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CONSTRAINTS ON VIOLATIONS OF LORENTZ

SYMMETRY FROM GRAVITY PROBE B

JAMES M. OVERDUIN∗ and RYAN D. EVERETT

Department of Physics, Astronomy & Geosciences, Towson University

Towson, MD 21252, U.S.A.
∗E-mail: joverduin@towson.edu

QUENTIN G. BAILEY

Department of Physics, Embry-Riddle Aeronautical University

Prescott, AZ 86301, U.S.A.

E-mail: baileyq@erau.edu

We use the final results from Gravity Probe B to set new upper limits on the
gravitational sector of the Standard-Model Extension, including for the first
time the coefficient associated with the time-time component of the new field
responsible for inducing local Lorentz violation in the theory.

The minimal pure-gravity sector of the Standard-Model Extension (SME)

is characterized by nine independent coefficients s̄AB corresponding to the

vacuum expectation values of a new tensor field whose couplings to the

traceless part of the Ricci tensor induce spontaneous violations of local

Lorentz symmetry.1 These coefficients are assumed to be constant in the

asymptotically flat (Minkowski) limit. Most are constrained either individ-

ually or in various combinations by existing experiments and observations,2

but no limits have yet been placed on the s̄TT coefficient.

Gravity Probe B (GPB) was a satellite experiment launched in 2004 to

measure the geodetic and frame-dragging effects predicted by General Rel-

ativity (GR). As shown by Bailey and Kostelecky in 2006,3 the orientation

of a gyroscope in orbit around a spinning central mass like the earth is sen-

sitive to seven of the nine s̄AB coefficients, including s̄TT. Following earlier

preliminary work,4 our goal here is to calculate the resulting constraints

using the recently released final results from GPB.5

Within GR the geodetic and frame-dragging precession rates of a gyro-
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Fig. 1. Experimental results are expressed in GPB coordinates (êGS, êNS, êWE). Theo-
retical SME predictions are derived in the (n̂, σ̂, ẑ) system. Both are ultimately referred
to Sun-centered inertial coordinates (x̂, ŷ, ẑ), where x̂ points toward the vernal equinox.

scope with position ~r and velocity ~v in orbit around a central mass M with

moment of inertia I and angular velocity ~ω are:

~Ωg,GR =

(

3

2

GM

c2r3

)

~r × ~v , ~Ωfd,GR =
GI

c2r3

[

3~r

r2
(~ω · ~r)− ~ω

]

. (1)

The combined precession ~ΩGR = ~Ωg,GR + ~Ωfd,GR causes the unit spin vector

Ŝ of the gyroscope to undergo a relativistic drift ~R ≡ dŜ/dt = ~ΩGR × Ŝ.

Averaging over a circular, polar orbit of radius r0 around a spherically

symmetric central mass, one obtains

~Rg,GR = −
3(GM)

2 c2r
5/2
0

3/2

êNS , ~Rfd,GR = −
GIω cos δGS

2 c2r30
êWE, (2)

where êGS points toward the guide star (located in the orbit plane at right

ascension αGS and declination δGS), êWE is an orbit normal pointing along

the cross-product of êGS and the unit vector ẑ (aligned with the earth’s

rotation axis) and êNS is a tangent to the orbit directed along êWE × êGS

(Fig. 1). The choice of polar orbit orthogonalizes the two effects so that
~Rg,GR points entirely along êNS and ~Rfd,GR points entirely along êWE.

For GPB with guide star IM Pegasi, r0 = 7018.0 km, δGS = 16.841◦,

Rg,GR = 6606.1 mas/yr (including oblateness) and Rfd,GR = 39.2 mas/yr

where mas=milliarcsecond. The final joint results for all four gyros indicate

that RNS,obs = 6601.8± 18.3 mas/yr and RWE,obs = 37.2± 7.2 mas/yr with

1σ uncertainties.5 Thus the NS and WE components of relativistic drift rate

may deviate from the predictions of GR by at most ∆RNS < |Rg,GR−RNS,obs|

= 22.6 mas/yr and ∆RWE < |Rfd,GR −RWE,obs| = 9.2 mas/yr.
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Within the SME, Lorentz-violating terms introduce an additional

