable and the seventh highest overall (see Table 33). This 

supports the $42 billion dollars the FAA spent at approximately 2,300 airports to remove 

or lower these obstacle penetrations (FAA, 2020b, 2021a, 2021b). In addition, this study 

supports AOPA’s (2016) claim that any obstacle penetration is unsafe and should not be 

allowed. Since the presence of an obstacle penetration influences the severity of aircraft 

damage and personal injury, the FAA should prohibit all public airports from allowing a 

visual area surface obstacle penetration to exist. This would also support the FAA’s goal 

to reduce general aviation accidents (General Aviation Joint Steering Committee, 2016; 

Performance.gov, n.d.). 

However, the money spent for the installation of runway approach lighting may 

not significantly reduce the severity of an accident because its importance was outside the 

top 10. The exact reason is unknown; however, the installation of approach runway 

lighting may actually increase the severity of aircraft damage and personal injury because 

the pilot or flight crew may be intently focused on the approach runway lights, especially 

during poor visibility, and suffer from inattentional blindness missing an obstacle directly 

in the flight path. In addition, the VGSI may provide a false sense of security to the pilot 

that there are no obstacle penetrations (AVweb, 2019). The VGSI angle should be 

adjusted to provide a descent to the runway above any obstacles; however, the presence 

of a VGSI does not mean that there are no visual area surface obstacle penetrations (IFR 

Magazine, 2014; NBAA, 2011). Therefore, further study is recommended to determine if 
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runway approach lighting increases intentional blindness in pilots causing an obstacle to 

be missed due to a false sense of security. 

Another practical contribution of this study to aviation is HFACS research on the 

risks of final approach and landing accidents. Similar to previous studies, this study 

confirmed that environmental (i.e., UTC time of accident and crosswind component), and 

pilot characteristics (i.e., pilot’s certificate, pilot’s age, and pilot’s total number of flight 

hours) are factors that impact the severity of aviation accidents (Baugh, 2020; Kushwaha 

& Sharma, 2014; Shappell et al., 2007; Wong et al., 2006; Wu et al., 2014). However, 

none of the factors that would increase pilot task saturation on final (i.e., mission C.F.R. 

category, number of aircraft engines, and aircraft engine type) had high sensitivity 

analysis on the factor contribution. This was different from prior research that indicated 

that the final approach and landing had the highest task saturation on pilots and flight 

crews (Ancel et al., 2015; Boyd, 2019; Shappell et al., 2007; Wu, 2018). This study does 

not disregard a pilot’s high task saturation on final approach and landing, nor does it deny 

the complexity of these phases of flight. Instead, the complexity may be revealed through 

the pilot’s possible inattentional blindness towards obstacle penetrations, which is why 

the status of the visual area surface penetrations was one of the top categorical variables 

for predicting the severity of aircraft damage and personal injury. 

Lastly, the goal of this study was threefold: to fill a gap in the research through 

the addition of three new variables, to evaluate and compare the addition of two machine 

learning kernels, and to evaluate severity of aviation accidents as a multi-level DV. As 

shown in Table 33, both the new variable of status of visual area surface penetrations and 

the new variable of FAA visual area surface policy timeframe were within the top 10 
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important factors importance and within the top five for categorical variables for 

influencing the prediction of the severity of aircraft damage and personal injury. The first 

directly contributes to the practicality of spending money to remove visual area surface 

obstacles and supports any FAA policy to keep these surfaces clear of obstacles. The 

latter supported previous research on policy and aviation maintenance accidents by 

showing how policy changes may impact the severity of aviation accidents (Ancel et al., 

2015).  

The second goal was to evaluate the RBF and sigmoid kernel against the kernels, 

linear and polynomial, previously used in accident prediction machine learning models 

(Baugh, 2020; Burnett & Si, 2017; Koteeswaran et al., 2019). Table 22 and Table 23 

show how the four kernels compared in predicting the severity of aircraft damage and 

severity of personal injury. The RBF kernel performed best for both predictions, 

followed by the polynomial, linear, and sigmoid. Navlani (2019) stated that both the 

RBF and polynomial kernels perform well with non-linear categorical data. Linear 

and sigmoid perform better for binary classifications (Geron, 2017; Kuhn & Johnson, 

2016; Vapnik, 1999). Therefore, this research concluded that the RBF kernel 

performed better in aviation accident severity prediction because of the large amount 

of categorical data. 

The last goal of the study was to evaluate the level of severity of aviation 

accidents on the same multi-level as determined by the FAA (2018b; “Notification and 

Reporting of Aircraft Accidents or Incidents”, 2020). Initially, this was not successful 

because of the tilted dataset toward an aviation accident culminating in no personal injury 

and substantial aircraft damage. However, through data augmentation, as discussed, both 
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SVM models were able to be developed for a multi-level DV. To prevent overfitting, the 

training and test partitions were separated before augmentation to allow the SVM models 

to be tested against fresh data and not risk accident redundancies between the two 

partitions. Therefore, some SVM models using the RBF kernels were subject to 

overfitting as the 𝐶 and gamma parameters increased because the models predicted 

flawlessly within the training partition while undergoing lower accuracies against the 

training partition. However, the two models selected as the best for predicting the 

severity of aircraft damage and the severity of personal injury did not risk overfitting 

because the models had equal training and test misclassification rates, accuracies, 

precision, sensitivity/recall, and F1-scores (see Table 21, Table 28, Table 29, Figure 25 

Figure 26, and Appendix C). Therefore, all three goals of the study were accomplished. 

Limitations of the Findings 

The primary limitation was that the accident had to occur in the U.S. and at an 

airport that had at least one IAP. There were no adverse effects by only looking at 

accidents in the U.S. because the accident information was able to be gathered through 

the NTSB database (n.d.-a), NTSB accident reports (n.d.-c), FAA’s Instrument Flight 

Procedure Gateway website (n.d.-b), and the AirNav.com (n.d.) website. However, the 

limitation to airports with at least one IAP resulted in the removal of roughly half of the 

initial database accidents. Although this was a large amount of raw data, the inability to 

correctly report and code the status of the visual area surface obstacle penetration 

supported its removal. Even so, the results that obstacle penetrations could be 

problematic are still applicable to all airports regardless of whether there was an IAP or 

not. 
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Another limitation was to the initial dataset because of the heavily skewed 

number of aviation accidents that had substantial aircraft damage and no personal injury. 

