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Solar wind energy input to the magnetosheath
and at the magnetopause
T. I. Pulkkinen1, A. P. Dimmock1, A. Osmane1, and K. Nykyri2

1Department of Radio Science and Engineering, Aalto University, Espoo, Finland, 2Embry-Riddle Aeronautical University,
Daytona Beach, Florida, USA

Abstract Using Time History of Events and Macroscale Interactions During Substorms observations,
we show that the efficiency of the energy entry through the magnetopause as measured by the Poynting
vector normal component depends on the combination of the solar wind speed and the southward
component of the interplanetary magnetic field (IMF): Most efficient energy transfer occurs when the IMF
BZ is only moderately negative, and the solar wind speed is high. This means that for the same level of solar
wind driver parameters (electric field, epsilon, or other), different combinations of V and BZ will produce
different driving at the magnetopause. The effect is strongest for low to moderate driving conditions, while
the influence is smaller for the intense space weather events.

1. Introduction

In a two-dimensional view, the magnetospheric plasma is in a constant motion powered by the merging of
the geomagnetic field with the antiparallel component of the interplanetary magnetic field (IMF) [Dungey,
1961; Yeh, 1976]. At the tailward end, another reconnection process leads to closure of the open field lines
which then begin to convect Earthward. During magnetospheric substorms, a new neutral line forms in the
midtail region, causing dipolarization of the inner magnetotail field and tailward ejection of plasma behind
the X line [Hones, 1979]. This global circulation pattern has been verified by numerous satellite observations
[e.g., Cowley, 1982; Pudovkin et al., 1986; Nishida et al., 1996; Baker et al., 1996; Kepko et al., 2014].

A three-dimensional extension of the Dungey cycle connects the X points at the subsolar point and in the
distant magnetotail by a continuous X line that in a due southward IMF case follows the magnetopause at the
equatorial plane and connects through the magnetotail along the distant tail X line. For cases when the IMF
is oriented at an angle 𝜃 from the northward direction, the X line along the magnetopause becomes tilted
such that the reconnection line is perpendicular to the vector connecting the magnetic field vectors in the
magnetospheric and magnetosheath sides [Sonnerup, 1974]. If the field magnitudes are equal in both sides,
the X line orientation is given by sin(𝜃∕2). Assuming an average magnetospheric field of 70 nT and shock
compression ratio of 4, this would require an IMF magnitude of ∼17 nT. For more typical weaker IMF values,
the Sonnerup [1974] model predicts smaller X line tilt than sin(𝜃∕2).

Laitinen et al. [2007] examined the orientation of the large-scale X line using the Grand Unified
Magnetosphere-Ionosphere Coupling Simulation version 4 (GUMICS-4) global MHD simulation [Janhunen
et al., 2012]. They found that the X line was strongly tilted away from the equatorial plane for IMF orienta-
tions away from the due southward direction. Possible merging sites were found to be close to the sin(𝜃∕2)
predicted by the Sonnerup [1974] model. Pulkkinen et al. [2010] used observations and the GUMICS-4 and
Lyon-Fedder-Mobarry [Lyon et al., 2004] global MHD simulations to conclude that the energy entry correlates
well with the electric field along the large-scale X line, indicating that the energy transfer process involves the
entire magnetopause rather than being dominated by a process local to the subsolar point.

Several studies have addressed the combination of solar wind and IMF parameters that would yield opti-
mal prediction of the following geomagnetic activity parametrized by geomagnetic auroral electrojet indices:
The solar wind electric field (EY , equation (1)) gives the subsolar reconnection efficiency [Burton et al.,
1975; Vasyliunas, 1975]; the electric field parallel to the large-scale X line (EPAR, equation (2)) accounts for
the three-dimensional fields. The 𝜖 parameter (equation (3)) describes the Poynting flux incident at the
magnetopause [Akasofu, 1981], while the universal coupling function (dΦMP∕dt, equation (4)) is proportional
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Figure 1. AL index as function of solar wind speed for five values of the driver function: (a) solar wind electric field EY in
units of mV/m, (b) the 𝜖 parameter in units of 1011 W, (c) the universal coupling function dΦMP∕dt = (V2BT )2∕3 sin8∕3( 𝜃

2
)

in units of ((m/s)2T)2∕3, and (d) the parallel electric field along the large-scale X line EPAR in units of mV/m.

to the rate at which magnetic flux is opened at the magnetopause [Newell et al., 2007]. The formulations for
all functions can be separated to a magnetic component and a component linear in solar wind speed:

EY = −VBZ (1)

EPAR = VB sin
(
𝜃

2

)
(2)

𝜖 ∝ VB2 sin4
(
𝜃

2

)
(3)

(
dΦMP

dt

)3∕4

∝ VB1∕2
T sin2

(
𝜃

2

)
(4)

where B is the magnetic field magnitude and BT =
√

B2
X + B2

Y is the tangential component in the geocentric
solar magnetospheric coordinate system.

