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Evolution of spherical cavitation bubbles: Parametric
and closed-form solutions

Stefan C. Mancas1,a) and Haret C. Rosu2,b)
1Hochschule München–Munich University of Applied Sciences, München, Germany
2IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San
José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP, Mexico

(Received 21 August 2015; accepted 6 February 2016; published online 29 February 2016)

We present an analysis of the Rayleigh-Plesset equation for a three dimensional
vacuous bubble in water. In the simplest case when the effects of surface tension
are neglected, the known parametric solutions for the radius and time evolution of
the bubble in terms of a hypergeometric function are briefly reviewed. By including
the surface tension, we show the connection between the Rayleigh-Plesset equation
and Abel’s equation, and obtain the parametric rational Weierstrass periodic solutions
following the Abel route. In the same Abel approach, we also provide a discussion
of the nonintegrable case of nonzero viscosity for which we perform a numerical
integration. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942237]

INTRODUCTION

It is well established that the size evolution of unstable, spherical cavitation bubbles is governed
by the Rayleigh-Plesset (RP) equation1–3

ρw
(
RR̈ +

3
2

Ṙ2
)
= p − P∞ −

2
R

(
σ + 2µw Ṙ

)
. (1)

In (1) ρw is the density of the water, R(t) is the radius of the bubble, p and P∞ are, respectively,
the pressures inside the bubble and at large distance, σ is the surface tension of the bubble, and µw

is the dynamic viscosity of water. In the simpler form with only the pressure difference in the right
hand side, Equation (1) was first derived by Rayleigh in 1917,1 but it was only in 1949 that Plesset
developed the full form of the equation and applied it to the problem of traveling cavitation bub-
bles.3 In the second half of the last century, a steady progress has been achieved with driving forces
from engineering, medical, sonoluminescence, microfluidics, and even pharmaceutical applications
of the cavitation phenomena.4 In addition, the interest in the analytical and numerical solutions
of cavitation dynamics remained considerable as these solutions can lead to a better control and
understanding of the bubble collapse processes. In an effort to discern the peculiar features of the
usual three-dimensional collapse, Prosperetti2 and more recently Klotz5 worked out generalizations
to N-dimensional bubble dynamics.

In this paper, we first review the analytic solutions of the RP equation in terms of hypergeo-
metric functions when the surface tension is neglected, and in terms of Weierstrass elliptic functions
when the surface tension is taken into account.6,7 In the latter case, we employ an Abel equation
approach which is a novel mathematical method of looking to the nonlinear evolution of cavitation
bubbles. On the other hand, when the viscous term is introduced, we show that an Abel equation
with a non constant invariant occurs. Since it is not yet known how to find analytical solutions to this
equation (if any), we resort to numerical integration of the RP equation from t = 0 to t = tc, where
tc is the time of collapse of the bubble.
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SIZE EVOLUTION AND COLLAPSE OF A SPHERICAL BUBBLE WITHOUT SURFACE
TENSION: REVIEW OF CANONICAL RESULTS

We first consider the idealized case whereby the viscosity of the water is neglected, since
µw ≪ 1, and we further discard the effect of surface tension σ. For this case, there are also
recent analytical approximations in Ref. 8, which are further discussed in Ref. 9, but here we are
concerned with the standard results.

Let us consider a vacuous p = 0 bubble of radius R which is surrounded by an infinite uniform
incompressible fluid, such as water, that is at rest at infinity. We remark that “infinity” in the present
context refers to distance far enough away from the initial position of the bubble, and we further
assume that the pressure at infinity is constant, P∞ = const. Neglecting the body forces acting on the
bubble, we have from Equation (1)

2RR̈ + 3Ṙ2 = −2
P∞
ρw

. (2)

Since R2Ṙ is an integrating factor of (1) consequently we obtain by one quadrature

R3Ṙ2 = −2
3

P∞
ρw

R3 + C.