Although the data augmentation was successful, it is still a limit that the initial dataset 

was not balanced for a multi-level DV for severity. The concern for overfitting was 

removed by comparing the training and test partitions to choose SVM optimized models 

with no overfitting issues. Therefore, both final SVM models should perform well in 

predicting future accident data. 

Recommendations 

Based on the results of this study, the following sections provide 

recommendations for the aviation community, aviation policymakers, accident prediction 

research in any industry, and future inattentional blindness and visual area surface 

obstacle penetration research.  

Recommendations for the NTSB 

It is recommended that the NTSB improve and standardize its taxonomy for 

aviation accidents.  Almost 50% of the NTSB database had to be removed because of 

incorrect taxonomy, such as an aircraft accident during a takeoff abort being coded 

incorrectly as a landing accident (NTSB, 2015b). Incorrect taxonomy may cause 

problems for other accident research. Accident investigators should receive reoccurring 

training to standardize accident reporting and taxonomy coding. Lastly, the NTSB 

should add approach runway lighting type and visual area surface obstacle penetration 

status to its database to support future aviation accident research.  
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Recommendations for the FAA 

Since the current visual area surface policy by the FAA was the third highest 

nominal subcategory, it is recommended that the FAA review the current policy and 

consider revising it for clarity and moving airports towards removing obstacle 

penetrations. In addition, per AOPA (2016) recommendations, the FAA should work 

with airport owners and managers to fund the removal of obstacle penetrations since 

this was the second highest nominal subcategory.  

Recommendations for Pilot Training Material and Classes 

Pilot training facilities and training manuals should incorporate the risks of 

inattentional blindness on approach and landing in order to provide pilots with the 

knowledge of the potential dangers of obstacle penetrations on final approach. Also, 

training should include information that a pilot must be diligent and not assume an 

obstacle would be easy to visually acquire. 

Recommendations for Future Research Methodology 

The RBF kernel outperformed the linear, polynomial, and sigmoid kernels in this 

study for both the severity of aircraft damage and the severity of personal injury. 

Previous aviation accident research only evaluated the linear or polynomial kernels 

(Baugh, 2020; Burnett & Si, 2017; Koteeswaran et al., 2019). However, the results 

show that even though the RBF kernel has not been used in aviation accident research 

until now, RBF, along with the polynomial kernel, are considered great kernels for 

non-linear data because these kernels can separate the non-linear data into a new 

subsequently higher dimensional space (Navlani, 2019). Jiang et al. (2016) stated that the 
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RBF kernel had this advantage because it had fewer parameters or numerical restrictions. 

The RBF equation is as follows (Vapnik, 1999): 

𝐾ሺ𝑥, 𝑥ᵢሻ ൌ exp ሺ-  ǀǀ௫ି௫ᵢǀǀ
మ

ଶఙమ
)  (32) 

In Scikit-learn (2022c), the default value of 𝜎 is: 

𝜎 ൌ ଵ

ሺ୬_୤ୣୟ୲୳୰ୣୱ ∗ଡ଼.୴ୟ୰ሺሻሻ
  (33) 

where: 

𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = the number of features derived from the development of the 

training model (Scikit-learn, 2022d).  

For all of the SVM models using the RBF kernel, the defaulted kernel parameter 

was: 

𝜎 ൌ ଵ

ሺଷ଼ ∗଴.ଽ଻ଷ଺଼ሻ
ൌ 0.027  (34) 

Also, Scikit-learn (2022c) defaults the value of 𝐶, the penalty parameter, at a 

value of 1.0. Although 𝜎 and 𝐶 parameters have default settings in Scikit-learn coding, 

the values can be adjusted to impact the support vectors and hyperplane. Both of these 

parameters can be optimized either through a looping program or by manual input 

(Kuhn & Johnson, 2016). Therefore, it is recommended for aviation accident 

prediction modeling to include the RBF kernel as part of the research. 

In addition, it is recommended for any accident prediction modeling, 

regardless of the industry, to include the RBF kernel in the research methodology. 

Even though this study was focused on aviation accidents, automobile and mining 

accidents use a similar multi-level severity of personal injury (Aliabadi et al., 2019; 

Li et al., 2008, 2012). However, with over two million injuries in the workplace each 
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year, many industries would benefit from incorporating SVM modeling with the RBF 

kernel in their prevention or accident research (U.S. Bureau of Labor Statistics, 

2021). Moreover, the SVM models with the RBF kernel were able to handle multiple 

categorical variables. Through the inclusion of categorical variables, just as this 

research added three new categorical variables, the SVM modeling with the RBF 

kernel may broaden the research to allow more types of variables previously 

excluded. Therefore, it is recommended for all industries to use the SVM modeling 

with the RBF kernel because it allows the use of an enhanced multi-level DV and can 

be used for both predicting the severity of injuries and workplace damage.  

Lastly, future aviation accident researchers should be aware of the NTSB 

taxonomy limitations. It is recommended not to assume that everything pulled from 

the NTSB database for a specific area of flight, type of accident, etc., are correct. 

There were numerous times a landing accident taxonomy was used even though the 

accident occurred while the aircraft was on departure, moving on the taxiway, or due 

to fuel starvations miles from an airport.  

Recommendations for Future Research 

Future aviation approach and landing accident research should incorporate the 

status of visual area surface penetrations and runway lighting types as variables. Future 

research may not need to incorporate the FAA visual area surface policy. However, 

because of the importance of this factor, this researcher recommends all industries 

include a variable for policy, manual, or regulation changes in future research. 

It is recommended to continue to study the importance of obstacles in the 

visual area of an approach through a future aircraft simulator study. This would allow 



151 

 

for a safe environment to analyze why a pilot fails to recognize an obstacle on final 

approach. That future study could control different variables to examine the impact of 

inattentional blindness. For example, how does the size, type, color, and height of the 

obstruction impact pilot inattentional blindness? In addition, the simulator research 

could track the eye movement of the participants, analogous to previous inattentional 

blindness studies in radiologists and air traffic controllers (Drew et al., 2013; Imbert et 

al., 2014). Future simulator research could analyze how runway approach lighting and 

the depiction of an obstacle on the approach plate impacts the pilot in perceiving the 

obstacle. Therefore, it is recommended for a future study to practically evaluate the 

existence of obstacles on final approach and landing based on the findings from this 

study.  
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Appendix A 
 

Data Collection Device - Instrument Approach Procedure Forms and Chart 

Example IAP Forms and chart at KMBY, Omar N Bradley Airport, Missouri.  