“anomalous” relativistic drift ∆~R whose components along n̂, σ̂ and ẑ are

given by Eqs. (158-160) of Ref. 3. Here n̂ ≡ σ̂× ẑ and σ̂ = −êWE is an orbit

normal (Fig. 1). These equations may be expressed in the form

∆~R =





1
2
ωGS(s

YY − sXX) sin 2αGS + ωGSs
XY cos 2αGS

ωTs
TT + ωNS(s

XX sin2 αGS − sXY sin 2αGS + sYY cos2 αGS)

ωWE(s
YZ cosαGS − sXZ sinαGS)



 , (3)

where ωGS = ωWE = 5
6
(1 − 3I/5Mr20)Rg,GR = 4603 mas/yr, ωT =

3
4
(1 − I/3Mr20)Rg,GR = 4503 mas/yr, ωNS = 1

12
(1 + 9I/Mr20)Rg,GR =

1904 mas/yr and αGS = 343.26◦. To transform to GPB coordinates, we

reflect across the orbit plane and rotate about σ̂ by δGS. The resulting drift

rates along the GS, NS and WE axes are

∆~R =



















ωGS

[

1
2
(sYY − sXX) sin 2αGS cos δGS + sXY cos 2αGS cos δGS

− sXZ sinαGS sin δGS + sYZ cosαGS sin δGS]

− ωTs
TT − ωNS(s

XX sin2 αGS − sXY sin 2αGS + sYY cos2 αGS)

ωWE

[

1
2
(sXX − sYY) sin 2αGS sin δGS − sXY cos 2αGS sin δGS

− sXZ sinαGS cos δGS + sYZ cosα cos δGS]



















.

(4)Numerically,

∆RGS = 1215sXX + 3674sXY + 384sXZ − 1215sYY + 1277sYZ,

∆RNS = −4503sTT − 158sXX − 1050sXY − 1746sYY, (5)

∆RWE = −368sXX − 1112sXY + 1269sXZ + 368sYY + 4219sYZ,

where ∆RNS < 22.6 and ∆RWE < 9.2 from GPB (all units in mas/yr). The

SME can accommodate precessions greater than those predicted by GR,

unlike other extensions of the standard model where Einstein’s theory is a

limiting case.6 GPB does not constrain the GS component, since the gyro

spin axes point along this direction by design. The GS and WE compo-

nents are linear combinations of sXY, sXZ, sYZ and (sXX − sYY), so they are

superseded in any case by existing constraints, which read:2,7

|sXY| < (0.6± 1.5)× 10−9 (6)

|sXZ| < (2.7± 1.4)× 10−9 (7)

|sYZ| < (0.6± 1.4)× 10−9 (8)

|sXX − sYY| < (1.2± 1.6)× 10−9 (9)

|sXX + sYY − 2sZZ| < (1.8± 38) × 10−9 (10)
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Thus in practice the only new GPB constraint on the SME comes from the

NS component of Eqs. (5), associated entirely with geodetic precession in

standard GR. It reads:

|sTT + 0.035sXX + 0.23sXY + 0.39sYY| < 5.0× 10−3. (11)

To get seven conditions on seven unknowns, we supplement Eqs. (6-11)

with the requirement that sAB be traceless, |sTT − sXX − sYY − sZZ| = 0.3

Inverting, we then find that

sTT < 4.4× 10−3 , sXX, sYY, sZZ < 1.5× 10−3.

This constitutes the first experimental upper bound on sTT. (Other tests

such as light deflection are also sensitive to this coefficient at similar levels of

precision.8) It also lifts a degeneracy between other existing limits, allowing

us to extract individual upper bounds on sXX, sYY and sZZ.

One should also look at the effect of sAB on the equation of motion

for the gyroscope.3 This has the effect of rescaling Newton’s gravitational

constant G, increasing our sensitivity to sTT and strengthening our limits

by about 5%.9 If the actual orbit is not perfectly circular, as was the case

for GPB (whose gyros remained in essentially perfect free fall around a non-

spherically symmetric Earth), then additional sAB-dependent terms are also

introduced in the leading-order (GR) expressions for geodetic and frame-

dragging precession, Eqs. (1). These do not significantly alter the NS or

geodetic constraint from GPB, but they do strengthen the WE or frame-

dragging constraint so that it may potentially become competitive with

existing limits. We will report on these results elsewhere.9
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