Examination of the statistical response of the AL index to the solar wind driver functions shows that espe-
cially for typical solar wind conditions and rather low level of driving, none of the coupling functions perform
very well. We use the OMNI 1 min database (http://spdf.gsfc.nasa.gov/), which provides upstream solar wind
and IMF parameters propagated to the bow shock nose (see King [2005] for data processing and propagation
methods). In order to account for the transfer time between the magnetopause and the ionosphere, we
created 1 h sliding averages of the driver functions and the AL index. Figure 1 shows the AL response as a
function of solar wind speed for five different values of the driver function. For all driver functions, for low
level of driving, the AL activity is larger for higher solar wind speed. For solar wind electric field and the epsilon
parameter, the same remains true for all levels of driving, while the effect is not present for higher driving
when using the universal coupling function or electric field parallel to the large-scale X line.

In this paper, we return to the role of the solar wind speed in the energy transfer process by examining how
the solar wind parameters change at the shock crossing and what the implications are for the conditions
prevalent at the magnetopause. With this information, we reexamine the effects of the solar wind speed and
the magnetic component on the AL activity.

2. Driver Parameters in the Magnetosheath

We use data from the Time History of Events and Macroscale Interactions During Substorms (THEMIS) mis-
sion [Angelopoulos, 2008] from the period 2007 to 2013. Magnetic field measurements are provided by the
fluxgate magnetometer instrument [Auster et al., 2008], whereas the plasma velocity, density, and pressure
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Figure 2. Magnetosheath plasma parameters in the MIPM frame of reference. (a) Plasma speed and (b) magnetic field
magnitude scaled to the corresponding upstream solar wind values, and (c) electric field parallel to the magnetopause
in mV/m. Magnetosheath plasma parameters averaged over values within 20% of the magnetosheath thickness closest
to the magnetopause as a function of angle 𝜃MIPM from the XMIPM direction. (d) Plasma speed and (e) magnetic field
magnitude scaled to the corresponding upstream solar wind values, and (f ) electric field parallel to the magnetopause
in mV/m.

measurements come from the THEMIS onboard moments from the electrostatic analyzer instrument
[McFadden et al., 2008].

In order to analyze the magnetosheath statistical properties as a function of upstream solar wind conditions,
we examine the THEMIS observations in the magnetosheath interplanetary medium (MIPM) reference frame
[Verigin et al., 2006]. In this frame the êx axis is oriented antiparallel to the upstream solar wind flow, and the êy

axis is perpendicular to the êx axis with the IMF vector in the êx − êy plane. Thus, each point is rotated around
the Sun-Earth line to the plane of the IMF, reducing the three-dimensional data set to a two-dimensional
plane. In this representation, the quasi parallel shock is always on the “dawn” side, while the quasi perpen-
dicular shock is on the “dusk” side. The radial fractional distance is measured from 0 at the magnetopause
to 1 at the bow shock. The bow shock position is calculated from the model by Verigin et al. [2001] and the
magnetopause position from the model by Shue et al. [1998]. This coordinate system organizes the THEMIS
observations in relation to position relative to magnetopause and bow shock locations as well as the IMF
Parker spiral orientation [Dimmock and Nykyri, 2013].

Figure 2 shows the magnetosheath plasma speed, magnetic field, and electric field magnitude scaled by
corresponding upstream solar wind values. Figures 2a and 2b follow Dimmock and Nykyri [2013], who demon-
strated the significant reduction of the solar wind speed and the strong compression of the magnetic field
near the subsolar region. The values shown are scaled by the upstream values and thus reflect changes
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Figure 3. Magnetosheath electric field parallel component scaled to the upstream values. The data are divided into
four subsets with (a) low driving −2.5< BZ < 0 nT and V < 400 km/s, intermediate driving with (b) −20BZ < −2.5 nT
and V < 400 and (c) −2.5 < BZ < 0 nT and V > 400, and (d) high driving −20< BZ < −2.5 nT and V > 400 km/s.
(e) Magnetosheath electric field parallel component scaled to the upstream values averaged over values within
20% of the magnetosheath thickness closest to the magnetopause as a function of the 𝜃MIPM angle (in degrees).
The average electric field magnitude in the solar wind is 0.26 mV/m.

from the upstream conditions. Figure 2c shows the electric field component parallel to the magnetopause
E∥,MS =(−VMS × BMS)∥. The parallel component was computed by taking the component tangent to the
model magnetopause at the location of the observation and shows the value of the electric field (in mV/m)
not scaled by the upstream value. For typical solar wind values, the electric field is a few millivolts per meter
(e.g., BZ = −2.5 nT and VX = −400 km/s produce EY =1 mV/m). Figures 2d–2f show the values near the
magnetopause obtained by computing the average value within 0–20% of the magnetosheath thickness.