Arrows point to the information used to help collect the dataset (FAA, n.d.-b). 
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Appendix B 

NTSB Accident Report 

Example NTSB accident report at KPTK, Oakland County International, 

Michigan (NTSB, 2017d).  The analysis section was used to determine if the accident 

qualified for the study. The factual data were used to code the pilot’s hours into the 

dataset. Finally, the factual data were compared to the pull from the NTSB database to 

ensure accuracy. 
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Appendix C 

Tables 

C1 Numerical Table of Pilot’s Certificate Frequencies 

C2 Numerical Table of Pilot’s Rating Frequencies 

C3 Numerical Table of Runway Lighting Types Frequencies 

C4 Numerical Table of FAA Visual Area Surface Policy Timeframe Frequencies 

C5 Numerical Frequencies of Landing Accidents by State 

C6 Numerical Table of Landing Runway in Use 

C7 Numerical Table of Crosswind Component 

C8 Numerical Table of UTC Time of Accident 

C9 Numerical Table of Transformed UTC Time of Accident  

C10 Severity of Aircraft Damage Training: Confusion Matrix 

C11 Severity of Aircraft Damage Test: Confusion Matrix  

C12 Severity of Aircraft Damage Test: Classification Report  

C13 Severity of Aircraft Damage Optimization Test: Confusion Matrix 

C14 Severity of Personal Injury Training: Confusion Matrix 

C15 Severity of Personal Injury Test: Confusion Matrix  

C16 Severity of Personal Injury Test: Classification Report  

C17 Severity of Personal Injury Optimization Test: Confusion Matrix 

C18 Subcategory Factor Importance for the Severity of Aircraft Damage 

C19 Subcategory Factor Importance for the Severity of Personal Injury 
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Table C1 

Numerical Table of Pilot’s Certificate Frequencies  

Type of Certificate N  Percentage 
Airline Transport Pilot 93 7.2% 
Airline Transport Pilot plus Flight Instructor 81 6.2% 
Commercial 150 11.6% 
Commercial plus Flight instructor 122 9.4% 
Private 602 46.4% 
Private plus Flight Instructor 3 0.2% 
Recreational 1 0.1% 
Sport 25 1.9% 
Sport plus Flight Instructor 2 0.2% 
Student 218 16.8% 
Total 1297 100.0% 

Note. Pilots with a student certificate cannot also hold flight instructor certificate 

(Certification: Pilots, Flight Instructors, and Ground Instructors, 2020). There were no 

reported accidents with pilots who held a recreational certificate plus flight instructor. 

There were no missing data for the pilot’s certificate variable.  
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Table C2 

Numerical Table of Pilot’s Rating Frequencies  

Type of Rating N  Percentage 
Multiengine 240 18.5% 
Multiengine with Flight Instructor 352 27.1% 
Single-engine 436 33.6% 
Single-engine with Flight Instructor 269 20.7% 
Total 1297 100.0% 

Note. There were no missing data for the pilot’s rating variable.  
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Table C3 

Numerical Table of Runway Lighting Types Frequencies  

Type of Runway Lighting N  Percentage 
Approach Lighting System  19 1.5% 
Approach Lighting System plus PAPI 2 21 1.6% 
Approach Lighting System plus PAPI 4 171 13.2% 
Approach Lighting System plus VASI 2 1 0.1% 
Approach Lighting System plus VASI 4 34 2.6% 
None 178 13.7% 
PAPI 2 345 26.6% 
PAPI 4 367 28.3% 
VASI 2 76 5.9% 
VASI 4 85 6.6% 
Total 1297 100.0% 

Note. There were no missing data for the runway lighting types variable.  
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Table C4 

Numerical Table of FAA Visual Area Surface Policy Timeframe Frequencies  

FAA Policy Two - Year Periods N  Percentage 
Interim Policy Period from 2014 – 2015 393 30.3% 
Assessment Policy Period from 2016 - 2017 486 37.5% 
Final Policy Period from 2018 – 2019 418 32.2% 
Total 1297 100.0% 

Note. Each two-year policy timeframe began on January 1st of the listed year and ended 

on December 31st of the following year. There were no missing data for the FAA visual 

area surface policy timeframe variable.  
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Table C5 

Numerical Frequencies of Landing Accidents by State  

Two-Letter State 
Abbreviations N  Percentage 

AK 33 2.5% 
AL 14 1.1% 
AR 12 0.9% 
AZ 62 4.8% 
CA 144 11.1% 
CO 34 2.6% 
CT 13 1.0% 
FL 113 8.7% 
GA 38 2.9% 
HI 8 0.6% 
IA 12 0.9% 
ID 26 2.0% 
IL 20 1.5% 
IN 23 1.8% 
KS 19 1.5% 
KY 10 0.8% 
LA 10 0.8% 
MA 13 1.0% 
MD 30 2.3% 
ME 3 0.2% 
MI 31 2.4% 
MN 26 2.0% 
MO 31 2.4% 
MS 4 0.3% 
MT 17 1.3% 
NC 30 2.3% 
ND 5 0.4% 
NE 7 0.5% 
NH 8 0.6% 
NJ 27 2.1% 
NM 22 1.7% 
NV 23 1.8% 
NY 20 1.5% 
OH 48 3.7% 
OK 15 1.2% 
OR 30 2.3% 
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PA 36 2.8% 
RI 6 0.5% 
SC 16 1.2% 
SD 5 0.4% 
TN 24 1.9% 
TX 82 6.3% 
UT 19 1.5% 
VA 39 3.0% 
VT 6 0.5% 
WA 35 2.7% 
WI 22 1.7% 
WV 7 0.5% 
WY 19 1.5% 
Total 1297 100.0% 

Note. Every state is listed except for Delaware. There were no missing data for the state 

of the landing runway accident.  
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Table C6 

Numerical Table of Landing Runway in Use  

Runway Number of Landing Runway N  Percentage 
01 25 1.9% 
02 18 1.4% 
03 26 2.0% 
04 35 2.7% 
05 36 2.8% 
06 16 1.2% 
07 25 1.9% 
08 21 1.6% 
09 33 2.5% 
10 27 2.1% 
11 22 1.7% 
12 29 2.2% 
13 38 2.9% 
14 22 1.7% 
15 20 1.5% 
16 45 3.5% 
17 56 4.3% 
18 64 4.9% 
19 34 2.6% 
20 35 2.7% 
21 33 2.5% 
22 40 3.1% 
23 35 2.7% 
24 47 3.6% 
25 55 4.2% 
26 47 3.6% 
27 52 4.0% 
28 52 4.0% 
29 29 2.2% 
30 39 3.0% 
31 44 3.4% 
32 31 2.4% 
33 31 2.4% 
34 45 3.5% 
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35 42 3.2% 
36 48 3.7% 

Total 1297 100.0% 

Note. Runway numbers were recorded using the two number designation (34 vice 340). 