Using the initial conditions R(0) = R0 and Ṙ(0) = 0 we find the integration constant to be

C =
2
3

P∞
ρw

R3
0,

and hence, we obtain

Ṙ2 =
2
3

P∞
ρw



(
R0

R

)3

− 1

. (3)

Note that one can find a simple novel particular solution for R(t) by substituting (3) into (2) to
obtain the Emden-Fowler equation

R̈ = AtnRm (4)

with A = − 3C
2 , n = 0, m = −4, and particular solution

Rp(t) = 5


25C

4
*..
,
t +

2R
5
2
0

5
√

C

+//
-

2
5

=
5


25
6

P∞R3
0

ρw
*
,
t +

√
6

5


ρw
P∞

R0+
-

2
5

. (5)

However, this solution is obtained under the assumption of a nonzero integrating factor8 and
therefore it fails to satisfy the second initial condition. Other solutions that do not satisfy the
initial conditions have been found previously by Amore and Fernández.9 As noticed in Ref. 10,
Equation (3) can be also viewed as a conservation law for the dynamics of the radius of the bubble,
since its kinetic energy can be expressed as

2πρwR3Ṙ2 = 4
3πP∞(R3

0 − R3). (6)

To proceed with the integration of Equation (3) we will use the set of transformations as given by
Kudryashov,6 namely, R = Sϵ,dt = Rδdτ, where ϵ, δ are constants that depend on the dimension of
the bubble, and S, τ are the new dependent and independent variables, respectively. Applying the
transformations upon (3), we obtain the new dynamics in S and τ

S2
τ =

2
3

P∞
ρw

1
ε2 (R3

0 S−3ε − 1)S2+2εδ−2ε. (7)

To find S, one sets ε = 1
N

, and δ = N + 1, where N = 3 is the dimension of the bubble, which will
in turn reduce (7) to the simpler equation

Sτ =


6P∞
ρw

S


R3
0 S − S2. (8)
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By integrating the above with S(0) = R3
0, we obtain the rational solution

S(τ) = R3
0

Bτ2 + 1
, (9)

where for convenience we set B = 9C
4 R3

0 =
3
2
P∞
ρw

R6
0. Once we determine S, we can find the para-

metric solutions for the bubble radius R(τ) and evolution time of the bubble t(τ),6

R(τ) = R0

(Bτ2 + 1) 1
3
,

t(τ) = R4
0

 τ

0

dξ

(Bξ2 + 1) 4
3
.

(10)

The integral for the evolution of the time for bubble can be calculated analytically in terms of
hypergeometric functions to give6

t(τ) = R4
0τ

2


3

3√
Bτ2 + 1

− 2F1

(
1
2
,
1
3

;
3
2

;−Bτ2
)
= R4

0τ2F1

(
1
2
,
4
3

;
3
2

;−Bτ2
)
. (11)

To achieve the time of collapse one needs to allow τ → ∞. This leads to limτ→∞ t(τ) = 0.000 908 681
if we use the S.I. units, [ρw] = 1000 kg/m3, [R0] = 10−2 m, and [P∞] = 101 325 Pa. We point out
that the same asymptotic value for the collapse time has been also obtained, albeit using a different
approach, by Obreschkow et al.8 and it is also obtained from Eq. (14) below by direct integration.
Once we solve for τ as a function of R from the first equation of (10), and substituting it into the
second equation of (10) we obtain the closed-form solution

t(R) = R0


2
3
ρw
P∞

(
R0

R

)3

− 1 2F1 *
,

1
2
,
4
3

;
3
2

; 1 −
(

R0

R

)3
+
-

(12)

which is plotted as R(t) in Fig. 1.
Next, we will find the time for the total collapse tc of the bubble by integration of Equation (3),

which yields

tc =
1

R3/2
0


3
2
ρw
P∞

 R0

0

R3/2
1 −

(
R
R0

)3
dR. (13)

This is just the N = 3 case of the general N-dimensional formula given in Ref. 5. If we let
R = R0 sin2/3θ, where θ ∈ [0, π/2] then integral (13) transforms to

tc =
2R0

3


3
2
ρw
P∞

 π/2

0
sin2/3θ dθ,

which by comparing with the integral relation for beta function, namely,

FIG. 1. Radius of the bubble in the absence of surface tension according to Equation (12) for [ρw]= 1000 kg/m3,
[R0]= 10−2 m, and [P∞]= 101 325 Pa.
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B(m,n) = 2
 π/2

0
cos2m−1θsin2n−1θ dθ

leads to

tc =
R0

3


3
2
ρw
P∞

B
(

1
2
,
5
6

)
= R0

Γ( 5
6 )

Γ( 4
3 )


πρw
6P∞

= 0.914 681 R0


ρw
P∞

. (14)

This solution can be also obtained from (4) by using the parametric solution given in Section 2.3.1-2
Equation 2 of Polyanin’s book.11 If we insert in (14) the same S.I. numbers as used in the hypergeo-
metric asymptotics, we obtain again tc = 0.000 908 681 s.