Figure 2 clearly demonstrates that the strong reduction in solar wind speed reduces the parallel component
of the electric field to only a small fraction of the upstream driving electric field. Furthermore, the electric field
is larger in the quasi parallel side (by about 15%), reducing toward the flanks as the magnetic field becomes
draped and increasingly parallel to the plasma flow. This would indicate that the most favorable conditions
for plasma and energy entry would be at the quasi parallel magnetopause sunward of the terminator. Note
that antiparallel fields favorable for reconnection are largely generated by the BZ component of the IMF.
However, as the field becomes draped, the BY and BX components add to the electric field component along
the large-scale neutral line away from the subsolar region.
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Figure 4. Magnetosheath Poynting flux component normal to the magnetopause S⟂ scaled to the upstream values.
The data are divided into four subsets with (a) low driving −2.5 < BZ < 0 nT and V < 400 km/s, (b) intermediate driving
−20BZ < −5.0 nT and V < 400 and (c) −2.5 < BZ < 0 nT and V > 450, and (d) high driving −20 < BZ < −5.0 nT and
V > 450 km/s. (e) Magnetosheath perpendicular Poynting flux S⟂ scaled to the upstream values averaged over values
within 20% of the magnetosheath thickness closest to the magnetopause as a function of the 𝜃MIPM angle (in degrees).
The average values near the magnetopause are 9.2, 35.9, 12.4, and 66.3 μW/m2 for the four data sets, respectively.

Considering the different behavior of B and V across the bow shock, we further examine the electric field
for different solar wind and IMF parameters. We concentrate here on southward IMF conditions. We examine
separately cases with weakly southward IMF (−2.5< BZ < 0 nT) and strongly southward IMF (BZ <−2.5 nT).
Furthermore, we separate the data set into slow solar wind flow (V < 400 km/s) and fast solar wind flow
(V > 400 km/s). Figure 3 shows the electric field parallel component values in the magnetosheath scaled by the
upstream solar wind electric field magnitude. Figure 3a shows the weak driving conditions under which the
solar wind speed is low, and IMF BZ is only moderately negative. Figure 3d shows the opposite case with high
solar wind speed and strongly negative IMF BZ . The number of observations in each category is (a) 131,406;
(b) 59,725; (c) 104,915; and (d) 39,327.

While Figures 3a–3d show in the large scale a similar pattern, there are also differences. The electric field tends
to be stronger close to the shock and decreases toward the magnetopause. Strongly negative IMF BZ creates
higher electric field values close to the shock (Figures 3b and 3d). At the magnetopause, the most conditions
that generate the largest electric fields involve high solar wind speed (Figures 3c and 3d, and red and green
curves in Figure 3e). Furthermore, the electric field parallel to the magnetopause maximizes away from the
subsolar region for all conditions.
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Earlier studies using MHD simulations [e.g., Palmroth et al., 2006] show that the vast majority of the energy
are transferred from the solar wind to the magnetosphere in the form of the Poynting flux S = E × B∕𝜇0. To
investigate the energy available at the magnetopause, we compute the component of the Poynting vector
perpendicular to the magnetopause, again scaling the values with the upstream solar wind values. Figure 4
shows (E × B)⟂∕ ∣ E × B ∣SW by computing the perpendicular directions similar to the electric field using
the model magnetopause normal. From this plot it is evident that the most efficient energy transfer takes
place slightly away from the subsolar region, about 45∘ from the subsolar direction. Furthermore, the energy
transfer is more efficient on the quasi parallel shock side and again most efficient when the solar wind speed
is high and the IMF BZ is only moderately negative. Note that the absolute values of the energy transfer for
low driving and high driving are very different, as the curves in Figure 3e are scaled by the upstream values.
Note also that, in order to better distinguish the different driving conditions, we have in this case limited the
fast solar wind values to speeds above 450 km/s and strongly negative IMF BZ to values BZ <−5.0 nT.

In conclusion, the solar wind electric field is modified as the solar wind crosses the bow shock. The combined
effect of the deflection of the flow along the magnetospheric boundary and the compression of the magnetic
field lead to strongest electric field parallel to the magnetopause in the quasi parallel shock side of the
dayside magnetopause. The most likely positions for energy transfer reside in the magnetopause region
sunward of the terminator line but away from the subsolar region. The energy is transferred in the form of
Poynting flux—the Poynting vector component perpendicular to the magnetopause is an indicator of the
regions of energy transfer. As shown in Figure 4, the perpendicular Poynting flux at the magnetopause
maximizes in the magnetosheath (relative to the upstream values) when the solar wind speed is high
and the magnetic field is only moderately negative. Thus, high solar wind speed under relatively average
driving provides magnetopause conditions that are most favorable for energy and plasma entry into the
magnetosphere.