There were no missing data for the landing runway in use variable.  
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Table C7 

Numerical Table of Crosswind Component  

Computed Crosswind Component (Knots) N  Percentage 
.00 88 6.8% 
.35 3 0.2% 
.44 1 0.1% 
.52 34 2.6% 
.68 2 0.2% 
.69 20 1.5% 
.87 14 1.1% 
1.03 33 2.5% 
1.04 8 0.6% 
1.22 17 1.3% 
1.37 23 1.8% 
1.39 12 0.9% 
1.50 26 2.0% 
1.53 2 0.2% 
1.56 13 1.0% 
1.71 21 1.6% 
1.72 1 0.1% 
1.74 7 0.5% 
1.91 9 0.7% 
1.93 23 1.8% 
2.00 20 1.5% 
2.05 14 1.1% 
2.08 3 0.2% 
2.26 3 0.2% 
2.30 24 1.9% 
2.39 22 1.7% 
2.43 4 0.3% 
2.50 20 1.5% 
2.57 9 0.7% 
2.60 31 2.4% 
2.74 10 0.8% 
2.78 3 0.2% 
2.82 18 1.4% 
2.95 20 1.5% 
3.00 31 2.4% 
3.02 1 0.1% 
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3.06 13 1.0% 
3.08 14 1.1% 
3.21 18 1.4% 
3.35 1 0.1% 
3.42 7 0.5% 
3.46 17 1.3% 
3.47 1 0.1% 
3.50 9 0.7% 
3.76 24 1.9% 
3.83 12 0.9% 
3.86 18 1.4% 
3.94 11 0.8% 
4.00 22 1.7% 
4.10 3 0.2% 
4.33 18 1.4% 
4.45 7 0.5% 
4.50 19 1.5% 
4.60 10 0.8% 
4.70 15 1.2% 
4.79 3 0.2% 
4.92 12 0.9% 
5.00 15 1.2% 
5.13 4 0.3% 
5.14 13 1.0% 
5.20 11 0.8% 
5.21 1 0.1% 
5.36 16 1.2% 
5.47 4 0.3% 
5.50 4 0.3% 
5.64 15 1.2% 
5.74 1 0.1% 
5.79 12 0.9% 
5.91 10 0.8% 
6.00 16 1.2% 
6.06 9 0.7% 
6.13 4 0.3% 
6.16 1 0.1% 
6.43 5 0.4% 
6.50 5 0.4% 
6.58 12 0.9% 
6.84 1 0.1% 
6.89 21 1.6% 
6.93 15 1.2% 
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7.00 8 0.6% 
7.07 4 0.3% 
7.50 3 0.2% 
7.52 10 0.8% 
7.66 8 0.6% 
7.71 2 0.2% 
7.79 6 0.5% 
7.88 13 1.0% 
8.00 11 0.8% 
8.36 2 0.2% 
8.43 4 0.3% 
8.46 6 0.5% 
8.66 6 0.5% 
8.86 5 0.4% 
9.00 9 0.7% 
9.19 5 0.4% 
9.40 8 0.6% 
9.53 5 0.4% 
9.64 5 0.4% 
9.85 10 0.8% 
9.96 3 0.2% 
10.00 1 0.1% 
10.28 3 0.2% 
10.34 7 0.5% 
10.39 3 0.2% 
10.50 1 0.1% 
10.72 3 0.2% 
10.83 6 0.5% 
11.00 3 0.2% 
11.26 2 0.2% 
11.28 5 0.4% 
11.49 5 0.4% 
11.82 5 0.4% 
12.00 5 0.4% 
12.12 3 0.2% 
12.21 1 0.1% 
12.22 3 0.2% 
12.26 5 0.4% 
12.80 3 0.2% 
12.86 1 0.1% 
12.99 2 0.2% 
13.00 3 0.2% 
13.16 2 0.2% 
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13.50 2 0.2% 
13.79 5 0.4% 
13.86 2 0.2% 
14.00 4 0.3% 
14.10 2 0.2% 
14.55 1 0.1% 
14.72 1 0.1% 
14.77 5 0.4% 
15.04 1 0.1% 
15.32 1 0.1% 
15.76 2 0.2% 
16.09 1 0.1% 
16.45 1 0.1% 
16.74 1 0.1% 
16.85 1 0.1% 
16.91 2 0.2% 
17.00 2 0.2% 
17.85 2 0.2% 
18.00 1 0.1% 
18.79 1 0.1% 
19.28 1 0.1% 
19.73 1 0.1% 
19.92 1 0.1% 
20.68 2 0.2% 
20.78 1 0.1% 
21.45 1 0.1% 
21.61 1 0.1% 
22.00 2 0.2% 
23.38 1 0.1% 
23.75 1 0.1% 
24.51 1 0.1% 
29.13 1 0.1% 
33.77 1 0.1% 
Total 1297 100.0% 

Note. There were no missing data for the crosswind component variable.  
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Table C8 

