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ABSTRACT

As the development of challenging missions like on-orbit construction and collaborative

inspection that involve multi-spacecraft systems increases, the requirements needed to im-

prove post-failure safety to maintain the mission performance also increases, especially when

operating under uncertain conditions. In particular, space missions that involve Distributed

Spacecraft Systems (e.g, inspection, repairing, assembling, or deployment of space assets) are

susceptible to failures and threats that are detrimental to the overall mission performance.

This research applies a distributed Health Management System that uses a bio-inspired mech-

anism based on the Artificial Immune System coupled with a Support Vector Machine to

obtain an optimized health monitoring system capable of detecting nominal and off-nominal

system conditions. A simulation environment is developed for a fleet of spacecraft perform-

ing a low-Earth orbit inspection within close proximity of a target space asset, where the

spacecraft observers follow stable relative orbits with respect to the target asset, allowing

dynamics to be expressed using the Clohessy-Wiltshire-Hill equations. Additionally, based

on desired points of inspection, the observers have specific attitude requirements that are

achieved using Reaction Wheels as the control moment device. An adaptive control based

on Deep Reinforcement Learning using an Actor-Critic-Adverse architecture is implemented

to achieve high levels of mission protection, especially under disturbances that might lead to

performance degradation. Numerical simulations to evaluate the capabilities of the health

management architecture when the spacecraft network is subjected to failures are performed.

A comparison of different attitude controllers such as Nonlinear Dynamic Inversion and Pole

Placement against Deep Reinforcement Learning based controller is presented. The Dy-

namic Inversion controller showed better tracking performance but large control effort, while

the Deep Reinforcement controller showed satisfactory tracking performance with minimal

control effort. Numerical simulations successfully demonstrated the potential of both the bio-

inspired Health Monitoring System architecture and the controller, to detect and identify

failures and overcome bounded disturbances, respectively.

ii



TABLE OF CONTENTS

ACKNOWLEDGMENTS i

ABSTRACT ii

LIST OF FIGURES vii

LIST OF TABLES viii

NOMENCLATURE ix

1 Introduction 1

1.1 Motivation 1

1.2 Problem Statement 4

1.3 Thesis Outline 4

1.4 Literature Review 5

1.4.1 Distributed Spacecraft Systems 5

1.4.2 Trajectory Optimization 9

1.4.3 Fault Detection and Identification Data-driven Approaches 10

1.4.4 Review of Optimal Control and Deep Reinforcement Learning 11

1.4.5 Optimal Control 12

1.4.6 Linear Quadratic Regulator from HJB 13

1.4.7 Deep-Reinforcement Learning Control 15

2 Health Management Framework 22

2.1 Health Management Architecture 22

2.1.1 Self and Non-self representation 23

2.1.2 Antibodies generation using Variable Detector Algorithm 24

2.1.3 Support Vector Machine Algorithm 25

2.1.4 Detection Rates and False Alarms 26

iii



2.1.5 Distributed Health Management Architecture 28

3 Attitude Determination and Control 30

3.1 Attitude Determination 30

3.1.1 Quaternion Kinematics 31

3.1.2 Spacecraft Kinematics and Kinetics (Rigid Body) 32

3.1.3 Equations of Motion for Spacecraft with Reaction Wheels 34

3.2 Spacecraft Linear Model 36

3.3 Nonlinear Dynamic Inversion (NLDI) Controller 38

4 Simulation Environment 40

4.1 Reference Mission: Inspection of a Target Spacecraft 40

4.2 Spacecraft Dynamics 41

4.3 Simulation Framework 45

4.3.1 Reaction Wheel Model 46

4.3.2 Failure Scenarios 48

5 Numerical Simulations and Results Analysis 55

5.1 HMS training 55

5.2 Local HMS Detection Capabilities 59

5.3 Global HMS Detection Capabilities 64

5.4 Attitude Controllers 69

5.4.1 Design Parameters 70

5.4.2 Controllers Performance Comparison 73

6 Conclusions and Future Work 80

REFERENCES 81

PUBLICATIONS 88

iv



LIST OF FIGURES

Figure Page

1.1 A-Train Constellation., from NASA [1] 6

1.2 SunRISE Mission - 2024 7

1.3 MarCo Mission - 2018 7

1.4 CADRE robot concept 7

1.5 CubeSats standard size and form factor, from Yost et al. [2] 8

1.6 Evolution of CubeSat Missions, from Yost et al. [2] 8

1.7 Representation of a mission configuration with 6 spacecraft orbiting around

the asteroid 433 Eros. From Rossi et al. [3] 10

1.8 Actor-Critic-Adverse Structure 21

2.1 Generated detectors (red) surrounding self data (blue) using the V-Detector

method. 25

2.2 AISO-SVM corresponding support vectors for a feature set 26

2.3 Interaction of a single spacecraft within its multi-spacecraft network 28

2.4 DSS HMS framework 29

4.1 Pointing Control for Inspection of the Target Spacecraft, from Nakka et al. [4] 41

4.2 ECI frame X̂, Ŷ , Ẑ and LVLH frame x̂, ŷ, ẑ, centered at the chief spacecraft.

The deputy position vectors in the rotating and inertial reference frames are

denoted by lj and rj, respectively. From: Morgan and Chung [5] 42

4.3 Relative orbits in the LVLH and the ECI coordinate frames. 45

4.4 Model Overview of Simulation Environment 46

4.5 Tetrahedral RW configuration 47

4.6 Reaction Wheel Model 48

4.7 Spacecraft 2 Faulty in the network 49

4.8 Effect of Failure Case I 50

v



4.9 Attitude tracking performance in Spacecraft 2 when Failure Case I is injected 51

4.10 Effect of Failure Case II 52

4.11 Attitude tracking performance in Spacecraft 2 when Failure Case II is injected 52

4.12 Effect of Failure Case III 53

4.13 Effect of Failure Case III 53

4.14 Attitude tracking performance in Spacecraft 2 when Failure Case III is injected 54

5.1 Validation: Feature 0 sc2 vs Feature 18 sc2 59

5.2 Fail Case I: Feature 0 sc2 vs Feature 16 sc2 59

5.3 Fail Case I: Feature 0 sc2 vs Feature 9 sc2 60

5.4 Fail Case I: Feature 0 sc2 vs Feature 19 sc2 60

5.5 Fail Case I: Feature 0 sc2 vs Feature 11 sc2 60

5.6 Fail Case II: Feature 0 sc2 vs Feature 10 sc2 61

5.7 Fail Case II: Feature 0 sc2 vs Feature 16 sc2 61

5.8 Fail Case II: Feature 0 sc2 vs Feature 19 sc2 62

5.9 Fail Case II: Feature 4 sc2 vs Feature 20 sc3 62

5.10 Fail Case III: Feature 0 sc2 vs Feature 16 sc2 63

5.11 Fail Case III: Feature 0 sc2 vs Feature 20 sc2 63

5.12 Fail Case III: Feature 4 sc2 vs Feature 17 sc2 63

5.13 Fail Case III: Feature 4 sc2 vs Feature 20 sc2 64

5.14 Representation of Global HMS for detecting abnormal conditions in a single

spacecraft 65

5.15 Fail Case II: Feature 0 sc2 vs Feature 16 sc3 66

5.16 Global Self, Fail Case II: Feature 0 sc4 vs Feature 16 sc3 66

5.17 Fail Case II: Feature 4 sc2 vs Feature 17 sc2 67

5.18 Global Self, Fail Case II: Feature 4 sc4 vs Feature 17 sc3 67

5.19 Fail Case III: Feature 25 sc2 vs Feature 30 sc3 68

5.20 Global Self, Fail Case III: Feature 25 sc4 vs Feature 30 sc3 68

vi



5.21 Attitude tracking with DRL based controller - Case I 74

5.22 Attitude tracking with DRL based controller - Case I 75

5.23 Adverse adaptive weights - Case I 76

5.24 Adverse function approximation - Case I 76

5.25 Attitude tracking with DRL based controller - Case II 77

5.26 Attitude tracking with DRL based controller - Case II 78

5.27 Adverse adaptive weights - Case II 79

5.28 Adverse function approximation - Case II 79

vii



LIST OF TABLES

Table Page

1.1 Small Spacecraft Buses Categories from NASA [1] 7

2.1 Main Biological Terms 24

2.2 Terminology and Derivations from a Confusion Matrix 27

3.1 Products of Inertia from Reference Cubesat 37

4.1 RWP015 Specifications 47

5.1 Features/States Selected from Spacecraft 56

5.2 List of Considered 2−D Self Projections from Spacecraft 2 58

viii



NOMENCLATURE

ACS Attitude Control Subsystem

ADCL Advanced Dynamics and Control Laboratory

AI Artificial Intelligence

AIS Artificial Immune System

AISO − SVM Artificial Immune System Optimized Support Vector Machine

ARE Algebraic Ricatti Equation

CWH Clohessy-Wiltshire-Hill

DL Deep Learning

DRL Deep Reinforcement Learning

DSS Distributed Spacecraft Systems

ECI Earth-centered Inertial

FDI Fault Detection and Identification

GANN Generative Adversarial Neural Networks

H∞ H-infinity

HJB Hamilton-Jacobi-Bellman

HJI Hamilton-Jacobi-Isaacs

HM Health Monitoring

HMS Health Monitoring System

LEO low-Earth-orbit

ix



LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regulator

LV LH Local Vertical Local Horizontal

NLDI Nonlinear Dynamics Inversion

NN Neural Network

POI Point of Interest

PRO Passive Relative Orbit

RW Reaction Wheel

SC Spacecraft

SVM Support Vector Machine

x



1 Introduction

1.1 Motivation

Space exploration has traditionally been performed by single monolithic spacecraft car-

rying multiple science instruments on board. However, only a portion of instruments can

be operated simultaneously due to system constraints such as power requirements, viewing

angle, storage capacity, and mechanical limitations. This condition and the increase in more

challenging space missions (e.g, on-orbit construction and collaborative inspection), have ac-

celerated the interest in implementing Distributed Spacecraft Systems (DSS). In fact, recent

scientific advances in hardware miniaturization have provided new ideas for deploying large

fleets of small satellites [2]. Such systems represent constellations of small satellites, which

envision improvements in mission efficiency and performance, as the mission objectives do

not rely on a single spacecraft. As a result, space missions involving DSS hold promise for

better data quality results, shorter mission duration, and improved robustness to failures [3].

