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Abstract 

Researcher: Mary Bernadette O'Connor 

Title: Identification of Factors Associated with Fume Events Using Text Mining 

and Data Mining Methods 

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year: 2021 

Pilots, flight attendants, and passengers can be exposed to toxic compounds when the 

bleed air that supplies the cabin and flight deck is contaminated with pyrolyzed hydraulic 

fluid or oil from turbine jet engines. These fume events occur sporadically and can result 

in acute or chronic exposure in air crews and can have catastrophic consequences if flight 

crew members become impaired or incapacitated. The purpose of this research was to 

explore unstructured textual data and identify important factors associated with these 

events. Models using machine learning algorithms were developed and tested using 

variables gleaned from the text mining process and variables found in self-reported 

aviation incidents.  

 Safety reports from flight and cabin crews working in 14 C.F.R. Ä 121 Domestic, 

Flag, and Supplemental Operations during 2015-2019 were downloaded from the 

Aviation Safety Reporting System (ASRS). Narratives from these reports were explored 

using the text mining process in SASÈ Text Miner to identify potentially new factors 

associated with the occurrence of fume events. The text mining process included text 

parsing, text filtering, text clustering, and text topic. The identified factors were 
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combined with variables from the ASRS reports to develop six models. These models 

used decision tree, gradient boosting, logistic regression, and random forest algorithms.  

Values for misclassification rate, receiver operating characteristic curves, and lift 

curves were used to assess model accuracy and predictive power to determine the best-

performing model. Four models produced similar results with accuracy above 96 percent. 

The top four performing models were gradient boosting, random forest, logistic 

regression, and a 7-branch decision tree model.  

Sensory perception was found to be the most important factor in all four top-

ranking models for the occurrence of fume events. The cabin affected and power change 

factors were also listed in the top ten factors in four of the models with varying degrees 

of importance. Four other factors, including aircraft action, passenger disruption, system 

anomaly, and engine issue, were associated with the occurrence of fume events in three 

of the top four models. The identification of sensory perception, power change, aircraft 

action, and engine issue is consistent with previous research in fume events. This 

research identified three new factors associated with the occurrence of fume events: cabin 

affected, passenger disruption, and system anomaly. These factors can be used in the 

identification of fume events and to educate and increase awareness of potential events 

for flight and cabin crew members. They can also be included as variable fields in a 

national database to capture information regarding the occurrence of these events. Each 

of these activities could contribute to the health and safety of crews and passengers, 

reduce flight disruptions due to fume events, and limit financial losses due to flight 

disruptions. 

Keywords: Fumes, bleed air, text mining, data mining, model  
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Chapter I: Introduction 

As jet engines transformed air travel, cabin pressurization systems were 

developed to permit aircraft to fly at altitudes where these engines are most efficient. 

Aircraft crew and passenger comfort are provided by pressurization and ventilation 

supplied by bleed air, which is drawn from the engine compressor, cooled, and then 

circulated into the cabin. When bleed air is contaminated, crew and passengers may be 

exposed to toxic compounds during incidents commonly referred to as fume events. Fume 

events, symptoms, and effects of exposure may be severe enough to warrant a declaration 

of an emergency, flight diversion, or an emergency landing (Federal Aviation 

Administration, 2011a; Holley, 2009; McDermott, 2017; Montgomery et al., 1977; 

Neuman, 2007; Shehadi et al., 2015). These events are difficult to foresee but are 

potentially hazardous to health and safety (Hageman et al., 2020; IFALPA, 2013). This 

research provides new perspectives about factors associated with events involving 

undesirable air quality (UAQ) and fume events and includes the development and 

evaluation of models for identifying factors associated with the occurrence of UAQ 

events and fume events. These models may benefit airlines, trade unions, regulators, and 

others in identifying and mitigating the incidence of disruptions to flight operations due 

to UAQ events and fume events and prevent exposure to hazardous substances.  

Most large commercial passenger aircraft use engine bleed air to supply the 

environmental control system, which provides pressurization and ventilation for crew and 

passenger comfort (NRC, 2002). A typical basic, non-aircraft-specific bleed air system is 

shown in Figure 1. Engine bleed air is compressed air drawn from engine compressors 

and supplied to one or more air conditioning packs that treat the air before circulating it 
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to the flight deck and cabin. Main ducts and riser ducts distribute the air to temperature 

zones within the cabin, with some of the air filtered and recirculated, and the remainder 

vented to the outside environment through the outflow valve (Pollok, 2017). Typical air 

recirculation systems supply aircraft cabins with a combination of approximately 50% 

bleed air from the compressor stage of the engine or the auxiliary power unit with 

approximately 50% of filtered, recirculated air from the aircraft (Bull, 2008). The 

auxiliary power unit (APU) is a small, onboard turbine engine used to power the aircraft 

systems and can supply air-conditioning, heat, electricity, and compressed air when the 

main engines are not operating (Lombardo, 1993). The Boeing Dreamliner 787 is an 

exception to aircraft using bleed air for climate control and uses an electric compressor 

system to draw in fresh air onboard from dedicated cabin air inlets (Sinnett, 2007). These 

dedicated electrical compressors use air bearings to pressurize and maintain appropriate 

aircraft cabin temperatures and avoid the possibility of contamination by oil or hydraulic 

system fluid (Cannon, 2016). In addition, the electric compressor system avoids 

extracting excessive energy from the engines resulting in increased efficiency and 

decreased fuel consumption (Sinnett, 2007).  

Engine bleed air may be contaminated as it passes through the compressors in the 

main engines or the APUs, or when the aircraft is on the ground. Engine oil, hydraulic 

fluid, deicing fluid, or their pyrolyzed components can contaminate the air in the 

compressors as a result of mechanical failure (leaky seals), maintenance irregularities 

(overfilling reservoirs), or faulty design (poorly placed air inlets) (ASHRAE, 2007; BAe 

Systems, 2000; van Netten, 2000). Chemical contaminants are not filtered from bleed air 

before entering the air supply (Michaelis, 2016), and thus contaminated air may enter the 
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cabin or the flight deck. During these fume events, when bleed air is contaminated, crew 

members and passengers may experience acute or chronic exposure to a hazardous 

mixture of chemical compounds. 

 

Figure 1 

Typical Basic Aircraft Bleed Air System 

  

Note. Adapted from "The Airliner Cabin Environment and the Health of Passengers and Crew," 

National Research Council Committee on Air Quality in Passenger Cabins of Commercial 

Aircraft, 2002, p. 56. https://doi.10.17226/10238.  

 

Toxic compounds found in bleed air may vary based on the source. Jet engine oil 

contains tricresyl phosphates (TCPs), phenyl-alpha-naphthylamine (PAN), trixylenyl 

phosphates (TXPs), acrolein, formaldehyde, and volatile and semivolatile organic 

compounds, including acetone, benzene, toluene, and xylene (Anderson, 2014; NRC, 

https://doi.10.17226/10238
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2002; Winder & Balouet, 2002). Of these compounds, TCPs, PAN, and TXPs have been 

a focus of research. The TCPs are a group of organophosphate compounds used as anti-

wear additives in engine oil. Organophosphates are known neurotoxic compounds most 

frequently associated with a common class of pesticides. Most commercial aviation 

engine oils contain one or more of the ten chemical variations of TCP, referred to as 

isomers. These isomers vary in toxicity. PAN is an antioxidant used in lubrication oils 

and is an irritant with limited data on carcinogenicity (Winder & Balouet, 2002). TXPs 

are known neurotoxins and are toxic to reproduction (Anderson, 2014). Hydraulic fluid 

can contain triisobutyl phosphate and triphenyl phosphate (NRC, 2002). Components of 

deicing fluids are more diverse and may contain tributyl phosphate, butyl diphenyl 

phosphate, ethylene glycol, and propylene glycol (NRC, 2002). Ethylene glycol can be 

highly toxic; thus, replacement with ethylene glycol is becoming commonplace (NRC, 

2002).  

Previous evaluations of exposure and reported health symptoms suggest aircraft 

crews and passengers have been exposed to organophosphate compounds associated with 

pyrolysis products from engine oil or hydraulic fluids while traveling on aircraft (Cox & 

Michaelis, 2002; Liyasova et al., 2012; Mackenzie Ross, 2008; Montgomery et al., 1977; 

Winder et al., 2002). Symptoms experienced after exposure to contaminated bleed air 

include headaches, confusion, dizziness, muscle weakness, fatigue, nausea and vomiting, 

nerve pain, tremors, numbness, and neurobehavioral difficulties (Abou-Donia, 2003; 

Abou-Donia et al., 2014; Cox & Michaelis, 2002; Coxon, 2002; Harper, 2006; 

Mackenzie Ross et al., 2011; Michaelis, 2003; Michaelis, 2010; Montgomery et al., 1977; 

van Netten, 1999). Persistent neurological problems, including headaches, confusion, 
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muscle weakness, and neurobehavioral problems, such as cognitive dysfunction, post-

traumatic stress disorders, depression, sleep, and anxiety disorders may also occur after 

exposure (Abou-Donia et al., 2014; Harrison et al., 2009).    

These symptoms may interfere with or compromise crew members' abilities to 

complete their duties, including flying the aircraft. Exposure to toxic fumes has resulted 

in crew members' physical impairment and degraded flight crew performance 

(Montgomery et al., 1977; SHK, 1999), and can result in incapacitation of flight crew 

(Allied Pilots Association, 2018; Barnett, 2006; Commonwealth of Australia, 2000; 

"Pilot-Turned-Doctor Pins Performance Degradation on Fumes," 2015). Crew 

incapacitation may be more common than reported; a study of incapacitation among 

Australian pilots found the second leading cause of medical events or incapacitation was 

exposure to toxic smoke and fumes on the aircraft (ATSB, 2007). Airlines may have 

established policies and procedures for crews upon recognition of a fume event, which 

may include declaring an emergency, landing as soon as practicable by returning to the 

departure airport or diverting to another airport, or refusing the aircraft at the gate. These 

actions may generate mandatory reporting of the event and the related circumstances to 

systems, both internal and external to the company. However, there are no independent 

standardized reporting systems for crews to report fume events (Harrison et al., 2009) or 

other events involving UAQ; thus, information on event occurrence, causes, health 

effects, and flight outcomes is limited and not collected in one location or within one 

reporting system.  

The health effects of exposure to contaminated bleed air are also difficult to 

evaluate and quantify. The symptoms reported by crew members may be relatively non-
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specific (Hageman et al., 2020a), crew members may not recognize or report symptoms, 

and the lack of a centralized system for collecting and analyzing exposure data limits the 

ability to systematically assess health effects and correlate these with exposure (Harrison 

et al., 2009). Between two and three pilots out of every thousand are medically 

disqualified for neurotoxic effects every year, suffering from neurological symptoms 

such as headaches and memory loss (de Boer et al., 2015). However, health care 

practitioners may not recognize a link between exposure to contaminated bleed air and 

health effects, especially without an objective measure of exposure. 

Reporting Systems 

Documentation of UAQ events, bleed air contamination events, and other 

operational discrepancies can occur through several established reporting mechanisms, as 

displayed in Table 1. The Federal Aviation Administration (FAA) maintains several 

reporting systems and databases for the enhancement of safety by tracking events and 

safety issues. Mandatory reporting systems require reporting some types of incidents 

according to regulations. These systems primarily address specific concrete issues and 

tend to collect more information regarding technical failures; however, voluntary 

reporting systems are more successful in collecting human factor-related information 

(Rodrigues and Cusick, 2012). Experience in the U.S. and other countries has 

demonstrated the need for a trusted third party to manage voluntary reporting systems as 

reporters may be reluctant to report errors to employers or regulators (Wells, 2001). 

The Aviation Safety Action Program (ASAP) is a voluntary reporting system for 

employees of certain certificate holders; its goal is to enhance aviation safety through the 

prevention of accidents and incidents (FAA, 2017a). The FAA offers ASAP as a tool for 
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employees of participating airlines and repair stations to identify and report safety issues 

to company management and the FAA for documentation and resolution. The FAA 

provides guidance to air carriers for the collection, comprehensive event categorization, 

risk analysis, data trending, and storage of the safety data obtained through the ASAP 

reporting process (FAA, 2020a).  

 

Table 1 

Safety Reporting Programs for U.S. Aviation Operations 

Name First Year of  
Available 
Data 

Agency 
Responsible 

Source of Data Voluntary 
Reporting 

Publicly 
Accessible 
Database 

Accident and 
Incident Data 
System 
(AIDS) 

1978 FAA Accident and incident 
investigations (FAA Form 
8020-23), NTSB's accident 
database 

No Limited to 
incidents in 
ASIAS 

      
Aviation 
Accident 
Database 

1982 NTSB Accident and incident 
investigations, pilot/operator 
reports (NTSB Form 
6120.1)  

No 
 

Yes 

Aviation 
Safety Action 
Program 
(ASAP) 

Varies with 
operator 

FAA Qualified employee reports Yes No 

Aviation 
Safety 
Reporting 
System 
(ASRS) 

1988 NASA Pilot, employee, passenger 
reports (NASA ARC 277) 

Yes 
 

Yes 
(deidenti-
fied) 

      
Service 
Difficulty 
Reporting 
System                                                                                    

1975 FAA Mechanic, inspector, pilot, 
operator reports (FAA 
8070-1, 8070-4) 

Yes 
 

Yes  

Voluntary 
Disclosure 
Reporting 
Program 
(VDRP) 

Varies with 
operator 

FAA Operators, owners,  
manufacturers  

Yes No 
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Through the ASAP, individuals may submit voluntary reports of safety issues and events 

which may otherwise remain unidentified. Resolution through corrective action rather 

than discipline occurs through a partnership with the air carrier and the FAA, and a third 

party as needed, such as a labor organization or union (FAA, 2020a).  

The Voluntary Disclosure Reporting Program (VDRP) is another reporting 

system established and maintained by the FAA for operators, owners, and manufacturers 

to voluntarily disclose apparent violations in a cooperative and advisory approach to 

problem-solving (FAA, 2009). In general, this program may be used for identifying, 

reporting, and correcting instances of regulatory non-compliance when the certificate 

holder notifies the FAA immediately after the apparent violation was discovered using 

the online VDRP system and before the FAA learns of the violation from another means. 

The FAA then reviews, accepts, and approves, oversees corrective action, and conducts 

follow-up surveillance while waiving enforcement action. This process protects the 

anonymity of reporters, information regarding any subsequent corrective actions, and the 

public release of disclosures (FAA, 2016a). Reported violations may be associated with 

flight operations, maintenance, human intervention motivations study or anti-drug and 

alcohol misuse prevention programs, and with manufacturing operations of the 

organization (FAA, 2009). 

The FAA also maintains the Accident and Incident Data System (AIDS) database 

(https://www.asias.faa.gov/apex/f?p=100:12:::NO:::). Information for this database is 

collected from several sources, including the National Transportation Safety Board's 

(NTSBôs) accident database, and FAA investigators as part of their accident and incident 

investigations (FAA, 2018). These investigations occur following FAA Order 8020.11D 



9 

 

Aircraft Accident and Incident Notification, Investigation, and Reporting (FAA, 2018) 

and use standardized forms (FAA, 2010).  

The FAA's Service Difficulty Report System collects, organizes, analyzes, and 

disseminates information on occurrences, problems, and defects submitted by mechanics, 

inspectors, pilots, and operators. Reports include detailed information about problems 

encountered, component types, hours in service, and a free text field. Reports are 

assembled according to types of reports, such as service difficulty reports, malfunction or 

defect reports, or maintenance difficulty reports (FAA 8070-1, FAA 8070-4). The 

database is available to the public to improve the safety and reliability of aeronautical 

parts and products (http://www.aviationdb.com/Aviation/SdrQuery.shtm#SUBMIT). 

The NTSB maintains the Aviation Accident and Incident Data System, which 

contains information collected on standardized forms completed by operators, pilots, and 

NTSB staff during civil aviation accident and selected incident investigations within the 

United States, its territories and possessions, and in international waters. Reports in the 

database contain information from the forms, details about the accident, analysis of 

factual data, conclusions, probable cause(s) of the accident, and any related safety 

recommendations, including free text fields (https://app.ntsb.gov/avdata/). Full narrative 

descriptions may not be available for events occurring before 1993, cases under revision, 

or for events where the NTSB did not have responsibility for the primary investigation 

(NTSB, n.d.).  

The Aviation Safety Reporting System (ASRS) is an FAA-funded system 

managed by the National Aeronautics and Space Administration (NASA) to collect, 

review, code, classify, deidentify, and maintain reports of issues that may affect safety in 

http://www.aviationdb.com/Aviation/SdrQuery.shtm#SUBMIT
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the U.S. aviation system. Reports are voluntarily submitted on standardized forms by air 

traffic controllers (NASA ARC 277A), pilots, dispatchers and others (NASA ARC 

277B), cabin crew (NASA ARC 277C), and repairmen, mechanics, and inspectors 

(NASA ARC 277D). Multiple reports are identified and listed by the event in a publicly 

accessible database (https://asrs.arc.nasa.gov/search/database.html), which includes 

information on the position of the reporter, the aircraft, classification and cause of the 

event, and free text narrative fields describing and summarizing the event.  

A review of accident investigation reports can be used to determine accident 

causation, which can be used to develop safety guidance, recommendations, and 

regulations. Safety investigations are both reactive and proactive, as feedback can be used 

to develop new knowledge and insight and can be incorporated into future generations of 

operations (Stoop & Dekker, 2012). A more preemptive process is the identification of 

accident precursors, such as hazardous conditions, events, or behaviors prior to the 

occurrence of an accident, which can be mitigated to interrupt the sequence of events 

leading to an accident. Identification of fume event-related conditions, events, or 

behaviors may assist crews in detecting a fume event, take action to limit any potential 

detrimental effects, and reduce adverse flight outcomes.   

The FAA developed requirements found in safety management systems (SMSs) to 

enhance safety for air carriers and other organizations by incorporating three stages of 

safety rationale: reactive, proactive, and predictive thinking (FAA, 2016b). A safety 

management system is a "systematic approach to managing safety, including the 

necessary organizational structures, accountabilities, policies and procedures" (ICAO, 

2013, p. ix). The FAA published the final SMS rule for air carriers operating under 14 

https://asrs.arc.nasa.gov/search/database.html
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C.F.R. Ä 121 Domestic, Flag and Supplemental Operations in 2015 (Safety Management 

Systems, 2015) and provided guidance for air carriers to develop and implement an SMS 

(FAA, 2015). According to this guidance, there are four components of an SMS: policy, 

safety risk management, safety assurance, and safety promotion. As a part of safety risk 

management, airline management personnel are expected to exercise due diligence to 

identify the significant and reasonably foreseeable hazards related to their operations and 

to analyze and assess the risks associated with these hazards (Stolzer & Goglia, 2015). 

Identification and tracking of hazards are foundational requirements for successful safety 

risk management (FAA, 2017b). In terms of safety risk management in aviation 

operations, the ideal risk assessment process is based on modeling (Stolzer & Goglia, 

2015).  

Recommendations to take precautionary measures even when a threat to human 

health or the environment cannot be fully scientifically established is the crux of the 

precautionary principle (Friend & Kohn, 2014). Further, when the potential damage from 

accidents in large-scale systems is great and the time between accidents is lengthy, design 

and operation must be founded on consistent predictive models based on accident 

processes and probability occurrence, which aligns with the purpose of probabilistic risk 

analysis (Rasmussen, 1997). Probabilistic risk assessment is a systematic method to 

assess risks associated with a complex technological unit to improve safety or 

performance (Stolzer & Goglia, 2015) and may include a variety of predictive models. 

Identification and verification of the occurrence of fume events are necessary to quantify 

their frequency, risks presented, true costs, and develop predictive models. 
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Statement of the Problem 

Events involving UAQ have the potential for crew distraction, flight diversion, 

emergency landings, or other disruptive effects and outcomes. Fume events and exposure 

to toxic compounds have the potential for adverse outcomes if flight or cabin crew are 

impaired or incapacitated, and may acutely or chronically affect the health of crew and 

passengers. Ideally, the prediction of occurrences or circumstances leading to UAQ and 

fume events could assist in avoiding crew and passenger exposure; however, no 

confirmatory records or predictive measures are currently available. Real-time 

monitoring and analysis for detection of fume events could identify an event as it 

occurred and alert crew and thus limit exposure. However, there are currently no air 

quality monitoring systems in widespread use on aircraft to detect UAQ or contaminated 

bleed air. Finally, a review of reports from crews and passengers following documented 

UAQ and fume events could provide information that could be used to prevent these 

events. There are currently no industry-wide mandatory reporting requirements for the 

occurrence of these events or potential exposure to hazardous compounds during these 

events. Limited information is known about the incidence and characteristics of in-flight 

medical emergencies (Chandra & Conry, 2013), and there are currently no industry-wide 

mandatory reporting requirements for in-flight medical emergencies. However, flight 

diversions in response to medical emergencies can result in substantial financial and legal 

costs (Valani et al., 2010) and potential increased risk of accidents and injuries to 

passengers and crews (GAO, 2003).  

Despite the potential for severe adverse health and safety outcomes, the factors 

associated with UAQ and fume events have not been explored. As the identification of 
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hazards is critical to safety management, process analysis or operational observations can 

often be used to detect and mitigate hazards. With limited data collection on UAQ and 

fume event occurrence, accurate analysis of the process is unlikely. Operational 

observations from voluntary safety reports may be useful in determining characteristics to 

identify potential exposure to contaminated bleed air but optimally result in a reactive 

response to the hazard. Qualitative and quantitative data from voluntary safety reports 

may provide information on important factors for identifying UAQ and fume events. As 

part of the safety risk management component of a safety management system, air 

carriers should make efforts to identify and foresee hazards (Stolzer & Goglia, 2015). 

Identification of important factors associated with UAQ and fume events can be used to 

develop prediction models; develop mitigation strategies; position monitoring equipment 

to identify contaminants; better prepare crew and airline support staff for diversions and 

turnbacks and subsequent rescheduling of flights to accommodate passengers; reduce the 

risks associated with emergency landings, diversions, and turnbacks; and reduce 

associated costs.   

Purpose Statement 

The purpose of this exploratory, mixed method design study was to use textual 

data from the narrative fields in reports submitted to the Aviation Safety Reporting 

System (ASRS) in the text mining process to explore terms and topics and identify new 

factors associated with UAQ and fume events. These factors were then included with 

quantitative variables from the ASRS database and used in machine learning algorithms 

to develop models to determine the importance of factors associated with the occurrence 

of UAQ and fume events as reported by flight and cabin crews. These models were 
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developed, trained, validated, and tested to identify important factors associated with the 

target variable. The target variable consists of three levels of reported events: events that 

are not related to UAQ; events that are related to UAQ but are not fume events; and 

events that are reported to be fume events. 

Significance of the Study 

This study contributes to the body of aviation safety knowledge by identifying 

factors associated with UAQ and fume events using data from the ASRS. Textual data 

from the ASRS report narratives was mined for factors, anomalies, or patterns and 

combined with quantitative variables from the database to develop models. New factors 

associated with the occurrence of UAQ and fume events were identified and used in the 

development of the models. 

Models identifying factors associated with fume events that may compromise 

crew health and safety can be used by the aviation industry to improve flight safety and 

safeguard the health of crews and passengers. Previous studies using the data from the 

ASRS have resulted in the development of classification models and the identification of 

risk factors (Shi et al., 2018) and risk prediction models (Zhang & Mahadevan, 2019). 

This study further explored the use of text mining of the narrative fields and the 

incorporation of findings into variables to develop models to identify factors associated 

with fume events. These models may be useful in identifying, mitigating, or preventing 

fume events.  

The machine learning algorithms developed as part of this study may be used in 

similar research studies to identify important factors or predictors using a combination of 

textual and quantitative data. This research contributes to the body of knowledge with the 
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application of machine learning algorithms to identify the important factors associated 

with the occurrence of fume events. The text mining process may be applicable for 

similar data to identify factors associated with events that may compromise flight safety, 

and findings from model evaluation could support efforts in developing, training, 

validating, or testing models for identifying other events or conditions affecting flight 

safety.  

Key beneficiaries of this research include airlines, unions, flight and cabin crews, 

and passengers. Airline safety managers and decision-makers can use the models to 

assess important factors associated with fume events and develop prevention or 

mitigation strategies. Airlines and labor unions can use the results of this study to 

increase awareness of UAQ and fume event occurrence, better prepare crews for 

mitigation of events, and highlight the necessity of developing a surveillance system for 

tracking these events. By identifying the most influential factors associated specifically 

with fume events, safety managers can develop training for flight and cabin crews with 

likely scenarios to improve awareness, recognition, and emergency procedures to be 

employed in the occurrence of fume events.  

Findings from this study may be used by the FAA as justification to establish a 

dedicated reporting system for surveillance and investigation of UAQ and fume events. 

Information on factors associated with fume events and an indication of a probable 

timeframe for qualifying and quantifying toxic compounds may provide aviation safety 

practitioners with guidance for developing sampling protocols. Understanding the most 

plausible aircraft configuration, flight phase, or time for production and release of toxic 
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compounds may also guide safety practitioners in developing interventions for protecting 

crew and passengers from exposure to toxic compounds. 

Research Questions  

This research is exploratory in nature and is based on three fundamental research 

questions: 

Research Question 1  

How can text mining techniques be used to explore and identify important 

variables associated with the occurrence of a reported fume event, using textual data 

found in voluntary reports submitted by flight and cabin crew members?  

Research Question 2 

How can modeling techniques be used to identify factors associated with the 

occurrence of a perceived and reported fume event, using qualitative and quantitative 

variables found in voluntary reports submitted by flight and cabin crew members?  

Research Question 3 

What are the important factors associated with the occurrence of a fume event as 

identified in voluntarily reported data?  

These questions are directly related as text mining techniques were used to 

explore the textual data in the narratives, data mining techniques were used to identify the 

variables associated with the occurrence of UAQ and fume events, and then identify the 

important factors associated with the occurrence of UAQ and fume events.  

Delimitations 

This study focused only on reports related to UAQ and fume events submitted by 

cabin and flight crew members. Events that were not reported were not reviewed by 
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NASA analysts and were not included in the ASRS database. All reports submitted to 

ASRS may not be included in their database. Reports may be submitted to the system 

primarily as a means of protecting certificate holders from enforcement action and for 

reporting deviations or anomalies, such as an altitude deviation, emergency landing, or a 

flight diversion. Reported events would be considered as an occurrence of UAQ or fume 

event if it is described as such in the narrative or enough detail is included in the report 

for the analyst to code it as such. Reports submitted by maintenance personnel, 

maintenance inspectors, and technicians, or reports for the sole purpose of describing 

mechanical anomalies and maintenance errors were not included in this study, as the 

focus of this study was not the cause of the event. The focus was on the exploration and 

identification of variables mined from the narratives or reports from crew members 

experiencing the events and the development of models using these variables for the 

purpose of identifying important factors associated with UAQ and fume events. Although 

other reporting systems such as those for the Service Difficulty Reports (SDRs), the 

Aviation Safety Action Program (ASAP), or Accident and Incident Data (AID) system 

may include information regarding UAQ and fume events, the ASRS database is selected 

to incorporate a diversified potential reporting population experiencing these events. 

Flight and cabin crews may have very different knowledge, experiences, and descriptions 

of fume events and provide disparate information in the report narratives, which enhances 

the richness of the accounts and adds value to the text mining process. The use of the 

ASRS database incorporated human factors into the study, which may include subjective 

feelings, symptoms, experiences, and outcomes. As the current study is exploratory, 

recommendations are made for future objective studies, such as focused air quality 
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monitoring or standardized quantitative medical assessment of crew members or 

passengers. 

Findings from this research are generalizable to the companies operating 

commercial passenger or cargo jet aircraft in the U.S., as the data were supplied by 

employees of U.S. companies operating commercial jet aircraft under 14 C.F.R. Ä 121 

Domestic, Flag, and Supplemental Operations. This study used data from the ASRS 

database and was limited to the reports provided in the database. All reports submitted to 

the system were not included in the database; thus, reports of fume events may be omitted 

from the database. Additionally, the data were limited to voluntarily reported incidents 

and situations from the stated years of inclusion for flight operations.   

Limitations and Assumptions 

Evidence suggests underreporting of fume events and is a limitation of the study. 

Assumptions were that flight and cabin crews are able to recognize and report UAQ and 

fume events and describe and report accurate and complete information about these 

events. The data were assumed to be deidentified and accurately coded by analysts at the 

National Aeronautics and Space Administration (NASA), which is responsible for 

managing the voluntarily submitted reports and the ASRS database. The data were 

assumed to be representative of all U.S. commercial aircraft operations currently 

operating under 14 CFR Part 121 but are not particular to any specific aircraft, airline, or 

airport. Expanding the study to countries or airlines with similar reporting systems may 

provide additional insight. As future aircraft engine design focuses on greater efficiency 

and less environmental impact, the opportunity for UAQ and fume event occurrence may 

change depending on engine design, lubrication products used, operating temperatures, 
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placement of air inlets, and other factors. The models should be reviewed and tested 

periodically with the most current data to ensure they are representative of the aircraft 

and engines currently in use. 

Summary 

Contaminated bleed air from aircraft engines can expose crew and passengers to 

harmful compounds. These exposure events are difficult to quantify and predict, although 

health effects and their consequences may be serious, as elucidated in this chapter. This 

qualitative and quantitative mixed methods study was conducted to explore and identify 

important factors associated with the incidence of UAQ and fume events reported by 

cabin crews and flight crews and contained in report narratives in the ASRS database. 

These factors were used with quantitative variables from the dataset to develop, train, 

validate, and test models using a variety of machine learning algorithms using SASÈ 

Enterprise MinerTM 15.1. The models were evaluated and compared for the greatest 

reliability and validity to identify the best model for identifying important factors 

associated with the occurrence of UAQ and fume events. 

The following sections describe the need for identifying important factors 

associated with fume events. Previous research exposing the challenges in determining 

the number or rate of fume event occurrence, difficulties in identification of the 

contaminants present during fume events, complexities in determining the contaminant 

levels and the exposure parameters, and the challenges in identifying and measuring 

biological indicators of exposure are presented in Chapter II. Research using similar 

datasets and processes to identify hazards or build predictive models is also presented and 

examined. The processes of text and data mining used in this study, as well as 
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descriptions of the models to be developed, are discussed in Chapter III. Chapter IV 

provides the results of the study, and Chapter V discusses the conclusions and 

recommendations for interventions and future research.  

Definitions of Terms 

Biomarker A defined characteristic measured as an indicator of normal 

biological processes, pathogenic processes, or responses to an 

exposure or intervention, including therapeutic interventions 

(FDA, 2016). 

Biomonitor Measurement of the amount of chemicals (such as toxins) in the 

human body (Merriam-Webster, n.d.).  

Data Mining The use of machine learning algorithms to find relationship 

patterns between data elements in large datasets, which can lead to 

actions that provide some form of benefit (Nisbet et al., 2009).  

Decision Tree A nonlinear, non-parametric, logical, rule-based data mining 

method that uses supervised divisive hierarchical methods to 

segment the population into nodes by applying explicit rules for 

classification (Tuff®ry, 2011).  

Ensemble Model A model created by combining multiple modeling methods 

to obtain separate models from the same training data set and 

integrating them into a final model solution (SASÈ, 2017b).  

Environmental Control System The equipment used to pressurize, ventilate, 

air condition, or humidify the air in an aircraft, including the 
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airflow control for cabin supply, temperature and pressure control, 

distribution, recirculation, and filtration of air (ICAO, 2015). 

FAR Part 121  The section of the Code of Federal Regulations covering 

scheduled airline operators, as found in 14 C.F.R. Ä 121 Domestic, 

Flag, and Supplemental Operations. 

Flight Diversion Flights required to land at other than their original 

destination for reasons beyond the control of the pilot or the 

company, e.g. periods of significant weather (FAA, 2016c).  

Fume Event Contamination of aircraft cabin air with potentially hazardous 

compounds from hydraulic fluids, jet engine oils, and combusted 

or pyrolyzed materials found in bleed air from aircraft engines 

(Harrison & Mackenzie Ross, 2016). 

Gradient Boosting A partitioning algorithm that searches for an optimal 

partition of data as determined by the values of a single variable, 

with the optimality criterion dependent on how the target variable 

is distributed into the partition segments (SASÈ, 2017).  

Logistic Regression A linear combination of independent predictors converted 

to values between zero and one using a logistic, or log of odds 

function, which can be used to estimate the probability of a 

dichotomous outcome (Hess & Hess, 2019).  

Machine Learning The field of study that provides computers the ability to 

learn without being explicitly programmed (Samuel, 1959).  
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Medical Emergency An in-flight emergency due to an injury-related or health-

related situation (Skybrary, 2019).  

Predictive Model The process of using known results to create, process, and 

validate a model that can be used to forecast future outcomes 

(Frankenfield, 2019). 

Random Forest Supervised ensemble learning classification algorithms 

which are a combination of decision tree predictors, with each tree 

depending on the values of a random vector which is sampled 

independently, with the same distribution occurring for each of the 

trees in the forest (Breiman, 2001).  

Text Mining A variation of data mining in which new, previously unknown 

information is discovered by automatically extracting data from 

natural language text instead of from structured databases or fields 

(Hearst, 2003).  

Undesirable Air Quality The condition of other than standard, breathable air 

in the cabin or flight deck and may include smoke, haze, odors, 

temperature, humidity, bacteria, viruses, mold, or other particulate 

matter.  

List of Acronyms 

AIDS Accident and Incident Data System 

AFA Association of Flight Attendants 

APU Auxiliary Power Unit 

ARFF Attribute Relation File Format 
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ASAP Aviation Safety Action Program 

ASIAS Aviation Safety Information and Analysis Sharing  

ASRS Aviation Safety Reporting System 

FAA Federal Aviation Administration 

FAR Federal Aviation Regulation 

FOIA Freedom of Information Act 

FOQA Flight Operations Quality Assurance  

ICAO International Civil Aviation Organization 

MR Misclassification rate 

NASA  National Aeronautics and Space Administration  

NTSB  National Transportation Safety Board 

PAN  Phenyl-alpha-naphthylamine  

POS  Part-of-speech 

ROC  Receiver Operating Characteristic 

SASÈ EMTM  SASÈ Enterprise MinerTM  

SDR   Service Difficulty Report  

SEMMA Sample, Explore, Modify, Model, and Assess 

SMS  Safety Management System 

TCP  Tricresyl phosphate 

TXP  Trixylenyl phosphates  

UAQ Undesirable Air Quality 

VDRP Voluntary Disclosure Reporting Program 
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Chapter II: Review of the Relevant Literature 

Identification and prevention of fume events are of critical importance in 

protecting crew and passenger health, the safe outcome of flights, and upholding the 

principles of a safety management system. Chapter II provides an examination of the 

published findings and challenges in identifying, characterizing, and quantifying fume 

events and potential operational outcomes, such as medical emergencies and emergency 

landings, and highlights the subsequent difficulty in pinpointing short- and long-term 

health effects. Gaps in existing literature are presented, and research using exploratory 

text mining processes and using similar datasets to identify factors and build predictive 

models are presented and examined, along with a brief description of the machine 

learning algorithms used in this study. 