Numerical Table of UTC Time of Accident  

Type of Runway Lighting N  Percentage 
0000 8 0.6% 
0003 1 0.1% 
0005 1 0.1% 
0008 2 0.2% 
0010 1 0.1% 
0015 4 0.3% 
0020 3 0.2% 
0024 1 0.1% 
0027 1 0.1% 
0030 12 0.9% 
0031 1 0.1% 
0035 2 0.2% 
0036 1 0.1% 
0040 2 0.2% 
0045 1 0.1% 
0047 2 0.2% 
0048 1 0.1% 
0050 1 0.1% 
0055 1 0.1% 
0100 4 0.3% 
0105 2 0.2% 
0108 1 0.1% 
0110 4 0.3% 
0115 4 0.3% 
0118 1 0.1% 
0119 2 0.2% 
0120 2 0.2% 
0124 1 0.1% 
0130 6 0.5% 
0135 1 0.1% 
0140 1 0.1% 
0145 6 0.5% 
0148 1 0.1% 
0150 1 0.1% 
0153 1 0.1% 
0156 1 0.1% 
0200 9 0.7% 
0209 1 0.1% 
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0210 2 0.2% 
0215 1 0.1% 
0225 1 0.1% 
0230 5 0.4% 
0240 2 0.2% 
0245 2 0.2% 
0250 1 0.1% 
0257 1 0.1% 
0300 3 0.2% 
0310 1 0.1% 
0313 1 0.1% 
0314 1 0.1% 
0315 4 0.3% 
0325 1 0.1% 
0330 7 0.5% 
0335 1 0.1% 
0350 1 0.1% 
0355 1 0.1% 
0400 1 0.1% 
0401 1 0.1% 
0407 1 0.1% 
0420 1 0.1% 
0440 1 0.1% 
0500 1 0.1% 
0506 1 0.1% 
0523 1 0.1% 
0540 1 0.1% 
0553 1 0.1% 
0600 2 0.2% 
0622 1 0.1% 
0630 1 0.1% 
0639 1 0.1% 
0648 1 0.1% 
0653 1 0.1% 
0715 1 0.1% 
0722 1 0.1% 
0800 1 0.1% 
0810 1 0.1% 
0815 1 0.1% 
0850 1 0.1% 
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0913 1 0.1% 
1000 1 0.1% 
1013 1 0.1% 
1017 1 0.1% 
1051 1 0.1% 
1056 1 0.1% 
1100 1 0.1% 
1120 1 0.1% 
1130 2 0.2% 
1140 1 0.1% 
1148 1 0.1% 
1200 1 0.1% 
1210 1 0.1% 
1222 1 0.1% 
1230 5 0.4% 
1231 1 0.1% 
1242 1 0.1% 
1245 5 0.4% 
1249 1 0.1% 
1250 2 0.2% 
1258 1 0.1% 
1300 6 0.5% 
1303 1 0.1% 
1310 1 0.1% 
1313 1 0.1% 
1315 5 0.4% 
1320 1 0.1% 
1327 1 0.1% 
1330 11 0.8% 
1333 1 0.1% 
1335 1 0.1% 
1342 3 0.2% 
1345 6 0.5% 
1347 1 0.1% 
1350 3 0.2% 
1357 1 0.1% 
1400 13 1.0% 
1410 2 0.2% 
1415 10 0.8% 
1418 1 0.1% 
1420 2 0.2% 
1425 3 0.2% 
1427 1 0.1% 
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1428 1 0.1% 
1430 23 1.8% 
1433 1 0.1% 
1434 1 0.1% 
1435 1 0.1% 
1436 1 0.1% 
1437 1 0.1% 
1438 2 0.2% 
1439 1 0.1% 
1440 1 0.1% 
1445 6 0.5% 
1446 1 0.1% 
1450 2 0.2% 
1451 1 0.1% 
1453 1 0.1% 
1455 4 0.3% 
1458 3 0.2% 
1500 34 2.6% 
1502 2 0.2% 
1505 1 0.1% 
1507 1 0.1% 
1508 1 0.1% 
1510 1 0.1% 
1515 7 0.5% 
1517 1 0.1% 
1518 2 0.2% 
1520 4 0.3% 
1525 2 0.2% 
1530 24 1.9% 
1531 1 0.1% 
1534 2 0.2% 
1535 4 0.3% 
1536 1 0.1% 
1540 2 0.2% 
1545 11 0.8% 
1550 4 0.3% 
1555 2 0.2% 
1600 28 2.2% 
1601 1 0.1% 
1602 1 0.1% 
1605 5 0.4% 
1607 1 0.1% 
1610 3 0.2% 



195 

 