For instance, as stated by Foust et al. [6], recent theoretical developments have revealed that

a team of collaborating spacecraft can augment the robustness and versatility of the mission

at a reduced cost and time, which make these architectures attractive for new emerging

applications.

Space missions that involve networked multi-spacecraft systems pose significant chal-

lenges to flight safety. This is especially the case due to the complexity of space missions

and the harsh operating environments of space, which leaves these systems susceptible to

threats and failures that affect flight safety and mission performance. Furthermore, there

exist infinite possibilities of failure, during the different phases of a mission, and they can

be caused due to external or internal factors. Moreover, according to the report presented

in [7], small satellite failures are categorized as mission failures and partial mission failures,

where the first ones happen when the spacecraft fails to operate or complete the mission

objectives and the second one happens when the spacecraft experiences component failures.
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The Attitude Control System (ACS) is considered a critical subsystem in spacecraft prone

to failures caused by malfunctions in its components, actuators, and sensors, which could

result in high energy consumption, loss of control, and catastrophic loss of spacecraft [8]. For

example, the Hubble Space Telescope has experienced several failures in its reaction wheels;

this represents a critical malfunction to the mission where the main goal is to maintain

pointing accuracy.

In an effort to improve flight safety, an active research area is the development of Fault

Detection and Identification (FDI) methodologies with the goal of providing a mechanism

of status update, where systems can sense abnormal behavior, detect, and identify poten-

tial threats. The implementation of these mechanisms could lead to increased autonomy

trust, reliability, and robustness of mechanical systems. Moreover, the development of ro-

bust and intelligent FDI tools capable of detecting and identifying sensors and system faults

in real-time can assist in decision-making processes, mitigate performance degradation and

increase the chances of mission success. Consequently, in the case of DSS, access to Health

Monitoring Systems (HMS) information would provide knowledge of the mission status and

allow agents to make decisions towards the benefit of completing the mission, by executing

adjustments in the controller, trajectory or formation of the mission, among others.

These efforts are of significant importance in the aerospace industry as intelligent systems

serve as a means to augment human expertise and assist in endeavors that save cost and time,

which in space are considered critical assets. The rapidly growing application of data-driven

algorithms using machine learning to describe and predict complex systems has provided

significant contributions to the development of FDI systems, as these require the processing

of enormous amounts of data. A promising data-driven approach in FDI is the Artificial

Immune System (AIS) paradigm for fault detection in aerospace systems [9–11] and more

recently in spacecraft systems [12]. The AIS paradigm employs bio-inspired algorithms

and the principle of self/non-self discrimination to distinguish between different classes
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of data. The development of a HMS based on the AIS paradigm and machine learning

classifier methods such as Support Vector Machine (SVM) to improve detection capabilities

by optimizing data classification has been made at the Advanced Dynamics and Control

Laboratory (ADCL) [13]. In a similar manner, this approach has been proposed to assist

with hyperparameter optimization for a SVM classifer in [14].

Machine learning algorithms have also been explored for system control, by characteriz-

ing a control law that effectively regulates a complex system. Based on optimization theory,

challenging problems for minimizing or maximizing a given quantity subject to constraints

are solved. Control algorithms based on adaptive neural networks, genetic algorithms, evo-

lutionary algorithms, and deep reinforcement learning are some of the different machine

learning techniques explored for controlling complex, nonlinear systems [15].

Deep Reinforcement Learning (DRL) based algorithms such as Actor–Critic-Adverse

structures have been studied and developed in machine learning to learn the optimal pol-

icy online [16]. Furthermore, in the presence of disturbances and uncertainties, Actor-

Critic-Adverse structures that include Generative Adversarial Neural Networks (GANN)

hold promising results based on concepts of game theory and H∞ control, where the con-

troller is a minimizing player and the disturbance a maximizing one. Thus, the algorithm

provides the optimal control policy considering the cost of performance and the cost of actu-

ation while the worst disturbance that maximizes the value function is chosen. DRL control

structures are of special interest in this research considering the approximation of the value

function (critic) involved in optimal control which finds the minimum control effort when

minimizing for different variables in the system. Output information from the HMS could

be included in the optimization process and this type of controller can be useful for resource

allocation purposes.

The application of an Artificial Intelligence (AI) based HMS tool is applied in this research

and the detection capabilities in terms of false alarms and detection rates are assessed for

a fleet of spacecraft in low -Earth orbit that is performing on-orbit inspection of a target
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space asset, under failure conditions. Numerical simulations to evaluate the capabilities of

the HMS and the performance of the DRL controller to overcome bounded disturbances are

performed.

1.2 Problem Statement

FDI strategies for aerospace systems are needed to protect mission objectives and per-

formance. It is desired to provide FDI capabilities to DSS missions especially due to the

high susceptibility to failures in spacecraft subsystems and the harsh operating environment

of space. This research effort proposes a distributed health management system for fault

detection and identification on DSS in low Earth orbit inspection missions. Access to this in-

formation would provide knowledge of the mission status and allow agents to make decisions

towards the benefit of completing the mission, by executing adjustments in the controller,

trajectory (orbits) or formation of the mission, among others. The description of the design

reference mission and the dynamical system is described in the following sections.

1.3 Thesis Outline

Chapter 1 presents a generalized background of DSS, trajectory optimization, data-driven

FDI approaches and DRL based control. This chapter includes concepts from optimal con-

trol, robust control, and game theory. It also presents the neural network-based adaptive

laws proposed in [17] for an Actor-Critic-Adverse control structure.

Chapter 2 presents the HM Framework, including the concepts of self and non-self repre-

sentation, a description of the algorithms used to generate detectors: Variable Detector and

Artificial Immune System Optimized Support Vector Machine (AISO-SVM), and a definition

of the performance metrics used to assess the classification and detection capabilities of the

HMS. The distributed HM architecture applied to a network of spacecrafts is also presented.

Chapter 3 provides an overview of the spacecraft dynamics and equations of motion for

attitude determination and control. These equations are used in the design of an NLDI con-

troller, while the spacecraft linear model is used in the derivation of a DRL based controller

and Pole Placement controller. The equations of motion using Reaction Wheels (RW) as
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control moment devices are also provided.

Chapter 4 presents the simulation environment main components and describes the ref-

erence mission of multi-spacecraft following stable relative orbits governed by the Clohessy-

Wiltshire-Hill (CWH) equations. A review of the spacecraft dynamics using the CWH equa-

tions, which provides a linear approximation of the relative dynamics between the target

space asset and each spacecraft in the fleet is presented. Furthermore, a detailed description

of the Reaction Wheel model used is developed and the description of three types of failures

cases in the attitude control system that uses reaction wheels is presented.

Chapter 5 summarizes the results and numerical simulations for the tested failure sce-

narios. A description of the features used for training the HMS is shown. Additionally, an

analysis of Local and Global HMS detection capabilities in terms of detection rates and false

alarms is provided. A comparison between the DRL controller performance is made with

respect to a NLDI controller and Pole Placement controller in the presence of failures and

disturbances.

Chapter 6 delves into the main conclusions of this thesis and discusses methodologies to

continue the research for future work.

1.4 Literature Review

In this section, a literature review of DSS using small satellites is presented along with

the challenge of trajectory optimization. An overview of optimal control and deep learning

concepts is also presented.

1.4.1 Distributed Spacecraft Systems

The research in DSS has gradually broadened in recent years and its benefits are already

being explored in space by different multi-spacecraft missions.

In Earth orbit, several multi-spacecraft missions are in operation (e.g, the Afternoon

Constellation with satellites GCOM-W1, OCO-2M Aqua, Aura, CALIPSO and CloudSat [1,

18] and GRACE-FO [19]) or planned for launch (e.g. CloudCT [20]) to provide simultaneous

observations for Earth science applications. As an illustration, the Afternoon Constellation
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as of 2022, is presented in Figure 1.1, where although each satellite is operated separately,

their operation is carefully coordinated to increase observation efficiency.

Figure 1.1 A-Train Constellation., from NASA [1]

In deep space, a reference mission is the the MarCO mission [21] which has successfully

demonstrated the technical feasibility of DSS by being the first deep-space mission using

multi-spacecraft vehicles. Future deep-space missions involving DSS include the SunRISE

mission [22] which will consist of six small spacecraft in a geosynchronous Earth orbit to

study solar activity, the Mars Swarm Array Transmitter [23] which consists of a high data

rate swarm array to support future communications demands in space, and the Coopera-

tive Autonomous Distributed Robotic Explorers (CADRE) [24]), which consists of multiple

ground robots programmed to work cooperatively as an autonomous team to collect data

from different areas of the Moon.

The use of smaller spacecraft has increased recently as endless applications have been

identified, and more benefits from technological advances are developed. Benefits such as

greater data processing, transmission capacity, optimized optical communications, improved

autonomy, and inter-spacecraft navigation are some of the characteristics of smaller space-

craft [2].
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Figure 1.2 SunRISE Mission -
2024

Figure 1.3 MarCo Mission -
2018

Figure 1.4 CADRE robot
concept

The agreed size classification scheme for small spacecraft buses according to NASA [1] is

shown in Table 1.1.

Table 1.1 Small Spacecraft Buses Categories from NASA [1]

Minisatellite 100 – 180 kg
Microsatellite 10 – 100 kg
Nanosatellite 1 – 10 kg
Picosatellite 100 g - 1 kg
Femtosatellite Less than 100 g

From this classification, the most common small satellite types are the nanosatellite

and microsatellites, commonly called CubeSats. A CubeSat is based on a 10 cm square

cube or 1U form factor and weights less than 30 kg [2]. Regardless of their small size,

nanosatellites usually have transmitters, receivers, antennae, and solar cells, and carry dozens

of microprocessors. Furthermore, picosatellites usually have propulsion systems and attitude

control systems in the form of miniature gyroscopes or magnetorques whose magnetic fields

produce torque. On the other hand, femtosatellites do not have any means of attitude control

or propulsion, but do include transmitters to rely data to the ground or to a larger spacecraft

[7]. Figure 1.5 shows a representation of the common form factor of CubeSats based on unit

1U.

The initial objective of developing CubeSats was for educational purposes in universities

as a means to provide hands-on experience for students. This idea has evolved, and as of

today, the CubeSat spacecraft is a diverse platform that offers valuable processing power,
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Figure 1.5 CubeSats standard size and form factor, from Yost et al. [2]

on-orbit capability, and science/data collection, which make Cubesats interesting systems

for multiple space applications. As a reference of the evolution of CubeSats missions and

applications, Figure 1.6 shows insights about small spacecraft mission trends from 2010 to

2020.