Characterization and Quantification of Fume Events 

Background 

Although a small degree of impairment was expected to be hazardous and could 

affect crew members' performance, the concentration of toxic compounds and the 

frequency of crew members' exposure to contaminated bleed air were admittedly 

unknown almost seventy years ago (AsMA, 1953). Engine oil contamination of bleed air 

and the potential to seriously affect a pilot's ability to control an aircraft were 

documented in 1955, with symptoms of eye-watering, irritation to nose and throat, mild 

nausea, and loss of sense of direction (Reddall, 1955). As technologies to identify and 

measure contaminants became more sophisticated, compounds in pyrolyzed engine oil 

and hydraulic fluid were identified in cabin air, and effects of exposure were 

documented.  
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Federal aviation regulations for certification of aircraft require compliance with 

ventilation and environmental control system design which provide for crew and 

passenger compartment air to be free from harmful or hazardous concentrations of gases 

or vapors (14 CFR Ä 25.83) and limit the concentration of ozone in aircraft cabin 

environments (14 CFR Ä 25.832). Although aircraft system design necessitates the 

provision of ventilation and pressurization for a safe cabin environment, system 

inadequacies, human error, or mechanical failures can occur, resulting in contamination 

of bleed air which is supplied to the flight deck and passenger compartment.  

Characterization of fume events  

Anderson (2014), Murawski (2011), Crump et al., (2011a), Harrison et al., (2009), 

and Michaelis (2003) have described common elements reported by crew, including an 

odor of dirty socks, smelly feet, musty, mold, mildew, vomit, chemical, or foul odor. In 

addition to any reported illness, these terms were also used by Shehadi et al. (2016) to 

identify fume events.  

Frequency of Occurrence 

Harrison and Mackenzie Ross (2016) found estimates of the frequency of 

occurrence of fume events vary by source, with regulatory authorities, airlines, and trade 

unions showing wide variation. The FAA maintains systems for reporting safety incidents 

by airlines, such as the Service Difficulty Report (SDR) system, and the Accident and 

Incident Data (AID) system. These databases are publicly accessible and available for 

analysis by researchers. Researchers indicate agreement in occurrence, but not in 

frequency, as Murawski and Supplee (2008) found an average of 0.87 fume events per 

day while Shehadi et al. (2016) found an average of 2.1 fume events per 10,000 flights, or 
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approximately 9 events per day (FAA, 2019). Airlines in the U.S. reported an annual 

average of over 1,000 smoke and fume events to the FAA during 2009-2012 (Anderson, 

2014), equivalent to 2.8 fume events per day. The National Research Council (2002) 

reported between 0.09 and 3.9 incidents per 1,000 flight cycles on three Canadian 

airlines, or an average of two to three fume events per day, according to airline data. In 

addition to the disparity in numbers of reports as seen in Table 2, evidence also suggests 

fume events are underreported (FAA, 2006; Michaelis, 2007; Winder & Michaelis, 

2005). 

 

Table 2 

Rates of Smoke, Fume, and Odor Events Reported from Studies on Aircraft 

Dates Data Source  Number of 
Events 

Daily 
(Annual) 
Average 

Reference 

01/1986-
03/2000 

SDR 8268 1.5 (551) AFA, 2003 

01/1999-
11/2008 

SDR 252 0.07 (25) 
 

ACER, 2012 

2002-2011 SDR 3660a 1.0 Anderson, 2021 

01/2006-
06/2007 

SDR, AID, AFA 470 0.87 (313) 
 

Murawski & 
Supplee, 2008 

2007-2012 SDR and ASRS 2.1/10,000 
flightsb 

9.2 (3373) 
 

Shehadi et al., 
2016 

2009-2010 Flight attendant and 
pilot reports to the 
airlines/unions and 
SDR  

87 0.12 (43) 
 

Murawski, 2011 

2009-2012 FAA (FOIA 
request) 

4080 2.8 (1020) Anderson, 2014 

a The number of smoke or fume events caused by bleed air, oil, or hydraulic fluid was 

determined to be 3660. b Average frequency for all aircraft models. 
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Quantification of Contaminants 

Results of efforts to identify fume event contaminants and their concentrations 

have not accounted for the health effects reported by crews. The irregular occurrence of 

fume events precludes planning and collection of worst-case air samples for analysis 

(Day, 2015; Megson et al, 2016). Crump et al. (2011a; 2011b) monitored air quality and 

collected samples during 100 flights in five different types of aircraft and provided the 

crews with questionnaires regarding fumes. Although 38 of 100 flights had fumes or 

smells reported by crews, none of the events triggered the airline's protocol for safety 

incident reporting.  

Their findings of no contaminant concentrations exceeding health and safety 

standards agreed with the findings of Schuchardt et al. (2019). This study indicated the 

presence of TCP in samples from a Boeing 787, suggesting bleed air may not be the only 

source of TCP. Houtzager et al. (2013) found 37 of 80 air samples collected during 20 

different flights of nine Boeing 737 aircraft contained TCP isomers; however, the median 

concentrations were below exposure limits. Evidence suggests a need for consideration of 

other possible contaminants and better-quality toxicity studies (de Boer et al., 2015).  

Health Effects 

Research regarding diagnosis and treatment and causation of injury or illness 

from exposure to hazardous compounds during fume events has not been conclusive. 

Individual response and susceptibility to exposure appear to vary greatly among subjects 

(Michaelis et al., 2017). Studies to measure exposure have consisted of efforts to identify 

and characterize biomarkers (Ding et al., 2008; Schopfer et al., 2010). Abou-Donia et al. 

(2013) have led efforts to substantiate exposure using markers in crew members' blood. 
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They found elevated levels of autoantibodies in flight crews, with low or no levels of 

antibodies detected in healthy controls. Elevated autoantibody levels in blood samples 

from crew members were corroborated by research findings from Hageman et al. 

(2020b). These findings suggest evidence of central nervous system damage but do not 

indicate causation. Roig et al. (2021) found evidence of respiratory symptoms in three 

patients, while one presented with central nervous system damage as clinical 

manifestations following exposure during aircraft fume events. Physical symptoms and 

biochemical effect monitoring in eleven air crew members were studied by Heutelbeck et 

al. (2016). Their findings of biochemical levels in the blood indicated organophosphates 

or related compounds contributed to the observed symptoms, but direct correlation 

between the symptoms and chemical compounds present in fume events was not possible. 

Schindler et al. (2012) measured higher levels of several TCP metabolites in urine 

samples from crew members compared to the general population. Reneman et al. (2016) 

found changes in brain white matter microstructure among pilots and also found more 

self-reported cognitive complaints, depressive symptoms, and impaired-range test scores 

in pilots compared to a control group. This study was also inconclusive in determining 

causation between the researchers' observations and exposure to TCPs. Finally, Abou-

Donia et al. (2014) conducted post-mortem testing on a pilot presenting with neurological 

deficits and confirmed autoantibody biomarkers consistent with organophosphate-

induced neurotoxicity. Contrary to these findings, Bagshaw (2014) reviewed previous 

research and summarized reported symptoms were inconsistent and ordinary; exposure to 

organophosphates was insufficient to produce neurotoxicity, and toxic injury was not 

medically feasible with TCP exposure levels on aircraft.  
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Medical Emergencies on Aircraft 

A study of five international and domestic airlines by Peterson et al. (2013) found 

calls to a physician-directed medical communications center for in-flight medical 

emergencies occurred at a rate of one medical emergency per 604 flights. This is likely an 

underrepresentation of the actual number and the burden, as not all in-flight medical 

emergencies result in consultations with the medical communications center (Martin-Gill 

et al., 2018; Sul & Badaway, 2018). Sand et al. (2009) found among 32 commercial 

airlines, only four could provide requested reports for in-flight medical emergencies. 

There is no standardized national or international reporting system for tracking in-flight 

medical emergencies among the airlines (Chandra & Conry, 2013; Ruskin, 2009; Sul & 

Badawy, 2018), nor does a uniform standard for the characterization and categorization 

of clinical symptoms or diagnoses exist (Graf et al., 2012).  

Diversion 

At the onset of a fume event, crews should anticipate a diversion, and checklists 

should call for diversion unless the source of the fumes is positively identified, 

extinguished, and the fumes are dissipating (McKenzie, 2009). Diversions represent a 

potential increased risk of accidents and injuries to passengers and crews in the event of 

an emergency evacuation, landing at unfamiliar airports, change in air traffic patterns, 

short runways, limited firefighting capabilities, loss of cargo, or inferior navigational aids 

(GAO, 2003). The decision to divert requires careful consideration of these factors, while 

weighing the immediacy of the situation and the potential outcome of the passenger or 

crew member, and ultimately lies with the captain of the aircraft (IATA, 2018).  
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Financial losses incurred by airlines due to diversions, returns to the departure 

airport, and flight cancellations for flights experiencing smoke and illness events can be 

substantial. Diversions can result in severe disruptions to airline schedules, passenger 

frustration and ill will, and considerable monetary and legal costs (Holley, 2009; 

Johnson, 2014; Valani et al., 2010). Johnson (2014) estimated costs for diversions 

ranging from $15,000 for a domestic flight to over $100,000 for an international flight 

diversion. Shehadi et al. (2015) estimated an average financial cost of $32,000 to $47,000 

per diversion for fume event, with a total financial loss ranging from $4.5 million to $7 

million annually. These costs could be much higher, as fume events are purportedly 

underreported (FAA, 2006; Michaelis, 2007; Winder & Michaelis, 2005).  

Peterson et al. (2013) found among flights with medical emergencies, 7.3% of 

these flights resulted in aircraft diversion. This is an increase from the finding of 2.8% of 

all in-flight medical emergencies resulting in a diversion, as found in 2009 by Sand et al. 

An estimated 44,000 in-flight medical emergencies occur worldwide annually, which will 

likely increase in number as additional flights are added and more passengers travel by 

air (Delaune et al., 2003; Peterson et al., 2013).  

Previous Research in Fume Events 

Previous research has prioritized documentation of the occurrence of fume events, 

primarily by monitoring air quality and collecting wipe samples; identification of the 

specific compounds associated with fume events and their effects on human health; and 

biomonitoring or identifying biomarkers of exposure to contaminants found in fumes as 

detected in body fluids or tissue. Table 3 highlights fume event-related research in these 

areas.  
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Table 3 

Relevant Fume Event-Related Literature 

Topic of 
Interest 

Research Type Sample Limitations Reference 

Air Quality  Monitoring, sample 
collection, and 
questionnaires 

100 flights in 
five types of 
aircraft  

One airline, 
low threshold 
for reporting  

Crump et 
al., 2011a 
and 2011b 

Air Quality Air and wipe 
samples 

20 flights of 
nine Boeing 
737s  

One airline, 
limited 
number of air 
and wipe 
samples 
 

Houtzager, 
et al., 2013 

     
Biomonitoring Descriptive, case 

study 
34 flight crew 
compared to 12 
healthy controls 

Small sample 
size, 
symptoms 
self-reported, 
unknown 
exposure 
 

Abou-
Donia et 
al., 2013 

Health Effects Case Study 3 airline crew 
members with 
respiratory 
symptoms 

Small sample 
size, lack of 
standardized 
treatment 
protocol 

Roig et al., 
2021 

Health 
Effects/ 
Biomarkers 

Case study 3 airline crew 
members with 
central nervous 
system damage  

Small sample 
size, unknown 
exposures, 
study shows 
evidence but 
not causation 
 
 
 
 
 
 
 
 

Hageman 
et al., 
2020b 



33 

 

Topic of 
Interest 

Research Type Sample Limitations Reference 

Health Effects (1) Telephone survey 
or written 
questionnaire 

(2) Case study 

2 studies 
consisting of 
(1) 219 pilots 
and (2) 15 
events 
 

Lack of 
existing 
exposure 
protocol and 
standardized 
data 
collection 

Michaelis 
et al., 2017 

Health Effects Survey 96 Boeing 757 
pilot 
respondents 
reported 1674+ 
events 
 

Subjective 
reports 

Michaelis, 
2003 

Health Effects Survey of 
exposed 
aircrew 

Aircrew in UK, 
Australia, and US 

Self-selected          
aircrew,     
subjective  
reports, small 
sample size 

Harper, 
2005 

Health 
Effects/Exposure  

Case study SDR, reports to 
unions 

Medical     
records 
inaccessible, 
one airline 

Murawski, 
2011 

Occurrence Archival 
review 

SDR, AID reports, 
airlines and union, 
online searches 

No national 
reporting 
system, limited 
access to FAA 
and flight 
attendant 
reports 

Murawski 
and 
Supplee, 
2008 

Occurrence Archival 
review 

SDR and ASRS  Underreporting 
of events, 
small numbers 
of aircraft 
types, dynamic 
environment 

Shehadi, 
Jones, & 
Hosni, 
2016 

 

The literature provides evidence of the occurrence of fume events on aircraft, with 

crews and passengers experiencing acute and chronic health effects. Various research 
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methods have been used to document these events, including the collection of air and 

residue samples for analysis of hazardous compounds. Blood, body fluid, and tissue 

samples from persons with suspected exposure to hazardous compounds during fume 

events have been analyzed in an attempt to identify compounds or their metabolites. 

Although compounds have been identified, the concentration of contaminants during the 

exposure period, route of exposure, length of exposure, and individual sensitivities to 

hazardous compounds contribute to complicated conditions which cannot be 

standardized. These factors also contribute to the challenges in normalizing acute and 

chronic health effects within an exposed population. 

Gaps in the Literature 

Existing literature is primarily focused on documenting the occurrence of fume 

events and the contaminants present, identifying compounds associated with fume events 

and their effects on human health, and identifying biomarkers of exposure to 

contaminants. These studies are reactive rather than predictive; researchers rely on the 

occurrence of fume events to investigate the aftereffects. Identifying factors associated 

with fume events may be the first step in predicting and mitigating the occurrence of 

fume events. Recognition of fume event occurrence can aid in verifying and documenting 

occurrences of fume events, identifying contaminants, capturing quantitative 

measurements, and developing strategies to protect human health and improve flight 

safety. Results of this study support a predictive approach to risk management as 

mandated by the safety management systems required for Part 121 carriers. Continuous 

improvement in safety by identification of factors and prediction of hazards through 
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analysis of employee reports as proposed by the FAA (FAA, 2016) is not currently 

applied to fume events.  

A lack of research concerning the occurrence and the circumstances related to the 

occurrence of fume events is currently observed, resulting in a gap in the body of 

knowledge involving hazards associated with contaminated bleed air. Predictive 

modeling using known results to create, process, and validate a model to forecast future 

outcomes (Frankenfield, 2019) can potentially be applied to the forecasting of fume 

events using data with robust identification and documentation of fume event occurrence. 

Current literature indicates an appropriate use of ASRS data to identify variables of 

interest in aviation safety. Use of those variables in building predictive models using data 

with clear identification and documentation of fume events may be a valuable next step. 

The FAA's AIDS contains a plethora of information and is publicly accessible; however, 

this database contains information limited to aviation incidents defined as an occurrence, 

other than an accident associated with the operation of aircraft, which affects or could 

affect the safety of operations (FAA, n.d.a). Prior to 1995, the contents of the narrative 

fields were limited to 115 characters, which may limit the information provided. Reports 

after 1995 contain entire narratives as prepared by the FAA inspector (FAA, n.d.a.) and 

are not prepared by the crews. 

The FAA's SDR system contains publicly accessible reports and focuses on the 

cause of the occurrence to improve the safety and reliability of aeronautical parts and 

products. In addition, a government report found airline reports to the SDR system varied 

significantly due to unclear reporting requirements and fears regarding public access to 

reports; inadequate data, lack of timely reporting, and limited analysis resulted in low-
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quality data; and most users believed the program should not be continued unless the 

FAA made major improvements (GAO, 1991). Although guidance is provided by an 

advisory circular (FAA, 1993) and required by regulation (14 CFR Ä 121.703, 14 CFR Ä 

125.409; 14 CFR Ä 135.415, 14 CFR Ä 145.221), this information is inconsistently 

reported, resulting in poor quality data and an incomplete database (GAO, 1991; Service 

Difficulty Reports, 2000). 

The use of ASRS data for the identification of variables of interest in UAQ and 

fume events allows for direct use of reporters' narratives and information from their 

experiences and can be used to explore important factors influencing these occurrences. 

This study contributes to reducing this knowledge gap and improving the health and 

safety of crews and passengers.  

Theoretical Foundation 

This study used text mining methods to explore and identify important factors 

associated with fume events and used data mining methods to develop, train, validate, 

and test models to identify important factors in the occurrence of fume events. Text 

mining combines data mining and text analytics in the use of unstructured or textual data 

with structured data for exploration, discovery, and classification, or predictive modeling 

(Dean, 2014). Data mining is the use of "machine learning algorithms to find faint 

patterns of relationship between data elements in large, noisy, and messy data sets, which 

can lead to actions to increase benefit in some form (diagnosis, profit, detection, etc.)" 

(Nisbet et al., 2009, p. 17). Both data and text mining algorithms have been used in prior 

research to identify, classify, and predict the occurrence of events in which aviation 

safety may be compromised.  
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Text Mining 

Hearst (2003) described text mining as the discovery of new, previously unknown 

information by automatically extracting data from natural language text instead of from 

structured databases or fields and is a variation of data mining. A form of text mining is 

topic modeling, which is a method for finding groups of words or topics from textual 

material that best describe the information. Several relevant studies demonstrating the 

versatility and appropriateness of text mining for this study are shown in Table 4.  

 

Table 4 

Relevant Aviation Text Mining Literature 

Topic of 
Interest 

Data Used Algorithm Used Findings Reference 

Identification 
of factors 
contributing to 
anomalies 

ASRS IBM SPSS 
Modeler 13: Text 
Analytics 

Most common 
category 
contained 
concepts related 
to unsafe 
conditions, then 
by rule-based, 
then skill-based, 
followed by 
knowledge-
based errors 
 

Andrzejczak, 
et al., 2015 

Latent topics 
and trends 

ASRS Structural topic 
modeling 

Two approach 
paths at one 
airport 
frequently 
identified in 
incident reports 
 
 
 
 
 

Kuhn, 2018 
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Topic of 
Interest 

Data Used Algorithm Used Findings Reference 

Risk factors in 
safety 
management 
systems 

ASRS Topic mining and 
three 
classification 
algorithms (naµve 
Bayes, Hoeffding 
tree, and 
OzaBagADWIN ) 

OzaBagADWIN 
is best 
performing 
classification 
algorithm 

Shi et al., 
2018 

 

Andrzejczak et al. (2014) investigated relationships between specific factors and 

self-reported irregularities utilizing correspondence analysis and data mining using 

existing taxonomies and text narratives in the ASRS database. Findings revealed a 

broadly defined human factors category and weather conditions were the main factors 

associated with the self-reported anomalies. Kuhn (2018) applied structural topic 

modeling, a form of text mining, to the ASRS database to take advantage of the valuable 

information provided in the free text in the reports and the useful metadata included in 

the database. Findings identified known issues but also revealed previously unreported 

issues and associations between topics. Shi et al. (2017) used topic mining methods to 

extract structured information from textual data contained in ASRS report narratives. 

This structured information was used as input in three data-streaming algorithms to assess 

the potential for classification of the incidents and to build and test incident cause 

classification models. The best performing model was the OzaBagADWIN algorithm 

which is an adaptation of the bagging algorithm with an added drift detector (adaptive 

windowing or ADWIN) based on replacing the worst of the classifiers with a new base 

classifier (Diaz et al., 2015).  
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Data Mining 

Identification of precursors and common conditions, events, or behaviors 

associated with safety incidents is a valuable function of data mining. Cluster analysis is 

a data mining technique used to identify and group similar data points or patterns in a 

dataset and can be useful in analyzing large amounts of data. Cluster-based anomaly 

detection was used to detect abnormal flights from flight operations quality assurance 

(FOQA) programs data in studies by Li et al. (2015). Their findings demonstrate the 

cluster analysis method was able to determine abnormal flights without having previous 

knowledge of anomalies and is useful in identifying abnormal flights from routine flights. 

Additional research using FOQA program data was conducted by Aslaner et al. (2016) 

using an agglomerative hierarchical clustering technique to identify abnormal flight 

characteristics during the landing approach phase of flight. This study demonstrates the 

ability of the clustering approach to classify landing approaches using selected flight data 

as inputs, thereby saving analysts' time and effort.  

Using scalable data-mining algorithms to analyze FOQA data, Matthews et al. 

(2013) found anomalies in airspeed, mode confusion, and unstable approaches were three 

operationally significant events leading to aviation safety incidents. Findings from these 

studies demonstrate the ability to determine abnormal flights without having previous 

knowledge of anomalies.  

Friso et al. (2018) used a combination of machine learning techniques, which do 

not require predefined criteria or domain knowledge, to characterize and identify 

associated risk precursors using the final approach, runway radar, and weather data to 

predict abnormal arrival runway occupancy times. Final approach, runway radar data, and 
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weather data were used to determine the ten features most influential on arrival runway 

occupancy time. Regression tree analysis indicated abnormal and normal arrival runway 

occupancy times can be accurately predicted with advanced knowledge of the top seven 

features. Open source quasi-stall flight test data from the German Aerospace Center were 

used by Kumar & Ghosh (2019) to develop models to predict unsteady aerodynamics in 

the DLR-ATTAS aircraft. Classification and regression tree and random forest models 

were developed and compared, with random forest producing slightly better results, 

although both models were found to be viable alternatives to maximum likelihood 

estimations. 

Two data mining methods were used by Truong et al. (2018) to predict the 

probability of flight delays between two busy airports. Operations and performance data 

were used to build decision tree and Bayesian inference models. Although both models 

showed similarities and differences in flight delay prediction results, the Bayesian model 

provided more information on causal relationships between impact factors and the target 

variable while the decision tree was slightly more accurate in predicting delays. Both 

methods were shown to be superior to other traditional prediction methods. Several 

predictive models were developed by Etani (2019) to predict on-time flight arrival using 

flight data and weather pressure data from three weather observation stations in Japan. 

Gradient boosting, random forest, decision tree, AdaBoost, and support vector machine 

models were used with and without weather data. Results indicated the random forest was 

the superior model with 77% accuracy; it also outperformed the gradient boosting models 

in precision and recall. Truong and Choi (2020) found the gradient boosting algorithm 

produced the best model for predicting airspace violation incidents among small 
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unmanned aircraft systems. Algorithms previously used in aviation safety research are 

summarized in Table 5 and include decision trees, artificial neural networks, random 

forests, Bayesian inference, and multiple-kernel anomaly detection (Aslaner et al., 2016; 

Etani, 2019; Friso, et al., 2018; Kumar & Ghosh, 2019; Li et al., 2015; Matthews et al., 

2013; Truong et al., 2018).    

 

Table 5 

Relevant Aviation Safety Data Mining Literature 

Topic of 
Interest 

Data Used Algorithm Used Findings Reference 

Abnormal 
flights 

FOQA Novel cluster 
analysis, multiple 
kernel  

Cluster-based 
anomaly detection 
performed better 
with continuous 
parameters, 
multiple kernel 
anomaly detection 
was more 
sensitive with 
discrete 
parameters  

Li et al., 2015 

Abnormal flight 
characteristics 
during landings 

 
FOQA 

 
Agglomerative 
hierarchical cluster 
analysis 

Abnormal flight 
characteristics 
identified during 
the landing phase 
of flight 

 
Aslaner et al., 
2016 

 
Flight 
anomalies 

 
FOQA 

 
Multi-kernel, 
Index-Orca,  
learning, novel 
multivariate time-
series search  

 
Airspeed, mode 
confusion, and 
unstable 
approaches were 
significant 
predictors 

 
Matthews et 
al., 2013 

 
Abnormal 
runway 
occupancy 
times 

 
Final approach 
radar data, 
runway data, 
and weather 
data 

 
Lasso, multi-layer 
perception, neural 
network, and 
regression tree 

 
Regression tree 
best model 

 
Friso et al., 
2018 
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Topic of 
Interest 

Data Used Algorithm Used Findings Reference 

On-time 
performance 

FAA Aviation 
System 
Performance 
Metrics, 
Operational 
Network, and 
Bureau of 
Transportation 
Statistics  

Decision tree, 
Bayesian inference 

Decision tree 
slightly more 
accurate, Bayesian 
model provides 
more useful 
relationship 
information 
among impact 
factors and target 
variable 

Truong et al., 
2018 

 
On-time flight 
arrival 

 
Flight and 
weather data 

 
Random Forest 

 
77% accuracy in 
on-time arrival 

 
Etani, 2019 

Unmanned 
aircraft system 
violations 
(UAS) 

FAA UAS 
sightings 
reports 

Gradient boosting, 
classification 
regression, 
decision tree, 
neural 
network, random 
forest, Bayesian 
networks, and 
Memory Based 
Reasoning 

Gradient boosting 
was the most 
accurate 
predictive model, 
followed by 
random forest and 
decision tree 
models 

Truong & 
Choi, 2020 

 

The process used for data mining in this study was developed by SASÈ and 

focuses on a logical and methodical structure to the model development phase to apply 

exploratory statistical and visualization methods, select and transform the most important 

variables, model the variables to predict results, and confirm the accuracy of the model 

(Dean, 2014). This process included sampling, exploring, modifying, modeling, and 

assessing (SEMMA) steps, some of which may be repeated several times before the 

completion of the analysis (SASÈ, 2013). The SEMMA process can be used regardless 

of data size or complexity (Dean, 2014).   
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Combined Text and Data Mining 

The usefulness of combining text and data mining tools has been demonstrated 

using reports from an airline's aviation safety action program, where two text fields 

written by the pilot submitting the report and eight structured fields were analyzed 

(Nazeri, 2003). Nazeri et al. (2001) found the application of text and data mining tools to 

ASRS data yielded a loss in detail due to the de-identification of information. However, 

the researchers indicated data in the ASRS could benefit from data mining, and neither 

field should be ignored. In agreement with Kuhn, Nazeri et al. (2001) observed the lack 

of detail in results of data mining using ASRS data requires careful review by subject 

matter experts to interpret and determine an intuitive meaning to findings and does not 

diminish the role of the data analyst.  

Christopher et al. (2016) applied different data mining methods to aircraft 

accident reports. Different feature selection techniques and classification algorithms were 

used to develop a classification model for examining and reducing aviation risk using 

decision tree induction methods. Data mining methods were also used by Koteeswaran et 

al. (2017) to identify and examine effective attributes to reduce the number of aviation 

accidents. The authors combined the k-nearest neighbor classifier and correlation-based 

feature selection algorithms with an oscillating search technique to classify aviation 

accident risk factors in a civil aircraft accident database. A summary of these studies is 

found in Table 6. 
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Table 6 

Relevant Aviation Data and Text Mining Literature 

Topic of 
Interest 

Data Used Algorithm Used Findings Reference 

Proof of 
Concept 
Demonstration 

ASAP FindSimilar, 
FindAssociations and  
FindDistributions tools 
in Aviation Safety Data 
Mining Workbench tool 
 
 

Data mining tools 
are helpful but do 
not eliminate the 
need for human 
analysts 

Nazeri, 2003 

Assist with 
analysis of data  

ASRS Aviation Safety Data 
Mining Workbench tool 

De-identification 
of ASRS data 
results in loss of 
detail, domain 
can benefit from 
data mining, 
linking reports to 
other data sources 
can help find 
causal 
relationships 
 

Nazeri et al., 
2001 

Incident 
prediction risk 

 
ASRS 

Hybrid model of support 
vector machine and 
deep neural networks, 
decision tree 

36 unique event 
outcomes 
collapsed into 5 
risk groups, 
hybrid model 
outperforms 
individual models 
 

 
Zhang & 
Mahadevan, 
2019 

     
Identify and 
examine 
accident 
effective 
attributes  

FAA 
accident/ 
incident 
database 
 

Improved oscillated 
correlation feature 
selection algorithm, 
Naµve Bayes, support 
vector machine, 
artificial neural network, 
k-nearest neighbor, 
multiclass classifier, and 
decision tree  
 

Best results are 
found with k-NN 
classifier  

Koteeswaran 
et al., 2017 
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Machine Learning Algorithms 

Machine learning algorithms use well-defined datasets to create associations, 

discover patterns, find relationships, generate new samples, and more (Bonaccorso, 

2018). As previously illustrated, machine learning has been used extensively in aviation 

applications to predict several conditions, including risk factors, accidents, unsafe 

conditions,  and aircraft arrival times. Decision tree, gradient boosting, logistic 

regression, and random forest algorithms will be used to build the models used in this 

study.  

Decision Tree. Decision trees are a nonlinear, non-parametric, logical, rule-based 

data mining method that uses supervised divisive hierarchical methods to segment the 

population into nodes by applying explicit rules for classification (Tuff®ry, 2011). The 

root is the first node of the tree; the terminal nodes are leaves. The expression of a rule 

determines the path between the root and each leaf, with the population in each node sub-

population containing the largest possible proportion of individuals in a single class. 

Rules are reiteratively applied to each new node with each parent node separated into two 

or more child nodes to increase the discrimination until reaching the termination criteria 

or until the individuals cannot be further separated.   

The advantages of decision trees include the ability to handle heterogeneous data, 

missing values, and nonlinear relationships; their relative power and ease of use; their 

robustness with a variety of data; and the ease of interpretation (deVille & Neville, 2013). 

Disadvantages of decision trees include reduced performance with a small training set, 

rigid decision criteria, and outlier attribute values (Katz et al., 2014). Efforts were made 

to mitigate these effects in this study, an adequate sample size for the training set limited 
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overly simplistic classification trees, and the decision at each node was reviewed to 

ensure the classification was correct. Alternative paths were considered where 

appropriate, and varying margins were used to classify the dataset as needed.  

Gradient Boosting. Gradient boosting is a partitioning algorithm that seeks an 

optimal partition of the data as determined by the values of a single variable, with the 

optimality criterion dependent on the distribution of the target variable into the partition 

segments (SASÈ, 2017). As the target values within the segments are more comparable, 

the greater the prominence of the partition. According to SASÈ (2017), most partitioning 

algorithms additionally divide each segment in a recursive partitioning process with 

partitions combined to produce a predictive model. The model can be evaluated by 

goodness-of-fit statistics specific for the target variable, with the statistics indicating a 

different measure from the worth of an individual partition (SASÈ, 2017).  

The gradient boosting algorithm creates a series of decision trees where each tree 

in the sequence of trees is fit to the residual of the prediction based on the earlier trees in 

the series; thus each time the data is used to grow a tree, the accuracy is computed for 

each tree and predictive models are developed (SASÈ, n.d.). In this algorithm, this 

boosting approach resamples the data multiple times to produce results that yield a 

weighted average of the re-sampled data set (SASÈ, 2019d). As each successive sample is 

weighted corresponding to the classification accuracy of the previous models, it is 

referred to as stochastic gradient boosting (SASÈ, 2017b). This machine-learning 

algorithm can be used to construct regression, classification, and ranking models by 

sequentially fitting a simple parameterized function (base learner) to current pseudo-

residuals by least-squares at each iteration (Friedman, 2002; Li, n.d.). No assumptions 
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about the distribution of the data are required for gradient boosting algorithms, and they 

are less prone to overfit the data than a single decision tree (SASÈ, 2019c).  

Logistic Regression. Logistic regression is a data mining method often preferred 

for risk prediction, due to its generality, interpretability, and robustness (Tuff®ry, 2011). 

Reliability may be monitored using statistical indicators, and the model has no required 

assumptions for normality, homoscedasticity, or linearity (Tuff®ry, 2011). In logistic 

regression, a linear combination of independent predictors can be converted to a value 

between zero and one using a logistic, or log of odds function, which can be used to 

estimate the probability of a dichotomous outcome (Hess & Hess, 2019). This probability 

can be expressed as odds, with the contribution of each predictor to the outcome 

expressed as an odds ratio (Hesse & Hess, 2019). Logistic regression models are also fit 

through multiple iterations, the results of which converge on an approximate solution 

which is determined by estimating the coefficient for each predictor and testing if 

changes decrease the sum of the squared deviations. The maximum likelihood estimate is 

reached when small changes fail to improve the sum, at which point the problem is 

considered solved.  

Random Forests. Random forest algorithms are supervised ensemble learning 

classification algorithms that are a combination of decision tree predictors, with each tree 

depending on the values of a random vector that is sampled independently, with the same 

distribution occurring for each of the trees in the forest (Breiman, 2001). The resulting 

double randomization occurs with the randomization of variable selection and 

randomization of the learning sample (Tuff®ry, 2011). The nodes of the individual 

decision trees within the random forest consist of splits based on a randomly chosen set 
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of variables and serve to ensure the same variables do not appear at every node, decreases 

the correlation between the successive trees, and decreases the variance of the aggregated 

model (Tuff®ry, 2011). This bootstrap aggregating, or bagging, helps to reduce overfitting 

and improve the prediction accuracy of the model (Tuff®ry, 2011).  

Random forest algorithms have produced the most accurate classification results 

in scientific and medical fields (Dimitriadis & Laparas, 2018) and have become 

extremely popular because of their ability to handle non-linearly correlated data, 

simplicity, stability in the presence of outliers, an opportunity for efficient parallel 

processing, and resistance to noise in the data (Caruana & Niculescu-Mizil, 2006; Sarica 

et al., 2017; Tuff®ry, 2011). Random forests may have advantages over other 

methodologies in their increased immunity to data type and capability of handling 

discrete data and to apply discretization algorithms to data before the learning step 

(Moradi et al., 2015). Random forests are also tolerant of overlearning due to the 

averaging of the outputs of the individual trees (Moradi et al., 2015). Random forests 

handle mixtures of continuous and categorical data; missing values; wide data, where the 

number of predictors far outnumbers the number of data records; as well as ease of use 

(Salford Systems, 2014). 

Another benefit of the random forest algorithm is the ability to rank the 

prominence of input variables by randomly but individually permuting the values of each 

variable, and approximating the drop in accuracy (Breiman, 2001). This function was 

employed to determine the importance of the variables associated with the occurrence of 

events that are not related to UAQ, events that are related to UAQ but are not fume 
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events, and events that are perceived by the reporters to be fume events. Feature selection 

and extraction were applied prior to the classification to improve overall accuracy.  