1614 1 0.1% 
1615 7 0.5% 
1618 4 0.3% 
1620 2 0.2% 
1621 1 0.1% 
1622 1 0.1% 
1625 2 0.2% 
1626 1 0.1% 
1630 35 2.7% 
1631 1 0.1% 
1635 5 0.4% 
1642 1 0.1% 
1643 1 0.1% 
1644 2 0.2% 
1645 7 0.5% 
1650 5 0.4% 
1655 1 0.1% 
1659 1 0.1% 
1700 32 2.5% 
1701 1 0.1% 
1702 1 0.1% 
1705 2 0.2% 
1708 1 0.1% 
1709 1 0.1% 
1710 1 0.1% 
1715 8 0.6% 
1716 1 0.1% 
1718 1 0.1% 
1720 1 0.1% 
1723 1 0.1% 
1725 4 0.3% 
1730 33 2.5% 
1733 2 0.2% 
1735 1 0.1% 
1738 1 0.1% 
1740 4 0.3% 
1745 6 0.5% 
1746 1 0.1% 
1747 1 0.1% 
1750 5 0.4% 
1752 1 0.1% 
1758 2 0.2% 
1800 31 2.4% 
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1802 1 0.1% 
1803 1 0.1% 
1805 3 0.2% 
1806 2 0.2% 
1810 4 0.3% 
1811 1 0.1% 
1812 1 0.1% 
1815 6 0.5% 
1817 1 0.1% 
1818 1 0.1% 
1820 7 0.5% 
1824 1 0.1% 
1826 1 0.1% 
1827 1 0.1% 
1828 1 0.1% 
1830 28 2.2% 
1831 2 0.2% 
1834 1 0.1% 
1835 4 0.3% 
1839 1 0.1% 
1840 2 0.2% 
1843 1 0.1% 
1845 9 0.7% 
1850 4 0.3% 
1852 1 0.1% 
1854 1 0.1% 
1856 1 0.1% 
1858 2 0.2% 
1900 44 3.4% 
1905 3 0.2% 
1906 1 0.1% 
1908 1 0.1% 
1909 1 0.1% 
1910 3 0.2% 
1913 1 0.1% 
1915 4 0.3% 
1916 1 0.1% 
1917 1 0.1% 
1919 1 0.1% 
1920 4 0.3% 
1922 1 0.1% 
1924 1 0.1% 
1925 4 0.3% 
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1928 1 0.1% 
1929 1 0.1% 
1930 21 1.6% 
1932 1 0.1% 
1935 1 0.1% 
1937 1 0.1% 
1940 4 0.3% 
1943 1 0.1% 
1945 9 0.7% 
1950 5 0.4% 
1952 2 0.2% 
1953 2 0.2% 
1954 1 0.1% 
1955 2 0.2% 
1956 1 0.1% 
2000 34 2.6% 
2004 1 0.1% 
2005 1 0.1% 
2006 2 0.2% 
2007 2 0.2% 
2010 3 0.2% 
2012 1 0.1% 
2015 13 1.0% 
2018 1 0.1% 
2020 12 0.9% 
2023 1 0.1% 
2025 1 0.1% 
2026 1 0.1% 
2027 1 0.1% 
2029 1 0.1% 
2030 34 2.6% 
2031 1 0.1% 
2035 1 0.1% 
2040 3 0.2% 
2041 1 0.1% 
2043 4 0.3% 
2045 5 0.4% 
2047 2 0.2% 
2050 1 0.1% 
2053 1 0.1% 
2055 1 0.1% 
2057 4 0.3% 
2100 19 1.5% 
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2104 1 0.1% 
2105 2 0.2% 
2109 1 0.1% 
2110 3 0.2% 
2112 1 0.1% 
2115 9 0.7% 
2116 1 0.1% 
2117 1 0.1% 
2119 1 0.1% 
2120 6 0.5% 
2121 1 0.1% 
2125 3 0.2% 
2130 18 1.4% 
2133 1 0.1% 
2134 1 0.1% 
2136 1 0.1% 
2138 2 0.2% 
2140 3 0.2% 
2142 1 0.1% 
2143 1 0.1% 
2145 10 0.8% 
2146 1 0.1% 
2148 1 0.1% 
2150 1 0.1% 
2151 2 0.2% 
2153 1 0.1% 
2155 3 0.2% 
2200 21 1.6% 
2201 1 0.1% 
2205 1 0.1% 
2208 1 0.1% 
2210 5 0.4% 
2212 1 0.1% 
2214 1 0.1% 
2215 7 0.5% 
2217 1 0.1% 
2218 1 0.1% 
2220 4 0.3% 
2225 5 0.4% 
2227 1 0.1% 
2230 20 1.5% 
2235 3 0.2% 
2240 7 0.5% 
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2242 1 0.1% 
2243 1 0.1% 
2245 5 0.4% 
2246 1 0.1% 
2247 1 0.1% 
2250 6 0.5% 
2252 1 0.1% 
2255 2 0.2% 
2300 20 1.5% 
2304 1 0.1% 
2305 2 0.2% 
2306 1 0.1% 
2310 2 0.2% 
2312 1 0.1% 
2313 1 0.1% 
2315 2 0.2% 
2316 1 0.1% 
2318 1 0.1% 
2320 6 0.5% 
2321 2 0.2% 
2325 2 0.2% 
2328 1 0.1% 
2330 19 1.5% 
2332 1 0.1% 
2335 3 0.2% 
2340 2 0.2% 
2342 1 0.1% 
2345 6 0.5% 
2350 2 0.2% 
2355 1 0.1% 
2359 1 0.1% 
Total 1297 100.0% 

Note. Time was reported on the NTSB accident reports in the 24-hour format from four 

zeros, midnight, to 2359. There were no missing data for the UTC time of accident 

variable.  
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Table C9 

Numerical Table of Transformed UTC Time of Accident  

UTC Time of Accident Grouped by Hour N  Percentage 
0000 - 0059 46 3.5% 
0100 – 0159 39 3.0% 
0200 – 0259 25 1.9% 
0300 – 0359 21 1.6% 
0400 – 0459 5 0.4% 
0500 – 0559 5 0.4% 
0600 – 0659 7 0.5% 
0700 – 0759 2 0.2% 
0800 – 0859 4 0.3% 
0900 – 0959 1 0.1% 
1000 – 1059 5 0.4% 
1100 – 1159 6 0.5% 
1200 – 1259 19 1.5% 
1300 – 1359 43 3.3% 
1400 – 1459 83 6.4% 
1500 – 1559 107 8.2% 
1600 – 1659 117 9.0% 
1700 – 1759 112 8.6% 
1800 – 1859 120 9.3% 
1900 – 1959 124 9.6% 
2000 – 2059 133 10.3% 
2100 – 2159 96 7.4% 
2200 – 2259 98 7.6% 
2300 – 2359 79 6.1% 

Total 1297 100.0% 

Note. Time was grouped into one hour time periods. For example, accidents between 

2000 and 2059 were all grouped into the 2000-hour block. Midnight was reported as four 

zeros and included in the four zero group.  
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Table C10 

Severity of Aircraft Damage Training: Confusion Matrix  

   Actual Values 
 

Kernel 
Severity of  

Aircraft Damage 
None Minor Substantial Destroyed 

P
re

di
ct

ed
 V

al
ue

s 

 None 972 0 0 0 
Linear Minor 0 972 0 0 
 Substantial 7 26 735 230 
 Destroyed 0 0 218 694 
      
 None 972 0 0 0 
Polynomial Minor 0 972 0 0 
 Substantial 0 2 984 11 
 Destroyed 0 0 287 625 
      
 None 972 0 0 0 
Radial Minor 0 972 0 0 
Basis Substantial 1 2 904 91 
Function Destroyed 0 0 0 912 
      
 None 972 0 0 0 
Sigmoid Minor 0 972 0 0 
 Substantial 22 86 564 326 
 Destroyed 0 147 392 373 

 
 
  



202 

 

Table C11 

Severity of Aircraft Damage Test: Confusion Matrix  

   Actual Values 
 

Kernel 
Severity of  

Aircraft Damage 
None Minor Substantial Destroyed 

P
re

di
ct

ed
 V

al
ue

s 

 None 20 0 0 0 
Linear Minor 0 30 0 0 
 Substantial 8 8 194 40 
 Destroyed 0 0 13 25 
      