Figure 1.6 Evolution of CubeSat Missions, from Yost et al. [2]

Small satellite technology holds promise to improve mission efficiency and the broad

spectrum of applications using these systems has motivated interest in designing multiple

spacecraft architectures for space exploration. For instance, recent research by Rossi et al. [3],

suggests that a swarm of small spacecraft could be more efficient for small body inspection

compared to traditional monolithic architectures, resulting in better data quality, shorter

mission duration, and additional robustness to failures of individual vehicles [3].

Nonetheless, implementing small multi-spacecraft missions involves considering multiple
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challenges, considering small satellites have multiple possible points of failure and the harsh

environments of space. These vehicles typically have multiple microprocessors and related

electronics used to operate the different subsystems onboard, such as control power man-

agement, solar cell operation, attitude control, telemetry, propulsion systems, star trackers,

sun sensors, and earth sensors, among others. A malfunction in any one of these subsystems

can cause a small satellite to fail or partially fail, thus affecting the mission objectives and

performance [7]. From this motivation, it is desired to provide FDI capabilities to multiple

spacecraft missions due to the high susceptibility to failures in spacecraft subsystems and

the need to increase chances of mission success.

1.4.2 Trajectory Optimization

The challenge of orbit design for multiple spacecraft has been widely addressed. For

example, flower constellations designs have been proposed for low-Earth orbit missions, which

can meet particular mission requirements and are of interest for telecommunications coverage

applications [25]. However, the challenge of orbit design remains briefly addressed in the

literature for deep space missions.

Trajectory design for deep space applications is challenging, as the spacecraft network not

only have to coordinate their motion, but also must consider inter-spacecraft communica-

tion constraints and onboard memory limitations. Thus, previous research have emphasized

the design of optimized orbit algorithms that can account for instrument requirements and

communication constraints. Nonetheless, it is necessary to also account for failures and dis-

turbances while designing trajectory optimization algorithms. For instance, information from

the modified flight envelop of the mission provided from the HMS could support trajectory

optimization processes, considering failures or any abnormal conditions in the network.

A recent study by Rossi et al. [3] made significant contributions towards the development

of orbit optimization considering communication constraints and irregular gravity fields from

small bodies such as asteroids. Based on the mission concept of asteroid inspection by

multiple spacecraft shown in Figure 1.7, the authors propose an optimization framework
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that simultaneously optimizes the observations captured by the spacecraft and the data

flows for a given set of orbits, maximizing the amount of scientific data relayed to the carrier

spacecraft.

Figure 1.7 Representation of a mission configuration with 6 spacecraft orbiting around the
asteroid 433 Eros. From Rossi et al. [3]

The importance of gathering data from a Health Management system and using it for

decision-making processes is highlighted in this research, which could improve the robustness

and accuracy of trajectory optimization algorithms.

1.4.3 Fault Detection and Identification Data-driven Approaches

Fault tolerant control technology plays a fundamental role in flight safety and control

systems. The prompt detection of faults can avoid system damage and fatal accidents. Most

early studies as well as current work on FDI methodologies focus on data-driven algorithms,

as they have provided a great contribution to this area of research. Gao et al. [26] provide

a comprehensive survey of data-driven fault detection strategies applied to autonomous sys-

tems and processes [26, 27]. In the literature, neural network classifiers and Kalman filter

sensor fusion techniques have been applied to fault detection, diagnosis, and accommodation

architectures within aerospace systems [28, 29]. These methods implement artificial intelli-

gence techniques to available historic flight data of the system to categorize the information

as nominal and abnormal behaviors.
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A promising data-driven method is the Artificial Immune System (AIS) paradigm which

consists of a bio-inspired algorithm similar to the immune system of living beings, to distin-

guish between different classes of data. The AIS has inspired algorithms in a wide range of

applications such as anomaly detection, data mining, computer security, adaptive control,

and pattern recognition [10].

Additionally, AIS augmentation has been proposed to assist with classifiers augmentation

and hyperparameter optimization for a SVM classifer [29]. Research efforts at the Advanced

Dynamics and Control Laboratory have extended this concept by implementing the Clonal

Selection Algorithm, a bio-inspired optimization process to improve SVM training within a

spacecraft fault detection system [30]. The SVM can also be combined with the Negative

Selection and Variable Detection algorithms to improve data clustering performance within

fault detection methodologies.

1.4.4 Review of Optimal Control and Deep Reinforcement Learning

Given a controllable nonlinear time-varying dynamical system as:

˙̄x(t) = f(x̄, ū, t)

There exist many choices for stabilizing or performing tracking control by implementing a

full-state feedback control law as shown in Equation 1.1:

ū(t) = −Kx̄(t) (1.1)

where K is a control gain matrix.

It is possible to place the eigenvalues of the closed-loop system as far as desired in the left

half of the complex plane and make the system arbitrarily stable if the system is controllable.

However, it is not guaranteed that overly stable eigenvalues will provide the minimum control

effort. When this happens, expensive control expenditure resulting in actuation signals that

exceed maximum allowable values is expected. Additionally, overly stable eigenvalues may
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also cause the control system to overreact to noise and disturbances affecting performance

and robustness of system [15].

Several methods reported in the literature address the balance between the stability and

aggressiveness of control. Optimal control is a well-defined framework for studying opti-

mal decision-making processes and is usually implemented as a Linear Quadratic Regulator

(LQR) or Linear Quadratic Gaussian (LQG), where the main concept within Optimal Con-

trol is to minimize a generalized cost function. Also, throughout time, other controllers have

been proposed based on learning algorithms such as Deep-Reinforcement Learning control

with promising applications to complex dynamical systems. These methodologies will be

analyzed in more detail in the following subsections.

1.4.5 Optimal Control

The theory of optimal control has a long history as one of the fundamental approaches

of modern control systems design. Specifically, the optimal control problem is to find the

optimal control input ū(t) on the time interval [t0, T ] that drives a linearized dynamic sys-

tem along a trajectory x̄(t) such that a generalized cost function such as Equation 1.2 is

minimized:

J(t0) = ϕ(x̄(T ), T ) +

∫ T

t0

L(x̄(t), ū(t), t)dt (1.2)

where the final weighting function ϕ(x̄(T ), T ) depends on the final state and final time,

and the weighting function L(x̄(t), ū(t), t) depends on the state and input at intermediate

times in [t0, T ]. The cost function is selected to make the system exhibit a desired type of

performance and there exist various possibilities to select J(t0) [31].

In order to solve the optimal control (i.e., to obtain the solution to the cost function

with minimum control effort), Lagrange multipliers are used to relate the constraints of the

systems and the cost function. For this, the Hamiltonian is used:
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H(x̄, ū, t) = L(x̄(t), ū(t), t) + λTf(x̄, ū, t) (1.3)

where λ is a Lagrange multiplier. The Hamilton-Jacobi-Bellman (HJB) is shown in Equation

1.4:

0 =
∂J∗

∂t
+H∗ (1.4)

where H∗ is the minimized Hamiltonian with respect to the control input:

H∗ = min
ū(t)

H (1.5)

Numerous results are available for obtaining the solution of the discrete-time HJB equa-

tion; however, in the continuous-time (CT) case, the solution is more challenging due to the

nature of the nonlinear differential equations. For this reason, the HJB equation is not easy

to solve analytically [32]. This has led to significant research efforts for developing algorithms

to approximate the solution of the HJB equation as will be discussed in Subsection 1.4.7.

1.4.6 Linear Quadratic Regulator from HJB

It is desired to find the optimal control to drive the state from a given x̄(t0) to a desired

state x̄(tf ) so that J(t0) is minimized.

Consider the linear dynamical system in Equation 1.6:

˙̄x = Ax̄+Bū (1.6)

with quadratic cost index or cost function:

J(t0) =
1

2
x̄T (T )S(T )x̄(T ) +

1

2

∫ T

t0

(x̄TQx̄+ ūTRū)dt (1.7)

In this cost function, the first term is a function of the final state which is desired to

make small, for example energy [x̄T (T )S(T )x̄(T )]/2, where S is a given weighting matrix [31].
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Equation 1.7 considers the cost of performance and the cost of actuation, where matrix Q

is positive semi-definite that weights the cost of the states and matrix R is positive definite

that weights the cost of actuation. These matrices are often diagonal, and the diagonal

elements may be tuned to consider the importance of the control objectives.

Applying Euler-Lagrange Equations, the following Hamiltonian form can be defined:

H(x̄, ū, λ) = L(x̄, ū) + λTf(x̄, ū, t)

H(x̄, ū, λ) =
1

2
(x̄TQx̄+ ūTRū) + λTf(x̄, ū, t)

(1.8)

where λ is a Lagrange multiplier.

Now, minimizing the Hamiltonian H∗ with f(x̄, ū, t) = Ax̄+Bū:

H∗ =
∂H

∂ū
= 0

Rū+ λB = 0,

(1.9)

Then, the optimized control is obtained as:

ū∗ = −R−1BTλ (1.10)

Proposing λ = Sx, where S is a positive definite matrix, provides the solution to the Riccati

Equation:

−Ṡ = SA+ ATS − SBR−1BTS +Q (1.11)

Therefore, the optimal control has a time-varying gain:

Kr(t) = R−1BTS(t)
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which regulates the state of the system to:

lim
t→∞

x(t) = 0

where S(t) is obtained by solving the Riccati Equation.

When Ṡ = 0, Equation 1.11 is known as the Algebraic Ricatti Equation (ARE). Then,

the optimal control law converges to:

U∗(t) = −K∞x(t)

K∞ = R−1BTS∞

where S∞ is the solution of the ARE.

1.4.7 Deep-Reinforcement Learning Control

Significant research efforts have been made for developing algorithms to approximate the

solution of the HJB equation. These solutions suggest the use of Policy Iteration (PI) which

is based on a two step iteration: policy evaluation and policy improvement. The algorithm

starts by evaluating the cost of an initial control policy and this new cost is used to obtain a

new improved control policy, with lower associated cost. This two step algorithm is repeated

until the policy improvement no longer changes and convergence to the optimal controller is

obtained.