SURFACE TENSION INCLUDED VIA ABEL’S EQUATION

When the surface tension term added, Equation (1) can be written in the form

R̈ +
3

2R
Ṙ2 +

K1

R
+

K2

R2 = 0, (15)

where we defined K1 =
P∞−P
ρw

and K2 =
2σ
ρw

.
Proceeding as in Ref. 12, we first show that solutions to a general second order ODE of type

R̈ + f2(R)Ṙ + f3(R) + f1(R)Ṙ2 + f0(R)Ṙ3 = 0 (16)

may be obtained via the solutions to Abel’s equation (17) of the first kind (and vice-versa)

dy
dR
= f0(R) + f1(R)y + f2(R)y2 + f3(R)y3 (17)

using the substitution

Ṙ = η(R(t)), (18)

which turns (16) into the Abel equation of the second kind in canonical form

ηη̇ + f3(R) + f2(R)η + f1(R)η2 + f0(R)η3 = 0. (19)

Moreover, via the inverse transformation

η(R(t)) = 1
y(R(t)) (20)

of the dependent variable, Equation (19) becomes (17). The invariant of Abel’s equation, see
Ref. 13, can be written as

Φ(R) = 1
3

(
df2

dR
f3 − f2

df3

dR
− f1 f2 f3 +

2
9

f 3
2

)
(21)

and when is a constant is an indication that Abel’s equation is integrable.
By identification of Equation (15) with (16), we see that f1(R) = 3

2R , f2(R) = f0(R) = 0, and
f3(R) = K1

R
+

K2
R2 , and hence the Kamke invariant is Φ(R) = 0, therefore Abel’s equation (17) be-

comes the Bernoulli equation

dy
dR
= f1(R)y + f3(R)y3 (22)

which, by one quadrature has the solution

y(R) = ±
√

3R
3
2

3D − 2K1R3 − 3K2R2
. (23)

By using Equations (20) and (18), we obtain

Ṙ2 =
3D − 2K1R3 − 3K2R2

3R3 (24)

and via the same initial conditions we obtain the integration constant
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D =
R2

0

3
(3K2 + 2K1R0),

which gives

Ṙ2 =
2K1(R3

0 − R3) + 3K2(R2
0 − R2)

3R3 . (25)

Notice that when σ = 0 → K2 = 0, and p = 0 → K1 =
P∞
ρw

, then the above becomes Equation (3).
The new energy with surface tension is

2πρwR3Ṙ2 =
4π
3

�
P∞(R3

0 − R3) + 3σ(R2
0 − R2)� . (26)

Thus, at the time of collapse we have 4π
3 R2

0(P∞R0 + 3σ) = 0.424 43 J for a surface tension [σ] =
10−3 N/m.

To integrate Equation (25), first let us write it in a more convenient way, as

Ṙ2 =
a3

R3 +
a1

R
+ a0 (27)

with coefficients defined as a3 = R2
0

(
K2 +

2K1
3 R0

)
, a1 = −K2, and a0 = − 2K1

3 , and we will use the
same set of transformations, namely, R = Sϵ, dt = Rδdτ which give in turn

S2
τ =

S2+2εδ

ε2 (a0S−2ε + a1S−3ε + a3S−5ε), (28)

where now we set ϵ = −3/N = −1, and δ = N+1
2 = 2. Thus, we obtain the Weierstrass elliptic

equation

S2
τ = a0 + a1S + a3S3 (29)

which in standard form is

℘τ
2 = 4℘3 − g2℘ − g3 (30)

via the linear substitution14

S(τ) = 4
a3
℘(τ + 29.709; g2, g3). (31)

The germs of the Weierstrass function g2, g3 are given by

g2 = −
a1a3

4
=

K2R2
0

4
�
K2 +

2K1R0

3
�
,

g3 = −
a0a2

3

16
=

K1R4
0

24
�
K2 +

2K1R0

3
�2
.