3. Discussion

In this paper we show that typically used solar wind driver functions do not give consistent results for low and
high solar wind speed: for similar driver values, high solar wind speed conditions produce higher activity than
a combination where the magnetic field component is larger and the solar wind speed is correspondingly
lower (Figure 1). Using the THEMIS measurements tagged with solar wind driver properties, we show that the
electric field is relatively uniform in the magnetosheath near the magnetopause from one flank to the other
but that the electric field transfer from the upstream undisturbed solar wind to the magnetosheath near the
magnetopause is most efficient when the solar wind speed is high and the IMF BZ is only moderately negative
(Figure 3). Similarly, the Poynting flux normal to the magnetopause is highest when the solar wind speed
is high (Figure 4). The Poynting flux transfer is lower at the subsolar region and increases toward the flanks,
before decreasing toward the terminator and beyond. We therefore conclude that the effect of the high solar
wind speed is caused by the combination of the magnetic field and plasma transport properties across the
bow shock and magnetosheath (see Figure 2).

Figures 3 and 4 provide an explanation of the result in Figure 1: As the electric field determining the reconnec-
tion efficiency is a combination of speed and magnetic field, and as these parameters change independently
depending on the location, the reconnection driving electric field at the magnetopause is not a simple
function of the solar wind EY but favors conditions with high solar wind speed and moderately negative BZ .

In many statistical analyses, strong driving conditions dominate the correlations between the driver and
response. Thus, for higher levels of driving, the driver functions perform quite well [e.g., Newell et al., 2007],
which makes them valuable for prediction of space weather events. However, for the sake of understanding
the details of the coupling processes, it is important to consider also the average and low levels of driving
and geomagnetic activity. This study sheds light on how the bow shock conditions and the magnetosheath
processes lead to differences in high and low solar wind speed cases as well as weakly and strongly negative
IMF BZ cases.

Sergeev et al. [2014] suggest that a key parameter for driving ionospheric activity, but missing in earlier analy-
ses, is

√
(T)∕N in the plasma sheet. The plasma sheet temperature (T) and density (N) affect the field-aligned

acceleration and precipitating particle flux, ionospheric conductivity, and the field-aligned current intensity.
As high solar wind speed leads to low density and high temperature (hot tenuous plasma sheet), while low
solar wind speed produces high density and low temperature (cold dense plasma sheet) [Borovsky et al., 1998;
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Wang et al., 2007]; this result is consistent with ours predicting higher activity for high solar wind speed. Thus,
in addition to the variations through the bow shock and magnetosheath, there may be a second effect within
the magnetosphere that operates in the same direction of increasing activity for higher solar wind speeds.

A topic deserving further study is the energy entry not related to large-scale magnetic reconnection. These
“viscous interaction” processes [Axford and Hines, 1961] may include a variety of diffusive processes and/or
boundary instabilities, most notably the Kelvin-Helmholtz instability (KHI) [e.g., Nykyri and Otto, 2001]. In a
recent study, Dimmock et al. [2014] show that high solar wind speed drives higher level of fluctuations in
the magnetosheath, regardless of the level of fluctuations in the solar wind. Furthermore, two-dimensional
MHD simulations can be used to show that the KHI is enhanced by an increased level of fluctuations in the
magnetosheath. Thus, higher fluctuations in the magnetosheath will lead to enhanced energy and plasma
transfer by KHI through the magnetopause.

The probability distribution function of the AL index is highly non-Gaussian in most situations; the exception
being strongly southward IMF conditions. Therefore, it is important to note that the AL mean (or median) is not
a good parameter to characterize the response to a given driver. Furthermore, we propose a bimodal response
of the AL index to strongly northward and southward driving. This may indicate that the solar wind driver
under southward (reconnection-dominated) and northward (viscous interaction dominated) conditions will
have different functional dependences on the solar wind parameters.

4. Conclusions

1. Analysis of the AL response to different solar wind drivers (EY , EPAR, 𝜖, dΦMP∕dt) shows that the result depends
on the combination of the magnetic component (B magnitude and orientation) and solar wind speed such
that higher speed produces higher AL activity for the same value of the driver function.

2. THEMIS results show that the electric field parallel to the magnetopause maximizes at the quasi parallel
(dawn) flank. The magnetopause field compared to the upstream solar wind conditions is largest for cases
when the solar wind speed is high and the IMF BZ is only moderately negative.

3. The Poynting flux normal to the magnetopause maximizes at the dawn flank sunward of the terminator.
Similarly to the electric field, the energy input compared to the upstream conditions is largest for high solar
wind speed and moderately negative for BZ .
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