For the optimal control problem of linear continuous-time systems when quadratic indices

are used, the HJB equation becomes the Riccati Equation and research efforts have indicated

that Neural Networks (NN) can be trained to become approximate solutions. In fact, the

authors of [16] defined an algorithm based on actor-critic structures to solve the optimal

control problem using PI algorithms. Here, the Hamiltonian-Jacobi-Isaac (HJI) equation

can be interpreted as the value function (e.g., rewards function) to be approximated by a

set of critic NN and a set of actor NN for approximation of the control policy [32]. Bhasin
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et al. [33] elaborated on these concepts to obtain adaptation of both actor and critic neural

networks to approximately solve the continuous-time infinite horizon optimal control problem

for uncertain nonlinear systems; however, solution methods are generally applied offline.

Moreover, in an effort to reduce supervision and training of machine learning algorithms,

researchers study unsupervised learning often using generative modeling using generative

adversarial NN. This kind of NN is based on a game, in the sense of game theory between two

players or machine learning models using NNs [34]. Generative Adversarial Neural Networks

(GANN) have been previously explored for obtaining control policies in the presence of

disturbances or uncertainties in the dynamical system. More specifically, game theory and

H∞ control based on an optimization problem and a zero-sum game, where the controller is

a minimizing player and the disturbance a maximizing one, provides an approach to solving

the HJI equations. If the amplitude of the disturbances are mapped within the value function

and are also approximated by a GANN (adversary), then an adaptive controller (actor) can

be synthesized following a min-max solution to a H∞ problem, also known as differential

game [35].

Vamvoudakis and Lewis [17, 35] provide methods for online gaming by learning the

optimal policy based on a 2-player zero-sum infinite horizon game online known as actor-

critic-adverse structure. Within a H∞ theory context, optimal control concepts can be

borrowed to design a DRL system robust to uncertainties and disturbances [36].

Given the nonlinear system dynamics:

˙̄x = f(x̄) + g(x̄)ū(x̄) + kd(x̄)w(x̄) (1.12)

where x̄ ∈ X ⊂ Rn is the state vector, ū ∈ U ⊂ Rm is the control input, w ∈ W ⊂ Rl is

the disturbance input. In the H∞ control problem, one can find a control input that satisfies

the following constrained problem:
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V (x̄, ū, w) =

∫ ∞

0

q(x̄, ū, w, t)dt =

∫ ∞

0

(r(x̄(t), ū(t)) + ω(w(t)))dt (1.13)

where q(t) represents a reward function that is a function of r(x̄, ū), that includes the rewards

for the state and the cost for the action; and the cost for the disturbance ω(w). One can use

quadratic cost for the disturbance input as:

ω(w) = −γ2wTw (1.14)

where γ is a robustness parameter. The reward function r(x̄, ū) could also be chosen to be

quadratic as:

r(x̄, ū) = x̄TQx̄+ ūTRū (1.15)

where Q > 0 and R > 0 are weighting matrices of the state x̄(t) and input ū(t), respectively.

For a tracking type of problem, the error dynamics ē(t) can also be used in Equation 1.15

instead of the state x̄(t) without loss of generality.

The problem formulated in Equation 1.16 can be considered as a differential game where

the optimal control output ū that minimizes the function V is calculated while the worst

disturbance w that maximizes V is chosen. The differential game problem can then be

formulated as:

V ∗(x̄, ū, w) = min
ū

max
w

∫ ∞

0

(r(x̄(t), ū(t))− γ2wTw)dt (1.16)

The condition for the optimal value function is given by the well known Hamilton-Jacobi-

Isaacs equation:
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0 = min
ū

max
w

[
r(x̄, ū)− γ2wTw +

∂V ∗

∂x
(f(x̄) + g(x̄)ū+ kd(x)w)

]
(1.17)

From the HJI equation, the optimal control ū and the worst disturbance w can be derived

by solving:

∂r(x̄, ū)

∂ū
+

∂V ∗

∂x̄

∂[f(x̄) + g(x̄)ū− kd(x̄)w]

∂ū
= 0 (1.18)

∂ω

∂w
+

∂V ∗

∂x̄

∂[f(x̄) + g(x̄)ū− kd(x̄)w]

∂w
= 0 (1.19)

Notice that in Equations 1.17, 1.18 and 1.19, ∂V ∗

∂x
represent the steepest ascent direction of

the value function, which is then transformed by the partial derivatives of f into a direction

in the control output and disturbance input space, respectively [36].

Given a solution, from Equations 1.18 and 1.19, the associated best control law and the

worst disturbance are as follows:

ū = −1

2
R−1gT (x̄)∇Λ∗ (1.20)

w =
1

2γ2
kd

T (x̄)∇Λ∗ (1.21)

where ∇Λ∗ = ∂V ∗

∂x
is the transposed gradient with V ∗(0) = 0 and in convergence H∗ = 0.

It is important to note that one of the main problems in optimal control is the calculation

of the exact value of V ∗ as the optimal solution of the Hamiltonian equation. As such, a

uniform approximation of the value function V ∗ and its gradient can be performed using
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NNs as follows [17, 37, 38]:

V ∗(x) = W ∗T
c Φc(x) + ϵc(x) (1.22)

∇Λ∗(x) = ∇ΦT
c W

∗
c +∇ϵc(x) (1.23)

where Wc ∈ RN is the NN weights, with N the number of activation functions, and Φc a

completely independent basis set or activation functions within the NN architecture. ϵc is the

critic approximation error. Subscript c refers to the critic NN within the DRL architecture.

Furthermore, the feedback policy in the form of an action NN computes the optimal

control as follows:

u = −1

2
R−1gT (x)∇ΦTW ∗

a (1.24)

w =
1

2γ2
kT
d (x)∇ΦTW ∗

w (1.25)

Subscript a refers to the actor and subscript ω refers to the adverse NN within the DRL

architecture. Following a gradient descent method, updating laws for the critic NN and

for the actor NN can be formulated as proposed by Vamvoudakis and Lewis [17]. System

stability and convergence of the NN has properly been analyzed by the authors. Developing

the adaptation laws for the NN as follows:

˙̂
Wc = −αc

σ

(σTσ + 1)2
(σTWc + xTQx+ uTRu− γ2wTw) (1.26)

where σ = ∇Φ(f(x) + g(u)u − kd(x)w) and αc > 0 is the updating rate to current status

contribution. Persistence of excitation has also been formulated by adding a memory factor
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to the updating law which compares current with previously undergone costs, states, input,

and disturbance inputs. The reader is referred to [17] and [35] for more details on its

implementation.

Similarly, the actor NN weights can use the following adaptation law:

˙̂
Wa = −αa

{
1

2
Da

(
Wa −Wc

)
− 1

4
DaWa

(
σ

(σTσ + 1)2

)T

Wc

}
(1.27)

where Da = ∇Φ(x)g(x)R−1g(x)T∇Φ(x)T . The presence of σ
(σT σ+1)2

guarantees a boundary

limit to the adaptation and αa is the actor NN weight update rate or learning rate [17].

For tuning the adversarial NN:

˙̂
Ww = −αw

{
1

2
Ew

(
Ww −Wc

)
+

1

4γ2
EwWw

(
σ

(σTσ + 1)2

)T

Wc

}
(1.28)

where Ew = ∇Φ(x)kdk
T
d ∇Φ(x)T and αw is the actor NN weight update rate or learning rate.

Figure 1.8 illustrates an schematic of machine learning control, where the control objective

is to minimize a well-defined cost function J within the space of possible control laws. An

online learning loop provides experiential data to train the controller. Furthermore, the

machine learning control can be a DRL architecture as an Adverse-Actor-Critic structure as

described in Subsection 1.4.7.
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Figure 1.8 Actor-Critic-Adverse Structure
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2 Health Management Framework

In this chapter, an extensive discussion of the proposed threat detection methodology

for the HMS is provided. As it will be described later in this chapter, the threat detection

strategy based on the Artificial Immune System coupled with SVM, creates an optimized

HMS able to detect off-nominal conditions.

2.1 Health Management Architecture

A number of authors have recognized the need for a solution to the FDI problem for

aerospace vehicles. In short, the literature strongly suggests that machine learning and

data-driven techniques hold promising results in addressing this problem [12]. Gao et al.

[26] provides a comprehensive survey of data-driven fault detection strategies applied to

autonomous systems and processes [26, 28]. In spacecraft applications intelligent algorithms

based on Fuzzy logic and Q-learning have been proposed for fault detection in the attitude

control systems of satellites [39]. Furthermore, multiple Kalman filters for detection and

diagnosis of Reaction Wheel failures [8] and dynamic NN structures for detecting faults in

Reaction Wheels [40] include some of the previous research that have implemented data-

driven approaches for FDI.

However, in the quest of finding a solution to this widely acknowledged problem, different

perspectives have emerged. A promising alternative concept based on data-driven Artificial

Immune System (AIS) paradigm has been addressed by [9–11].

The AIS paradigm operates in a similar manner as the immune system of living beings,

as it distinguishes between entities that belong to the organism and entities that do not,

using the principle of self/non-self discrimination to distinguish between different classes of

data. However, some limitations when implementing AIS strategies include the large amount

of data needed for training to provide information about nominal and off-nominal system

behaviours.

When applied to dynamical systems the self refers to space of nominal data and the

non-self refers to a space of off-nominal data, where failure data or off-nominal data is part
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of the non-self and considered abnormal conditions.

In this research, a HMS known as the AISO-SVM (Artificial Inmmue System Optimized

Support Vector Machine) is applied. The AISO-SVM which is based on Negative selection-

based algorithms and Variable Detector (V-Detector) algorithms coupled with SVM can

provide a good candidate to separate the self/non-self spaces and thus, improve the HMS

detection capabilities.

The following subsections present a description of the HM framework and augmentation

algorithms.

2.1.1 Self and Non-self representation

The selection of features that represent the dynamics of the system and are sensitive to

nominal and off-nominal conditions is fundamental in the development of the AISO-SVM

scheme. These features will directly affect the success and performance of the HMS [10].

The features are variables, usually, functions of time that completely define the dynamics of

the system and are expected to have an impact on the abnormal conditions considered, in

terms of occurrence, presence, type, severity, and consequences.

The self S, is the subset of the system feature space Σ that corresponds to normal flight

conditions, and the non-self S̄ corresponds to the abnormal conditions.

S̄ ∩ S = 0 S̄ ∪ S = Σ

The features are typically normalized to [0, 1] based on known reference values under

abnormal conditions.