The accuracy of a random forest depends on the strength of the classifiers of each 

tree, and some measure of the independence between them (Breiman, 2001). Random 

forest models perform best when trees are grown to a large size, thus are well-suited for 

the analysis of complex datasets with many columns but only a moderate number of rows 

(Salford Systems, 2014). Disadvantages of random forests may include a risk of 

overfitting; the amount of resources required in terms of software and computation; 

difficulty in interpreting the classifications, requiring skill and time; and the lack of 

transparency in using this black box method (Shmueli, Bruce, & Patel, 2016).  

Summary 

With many unknowns surrounding the occurrence, frequency, effects, and 

outcome of fume events, developing prevention strategies for these events is challenging. 

Efforts to identify and characterize events and the potential health effects are currently 

reactive and occur after an event is suspected and are made more difficult with a lack of 

consistent data or a national reporting and tracking system. Identification of conditions, 

events, and behaviors associated with the occurrence of fume events could provide 

passengers and crew with enhanced safety and aid airlines in limiting hazardous 

conditions and costly delays and diversions.  

This literature review has provided a foundation for this research. Published 

studies using text and data mining methods to identify important factors associated with 

safety incidents, develop models for identifying flight anomalies, improving safety, 

identifying latent topics and trends, and to identify factors contributing to accidents were 
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reviewed. The next chapter describes the methodology for the identification of important 

factors associated with UAQ and fume events in the ASRS dataset and the development 

and evaluation of predictive models to assess these factors. 
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Chapter III: Methodology 

This mixed method study used qualitative textual data and quantitative data from 

voluntarily submitted reports to examine how text mining techniques can be used to 

explore and identify the most important variables associated with UAQ and fume events, 

and how data mining and modeling techniques can be used to identify important factors 

associated with UAQ and fume event occurrence.  

The literature review identified gaps in scientific data associated with the 

occurrence of fume events, including their frequency of occurrence, the identification of 

hazardous compounds associated with fume events, and causes of physical, neurological, 

physiological, and neurobiological symptoms associated with exposure to toxic fumes. A 

lack of existing predictive, proactive, and reactive data and data collection methods limits 

the ability to document the occurrence of fume events and support the identification of 

individual compounds and their relationship to health effects from exposure to toxic 

fumes. The continued occurrence of fume events exposes crews and passengers to 

hazards from exposure to toxic fumes, flight diversions, and emergency landings, and the 

airlines to potential added financial and legal costs.   

This chapter describes the reports comprising the database, data mining software, 

analytical methods, and algorithms used in this study. The purpose of this exploratory, 

data-driven study was to explore textual and quantitative data to identify factors 

associated with occurrences of UAQ and fume events and develop and test data mining 

algorithms to identify factors associated with the occurrence of these events. The review 

of existing literature found examples of text mining used to identify valuable information 

from ASRS report narratives, and data mining methods have been used to identify safety 
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precursors in FOQA data. Structured information from text and data mining efforts has 

been used in various algorithms to create predictive models; this study also contributes to 

the collective body of knowledge and safety improvements advanced by the development 

of models to identify important factors associated with hazardous events.    

Research Method Selection 

A combination of text mining and machine learning techniques was used to 

identify variables in self-reported narratives and identify the most important factors 

associated with the occurrence of fume events. A new pattern was detected for the 

important factors identified in voluntarily reported data functioning as input variables 

contributing to the probability of the target variables. The target variable consisted of 

three levels of reported events:  

1 = Events that are not related to UAQ;  

2 = Events that are related to UAQ but are not fume events; and  

3 = Events that are reported to be fume events. 

To address the research questions, data mining using decision tree, gradient 

boosting, logistic regression, and random forest algorithms were used to build models 

based on the input variables identified through the text mining process.  

Population and Sampling Frame 

The target population for this study was the set of aviation events occurring in 14 

CFR Part 121 operations in the United States which are documented in reports submitted 

to the ASRS. Reports are submitted by individuals and reviewed by ASRS personnel. 

Reports describing the same event are grouped and presented as one event or case. 
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The sampling frame consisted of reports submitted to the ASRS during 2015-

2019 describing safety incidents among U.S. airlines regulated under Federal Aviation 

Regulations 14 C.F.R Ä Part 121 Domestic, Flag, and Supplemental Operations. These 

operations were selected due to the regulatory standardization of aircraft, crews, training, 

and reporting requirements. The sampling frame included events reported by all flight 

crew and cabin crew options for reporter functions, including pilot, captain, check pilot, 

first officer, second officer, flight engineer, instructor, pilot flying, pilot not flying, relief 

pilot, single pilot, trainee, other, and unknown for flight crew. For flight attendants, 

functions included flight attendant on duty, in charge, off duty, other, and unknown.    

Sample Size 

The sampling frame consisted of incidents described by reports submitted to the 

ASRS during 2015-2019 by flight crew and cabin crew members and available in the 

publicly accessible database. After downloading the ASRS ExcelÈ file, data was 

uploaded into SASÈ Enterprise MinerTM (SASÈ EMTM). For data mining, the cases were 

partitioned into training, validation, and test subsamples. Published criteria for 

determining the termination of active learning in training data for classification do not 

directly predict a sample size although previous research required between 80 to 560 

annotated samples to obtain mean average and root mean squared error below 0.01 

(Figueroa et al., 2012). The sample size for this study included 13,873 events with 18,966 

narratives reported. Four reports were miscoded and were rejected after consultation with 

an ASRS analyst for a total of 13,869 events and 18,962 narrative fields. Data used for 

model training and validation each consisted of forty percent of the cases, or 

approximately 5,548 samples each. The remaining twenty percent of the cases or 
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approximately 2,774 samples were used for testing the models. Mining a representative 

sample reduces processing time, and patterns appearing in the complete dataset will be 

identified in a representative sample (Dean, 2014).  

Data Collection Process 

This research study used secondary data collected by NASA and made available 

in the ASRS. The FAA utilizes NASA as a third party to maintain the ASRS following a 

memorandum of agreement (FAA, 2011b). NASA analysts receive and process aviation 

safety reports which are voluntarily submitted from pilots, flight attendants, controllers, 

maintainers, and others. These reports may be submitted electronically or on written 

forms through the postal system on NASA form ARC 277B for flight crews, dispatchers, 

and others (see Appendix A). Cabin crews use report form ARC 277C (Appendix B) 

while repairmen, mechanics, and inspectors use report form 277D, and air traffic 

controllers use report form 277A. 

An incentive for reporting is provided through the availability of waivers of 

disciplinary action, civil penalties, or suspension of FAA-issued certificates. The FAA 

will not use information in reports submitted to NASA under the ASRS in any 

enforcement action, provided the potential violations were inadvertent and not deliberate; 

the actions did not disclose a lack of qualification or competency; the reporter has not 

been subject to an FAA enforcement action in the five years prior; the actions were not 

accidents or criminal activity; and the reporter can prove within 10 days after the 

violation, or date when the person became aware of the violation, they submitted a report 

to NASA (FAA, 2021). Each report form contains a reporter identification strip 

identifying the person submitting the report and provides NASA analysts with contact 
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information if there is a need to collect additional information. NASA staff time stamps 

the strips and returns them to the reporter as proof a report was filed. 

Once received, reports are reviewed by a team of analysts, hazards are flagged for 

immediate attention, and reports are coded, classified, deidentified, and made available in 

a publicly accessible database: https://asrs.arc.nasa.gov/search/database.html. One event 

may result in multiple reports as pilots, flight attendants, maintainers, and air traffic 

controllers may each be involved and individually report a single event. Analysts review 

reports and identify common events and group those reports in a single event that 

constitutes a case within the ASRS database. Classifications and causes of events are 

determined by analysts after reviewing reports and are also available in the database 

(ASRS, n.d.b.). This database is searchable by selecting filters, such as the 14 CFR part 

under which the flight was conducted, the type of aircraft, or the reporter position (ASRS, 

n.d.c).  

Design and Procedures 

This sequential mixed method research occurred in two steps. In the first step, text 

mining techniques were used to discover important variables from the unstructured 

textual data contained in the ASRS report narratives. In the second step, the data mining 

process combined these important variables and appropriate meaningful quantitative 

variables in the database to develop and test models for the identification of factors 

associated with the three levels of the target variable: events that are not related to UAQ; 

events that are related to UAQ but are not fume events; and events that are reported to be 

fume events. In this mixed method design, categorized as development design, the 

sequential use of qualitative and quantitative methods allows results from the first method 
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to inform the development or analysis of the second method and assesses the same 

phenomena (Greene et al., 1989). A mixed method design is appropriate because the 

ASRS database contains both textual data found in reporter narratives and event synopses 

and quantitative flight data which can be combined in models developed to address the 

research questions. Creswell and Clark (2007) identified several strengths of the 

exploratory mixed method design, including straightforward description, implementation, 

and reporting; acceptance of the qualitative aspect by the inclusion of the quantitative 

approach; and application to multiphase research studies. This study used sequential 

exploratory mixed methods, in which the qualitative and quantitative components were 

conducted in stages, with the results of the qualitative text mining informing the 

quantitative data mining stage of the study. Onwuegbuzie and Leech (2004) identified 

several additional strengths of sequential mixed methods research. They posit using a 

sequential mixed method analysis in a predominantly qualitative or quantitative study can 

address the goals of complementarity, development, and expansion. One disadvantage of 

this type of research is the potential for the order of the qualitative and quantitative 

research to affect the interpretation of data (Onwuegbuzie et al., 2011). Another concern 

is the analysis of data for one component of a mixed method study can potentially affect 

the analysis and reporting of data in another part of the study (Vogt et al., 2012). The 

structure of this research required the qualitative data to be analyzed first, with the results 

used to inform the quantitative analysis, thus the expectation is for the initial data 

analysis to influence the latter analysis. Qualitative and quantitative research designs 

should be combined when one method will be used to inform another (Vogt et al., 2012), 

thus, this design was appropriate to address the research questions.   
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Text Mining. Text mining involves the efficient analysis and exploration of 

unstructured or textual information for the extraction of meaningful information and 

knowledge from large amounts of text (Hussein et al., 2015). Free text information found 

in the narratives submitted by reporters and synopses developed by ASRS analysts may 

contain valuable insight into factors associated with UAQ and fume events. Results of 

text mining can be combined with data mining models to greatly improve the predictive 

power of models (Chakraborty et al., 2013).  

The results of mining data from the free text fields of the reports submitted to 

ASRS enhanced the models developed to identify factors associated with fume events in 

this research. The first free text field of the ASRS reports includes a description of the 

event or situation. The reporter is asked to discuss the chain of events, including how the 

problem arose, contributing factors, how it was discovered, and corrective actions, and 

human performance considerations including perceptions, judgments, decisions, factors 

affecting the quality of human performance, and actions or inactions (ASRS, 2009). The 

second free text field is a synopsis of the event as provided by the analyst. Analysts have 

experience in a full spectrum of aviation activity including air traffic control; military, 

corporate, commercial, and general aviation; and maintenance, and are knowledgeable in 

human factors and psychology research; crew resource management; fatigue; and user 

interface design (ASRS, n.d.b.) and are thus able to provide accurate and succinct 

descriptions of events.  

The text mining process of this study included data collection, text parsing and 

transformation, text filtering, and text mining, as shown in Figure 2 (Chakraborty et al., 

2013). The collection of data took place by applying the appropriate filters to the ASRS 
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database to select data reported from 14 CFR Part 121 operations in the U.S. during 

2015-2019. These data were downloaded into a Microsoft ExcelÈ spreadsheet and 

manually reviewed for completeness and accuracy. An aviation research data analyst at 

NASA was consulted to confirm variables and coding when questions arose. A variable 

was created to contain all of the report narratives in one variable for the text mining 

procedures. These data were then imported into SASÈ EMTM using the Text Import node. 

This node extracted text from the files and placed copies of this text in a plain text file 

and a SASÈ dataset that was imported into the Text Parsing node. The steps in the 

process flow diagram using SASÈ Text Miner are illustrated in Figure 3. 

 

Figure 2   

The Text Mining Process Using SASÈ Text Miner 

 

Note. As adapted from "Text Mining and Analysis: Practical methods, examples, and case 

studies using SASÈ," by G. Chakraborty, M. Pagolu, and S. Garla, 2013, SASÈ Institute Inc. 
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Figure 3   

The Process Flow Diagram Used in the Text Mining Process 

 

Note. From SASÈ Text Miner. 

 

Text parsing. The first step in converting unstructured text to a structured format 

for analysis was text parsing (Chakraborty et al., 2013) and focused on the preparation of 

the data. The text parsing step used the Text Parsing node and included tokenization, 

lemmatization, and part-of-speech (POS) tagging. Tokenization is the process of breaking 

the series of sentences contained in the narratives into units or words (Chakraborty et al., 

2013). Analysis of the structure and form of words in most Indo-European languages also 

includes stemming in addition to lemmatization, and POS-tagging of words, as the core 

part of a word must be identified to assist in determining similarities of words (Ding et al, 

2019). SASÈ Text Miner uses a dictionary-based algorithm to stem words and allows the 

automatic assignment of synonyms to terms as represented by the form of the root word 

(Chakraborty et al., 2013). Lemmatization is used with stemming to identify root lexical 

components in words to reduce the complexity of a document without a loss of 

information (Chakraborty et al., 2013). POS tagging is the procedure in which each token 

or word in a sentence is labeled with the applicable part of speech, such as noun, verb, 

adjective, adverb, etc. The text parsing step also included extraction, cleaning, and 



60 

 

creation of a dictionary of words from the reports. Transformation used linear algebra-

based methods to numerically represent the text, in a term-by-document matrix.  

 The text parsing process employed the use of a stop list, which is a dataset of 

terms occurring so frequently they do not add value in the identification of topics and can 

thus be excluded from the parsing results (Banks et al., 2018). A default stop list supplied 

by SASÈ EMTM containing common words in the English language and including part-of-

speech (POS) tags was used as an initial stop list. Performance of the stop list was 

optimized by modifying this base list by manually adding and removing words and by 

removing POS tags. Editing occurred over multiple iterations to include additional terms 

that contained little relevant information or were extraneous to the text mining goal as the 

most effective stop lists contain common words that are used frequently but provide the 

least information in the data (SASÈ, 2020b). 

As confirmed by Zipf (Newman, 2005), the frequency in which words appear in 

the English language follows a power law, which means the frequency of any word is 

inversely proportional to its rank in a frequency table and is shown in Zipf plots in the 

results page of SASÈ EMTM analyses. Thus frequently occurring words that did not 

contribute to the identification of topics were removed and included terms such as 

airplane, aircraft, plane, etc. Zipfôs law also applied to the removal of infrequent words 

called sparse terms at the tail of the distribution to aid in reducing processing time and 

power requirements (Banks et al., 2018). The iterative process of developing the stop list 

included removing sparse terms which were infrequently used and did not contribute to 

the identification of topics and included words such as jump seat, jumpseater, and jump 

seaters.  
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Text Filtering. Text filtering followed the text parsing step. The use of the Text 

Filter node reduced the total number of documents that were analyzed and eliminated 

unimportant terms, allowing only the most relevant terms containing valuable 

information to be included in the analysis (SASÈ, 2019). The Text Filter node used a 

weighted term-by-document matrix to analyze and eliminate terms that did not contribute 

value in the development and identification of topics. The terms appearing less frequently 

were assigned higher weights because they better differentiate the narratives in the 

dataset, while terms appearing more frequently are assigned higher weights because they 

better describe the narratives (Chakraborty, 2013).  

The term-by-document matrix uses these two weights, the frequency weight, or 

the weight within a document, also called the local weight, and the term weight also 

called the global weight. The frequency weight transforms the frequency of the 

occurrence of the word in the narrative using a weighting function, whereas the term 

weight is assigned based on the overall frequency and the narrative frequency 

(Chakraborty et al., 2013). Used together, the weighting methods in the matrix identify 

important terms that can differentiate the narratives from each other.  

Text Cluster. Text mining may also include clustering, classification, and 

association analysis to identify terms or topics associated with the occurrence of fume 

events. According to Jo (2018), clustering is the process of segmenting a group of 

different data points into subgroups of similar data, which are called clusters, while 

classification is the process of separating data points into their own categories. There are 

several types of clustering, depending on the arrangement and views of the clusters; all 

have the objective of maximizing the similarities among the data points within a cluster 
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and minimizing the similarities among clusters (Jo & Lee, 2007). Classification may be 

conducted using a rule-based approach, where rules are defined, and each data point is 

classified according to the rules or using a machine learning-based approach where the 

classification categories are defined by the sample data and each data point is classified 

by it (Jo, 2018). Association involves extracting associations of data points in the form of 

an if-then format. The groups of data are given as the input and a list of association rules 

which are given as the if-then responses are generated as the output (Jo, 2018). As shown 

in Figure 2, the text parsing, filtering, transformation, topic identification, and text 

mining steps required repetition of the analysis using different terms and settings for 

optimal text cluster results.  

Text Topic. Use of the Text Topic node was more appropriate than text clustering 

for exploring ASRS narratives for several reasons. The narratives for each event were 

combined into one variable for text mining and extraction of variables for the modeling 

process. This increased the opportunities for a variety of terms and topics in the variable 

as each reporter provides a unique perspective of an event. Multiple topics were found in 

narratives although their inclusion in text clusters was limited to one cluster. For 

example, a report from a pilot may acknowledge an unstable approach resulting from an 

increased approach speed due to expedited procedures to land an aircraft with a cabin 

filling with smoke would only be included in one cluster, although several topics or 

themes exist in the report. For a goal of only topic exploration, text clustering may 

provide more useful results if the narratives from each report are analyzed individually to 

provide additional opportunities to identify terms and topics.  
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Data Mining. Data mining is "the process of finding anomalies, patterns and 

correlations within large data sets to predict outcomes." (SASÈ, 2019a, Data Mining 

section, para. 1). Predictive modeling entails the application of a statistical model or a 

data mining algorithm to data to predict unknown future observations (Shmueli, 2010). 

Data mining techniques were used in this study to analyze reports of events in the ASRS 

database to develop models for the identification of factors associated with fume events. 

The SASÈ Institute (2013) introduced an effective methodology for the operational data 

mining process consisting of the following steps, known as SEMMA: sample, explore, 

modify, model, and assess.  

This study followed the SEMMA process using appropriate software for each 

analysis. The SEMMA process included sampling, exploring, modifying, modeling, and 

assessing steps, some of which may be repeated several times before the completion of 

the analysis. This process is displayed in Figure 4. 
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Figure 4 

The SEMMA Process 

 

Note. Adapted from "Introduction to SEMMA," from SASÈ Institute, Inc. (2020, March 18). 

SASÈ Enterprise Miner 15.1: Reference Help. https://documentation.sas.com/? docsetId= 

emref&docsetTarget=n061bzurmej4j3n1jnj8bbjjm1a2.htm&docsetVersion=15.1&locale=en 

 

In the Sample step, data from the ASRS database were downloaded into a 

Microsoft ExcelÈ database for data management. Variables determined to be of 

significance from the text mining step were included in this database. Data were divided 

into training, validation, and test sets. The training data were used to determine the 

classifiers by building and training the models; validation data were used to optimize the 

parameters of the classifiers to validate the resulting models. The test data were used to 

predict the performance of the classifier on data that were not part of the formation of the 

classifier (Witten et al., 2017). Each set of the data was separate and independent from 

one another but were expected to be representative of the entire dataset.  

https://documentation.sas.com/?%20docsetId=%20emref&docsetTarget=n061bzurmej4j3n1jnj8bbjjm1a2.htm&docsetVersion=15.1&locale=en
https://documentation.sas.com/?%20docsetId=%20emref&docsetTarget=n061bzurmej4j3n1jnj8bbjjm1a2.htm&docsetVersion=15.1&locale=en
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In the Explore step, each variable to be used in the data mining process was 

reviewed for outliers, missing values, distribution, kurtosis, skewness, and statistical 

profiles using the SASÈ Explore function. Data were explored for relationships, trends, 

and anomalies, with descriptive results of the variables provided with recommendations 

for transformation or modification of variables if needed. This information is reported as 

basic descriptive data and includes reporter position, aircraft manufacturer, passenger or 

cargo flight, phase of flight, and other pertinent information to better understand the 

dataset. 

Variable selection from the data mining process and quantitative data from the 

ASRS dataset occurred during the Modify step. Any variable values needing 

transformation would be transformed during the Modify step. No requirement for 

modification of variable values was anticipated, and minimal modification of variables 

took place.  

In the Model step, supervised learning algorithms were used including decision 

tree, gradient boosting, logistic regression, and random forest algorithms to develop 

models to identify factors associated with the three levels of the target variable: events 

that are not related to UAQ, events that are related to UAQ but are not fume events, and 

events which are reported to be fume events. The ExcelÈ file was uploaded into SASÈ 

EMTM and followed the processes developed by SASÈ for data mining and constructing 

models using the decision tree, gradient boosting, logistic regression, and random forest 

algorithms. The dataset was partitioned into two equally sized subsamples for training 

(40%) and validation (40%) with the remainder (20%) reserved for testing.  
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Before developing the models, the target variables were profiled using the SASÈ 

Assess function to reduce dimensionality by removing redundant variables and variables 

which are not relevant to the target variables. In the Assess step, the outcomes of the 

models were compared and evaluated for reliability and validity. Assessment of the 

results from the training, validation, and test models was primarily considered an 

assessment in reliability, and model validity was evaluated using misclassification rate to 

determine model accuracy; receiver operating chart curves and lift charts were used to 

determine model predictive power.  

Using the ASRS database, the development of the models used data from events 

that have resulted in the reporting of the incidence of UAQ and fume events. Models 

were developed based on factors associated with the three levels of the target variable: 

events that are not related to UAQ, events that are related to UAQ but are not fume 

events, and events that are reported to be fume events. Variables extracted from the text 

mining process were utilized as input variables and were included with the a priori 

quantitative variables from the ASRS dataset, which were primarily categorical. A list of 

these expected variables is found in Table 7.  
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Table 7 

A Priori ASRS Variables and Their Attributes for Model Development 

Variable  Variable Type Variable  
Scale 

Description 

Local Time Input Ordinal Local time in 4 6-hour 
blocks, in 24-hour clock: 
0001-0600 
0601-1200 
1201-1800 
1801-2400 

Altitude 
 

Input Interval Single value, in mean sea 
level feet 

Aircraft Make/ 
Model 

Input Nominal Make and model of the 
aircraft involved (e.g., B737-
800, A321) 

    
Mission Input Nominal Purpose of the flight (e.g., 

cargo, passenger) 

Flight Phase Input Nominal Phase of aircraft flight when 
the event was detected (e.g. 
taxi, parked, takeoff, climb, 
cruise) 

Airspace Input  Nominal Airspace the aircraft 
occupied when the event 
occurred (e.g., Class A, B, C, 
D, E, G) 

Aircraft 
Component 

Input Nominal Component determined to be 
responsible for the event as 
coded by analyst (e.g., 
engine, auxiliary power unit, 
air conditioning) 

Component 
Problem 

Input Nominal Reason for the problem with 
the component (e.g. design, 
failure, malfunction) 
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Variable Variable Type Variable 
Scale 

Description 

Anomaly Input Nominal Anomaly category is an 
event type as coded by 
analyst (e.g., aircraft 
equipment problem, flight 
deck/cabin/aircraft event) 

Were Passengers 
Involved in Event 

Input 
 

Nominal Passenger involvement in the 
event: Yes (1) or No (0) 

Detector Input Nominal Entity responsible for 
detection of the event as 
coded by analyst (e.g., 
person flight crew, person 
other, automation aircraft) 

Contributing 
Factors/Situations 

Input Nominal Factors that contributed to 
the event as coded by ASRS 
analyst (e.g., aircraft, human 
factors, environment)  

Primary Problem Input Nominal Primary problem which 
contributed to the event as 
coded by ASRS analyst (e.g., 
aircraft, human factors, 
company policy) 

 

Sources of the Data 

This study used content analysis of secondary archival data found in the ASRS 

database (https://asrs.arc.nasa.gov/search/database.html). The ASRS database contains 

over 1.6 million voluntarily submitted confidential reports from pilots, flight attendants, 

maintainers, air traffic controllers, and others (ASRS, 2019). These reports contain 

qualitative and quantitative data submitted by reporters and coded by analysts to prevent 

aviation accidents by identifying deficiencies and discrepancies, supporting policies and 

planning to improve the national aviation system, and strengthening the foundation of 

aviation human factors research (ASRS, n.d.a). After reports are received, they are read 

by the analysts, acted upon if necessary, classified and coded, and deidentified and 
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incorporated into the database which is publicly accessible. The database is searchable, 

for this study the search terms used were the date of the incident (January 1, 2015 to 

December 31, 2019), Federal aviation regulations (Part 121), and reporter function (flight 

attendant and flight crew, all positions). Reports are available in ExcelÈ, comma- 

separated values files, or Word files and were downloaded in ExcelÈ. After data cleaning 

was conducted, the files were converted into SASÈ files using SASÈ Studio.  

The database contains 96 potential variable fields, including quantitative flight 

data, a free-text narrative provided by the reporter, and a textual synopsis, as summarized 

by an analyst. SASÈ Text Miner software was used to identify significant variables 

associated with fume events from the narrative text fields, which were combined with 

pertinent quantitative flight variables to develop and test the models using SASÈ EMTM. 

These variables included but were not limited to reporter position, make and model of 

aircraft, phase of flight, event type, and primary problem. A list of a priori proposed 

variables and their attributes is found in Table 7.  

Ethical Consideration 

The data source used in this research included archival data provided on a 

publicly accessible website. Analysts at NASA have deidentified the data before 

inclusion in the dataset (ASRS, n.d.d). No harm to human subjects occurred as a result of 

this research. In accordance with the Embry-Riddle Aeronautical University Institutional 

Review Board definition (2021), this research is classified as exempt from review as it is 

secondary research and the participantsô recorded information cannot be ascertained 

directly or through identifiers linked to the participants. This study did not involve data 

collection from human subject testing or experimentation, the deidentified data is 
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publicly available, and the researcher has made no attempt to contact or identify the 

participants, thus approval from an institutional review board was not required.  

Data Analysis Approach 

Descriptive statistics were used to review and summarize the data. The process 

suggested by Chakraborty et al. (2013) was used for the data mining step of this study 

and included: data collection, text parsing and transformation, text filtering, and text 

mining. The SEMMA process was followed for the data mining steps and consisted of the 

following steps: sample, explore, modify, model, and assess. Basic analysis of the 

variables for outliers, missing values, and distribution took place using the SASÈ Explore 

function and is reported. Limited transformation of variables occurred as needed in the 

Modify step. Models were developed and tested based on factors associated with the 

three levels of the target variable: events that are not related to UAQ, events that are 

related to UAQ but are not fume events, and events that are reported to be fume events. 

Machine learning algorithms were used to develop the models and included decision tree, 

gradient boosting, logistic regression, and random forest algorithms, and are described in 

the following paragraphs.  

Decision Tree 

The Decision Tree node in SASÈ EMTM was used to develop models. Decision 

tree nodes may represent separate classes of individuals for categorical variables, ranges 

for continuous variables, or a single separation condition for binary variables. Each of the 

leaves is composed of a single class of individuals. An individual in a leaf will have a 

reasonably high probability of conforming to all the rules applied to the nodes leading to 

this leaf. The model is then formed by the set of rules applied to all the nodes and ending 
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in leaves. Decision trees in SASÈ EMTM are automatically trained and pruned using the 

logworth algorithm (Truong, 2016); however, automatic steps can be overridden, and 

splitting and pruning rules may be defined (SASÈ, n.d.). 

The use of decision trees is an appropriate approach for this study, as they provide 

a representation of the presence of relationship patterns between the target variables and 

independent variables. The separation criteria were dependent on the type and parameter 

setting of the tree and were based on one of the widely used options, such as chi-square, 

Gini, Twoing, ordered Twoing, or entropy (Tuff®ry, 2011). The stop criterion was also 

dependent on the type and parameter settings of the tree. Settings were determined based 

on the coding of independent variables. Property settings in splitting rules, node group, 

split search, and subtree were adjusted to include optimal modes, and the trees were 

pruned automatically initially and adjusted as needed for optimal output.  

Gradient Boosting 

Multiple models were developed using the gradient boosting algorithm and the 

Gradient Boosting node in SASÈ EMTM to create the most accurate model. According to 

Friedman (2002), both the accuracy of the approximation and gradient boosting 

computation speed can be substantially improved by incorporating randomization into the 

procedure by drawing a subsample (without replacement) of the training data randomly at 

each iteration. This randomly chosen subsample was used instead of the entire sample to 

fit the base learner and build the model to increase the robustness of the base learner. 

Opportunities for overfitting were minimized by adjusting the shrinkage parameter, the 

depth of the trees, and the number of trees to provide optimal results without overfitting.  
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Logistic Regression 

As the target variable has three levels or discrete outcomes, multinomial logistic 

regression is an appropriate method for identifying factors associated with events that are 

not related to UAQ; events that are related to UAQ but are not fume events; and events 

that are reported as fume events. The goodness of fit of this model was based on how 

well the model fit the training data. The overall explanatory power of the model was 

evaluated initially, then individual predictors were assessed. Property settings in SASÈ 

EMTM were determined based on the coding of independent variables, the properties 

included in model selection, optimization options, and convergence criteria were selected 

to ensure the inclusion of an optimum number of models. 

Disadvantages of logistic regression include the requirement for explanatory 

variables to be linearly independent; it is a numeric approximation and does not always 

converge toward an optimal outcome; it does not handle missing values of continuous 

variables; and it is sensitive to extreme values of continuous variables (Tuff®ry, 2011). 

Research suggests data should contain at least ten events for each variable entered into a 

logistic regression model (Peduzzi et al., 1996). These disadvantages were addressed in 

the study as follows: the models identified categorical outcomes, explanatory variables 

were identified during the text mining step and were linearly independent, use of 

continuous variables was limited, a large number of cases were used to train and validate 

the model, and included at least ten cases for each variable.  

Random Forest 

Random forest models were developed using the Random Forest node in SASÈ 

EMTM. Random forests are an effective predictive tool and the use of appropriate 
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randomness allows for accurate classification and regressions (Breiman, 2001). 

Disadvantages of random forests, such as the risk of overfitting and complicated results 

were minimized by optimizing the tuning parameter which controlled the number of 

randomly chosen features used to grow each tree. This limited overfitting of the model 

and results were observed for a high level of accuracy in the training data and a low level 

of accuracy in the test data. The reliability of the results of models using random forest 

algorithms was assessed against those of other models, and model results were validated 

with events actually occurring in the airline industry. 

Reliability Assessment Method 

Reliability in data mining methods is similar to that found in quantitative data 

analysis, where reliability is corroborated if results are consistent throughout repetitive 

investigations under different circumstances by different investigators (Gibbs, 2007). To 

evaluate the reliability of the model and the outputs, training results and validation results 

were compared among all models. In addition, an adequate number of training and 

validation cases were used to enable the models to produce consistent results over 

repeated iterations. The model was tested using separate data; test results were compared 

with validation results for a measure of reliability, which is the extent to which the model 

or any measuring procedure yields the same results when the process is repeated 

(Myrtveit et al., 2005). While the potential for limited reliability due to the use of 

inappropriate models (Carlson et al., 2017) was a concern, model modification during the 

iterative phases of the modeling process or the use of an ensemble model could be 

employed as needed to improve reliability. Comparison of validation and test data for 
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each of the models yielded similar results, and the four top-performing models produced 

similar results, thus model reliability was determined to be high.  

A primary influence of reliability is the quality of the quantitative data found in 

the reports submitted to ASRS. Reporters are presumed to report events truthfully and 

completely to the best of their knowledge. Reports are confidential; analysts deidentify 

reports prior to inclusion in the public database (ASRS, n.d.e). There is an incentive to 

report, as the FAA waives fines and penalties for unintentional violations of aviation 

regulations when they are reported to ASRS (ASRS, n.d.e).  

Through a joint effort by industry, government, and individuals to improve 

aviation safety, ASRS analysts experienced in aviation collect, analyze, code, and 

respond to aviation safety reports (ASRS, n.d.a.). These analysts include highly 

experienced pilots, air traffic controllers, mechanics, and a management team that possess 

aviation human factors and psychology research experience with over 200 cumulative 

years of aviation expertise (ASRS, n.d.b). Thus, it is within the reporter's best interest and 

the interest of safety to report incidents and situations which may be analyzed, coded, and 

used to prevent future incidents and accidents from occurring.  

Validity Assessment Method 

Validation of the models developed took place using the Model Comparison 

function in SASÈ EMTM for the decision tree, gradient boosting, logistic regression, and 

random forest algorithms to ensure the models reached justifiable conclusions and were 

generalizable and reliable. Comparison of the results from the training, validation, and 

test models was primarily considered as an assessment in reliability but also an 

assessment of validity. Model validity was principally evaluated using misclassification 
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rate (MR) for model accuracy and receiver operating chart (ROC) curves and lift charts 

for model predictive power.  

Misclassification rate is widely used due to the ease in interpretation and 

implementation, the ability of probability-based criteria to provide a more continuous 

measure, and the indication of the degree of uncertainty with which predictions have been 

made (Mallet et al., 2000). According to Truong et al. (2018), the MR can be used to 

assess the validation accuracy of the prediction. As the authors state "the misclassification 

rate = 1 ï validation accuracy" (p. 37), lower MR indicates higher validation accuracy. 

The model with the lowest MR indicated the model with the most accuracy in identifying 

factors associated with fume events. The overall prediction accuracy can be calculated as 

the total accurate prediction divided by the total number, or one minus the 

misclassification rate (Truong & Choi, 2020). Accuracy is defined as the proportion of 

the study population which is determined correctly (Metz, 1978) and is shown in the 

formula below. The true positives, true negatives, false positives, and false negatives 

were adjusted to accommodate the three levels of the target variable.  

             TP + TN        ____TP + TN_____ 
ACC =   P + N     =    TP + TN + FP + FN 

where: 

P = positive 

N = negative 

FP = false positive 

FN = false negative 

TP = true positive 

TN = true negative 



76 

 

ROC curves were used to assess specificity and sensitivity, with sensitivity 

reflecting the probability of correctly detecting a fume event and specificity reflecting the 

probability of correctly identifying a non-fume event (Tuff®ry, 2011). Sensitivity, or the 

probability of a fume event being correctly identified as a true predictive positive, is 

expressed as: 

         _TP_      __TP___ 
TP  =   P     =   TP + FN  = 1-FN 
 

where: 

TP = true positive 

FN = false negative 

This is in contrast to specificity, which is the probability of no fume event, which 

is a negative predictive value or a true negative, as seen in the following formula: 

         _TN_      __TN___ 
TN  =  N     =   TN + FP    =   1-FP 
 

where: 

N = negative 

FP = false positive 

TN = true negative 

FP = false positive 

A false positive occurs when a fume event is incorrectly identified as occurring 

but did not actually occur, and a false negative occurs when a fume event is not 

identified, but actually does occur. A ROC curve consists of a graph of sensitivity plotted 

against 1 ï sensitivity, which is the true positive rate plotted against the false positive 
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rate, with a perfect predictive model having a sensitivity and specificity both equal to 1 

(Bewick et al., 2004). The larger the area under the ROC curve of the model, the better 

the model's performance.  