 None 20 0 0 0 
Polynomial Minor 0 30 0 0 
 Substantial 2 1 246 1 
 Destroyed 0 0 20 18 
      
 None 20 0 0 0 
Radial Minor 0 30 0 0 
Basis Substantial 0 1 227 22 
Function Destroyed 0 0 0 38 
      
 None 20 0 0 0 
Sigmoid Minor 15 15 0 0 
 Substantial 17 38 113 82 
 Destroyed 1 10 16 11 
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Table C12 

Severity of Aircraft Damage Test: Classification Report  

Kernel / Accuracy 
Severity of  

Aircraft Damage 
Precision Recall 

F1-
Score 

Support 

 None 0.71 1.00 0.83 20 
Linear Minor 0.79 1.00 0.88 30 
 Substantial 0.94 0.78 0.85 250 
 Destroyed 0.38 0.66 0.49 38 
      
Accuracy    0.80 338 
Macro Average  0.71 0.86 0.76 338 
Weighted Average  0.85 0.80 0.81 338 
      
 None 0.91 1.00 0.95 20 
Polynomial Minor 0.97 1.00 0.98 30 
 Substantial 0.92 0.98 0.95 250 
 Destroyed 0.95 0.47 0.63 38 
      
Accuracy    0.92 338 
Macro Average  0.94 0.86 0.88 338 
Weighted Average  0.93 0.93 0.92 338 
      
 None 1.00 1.00 1.00 20 
Radial Basis Minor 0.97 1.00 0.98 30 
Function Substantial 1.00 0.91 0.95 250 
 Destroyed 0.63 1.00 0.78 38 
      
Accuracy    0.93 338 
Macro Average  0.90 0.98 0.93 338 
Weighted Average  0.96 0.93 0.94 338 
      
 None 0.38 1.00 0.55 20 
Sigmoid Minor 0.24 0.50 0.32 30 
 Substantial 0.88 0.45 0.60 250 
 Destroyed 0.12 0.29 0.17 38 
      
Accuracy    0.47 338 
Macro Average  0.40 0.56 0.41 338 
Weighted Average  0.70 0.47 0.52 338 
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Table C13 

Severity of Aircraft Damage Optimization Test: Confusion Matrix  

   Actual Values 
 

Kernel 
Severity of  

Aircraft Damage 
None Minor Substantial Destroyed 

P
re

di
ct

ed
 V

al
ue

s 

 None 20 0 0 0 
Optimization Minor 0 25 5 0 

B Substantial 0 1 241 8 
 Destroyed 0 0 1 37 
      
 None 20 0 0 0 

Optimization Minor 0 25 5 0 
D Substantial 0 1 241 8 
 Destroyed 0 0 0 38 
      
 None 20 0 0 0 

Optimization Minor 0 25 5 0 
E Substantial 0 1 241 8 
 Destroyed 0 0 1 37 
      
 None 20 0 0 0 

Optimization Minor 0 25 5 0 
F Substantial 0 1 242 7 
 Destroyed 0 0 2 36 
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Table C14 

Severity of Personal Injury Training: Confusion Matrix  

   Actual Values 
 

Kernel 
Severity of  

Personal Injury 
None Minor Serious Fatal 

P
re

di
ct

ed
 V

al
ue

s 

 None 302 251 126 169 
Linear Minor 196 453 147 130 
 Serious 63 208 360 99 
 Fatal 90 190 51 538 
      
 None 806 34 3 5 
Polynomial Minor 507 405 7 7 
 Serious 463 0 267 0 
 Fatal 499 0 0 370 
      
 None 497 162 111 78 
Radial Minor 126 684 44 72 
Basis Serious 16 34 672 8 
Function Fatal 10 55 22 782 
      
 None 196 289 186 177 
Sigmoid Minor 202 298 222 204 
 Serious 125 204 225 140 
 Fatal 146 282 178 263 
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Table C15 

Severity of Personal Injury Test: Confusion Matrix  

   Actual Values 
 

Kernel 
Severity of  

Personal Injury 
None Minor Serious Fatal 

P
re

di
ct

ed
 V

al
ue

s 

 None 83 60 32 34 
Linear Minor 39 125 46 34 
 Serious 8 37 106 19 
 Fatal 23 51 11 136 
      
 None 196 12 0 1 
Polynomial Minor 138 104 1 1 
 Serious 111 0 59 0 
 Fatal 103 0 0 118 
      
 None 131 38 26 14 
Radial Minor 34 186 13 11 
Basis Serious 0 6 164 0 
Function Fatal 0 11 5 205 
      
 None 62 66 44 38 
Sigmoid Minor 72 67 63 42 
 Serious 27 56 55 32 
 Fatal 52 76 36 57 
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Table C16 

Severity of Personal Injury Test: Classification Report  

Kernel / Accuracy 
Severity of  

Personal Injury 
None Minor Serious Fatal 

 None 0.54 0.40 0.46 209 
Linear Minor 0.46 0.51 0.48 244 
 Serious 0.54 0.62 0.58 170 
 Fatal 0.61 0.62 0.61 221 
      
Accuracy    0.53 844 
Macro Average  0.54 0.54 0.53 844 
Weighted Average  0.54 0.53 0.53 844 
      
 None 0.36 0.94 0.52 209 
Polynomial Minor .90 0.43 0.58 244 
 Serious 0.98 0.35 0.51 170 
 Fatal 0.98 0.53 0.69 221 
      
Accuracy    0.57 844 
Macro Average  0.81 0.56 0.58 844 
Weighted Average  0.80 0.57 0.58 844 
      
 None 0.79 0.63 0.70 209 
Radial Basis Minor 0.77 0.76 0.77 244 
Function Serious 0.79 0.96 0.87 170 
 Fatal 0.89 0.93 0.91 221 
      
Accuracy    0.81 844 
Macro Average  0.81 0.82 0.81 844 
Weighted Average  0.81 0.81 0.81 844 
      
 None 0.29 0.30 0.29 209 
Sigmoid Minor 0.25 0.27 0.26 244 
 Serious 0.28 0.32 0.30 170 
 Fatal 0.34 0.26 0.29 221 
      
Accuracy    0.29 844 
Macro Average  0.29 0.29 0.29 844 
Weighted Average  0.29 0.29 0.29 844 
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Table C17 

Optimization of All SVM Models with RBF Kernel for Severity of Personal Injury (Test) 