φi ∈ {0, . . . , 1} . (2.1)

Different shapes depending on the dimension of the feature space can be considered for

the self/non-self, such as hyper-cubes, hyper-spheres and hyper-ellipsoid [41].

Table 2.1 illustrates the key terms and definitions used in the AIS paradigm.

The dimension of the feature space is based on the number of features to relate. For this
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Table 2.1 Main Biological Terms

Biological Term AIS Paradigm Counterpart

Self Space under normal operating conditions

Non-self Regions of the feature space that are outside
of normal operating conditions

Antigen Set of current features values (feature point)
at abnormal conditions

Antibody (detector) Data cluster in the non-self feature space
Certain terms adapted from [41]

research, the dimension of the feature space is equal to two and the nominal information

provided by each feature is normalized between 0 and 1.

2.1.2 Antibodies generation using Variable Detector Algorithm

The approach to generating antibodies is based on gathering nominal flight data in su-

pervised and controlled conditions that most accurately represent ideal nominal conditions

and passing this information through a Variable Detector (V-detector) algorithm that uses a

negative selection process to generate the antibodies or detectors for a specific system feature

space.

The V-detector algorithm uses an optimization process to obtain a variable radius of

each antibody cluster in order to maximize the non-self region coverage without overlapping

the self [42]. The V-detector strategy normalizes the feature data in the range [0, 1] and

candidate detectors are selected following an optimization process that considers distance

thresholds to indicate the amount of acceptable overlap between detectors, proximity to self

and radius. The reader is referred to [43] for more information about the implementation of

the V-detector algorithm and the maximum allowable overlap between detectors.

Figure 2.1 shows an example of the V-Detector algorithm that generated antibodies with

varying radius size surrounding the self. In this example, a projection relating quaternion q0
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(Feature-20) and Torque in x (Feature-3) is illustrated.

Figure 2.1 Generated detectors (red) surrounding self data (blue) using the V-Detector method.

The antibodies generation process can be stopped after the chosen number of iterations,

either when the maximum number of acceptable detectors is reached, or when the desired

coverage of the non-self is obtained.

2.1.3 Support Vector Machine Algorithm

Support Vector Machines are supervised learning methods based on machine learning and

the principle of structural risk minimization, for developing classification models using two-

class classifier methods [14]. These kind of algorithms have been used in many application

areas such as pattern recognition, image recognition, fault diagnosis, among others. For

the AISO-SVM implementation, the SVM is used to minimize the generalization error and

maximize the geometric margin between two classes, in this case, nominal and off-nominal

data.

The use of a Kernel function is used to map data into a high-dimensional feature space and

find a linear separating hyper-plane to optimize the classification process. The hyper-plane

is defined by input training data (support vectors) which generate the decision boundary
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separating the two classes, where the input vector belongs to one of two classes, class 1

or class 2. Depending on the class, data is labeled as +1 or -1 and the linearly separated

decision boundary can be defined by:

y = f(x,w) = wTx+ b

where w ∈ Rn is an n-dimensional weight vector and b ∈ R is a bias value. This equation

determines the maximum margin to separate class 1 from class 2. The optimal hyper plane

maximizes the margin between two classes in the feature space.

Similarly to Figure 2.1, Figure 2.2 shows an example of the AISO-SVM optimization

process to determine the self/non-self projection for Feature-20 and Feature-3.

Figure 2.2 AISO-SVM corresponding support vectors for a feature set

2.1.4 Detection Rates and False Alarms

The performance of the HMS is assessed in terms of false alarms (FA) and detection rate

(DR). FA are defined as the percentage ratio between the number of time samples when an

abnormal condition was declared and the total number of samples for a test under normal
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conditions, while DR is defined as the percentage ratio between the number of time samples

when an abnormal condition was declared and the total number of samples for a test under

abnormal conditions.

Detectors can be activated even though no off-nominal conditions are present and this

condition generates FA. A knowledge of the estimated percentage of false alarms in the HMS

is of importance to assess the performance and accuracy of the models.

When analyzing statistical classification, such as the SVM algorithm, a confusion matrix

provides parameters about of the performance of an algorithm. Table 2.2 defines the variables

obtained from a confusion matrix.

Table 2.2 Terminology and Derivations from a Confusion Matrix

Terminology Definition

Condition positive (P) The number of real positive cases in the data

Condition negative (N) The number of real negative cases in the data

True positive (TP) A test result that correctly indicates the pres-
ence of a condition or characteristic

True negative (TN) A test result that correctly indicates the ab-
sence of a condition or characteristic

False positive (FP) A test result which wrongly indicates that a
particular condition or attribute is present

False negative (FN) A test result which wrongly indicates that a
particular condition or attribute is absent

Based on terminology from Table 2.2, Equation 2.3 is used to calculate DR and Equation

2.2 is used to calculate FA.
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FA =
FP

FP + TN
× 100 (2.2) DR =

TP

TP + FN
× 100 (2.3)

2.1.5 Distributed Health Management Architecture

The goal of implementing a distributed HMS within a distributed network is to provide a

sense of global immunity and status update, where agents can sense abnormal behavior such

as failures and disturbances The AISO-SVM scheme can be applied within a more general

multi-spacecraft architecture to increase resilience and autonomy of a cooperative mission.

As illustrated in Figure 2.3, the HMS can be separated between a local self and global self,

where the conditions of a single system have an impact on the conditions on the network of

systems.

Figure 2.3 Interaction of a single spacecraft within its multi-spacecraft network

During a typical mission operation, spacecraft are vulnerable to failures and are subject

to threats. For the local self, a threat might be a hardware failure (e.g., actuators, sensors,

onboard computer, power source) or operational abnormal conditions. For the global self,

threads and disturbances might include radiation pressure, atmospheric drag, GPS signal ob-

struction, and cyber-attacks. Even though these threats are unpredictable, their effects limit

the operational envelop of the overall mission, but can be abated if assessed and processed

in time.
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One goal of the distributed HMS scheme is that once a spacecraft detects a failure, a

warning can be communicated to the network, so that other cooperative spacecraft notice

the novelty and trigger collaborative actions to preserve mission objectives and performance.

Hence, each spacecraft within the mission has information of both local and global self

conditions.

Similarly to the proposed local HMS for individual vehicles, the global HMS requires

nominal flight data from the network of spacecraft to train the model and generate the

feature spaces that will best represent the dynamic footprint for the dynamical system.

For the global case, the features can be combinations from systems in the network, this

approach increases the robustness of the HMS by detecting threats on the network based on

combination of states from different spacecraft.

Figure 2.4 illustrates the main architecture applied to the problem of failure detection in

multi-spacecraft systems, along with its main elements and their interactions.

Figure 2.4 DSS HMS framework
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3 Attitude Determination and Control

This chapter begins with an overview of the spacecraft attitude determination and is

followed by an introduction of the spacecraft dynamics and equations of motion used in the

control design. Since the attitude determination and control system uses error quaternions as

states and Reaction Wheels as actuators, the spacecraft kinematics using these parameters

are reviewed.

3.1 Attitude Determination

The attitude control system is responsible for obtaining desired orientations of the vehicle

and pointing instruments such as antennas, sensors, among others. This can be accomplished

by implementing systems that generate an external torque to orient the spacecraft, or sys-

tems that generate an internal torque. The former includes thruster systems and magnetic

systems, which use the Earth’s magnetic field. The latter consist of angular momentum

exchange systems, such as Reaction Wheels, which are the focus of the work below.

Attitude coordinates are defined as a sets of coordinates that completely describe the

orientation of a body relative to some reference. For space applications, attitude is defined

as the relative orientation of the Earth-Centered Inertial (ECI) frame to the body fixed frame

of the system or vehicle.

Research on attitude coordinates has a long tradition studied by Euler, Jacobi, Hamilton,

Cayley, Klein, Rodrigues, and Gibbs which has led to the definition of different sets of

attitude coordinates. The proper selection of attitude coordinates can improve the control

design by avoiding mathematical and singularities; while, the poor selection of attitude

coordinates can limit the performance of a controlled system.

Minimum three coordinates are required to completely describe an orientation; however,

any set of three coordinates will have an orientation where coordinates are singular as stated

by Junkins and Schaub [44]. In space, singularities are a problem considering the occurrence

of large rotations and tumbling effects. Hence, for space applications redundant sets of four

or more coordinates are desired to avoid mathematical and geometrical singularities. Euler
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Parameters or Quaternions are the most employed attitude coordinates for space.

3.1.1 Quaternion Kinematics

Quaternions or Euler Parameters are the preferred attitude coordinates for large rota-

tions as they provide a redundant and non-singular attitude description. Additionally, their

differential equations are linear, improving computational processing and accuracy in the

integration.

Quaternions are defined as: q = [q0 q⃗1 q⃗2 q⃗3]
T , where the first element q0 is the scalar

component and the remaining elements are vector components.

The kinematic differential equation for quaternions has the form:

˙⃗q =
1

2
Ω(ω)q⃗ (3.1)

where Ω(ω) represents the skew symmetric matrix of the angular velocity vector which results

in a cross product [45].

Ω(ω) =

−[ω×] ω

ωT 0

 (3.2)

Expanding Equation 3.1 in matrix form:



q̇0

q̇1

q̇2

q̇3


=

1

2



0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0





q0

q1

q2

q3


Or by transmutation as presented by Junkins and Schaub [44], the kinematic differential

equation has the elegant form:
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

q̇o

q̇1

q̇2

q̇3


=

1

2



q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0





0

ω1

ω2

ω3


, (3.3)

where ω = [ω1 ω2 ω3]
T is the instantaneous rotation vector of the rigid body. If ω(t) is known

the differential equations for the Quaternions are completely linear.

3.1.2 Spacecraft Kinematics and Kinetics (Rigid Body)

The kinematic equation of motion for rigid bodies is summarized in that the angular

momentum rate in the Inertial reference frame is equal to the moment summation:

∑
M⃗ =

dH⃗

dt

I

(3.4)

The angular momentum H⃗ taken with respect to the Body reference frame is:

H⃗ = Jω⃗B/I (3.5)

where the entries in the J matrix are the moments and products of inertia of the rigid body

about its center of mass.