Lift charts graphically depict the effectiveness of a predictive model as a 

likelihood of the results obtained with and without the use of the predictive model 

(Jaffery & Liu, 2009). Baseline curves are calculated for events chosen at random, and 

lift curves are generated for events chosen from a model-score ranked list for comparison 

of how the model performs better than events chosen at random. The area under the curve 

is larger for the model with higher predictive accuracy (Jaffery & Liu, 2009). According 

to Gibbs (2007, p. 90), results are "valid if the explanations are really true or accurate and 

correctly capture what is actually happening." Confusion matrices were developed to 

better understand the prediction accuracy of the top-performing models and demonstrate 

predicted versus actual fume events. Results of the models were reviewed in the context 

of previously published results reporting numbers of flights resulting in emergency 

landings, diversions, and air turnbacks due to medical emergencies and estimations of 

numbers of occurrences of fume events.  

Summary 

Data from voluntarily reported incidents in the ASRS were explored and analyzed 

to identify important factors in the occurrence of UAQ and fume events in this study. A 

process of data collection, text parsing and transformation, text filtering, and text mining 

(Chakraborty et al., 2013) was used to identify information from free text fields in 

narratives and synopses of ASRS reports. These variables were combined with variables 

obtained from data mining techniques to enhance the precision of the models. The 
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SEMMA process was used to develop, assess, and compare models, using decision tree, 

gradient boosting, logistic regression, and random forest algorithms.  

The models were trained and validated on two equal-sized groups of data from 

events reported in the ASRS database and tested on data from the same database. After 

models were evaluated, a review of the data mining methods used was undertaken to 

determine the most important factors associated with the occurrence of fume events and 

the models' prediction accuracy of the occurrence of fume events as reported by flight 

and cabin crew members.  
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Chapter IV: Results 

This study was conducted in accordance with the methods described in the 

previous chapter. This chapter describes the text mining process and results using 

publicly available data from NASAôs ASRS database. The text mining process followed 

the text parsing, text filtering, and text topic steps as illustrated in Figure 3 to identify 

important variables for inclusion in the modeling process. The data mining process was 

conducted as shown in Figure 4, and the results are provided. The models included 

decision tree, gradient boosting, logistic regression, and random forest algorithms and 

were developed, trained, validated, and tested. Results were evaluated to determine the 

best model for identifying factors associated with the occurrence of fume events. Lastly, 

these results and the evaluation of their results are presented.  

Demographics Results 

The sample size for this study included 13,873 events with 18,966 narratives 

reported. Four reports were miscoded and were rejected after consultation with an ASRS 

analyst for a total of 13,869 events and 18,962 narrative fields. Although the search filter 

for the database was configured to collect reports from flight and cabin crew members, 

narratives from additional personnel were included in the event report when a second 

person reported the same event as a flight or cabin crew member. These additional 

reports are noted with separate case numbers and are included in a separate variable field 

in the ASRS database. The narratives presenting additional information may provide 

additional insight to reported events and are included in this analysis to add to the 

generalizabilty of the research findings. The reporter roles are found in Table 8.  
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After report submission, NASA analysts review the narratives, and if no new 

information is provided in the second report, the narrative contains the language ñReport 

narrative contained no additional informationò or similar language. These narratives 

lacking additional information or detail were not included in the text mining process so as 

not to skew the value of terms used in describing the redundancy. There were 2,029 of 

these narratives which contained no additional information and were removed from the 

analysis, for a total of 16,933 narratives analyzed in the text mining stage of this study.  

 

Table 8 

Role of Persons Submitting ASRS Reports  

 
Role 

      Number of  
Reports Submitted 

 
Percent 

Flight Crew   99.0% 
     Captain 10758  
     First Officer 7505  
     Second Officer 3  
     Pilot ï Position Unspecified, Other 495  
Cabin Crew  0.2% 
     Flight Attendant 45  
Non-Crew   0.3% 
     Dispatcher 62  
     Technician 9  
      Ramp Personnel 6  
Other and Unknown 61 0.5% 
Missing 18 0.1% 

Total 18962 101% 
Note. Roles determined from reports submitted to ASRS by flight and cabin crew in FAR 

Part 121 operations from January 1, 2015, to December 31, 2019. Flight crew roles were 

self-reported and often included additional detailed information such as pilot flying, pilot 



81 

 

not flying, check pilot, relief pilot, instructor, etc. Due to rounding, the total does not 

equal 100 percent. 

 

Flight crews submitted the vast majority of reports. Many of the events reported 

to the ASRS involve acts that could potentially result in disciplinary or enforcement 

action, such as altitude deviations, loss of situation awareness, refusing aircraft, or 

misunderstanding clearances. The availability of waivers of disciplinary or enforcement 

action provides reporting incentives for certificated individuals (ASRS, n.d.e.). The FAA 

will not use information in reports submitted to NASA under the ASRS in any 

enforcement action, provided the potential violations were inadvertent and not deliberate; 

actions did not disclose a lack of qualification or competency; the reporter has not been 

subject to an FAA enforcement action in the five years prior; and the reporter can prove 

within 10 days after the violation, or date when the person became aware of the violation, 

they submitted a report to NASA (FAA, 2021). Thus, flight crewsô certificates can 

potentially be protected from suspension or revocation if the crew members submit 

reports to ASRS.  

The 13,869 events were reported by flight and cabin crew for U.S. carriers 

operating under 14 CFR Part 121. More than three-quarters of reported events took place 

in U.S. airspace, as shown in Figure 5.  

These reported events included aircraft conducting operational missions as found 

in Table 9. The numbers of events reported appear to be consistent with national 

proportions of passenger and cargo flights. Passenger flights in the U.S. greatly 
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outnumber cargo flights, with air traffic controllers in the U.S. handling an estimated 

28,537 commercial airline flights and 2,148 cargo flights daily (NOAA, n.d.). 

 

Figure 5 

Event Location as Provided in ASRS Reports  

 

Note. U.S. airspace includes airspace over U.S. states and territories. N=13,869. 

 

Table 9 

Operational Mission of Aircraft Involved in Events as Provided in ASRS Reports 

Operational Mission       Number of Events Percentage of Total  
Passenger 11351 81.8% 
Cargo or Freight 1128 8.1% 
Ferry 77 0.6% 
Test Flight 10 <0.1% 
Training 7 <0.1% 
Other-Initial Operating 
Experience 

1 <0.0% 

Missing Information 1295 9.3% 
Total 13869 99.8% 
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Note. Flights conducted while flight or cabin crew are undergoing initial operating 

experience can be revenue flights; thus other flights classified as passenger or cargo or 

freight missions may also include crew members undergoing initial operating experience. 

Due to rounding, the total does not equal 100 percent. 

 

Aircraft used in Part 121 operations are diverse with varying purposes, sizes, 

engine types, environmental control systems, and opportunities for UAQ events to occur. 

The manufacturers of aircraft reported for the events included in this study are illustrated 

in Figure 6. A detailed list of reported aircraft makes and models are provided in Table 

C1 of Appendix C. Reports in the ASRS contain disparate information regarding the 

aircraft, as reporters may not always include the aircraft make and model if they are not 

associated with the reason for the report. Aircraft details may not be considered critical to 

understanding and developing improvements to safety, and analysts deidentify the 

aircraft when necessary for maintaining confidentiality but provide varying levels of 

detail for aircraft size or category. Thus, any ability to directly compare aircraft involved 

in reported events is extremely limited. No conclusions can be made about aircraft 

manufacturers, makes, and models, or events, and no interpretation of risk or safety can 

be made from the types and numbers of aircraft. The varied numbers and types of aircraft 

reported are apparent and represent the generalizability of the reports to the aviation 

industry. 
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Figure 6  

Manufacturers of Aircraft as Provided in ASRS Reports 

 

Note. Aircraft manufacturers and number of aircraft involved in ASRS reports submitted 

by air and cabin crew in FAR part 121 operations from January 1, 2015, to December 31, 

2019. N=13,869. 

 

 Aircraft operations take place around the clock, providing opportunities for 

reportable events. The times of event occurrence as provided by flight and cabin crew 

reporters are found in Figure 7. The afternoon was the most frequently reported time for 

event occurrence, followed closely by mornings (6:01 am to 12:00 pm) and then evening 

and night hours. Although reporters are asked to include the date and the local time the 

event occurred, information may be missing from the reports because the time may not be 

perceived by the reporter to be relevant to the report topic, such as company policies, 
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weather issues, an equipment malfunction, or deviation from an assigned altitude or 

heading.  

 

Figure 7 

Time of Event Occurrence as Provided in ASRS Reports 

 

Note. Time of occurrence is provided in local time.  

 

Reporters are also queried on the phase of flight with a list of options from a drop-

down menu on electronic forms or by ticking boxes on the paper forms submitted through 

the U.S. mail. Options include: parked, taxi, takeoff, initial climb, climb, cruise, descent, 

initial approach, final approach, missed/go around, landing, or other. More than one flight 

phase may be selected for events occurring throughout several phases. The first term 

listed in the database is the phase in which the reported event first became apparent; these 

reported flight phases are found in Table 10. Reported events become first apparent most 

frequently during the approach phase. This phase consists of increased interactions with 

air traffic controllers, transition to lower altitudes, navigation to waypoints and fixes, 
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decreasing airspeed, and operations in airspace with increased numbers of aircraft, which 

provide opportunities for operational errors and recommendations for improvements to 

aviation safety.  

 

Table 10 

Phase of Flight of Event Occurrence as Provided in ASRS Reports 

Phase of Flight         Number of Events         Percentage of Total 
Parked 1598 11.5% 
Taxi 1674 12.1% 
Takeoff 1178 8.5% 
Climb 2175 15.7% 
Cruise 2049 14.8% 
Descent 1336 9.6% 
Approach 3136 22.6% 
Landing 506 3.6% 
Other 103 0.7% 
Missing 114 0.8% 
Total 13869 99.9% 
Note. The phase included is the first phase listed in the report. Climb phase includes 

initial climb, approach phase includes initial and final approach. Other includes preflight 

planning, boarding, push back, rejected takeoff, missed approach, go around, etc. Due to 

rounding, the total does not equal 100 percent. 

 

Analysts code the reports by type of event, which are searchable fields in the 

ASRS database. Types of events include aircraft equipment problem, ATC issue, 

deviation ï altitude, deviation ï speed, flight deck/cabin/aircraft event, ground excursion, 

ground incursion, and no specific anomaly incurred. Each report includes one or more 

events as appropriate for the description provided by the reporter. The event flight 

deck/cabin/aircraft event is further categorized into illness/injury, other/unknown, 
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passenger electronic device, passenger misconduct, and smoke/fire/fumes/odor. Of the 

13,869 events included in this study, 13,127 (94.65%) events were not related to UAQ 

(target variable level 1) and 742 (5.35%) were coded by NASA analysts as being 

smoke/fire/fumes/odor events. These smoke/fire/fumes/odor events were manually 

reviewed with 453 (3.27%) events found to be related to UAQ but are not fume events 

(target variable level 2), and 289 (2.08%) are potentially fume events (target variable 

level 3). 

Descriptive Statistics 

The ASRS dataset included 96 variables. The variables support the wide range of 

information collected to describe the disparate events reported but also include large 

amounts of missing data when the variable is not associated or relevant to the event 

reported. For example, a flight attendant may report a flight diversion due to a foul odor 

and smoke in the cabin and may not report the aircraftôs altitude, type of airspace, 

weather conditions, maintenance status of the aircraft, or other factors irrelevant to the 

event. A complete list of variables and their status is found in Table C4 in Appendix C. 

These variables contain information supplied by the reporters and by the NASA analysts 

as they review reports. For the purpose of text mining, one text variable was created to 

include all of the narratives provided by reporters, which are otherwise contained in two 

variables when two people are reporting the same event. The text mining process took 

place using this variable containing all of the report narratives. All of the variables 

included in the data mining analysis were explored using the Stat Explore node. A 

histogram featuring variable worth is found in Figure 8. This figure highlights the 

importance of the variables, and in particular, the importance of the variables identified 
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through the text mining process. Additional information regarding the importance of the 

variables is found in Table 13 on pages 101-102.    

 

Figure 8 

Results of Stat Explore Node Showing Variable Worth  

 

 

Text Mining Process and Results 

The text mining process was conducted to explore terms and topics in the ASRS 

report narratives. Terms were grouped into common themes or topics and added to the 

variables provided in the ASRS dataset to develop models for the identifying factors 

associated with the occurrence of UAQ events and fume events. 

Text Parsing 

Text parsing was the initial step in converting unstructured text in the report 

narratives structured format for analysis and input into the models. The dataset containing 

all report narratives was saved in the SASÈ library and imported as a data source. For the 
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purpose of text mining, the variable consisting of all the report narratives was selected for 

text mining analysis, and analysis of all other variables was rejected. The Text Parsing 

node in SASÈ Text Miner was connected to the Data Source node and was used to 

analyze the series of sentences in the report narratives. Individual words were identified 

during the tokenization step, which separated the sentences contained in the report 

narratives into individual words. Lemmatization and stemming were used to reduce terms 

to their root forms. In SASÈ Text Miner, the stemmer is turned on or off in the Stem 

Terms option in the Synonyms setting with yes as the default value and is used in these 

analyses. Results of these procedures were reported in the Text Parsing node and were 

reviewed, along with POS tagging results during approximately ten iterations of these 

processes to identify words that were different parts of speech, synonyms, or syntactically 

related. Results from the text parsing process included individual terms, part of speech, 

attribute, frequency, and the number of documents containing each particular term. The 

number of reports by frequency, the termôs role by frequency, the attribute by frequency, 

and the number of documents per term are provided in graphical displays. Figure 9 

displays the frequency of terms by their role. Most terms kept through the text parsing 

step were nouns (35%) followed by verbs (32%). These results suggest nouns such as 

personnel, equipment, or other items, and verbs such as aircraft movement or crew 

actions are most frequently found in the report narratives.  
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Figure 9 

Term Role by Frequency Chart from Text Parsing Results 

 

 Note. Due to rounding, the total does not equal 100 percent. 

 

The number of reports by frequency is another measure of term frequency found 

in the text parsing results and is illustrated in Figure 10. The number of event reports in 

which a term appears is plotted against the frequency of occurrence of the term in the 

entire dataset. Data points represent parsed terms; those found in the upper-right quadrant 

of the scatter plot are found more frequently and in more report narratives than data 

points in the lower-left quadrant. For example, the term óbeô is found in 13,120 event 

reports and is used 115,190 times, while the term ólighter aircraftô is found in four event 

reports and is used a total of four times. These values can be used to enhance 

understanding of the importance of the terms and inform and guide decisions in keeping 

or dropping them. Terms that do not contribute to the identification of topics of interest 

can add noise to the task of identifying relevant topics. Based on the frequency of use and 
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number of documents containing the term óbeô, it is ranked most important. However, the 

contribution of this term to the identification of topics is minimal, adds a substantial 

amount of noise, and was dropped from the text mining process. 

 

Figure 10  

Number of Report Narratives (Docs) by Term Frequency from Text Parsing Results

 

 

Results from the Text Parsing step were reviewed to identify terms that did not 

contribute value to the text mining process and could thus be excluded from the analysis. 

The review process was iterative and subjective with results of Text Filter and Text Topic 

nodes considered before excluding words. To reduce the noise from words that did not 

impart meaning or value to the analysis, these terms were added to the terms contained in 

SASÈ Text Minerôs default stop list. The sequence of Text Parsing, Text Filter, and Text 

Topic was then repeated approximately thirty-five times with a review of results followed 

by editing of the stop list, as appropriate. Specifically, term rank in Text Parsing results, 
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term weight in Text Filter results, and the fit of the terms in the topic groups provided in 

Text Topic results were considered when determining terms for addition to the stop list. 

Several topic themes were identified for termsô addition to the list, including: 

 aircraft components (wingtip, elevator, flap handle, nose gear, etc.);  

 types of aircraft (A320 series, Cessna, 767s, turbojet aircraft, etc.);  

 weather phenomena (gusty winds, windshear, severe turbulence, etc.);  

 terms related to cardinal and ordinal directions (eastbound, northerly, 

south side, etc.);  

 geographic locations (America, Houston, MSP, etc.);  

 terms related to instrument navigation (ILS 4R approach, FAF altitude, 

MNNIE, RNAV guidance, GPS failure, etc.);  

 aviation personnel (marshaller, tower guy, ATC agency, etc.);  

 aircraft flight situations (FL400, 80kts, 6000ft, airspeed assignment, etc.);  

 ground proximity warning system (GPWS) device terms (GPWS 

annunciation, EGPWS warning, terrain terrain, etc.);  

 traffic alerts and collision avoidance (TCAS alert, RA warning, TCAS 

command, etc.); and  

 specific runways and taxiways (runway 13R, 13L, rwy 15R, taxiway y, 

etc.).  

Aircraft components, pilotsô electronic devices, and equipment were excluded 

from the stop list if there was a potential to emit smoke, fumes, odors, or cause a fire. 

Personnel who might respond to UAQ or fume events such as maintenance staff, 

emergency medical technicians, or officers were also excluded from the list. Addition and 
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deletion of terms to the stop list were concluded based on the results of the Text Filtering 

node and the distinction of terms, term weights, frequency, and the number of documents 

including the terms, and the Text Topic node results of topics provided, and the terms 

kept. Terms of questionable value in contributing to the topic were not included in the 

stop list but were included in future analyses. All terms were reviewed by a subject 

matter expert with extensive experience in airline operations and familiarity with fume 

events. Consequential terms were reviewed by an established subject matter expert with 

experience in airline operations and research experience with peer-reviewed publications 

regarding fume events. A list of example terms excluded from this analysis through the 

use of a stop list is found in Appendix D. A listing of the final top 100 terms, as 

determined by the Text Parsing node algorithms is found in Appendix C, Table C2.  

Text Filter 

The Text Filter node was used to filter the report narratives and refine the list of 

terms by assigning term weight and frequency weight. In this step, words frequently 

occurring in the narratives were assigned a higher weight and were considered important 

because they better described the event, whereas words occurring less frequently were 

assigned a higher weight because they better discriminated the events (Chakraborty et al., 

2013). Options for term weighting in the Text Filter node allow variation in the 

importance of words to be determined based on their frequency of appearance in the 

individual narratives and how the words are dispersed throughout the narratives in the 

dataset (SAS, 2017a).  

The frequency rate, or a rate within the narrative, is developed using a weighting 

function to transform the frequency of the occurrence of the word according to one of 
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four options available in SASÈ Text Miner. The options for frequency weighting property 

settings include default (log, with the exception of multiple Text Filter nodes contained in 

the process flow) log, binary, or none. In this study, the option of none was chosen, and 

the raw frequency value is used with no transformation occurring.  

Term weightings were used to distinguish important words from other words. The 

four options for methods of term weighting techniques available in the SASÈ Text Miner 

Text Filter node include default (entropy), entropy, inverse document frequency, mutual 

information, and none. All options were assessed, with results from the entropy option 

proving to be the most robust as it gives greater weight to terms that occur infrequently in 

the narratives by placing the number of narratives containing the term in the numerator of 

the formula used to calculate the weight of the term (SASÈ, 2020b). This allows terms 

infrequently occurring in a few narratives to receive higher weights, meaning they 

potentially provide more information than terms with lower weights. Results from the 

Text Filtering node are displayed in graphical and tabular formats. The number of 

documents in which a term occurs versus the weight of the term is displayed in the 

Number of Documents by Weight scatter plot, as shown in Figure 11. Words represented 

by data points on the upper-left side of the curve have a higher weight but are found in 

fewer narratives, whereas words on the right side of the curve are found in more 

narratives but are assigned a lower weight. In this illustration, the term óautomation 

systemô is found five times in four narratives and has a weight of 0.86, while the term 

óbeô is found 115,190 times in 13,120 narratives and has a weight of 0.000. The squares 

at the bottom of the figure represent terms that are contained in the stop list or otherwise 

have no weight or value and have been dropped from the analyses. Information regarding 
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the terms analyzed is found in the Terms table of the Text Filter node results window. 

Table 11 contains the top 25 terms ranked by weight. A list of the top 100 ranked terms 

and their values is found in Appendix C, Table C3.  

 

Figure 11  

Text Filter Node Scatter Plot Results Showing Number of Narratives (Docs) by Weight   

 

 

 

Table 11 

 

Text Filter Node Results: Top 25 Terms by Weight 

 

Term  Role  Status 
 
Weight  Frequency  Rank 

 Number of 
Documents Parent 

worksheet  Noun  Keep 0.908 32 15906 5 + 
wound  Noun  Keep 0.902 13 18145 4 + 
hpsov  Prop  Keep 0.901 10 18145 4  
non-sop  Prop  Keep 0.901 10 18145 4  
hump  Noun  Keep 0.895 9 18145 4  
op  Prop  Keep 0.895 9 18145 4  
spillage  Noun  Keep 0.895 9 18145 4  
job  Prop  Keep 0.892 11 18145 4  

daily check 
 Noun 
Group  Keep 0.892 11 18145 4 + 
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Term  Role  Status 
 

Weight Frequency  Rank 
 Number of 
Documents Parent 

awareness 
tape 

 Noun 
Group  Keep 0.892 11 18145 4  

d2  Prop  Keep 0.888 30 15906 5  
7a  Prop  Keep 0.887 8 18145 4  
mixture  Noun  Keep 0.887 8 18145 4 + 
apron  Prop  Keep 0.887 12 18145 4  
15c  Noun  Keep 0.887 8 18145 4  
rerelease  Noun  Keep 0.886 10 18145 4  
take-off 
data 

 Noun 
Group  Keep 0.886 10 18145 4  

redispatch  Noun  Keep 0.886 10 18145 4  

hi stage 
 Noun 
Group  Keep 0.883 12 18145 4  

aero  Prop  Keep 0.882 12 18145 4  
lounge  Noun  Keep 0.882 11 18145 4 + 
cids  Prop  Keep 0.881 15 18145 4  
showtime  Noun  Keep 0.88 9 18145 4  

hold area 
 Noun 
Group  Keep 0.88 9 18145 4  

Note. + indicates a parent node. Prop is proper a noun. Abbreviations include HPSOV for 

high pressure shutoff valve, NON-SOP for non-standard operating procedures, OP for 

operation, CIDS for computer interface devices. 

 

 The terms in this table are all kept, meaning they have been included in the 

analyses in future nodes due to their potential to provide value in identifying factors 

associated with the occurrence of UAQ and fume events. The majority of terms are nouns 

or noun groups, indicating a prevalence of personnel, items, or equipment nouns and 

limited verbs or adverbs, suggesting fewer terms describing actions or movement. Re-

inspect, rerelease, and redispatch suggest repetition of events, possibly due to anomalies 

found with the first iteration. Terms representing locations, such as apron, lounge, and 

hold area are vastly different sites. The numeric terms, 7a and 15c may designate 

passenger seats in the cabin. D2 may be a geometric vectoring term, indicating the 
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distance of a second aircraft to a crossing point (Skybrary, 2021) or may refer to a code 

used to indicate the ICAO code for a type of performance-based navigation equipment on 

an aircraft. Awareness tape is a term used to describe the display features commonly 

found to indicate altitude and airspeed which appear as a vertical tape that scrolls up or 

down with change. Hi stage may indicate a section of the engine compressor, while high 

pressure shutoff valve may refer to a component of the environmental control system.  

The wide variation in terms without evident themes in this list may be indicative 

of the multitude of reasons reports are submitted to the ASRS database, while the 

dissimilarity in terms included in this list denotes a lack of standardized or common 

indicators for fume events and the difficulty in identifying factors associated with their 

occurrence. The limited number of verbs included in this list suggests the presence of 

clearly identifiable actions or activities associated with the occurrence of fume events is 

unlikely. The relatively low number of values for frequency and number of documents 

also implies a limited number of term usages, and thus additional difficulty in identifying 

factors associated with the occurrence of fume events.  

Text Cluster 

The Text Cluster node follows the Text Parsing and the Text Filter nodes and was 

used to explore similarities and dissimilarities within the data. This node uses 

unsupervised classification to cluster the individual narratives into groups of narratives 

and reports the descriptive terms for those clusters using a choice of two algorithms 

(SAS, 2017b). SASÈ Text Miner uses the dimensionality reduction technique latent 

semantic indexing (LSI), which employs singular value decomposition (SVD) to change 

the original weighted, term-document frequency matrix into a dense but low dimensional 
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representation by separating original terms into linearly independent elements 

(Chakraborty et al., 2013). These elements are constructs separate from the noisy 

correlations in the original data and allow approximation of the fundamental structure of 

the data. By ignoring the majority of the elements which have small values, the 

dimensionality of the data can be reduced. LSI combines surface data, or the pattern of 

occurrence of terms throughout all of the narratives, into a deeper construct of latent 

semantic dimensions that captures the mutual associations of terms and narratives 

(Chakraborty et al., 2013).  

Both algorithm options use the mathematical matrix decomposition technique 

SVD to break down original data into linearly independent elements. SVD reduces high 

dimensional data to a lesser dimension which more clearly describes the underlying 

structure of the data; by reducing noise and redundancy, new dimensions can better 

depict the core of existing relationships in the data (Tadesse & Carpenter, 2018).  

In the Text Cluster node, the reduction of the dimensionality of the weighted 

term-by-document matrix can be controlled by adjusting the SVD resolution to low, 

medium, and high. Low resolution results in an increased loss of information, while a 

high resolution setting results in a smaller reduction in dimensionality (Chakraborty, 

Pagolu, & Garla, 2013). The default setting for SVD resolution is low, and the default 

option for algorithms is the expectation-maximization (E-M) algorithm, although the 

hierarchical algorithm can be selected. After a review of results using different settings 

for SVD resolution and algorithms, this study used the low SVD resolution option and 

the E-M algorithm, which was an iterative process. After initial parameter estimates were 

obtained, the Text Cluster node automatically applied the standard or scaled version of 
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the algorithm to find primary clusters and update parameter estimates (SAS, 2017b). 

Termination of the algorithm occurred when two successive log-likelihood values 

differed by a set amount or when a maximum of five iterations was achieved (SAS, 

2017b). Descriptive terms, frequency, and percentage for each of the three clusters 

identified by the Text Cluster node are illustrated in Table 12.  

 

Table 12 

Text Cluster Node Results: Descriptive Terms, Frequencies, and Percentages  

Cluster  Descriptive Terms Frequency Percent 

1 

+issue  +late  +short  +number  +company  
direct  +state  +know  +show  +brief  +happen  
+note  +report  +contact  +good 3121 23% 

2 

+climb  +foot  +descend  +continue  +level  
+high  immediately  +low  +begin  +event  
+brief  +condition  +second  +pass  +rate 3176 23% 

3 

maintenance  +return  +passenger  +engine  
+minute  +procedure  +run  +situation  
+advise  qrh  +light  +complete  +inform  
+problem  +check 7572 55% 

Note. + indicates the term is a parent topic and includes stemmed versions of the term.  

 

These three clusters each contain fifteen descriptive terms for groups of narratives 

reported in the output from the Text Cluster node. The first cluster includes terms closely 

identified with a company-reported issue, while the terms in the second cluster indicate 

an association with flight phases, such as climbing or descending. The third clusterôs 

terms are related to engine maintenance or problems and the involvement of checklists or 

procedural actions.  
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Another output from the Text Cluster node includes a scatter plot showing the 

distance between clusters using a Cartesian coordinate system and is displayed in Figure 

12. The distance between the clusters is maximized, indicating dissimilarity between each 

of the cluster topics. While the dissimilarity between clusters is evident, the similarity 

between terms included in the clusters may be limited, as the Text Cluster node allows 

narratives to belong to only one cluster. This mutually exclusive assignment avoids any 

overlap but potentially limits the full discovery of multiple terms included in narratives. 

The Text Topic node was used to explore topics that could be represented in multiple 

narratives.    

 

Figure 12 

Distance Between Text Clusters Scatter Plot 

 

 

Text Topic 

The Text Topic node was used to discover important topics in the narrative text. 

This was accomplished by automatically associating words and narratives according to 

both user-defined and discovered topics or groups of terms describing and characterizing 
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a main theme or idea (SASÈ, 2017a). In the Text Cluster node, each narrative is assigned 

to a unique group, which differs from the Text Topic node, where a score is assigned to 

each narrative and a term to each topic. Terms and narratives can belong to more than 

one topic or to none at all in Text Topic. The Text Topic node also uses SVD to capture 

information from a term-by-document matrix (Chakraborty et al., 2013).  

A score was assigned by the Text Topic node for each topic, with a topic defined 

as a collection of terms characterizing and describing a theme (SASÈ, 2017a). Thresholds 

are used to determine if associations are robust enough to consider the narrative or term 

that belongs to a topic; thus, narratives and terms are not limited to one topic. Multiple 

iterations of text parsing, text filtering, and text topic were conducted with additions to 

the stop list to identify the top important topics. These topics were manually reviewed for 

themes, and the iterative process was concluded when the addition of excluded terms 

failed to yield additional distinctive topics. Variable labels were then assigned to the 

topics. Table 13 contains these ten important topics as identified by the Text Topic node.  

 

Table 13  

Text Topic Node Results for Topics, Assigned Variable Labels, and Topic Characteristics 

Topic  
ID 

Variable 
Label Topic 

Number  
of Terms 

Number  
of 
Documents 

1 Sensory 
Perception 

smoke, +smell, +odor,  
+smell, +fume 507 1102 

2 Aircraft 
Action 

+foot, +climb, +descend,  
+climb,  +level 706 2124 

3 Maintenance 
Concerns 

+mel, maintenance, maintenance,  
+mechanic, +write 884 1677 

4 Engine Issue +engine, +oil, +shut, +left engine,  
 +right engine 509 1690 
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Topic  
ID 

Variable 
Label Topic 

Number  
of Terms 

Number  
of 

Documents 

5 System 
Anomaly qrh, hydraulic, +system, eicas, +light  773 1943 

6 Cabin 
Affected 

+divert, +passenger, +attendant, 
medical, +flight attendant 1100 1945 

7 Air 
Conditioning 

+cabin, +bleed, +mask, +pack,  
pressurization 614 1162 

8 Passenger 
Disruption 

+passenger, +nose, +start, short,  
+deplane 1035 2039 

9 Flight 
Condition fmc, +descend, +brief, +leg, +switch 1027 2189 

10 Power Change thrust, +power, +condition, +event, 
+feel 1076 2037 

Note. + indicates the term is a parent topic and includes stemmed versions of the term. 

Abbreviations include MEL (minimum equipment list), QRH (quick reference handbook), EICAS 

(engine-indicating and crew-alerting system), and FMC (flight management computer).  

 

The first topic sensory perception includes the elements commonly identified by 

the olfactory and visual senses commonly used in the identification of UAQ events, or 

the presence of smoke, fire, fumes, or odors. The second topic aircraft action consists of 

movement of the aircraft such as climbing or descending, or level flight, which may 

influence fume events. Maintenance concerns includes maintenance, mechanics, and 

minimum equipment lists which contain provisions for flight with inoperative equipment 

based on the conditions of the flight and allow for equipment repairs to be deferred until a 

future point in time (FAA, 2021b). The fourth topic engine issue includes the terms 

engine, oil, and shut, suggesting operational difficulties or engine failure. System 

anomaly topic terms indicate system irregularities, such as in the hydraulic system or one 

in which flight crew would be notified by an alerting light or the engine-indicating and 
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crew-alerting system, which provides flight crews with instrumentation and annunciation 

for engines and other integral systems. These anomalies may be serious enough to 

warrant the use of the quick reference handbook which is a quick-access manual 

containing procedures applicable during abnormal or emergency conditions. The topic 

cabin affected includes terms that indicate the occupants of the cabin, the passengers, and 

flight attendants are involved, and also includes the terms divert and medical. The terms 

included in the seventh topic air conditioning refer to the system and its components 

which provide breathable air, such as bleed, pack, and pressurization. The passenger 

disruption topic incorporates terms indicating an interruption or interference in passenger 

service, such as nose, start, and deplane. The topic flight condition includes the terms 

descend, brief, leg, and flight management computer, which is a computer used to 

calculate navigation, flight planning, optimized routing, and performance computations 

(Herndon, 2012), suggesting altered flight plans or changes in routing. The final topic 

power change includes terms implying alterations in power settings or aircraft 

propulsion.  

These ten topics were incorporated as variables in the next steps in the 

development of the models. The values associated with each case for each of the new 

variables were downloaded from SASÈ EMÊ and added to the ASRS variables in an 

ExcelÈ spreadsheet and were uploaded into SASÈ Studio for conversion into a SASÈ 

dataset for use in the modeling process. 

Data Mining Process and Results 

The SEMMA process was used for performing the data mining activities. The 

sample, explore, modify, model, and assess steps did not occur in a strict continuous 
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progression and were often subject to an iterative approach. The SEMMA process was 

initiated at the beginning of the first stages of the text mining process.   

Sample  

Data were selected by filtering for the desired sample of reports submitted 

between January 1, 2015, and December 31, 2019, by flight and cabin crews for 14 CFR 

Part 121 operations from the ASRS database and downloaded as an ExcelÈ file. Data 

were also partitioned into training (40%), validation (40%), and test (20%) data sets after 

the text mining steps were complete. 

Explore 

Data were explored for outliers, missing values, and miscoded variable values in 

the Explore node, as well as manually reviewed. Four reports were deleted, and several 

variable values were corrected after consultation with an ASRS analyst confirmed 

miscoding of the cases and values.  

Modify  

As reports are submitted to ASRS, analysts review the reports and combine them 

into one case when two reporters submit reports for the same event. Thus each ASRS 

report contains a minimum of one narrative and may contain two narratives. When the 

second narrative contains no new information, analysts provide text stating so in the 

second narrative field. For text mining, the dataset was modified to create a new variable 

that contained both narratives, when two narratives were provided. Narratives from the 

second reporter which did not include new information were not included in this new 

variable which was used only for the text mining process.  
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Several variables in the ASRS dataset contained so many missing values as to be 

of little use in identifying factors associated with the target variable levels and were 

excluded from the modeling process. For example, several variable fields for data 

involving a second aircraft in a reported event were found to have more than ninety 

percent of the cells empty, as there had only been one aircraft involved in the events 

reported. Variables with more than fifty percent of the values missing were excluded 

from the model development process. A list of the 96 variables contained in the ASRS 

dataset, their characteristics, and the new variables created from the text mining process 

is found in Appendix C, Table C4. The final dataset consisting of the variables from the 

original ARSR dataset, the ten new variables derived from the text mining process, and 

the target variable were uploaded to SASÈ Studio in an Excel format, and a SASÈ dataset 

was generated for the development of the models. The 29 variables retained from the 

ASRS dataset, the ten new variables derived from the text mining process, and the target 

variables were used in the development of the models; all other variables were rejected. 