(32)

Substituting K1 and K2 into the germs, the solution to Equation (29) becomes

S(τ) = 6ρw
R2

0(P∞R0 + 3σ)℘(τ + 29.709; g2, g3), (33)

where g2 = 3.377 51 · 10−11 m8/s4, g3 = 1.926 45 · 10−8 m12/s6, and the constant in the front of
Weierstrass function from (33) takes the value of 59 215.2 s2/m5. Once S is known we can find the
parametric solutions for the radius and time of the bubble with surface tension as

R(τ) = 1
S(τ) =

R2
0(P∞R0 + 3σ)

6ρw

1

℘ *
,
τ + 29.709;

R2
0σ

3ρ2
w

(P∞R0 + 3σ), R4
0P∞

54ρ3
w

(P∞R0 + 3σ)2+
-

,

t(τ) =
 τ

0

dξ
S(ξ)2 =

R4
0(P∞R0 + 3σ)2

36ρ2
w

 τ

0

dξ

℘*
,
ξ;

R2
0σ

3ρ2
w

(P∞R0 + 3σ), R4
0P∞

54ρ3
w

(P∞R0 + 3σ)2+
-

2 .

(34)
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FIG. 2. Parametric solutions for time of evolution (top), radius of the bubble (middle), and radius vs time (bottom) from Equa-
tion (34) when surface tension is present for [ρw]= 1000 kg/m3, [R0]= 10−2 m, [P∞]= 101 325 Pa, and [σ]= 10−3 N/m.

Related plots are presented in Fig. 2, while in Fig. 3 we compare the exact solutions of RP equation
with and without surface tension.

THE RAYLEIGH-PLESSET EQUATION WITH VISCOSITY

When we include the viscosity, Equation (1) reads

R̈ + f2(R)Ṙ + f1(R)Ṙ2 + f3(R) = 0, (35)

where f2(R) = K3
R2 , K3 =

4µw
ρw

is a constant, and f1(R), f3(R) being the same functions as before.
Thus, Abel’s equation (17) becomes

dy
dR
= f1(R)y + f2(R)y2 + f3(R)y3. (36)
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FIG. 3. Comparison between the exact solutions without (dotted curve) and with surface tension (dashed curve). Notice that
when we have surface tension the time of collapse is smaller.

Now, we also find the Kamke invariant according to Equation (21) and we obtain

Φ(R) = K3[4K2
3 − 9R(3K2 + 5K1R)]

R6 . (37)

In terms of the physical variables of the system, the invariant is

Φ(R) = 2µw[64µ2
w − 9ρwR(6σ + 5P∞R)]

27ρ3
wR6

(38)

and because it is not a constant we will try to reduce (36) using the Appell invariant instead.
First, we will eliminate the linear term via the transformation y(R) = R

3
2 z(R) to obtain the

reduced Abel equation

dz
dR
= h2(R)z2 + h3(R)z3, (39)

where h2(R) = K3√
R

, and h3(R) = (K1R + K2)R.
According to the book of Kamke,13 for equations of type (39) for which there is no constant

invariant one should change the variables according to

z(R) = ẑ(ζ(R)),
ζ(R) =


h2(R)dR = 2K3

√
R, (40)

which lead to the canonical form

dẑ
dζ
= ẑ2 + Ψ(ζ)ẑ3, (41)

FIG. 4. Numerical solution for RP Equation (35) when surface tension and viscosity are both present for [ρw]= 1000 kg/m3,
[R0]= 10−2 m, [P∞]= 101 325 Pa, [σ]= 10−3 N/m, and [µw]= 1.002 ·10−3 kg/(m s).
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FIG. 5. Comparison between the numerical solution (continuous curve) of Fig. 4 and the exact solutions of Fig. 3. As one
can see, the bubbles collapse fastest when there is surface tension (dashed curve) followed by the no surface tension and no
viscosity case (dotted curve). The slowest time is achieved when we have viscosity together with surface tension (continuous
curve). Right panel is the zoomed in version of the figure in the left panel.

where

Ψ(ζ) = h3
�
R(ζ)�

h2
�
R(ζ)� = ζ3(b3 + b5ζ

2) (42)

is the Appell invariant, and the constants bi are

b3 =
K2

8K4
3

=
σρ3

w

210µ4
w

,

b5 =
K1

32K6
3

=
P∞ρ5

w

217µ6
w

.