To obtain the angular momentum rate in the Inertial reference frame from Equation 3.4,

is necessary to use the transport theorem as follows:

∑
M⃗ =

dH⃗

dt

I

=
dH⃗

dt

B

+ ω⃗B/I × H⃗ (3.6)

Using the fact that J is constant as seen by the Body reference frame for a rigid body,

and using Equation 3.5, the derivative of the angular momentum vector H⃗ as seen by the

Body reference frame is:
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dH⃗

dt

B

=
dJ

dt

B

ω⃗B/I + J
dω⃗

dt

B

= J ˙⃗ωB/I (3.7)

Omitting the subscript notation ωB/I , the angular momentum rate is dictated by Euler’s

rotational equations of motion as:

M⃗ =
dH⃗

dt

I

= J ˙⃗ω + ω⃗ × J ˙⃗ω (3.8)

From Equation 3.8, we can obtain the following differential equations that describes the

evolution of ω⃗ in time [44]:

[J ] ˙⃗ω = −[ω̃][J ]ω⃗ + M⃗

˙⃗ω = J−1{−ω⃗ × (Jω⃗) + M⃗} (3.9)

where J is the 3× 3 moment of inertia tensor (moments and products of inertia of the rigid

body about its center of mass in the Body reference frame), M⃗ is the net external torque

acting on the body, and ω̃ is a 3x3 skew-symmetric matrix defined as:

ω̃ =


0 −w3 w2

w3 0 −w1

−w2 w1 0


Therefore, from Euler’s Rotational Equation 3.7 and Quaternion’s kinematic differential

Equation 3.1, the system of equations that describe the dynamics and kinetics of a spacecraft

modeled as a rigid body are:

˙⃗x = f(x⃗, u⃗) =


˙⃗ω = J−1{−ω⃗ × (Jω⃗) + M⃗(t)}

˙⃗q = 1
2
Ω(ω)q⃗

(3.10)

where the four quaternions and the three angular rates are the states of the system. The
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instantaneous net torque on the body M⃗ is determined by summing the contributions of:

∑
M⃗ = M⃗R + M⃗T + M⃗RP + M⃗A + M⃗M

where,

M⃗R: Moments from Reaction wheels

M⃗T : Moments from Thrusters

M⃗RP : Moments from Solar Radiation Pressure

M⃗A: Moments from Aerodynamics

M⃗M : Moments from Magnetorques

3.1.3 Equations of Motion for Spacecraft with Reaction Wheels

This subsection develops the equations of motion of spacecraft containing Reaction Wheel

control devices.

Reaction Wheels utilize a spinning momentum wheel powered by an internal brushless DC

motor and exchanges momentum with the spacecraft body by accelerating or decelerating the

wheel, thus changing the wheel momentum magnitude. They act as a momentum transfer

and storage device to provide reaction torque and store angular momentum [40]. These

devices are commonly used as the actuators in the ACS of spacecrafts.

As stated by Montalvo [45], each Reaction Wheel has its own angular velocity ωRi and

angular acceleration αRi. The Reaction Wheel is modeled as a disk with finite radius rRW

and height hRW and the inertia of each Reaction Wheel is written about the center of mass

of the Reaction Wheel as given by Equation 3.11. The subscript R is used to denote that

this inertia matrix is about the center of mass of the Reaction Wheel, while the superscript

R is used to denote the reference frame of the Reaction Wheel.
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IRRi =


mRr

2/2 0 0

0 (mR/12)(3r
2
RW + h2

RW ) 0

0 0 (mR/12)(3r
2
RW + h2

RW )

 (3.11)

To obtain the total angular momentum of the vehicle, is necessary to account for the

inertia of the Reaction Wheel system. Thus, obtaining the Reaction Wheel inertia in the

Body reference frame using the parallel axis theorem, the total angular momentum of the

vehicle becomes:

H⃗S = IBω⃗B/I +
4∑

I=1

IBRiωRin̂Ri (3.12)

where, ωB/I is the angular velocity of the Reaction Wheel and the vector n̂Ri is used to define

the axis about which the Reaction Wheel rotates.

In a similar way, the total torque placed on the vehicle is equal to the following:

M⃗R =
4∑

I=1

IBRiαRin̂Ri (3.13)

where αRi is the vector of angular acceleration of the Reaction Wheels.

Furthermore, in line with Newton’s third law, the reaction torque applied to the spacecraft

M̄SC is equal and opposite to the net torque MR which accelerates or decelerates the wheel:

MR = −MSC

Using Reaction Wheels in the control scheme, is possible to solve for the vector of angular

accelerations αRi; however, since J is a 3×NRW matrix is not possible to simply invert the

matrix and solve for the vector of angular accelerations αRi. Thus, a minimization routine

is required where the solution found also happens to be the lowest amount of angular accel-

eration. For this, the Lagrange’s method is used to find the vector of angular accelerations,

obtaining the following expression [45]:
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M⃗desired = M⃗R =
4∑

I=1

IBRiαRin̂Ri = Jα⃗ (3.14)

α⃗ = JT (JJT )−1M⃗desired (3.15)

3.2 Spacecraft Linear Model

To obtain the linear model of the spacecraft, recall Equation 3.10, which describes the

nonlinear dynamics of spacecraft.

˙⃗x = f(x̄, ū)

where the main states that need to be controlled are the angular rates and quaternions, and

the control inputs are the moments of the system in the three axes, as illustrated in Equation

3.16:

x⃗ =



p

q

r

q1

q2

q3


u⃗ =


Mx

My

Mz

 (3.16)

as can be noted, q0 is neglected due to the linear dependency of quaternions.

Performing a Taylor Series expansion of function f(x̄, ū) about equilibrium points (xe, ue):

˙⃗x = f(x̄, ū) =�����f(x̄e, ūe) +
∂f

∂x̄xe,ue

(x̄− x̄e) +
∂f

∂ū x̄e,ūe

(ū− ūe) +����H.O.T (3.17)

�
�⃗̇xe +∆ ˙⃗x = A∆x̄(t) +B∆ū(t) (3.18)
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From the equilibrium points of the spacecraft: p = 0, q = 0, r = 0, q0 = 1, q1 = 0, q2 =

0, q3 = 0,Mx = 0,My = 0,Mz = 0; matrices A and B are found calculating the Jacobian as

follows:

A =
∂f

∂xxe,ue

B =
∂f

∂uxe,ue

A =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.5 0 0 0 0 0

0 0.5 0 0 0 0

0 0 0.5 0 0 0


, B =



1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz

0 0 0

0 0 0

0 0 0


(3.19)

(3.20)

Using the inertias of a reference Cubesat with dimensions:

h = 0.30 m w = 0.20 m d = 0.10 m

and inertias shown in Table 3.1:

Table 3.1 Products of Inertia from Reference Cubesat

Ixx = 0.0874 kg
m2 Iyy = 0.1136 kg

m2 Izz = 0.0437 kg
m2

Ixy = 0 Iyz = 0 Ixz = 0
Iyx = Ixy Izy = Iyz Izx = Ixz

Furthermore, studying the controllability of the system using the Controllability matrix:

P =

[
B AB A2B · · · An−1B

]
,
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It is found that rank(P ) = N , where N = 6 is the dimension of matrix A. Hence, the

system is controllable.

Attitude determination and control for spacecraft have been extensively researched. One

approach for attitude control is a LQR controller augmented with DLR applied to a linearized

version of a spacecraft state space dynamics, which will be implemented in this thesis. The

design parameters of such controller are presented in Subsection 5.4.1.

3.3 Nonlinear Dynamic Inversion (NLDI) Controller

Recalling the system of equations of motion in nonlinear state space form from Equation

3.10:

˙⃗x = f(x⃗, u⃗) =


˙̄⃗ω = J−1{−ω̄ × (Jω̄) + M⃗(t)}

˙⃗q = 1
2
Ω(ω̄)q̄

where the state vector corresponds to x⃗ = [ω̄, δq̄]T , the control law for the NLDI controller

is proposed by Markley and Crassidis [46] as:

M⃗(t) = ω̄ × (Jω̄) + Jūv(t) (3.21)

where uv(t) is a virtual controller or pseudo-controller chosen to stabilize ω̄ to zero and δq̄

to the identity Quaternion.

uv(q̄, ω̄) = −KΩω̄ −Kqδq̄1:3 (3.22)

where Kq and KΩ are pseudo gains defined as:
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Kq =


Kq1 0 0

0 Kq2 0

0 0 Kq3

 KΩ =


Kωx 0 0

0 Kωy 0

0 0 Kωz

 (3.23)

Substituting Equation 3.22 in Equation 3.21, gives the following control law:

M⃗(t) = ω̄ × (Jω̄) + J [−Kqδ q̄1:3 +Kd ω̄] (3.24)

Finally, the closed-loop system after implementing the control law in Equation 3.24 has

the form:


˙̄ω = ūv(t)

δ ˙̄q = 1
2
Ω(ω)δq̄

(3.25)

where ūv is a virtual controller used to obtain the desired dynamics

ūv = Kv(ω̄d − ω̄) (3.26)

Here ωd is represented in terms of the quaternion error, hence, the virtual controller takes

the form:

ūv(δq̄, ω̄) = −Kqδq̄1:3 −KΩω̄ (3.27)

A slight modification to the virtual controllers is introduced to guarantee the shortest

path in final orientation, as stated by Markley and Crassidis [46]:

uv(q, ω) = −KΩω̄ −Kqsign(δq4)δq̄1:3 (3.28)

M⃗(t) = ω̄ × (Jω̄) + J [−KΩω̄ −Kqsign(δq4)δq̄1:3] (3.29)
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4 Simulation Environment

This chapter describes the simulation environment built to simulate multi-spacecraft

missions. First, a description of the spacecraft dynamics governed by the Clohessy-Wiltshire-

Hill (CWH) equations. A representaton of the simulation framework is shown and a detailed

description of the Reaction Wheel model developed is presented. Finally, three different

failure scenarios affecting the ACS are described and compared with respect to nominal

conditions.

4.1 Reference Mission: Inspection of a Target Spacecraft

The design reference mission consists of a fleet of spacecraft in low Earth orbit performing

on-orbit inspection of a target space asset. The fleet consists of four CubeSats that are

deployed from standard dispensers (e.g. Nanoracks or P-POD) and injected to relative orbits

around the target spacecraft. Each CubeSat will have mounted sensors for inspection, whose

pointing can be precisely controlled by the Attitude Determination and Control System

(up to 0.003 deg for each axis). The CubeSats will also be equipped with a cold/warm

propulsion unit that allows reconfiguration to different relative orbits. However, to minimize

the expenditure of limited fuel budget, CubeSats will utilize stable Passive Relative Orbits

(PROs) throughout the inspection and only transfer when the information gain justifies the

fuel cost of the transfer.