Model 

Six models were built in SAS EM using four machine learning algorithms, 

including decision tree, gradient boosting, logistic regression, and random forest. The 

SASÈ process flow diagram is shown in Figure 13 and includes the Model Compare 

node, which was used to compare model performance and rank the models. The 

validation dataôs misclassification rate was considered the primary assessment measure of 

model accuracy, as is appropriate for a categorical target variable. The misclassification 

rate signifies the prediction error, which is the sum of false positives and false negatives 

as divided by the total number of events (Truong & Choi, 2020). There are three levels of 



106 

 

events used in this study: reported events not related to UAQ, events related to UAQ but 

are not fume events, and events reported as fume events. ROC and Lift charts were 

reviewed to examine the predictive power of the models, and the relative variable worth 

was reviewed to determine the importance of each variable associated with UAQ and 

fume events. 

 

Figure 13 

Diagram from SAS Model Development Process 

 

 

Assess 

Models were compared and evaluated using the Compare Model node under the 

Reliability and Validity Testing Results heading. Results from the validation data are 

used to assess and compare the models, while the results from the test data are used to 

assess the generalizability of the selected model when new data is analyzed. 

Misclassification rates, average squared error, and ROC index results for the six models 

constructed in this study are found in Table 14. Results from the Model Comparison node 

indicate the logistic regression, gradient boosting, random forest, and 7-branch decision 
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tree models have similar misclassification rates and average squared error values among 

validation and test data, and similar ROC indices with no results indicating a clear 

champion model. 

 

Table 14 

Fit Statistics for Models for the Target Variable UAQ – Fume Event 

Model 
Train 
MR 

Train 
ASE 

Valid 
MR 

Valid 
ASE 

Test 
MR 

Test 
ASE 

Valid 
ROC Rank 

Gradient 
Boost 0.010819 0.016178 0.03912 0.026322 0.034222 0.025229 0.975 1/2/3/4 

Random 
Forest 0.02885 0.01576 0.037137 0.01866 0.034582 0.018184 0.988 1/2/3/4 

Logistic 
Regression 0.031194 0.015493 0.035875 0.017533 0.035303 0.018034 0.988 1/2/3/4 

7-branch 
Decision 
Tree 0.027587 0.014567 0.037498 0.019225 0.034942 0.018184 0.986 1/2/3/4 

5-branch 
Decision 
Tree 0.029391 0.015335 0.038219 0.019047 0.035303 0.018034 0.983 5 

3-branch 
Decision 
Tree 0.025965 0.014675 0.038219 0.020098 0.035663 0.018671 0.958 6 

Note. ASE is Average Squared Error, MR is Misclassification Rate, and Valid indicates  

results from the analysis of the validation data.  

 

Reliability and Validity 

The reliability of the models was assessed using results from the training, 

validation, and test data, while model validity was assessed using misclassification rates 

to determine model accuracy, and ROC indices and Lift curves to determine model 

predictive power. Reliability is demonstrated through comparable results between the 

training, validation, and test data, as shown in the following tables and in between the 
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models through similarity in Lift curve results. As observed in Table 14, results between 

the modelsô misclassification rates and average squared errors for training, validation, 

and test data were relatively consistent, with no model producing vastly dissimilar results 

from the other models.  

The receiver operating characteristic (ROC) index is an indicator of the validity 

and predictive ability of a model. As previously stated, the ROC curve consists of a graph 

of sensitivity plotted against specificity, with a perfect predictive model having a 

sensitivity and specificity both equal to 1 (Bewick et al., 2004). The higher the sensitivity 

and the specificity, the larger the area under the ROC curve of the model, or the higher 

the ROC index, the better the model's performance. Values from Table 14 identify the 

highest ROC indices for validation data are found in the random forest and the logistic 

regression models, followed by the 7-branch decision tree model and the gradient 

boosting model.  

The predictive power of the models was also examined by comparing the Lift 

curves. The Lift curves for the validation data from the six models are presented in Figure 

14. The curves represent the ability of the model to predict the target variable for all the 

events (Truong & Choi, 2020), with the models with better predictive power having a 

larger area under the curve. These curves are very similar, indicating similar predictive 

power among all models and reliability among the models. The similarities of the 

modelsô misclassification rates, average squared error values, Lift curves, and closeness 

of ROC index values warrant further examination of the top models. 
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Figure 14 

Lift Chart from the Model Compare Node

 

 

Gradient Boosting Model Results. Results from the gradient boosting model 

indicate the lowest misclassification rates for the train and test data, indicating the most 

accurate model based on these criteria. The value for this modelôs misclassification rate 

based on validation data is the lowest among the models. The ROC index is the fifth-

largest, implying the top models are similar in their predictive ability but vary slightly in 

their accuracy and predictive power. To further assess this model, a confusion matrix is 

presented in Table 15. A confusion matrix allows visualization of the performance of a 

model over the testing data (EMC Education Services, 2015). A high-performing model 

will exhibit large numbers for TP and TN and small numbers for FP and FN. This model 

performs well as the highest numbers are found in the TP and TN values. 

The sensitivity and specificity were calculated for each level of the target variable 

and are found in Table 16. According to Truong and Choi (2020), sensitivity measures 

the true positive cases, or the modelôs ability to correctly predict a UAQ or fume event, 

while specificity measures the true negative fraction or the modelôs ability to correctly 
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predict events not related to UAQ or fume events. Sensitivity for the first level (non-

UAQ or fume event) was high at 0.985, meaning the model could accurately predict an 

event not being related to UAQ events or fume events 98.5 percent of the time. The 

sensitivity value for levels two and three indicated the model could predict UAQ events 

49.2 percent of the time and fume events 68.8 percent of the time. Specificity values 

indicate the model can correctly predict 88.0 percent of the events that are not related to 

UAQ and are not fume events (level one), and 97.8 percent of the events that are not 

UAQ events, and 98.9 percent of the events that are not fume events. The overall 

prediction accuracy for the gradient boosting model is 96.1 percent, with good prediction 

accuracy and good predictive power for level one events but limited predictive power for 

UAQ and fume events. 

 

Table 15 

Gradient Boosting Model Confusion Matrix 

 Predicted (1) Predicted (2) Predicted (3) 

Actual (1) 5154 [TP(1)] 75 [FP(2)(1)] 5 [FN(1)] 

Actual (2) 25 [FP(1)(2)] 96 [TP(2)] 54 [FN(2)] 

Actual (3) 1 [FP(1)(3)] 42 [FP(2)(3)] 95 [TN] 

Note. Where (1) is an event not related to UAQ; (2) is an event related to UAQ but is not 

a fume event; and (3) is an event perceived by the reporter to be a fume event. TP is true 

positive, TN is true negative, FP is false positive, and FN is false negative. 
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Table 16 

Gradient Boosting Model Sensitivity and Specificity  

Event 
Type 

Non-UAQ or Fume 
Event (1) UAQ (2) Fume Event (3) 

Sensitivity 0.985 0.492 0.688 

Specificity 0.880 0.978 0.989 

 

The Lift curves for the gradient boosting modelôs training and validation data are 

found in Figure 15. The training and validation curves are very similar, again indicating 

good model reliability. The value of 9.597 is equal to that of the random forest and the 

decision tree modelsô Lift curve values. 

 

Figure 15 

Gradient Boosting Model Lift Curve 

 

 

Random Forest Model Results. The random forest model produced the second-

lowest misclassification rate and the second-lowest average squared error values and had 
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an identical ROC index value as the logistic regression model, which was also the highest 

ROC index. The confusion matrix as shown in Table 17 indicates values similar to those 

provided by the gradient boosting model. Sensitivity and specificity values were 

calculated for each level of the target variable and are found in Table 18. Sensitivity 

values for UAQ events and fume events are slightly improved over those of the gradient 

boosting model, and the specificity values for the correct prediction of events that are not 

UAQ and not fume events are also slightly improved. Overall prediction accuracy of this 

model is 96.3 percent, marginally better than that of the gradient boosting model. 

 

Table 17 

Random Forest Model Confusion Matrix 

 Predicted (1) Predicted (2) Predicted (3) 

Actual (1) 5159 [TP(1)] 82 [FP(2)(1)] 7 [FN(1)] 

Actual (2) 21 [FP(1)(2)] 92 [TP(2)] 57 [FN(2)] 

Actual (3) 0 [FP(1)(3)] 39 [FP(2)(3)] 90 [TN] 

Note. Where (1) is an event not related to UAQ; (2) is an event related to UAQ but is not 

a fume event; and (3) is an event perceived by the reporter to be a fume event. TP is true 

positive, TN is true negative, FP is false positive, and FN is false negative. 

 

Table 18 

Random Forest Model Sensitivity and Specificity  

Event 
Type 

Non-UAQ or Fume 
Event (1) UAQ (2) Fume Event (3) 

Sensitivity 0.983 0.540 0.698 

Specificity 0.897 0.978 0.988 



113 

 

The Lift curve is similar to the high-ranking models with the training and 

validation curves appearing very similar, as shown in Figure 16. This Lift curve value of 

9.597 is equal to that of the random forest and the decision tree modelsô Lift curve values, 

indicating the three modes are similar in predictive power, based on this factor. 

 

Figure 16  

Random Forest Model Lift Curve 

 

 

Logistic Regression Model Results. The logistic regression model produced the 

lowest values for MR and ASE, based on validation data. This model shared the highest 

value for the ROC index with the random forest model. A confusion matrix for this 

model is found in Table 19, and the sensitivity and specificity values are presented in 

Table 20. Values found in the confusion matrix are similar to those of the gradient 

boosting and the random forest models. The sensitivity value for the correct prediction of 

UAQ events is higher than for the gradient boosting or the random forest models at 57.0 

percent, although the specificity or the ability to correctly predict the events not related to 
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UAQ or fume events 85.9 percent of the time is the lowest of the three models assessed. 

The overall prediction accuracy of this model is the highest of all models at 96.4 percent. 

 

Table 19 

Logistic Regression Model Confusion Matrix 

 Predicted (1) Predicted (2) Predicted (3) 

Actual (1) 5147 [TP(1)] 72 [FP(2)(1)]  7 [FN(1)] 

Actual (2) 30 [FP(1)(2)] 100 [TP(2)] 46 [FN(2)] 

Actual (3) 3 [FP(1)(3)] 41 [FP(2)(3)] 101 [TN] 

Note. Where (1) is an event not related to UAQ; (2) is an event related to UAQ but is not 

a fume event; and (3) is an event perceived by the reporter to be a fume event. TP is true 

positive, TN is true negative, FP is false positive, and FN is false negative. 

 

Table 20 

Logistic Regression Model Sensitivity and Specificity  

Event 
Type Non-event (1) UAQ (2) Fume event (3) 

Sensitivity 0.985 0.570 0.697 

Specificity 0.859 0.979 0.990 

 

The Lift curve for the training data is very similar to the curve for the validation 

data which implies model reliability, as seen in Figure 17. The Lift value of 9.726 is the 

highest of the predictive models developed in this study, suggesting based on this 

criterion, the logistic regression model has the highest predictive power among the 

models.  
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Figure 17  

Logistic Regression Model Lift Curve 

 

 

7-branch Decision Tree Model Results. This model produced the third-lowest 

misclassification rate after the logistic regression and the random forest models using the 

validation and test data and had the second-highest ROC index at 0.986 after the random 

forest and logistic regression models, which were both 0.988. The confusion matrix and 

sensitivity and specificity values are found in Tables 21 and 22, respectively. Results 

from the confusion matrix are relatively consistent with the models previously assessed. 

The sensitivity values for the correct prediction of UAQ are the second-lowest, after the 

gradient boosting model, and for fume events, this model shows the lowest sensitivity, or 

the least ability to correctly predict fume events. The specificity, or the ability to correctly 

predict events not related to UAQ or fume events, had the highest value of the models 

assessed. The overall prediction accuracy for the 7-branch decision tree model is 96.3 

percent. 
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Table 21 

7-branch Decision Tree Model Confusion Matrix 

 Predicted (1) Predicted (2) Predicted (3) 

Actual (1) 5162 [TP(1)] 84 [FP(2)(1)] 5 [FN(1)] 

Actual (2) 16 [FP(1)(2)] 89 [TP(2)] 61 [FN(2)] 

Actual (3) 2 [FP(1)(3)] 40 [FP(2)(3)] 88 [TN] 

Note. Where (1) is an event not related to UAQ; (2) is an event related to UAQ but is not 

a fume event; and (3) is an event perceived by the reporter to be a fume event. TP is true 

positive, TN is true negative, FP is false positive, and FN is false negative. 

 

Table 22 

7-branch Decision Tree Model Sensitivity and Specificity  

Event 
Type 

Non-UAQ or Fume 
Event (1) UAQ (2) Fume Event (3) 

Sensitivity 0.983 0.536 0.677 

Specificity 0.908 0.977 0.988 

 

Similar to the other models, the Lift curve for the training data is very similar to 

the curve for the validation data which implies model reliability, as seen in Figure 18. 

The Lift value of 9.597 for the 7-branch decision tree is equal to the Lift values of the 

random forest and gradient boosting models.  
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Figure 18 

7-branch Decision Tree Model Lift Curve

== 

 

The values for assessment of the validity and reliability between models are 

similar and indicate slightly better performing models are based on different criteria with 

no one model emerging as a clear champion model. A summary of precision and 

accuracy results for the prediction of fume events (level three of the target variable) for 

the top four models based on validation data is shown in Table 23.  

Based on the values shown, the logistic regression model displays slightly better 

accuracy than the other models; however, the four models are comparable and each could 

be recommended with reasonable expectations of accuracy. Sensitivity, the true positive 

rate, or the modelôs ability to correctly predict fume events is highest for the random 

forest model and allows the model to predict fume events 69.8 percent of the time. The 

false positive rate, which reflects Type I errors, ranges from 1.0 to 1.2 percent, while the 

false negative rate, which reflects Type II errors ranges, from 29.3 to 32.3 percent. 
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Predictive precision values, or how close the modelôs predicted events are to the actual 

events are better than 50 percent for all models with the logistic regression model 

exhibiting the most precision. All the models displayed high negative prediction rates, 

indicating an ability to correctly predict true negative events. The further the number of 

observations of the events from the number of predicted events, the less useful the 

models are at predicting actual events. According to Han and Kamber (2006), sensitivity 

or recall, which is the ability of a model to find all of the relevant events within the 

dataset, is the metric to be used to select the best model when there is a high cost 

associated with false negatives (Shung, 2018). In the case of fume events, which have the 

potential for acute or chronic effects on crew membersô and passengersô health and 

safety, falsely identifying an event as negative could have dire consequences. Using this 

criterion, the random forest model, followed by the logistic regression model, have the 

highest recall values and should be used. The assessment summary for the logistic 

regression model is found in Appendix E. The SASÈ codes for the gradient boosting, 

random forest, and 7-branch decision tree models are found in Appendices F, G, and H.  
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Table 23 

Precision and Accuracy Values for Fume Event Prediction for Validation Data for Top 

Four Models 

 Model 

Measure 
   Gradient 

   Boosting 

Random 

Forest 

Logistic 

Regression 

7-branch 

Decision Tree 

Prediction 
Accuracy  

 
    0. 961 

 
0.963 

 
0.964 

 
0.963 

Sensitivity     0.688 0.698 0.697 0.677 

Specificity     0.989 0.988 0.990 0.988 

Positive  
Prediction 
Value 

    0.617 0.584 0.656 0.571 

Negative 
Prediction 
Value 

    0.992 0.993 0.992 0.992 

 

 

Importance of the Variables 

Variable importance for the second and third levels of the target variable as 

determined by the four top-ranking models is consistent across the models. Results from 

the gradient boosting model ranked the variable sensory perception as the most important 

variable, followed by system anomaly, cabin affected, aircraft action, passenger 

disruption, air conditioning, maintenance concern, power change, engine issue, and flight 

condition. A total of twenty-one variables were ranked as variables of importance; these 

results are found in Table 24. Twenty-two variables were ranked in results from the 

random forest model, with sensory perception ranked as having the highest importance, 
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followed by system anomaly, aircraft action, passenger disruption, cabin affected, air 

conditioning, power change, engine issue, maintenance concern, and flight condition. 

These results are found in Table 25.  

 

Table 24  

Gradient Boosting Model Variables of Importance Results 

Variable Name Splitting 
Rules Importance Validation 

Importance 

Ratio of 
Validation to 
Training 
Importance 

Sensory Perception 990 1 1 1 
System Anomaly 583 0.307943586 0.141470568 0.45940417 
Cabin Affected 562 0.306440914 0.12939459 0.42224972 
Aircraft Action 470 0.298319701 0.11639308 0.390162231 
Passenger Disruption 489 0.293868654 0.099878302 0.339873954 
Air Conditioning 501 0.272099373 0.120205772 0.441771588 
Maintenance Concern 580 0.258733531 0.092001328 0.355583319 
Power Change 527 0.246137036 0.094388155 0.383478068 
Engine Issue 418 0.239764173 0.095546388 0.398501522 
Flight Condition 409 0.225912606 0.094698575 0.419182341 
Time Date 307 0.188474453 0.082475452 0.437594859 
Time Local Time Of Day 90 0.111477079 0.071063119 0.63746844 
Aircraft1 Flight Phase 54 0.067967909 0.01980378 0.291369563 
Place Locale Reference 56 0.063718443 0.020899411 0.32799626 
Environment Flight 
Conditions 55 0.054328388 0.017041054 0.313667582 

Aircraft1 Mission 12 0.054216126 0.002213223 0.040822228 
Environment Light 26 0.026210268 0.018766852 0.716011479 
Aircraft1 Flight Plan 3 0.021793275 0 0 
Place State Reference 13 0.021508083 0.00183468 0.085301873 
Aircraft1 Crew Size 5 0.019739006 0 0 
Person1 Location In Aircraft 1 0.003656354 0 0 
Person1 Location Of Person 0 0 0   
Person1 Reporter 
Organization 0 0 0   

Aircraft1 Aircraft Operator 0 0 0   
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Table 25  

Random Forest Model Variables of Importance Results 

Variable Name 

Number 
of 

Splitting 
Rules 

Train: 
Gini 

Reduc-
tion 

Train: 
Margin 
Reduc-
tion 

OOB: 
Gini 

Reduc-
tion 

OOB: 
Margin 
Reduc- 
tion 

Valid: 
Gini 

Reduc-
tion 

Valid: 
Margin 
Reduc-
tion 

Sensory Perception 147 0.053568 0.09174 0.05029 0.08798 0.04822 0.08665 
System Anomaly 48 0.00308 0.00487 0.00136 0.00334 0.00145 0.00343 
Aircraft Action 41 0.000879 0.0016 0.00023 0.00092 0.00011 0.00091 
Passenger 
Disruption 34 0.001172 0.00194 -0.00006 0.00073 -0.00011 0.00063 
Cabin Affected 33 0.001095 0.00204 -0.00007 0.00103 -0.00023 0.00071 
Air Conditioning 31 0.001816 0.00299 0.00111 0.00236 0.00095 0.002 
Power Change 30 0.001539 0.00292 0.0009 0.00205 0.00118 0.00267 
Engine Issue 23 0.000384 0.00071 -0.00017 0.00017 -0.00022 0.00021 
Maintenance 
Concern 21 0.001328 0.00265 0.00086 0.00204 0.00059 0.00195 
Flight Condition 15 0.000396 0.00068 -0.00012 0.00038 -0.00006 0.00027 
Time Date 12 0.000265 0.00039 -0.0001 -0.00002 -0.00007 0.00014 
Aircraft1 Crew 
Size 10 0.000015 -0.00001 -0.00001 0.00005 -0.00001 0.00005 
Aircraft1 Flight 
Phase 8 0.000041 0.00007 0.00001 0.00011 0 0.0001 
Aircraft1 Mission 8 0.000053 0.00007 -0.00002 0 -0.00001 0.00003 
Person1 Location 
Of Person 8 0.000009 0.00002 -0.00002 0.00002 -0.00001 0.00004 
Place Locale 
Reference 7 0.000045 0.00006 -0.00002 0.00007 -0.00005 0.00001 
Environment Light 5 0.000048 0.00009 0.00002 0.00012 -0.00001 0.00006 
Place State 
Reference 5 0.000007 0.00001 -0.00002 -0.00004 -0.00001 -0.00002 
Time Local Time 
Of Day 5 0.000018 0.00003 -0.00005 0 0 0.00003 
Person1 Location 
In Aircraft 4 0.00004 0.00005 -0.00001 0.00004 0.00003 0.00005 
Environment Flight 
Conditions 3 0.000004 -0.00003 0 -0.00003 0 -0.00003 
Aircraft1 Flight 
Plan 2 0.000002 0 0 0 0 -0.00001 
Aircraft1 Aircraft 
Operator 0 0 0 0 0 0 0 
Person1 Reporter 
Organization 0 0 0 0 0 0 0 
  
 

Effects plots displaying a bar chart of absolute values of the coefficients in the 

logistic regression models were produced. The bars are color-coded with blue indicating 
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a positive effect and red indicating a negative effect on the target variable. The 

coefficients for the second level of the target variable, which is an event related to UAQ 

but is not a fume event, are shown in Figure 19. In these results, topics 1 (sensory 

perception) and 4 (engine issue) positively affect UAQ events, while topics 6 (cabin 

affected), 10 (power change), and 8 (passenger disruption) negatively affect UAQ events. 

For the identification of factors associated with fume events or level three of the target 

variable, Figure 20 shows topics 1 (sensory perception), 4 (engine issue), and 10 (power 

change) have positive effects, while topics 8 (passenger disruption) and 6 (cabin affected) 

negatively influence the events. These results are displayed with more detailed additional 

information about both target variable levels in Table 26. 

 

Figure 19  

Logistic Regression Effects Plot for Target Variable Level 2: UAQ Event 
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Figure 20  

Logistic Regression Effects Plot for Target Variable Level 3: Fume Event 

 

 

Table 26 

Logistic Regression Model Analysis of Maximum Likelihood Results for Variables of 

Importance  

Parameter 
Target 
Variable DF Estimate 

Standard 
Error 

Wald 
Chi-
Square 

Pr>Chi-
Square 

Standardized 
Estimare 

Exp 
(Est) 

Intercept 3 1 -11.8455 1.2978 83.31 <.0001 - 0.000 

Intercept 2 1 7.8557 0.8493 85.56 <.0001 - 0.000 

Cabin 
Affected 3 1 -8.1008 7.5348 1.16 0.2823 -0.2047 0.000 

Cabin 
Affected 2 1 -19.8942 5.4485 13.33 0.0003 -0.5026 0.000 

Engine Issue  3 1 10.7710 3.8936 7.65 0.0057 0.3568 999.000 

Engine Issue 2 1 6.6869 2.7299 6.00 0.0143 0.2215 801.811 

Passenger 
Disruption 3 1 -18.3072 6.3654 8.27 0.0040 -0.4437 0.000 

Passenger 
Disruption 2 1 -6.7796 4.9336 1.89 0.1694 -0.1643 0.001 



124 

 

Parameter 
Target 
Variable DF Estimate 

Standard 
Error 

Wald 
Chi-
Square 

Pr>Chi-
Square 

Standardized 
Estimare 

Exp 
(Est) 

Power 
Change 2 1 -15.2643 6.8893 4.91 0.0267 -0.3986 0.000 

Sensory 
Perception 3 1 73.7775 8.2389 80.19 <.0001 2.3803 999.000 

Sensory 
Perception 2 1 60.1756 7.5470 63.58 <.0001 1.9415 999.000 
 

 

 Odds ratios were reviewed for the target variables in the logistic regression model 

to evaluate the strength of the association between the factors and the occurrence of fume 

events. The factors sensory perception, power change, and maintenance concern 

indicated odds ratios of 999.00, followed by engine issue with 78.84, air conditioning 

with 0.012, and system anomaly, cabin affected, flight condition, and passenger 

disruption with odds ratios less than 0.001.  

The variables of importance table for the 7-branch decision tree model was 

reviewed and is found in Table 27. The variables in rank of importance for this model are 

sensory perception, cabin affected, aircraft action, system anomaly, power change, and 

aircraft1 mission. The last variable is from the ASRS dataset; the others were identified 

from the results of the text mining process. The variable aircraft action was identified in 

the validation data but was not found to be a variable of importance when validation data 

were compared to training data. 
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Table 27 

7-branch Decision Tree Model Variables of Importance Results 

Variable Name 

Number of 
Splitting 
Rules Validation 

Validation 
Importance 

Ratio of 
Validation to 
Training 
Importance 

Sensory Perception 1 1.0000 1.0000 1.0000 
Cabin Affected 1 0.1677 0.0353 0.2108 
Aircraft Action 1 0.1528 0.0000 0.0000 
System Anomaly 2 0.1521 0.0765 0.5030 
Power Change 1 0.1442 0.0559 0.3874 
Aircraft1 Mission 1 0.0921 0.0490 0.5314 

 

 

In all four models, the variable sensory perception was ranked as the most 

important variable associated with the occurrence of fume events. While this may seem 

obvious, it may serve as an indicator of the difficulty in identifying any actions, activities, 

mishaps, alerts, signs, or warnings that could be used to verify the occurrence of a fume 

event. It also places the onus to identify the occurrence of a fume event on human senses 

which may be subjective, variable, and fallible. The variables system anomaly, cabin 

affected, aircraft action, passenger disruption, power change, and engine issue are 

included in the top-ranked variables of importance for the four best performing models.  

Summary 

Data from reports submitted by flight and cabin crew members were downloaded 

from the publicly available ASRS database. Text mining techniques allowed exploration 

of the data for terms and themes contained in the narrative fields of these reports. Terms 

were grouped into topics, and new variables were created for inclusion in the models 
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along with variables from the ASRS dataset. Six models were developed and evaluated 

using decision tree, random forest, gradient boosting, and logistic regression algorithms.  

Results from the top four models were reviewed to identify the preeminent model for 

accuracy and predictive power, with no one model presenting as a champion model. 

Results from the top four models were reviewed to identify important factors associated 

with the occurrence of fume events using voluntarily reported data.  
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Chapter V: Discussion, Conclusions, and Recommendations  

This chapter examines the results presented in the previous chapter and addresses 

the three research questions presented in Chapter I. Discussion of the findings from the 

text and data mining processes and the seven important variables identified by the model 

algorithms are found in Chapter V. The theoretical and practical contributions of this 

research and how findings can be used by industry, regulators, and educators are also 

presented along with recommendations for future research.    

Discussion 

As the aviation industry rebounds following the SARS-CoV-2 pandemic and 

continues to grow in the numbers of flights and hours flown, passengers, cabin crews, 

and flight crews will be at increased risk of potential exposure to hazardous compounds 

during fume events. Current efforts to mitigate safety hazards can include reactive 

responses after reviewing findings from safety investigations and proactive responses if 

this information is incorporated into the improvement of operations, procedures, or 

policies. The identification of conditions, events, and behaviors associated with accidents 

can also be used to interrupt a sequence of events and prevent an incident or accident 

from occurring. Identification of these factors can produce information used to plan, 

intervene, and develop guidance to limit adverse outcomes and mitigate events. As an 

integral part of the safety risk management component of FAA-mandated safety 

management systems, efforts to identify and foresee hazards should be adapted to address 

and mitigate the risks associated with the occurrence of fume events. The identification of 

important factors associated with fume events can assist in these efforts, as well as 



128 

 

provide researchers with additional information for pinpointing the potential for 

occurrence and maximizing opportunities to identify and quantify hazardous compounds.  

 Educational efforts and initiatives to educate cabin and flight crews to recognize 

and better prepare for the initiation of procedures to mitigate the hazards and reduce risk 

can be enhanced by information from this research as well. The findings from this 

research can be used to assist regulators and labor representatives in the development of a 

database to document fume events, the mitigating actions taken by crew members, and 

documentation of any health effects and symptoms experienced by flight crews, cabin 

crews, or passengers.  

The text mining process was conducted using report narratives submitted to the 

ASRS by cabin and flight crew members to determine important topics associated with 

the occurrence of fume events. Ten topic areas were identified and considered as new 

variables from the ASRS database for analysis. These ten topics were combined with 

variables from the ASRS dataset and were used in developing, training, validating, and 

testing machine learning algorithms in six different models to assess the importance of 

the factors associated with the occurrence of fume events. Important factors contributing 

to the occurrence of fume events were identified through the text mining process and 

verified in the model results. The important variables include sensory perception, system 

anomaly, cabin affected, aircraft action, passenger disruption, power change, and engine 

issue. These findings add value to the existing body of literature as they reveal additional 

details on fume event occurrence and enhance safety research by highlighting the 

importance of these factors associated with fume events. 
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The purpose and design of this research were based on answering three 

fundamental research questions: 

Research Question 1:  How can text mining techniques be used to explore and 

identify important variables associated with the occurrence of a reported fume event, 

using textual data found in voluntary reports submitted by flight and cabin crew 

members? Text mining techniques were successfully used in an exploratory and data-

driven process using topics found in the narrative text field in voluntary reports contained 

in the ASRS database. SASÈ Text Miner was employed to conduct the text mining 

process and included text parsing, text filtering, exploration of text clustering, and 

exploration and identification of text topics. SASÈ Enterprise MinerTM was then used to 

develop, train, validate, and test models combining these topics as quantitative variables 

and quantitative variables from the ASRS dataset.  

Text parsing was used to convert the unstructured text of the report narratives into 

a structured format for analysis. Individual words were identified from sentences during 

the tokenization step, and lemmatization and stemming were used to reduce terms to their 

root forms. Outcomes from the text parsing process included individual terms, part-of-

speech, attribute, frequency, and the number of documents containing that particular 

term, which were reviewed in the development of a stop list. The stop list contained 

terms that did not add value in the identification of topics and were excluded from the 

text parsing process. Many multiple iterations of the text parsing, test filtering, and text 

topic review process occurred to identify and exclude terms that were not informative to 

the data.  
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The filtering step was used to develop a weighted term-by-document matrix to 

reduce the total number of parsed terms to be analyzed. Important topics were identified 

and explored after grouping the text into clusters and topics. Ten topics were identified 

and added to the ASRS dataset as quantitative variables to be used in determining the 

factors associated with the three levels of the target variable, which were (1) events not 

related to UAQ, (2) events related to UAQ but not fume event, and (3) potential fume 

events.  

Results from the text mining process found variables representing sensory 

perception, cabin affected, and power change were listed as important factors in the 

occurrence of fume events in all four top-performing models. The variables representing 

the factors aircraft action, passenger disruption, system anomaly, and engine issue were 

associated with fume events in three of the four top-performing models.  

Research Question 2:  How can modeling techniques be used to identify factors 

associated with the occurrence of a perceived and reported fume event, using qualitative 

and quantitative variables found in voluntary reports submitted by flight and cabin crew 

members? Modeling methods were used to develop models to identify factors associated 

with the occurrence of fume events through a stepwise process by first conducting text 

mining to explore and identify important topics; combining the newly identified text topic 

variables with existing variables contained in the ASRS dataset; and using this data to 

develop, train, validate, and test models using machine learning algorithms. Results of 

these models were used to identify important factors associated with fume events. The 

algorithms used were decision trees with three, five, and seven branches, gradient 

boosting, logistic regression, and random forest.  
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Research Question 3:  What are the important factors associated with the 

occurrence of a fume event as identified in voluntarily reported data? Seven factors 

appeared consistently in results for the most important factors associated with the 

occurrence of fume events among the top models. These factors included sensory 

perception, cabin affected, and power change, which were listed as factors in all four top-

performing models. Three of the top-performing models included the following four 

factors: aircraft action, passenger disruption, system anomaly, and engine issue. The 

factors air condition, maintenance concern, and flight condition were each found in two 

models. Results for two models produced rankings for additional factors, as found in 

Tables 24 and 25 for the gradient boosting and random forest models. The seven most 

frequently listed factors found in the top four models are described further.  

Previous research supports the importance of four of the text-mining based- 

factors, including sensory perception, power change, aircraft action, and engine issue. 

Newly identified factors that have not been emphasized in previous literature include 

cabin affected, passenger disruption, and system anomaly. A focus on these factors 

through research, training, and education may yield advancements in awareness, 

recognition, and prediction of fume events and enhanced safety. Only one variable from 

the ASRS database was included in the top ten important factors among all the models; it 

was sixth among the important factors in the 7-branch decision tree model. Aircraft 1 

Mission was the variable addressing the purpose of the flight of the aircraft involved in 

the reported event such as passenger, cargo/ferry, and training.  

Sensory Perception. This topic was ranked as the most important factor 

associated with the occurrence of fume events in the four best-performing models. It 
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includes the terms smoke, smell, odor, smell, and fume, which are elements commonly 

identified by the olfactory and visual senses. Although these terms may seem obvious, 

the presence of smoke or odors is commonly the first indication of a UAQ or a fume 

event. The presence of odors or smoke in fume events is strongly supported by the 

literature (Anderson, 2014; Crump et al., 2011a; Harrison et al., 2009; Michaelis, 2003; 

Murawski, 2014; Roig et al., 2021; Rosenberger et al., 2016; Shehadi et al., 2016). 

Research by Schuchardt et al. (2019) indicates reported smell events cannot be verified 

with regularly used analytical methods, and meaningful detection of oil or its pyrolyzed 

by-products cannot be conducted by odor alone. As an important factor associated with 

fume events, there is no presumption that sensory perception alone would indicate or 

predict a fume event. As an important factor associated with fume events, sensory 

perception would not be used to identify or quantify a fume event, but its ranking as the 

most important variable belies disregarding the correlation with fume events.    

While the terms contained in the sensory perception topic may also be associated 

with acute emergencies, such as fire on board an aircraft, recognition of a smell or odor 

may vary by the reporter and may be a highly subjective observation, the ranking as most 

important factor bears acknowledgment of the importance of the topic in reported UAQ 

and fume events. The importance of this topic in its identification as the most important 

factor in each of the four top-performing models may also serve as an indicator of the 

difficulty in identifying other factors present in advance of the occurrence of a fume 

event.  

Cabin Affected. The topic cabin affected was included in the results of each of 

the top four models as an important factor and includes terms divert, passenger, attendant, 
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medical, and flight attendant. These terms indicate the occupants of the cabin, the 

passengers, and flight attendants are involved in the events. Their potential to be involved 

in the recognition, reporting, and outcome of fume events suggests a greater emphasis on 

the education and training of cabin crews in recognition and awareness of fume events 

may be beneficial to prediction and mitigation. Findings from this study indicate less than 

one percent of the reports included in the ASRS database are from cabin crew members. 

Flight attendants, while potentially being among the first to recognize fume events and 

experience their effects, do not have reports represented in the ASRS database to the 

same extent as flight crews. This topic also includes the terms divert and medical, which 

may indicate responses to fume events and involve the cabin crew and passengers as 

recipients of medical needs or treatment, and potentially affected by the inconvenience of 

aircraft diversions.  