(43)

Choosing a dynamic viscosity of water [µw] = 1.002 cP = 1.002 · 10−3 kg/(m s) the bi constants
take the values of b3 = 9.687 89 · 1014 s2/m5, while b5 = 7.638 36 · 1032 s4/m10. The units of ζ are
m

5
2/s. This Abel equation is not integrable through quadratures, but numerically we integrate RP

equation (35), from t = 0 to the point of stiffness which is the point in time where the bubble
collapses, see the numerical solution of Eq. (35) in Fig. 4. In addition, in Fig. 5 we provide a
comparison between the exact solutions in Fig. 3 and the numerical solution in Fig. 4.

CONCLUSION

In this work, we have considered the RP equation for the size evolution of a bubble in water.
In the first part of the paper, we have surveyed the standard results in the absence of surface tension
but in a different way from those usually pursued in the literature. We have obtained the closed form
hypergeometric solutions of Kudryashov and Sinelshchikov although in a different but equivalent
form. From an Emden-Fowler form of the RP equation, we have also obtained a particular solution
which, however, does not satisfy the second initial condition. In the presence of surface tension
and viscosity, we have employed a new approach based on Abel’s equation. When only the surface
tension is included, we have obtained the known parametric rational Weierstrass solutions, whereas
when viscosity is added, the corresponding Abel equation does not have a constant invariant, which
explains the nonintegrability in this case. A numerical integration obtained from this nonintegrable
Abel route is presented graphically.

ACKNOWLEDGMENTS

This research was partially supported by internal funding from Embry-Riddle Aeronautical
University. We thank the reviewers for their appropriate remarks which improved the quality of the
paper.

1 Lord Rayleigh, “VIII. On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. Ser. 6
34, 94 (1917).

2 A. Prosperetti, “Bubbles,” Phys. Fluids 16, 1852 (2004).

http://dx.doi.org/10.1080/14786440808635681
http://dx.doi.org/10.1063/1.1695308


022009-9 S. C. Mancas and H. C. Rosu Phys. Fluids 28, 022009 (2016)

3 M. S. Plesset, “The dynamics of cavitation bubbles,” ASME J. Appl. Mech. 16, 277 (1949).
4 F. Lugli and F. Zerbetto, “An introduction to bubble dynamics,” Phys. Chem. Chem. Phys. 9, 2447 (2007).
5 A. R. Klotz, “Bubble dynamics in N dimensions,” Phys. Fluids 25, 082109 (2013).
6 N. A. Kudryashov and D. I. Sinelshchikov, “Analytical solutions for problems of bubble dynamics,” Phys. Lett. A 379, 798

(2015).
7 N. A. Kudryashov and D. I. Sinelshchikov, “Analytical solutions of the Rayleigh equation for empty and gas-filled bubble,”

J. Phys. A: Math. Theor. 47, 405202 (2014).
8 D. Obreschkow, M. Bruderer, and M. Farhat, “Analytical approximations for the collapse of an empty spherical bubble,”

Phys. Rev. E 85, 066303 (2012).
9 P. Amore and F. M. Fernández, “Mathematical analysis of recent analytical approximations to the collapse of an empty

spherical bubble,” J. Chem. Phys. 138, 084511 (2013).
10 D. Obreschkow, P. Kobel, N. Dorsaz, A. de Bosset, C. Nicollier, and M. Farhat, “Cavitation bubble dynamics inside liquid

drops in microgravity,” Phys. Rev. Lett. 97, 094502 (2006).
11 A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (CRC Press, Boca Raton,

1995).
12 S. C. Mancas and H. C. Rosu, “Integrable Abel equations and Vein’s Abel equation,” Math. Methods Appl. Sci. (published

online).
13 E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen (Chelsea, New York, 1959).
14 E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University Press, Cambridge, 1927).

http://dx.doi.org/10.1039/b700766c
http://dx.doi.org/10.1063/1.4817803
http://dx.doi.org/10.1016/j.physleta.2014.12.049
http://dx.doi.org/10.1088/1751-8113/47/40/405202
http://dx.doi.org/10.1103/PhysRevE.85.066303
http://dx.doi.org/10.1063/1.4793217
http://dx.doi.org/10.1103/PhysRevLett.97.094502
http://dx.doi.org/10.1002/mma.3575

	Evolution of Spherical Cavitation Bubbles: Parametric and Closed-Form Solutions
	Scholarly Commons Citation

	tmp.1511879205.pdf.CUI_k