The spacecraft fleet will collectively perform inspection of the target space asset (Chief),

which requires close coordination. The CubeSats within the fleet will constantly communi-

cate information gathered on the points of interest (POI) on the target, which is then utilized

to make global decision on which POIs each CubeSat should focus in the next planning hori-

zon. Note that delays in communication due to degradation or intentional misinformation

on the POIs due to external attacks could negatively affect the overall performance of the

coordinated inspection.
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Figure 4.1 Pointing Control for Inspection of the Target Spacecraft, from Nakka et al. [4]

The observers (deputy) spacecraft correspond to a 6U CubeSat (20 cm × 10 cm × 30 cm)

with mass of mi = 10 kg and are equipped with a Reaction Wheel configuration described

in detail in Subsection 4.3.1.

4.2 Spacecraft Dynamics

The spacecraft fleet will perform inspection within close proximity of the target space

asset, allowing dynamics to be expressed using the Clohessy-Wiltshire-Hill (CWH) equations,

which provides a linear approximation of the relative dynamics between the target space asset

and each deputy spacecraft in the fleet. The CWH equations assume the target space asset

to be in a circular orbit and that the Earth is perfectly spherical (ignoring the perturbation

effect of the J2 term). The 3-DOF CWH equations, originally developed in [47], describe

the motion of a given spacecraft in the Local-Vertical, Local-Horizontal (LVLH) coordinate

system. The target is located at the origin of this coordinate system, where the x direction

points radially away from Earth toward the target, the y direction points in the direction of

the orbital velocity of the target space asset and the z direction points in the direction of

the angular momentum of the target.

The orbit parameters the target spacecraft are defined using orbital elements, such as or-

bit altitude r, eccentricity e, inclination i, right ascension of the ascending node Ω, argument
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of perigee ω and true anomaly f0. Once the target orbit has been located, the LVLH rotating

frame L or Euler-Hill frame can be defined for the target spacecraft to locate the deputy

spacecraft. A representation of the LVLH and ECI reference frames is shown in Figure 4.2

Figure 4.2 ECI frame X̂, Ŷ , Ẑ and LVLH frame x̂, ŷ, ẑ, centered at the chief spacecraft. The
deputy position vectors in the rotating and inertial reference frames are denoted by lj and rj ,

respectively. From: Morgan and Chung [5]

The CWH equations in the LVLH coordinate system are given in Equation 4.1 as:

ẍ = 3n2x+ 2nẏ

ÿ = −2nẋ

z̈ = −n2z

(4.1)

where the mean motion of the target object, n, is defined in Equation 4.2 as

n =

√
µ

r30
(4.2)

where µ is the standard gravitational parameter and r0 is the radius of the orbit of the target

spacecraft.
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It is convenient to obtain the state-space representation ˙̄x(t) = Ax̄(t) of the differential

Equations in 4.1, and define the CWH equations in State Transition Matrix (STM) form as

follows:

x̄(t) = eA(t−t0)x̄(t0). (4.3)

where the state vector is x̄ = [x, y, z, ẋ, ẏ, ż]T and the A matrix is given by:

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


If the initial states are known, the STM can be used to find the states at any given time.

Thus, using Equation 4.3, the closed form solution of the CWH equations is given in Equation

4.4.



x(t)

y(t)

z(t)

ẋ(t)

ẏ(t)

ż(t)


=



4− 3 cosnt 0 0 1
n
sinnt 2

n
(1− cosnt) 0

6(sinnt− nt) 1 0 − 2
n
(1− cosnt) 1

n
(4 sinnt− 3nt) 0

0 0 cosnt 0 0 1
n
sinnt

3n sinnt 0 0 cosnt 2 sinnt 0

−6n(1− cosnt) 0 0 −2 sinnt 4 cosnt− 3 0

0 0 −n sinnt 0 0 cosnt





x0

y0

z0

ẋ0

ẏ0

ż0


(4.4)

The CWH equations are good linear approximations of the relative dynamics for space-

craft, with the benefit of obtaining a linear time-invariant closed-form solution. Nonetheless,

neglecting J2 perturbations in LEO can lead to large errors in the motion predicted. The
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work developed by Morgan and Chung [5], aims to extend the nonlinear relative dynamics

taking into account the effects of J2 perturbations on the swarm motion.

For a spherical Earth, the gravity gradient vector has a constant direction and the mag-

nitude depends only on r. The Keplerian gravity gradient vector is:

∇U =
µ

r2
x̂

However, a change in the gravity gradient vector arises with the addition of J2 distur-

bance. Thus, under the influence of J2 the gravity gradient vector is:

∇UJ2 =
µ

r2
x̂+

KJ2

r4
(1− 3 sin2i sin2θ)x̂+

KJ2 sin2i sin2θ

r4
ŷ +

KJ2 sin2i sinθ

r4
ẑ

Considering that ∇UJ2 is not aligned with the LVLH frame, these equations must be

transformed back to the LVLH performing the respective rotations. As a result, Equation

4.5 is used to obtain the desired initial conditions for PROs accounting for J2 disturbance.

The reader is referred to [5] for further theoretical analysis.


ẋ0,L,J2

ẏ0,L,J2

ż0,L,J2

 =


3
2
cαsαcβ − c2αs

2
βtθ0

1
2
c2αcβ + 2s2αcβ − cαsαs

2
βtθ0 2sαsβ + cαcβsβtθ0

−2c2αcβ − 1
2
s2αcβ − cαsαs

2
βtθ0 −3

2
cαsαcβ − s2αs

2
βtθ0 −2cαsβ + sαcβsβtθ0

−1
2
sαsβ + cαcβsβtθ0 −1

2
cαsβ + sαcβsβtθ0 −c2βtθ0



x0

y0

z0


(4.5)

Applying the CWH equations under J2 perturbation with initial conditions given by

Equation 4.5 and orbit parameters from the target spacecraft, the following stable relative

orbits shown in Figure 4.3a are obtained for four observers in the LVLH reference frame,

while Figure 4.3b shows the orbit trajectories in the ECI reference frame.
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(a) Spacecraft PROs in LVLH Coordinate System

(b) Spacecraft orbits in ECI Coordinate System

Figure 4.3 Relative orbits in the LVLH and the ECI coordinate frames.

4.3 Simulation Framework

The architecture of the simulation environment presented in this thesis is modular and

flexible enough to simulate multi-spacecraft missions, process flight data at normal and

abnormal conditions, test different failure and disturbance scenarios, and perform risk as-

sessments associated to such missions. The main elements of the simulation environment

and their interconnections are presented in Figure 4.4. A simulation time step of dt = 0.1 s
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was used. Furthermore, a detailed description of the Reaction Wheel model is presented in

Subsection 4.3.1.

Figure 4.4 Model Overview of Simulation Environment

4.3.1 Reaction Wheel Model

Momentum exchange systems such as Reaction Wheels are often preferred for Attitude

Control System (ACS) because of their fuel-free operation and precise combination of torque

and momentum storage necessary for pointing precision. The ACS goal is to stabilize the

system and orient it in the desired attitude despite disturbance torques or failures acting

on it. Thus, providing a high fidelity mathematical model of Reaction Wheel configuration

allows to obtain realistic responses to evaluate different failures in the ACS subsystem.

The Reaction Wheel model follows a redundant set of four Reaction Wheels arranged in

a tetrahedron configuration as shown in Figure 4.5 with parameters based on a commercially

developed RWP015 by Blue Canyon Technologies, with the following specifications:
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Figure 4.5 Tetrahedral RW configuration

RWP015 Specs

Momentum 0.015 Nms

Max. Torque 0.004 Nm

Mass 0.130 kg

Volume 42 x 42 x 19 mm

Voltage 12 VDC

Static Unbalance 0.25 g-mm

Dynamic Unbalance 2.5 g-mm2

Table 4.1 RWP015 Specifications

A detailed block diagram of the Reaction Wheel model is shown in Figure 4.6, where

the bottom part of the Figure shows the four Reaction Wheels control scheme; where the

input is a commanded voltage that controls motor current, and as a result, angular velocity

of the wheel calculated from the desired moment. The upper part of the Figure shows the

components of the Reaction Wheel Model which includes the DC Motor, Friction, Rota-

tional Imbalances and Thermals, where Friction generates torque loss in the system and is

subtracted from the overall torque.
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Figure 4.6 Reaction Wheel Model

4.3.2 Failure Scenarios

Failures in small satellites can be classified into two categories according to report [7]. The

first category being mission failure and the second category being partial mission failure. The

former category happens when small spacecraft fails to operate altogether or only achieves

very little of the mission objectives, while the latter category happens when small spacecraft

experiences component failures. However, categorizing a failure as a mission failure or a

partial mission failure depends on the objectives the spacecraft was supposed to achieve
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before the malfunction. Furthermore, in report [7] is stated that between the years 2000

to 2016, 41.3% of all small satellites launched experienced total or partial mission failure.

From these, 6.1% were launch vehicle failures, 11% were partial mission failures, and 24.2%

were total mission failures. Nonetheless, as mission objectives become progressively more

challenging, also mission failure tends to increase as as there exist more chances for mission

failure.

An illustration of the spacecraft simulated in this study is shown in Figure 4.7. The

failure scenarios considered in this research are failures applied in the ACS of Spacecraft 2

(SC#2) in the network.

Figure 4.7 Spacecraft 2 Faulty in the network

Failures are injected in the RWs as these actuators are highly prone to malfunctions.

Considering the redundant RW configuration described in Subsection 4.3.1, malfunctions in

only one RW will not cause significant impact on the attitude tracking performance as the

system is able to maintain desired orientation with a minimum of three RW. However, when

two or more RW are affected, the attitude controller is not able to fulfill the attitude tracking

requirements.

Despite failing only one RW will not affect the attitude control of the system, it is impor-

tant to detect and identify any type of malfunction, as they can affect system performance in

other ways, such as requiring more effort from other actuators or systems in order to comply

with mission objectives. For instance, failing one RW will require more effort from other

RWs to continue performing maneuvers, which could lead to mechanical wear and saturation
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problems. Hence, obtaining real-time information about the health status of the system is

relevant for decision making processes due to the limitations impaired for not operating in

nominal conditions.