Power Change. Also included in the list of important factors for all four of the 

top models was the topic power change. This topic included terms implying alterations in 

power settings or aircraft propulsion, such as thrust, power, condition, event, and feel. 

The inclusion of this topic among important factors associated with fume events is 

supported by implications of seal leakage during changes in engine power (Anderson, 

2021; de Boer et al., 2015; Michaelis, 2018).  

Aircraft Action. Gradient boosting, random forest, and the 7-branch decision tree 

models included the topic aircraft action as an important variable associated with the 

occurrence of fume events. This topic consists of terms describing the movement of the 

aircraft such as climb, descend, level, and foot. Foot is a parent term and includes 

lemmatized versions of the term, such as feet, which is associated with altitude 
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assignments or callouts. Aircraft action may be associated with the topic power change in 

some circumstances, as the movement of the aircraft may involve changes in power 

settings, such as a requirement for increased aircraft performance to climb to a higher 

altitude or a decrease in power for descent. This factor is supported by previous research 

as a change from aircraft steady state may be related to changes in power settings (de 

Boer et al., 2015; Michaelis, 2018).  

Passenger Disruption. The topic passenger disruption was included in the list of 

important variables for the gradient boosting, random forest, and logistic regression 

models. The terms passenger, nose, start, short, and deplane are contained in this topic 

and potentially represent disruption and inconvenience to passenger service. Fume events 

may occur at the beginning of a flight while at the gate during boarding, during de-icing 

procedures, or during taxi when the aircraftôs APU is being used to power the aircraft 

(Murawski & Supplee, 2008; Overfelt et al., 2012; Shehadi et al., 2016). A disruption in 

passenger service may occur at any time if the passengers are required to deplane, the 

flight is diverted, or if an air turnback is conducted. This topic may also involve 

passenger perception of odors or fumes with the term nose implying an objectionable 

sensory or physical awareness.  

System Anomaly. The system anomaly topic included the terms quick reference 

handbook, hydraulic, system, engine-indicating and crew-alerting system (EICAS), and 

light, potentially indicating system irregularities. These anomalies may involve hydraulic 

fluid, the hydraulic system, or other systems, and may include crew notification by a 

warning light or the EICAS. The EICAS provides flight crews with instrumentation and 

annunciation for engines and other integral systems and also provides information for the 
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management of abnormal or emergency conditions. These anomalies may warrant the use 

of a quick reference handbook which is a quick-access manual containing procedures 

applicable during abnormal or emergency conditions when an aircraft is not equipped 

with an EICAS or other electronic centralized aircraft monitoring system. This newly 

identified topic incorporates previously identified components associated with fume 

events but is a broader and more multifaceted factor with the inclusion of these topics. 

Engine Issue. The topic engine issue was listed as three of the top modelsô 

important factors associated with the occurrence of fume events. The topic includes the 

terms engine, left engine, right engine, oil, and shut, suggesting engine operational 

difficulties or failure. The inclusion of oil in the topic suggests the association of oil with 

fume events and is supported by much of the published research on this topic, including 

by Anderson (2021), de Ree et al. (2017), Shehadi, Jones, and Hosni (2016), Schindler 

(2013), Murawski and Supplee (2008), and Winder and Balouet (2002).  

Conclusions 

This exploratory, mixed method design study used unstructured textual data from 

the narrative fields in reports submitted to the ASRS in a text mining process to explore 

terms and topics and identify new factors associated with UAQ and fume events. These 

factors were then included with quantitative variables from the ASRS database and used 

in machine learning algorithms to develop models to identify the important factors 

associated with the occurrence of UAQ and fume events as reported by flight crews and 

cabin crews. These models were successfully developed, trained, validated, and tested. 

The findings of this study contribute both theoretically and practically to the body of 

knowledge concerning fume events and aviation safety. 
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Theoretical Contributions 

 
This research provides theoretical contributions in advancing the study of fume 

events and the use of text and data mining methods to identify factors associated with 

these events. It addresses gaps in the existing literature by exploring textual data to 

identify topics and terms and populating models with variables derived from these topics. 

Important factors associated with the occurrence of fume events were explored and 

identified through the text mining process and the data mining process and validated 

using algorithms. Important topics that were substantiated include sensory perception, 

system anomaly, cabin affected, aircraft action, passenger disruption, power change, and 

engine issue. The importance of the factors sensory perception, power change, aircraft 

action, and engine issue with fume events was supported and confirmed by previous 

research. The use of text mining to identify these factors from narratives of voluntarily 

submitted reports by flight and cabin crews reinforces the value of these factors in the 

awareness, recognition, and mitigation of fume events. The factors system anomaly, 

cabin affected, and passenger disruption were identified as new factors and should be 

considered when reporting and investigating the occurrence of fume events, and in the 

education and training of crew members. Increased awareness of system anomalies that 

could affect the occurrence of fume events should be considered by flight crews when 

these events arise. Coordinated efforts between flight and cabin crew to communicate 

amongst themselves and with passengers could enable earlier detection and mitigation of 

fume events to lessen the impact on negative health and safety outcomes and reduce the 

likelihood of interruption in flight schedules.  
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Models for the occurrence of UAQ and fume events were developed, trained, 

validated, and tested to provide information on factors associated with fume events and 

baseline information to assist in the identification of this rare event with the potential for 

serious consequences. The top-performing models using gradient boosting, random 

forest, logistic regression, and 7-branch decision tree algorithms can be used to provide 

accurate information regarding the importance of factors associated with the occurrence 

of fume events. Findings from this study can be used as a baseline of understanding 

properties associated with fume events In addition, these models can be built upon and 

further refined in future studies to identify additional terms, topics, and details associated 

with fume event occurrence as reports are added to the ASRS database and additional 

studies are conducted. This information can be used by regulators, airlines, or 

manufacturers to better understand the challenges in the prediction, mitigation, and 

prevention of fume events.  

This research provides a successful demonstration of using the text mining 

process to explore unstructured data, the identification of important factors, and the use 

of those factors as variables in a data mining process to identify algorithms to identify 

other events, conditions, or behaviors affecting safety. This process may be replicated to 

explore textual data, identify important factors, and develop models to identify other 

factors which may compromise safety in aviation operations.   

Practical Contributions 

 
This research provides the FAA and the aviation industry with important factors 

associated with the occurrence of fume events obtained from the exploration of ASRS 

report narratives through text mining. Although the aviation industry is not expected to 
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surpass the pre-pandemic numbers of airline travelers until 2023 (IATA, 2021), IATA 

suggests present trends in passenger numbers for global air transportation could double to 

8.2 billion in 2037 (IATA, 2018b). The increase in flight operations may increase the 

potential for the occurrence of fume events with additional crew members and passengers 

at risk of exposure to hazardous compounds or uncertain flight outcomes if flight crews 

are impaired or incapacitated. Findings from this research and the identification of 

important factors associated with fume events can be used by the FAA and industry to 

better understand fume events, assess safety risk management programs and policies, and 

develop appropriate intervention strategies to mitigate the occurrence of fume events.  

Findings from this study may be used by the FAA as a rationale to support the 

establishment of a dedicated reporting system for surveillance and investigation of UAQ 

and fume events. Information on factors associated with fume events collected from 

flight and cabin crews, maintenance technicians, inspectors, dispatchers, and others can 

be collected, deidentified, aggregated, and shared amongst airlines to advance the 

collective knowledge, awareness, and prevention of fume events for optimization of 

aviation safety.  

Airlines and labor unions can use the results of this study to increase awareness of 

fume event occurrence, better prepare crews for mitigation of events, and highlight the 

necessity of developing a surveillance system for tracking these events. Using the most 

important factors associated with fume events, safety managers can develop training for 

flight and cabin crews with likely scenarios to improve awareness, recognition, and 

appropriate response to fume events. Education of flight and cabin crews to raise 

awareness of factors associated with fume events can assist them in mitigation of events 
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and highlight the necessity of providing detailed reports when reporting these events to 

the ASRS, SDR system, and any internal company safety reporting systems required by 

the companyôs safety management system. By identifying the most important factors 

associated specifically with fume events, safety managers can work with training 

departments to develop training for flight and cabin crews with realistic scenarios to 

improve awareness, recognition, and handling of emergency procedures for the 

occurrence of fume events. Professional piloting programs and flight schools can 

incorporate fume event awareness as an educational component of lessons in flight 

physiology, pilot health, risk assessment, and safety management systems. Recognition of 

important factors associated with the occurrence of fume events among new pilots can 

lead to health and safety improvements for individuals and the industry overall.    

Findings from this research may be useful to airline safety personnel. Safety 

management staff working with air carriers could use internal safety reports to create 

similar datasets to those available through the ASRS and use one of the top-performing 

algorithms to confirm or identify additional factors associated with fume events in their 

operations. Adding detailed information to the dataset such as aircraft registration 

numbers or serial numbers, engine power settings, time and type of engine maintenance 

performed, or findings from maintenance inspections could potentially identify additional 

factors specific to the airlinesô operations. 

With the rare occurrence of fume events, monitoring of air quality during flights 

has been limited in the successful measurement of detectable levels of hazardous 

compounds (Crump et al., 2011a and 2011b; Day, 2015; Houtzager et al., 2013; NIOSH, 

1993). Researchers and investigators could use findings from this study to help target 
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times to collect samples for monitoring air quality or target flights for collecting wipe 

samples from surfaces. Identification and quantification of any hazardous compounds 

may be useful in the development of mitigation strategies such as filter systems or the 

medical treatment of exposed persons. 

Limitations of the Findings 

 
The study used archival data for the exploration of terms and topics and the 

development, training, validation, and testing of the models and is thus bound by 

limitations of the data. The standardized forms for reporting are designed to collect 

information applicable to safety concerns, events, incidents, and accidents. As such, they 

contain many fields not relevant to investigating or identifying factors associated with 

fume events. The result is a substantial number of empty variable fields and missing data, 

and variables which do not contribute information to the area of interest. In addition, the 

primary incentive for submitting reports may include the prevention of enforcement 

action; thus, a potential violation of regulations, policies, procedures, or instructions from 

ATC are the topic of many reports and the motivation for reporting. Several variables 

which were irrelevant to those reports but potentially relevant for exploring factors 

associated with UAQ and fume events were not available for use in training, validating, 

or testing the models due to the amount of missing data, such as those for altitude and 

aircraft component involved.  

UAQ or fume events not reported to ASRS were not included in the database. 

Crews unable to recognize, describe or identify the occurrence of a UAQ or fume event 

may not submit reports. Incidents involving obvious anomalies, such as strong or 

distinctive odors or smoke, may be more likely to elicit reports and may have influenced 
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the ranking of the most important variable identified, sensory perception. All reports 

submitted to the ASRS regarding UAQ and fume events may not be included in the 

database, and therefore were not able to contribute to the exploration of terms and topics 

associated with UAQ and fume events. The models in this study were only able to 

identify UAQ and fume events that were recognized and reported.  

The unstructured narrative fields provide an opportunity to describe events in 

great or little detail, and the disparity in reported details was noted. Some reporters 

exhibited in-depth knowledge of fume events in their reports, while others provided 

minimal descriptive information about the event. Narrative fields contained as few as two 

words ófume eventô or could contain extensive descriptions of circumstances leading up 

to an event, discussion among flight and cabin crew, action taken, symptoms 

experienced, and reporter recommendations for the airlineôs management.  

Lastly, details missing from the ASRS dataset need to be supplemented by 

airlines, manufacturers, or managers of a fume event surveillance system to increase the 

value of the modeling. For example, a great number of aircraft were listed with generic 

descriptions such as widebody transport, medium large transport, light transport, or small 

transport, low wing, 2 turbojet engines. While the make and model of the aircraft may not 

be essential information for some reported events, the lack of detail limits the text mining 

process in the identification of important factors in the occurrence of fume events. The 

ability of the models to determine events and non-events is constrained by a lack of 

detail, especially with limited reports for UAQ and fume events. The development of a 

surveillance system specifically for reporting and tracking fume events could provide a 
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standardized mechanism for reporting events and include a tailored format for collecting 

information useful in exploring relevant data and building appropriate models.  

Recommendations 

Recommendations focus on furthering the findings from this research to obtain 

data of better quality and increased quantity and the continued use of the text mining 

process to inform the data mining process and development of models. Expansion of this 

research can enhance the body of scientific knowledge and improve aviation safety.  

Recommendations to Industry 

Findings from this research address and highlight a need for additional 

information regarding UAQ and fume events both in quantity and quality of data. The 

recommendations to industry address actions by regulators, airlines, labor organizations, 

and safety professionals that could be taken to improve the knowledge base and limit 

gaps in fume event research and improve aviation safety for crews and passengers.  

Recommendation 1. Establish a database for reporting all UAQ and fume events 

as part of a national surveillance system to track these events and their outcomes. There 

are currently no industry-wide mandatory reporting requirements for the occurrence of 

fume events or potential exposure to hazardous compounds during these events. Public 

Law 112-95 (2012) mandated the FAA to develop a systematic reporting standard for 

contaminated bleed air events, however, this directive has not come to fruition. 

The ASRS contains a plethora of information related to safety and the expertise of 

the analysts, and their consistency in coding provides a rich opportunity for exploratory 

research. However, certain aspects preclude extensive use of the data for several 

applications. The deidentification of variables in ASRS limits the ability to add detail to 
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the models, such as make or model of aircraft and the nature of voluntary reporting 

allows for vast disparity in details contained in the narrative fields. Tests for medical 

evaluation and diagnosis following exposure during fume events are not standardized, 

and treatment and follow-up are generally not included in reports. A surveillance system 

including these fields could contribute to the body of knowledge and aid in care for crew 

members and passengers who may have been acutely or chronically exposed to hazardous 

compounds. 

Airlines may already track fume event occurrence within their organizations as 

part of an SMS or ASAP. A database developed and managed by a non-governmental 

third party for the sole purpose of tracking fume events on a national level using guidance 

provided by ICAO (2015) could focus on collecting critical information for preventing 

these events and provide details not available in the ASRS database. The important 

factors identified in this study could be used to enhance the questionnaire content to 

ensure adequate data is obtained for successful use of the database in future UAQ and 

fume event research.   

Recommendation 2. Increased attention should be given to the infrequent but 

potentially serious consequences of fume events, including training and education to 

increase crew membersô awareness and recognition of UAQ and fume events. Following 

guidelines for education, training, and reporting for fume events as established by ICAO 

(2015) can minimize awareness and response time, ensure appropriate actions are taken 

and provide documentation for the occurrence of fume events. Knowledge of the 

seriousness of acute and chronic exposure to hazardous compounds and recognition of 

the precursors of fume events may facilitate appropriate response by crews and the 



144 

 

development of prudent policies and procedures by airline management. Enhanced 

awareness of UAQ and fume events may increase the margin of safety if fume events are 

recognized and mitigated or emergency action is taken quickly; crews are trained in 

awareness of important factors associated with the occurrence of fume events and 

appropriate reactions to indications of fume events; and cabin and flight crews are 

coordinated in their response. Flight and cabin crew members are also less likely to report 

fume events if they donôt recognize them, do not perceive them as abnormal events, or do 

not associate them with potential exposure to hazardous compounds. Expanding the 

education element to students in professional piloting programs and flight schools could 

foster recognition of associated factors, foster early recognition and mitigation of fume 

events, and allow for the augmentation of reporting systems when and if the new pilots 

experience fume events in their jobs. This recommendation is supported by the FAA 

Reauthorization Act of 2018, whereby the FAA is conducting a literature review and 

consulting with stakeholders to develop educational materials to educate crews in the 

response to smoke or fume incidents on board aircraft (FAA, 2020b). 

Recommendations for Future Research 

 

Recommendation 3. The foremost contribution of this research was the 

identification of important topics through the use of text mining in text fields of 

narratives contained in voluntary reports. Future research should build upon these 

findings and continue to refine the process using new data, different datasets, and 

different algorithms to more fully define, understand, and predict the occurrence of fume 

events. The ASRS database should be explored periodically to include additional years of 

reports, as information regarding fume event awareness and recognition become more 
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widespread, the likelihood exists for reports of fume events to increase. With the 

occurrence and reporting of additional events, narratives may contain greater detail 

regarding the events, and more nuanced features of fume events may become apparent. 

The increased numbers of reports of UAQ and fume events as a greater percentage of the 

total reports may enhance capabilities to better train the models. The inclusion of 

additional UAQ and fume events and details regarding their circumstances may improve 

the modelsô sensitivity and allow the development of models with an ability to correctly 

predict a UAQ or fume event.  

Further exploration of important factors associated with UAQ may be enhanced 

by further distinguishing the source and conducting focused text mining and developing 

models based on the different sources. Modelsô sensitivity values may be improved by 

considering causes of UAQ such as smoke, fire, and odors separately. In addition, 

distinguishing various sources of UAQ such as passenger-caused, aircraft-related, galley-

based, component failure, lithium battery fire, etc. could allow for a more detailed 

analysis of individual variables. Appropriate coding of specific sources of UAQ may 

assist in correctly identifying the true positives and the false negatives and could improve 

the level of detail contained in the text mining topics and enhance the ability of the 

models to identify important topics.     

Conducting a similar process of text mining to explore important topics, data 

mining, and predictive modeling could be applied to new datasets to provide new 

perspectives on the conditions, events, and behaviors associated with the occurrence of 

fume events. For example, the Service Difficulty Report database contains reports 

submitted by airlines, operators, maintenance technicians, or certificated repair station 
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personnel after the discovery of a serious failure, malfunction, or defect of components, 

articles, or equipment. Exploring this database for important factors with a focus on 

maintenance could produce an entirely different collection of topics and terms associated 

with UAQ and fume events. A maintenance perspective in the development of algorithms 

and models for fume events could yield very different important factors leading to 

distinct mitigation and prevention strategies. 

A more robust champion model with increased insight into important factors 

associated with fume events could be developed using a hybrid approach. Using findings 

produced from text mining to explore one data source and applying them to a different 

dataset for data mining and development of appropriate models could yield a model 

generalizable to both datasets by incorporating a larger variety of variables than found in 

one dataset. This hybrid approach could also be adapted and the generalizability of the 

text mining and data mining processes could be investigated with information sharing 

between airlines or aviation organizations such as the Air Line Pilots Association, ICAO, 

the Association of Asia Pacific Airlines, or the Arab Air Carriers Association.  

Recommendation 4. The two-step process of text mining and data mining in a 

mixed method design should be applied to research in other areas of aviation safety to 

explore and identify important factors associated with events, conditions, behaviors, 

accidents, or injuries. This method is well-suited to addressing occupational safety and 

health issues when data are not available to describe injuries or illness, and denominator 

data is not available to determine rates or address risk. The approach used in this study is 

generalizable to other industries with reports containing textual descriptions of the area of 

interest. Companies with internal reporting systems for safety concerns or potential safety 
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violations may have valuable databases for text mining and modeling as employee reports 

provide descriptions with first-hand knowledge and experience. Secondary data from 

FAAôs SDR database, the FAAôs Accident and Incident Reporting System, the FAAôs 

Near Mid Air Collision database, the NTSB Aviation Accident Database, and the ASRS 

database are all publicly accessible and contain fields with free text potentially suitable 

for text mining for exploring a variety of subjects. Data sources requiring permission to 

access could include workersô compensation claims, non-punitive error reporting systems 

instituted in many health care organizations, company incident reporting systems, and 

airlinesô ASAP program data. The findings from this type of research can provide a better 

understanding of events and guide focused interventions for prevention. Defining and 

understanding the important factors, including events, conditions, behaviors, accidents, or 

injuries associated with the occurrence of fume events allows for a data-driven approach 

to injury and illness prevention with a potential outcome of improved safety for workers, 

customers, and the public.  
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(Hard Copy/Mail Version)
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Appendix B 

NASA Form 277C Cabin (Flight Attendant) ASRS Report Form  

 (Hard Copy/Mail Version) 
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Appendix C 

 

Tables 

C1 Type of Aircraft as Provided in ASRS Reports 
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Table C1  

Type of Aircraft as Provided in ASRS Reports 

Type Aircraft Number 
Airbus  
   A300 154 
   A319 584 
   A320 697 
   A321 411 
   A330 70 
   A318/319/320/321 Undifferentiated  
   or Other Model 96 

Aerei da Trasporto Regionale (ATR) 42, 72  
14 

Boeing  
   737 3552 
   747 214 
   757 620 
   767 654 
   777 500 
   787 165 
   Undifferentiated or Other Model 31 

Bombardier/Canadair   
   Regional Jet 200, 700, 900  
   CL65, Undifferentiated or Other 

1297 
12 

Cessna ï multiple models, piston, turboprop and jet    
engine aircraft 

 
21 

De Havilland/Bombardier  
   Dash 8 150 
   Q400 38 
Embraer  
   Regional Jet - 135/140/145/170/175/190/195 1402 
   Undifferentiated or Other Model 23 

McDonnell Douglas  
   DC-9/10 10 
   MD-11 240 
   MD-80/82/83/88 Series 159 
   Undifferentiated or Other Model 11 

Saab   
   340 20 

No Model or Manufacturer Specified  
   Commercial Fixed Wing 772 
   Light Transport 27 
   Small Transport 8 
   Medium Transport 305 
   Medium Large Transport 348 
   Large Transport 731 
   Heavy Transport 42 
   Widebody 238 
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   Widebody Transport 209 

Aircraft type listed in < 5 reports 27 

Other, Unknown or Unlisted 7 
Aircraft information missing 8 
No aircraft in report 2 
Total 13869 

Note. Aircraft type and number of aircraft involved in ASRS reports submitted by air and cabin crew in 

FAR part 121 operations from January 1, 2015, to December 31, 2019. 
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Table C2  

Text Parsing Node Results – Top 100 Terms, Roles, Attributes, Frequencies, Status, and 

Ranks 

Term  Role  Attribute 
 
Frequency 

Number of 
Narratives Keep 

Parent 
Status   Parent ID  Rank 

 + be  Verb  Alpha 115190 13120 N + 144610 1 
not  Adv  Alpha 39805 10634 N  142963 2 
 + have  Verb  Alpha 35389 10141 N + 142647 3 
aircraft  Noun  Alpha 29749 9012 N  142758 4 
 + do  Verb  Alpha 26100 8903 N + 145273 5 
 + flight  Noun  Alpha 20254 7561 N + 144832 6 
no  Adv  Alpha 13615 6992 N  145669 7 
then  Adv  Alpha 13391 6469 N  141598 8 
 + time  Noun  Alpha 13103 6436 N + 143586 9 
atc  Prop  Alpha 14631 6082 N  145910 10 
 + get  Verb  Alpha 13242 6001 N + 141811 11 
 + make  Verb  Alpha 10660 5735 N + 143669 12 
 + go  Verb  Alpha 11249 5504 N + 142170 13 
 + continue  Verb  Alpha 9009 5308 Y + 112059 14 
 + call  Verb  Alpha 9984 5128 N + 142995 15 
 + ask  Verb  Alpha 9848 5013 N + 146108 16 
 + tell  Verb  Alpha 9913 4917 N + 141072 17 
 + clear  Verb  Alpha 9317 4903 N + 145768 18 
 + runway  Noun  Alpha 12687 4739 N + 142065 19 
 + land  Verb  Alpha 8302 4693 N + 144849 20 
 + captain  Noun  Alpha 12224 4643 N + 144732 21 
also  Adv  Alpha 7320 4605 N  141187 22 
 + approach  Noun  Alpha 14037 4543 N + 144894 23 
 + say  Verb  Alpha 9191 4470 N + 145325 24 
 + foot  Noun  Alpha 12450 4416 Y + 95650 25 
 + give  Verb  Alpha 7537 4391 N + 144883 26 
 + see  Verb  Alpha 7472 4374 N + 142941 27 
 + landing  Noun  Alpha 7636 4286 N + 142766 28 
first  Adj  Alpha 6370 4224 N  141997 29 
 + fly  Verb  Alpha 7062 4169 N + 143217 30 
 + take  Verb  Alpha 6543 4125 N + 144628 31 
on  Adv  Alpha 5698 4064 N  140893 32 
 + gate  Noun  Alpha 8186 4028 N + 141021 33 
 + receive  Verb  Alpha 6254 3927 N + 143164 34 
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 + start  Verb  Alpha 6387 3770 Y + 19470 35 
 + altitude  Noun  Alpha 8249 3664 N + 143522 36 
 + crew  Noun  Alpha 7420 3633 N + 142933 37 
very  Adv  Alpha 5548 3554 N  142299 38 
 + notice  Verb  Alpha 5279 3516 Y + 95220 39 
 + approximately  Adv  Alpha 5469 3404 N + 143590 40 
 + turn  Verb  Alpha 5557 3379 N + 141633 41 
just  Adv  Alpha 4636 3329 N  142281 42 
 + pilot  Noun  Alpha 5358 3329 N + 143454 42 
 + point  Noun  Alpha 5456 3319 N + 142568 44 
immediately  Adv  Alpha 4461 3251 Y  23805 45 
maintenance  Noun  Alpha 7530 3249 Y  61158 46 
 + look  Verb  Alpha 5004 3243 N + 144742 47 
 + come  Verb  Alpha 4775 3225 N + 145796 48 
 + minute  Noun  Alpha 5307 3215 Y + 101906 49 
 + procedure  Noun  Alpha 6080 3196 Y + 31572 50 
 + descent  Noun  Alpha 6586 3190 N + 143284 51 
other  Adj  Alpha 4618 3131 N  145606 52 
 + use  Verb  Alpha 4902 3128 N + 142755 53 
fo  Prop  Alpha 8095 3067 N  145121 54 
 + arrival  Noun  Alpha 6475 3055 N + 142984 55 
 + airport  Noun  Alpha 5440 3039 N + 145107 56 
 + issue  Noun  Alpha 4941 3032 Y + 10743 57 
 + event  Noun  Alpha 4874 3026 Y + 41768 58 
again  Adv  Alpha 4620 3019 N  141373 59 
 + advise  Verb  Alpha 5194 3006 Y + 34777 60 
 + think  Verb  Alpha 4682 3001 N + 142268 61 
 + back  Noun  Alpha 4081 2976 Y + 52967 62 
 + situation  Noun  Alpha 4812 2968 Y + 18306 63 
 + begin  Verb  Alpha 4765 2939 Y + 52294 64 
 + checklist  Noun  Alpha 6799 2866 N + 143732 65 
what  Adv  Alpha 4094 2849 N  146150 66 
 + passenger  Noun  Alpha 6635 2835 Y + 9975 67 
 + control  Noun  Alpha 4817 2831 N + 144979 68 
 + taxi  Verb  Alpha 4782 2827 N + 141629 69 
still  Adv  Alpha 4009 2826 N  146018 70 
 + descend  Verb  Alpha 5478 2823 Y + 93608 71 
 + know  Verb  Alpha 4157 2821 Y + 113830 72 
 + officer  Noun  Alpha 3896 2814 Y + 22989 73 
 + takeoff  Noun  Alpha 7377 2788 N + 143747 74 
 + engine  Noun  Alpha 9873 2712 Y + 27112 75 
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 + clearance  Noun  Alpha 5704 2676 N + 141808 76 
back  Adv  Alpha 3584 2642 Y  76618 77 
zzz  Prop  Alpha 6184 2607 N  144499 78 
 + check  Verb  Alpha 3652 2545 Y + 12535 79 
 + follow  Verb  Alpha 3363 2538 Y + 96111 80 
 + return  Verb  Alpha 3764 2536 Y + 9421 81 
officer  Prop  Alpha 4224 2509 Y  78239 82 
 + complete  Verb  Alpha 3840 2493 Y + 25598 83 
 + problem  Noun  Alpha 3957 2492 Y + 37805 84 
one  Num  Alpha 3288 2491 N  143470 85 
 + inform  Verb  Alpha 4049 2471 Y + 102541 86 
out  Adv  Alpha 3253 2471 N  144960 86 
 + climb  Verb  Alpha 4143 2470 Y + 21083 88 
 + need  Verb  Alpha 3573 2467 N + 145641 89 
 + request  Verb  Alpha 3669 2455 N + 141414 90 
all  Adj  Alpha 3228 2454 N  144706 91 
two  Num  Alpha 3456 2429 N  144246 92 
 + try  Verb  Alpha 3618 2423 N + 143900 93 
more  Adj  Alpha 3190 2388 N  141934 94 
 + departure  Noun  Alpha 4730 2384 N + 144481 95 
 + believe  Verb  Alpha 3319 2371 N + 145335 96 
 + good  Adj  Alpha 3140 2354 Y + 8939 97 
 + contact  Verb  Alpha 3374 2337 Y + 90675 98 
first  Prop  Alpha 3909 2337 N  143542 98 
 + speed  Noun  Alpha 4332 2325 N + 144084 100 
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Table C3  

Text Filter Node Results – Top 100 Terms, Weights, and Frequencies 

Term  Role  Attribute  Status  Weight 
 
Frequency 

# 
Documents Rank 

 + be  Verb  Alpha  Drop 0 115190 13120 1 
not  Adv  Alpha  Drop 0 39805 10634 2 
 + have  Verb  Alpha  Drop 0 35389 10141 3 
aircraft  Noun  Alpha  Drop 0 29749 9012 4 
 + do  Verb  Alpha  Drop 0 26100 8903 5 
 + flight  Noun  Alpha  Drop 0 20254 7561 6 
no  Adv  Alpha  Drop 0 13615 6992 7 
then  Adv  Alpha  Drop 0 13391 6469 8 
 + time  Noun  Alpha  Drop 0 13103 6436 9 
atc  Prop  Alpha  Drop 0 14631 6082 10 
 + get  Verb  Alpha  Drop 0 13242 6001 11 
 + make  Verb  Alpha  Drop 0 10660 5735 12 
 + go  Verb  Alpha  Drop 0 11249 5504 13 
 + continue  Verb  Alpha  Keep 0.119 9009 5308 14 
 + call  Verb  Alpha  Drop 0 9984 5128 15 
 + ask  Verb  Alpha  Drop 0 9848 5013 16 
 + tell  Verb  Alpha  Drop 0 9913 4917 17 
 + clear  Verb  Alpha  Drop 0 9317 4903 18 
 + runway  Noun  Alpha  Drop 0 12687 4739 19 
 + land  Verb  Alpha  Drop 0 8302 4693 20 
 + captain  Noun  Alpha  Drop 0 12224 4643 21 
also  Adv  Alpha  Drop 0 7320 4605 22 
 + approach  Noun  Alpha  Drop 0 14037 4543 23 
 + say  Verb  Alpha  Drop 0 9191 4470 24 
 + foot  Noun  Alpha  Keep 0.154 12450 4416 25 
 + give  Verb  Alpha  Drop 0 7537 4391 26 
 + see  Verb  Alpha  Drop 0 7472 4374 27 
 + landing  Noun  Alpha  Drop 0 7636 4286 28 
first  Adj  Alpha  Drop 0 6370 4224 29 
 + fly  Verb  Alpha  Drop 0 7062 4169 30 
 + take  Verb  Alpha  Drop 0 6543 4125 31 
on  Adv  Alpha  Drop 0 5698 4064 32 
 + gate  Noun  Alpha  Drop 0 8186 4028 33 
 + receive  Verb  Alpha  Drop 0 6254 3927 34 
 + start  Verb  Alpha  Keep 0.158 6387 3770 35 
 + altitude  Noun  Alpha  Drop 0 8249 3664 36 
 + crew  Noun  Alpha  Drop 0 7420 3633 37 
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very  Adv  Alpha  Drop 0 5548 3554 38 
 + notice  Verb  Alpha  Keep 0.159 5279 3516 39 
 + approximately  Adv  Alpha  Drop 0 5469 3404 40 
 + turn  Verb  Alpha  Drop 0 5557 3379 41 
just  Adv  Alpha  Drop 0 4636 3329 42 
 + pilot  Noun  Alpha  Drop 0 5358 3329 42 
 + point  Noun  Alpha  Drop 0 5456 3319 44 
immediately  Adv  Alpha  Keep 0.163 4461 3251 45 
maintenance  Noun  Alpha  Keep 0.185 7530 3249 46 
 + look  Verb  Alpha  Drop 0 5004 3243 47 
 + come  Verb  Alpha  Drop 0 4775 3225 48 
 + minute  Noun  Alpha  Keep 0.172 5307 3215 49 
 + procedure  Noun  Alpha  Keep 0.18 6080 3196 50 
 + descent  Noun  Alpha  Drop 0 6586 3190 51 
other  Adj  Alpha  Drop 0 4618 3131 52 
 + use  Verb  Alpha  Drop 0 4902 3128 53 
fo  Prop  Alpha  Drop 0 8095 3067 54 
 + arrival  Noun  Alpha  Drop 0 6475 3055 55 
 + airport  Noun  Alpha  Drop 0 5440 3039 56 
 + issue  Noun  Alpha  Keep 0.18 4941 3032 57 
 + event  Noun  Alpha  Keep 0.179 4874 3026 58 
again  Adv  Alpha  Drop 0 4620 3019 59 
 + advise  Verb  Alpha  Keep 0.182 5194 3006 60 
 + think  Verb  Alpha  Drop 0 4682 3001 61 
 + back  Noun  Alpha  Keep 0.174 4081 2976 62 
 + situation  Noun  Alpha  Keep 0.181 4812 2968 63 
 + begin  Verb  Alpha  Keep 0.181 4765 2939 64 
 + checklist  Noun  Alpha  Drop 0 6799 2866 65 
what  Adv  Alpha  Drop 0 4094 2849 66 
 + passenger  Noun  Alpha  Keep 0.202 6635 2835 67 
 + control  Noun  Alpha  Drop 0 4817 2831 68 
 + taxi  Verb  Alpha  Drop 0 4782 2827 69 
still  Adv  Alpha  Drop 0 4009 2826 70 
 + descend  Verb  Alpha  Keep 0.19 5478 2823 71 
 + know  Verb  Alpha  Keep 0.182 4157 2821 72 
 + officer  Noun  Alpha  Keep 0.185 3896 2814 73 
 + takeoff  Noun  Alpha  Drop 0 7377 2788 74 
 + engine  Noun  Alpha  Keep 0.215 9873 2712 75 
 + clearance  Noun  Alpha  Drop 0 5704 2676 76 
back  Adv  Alpha  Keep 0.186 3584 2642 77 
zzz  Prop  Alpha  Drop 0 6184 2607 78 
 + check  Verb  Alpha  Keep 0.193 3652 2545 79 
 + follow  Verb  Alpha  Keep 0.189 3363 2538 80 
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 + return  Verb  Alpha  Keep 0.193 3764 2536 81 
officer  Prop  Alpha  Keep 0.205 4224 2509 82 
 + complete  Verb  Alpha  Keep 0.198 3840 2493 83 
 + problem  Noun  Alpha  Keep 0.198 3957 2492 84 
one  Num  Alpha  Drop 0 3288 2491 85 
 + inform  Verb  Alpha  Keep 0.201 4049 2471 86 
out  Adv  Alpha  Drop 0 3253 2471 86 
 + climb  Verb  Alpha  Keep 0.201 4143 2470 88 
 + need  Verb  Alpha  Drop 0 3573 2467 89 
 + request  Verb  Alpha  Drop 0 3669 2455 90 
all  Adj  Alpha  Drop 0 3228 2454 91 
two  Num  Alpha  Drop 0 3456 2429 92 
 + try  Verb  Alpha  Drop 0 3618 2423 93 
more  Adj  Alpha  Drop 0 3190 2388 94 
 + departure  Noun  Alpha  Drop 0 4730 2384 95 
 + believe  Verb  Alpha  Drop 0 3319 2371 96 
 + good  Adj  Alpha  Keep 0.198 3140 2354 97 
 + contact  Verb  Alpha  Keep 0.202 3374 2337 98 
first  Prop  Alpha  Drop 0 3909 2337 98 
 + speed  Noun  Alpha  Drop 0 4332 2325 100 
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Table C4 

 

List of Variables from ASRS and Text Mining 

Category Variable Role 
Number 
Missing 

Percent 
Missing 
Values Status 

ID ACN ID 0 0% Keep 
Time Date Interval 0 0% Keep 
Time Local Time Of Day Nominal 1422 10% Keep 
Place Locale Reference Text 552 4% Keep 
Place State Reference Text 551 4% Keep 
Place Relative Position.Angle.Radial Interval 13697 99% Drop 
Place Relative Position.Distance. 