σ 𝐶 
Misclassification 

Rate 
Accuracy Precision 

Sensitivity / 
Recall 

F1-Score 

0.03 1 0.19 0.81 0.81 0.82 0.81 

0.1 1 0.12 0.88 0.87 0.93 0.89 
0.1 10 0.07 0.93 0.93 0.96 0.94 
0.1 20 0.07 0.93 0.92 0.96 0.94 
0.2 1 0.06 0.94 0.94 0.96 0.95 
0.2 10 0.04 0.96 0.96 0.97 0.96 
0.2 20 0.04 0.96 0.96 0.97 0.97 
0.3 1 0.04 0.96 0.95 0.97 0.96 
0.3 10 0.04 0.96 0.96 0.97 0.97 
0.3 20 0.04 0.96 0.96 0.98 0.97 
0.4 1 0.04 0.96 0.96 0.97 0.97 
0.4 10 0.03 0.97 0.97 0.98 0.97 
0.4 20 0.03 0.97 0.97 0.98 0.97 
0.5 1 0.03 0.97 0.98 0.98 0.98 
0.5 10 0.02 0.98 0.98 0.98 0.98 
0.5 20 0.02 0.98 0.99 0.98 0.98 
0.6 10 0.02 0.98 0.99 0.98 0.98 
0.6 20 0.02 0.98 0.99 0.98 0.98 
0.6 30 0.02 0.98 0.99 0.98 0.98 
0.6 40 0.02 0.98 0.99 0.98 0.98 
0.65 10 0.02 0.98 0.99 0.98 0.99 
0.65 20 0.02 0.98 0.99 0.98 0.99 
0.65 30 0.02 0.98 0.99 0.98 0.99 
0.65 40 0.02 0.98 0.99 0.98 0.99 
0.7 10 0.02 0.98 0.99 0.98 0.99 
0.7 20 0.02 0.98 0.99 0.98 0.99 
0.7 30 0.02 0.98 0.99 0.98 0.99 
0.8 1 0.02 0.98 0.99 0.98 0.99 
0.8 10 0.02 0.98 0.99 0.98 0.99 
0.8 20 0.02 0.98 0.99 0.98 0.99 
0.9 10 0.03 0.97 0.98 0.97 0.98 
10 100 0.41 0.59 0.88 0.41 0.44 
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Table C18 

Subcategory Factor Importance for the Severity of Aircraft Damage  

Variable Subcategory Importance 
Pilot’s Total Flight Hours 0.12214 
Single-Engine Land Certificate 0.1184 
Time of Accident 0.11376 
Pilot’s Age 0.10108 
Crosswind Component 0.07759 
Runway Number 0.06643 
Any Obstacle Penetration 0.0559 
FAA Policy 2018 – 19 0.04707 
Sport Rating 0.0401 
20:1 Obstacle Penetration 0.03263 
Instrument Rating 0.02989 
Part 91 Mission 0.02982 
FAA Policy 2014 – 15 0.02768 
PAPI 2 0.02557 
No Obstacle Penetration 0.0246 
34:1 Obstacle Penetration 0.02327 
Reciprocal Engine 0.02195 
Crew Number 0.02188 
FAA Policy 2016 – 17 0.02167 
Part 121 Mission 0.01925 
Number of Engines 0.01436 
PAPI 4 0.01335 
Approach Light System 0.01322 
Turbo Fan Engine 0.01172 
Private Pilot Rating 0.01088 
No Approach Lighting 0.01038 
Commercial Rating 0.0096 
Airline Transport Rating 0.00934 
Multiengine Land Certificate 0.00901 
VASI 2 0.00776 
Flight Instructor Rating 0.00663 
Student Rating 0.0061 
Turbo Prop Engine 0.00589 
VASI 4 0.00526 
Part 135 Mission 0.00432 
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Turbo Jet Engine 0.00389 
Part 137 Mission 0.00005 
Recreational Rating 0 
Part 129 Mission 0 

Note. Pilot flight hours, time of day, number of crew, number of engines, pilot’s age, 

runway number, and crosswind component have no subcategories.  
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Table C19 

Subcategory Factor Importance for the Severity of Personal Injury 

Variable Subcategory Importance 
Time of Accident 0.13608 
Pilot’s Total Flight Hours 0.13368 
Crosswind Components 0.12436 
Pilot’s Age 0.12298 
Runway Number 0.10273 
Any Obstacle Penetration 0.04086 
20:1 Obstacle Penetration 0.02495 
PAPI 2 0.02359 
FAA Policy 2016 - 17 0.02302 
FAA Policy 2014 - 15 0.02258 
PAPI 4 0.02256 
Instrument Rating 0.02101 
FAA Policy 2018 - 19 0.01963 
Private Pilot Rating 0.01747 
No Approach Lighting 0.01644 
Multiengine Land Certificate 0.01614 
No Obstacle Penetration 0.01602 
34:1 Obstacle Penetration 0.01591 
Single-Engine Land Certificate 0.01498 
Approach Light System 0.01483 
Number of Engines 0.01448 
Flight Instructor Rating 0.01420 
Commercial Rating 0.01291 
VASI 2 0.01172 
VASI 4 0.01002 
Airline Transport Rating 0.00843 
Sport Rating 0.00737 
Student Rating 0.00683 
Turbo Prop Engine 0.00639 
Reciprocal Engine 0.00614 
Turbo Fan Engine 0.00454 
Part 91 Mission 0.00251 
Part 135 Mission 0.00194 
Crew Number 0.00137 
Part 121 Mission 0.00115 
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Turbo Jet Engine 0.00056 
Part 137 Mission 0.00043 
Recreational Engine 0.00005 
Part 129 Mission 0.00000 

Note. Pilot flight hours, time of day, number of crew, number of engines, pilot’s age, 

runway number, and crosswind component have no subcategories.  
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Appendix D 

Figures 

D1 Severity of Aircraft Damage Test Confusion Matrix Image 

D2 Severity of Personal Injury Test Confusion Matrix Image  
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Figure D1 

Severity of Aircraft Damage Test Confusion Matrix Image 
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Note. RBF = Radial Basis Function. 
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Figure D2 

Severity of Personal Injury Test Confusion Matrix Image 
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Note. RBF = Radial Basis Function. 
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