Nautical Miles 
Interval 13417 97% Drop 

Place Altitude.AGL.Single Value Interval 8392 61% Drop 
Place Altitude.MSL.Single Value Interval 8000 58% Drop 
Environment Flight Conditions Nominal 4690 34% Keep 
Environment Weather Elements / Visibility Nominal 11689 84% Drop 
Environment Work Environment Factor Nominal 13766 99% Drop 
Environment Light Nominal 5436 39% Keep 
Environment Ceiling Interval 13172 95% Drop 
Environment RVR.Single Value Interval 13835 100% Drop 
Aircraft 1 ATC / Advisory Nominal 3130 23% Keep 
Aircraft 1 Aircraft Operator Nominal 65 0% Keep 
Aircraft 1 Make Model Name Text 8 0% Keep* 
Aircraft 1 Aircraft Zone Text 13869 100% Drop 
Aircraft 1 Crew Size Interval 332 2% Keep 
Aircraft 1 Operating Under FAR Part Nominal 0 0% Drop* 
Aircraft 1 Flight Plan Nominal 782 6% Keep 
Aircraft 1 Mission Nominal 1295 9% Keep 
Aircraft 1 Nav In Use Nominal 9288 67% Drop 
Aircraft 1 Flight Phase Nominal 114 1% Keep 
Aircraft 1 Route In Use Nominal 11014 79% Drop 
Aircraft 1 Airspace Nominal 6063 44% Keep 
Aircraft 1 Maintenance Status. 

Maintenance Deferred 
Dichotomous 13609 98% Drop 

Aircraft 1 Maintenance Status. 
Records Complete 

Dichotomous 13685 99% Drop 

Aircraft 1 Maintenance Status. 
Released For Service 

Dichotomous 13637 98% Drop 

Aircraft 1 Maintenance Status.Required /  
Correct Doc On Board 

Dichotomous 13695 99% Drop 

Aircraft 1 Maintenance Status. 
Maintenance Type 

Dichotomous 13645 98% Drop 
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Aircraft 1 Maintenance Status. 
Maintenance Items Involved 

Nominal 13680 99% Drop 

Aircraft 1 Cabin Lighting Nominal 13867 100% Drop 
Aircraft 1 Number Of Seats.Number Interval 13869 100% Drop 
Aircraft 1 Passengers On Board.Number Interval 13862 100% Drop 
Aircraft 1 Crew Size Flight Attendant. 

Number Of Crew 
Interval 13862 100% Drop 

Component Aircraft Component Text 8438 61% Drop 
Component Manufacturer Text 13749 99% Drop 
Component Aircraft Reference Nominal 8465 61% Drop 
Component Problem Nominal 8725 63% Drop 
Aircraft 2 ATC / Advisory Nominal 12818 92% Drop 
Aircraft 2 Aircraft Operator Nominal 12951 93% Drop 
Aircraft 2 Make Model Name Text 12383 89% Drop 
Aircraft 2 Aircraft Zone Text 13869 100% Drop 
Aircraft 2 Crew Size Interval 12991 94% Drop 
Aircraft 2 Operating Under FAR Part Nominal 12964 93% Drop 
Aircraft 2 Flight Plan Nominal 13029 94% Drop 
Aircraft 2 Mission Nominal 13268 96% Drop 
Aircraft 2 Nav In Use Nominal 13689 99% Drop 
Aircraft 2 Flight Phase Nominal 12631 91% Drop 
Aircraft 2 Route In Use Nominal 13753 99% Drop 
Aircraft 2 Airspace Nominal 12829 93% Drop 
Aircraft 2 Maintenance Status. 

Maintenance Deferred 
Dichotomous 13869 100% Drop 

Aircraft 2 Maintenance Status. 
Records Complete 

Dichotomous 13869 100% Drop 

Aircraft 2 Maintenance Status. 
Released For Service 

Dichotomous 13869 100% Drop 

Aircraft 2 Maintenance Status.Required /  
Correct Doc On Board 

Dichotomous 13869 100% Drop 

Aircraft 2 Maintenance Status. 
Maintenance Type 

Dichotomous 13869 100% Drop 

Aircraft 2 Maintenance Status. 
Maintenance Items Involved 

Nominal 13869 100% Drop 

Aircraft 2 Cabin Lighting Nominal 13869 100% Drop 
Aircraft 2 Number Of Seats.Number Interval 13869 100% Drop 
Aircraft 2 Passengers On Board.Number Interval 13869 100% Drop 
Aircraft 2 Crew Size Flight Attendant. 

Number Of Crew 
Interval 13869 100% Drop 

Person 1 Location Of Person Nominal 130 1% Keep 
Person 1 Location In Aircraft Nominal 153 1% Keep 
Person 1 Reporter Organization Nominal 74 1% Keep 
Person 1 Function Nominal 0 0% Keep 
Person 1 Qualification Nominal 752 5% Keep 
Person 1 Experience Interval 7361 53% Drop 
Person 1 Cabin Activity Nominal 12802 92% Drop 



186 

 

Person 1 Human Factors Nominal 3351 24% Keep 
Person 1 Communication Breakdown Nominal 9775 70% Drop 
Person 1 ASRS Report Number. 

Accession Number 
ID 0 0% Drop 

Person 2 Location Of Person Nominal 8149 59% Drop 
Person 2 Location In Aircraft Nominal 8206 59% Drop 
Person 2 Reporter Organization Nominal 8163 59% Drop 
Person 2 Function Nominal 8108 58% Drop 
Person 2 Qualification Nominal 8625 62% Drop 
Person 2 Experience Interval 10928 79% Drop 
Person 2 Cabin Activity Nominal 12826 92% Drop 
Person 2 Human Factors Nominal 9673 70% Drop 
Person 2 Communication Breakdown Nominal 11882 86% Drop 
Person 2 ASRS Report Number. 

Accession Number 
ID 8789 63% Drop 

Events Anomaly Nominal 9 0% Keep 
Events Miss Distance Interval 12735 92% Drop 
Events Were Passengers Involved In 

Event 
Dichotomous 11840 85% Drop 

Events Detector Nominal 88 1% Keep 
Events When Detected Nominal 220 2% Keep 
Events Result Text 447 3% Keep 
Assessments Contributing Factors / Situations Nominal 34 0% Keep 
Assessments Primary Problem Nominal 34 0% Keep 
Report 1 Narrative Text 0 0% Keep 
Report 1 Callback Text 12609 91% Drop 
Report 2 Narrative Text 8092 58% Drop 
Report 2 Callback Text 12801 92% Drop 
Report 1 Synopsis Text 0 0% Keep 
Text Mining Sensory Perception Interval 0 0% Keep 
Text Mining Aircraft Action Interval 0 0% Keep 
Text Mining Maintenance Concern Interval 0 0% Keep 
Text Mining Engine Issue Interval 0 0% Keep 
Text Mining System Anomaly Interval 0 0% Keep 
Text Mining Cabin Affected Interval 0 0% Keep 
Text Mining Air Conditioning Interval 0 0% Keep 
Text Mining Passenger Disruption Interval 0 0% Keep 
Text Mining Flight Condition Interval 0 0% Keep 
Text Mining Power Change Interval 0 0% Keep 
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Appendix D 

Sample Terms Included in Text Parsing Stop List 

'd company dispatcher moderate turbulence step-down altitude 
'll cpdlc new assigned altitude stick shaker 
'm cpdlc clearance nose wheel tire synoptic display 
're cpdlc message notam system tail strike 
's deadheading oceanic tailwind 
've departing aircraft over-speed taxiway centerline 
01r departure papi guidance tcas alert 
1,000-1,500 dispatcher pilot deviation tcas ra guidance 
10,000ft doobi2 arrival pitch attitude terrain avoidance procedure 
14cfr ecam please therefore 
18/36 ecam message published segment toga 
250kts egpws warning pushback tower issue 
3sm faf ra descent traffic pattern altitude 
a-320 fl350 ra guidance trim malfunction 
acars dispatch fms radio congestion unfamiliar environment 
acars message fms anomaly re-calculate v1 cut 
active runway fms error red light vector 
active taxiway fod regular airport velocity 
actual flight foxtrot rejected takeoff checklist vertical 
actual heading fuel reported weather vfr aircraft 
adverse weather fuel advisory reverse thrust vfr day 
after start checklist glideslope runway heading visual 28r 
airport gps data runway incursion vor radial 
airspeed high attitude runway 17r wake turbulence 
ads-b holding pattern sat com communication weather 
altitude ie scimitar west flow 
amber ils 16r seriously whiskey compass 
approach jfk airspace severe turbulence wind 
arrival procedure just short shallow turn wind direction 
arrival profile kilogram sid departure windsock 
atc communication lateral offset skydiver white needle 
aural warning leading edge software issue xa00 local 
aural alert left aileron somehow xwing 
boston llws advisory special airport y'all 
bulk cargo door  localizer course specific arrival yeah 
busy situation locked position speed zeekk1 arrival 
caution message maximum airspeed speed bug zzz airport 
cdu message mda altitude stabilized approach zzzl weather 
checklist mel procedure standard callouts zzzzz waypoint 
clearance delivery minimums status message zzzzz1 intersection 
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Appendix E 

Logistic Regression Node Output from SASÈ EMÊ 

Fit Statistics 

Target=NewTargetVariable Target Label=NewTargetVariable 

    Fit 
Statistics     Statistics Label                              Train        Validation         Test 
  
 _AIC_        Akaike's Information Criterion      3881.48                .               . 
 _ASE_       Average Squared Error                         0.03                0.04              0.04 
 _AVERR_ Average Error Function                       0.14                0.16              0.17 
 _DFE_        Degrees of Freedom for Error               10318.00                  .              . 
 _DFM_       Model Degrees of Freedom                774.00                .              . 
 _DFT_        Total Degrees of Freedom                     11092.00                 .               . 
 _DIV_         Divisor for ASE                                    16638.00        16641.00        8328.00 
 _ERR_        Error Function                              2333.48          2718.12        1378.67 
 _FPE_         Final Prediction Error                                0.04                  .                    . 
 _MAX_       Maximum Absolute Error                       1.00               1.00              1.00 
 _MSE_        Mean Square Error                                    0.03                0.04              0.04 
 _NOBS_     Sum of Frequencies                      5546.00       5547.00       2776.00 
 _NW_         Number of Estimate Weights             774.00                   .                   . 
 _RASE_      Root Average Sum of Squares                  0.18                 0.19             0.19 
 _RFPE_       Root Final Prediction Error                       0.19                   .                   . 
 _RMSE_      Root Mean Squared Error                        0.18                 0.19             0.19 
 _SBC_         Schwarz's Bayesian Criterion             9542.50                   .                   . 
 _SSE_          Sum of Squared Errors                             520.61            598.80          300.15 
 _SUMW_     Sum of Case Weights Times Freq       16638.00        16641.00        8328.00 
 _MISC_       Misclassification Rate                                  0.05                0.06              0.06 
    

Classification Table 

 Data Role=TRAIN Target Variable=NewTargetVariable Target 

Label=NewTargetVariable 

 

                                      Target             Outcome       Frequency        Total 
Target    Outcome     Percentage     Percentage           Count       Percentage 
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  1              1          95.1471        99.9421             5176         93.3285 
  2              1                   2.8309          72.3005                 154             2.7768 
  3              1                   2.0221          71.4286                  110             1.9834 
  1              2                   5.0000            0.0579                      3             0.0541 
  2              2                 86.6667          24.4131                    52             0.9376 
  3              2                   8.3333            3.2468                      5             0.0902 
  2              3                 15.2174            3.2864                      7             0.1262 
  3              3                 84.7826          25.3247                    39             0.7032 
  

 Data Role=VALIDATE Target Variable=NewTargetVariable Target 

Label=NewTargetVariable 

  
                                        Target           Outcome        Frequency              Total 
Target    Outcome     Percentage     Percentage          Count       Percentage 
  
  1              1          94.8596        99.7490            5167         93.1495 
  2              1              2.9925        76.5258                163             2.9385 
  3              1                    2.1480        75.9740                117             2.1092 
  1              2            18.1818           0.1931                  10            0.1803 
  2              2           56.3636          14.5540                  31             0.5589 
  3              2           25.4545            9.0909                  14             0.2524 
  1              3              6.6667            0.0579                    3             0.0541 
  2              3            42.2222            8.9202                  19            0.3425 
  3              3            51.1111          14.9351                  23              0.4146 
  

  

 Event Classification Table 

 Data Role=TRAIN Target=NewTargetVariable Target Label=NewTargetVariable 

  False          True           False       True 
Negative    Negative    Positive    Positive 
  
__115            5385            7             39___ 
 

Data Role=VALIDATE Target=NewTargetVariable Target Label=NewTargetVariable 
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   False         True           False       True 
Negative    Negative    Positive    Positive 
  
   131            5371              22          23___ 
 

  

Assessment Score Rankings 

Data Role=TRAIN Target Variable=NewTargetVariable Target 

Label=NewTargetVariable 

                                                                                                                                    
Posterior   Cumulative           %      Cumulative        Number of   
Depth              Gain      Lift           Lift              Response    % Response     Observations     Mean   
Probability_______________________________________________________________________________________________ 
  
   5             573.871    6.73871   6.73871      18.7119            18.7119                278          0.17959 
  10            293.598    1.12313   3.93598        3.1187            10.9293                277          0.02208 
  15           199.949    1.12313   2.99949        3.1187              8.3289                277          0.02208 
  20             152.956    1.12313   2.52956        3.1187              7.0240                278          0.02208 
  25            124.868    1.12313   2.24868       3.1187               6.2441                277          0.02208 
  30            106.131    1.12313   2.06131       3.1187                5.7238                277          0.02208 
  35              92.701    1.12313   1.92701       3.1187               5.3509                278          0.02208 
  40              82.666    1.12313   1.82666       3.1187               5.0722                277          0.02208 
  45              74.858    1.12313   1.74858       3.1187              4.8554                277          0.02208 
  50                68.611    1.12313   1.68611       3.1187               4.6819                277          0.02208 
  55                63.481    1.12313   1.63481       3.1187               4.5395                278          0.02208 
  60                59.222    1.12313   1.59222       3.1187               4.4212                277          0.02208 
  65                53.842    0.89202   1.53842       2.4769               4.2718                277          0.01879 
  70                42.828    0.00000   1.42828       0.0000               3.9660                278          0.00017 
  75                33.317    0.00000   1.33317       0.0000               3.7019                277          0.00000 
  80                24.994    0.00000   1.24994       0.0000                3.4708                277          0.00000 
  85                17.625    0.00000   1.17625       0.0000              3.2662                278          0.00000 
  90                11.098    0.00000   1.11098       0.0000              3.0849                277          0.00000 
  95                  5.257    0.00000   1.05257       0.0000              2.9228                277          0.00000 
 100                 0.000    0.00000   1.00000       0.0000               2.7768                277          0.00000 
   

Data Role=VALIDATE Target Variable=NewTargetVariable Target 

Label=NewTargetVariable 
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Posterior                                   Cumulative          %             Cumulative         Number of  
Depth            Gain      Lift            Lift              Response    % Response       Observations       Mean  
Probability_______________________________________________________________________________________________ 
  
   5           392.732    4.92732      4.92732       13.6796            13.6796               278          0.17196 
  10           204.465    1.15517      3.04465         3.2071              8.4528               277          0.02208 
  15           141.407   1.15517      2.41407         3.2071              6.7021               278          0.02208 
  20           109.991   1.15517      2.09991         3.2071              5.8299               277          0.02208 
  25               91.123   1.15517      1.91123         3.2071              5.3061               277          0.02208 
  30               78.500   1.15517      1.78500         3.2071              4.9556               278          0.02208 
  35             69.516   1.15517      1.69516         3.2071              4.7062                277         0.02208 
  40               62.775   1.15517      1.62775         3.2071              4.5191                277         0.02208 
  45               57.514    1.15517      1.57514        3.2071              4.3730                278         0.02208 
  50              53.320    1.15517      1.53320        3.2071              4.2566                277         0.02208 
  55              49.888    1.15517      1.49888        3.2071              4.1613                277         0.02208 
  60               47.018    1.15517      1.47018        3.2071              4.0816                278         0.02208 
  65              44.598    1.15517      1.44598        3.2071              4.0144                277         0.02208 
  70             42.853    1.20141      1.42853        3.3354              3.9660                277         0.00925 
  75               33.309    0.00000      1.33309        0.0000              3.7010                278         0.00001 
  80               24.989    0.00000      1.24989        0.0000              3.4700                277         0.00000 
  85              17.646    0.00000      1.17646        0.0000              3.2662                277         0.00000 
  90              11.096    0.00000      1.11096        0.0000              3.0843                278         0.00000 
  95                 5.256    0.00000      1.05256        0.0000              2.9222                277         0.00000 
 100                0.000    0.00000      1.00000        0.0000              2.7763                277         0.00000 
   

  

Assessment Score Distribution 

 Data Role=TRAIN Target Variable=NewTargetVariable Target 

Label=NewTargetVariable 

 

 

  Posterior          Number                                 Mean 
Probability            of                Number of     Posterior 
   Range              Events          Nonevents      Probability    Percentage 
  
 0.95-1.00              20                    0            0.99032         0.3606 
 0.90-0.95                5                 0        0.92906         0.0902 
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 0.85-0.90                4                  0         0.87343         0.0721 
 0.80-0.85                4                  0        0.81199         0.0721 
 0.75-0.80                3                   0        0.77354         0.0541 
 0.70-0.75                0                 2         0.71312         0.0361 
 0.65-0.70                0                 1         0.66101         0.0180 
 0.60-0.65                2                 0         0.62038         0.0361 
 0.55-0.60                1                0         0.59519         0.0180 
 0.50-0.55                0                 4         0.53144         0.0721 
 0.45-0.50                1                  1         0.49321         0.0361 
 0.40-0.45                0                1         0.42037         0.0180 
 0.35-0.40                0                 1         0.38573         0.0180 
 0.30-0.35                1                0         0.33922         0.0180 
 0.20-0.25                2                  6         0.22669         0.1442 
 0.15-0.20                1                  5         0.18050         0.1082 
 0.10-0.15                0                 2         0.13661         0.0361 
 0.05-0.10                1                 5         0.06612         0.1082 
 0.00-0.05            109              5364         0.01412        98.6837___ 
  

  

Data Role=VALIDATE Target Variable=NewTargetVariable Target 

Label=NewTargetVariable 

 Posterior         Number                                    Mean 
Probability          of               Number of        Posterior 
   Range            Events          Nonevents        Probability    Percentage 
 
0.95-1.00             11                3         0.98750         0.2524 
0.90-0.95               3               3         0.92282         0.1082 
0.85-0.90               1                0          0.85589         0.0180 
0.80-0.85               0                   4         0.82233         0.0721 
0.75-0.80               0              2         0.78431         0.0361 
0.70-0.75               1                   4         0.72830         0.0901 
0.65-0.70               4                   1         0.68142         0.0901 
0.55-0.60               2                   1         0.56023         0.0541 
0.50-0.55               1                   3         0.52413         0.0721 
0.45-0.50               0                   2         0.48349         0.0361 
0.40-0.45               0                   1         0.44732         0.0180 
0.35-0.40               0                   1         0.37029         0.0180 
0.30-0.35               1                   2         0.32454         0.0541 
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0.25-0.30               1                   4         0.27149         0.0901 
0.20-0.25               0                   5         0.22659         0.0901 
0.15-0.20               1                   3         0.16802         0.0721 
0.10-0.15               2                   6         0.11609         0.1442 
0.05-0.10               2                   6         0.07405         0.1442 
0.00-0.05           124             5342         0.01473        98.5398____ 
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Appendix F 

  

Gradient Boost Node SASÈ Code from Training Data Log 

* Training Log 
Date:                July 16, 2021 
Time:                07:39:50 
*------------------------------------------------------------* 
15225  proc freq data=EMWS6.Boost_VariableSet noprint; 
15226  table ROLE*LEVEL/out=WORK.BoostMETA; 
15227  run; 
15228  proc print data=WORK.BoostMETA label noobs; 
15229  var ROLE LEVEL COUNT; 
15230  label ROLE = "%sysfunc(sasmsg(sashelp.dmine, meta_role_vlabel, NOQUOTE))" 

LEVEL = "%sysfunc(sasmsg(sashelp.dmine, meta_level_vlabel, NOQUOTE))" COUNT = 
"%sysfunc(sasmsg(sashelp.dmine, rpt_count_vlabel, NOQUOTE))"; 

15231  title9 ' '; 
15232  title10 "%sysfunc(sasmsg(sashelp.dmine, rpt_varSummary_title  , NOQUOTE))"; 
15233  run; 
15234  title10; 
15235  %let EMNORLEN = %DMNORLEN; 
EMWS6.Part_TRAIN EMWS6.Part_TRAIN 
EMWS6.Part_TRAIN EMWS6.Part_TRAIN EMWS6 Part_TRAIN 
EMWS6.Part_TRAIN EMWS6.Part_TRAIN 
EMWS6.Part_TRAIN EMWS6.Part_TRAIN EMWS6 Part_TRAIN 
Executing  SASHELP.EMCORE.EMINFOITERATOR.SCL _INIT >> 
Executing  SASHELP.EMCORE.EMINFOITERATOR.SCL setMetaData >> 
Executing  SASHELP.EMCORE.EMINFOITERATOR.SCL next >> 
Executing  SASHELP.EMCORE.EMINFOITERATOR.SCL next >> 
Executing  SASHELP.EMCORE.EMINFOITERATOR.SCL setMetaData >> 
Executing  SASHELP.EMCORE.EMINFOITERATOR.SCL next >> 
Executing  SASHELP.EMCORE.EMINFOITERATOR.SCL next >> 
Executing  SASHELP.EMCORE.EMINFOITERATOR.SCL _term >> 
15264  data WORK.Boost_EVENT(KEEP=VARIABLE LABEL LEVEL EVENT NUMLEVELS 

ORDER); 
15265  length ORDER $20; 
15266  label VARIABLE = "%sysfunc(sasmsg(sashelp.dmine, rpt_target_vlabel,  NOQUOTE))" 

EVENT = "%sysfunc(sasmsg(sashelp.dmine, assmt_event_vlabel, NOQUOTE))" NUMLEVELS = 
"%sysfunc(sasmsg(sashelp.dmine, rpt_numcat_vlabel, NOQUOTE))" LEVEL = 

15267     "%sysfunc(sasmsg(sashelp.dmine, meta_level_vlabel, NOQUOTE))" ORDER = 
"%sysfunc(sasmsg(sashelp.dmine, meta_order_vlabel, NOQUOTE))" LABEL = 
"%sysfunc(sasmsg(sashelp.dmine, meta_label_vlabel, NOQUOTE))"; 

15268  set EMWS6.IDS3_NEWTARGETVARIABL_DM( where=(_TYPE_="TARGET")); 
15269  NumLevels=3; 
15270  select(upcase(ORDER)); 
15271  when('DESC') ORDER = 'Descending'; 
15272  when('ASC') ORDER = 'Ascending'; 
15273  when('FMTDESC') ORDER = 'Formatted Descending'; 
15274  when('FMTASC') ORDER = 'Formatted Ascending'; 
15275  otherwise ORDER = 'Descending'; 
15276  end; 
15277  output; 
15278  run; 
15279  title9 ' '; 
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15280  proc print data=WORK.Boost_EVENT noobs label; 
15281  var VARIABLE EVENT LEVEL NUMLEVELS ORDER LABEL; 
15282  title9 ' '; 
15283  title10 "%sysfunc(sasmsg(sashelp.dmine, rpt_modelEvent_title  , NOQUOTE))"; 
15284  run; 
15285  title10; 
"No decisions defined for target "NewTargetVariable"." 
15286  proc print data = EMWS6.Ids3_NewTargetVariabl_DM noobs label; 
15287  var _type_ variable label; 
15288  where _type_ ^in('MATRIX', 'DECISION', 'TRAINPRIOR', 'DATAPRIOR', 

'DECPRIOR'); 
15289  label _TYPE_ = "%sysfunc(sasmsg(sashelp.dmine, rpt_type_vlabel,     NOQUOTE))" 

VARIABLE = "%sysfunc(sasmsg(sashelp.dmine, rpt_variable_vlabel, NOQUOTE))" LABEL = 
"%sysfunc(sasmsg(sashelp.dmine, meta_label_vlabel, NOQUOTE))"; 

15290  title9 ' '; 
15291  title10 "%sysfunc(sasmsg(sashelp.dmine, rpt_predDecVars_title  , NOQUOTE))"; 
15292  run; 
15293  title10; 
15294  %let EMEXCEPTIONSTRING=; 
PERFORMANCE  DETAILS 
15800  *------------------------------------------------------------*; 
15801  * Boost: Generation of macros and macro variables; 
15802  * To see the code generated, set the EM_DEBUG macro variable to SOURCE or _ALL_; 
15803  *------------------------------------------------------------*; 
15804  %let EMEXCEPTIONSTRING=; 
15805  *------------------------------------------------------------*; 
15806  * TRAIN: Boost; 
15807  *------------------------------------------------------------*; 
15808  %let EM_ACTION = TRAIN; 
15809  %let syscc = 0; 
15810  %macro main; 
15811 
15812    filename temp catalog 'sashelp.emmodl.boost_macros.source'; 
15813    %include temp; 
15814    filename temp; 
15815 
15816    %setProperties; 
15817 
15818    %if %upcase(&EM_ACTION) = CREATE %then %do; 
15819      filename temp catalog 'sashelp.emmodl.boost_create.source'; 
15820      %include temp; 
15821      filename temp; 
15822 
15823      %create; 
15824    %end; 
15825 
15826     %else 
15827     %if %upcase(&EM_ACTION) = TRAIN %then %do; 
15828 
15829         filename temp catalog 'sashelp.emmodl.boost_train.source'; 
15830         %include temp; 
15831         filename temp; 
15832         %train; 
15833     %end; 
15834 
15835    %else 
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15836    %if %upcase(&EM_ACTION) = SCORE %then %do; 
15837      filename temp catalog 'sashelp.emmodl.boost_score.source'; 
15838      %include temp; 
15839      filename temp; 
15840 
15841      %score; 
15842 
15843    %end; 
15844 
15845    %else 
15846    %if %upcase(&EM_ACTION) = REPORT %then %do; 
15847 
15848         filename temp catalog 'sashelp.emmodl.boost_report.source'; 
15849         %include temp; 
15850         filename temp; 
15851 
15852         %report; 
15853     %end; 
15854 
15855     %doendm: 
15856  %mend main; 
15857 
15858  %main; 
NOTE: %INCLUDE (level 1) file TEMP is file 

SASHELP.EMMODL.BOOST_MACROS.SOURCE. 
15860 +%macro SetProperties; 
15862 +     /* boost options */ 
15863 +     %em_checkmacro(name=EM_PROPERTY_ITERATIONS,   value=50, global=Y); 
15864 +     %em_checkmacro(name=EM_PROPERTY_TRAINPROPORTION,   value=60, 

global=Y); 
15865 +     %em_checkmacro(name=EM_PROPERTY_CATEGORICALBINS, value=30, 

global=Y); 
15866 +     %em_checkmacro(name=EM_PROPERTY_INTERVALBINS, value=100, global=Y); 
15867 +     %em_checkmacro(name=EM_PROPERTY_HUBER, value=NO, global=Y); 
15868 +     %em_checkmacro(name=EM_PROPERTY_SEED,   value=12345, global=Y); 
15869 +     %em_checkmacro(name=EM_PROPERTY_SHRINKAGE,   value=0.1, global=Y); 
15870 +     %em_checkmacro(name=EM_PROPERTY_LEAFFRACTION,   value=0.001, 

global=Y); 
15871 +     %em_checkmacro(name=EM_PROPERTY_SPLITSIZE,   value=., global=Y); 
15872 +     %em_checkmacro(name=EM_PROPERTY_NODESIZE,   value=20000, global=Y); 
15873 +     %em_checkmacro(name=EM_PROPERTY_SUBSERIES,   value=BEST, global=Y); 
15874 +     %em_checkmacro(name=EM_PROPERTY_ITERATIONNUM,   value=1, global=Y); 
15876 +     %em_checkmacro(name=EM_PROPERTY_PRECISION,    value=0, global=Y); 
15877 +     %em_checkmacro(name=EM_PROPERTY_MISSING,      value=USEINSEARCH, 

global=Y); 
15878 +     %em_checkmacro(name=EM_PROPERTY_MINCATSIZE, value=5, global=Y); 
15879 +     %em_checkmacro(name=EM_PROPERTY_MAXBRANCH,  value=2, global=Y); 
15880 +     %em_checkmacro(name=EM_PROPERTY_MAXDEPTH,   value=2, global=Y); 
15881 +     %em_checkmacro(name=EM_PROPERTY_REUSEVAR,   value=1, global=Y); 
15882 +     %em_checkmacro(name=EM_PROPERTY_EXHAUSTIVE,   value=5000, global=Y); 
15883 +     %em_checkmacro(name=EM_PROPERTY_PERFORMANCE,   value=DISK, 

global=Y); 
15885 +     %em_checkmacro(name=EM_PROPERTY_ASSESSMEASURE, value=PROFIT, 

global=Y); 
15886 +     %em_checkmacro(name=EM_PROPERTY_MEASURE, value=PROFIT, global=Y); 
15887 +     %em_checkmacro(name=EM_PROPERTY_NSURRS, value=0, global=Y); 
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15888 +     %em_checkmacro(name=EM_PROPERTY_VARSELECTION, value=Y, global=Y); 
15890 +     %em_checkmacro(name=EM_PROPERTY_OBSIMPORTANCE, value=N, 

global=Y); 
15891 +     %em_checkmacro(name=EM_PROPERTY_NUMSINGLEIMP, value=5, global=Y); 
15892 +     %em_checkmacro(name=EM_PROPERTY_NUMPAIRIMP, value=0, global=Y); 
15894 +%mend SetProperties; 
NOTE: %INCLUDE (level 1) ending. 
NOTE: Fileref TEMP has been deassigned. 
NOTE: %INCLUDE (level 1) file TEMP is file 

SASHELP.EMMODL.BOOST_TRAIN.SOURCE. 
15898 +%macro train; 
15900 +   filename temp catalog 'sashelp.emmodl.boost_trainmacros.source'; 
15901 +   %include temp; 
15902 +   filename temp; 
15904 +   %if &EM_IMPORT_DATA eq %then %do; 
15905 +       %let EMEXCEPTIONSTRING = exception.server.IMPORT.NOTRAIN,1; 
15906 +       %put &em_codebar; 
15907 +       %let errormsg = %sysfunc(sasmsg(sashelp.dmine, error_nodeTrainRawData_note, 

NOQUOTE)); 
15908 +       %put &errormsg; 
15909 +       %put &em_codebar; 
15910 +       %goto doendm; 
15911 +   %end; 
15912 +   %else 
15913 +       %let EMEXCEPTIONSTRING =; 
15915 +   %if  &EM_NUM_TARGET ne 1 %then %do; 
15916 +        %let EMEXCEPTIONSTRING = exception.server.USE1TARGET; 
15917 +        %put &em_codebar; 
15918 +        %let errormsg = %sysfunc(sasmsg(sashelp.dmine, metadata.use01target_err, 

NOQUOTE)); 
15919 +        %put &errormsg; 
15920 +        %put &em_codebar; 
15921 +        %goto doendm; 
15922 +   %end; 
15924 +   %let target_level = %EM_TARGET_LEVEL; 
15925 +   %let target_var = %EM_TARGET; 
15927 +   %if ("&target_Level" ne "INTERVAL") %then %do; 
15928 +       %em_boost_makeDMDB(indata=&EM_IMPORT_DATA, target=&target_Var, 
15929 +                             nLevel=_nTargetLevel); 
15930 +   %end; 
15932 +   /* check actual num of target levels */ 
15933 +   %if (&target_Level eq BINARY) %then %do; 
15934 +      %if &_nTargetLevel  > 2 %then %do; 
15935 +        %let EMEXCEPTIONSTRING = 

exception.server.METADATA.WRONGTARGETLEVEL,&target_Var; 
15936 +        %put &em_codebar; 
15937 +        %let errormsg = %sysfunc(sasmsg(sashelp.dmine, metadata.wrongtargetlevel, 

NOQUOTE)); 
15938 +        %put &errormsg; 
15939 +        %put &em_codebar; 
15940 +        %goto doendm; 
15941 +      %end; 
15942 +   %end; 
15944 +   %if  (&EM_NUM_INTERVAL_INPUT < 1) and (&EM_NUM_BINARY_INPUT < 1) 

and (&EM_NUM_ORDINAL_INPUT < 1) 
15945 +        and (&EM_NUM_NOMINAL_INPUT < 1) %then %do; 
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15946 +        %let EMEXCEPTIONSTRING = exception.server.USEATLEAST1INPUTREJECT; 
15947 +        %put &em_codebar; 
15948 +        %let errormsg = %sysfunc(sasmsg(sashelp.dmine, error_noInput_note, 

NOQUOTE)); 
15949 +        %put &errormsg; 
15950 +        %put &em_codebar; 
15951 +        %goto doendm; 
15952 +   %end; 
15954 +   /* Initialize property macro variables */ 
15955 +   %SetProperties; 
15957 +   /* data sets */ 
15958 +   %EM_GETNAME(key=MODEL, type=DATA); 
15959 +   %EM_GETNAME(key=IMPORTANCE, type=DATA); 
15960 +   %EM_GETNAME(key=SUBFIT, type=DATA); 
15961 +   %EM_GETNAME(key=EMOUTFIT, type=DATA); 
15963 +   /* files 
15964 +   %EM_GETNAME(key=BINNINGCODE, type=FILE, extension=sas);*/ 
15966 +   /* retrieve target information */ 
15967 +   %let dsid=%sysfunc(open(&EM_DEC_DECMETA(where=(_TYPE_='TARGET')))); 
15969 +   %let vn_event =%sysfunc(varnum(&dsid, EVENT)); 
15970 +   %let vn_target_type = %sysfunc(varnum(&dsid, TYPE)); 
15971 +   %let vn_target_format = %sysfunc(varnum(&dsid, FORMAT)); 
15972 +   %let vn_target_level  = %sysfunc(varnum(&dsid, LEVEL)); 
15973 +   %do %while(^ %sysfunc(fetch(&dsid))); 
15974 +      %let temp = %nrbquote(%sysfunc(getvarc(&dsid, &vn_event))); 
15975 +      %let Target_Event = %nrbquote(%sysfunc(tranwrd(&temp, %str(%"),""))); 
15976 +      %let Target_Type =  %sysfunc(getvarc(&dsid, &vn_target_type)); 
15977 +      %let Target_Format = %sysfunc(getvarc(&dsid, &vn_target_format)); 
15978 +      %let Target_Level = %sysfunc(getvarc(&dsid, &vn_target_level)); 
15979 +   %end; 
15980 +   %let dsid = %sysfunc(close(&dsid)); 
15982 +   /* if target level is ORDINAL, throw run time exception -- proc boost does not support 

ordinal target */ 
15983 +   %if &Target_Level eq ORDINAL %then %do; 
15984 +        %let EMEXCEPTIONSTRING = 

exception.server.METADATA.INVALIDORDINALTARGET; 
15985 +        %put &em_codebar; 
15986 +        %let errormsg = %sysfunc(sasmsg(sashelp.dmine, error_invalidordinaltarget_note, 

NOQUOTE)); 
15987 +        %put &errormsg; 
15988 +        %put &em_codebar; 
15989 +        %goto doendm; 
15990 +   %end; 
15992 +   /* if subSeries=ITERATIONS and iterationNum not specified, exception should be 

thrown */ 
15993 +   %if ((&EM_PROPERTY_SUBSERIES eq ITERATIONS) and 

(&EM_PROPERTY_ITERATIONNUM eq . )) %then %do; 
15994 +        %let EMEXCEPTIONSTRING = 

exception.server.EMTOOL.BOOST.NOITERATIONNUM; 
15995 +        %put &em_codebar; 
15996 +        %let errormsg = %sysfunc(sasmsg(sashelp.dmine, error_noiterationnum_note, 

NOQUOTE)); 
15997 +        %put &errormsg; 
15998 +        %put &em_codebar; 
15999 +        %goto doendm; 
16000 +   %end; 
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16002 +   %runBoostProcedure; 
16005 +   %doendm: 
16006 +%mend train; 
NOTE: %INCLUDE (level 1) ending. 
NOTE: Fileref TEMP has been deassigned. 
NOTE: %INCLUDE (level 1) file TEMP is file 

SASHELP.EMMODL.BOOST_TRAINMACROS.SOURCE. 
16007 +%Macro em_boost_makeDMDB(indata=, target=,  nLevel= ); 
16008 +  %global &nLevel; 
16010 +  %let targetLevel=; 
16011 +  data _null_; 
16012 +     length orderString $64; 
16013 +     set &em_data_variableset end=eof; 
16014 +     where NAME="&target"; 
16015 +     select(order); 
16016 +            when('')        order ='DESC'; 
16017 +            when('FMTASC')  order='ASCFMT'; 
16018 +            when('FMTDESC') order='DESFMT'; 
16019 +            otherwise; 
16020 +     end; 
16021 +     if eof then do; 
16022 +        call symput("targetOrder", trim(order)); 
16023 +        call symput("targetLevel", trim(Level)); 
16024 +     end; 
16025 +  run; 
16027 +  %if "&targetLevel" ne "INTERVAL" %then %do; 
16028 +  proc dmdb batch data=&indata dmdbCat=_BoostDMDB 
16029 +    classout=_tmp_dmdbout; 
16030 +    class &target(&targetOrder); 
16031 +    target &target; 
16032 +  run; 
16033 +  data _tmp_dmdbout; 
16034 +    set _tmp_dmdbout; 
16035 +    if strip(TYPE) = 'N' and  strip(LEVEL) = '.' then delete; 
16036 +    if strip(TYPE) = 'C' and  strip(LEVEL) = '' then delete; 
16037 +  run; 
16038 +  data _null_; 
16039 +    %let dsid = %sysfunc(open(work._tmp_dmdbout)); 
16040 +    %let _obs = %sysfunc(attrn(&dsid, NOBS)); 
16041 +    %let dsid = %sysfunc(close(&dsid)); 
16042 +     call symput("&nLevel", put(&_obs, Best12.)); 
16043 +  run; 
16045 +  proc datasets lib=work nolist; 
16046 +     delete _tmp_dmdbout; 
16047 +  run; 
16048 +  quit; 
16049 +  %end; 
16051 +%Mend em_boost_makeDMDB; 
16053 +%macro runBoostProcedure; 
16055 +  proc sql; 
16056 +    reset noprint; 
16057 +    select count(*) into :nobs from &EM_IMPORT_DATA; 
16058 +  quit; 
16060 +  %let arborkluge= "work._BoostDMDB"; 
16061 +  proc arbor proc=treeboost data=&EM_IMPORT_DATA 
16063 +    %if &EM_PROPERTY_ITERATIONS ne %then %do; 
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16064 +      iterations = &EM_PROPERTY_ITERATIONS 
16065 +    %end; 
16067 +    %if &EM_PROPERTY_TRAINPROPORTION ne %then %do; 
16068 +       %let tprop = %sysevalf(&EM_PROPERTY_TRAINPROPORTION / 100); 
16069 +       trainproportion = &tprop 
16070 +    %end; 
16072 +    %if &EM_PROPERTY_SEED ne %then %do; 
16073 +       seed = &EM_PROPERTY_SEED 
16074 +    %end; 
16076 +    %if &EM_PROPERTY_SHRINKAGE ne %then %do; 
16077 +       shrinkage = &EM_PROPERTY_SHRINKAGE 
16078 +    %end; 
16080 +    %if &EM_PROPERTY_LEAFFRACTION ne %then %do; 
16081 +      leaffraction = &EM_PROPERTY_LEAFFRACTION 
16082 +    %end; 
16084 +    %let splitsize = &EM_PROPERTY_SPLITSIZE; 
16085 +    %if &splitsize ge &nobs %then %do; 
16086 +       %let splitsize= .; 
16087 +    %end; 
16088 +    %if &splitsize ne . %then %do; 
16089 +      splitsize = &splitsize 
16090 +    %end; 
16092 +    %if &EM_PROPERTY_MINCATSIZE ne %then %do; 
16093 +      mincatsize = &EM_PROPERTY_MINCATSIZE 
16094 +    %end; 
16096 +    %if &EM_PROPERTY_MAXBRANCH ne %then %do; 
16097 +       maxbranch = &EM_PROPERTY_MAXBRANCH 
16098 +    %end; 
16100 +    %if &EM_PROPERTY_MAXDEPTH ne %then %do; 
16101 +       maxdepth = &EM_PROPERTY_MAXDEPTH 
16102 +    %end; 
16104 +    %let nsurrs = ; 
16105 +    %if &EM_PROPERTY_NSURRS ne %then %do; 
16106 +      %let numInputs = %sysevalf(&EM_NUM_BINARY_INPUT + 

&EM_NUM_ORDINAL_INPUT + &EM_NUM_INTERVAL_INPUT + 
&EM_NUM_NOMINAL_INPUT); 

16107 +      %let nsurrs = %sysevalf(%sysfunc(min(&EM_PROPERTY_NSURRS, (&numInputs 
-1 )))); 

16108 +      maxsurrs = &nsurrs 
16109 +    %end; 
16111 +    %if &EM_PROPERTY_MISSING ne %then %do; 
16112 +      Missing = &EM_PROPERTY_MISSING 
16113 +    %end; 
16115 +    %if &EM_PROPERTY_REUSEVAR ne %then %do; 
16116 +      reusevar = &EM_PROPERTY_REUSEVAR 
16117 +    %end; 
16118 +/* 
16119 +    %if &EM_PROPERTY_PRECISION ne %then %do; 
16120 +      intervaldecimals=&EM_PROPERTY_PRECISION 
16121 +    %end; 
16122 +*/ 
16123 +    %if &EM_PROPERTY_EXHAUSTIVE ne %then %do; 
16124 +      Exhaustive = &EM_PROPERTY_EXHAUSTIVE 
16125 +    %end; 
16127 +    %if &Target_Event ne %then %do; 
16128 +      Event="&Target_Event" 
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16129 +    %end; 
16131 +    %if &EM_PROPERTY_CATEGORICALBINS ne %then %do; 
16132 +      CategoricalBins = &EM_PROPERTY_CATEGORICALBINS 
16133 +    %end; 
16135 +    %if &EM_PROPERTY_INTERVALBINS ne %then %do; 
16136 +      IntervalBins = &EM_PROPERTY_INTERVALBINS 
16137 +    %end; 
16139 +    %if &TARGET_LEVEL eq INTERVAL %then %do; 
16140 +      %if &EM_PROPERTY_HUBER ne %then %do; 
16141 +        Huber=&EM_PROPERTY_HUBER 
16142 +      %end; 
16143 +    %end; 
16144 +    ; 
16146 +    %if %EM_INTERVAL_INPUT %EM_INTERVAL_REJECTED ne %then %do; 
16147 +      input %EM_INTERVAL_INPUT %EM_INTERVAL_REJECTED/ level = interval; 
16148 +    %end; 
16150 +    %if %EM_BINARY_INPUT %EM_NOMINAL_INPUT 

%EM_BINARY_REJECTED %EM_NOMINAL_REJECTED ne  %then %do; 
16151 +      input %EM_BINARY_INPUT %EM_BINARY_REJECTED 

%EM_NOMINAL_INPUT %EM_NOMINAL_REJECTED / level = nominal; 
16152 +    %end; 
16154 +    %if %EM_ORDINAL_INPUT %EM_ORDINAL_REJECTED ne %then %do; 
16155 +      input %EM_ORDINAL_INPUT %EM_ORDINAL_REJECTED/ level = ordinal; 
16156 +    %end; 
16158 +    %if %EM_FREQ ne %then %do; 
16159 +       freq %EM_FREQ; 
16160 +    %end; 
16162 +    target %EM_TARGET / level = &TARGET_LEVEL; 
16164 +    &EM_DEC_STATEMENT; 
16166 +    %if &EM_PROPERTY_PERFORMANCE ne %then %do; 
16167 +      performance  workdatalocation = &EM_PROPERTY_PERFORMANCE 
16168 +    %end; 
16169 +    %if &EM_PROPERTY_NODESIZE ne %then %do; 
16170 +       nodesize = &EM_PROPERTY_NODESIZE 
16171 +    %end; 
16172 +    ; 
16173 +    save model=&EM_USER_MODEL; 
16174 +  run; 
16175 +  quit; 
16176 +  %em_checkerror(); 
16178 +%mend runBoostProcedure; 
NOTE: %INCLUDE (level 1) ending. 
NOTE: Fileref TEMP has been deassigned. 
NOTE: Variable orderString is uninitialized. 
NOTE: There were 1 observations read from the data set EMWS6.BOOST_VARIABLESET. 
      WHERE NAME='NewTargetVariable'; 
NOTE: DATA statement used (Total process time): 
      memory              30365.96k 
      OS Memory           40808.00k 
      Timestamp           07/16/2021 07:39:52 AM 
      Step Count                        1  Switch Count  0 
      Page Faults                       0 
      Page Reclaims                     61 
      Page Swaps                        0 
      Voluntary Context Switches        1 
      Involuntary Context Switches      0 
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      Block Input Operations            0 
      Block Output Operations           0 
  
NOTE: Records processed = 5546   Memory used = 511K. 
NOTE: There were 5546 observations read from the data set EMWS6.PART_TRAIN. 
NOTE: The data set WORK._TMP_DMDBOUT has 3 observations and 9 variables. 
NOTE: PROCEDURE DMDB used (Total process time): 
      real time           0.05 seconds 
      user cpu time       0.01 seconds 
      system cpu time     0.05 seconds 
      memory              30365.96k 
      OS Memory           42076.00k 
      Timestamp           07/16/2021 07:39:52 AM 
      Step Count                        1  Switch Count  0 
      Page Faults                       0 
      Page Reclaims                     436 
      Page Swaps                        0 
      Voluntary Context Switches        4 
      Involuntary Context Switches      0 
      Block Input Operations            0 
      Block Output Operations           320 
  
NOTE: There were 3 observations read from the data set WORK._TMP_DMDBOUT. 
NOTE: The data set WORK._TMP_DMDBOUT has 3 observations and 9 variables. 
NOTE: DATA statement used (Total process time): 
      real time           0.00 seconds 
      user cpu time       0.00 seconds 
      system cpu time     0.01 seconds 
      memory              30365.96k 
      OS Memory           42076.00k 
      Timestamp           07/16/2021 07:39:52 AM 
      Step Count                        1  Switch Count  0 
      Page Faults                       0 
      Page Reclaims                     127 
      Page Swaps                        0 
      Voluntary Context Switches        0 
      Involuntary Context Switches      0 
      Block Input Operations            0 
      Block Output Operations           264 
  
NOTE: DATA statement used (Total process time): 
      real time           0.00 seconds 
      user cpu time       0.00 seconds 
      system cpu time     0.00 seconds 
      memory              30365.96k 
      OS Memory           42076.00k 
      Timestamp           07/16/2021 07:39:52 AM 
      Step Count                        1  Switch Count  0 
      Page Faults                       0 
      Page Reclaims                     58 
      Page Swaps                        0 
      Voluntary Context Switches        0 
      Involuntary Context Switches      0 
      Block Input Operations            0 
      Block Output Operations           0 
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NOTE: Deleting WORK._TMP_DMDBOUT (memtype=DATA). 
  
NOTE: PROCEDURE DATASETS used (Total process time): 
      real time           0.00 seconds 
      user cpu time       0.00 seconds 
      system cpu time     0.00 seconds 
      memory              30365.96k 
      OS Memory           42076.00k 
      Timestamp           07/16/2021 07:39:52 AM 
      Step Count                        1  Switch Count  0 
      Page Faults                       0 
      Page Reclaims                     59 
      Page Swaps                        0 
      Voluntary Context Switches        0 
      Involuntary Context Switches      0 
      Block Input Operations            0 
      Block Output Operations           8 
  
NOTE: PROCEDURE SQL used (Total process time): 
      real time           0.00 seconds 
      user cpu time       0.00 seconds 
      system cpu time     0.00 seconds 
      memory              33693.43k 
      OS Memory           45932.00k 
      Timestamp           07/16/2021 07:39:52 AM 
      Step Count                        1  Switch Count  0 
      Page Faults                       0 
      Page Reclaims                     483 
      Page Swaps                        0 
      Voluntary Context Switches        4 
      Involuntary Context Switches      0 
      Block Input Operations            0 
      Block Output Operations           0 
  
  
NOTE: 3322834 kilobytes of physical memory. 
NOTE: Will use 5546 out of 5546 training cases. 
NOTE: Using memory pool with 254035968 bytes. 
NOTE: Passed training data 90 times. 
NOTE: Current TREEBOOST model contains 10 terms with a total of 30 trees. 
NOTE: Training used 6202560 bytes of work memory. 
NOTE: The data set EMWS6.BOOST_MODEL has 46669 observations and 4 variables. 
  
NOTE: There were 5546 observations read from the data set EMWS6.PART_TRAIN. 
NOTE: PROCEDURE ARBOR used (Total process time): 
      real time           8.34 seconds 
      user cpu time       4.62 seconds 
      system cpu time     3.70 seconds 
      memory              284024.00k 
      OS Memory           296072.00k 
      Timestamp           07/16/2021 07:40:00 AM 
      Step Count                        1  Switch Count  0 
      Page Faults                       0 
      Page Reclaims                     3332 
      Page Swaps                        0 
      Voluntary Context Switches        58 
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      Involuntary Context Switches      14 
      Block Input Operations            32 
      Block Output Operations           3848 
   
16181  %let SYSCC = 0; 
NOTE: PROCEDURE DISPLAY used (Total process time): 
      real time           0.00 seconds 
      user cpu time       0.00 seconds 
      system cpu time     0.00 seconds 
      memory              284024.00k 
      OS Memory           296072.00k 
      Timestamp           07/16/2021 07:40:00 AM 
      Step Count                        1  Switch Count  1 
      Page Faults                       0 
      Page Reclaims                     47 
      Page Swaps                        0 
      Voluntary Context Switches        1 
      Involuntary Context Switches      0 
      Block Input Operations            0 
      Block Output Operations           0 
  
  
16182  *------------------------------------------------------------*; 
16183  * End TRAIN: Boost; 
16184  *------------------------------------------------------------*; 
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Appendix G 

 
Random Forest Node SASÈ Code 

%macro em_hpfst_score; 

   %if %symexist(hpfst_score_input)=0 %then %let hpfst_score_input=&em_score_output; 

  %if %symexist(hpfst_score_output)=0 %then %let hpfst_score_output=&em_score_output; 

  %if %symexist(hpfst_id_vars)=0 %then %let hpfst_id_vars = _ALL_; 

  

  %let hpvvn= %sysfunc(getoption(VALIDVARNAME)); 

  options validvarname=V7; 

  proc hp4score data=&hpfst_score_input; 

  id &hpfst_id_vars; 

  %if %symexist(EM_USER_OUTMDLFILE)=0 %then %do; 

      %let hpfinEM=1; 

    score file="/home/oconnom60/ASRS Text 

Mining/Workspaces/EMWS6/HPDMForest/OUTMDLFILE.bin" out=&hpfst_score_output; 

  %end; 

  %else %do; 

      %let hpfinEM=0; 

      score file="&EM_USER_OUTMDLFILE" out=&hpfst_score_output; 

  %end; 

    PERFORMANCE  DETAILS; 

  run; 

  

  options validvarname=&hpvvn; 
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  data &hpfst_score_output; 

     set &hpfst_score_output; 

     %if &hpfinEM %then %do; 

         %symdel hpfst_score_input hpfst_score_output  EM_USER_OUTMDLFILE  / nowarn;  

     %end; 

%mend; 

  

%em_hpfst_score; 

*------------------------------------------------------------*; 

*Computing Classification Vars: NewTargetVariable; 

*------------------------------------------------------------*; 

length _format200 $200; 

drop _format200; 

_format200= ' ' ; 

length _p_ 8; 

_p_= 0 ; 

drop _p_ ; 

if P_NewTargetVariable3 - _p_ > 1E-8 then do ; 

   _p_= P_NewTargetVariable3 ; 

   _format200='3'; 

end; 

if P_NewTargetVariable2 - _p_ > 1E-8 then do ; 

   _p_= P_NewTargetVariable2 ; 

   _format200='2'; 

end; 

if P_NewTargetVariable1 - _p_ > 1E-8 then do ; 
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   _p_= P_NewTargetVariable1 ; 

   _format200='1'; 

end; 

I_NewTargetVariable=dmnorm(_format200,32); ; 

length U_NewTargetVariable 8; 

label U_NewTargetVariable = 'Unnormalized Into: NewTargetVariable'; 

format U_NewTargetVariable BEST.; 

if I_NewTargetVariable='3' then 

U_NewTargetVariable=3; 

if I_NewTargetVariable='2' then 

U_NewTargetVariable=2; 

if I_NewTargetVariable='1' then 

U_NewTargetVariable=1; 
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Appendix H 

 
7-Branch Decision Tree Node SASÈ Code 

****************************************************************; 

******             DECISION TREE SCORING CODE             ******; 

****************************************************************; 

 ******         LENGTHS OF NEW CHARACTER VARIABLES         ******; 

LENGTH I_NewTargetVariable  $   12; 

LENGTH _WARN_  $    4; 

  

******              LABELS FOR NEW VARIABLES              ******; 

label _NODE_ = 'Node' ; 

label _LEAF_ = 'Leaf' ; 

label P_NewTargetVariable1 = 'Predicted: NewTargetVariable=1' ; 

label P_NewTargetVariable2 = 'Predicted: NewTargetVariable=2' ; 

label P_NewTargetVariable3 = 'Predicted: NewTargetVariable=3' ; 

label Q_NewTargetVariable1 = 'Unadjusted P: NewTargetVariable=1' ; 

label Q_NewTargetVariable2 = 'Unadjusted P: NewTargetVariable=2' ; 

label Q_NewTargetVariable3 = 'Unadjusted P: NewTargetVariable=3' ; 

label V_NewTargetVariable1 = 'Validated: NewTargetVariable=1' ; 

label V_NewTargetVariable2 = 'Validated: NewTargetVariable=2' ; 

label V_NewTargetVariable3 = 'Validated: NewTargetVariable=3' ; 

label I_NewTargetVariable = 'Into: NewTargetVariable' ; 

label U_NewTargetVariable = 'Unnormalized Into: NewTargetVariable' ; 

label _WARN_ = 'Warnings' ; 

  

  

******      TEMPORARY VARIABLES FOR FORMATTED VALUES      ******; 
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LENGTH _ARBFMT_12 $     12; DROP _ARBFMT_12; 

_ARBFMT_12 = ' '; /* Initialize to avoid warning. */ 

LENGTH _ARBFMT_15 $     15; DROP _ARBFMT_15; 

_ARBFMT_15 = ' '; /* Initialize to avoid warning. */ 

  

  

******             ASSIGN OBSERVATION TO NODE             ******; 

IF  NOT MISSING(SensoryPerception ) AND 

                0.0225 <= SensoryPerception  AND 

  SensoryPerception  <               0.0645 THEN DO; 

  _NODE_  =                    3; 

  _LEAF_  =                    2; 

  P_NewTargetVariable1  =     0.99417588817705; 

  P_NewTargetVariable2  =     0.00465928945835; 

  P_NewTargetVariable3  =     0.00116482236458; 

  Q_NewTargetVariable1  =     0.99417588817705; 

  Q_NewTargetVariable2  =     0.00465928945835; 

  Q_NewTargetVariable3  =     0.00116482236458; 

  V_NewTargetVariable1  =     0.99022426682001; 

  V_NewTargetVariable2  =     0.00862564692351; 

  V_NewTargetVariable3  =     0.00115008625646; 

  I_NewTargetVariable  = '1' ; 

  U_NewTargetVariable  =                    1; 

  END; 

ELSE IF  NOT MISSING(SensoryPerception ) AND 

                0.0645 <= SensoryPerception  AND 

  SensoryPerception  <               0.1005 THEN DO; 

  IF  NOT MISSING(SystemAnomaly ) AND 
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    SystemAnomaly  <               -0.013 THEN DO; 

    _NODE_  =                   14; 

    _LEAF_  =                    3; 

    P_NewTargetVariable1  =                  0.4; 

    P_NewTargetVariable2  =                    0; 

    P_NewTargetVariable3  =                  0.6; 

    Q_NewTargetVariable1  =                  0.4; 

    Q_NewTargetVariable2  =                    0; 

    Q_NewTargetVariable3  =                  0.6; 

    V_NewTargetVariable1  =                    0; 

    V_NewTargetVariable2  =                    0; 

    V_NewTargetVariable3  =                    1; 

    I_NewTargetVariable  = '3' ; 

    U_NewTargetVariable  =                    3; 

    END; 

  ELSE IF  NOT MISSING(SystemAnomaly ) AND 

                  -0.013 <= SystemAnomaly  AND 

    SystemAnomaly  <               0.0195 THEN DO; 

    _NODE_  =                   15; 

    _LEAF_  =                    4; 

    P_NewTargetVariable1  =                 0.76; 

    P_NewTargetVariable2  =                 0.24; 

    P_NewTargetVariable3  =                    0; 

    Q_NewTargetVariable1  =                 0.76; 

    Q_NewTargetVariable2  =                 0.24; 

    Q_NewTargetVariable3  =                    0; 

    V_NewTargetVariable1  =     0.85185185185185; 

    V_NewTargetVariable2  =     0.14814814814814; 



211 

 

    V_NewTargetVariable3  =                    0; 

    I_NewTargetVariable  = '1' ; 

    U_NewTargetVariable  =                    1; 

    END; 

  ELSE DO; 

    _NODE_  =                   16; 

    _LEAF_  =                    5; 

    P_NewTargetVariable1  =     0.95939086294416; 

    P_NewTargetVariable2  =     0.03553299492385; 

    P_NewTargetVariable3  =     0.00507614213197; 

    Q_NewTargetVariable1  =     0.95939086294416; 

    Q_NewTargetVariable2  =     0.03553299492385; 

    Q_NewTargetVariable3  =     0.00507614213197; 

    V_NewTargetVariable1  =     0.93982808022922; 

    V_NewTargetVariable2  =     0.06017191977077; 

    V_NewTargetVariable3  =                    0; 

    I_NewTargetVariable  = '1' ; 

    U_NewTargetVariable  =                    1; 

    END; 

  END; 

ELSE IF  NOT MISSING(SensoryPerception ) AND 

                0.1005 <= SensoryPerception  AND 

  SensoryPerception  <               0.1385 THEN DO; 

  _NODE_  =                    5; 

  _LEAF_  =                    6; 

  P_NewTargetVariable1  =      0.6887417218543; 

  P_NewTargetVariable2  =     0.26490066225165; 

  P_NewTargetVariable3  =     0.04635761589403; 
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  Q_NewTargetVariable1  =      0.6887417218543; 

  Q_NewTargetVariable2  =     0.26490066225165; 

  Q_NewTargetVariable3  =     0.04635761589403; 

  V_NewTargetVariable1  =              0.71875; 

  V_NewTargetVariable2  =             0.265625; 

  V_NewTargetVariable3  =             0.015625; 

  I_NewTargetVariable  = '1' ; 

  U_NewTargetVariable  =                    1; 

  END; 

ELSE IF  NOT MISSING(SensoryPerception ) AND 

                0.1385 <= SensoryPerception  AND 

  SensoryPerception  <               0.1945 THEN DO; 

  IF  NOT MISSING(AircraftAction ) AND 

                  0.0575 <= AircraftAction  THEN DO; 

    _NODE_  =                   20; 

    _LEAF_  =                    9; 

    P_NewTargetVariable1  =     0.91666666666666; 

    P_NewTargetVariable2  =                    0; 

    P_NewTargetVariable3  =     0.08333333333333; 

    Q_NewTargetVariable1  =     0.91666666666666; 

    Q_NewTargetVariable2  =                    0; 

    Q_NewTargetVariable3  =     0.08333333333333; 

    V_NewTargetVariable1  =                  0.6; 

    V_NewTargetVariable2  =                 0.35; 

    V_NewTargetVariable3  =                 0.05; 

    I_NewTargetVariable  = '1' ; 

    U_NewTargetVariable  =                    1; 

    END; 
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  ELSE DO; 

    IF  NOT MISSING(SystemAnomaly ) AND 

                     0.161 <= SystemAnomaly  THEN DO; 

      _NODE_  =                   36; 

      _LEAF_  =                    8; 

      P_NewTargetVariable1  =     0.83333333333333; 

      P_NewTargetVariable2  =     0.16666666666666; 

      P_NewTargetVariable3  =                    0; 

      Q_NewTargetVariable1  =     0.83333333333333; 

      Q_NewTargetVariable2  =     0.16666666666666; 

      Q_NewTargetVariable3  =                    0; 

      V_NewTargetVariable1  =                 0.75; 

      V_NewTargetVariable2  =                 0.25; 

      V_NewTargetVariable3  =                    0; 

      I_NewTargetVariable  = '1' ; 

      U_NewTargetVariable  =                    1; 

      END; 

    ELSE DO; 

      _NODE_  =                   35; 

      _LEAF_  =                    7; 

      P_NewTargetVariable1  =     0.13333333333333; 

      P_NewTargetVariable2  =                  0.7; 

      P_NewTargetVariable3  =     0.16666666666666; 

      Q_NewTargetVariable1  =     0.13333333333333; 

      Q_NewTargetVariable2  =                  0.7; 

      Q_NewTargetVariable3  =     0.16666666666666; 

      V_NewTargetVariable1  =               0.1875; 

      V_NewTargetVariable2  =             0.484375; 
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      V_NewTargetVariable3  =             0.328125; 

      I_NewTargetVariable  = '2' ; 

      U_NewTargetVariable  =                    2; 

      END; 

    END; 

  END; 

ELSE IF  NOT MISSING(SensoryPerception ) AND 

                0.1945 <= SensoryPerception  AND 

  SensoryPerception  <                0.233 THEN DO; 

  _ARBFMT_15 = PUT( Aircraft1Mission , $15.); 

   %DMNORMIP( _ARBFMT_15); 

  IF _ARBFMT_15 IN ('PASSENGER' ) THEN DO; 

    _NODE_  =                   21; 

    _LEAF_  =                   10; 

    P_NewTargetVariable1  =     0.04444444444444; 

    P_NewTargetVariable2  =                  0.8; 

    P_NewTargetVariable3  =     0.15555555555555; 

    Q_NewTargetVariable1  =     0.04444444444444; 

    Q_NewTargetVariable2  =                  0.8; 

    Q_NewTargetVariable3  =     0.15555555555555; 

    V_NewTargetVariable1  =      0.1025641025641; 

    V_NewTargetVariable2  =     0.53846153846153; 

    V_NewTargetVariable3  =     0.35897435897435; 

    I_NewTargetVariable  = '2' ; 

    U_NewTargetVariable  =                    2; 

    END; 

  ELSE DO; 

    _NODE_  =                   22; 
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    _LEAF_  =                   11; 

    P_NewTargetVariable1  =                    0; 

    P_NewTargetVariable2  =                  0.2; 

    P_NewTargetVariable3  =                  0.8; 

    Q_NewTargetVariable1  =                    0; 

    Q_NewTargetVariable2  =                  0.2; 

    Q_NewTargetVariable3  =                  0.8; 

    V_NewTargetVariable1  =     0.28571428571428; 

    V_NewTargetVariable2  =     0.14285714285714; 

    V_NewTargetVariable3  =     0.57142857142857; 

    I_NewTargetVariable  = '3' ; 

    U_NewTargetVariable  =                    3; 

    END; 

  END; 

ELSE IF  NOT MISSING(SensoryPerception ) AND 

                 0.233 <= SensoryPerception  THEN DO; 

  IF  NOT MISSING(PowerChange ) AND 

    PowerChange  <              -0.0225 THEN DO; 

    _NODE_  =                   23; 

    _LEAF_  =                   12; 

    P_NewTargetVariable1  =                    0; 

    P_NewTargetVariable2  =               0.6875; 

    P_NewTargetVariable3  =               0.3125; 

    Q_NewTargetVariable1  =                    0; 

    Q_NewTargetVariable2  =               0.6875; 

    Q_NewTargetVariable3  =               0.3125; 

    V_NewTargetVariable1  =                    0; 

    V_NewTargetVariable2  =               0.5625; 
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    V_NewTargetVariable3  =               0.4375; 

    I_NewTargetVariable  = '2' ; 

    U_NewTargetVariable  =                    2; 

    END; 

  ELSE DO; 

    IF  NOT MISSING(CabinAffected ) AND 

      CabinAffected  <              -0.0225 THEN DO; 

      _NODE_  =                   39; 

      _LEAF_  =                   13; 

      P_NewTargetVariable1  =                    0; 

      P_NewTargetVariable2  =     0.22222222222222; 

      P_NewTargetVariable3  =     0.77777777777777; 

      Q_NewTargetVariable1  =                    0; 

      Q_NewTargetVariable2  =     0.22222222222222; 

      Q_NewTargetVariable3  =     0.77777777777777; 

      V_NewTargetVariable1  =                    0; 

      V_NewTargetVariable2  =     0.44444444444444; 

      V_NewTargetVariable3  =     0.55555555555555; 

      I_NewTargetVariable  = '3' ; 

      U_NewTargetVariable  =                    3; 

      END; 

    ELSE IF  NOT MISSING(CabinAffected ) AND 

                   -0.0225 <= CabinAffected  AND 

      CabinAffected  <               -0.003 THEN DO; 

      _NODE_  =                   40; 

      _LEAF_  =                   14; 

      P_NewTargetVariable1  =                    0; 

      P_NewTargetVariable2  =     0.92307692307692; 
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      P_NewTargetVariable3  =     0.07692307692307; 

      Q_NewTargetVariable1  =                    0; 

      Q_NewTargetVariable2  =     0.92307692307692; 

      Q_NewTargetVariable3  =     0.07692307692307; 

      V_NewTargetVariable1  =                    0; 

      V_NewTargetVariable2  =     0.66666666666666; 

      V_NewTargetVariable3  =     0.33333333333333; 

      I_NewTargetVariable  = '2' ; 

      U_NewTargetVariable  =                    2; 

      END; 

    ELSE DO; 

      _NODE_  =                   41; 

      _LEAF_  =                   15; 

      P_NewTargetVariable1  =                    0; 

      P_NewTargetVariable2  =                0.225; 

      P_NewTargetVariable3  =                0.775; 

      Q_NewTargetVariable1  =                    0; 

      Q_NewTargetVariable2  =                0.225; 

      Q_NewTargetVariable3  =                0.775; 

      V_NewTargetVariable1  =                    0; 

      V_NewTargetVariable2  =     0.29807692307692; 

      V_NewTargetVariable3  =     0.70192307692307; 

      I_NewTargetVariable  = '3' ; 

      U_NewTargetVariable  =                    3; 

      END; 

    END; 

  END; 

ELSE DO; 
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  _NODE_  =                    2; 

  _LEAF_  =                    1; 

  P_NewTargetVariable1  =                    1; 

  P_NewTargetVariable2  =                    0; 

  P_NewTargetVariable3  =                    0; 

  Q_NewTargetVariable1  =                    1; 

  Q_NewTargetVariable2  =                    0; 

  Q_NewTargetVariable3  =                    0; 

  V_NewTargetVariable1  =     0.99932975871313; 

  V_NewTargetVariable2  =     0.00067024128686; 

  V_NewTargetVariable3  =                    0; 

  I_NewTargetVariable  = '1' ; 

  U_NewTargetVariable  =                    1; 

  END; 

 ****************************************************************; 

******          END OF DECISION TREE SCORING CODE         ******; 

****************************************************************; 

  

drop _LEAF_; 
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