In this study, three different failure scenarios affecting the ACS were tested and compared

with respect to nominal conditions to test the HMS detection capabilities. These failures

affect only the ACS of SC#2 within a network of four spacecraft. These failure scenarios

are described as follows:

• Failure Case I: This failure is started a t = 0 s and consists of a progressive drop in

current i that provides power to the brushless motor of RW#1 in SC#2. As a result, a

progressive drop in the torque TxRW1
, TyRW1

, TzRW1
is experimented. This type of failure

generates the change in torque shown in Figure 4.8 compared to nominal conditions

operation.

(a) Nominal Torque in RW1 - Spacecraft 2 (b) Failure Case I Torque in RW1 - Spacecraft 2

Figure 4.8 Effect of Failure Case I

The quaternion attitude tracking performance when this failure occurs is shown in

Figure 4.9. As mentioned before, failing only one RW does not have significant impact

on the attitude tracking performance.
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Figure 4.9 Attitude tracking performance in Spacecraft 2 when Failure Case I is injected

• Failure Case II: This failure is started a t = 0 s and consists of saturating a RW

to the maximum allowed torque 0.004 N-m. This occurs when the actuators stores

enough momentum to exceed the maximum speed of the wheel, resulting in a maximum

allowed torque during operation. This failure is simulated by a progressive increase in

the angular rate ω̄ of RW#1 in SC#2, which causes the maximum allowed torque in

TxRW1
, TyRW1

, TzRW1
.

This type of failure generates the change in torque shown in Figure 4.10, with respect

to nominal conditions operation.
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(a) Nominal Torque in RW1 - Spacecraft 2 (b) Failure Case II Torque in RW1 - Spacecraft 2

Figure 4.10 Effect of Failure Case II

The attitude tracking performance when Failure Case II occurs is shown in Figure 4.11.

As stated before, failing only one RW does not have significant impact on the attitude

tracking.

Figure 4.11 Attitude tracking performance in Spacecraft 2 when Failure Case II is injected

• Failure Case III:
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This failure is started a t = 0 s and consists of a progressive drop in current i applied

to RW#1 and RW#2 of SC#2, which in turn will cause a progressive drop in their

produced torques TxRW1
, TyRW1

, TzRW1
and TxRW2

, TyRW2
, TzRW2

. This failure is similar

to Failure Case I, but this time applied to two RWs.

Figure 4.12 and Figure 4.13 shows torque changes with respect to the nominal condi-

tions operation of RW#1 and RW#2.

(a) Nominal Torque in RW1 - Spacecraft 2 (b) Failure Case III Torque in RW1 - Spacecraft 2

Figure 4.12 Effect of Failure Case III

(a) Nominal Torque in RW2 - Spacecraft 2 (b) Failure Case III Torque in RW2 - Spacecraft 2

Figure 4.13 Effect of Failure Case III
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The attitude tracking performance when Failure case III occurs is shown in Figure

4.14. This time, affecting two RWs causes the attitude controller to not able to fulfill

the attitude tracking requirements as depicted in Figure 4.14.

Figure 4.14 Attitude tracking performance in Spacecraft 2 when Failure Case III is injected
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5 Numerical Simulations and Results Analysis

This section summarizes the results of the HMS performance on detecting the simu-

lated three failures described in Subsection 4.3.2, in one of the deputy spacecraft within a

network performing the inspection mission. Furthermore, the comparison of different atti-

tude controllers under disturbances and failure scenarios are analyzed in terms of tracking

performance and control effort.

5.1 HMS training

To train the AISO-SVM algorithm, enough flight data was gathered from the spacecraft

system dynamics following optimized orbits and different attitude combinations in nominal

conditions. The selection of features that represent the dynamics of the system and are

sensitive to nominal and off-nominal conditions is the main step in the HMS training process

[10].

The features shown in Table 5.1 were selected as primary features for their effectiveness in

the HMS performance analysis and include 34 states. Nonetheless, the HMS strategy relies

on the assumption that some features may be relevant in capturing some types of failures

and may lack relevance with respect to others.
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Table 5.1 Features/States Selected from Spacecraft

Feature ID Feature Variable Feature Name

0 TxRW1
Torque in x axis in RW1

1 TyRW1
Torque in y axis in RW1

2 TzRW1
Torque in z axis in RW1

3 TxRW2
Torque in x axis in RW2

4 TyRW2
Torque in y axis in RW2

5 TzRW2
Torque in z axis in RW2

6 TxRW3
Torque in x axis in RW3

7 TyRW3
Torque in y axis in RW3

8 TzRW3
Torque in z axis in RW3

9 TxRW4
Torque in x axis in RW4

10 TyRW4
Torque in y axis in RW4

11 TzRW4
Torque in z axis in RW4

12 ωdesiredRW1
Desired angular velocity in RW1

13 ωdesiredRW2
Desired angular velocity in RW2

14 ωdesiredRW3
Desired angular velocity in RW3

15 ωdesiredRW4
Desired angular velocity in RW4

16 ierrorRW1
Current error in RW1

17 ierrorRW2
Current error in RW2

18 ierrorRW3
Current error in RW3

19 ierrorRW4
Current error in RW3

20 q0actual Quaternion actual q0
21 q1actual Quaternion actual q1
22 q2actual Quaternion actual q2
23 q3actual Quaternion actual q3
24 q0error Quaternion error q0
25 q1error Quaternion error q1
26 q2error Quaternion error q2
27 q3error Quaternion error q3
28 ωactualRW1

Actual angular velocity in RW1

29 ωactualRW2
Actual angular velocity in RW2

30 ωactualRW3
Actual angular velocity in RW3

31 ωactualRW4
Actual angular velocity in RW4

32 ps/c Roll rate
33 qs/c Pitch rate
34 rs/c Yaw rate

The HMS training process was performed using the V-Detector algorithm and the AISO-

SVM two-class classifier algorithm to generate the antibodies or detectors. The total number

feature spaces of Nss projections that can be built for a complete set of N = 34 features and
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Nmax = 2 feature combinations is:

Nss,2D =
N !

Nmax!(N −Nmax)!
=

34!

2!32!
= 561 (5.1)

However, from the possible 561 feature combinations, only 73 were analyzed. The selected

73 feature space combinations are shown in Table 5.2.

Remark 1: In the case of the multi-agent systems, it is not necessary to select the

same number of features for all agents. The goal is to have features that will create a

unique representation of the agents within the network in order to detect specific abnormal

conditions.

Remark 2: Using 2D projections from a set of features allows intuitive analytical and

graphical representations of distances, thresholds, and boundaries [9].
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Table 5.2 List of Considered 2−D Self Projections from Spacecraft 2

Self Features Self Features Self Features

1. TxRW1
TyRW1

26. TxRW1
q2error 51. TyRW2

q1actual
2. TxRW1

TzRW1
27. TxRW1

q3error 52. TyRW2
q2actual

3. TxRW1
TxRW2

28. TxRW1
ωactualRW1

53. TyRW2
q3actual

4. TxRW1
TyRW2

29. TxRW1
ωactualRW2

54. TyRW2
q0error

5. TxRW1
TzRW2

30. TxRW1
ωactualRW3

55. TyRW2
q1error

6. TxRW1
TxRW3

31. TxRW1
ωactualRW4

56. TyRW2
q2error

7. TxRW1
TyRW3

32. TxRW1
ps/c 57. TyRW2

q3error
8. TxRW1

TzRW3
33. TxRW1

qs/c 58. TyRW2
ωactualRW1

9. TxRW1
TxRW4

34. TxRW1
rs/c 59. TyRW2

ωactualRW2

10. TxRW1
TyRW4

35. TyRW2
TzRW2

60. TyRW2
ωactualRW3

11. TxRW1
TzRW4

36. TyRW2
TxRW3

61. TyRW2
ωactualRW4

12. TxRW1
ωdesiredRW1

37. TyRW2
TyRW3

62. TyRW2
ps/c

13. TxRW1
ωdesiredRW2

38. TyRW2
TzRW3

63. TyRW2
qs/c

14. TxRW1
ωdesiredRW3

39. TyRW2
TxRW4

64. TyRW2
rs/c

15. TxRW1
ωdesiredRW4

40. TyRW2
TyRW4

65. q1error q2error
16. TxRW1

ierrorRW1
41. TyRW2

TzRW4
66. q1error q3error

17. TxRW1
ierrorRW2

42. TyRW2
ωdesiredRW1

67. q1error ωactualRW1

18. TxRW1
ierrorRW3

43. TyRW2
ωdesiredRW2

68. q1error ωactualRW2

19. TxRW1
ierrorRW4

44. TyRW2
ωdesiredRW3

69. q1error ωactualRW3

20. TxRW1
q0actual 45. TyRW2

ωdesiredRW4
70. q1error ωactualRW4

21. TxRW1
q1actual 46. TyRW2

ierrorRW1
71. q1error ps/c

22. TxRW1
q2actual 47. TyRW2

ierrorRW2
72. q1error qs/c

23. TxRW1
q3actual 48. TyRW2

ierrorRW3
73. q1error rs/c

24. TxRW1
q0error 49. TyRW2

ierrorRW4

25. TxRW1
q1error 50. TyRW2

q0actual

Once the HMS Selves are trained, careful consideration should be given to false alarms

(FA).

Flight data from SC#3 trajectory was used to validate that nominal data not used as

part of the training process is correctly classified as nominal. False alarms were calculated

using Equation (2.2). Figure 5.1 illustrates in green a sample of the validation process using

Feature-10 and Feature-0 projection for which FA = 4.58% were achieved.

58



FP = 2609
TN = 54247
FA = 4.58%

Figure 5.1 Validation: Feature 0 sc2 vs Feature 18 sc2

5.2 Local HMS Detection Capabilities

The projections listed in Table 5.2 were trained with the V-detector and AISO-SVM

algorithms and tested againts the failure cases described in Subsection 4.3.2. When testing

failure cases, Selves with FA lower than 10% were pre-selected as potential projections.

Failure Case I:

Figures 5.2 to 5.5 shows some samples of relevant selves with an acceptable DR and low

FA when Failure Case I is injected. Even though the DR are not as high, the low FA allow

to infer that off-nominal behaviour is detected.

TP = 13786
FN = 43070

FP = 0
TN = 56856

FA = 0%
DR = 24.25%

Figure 5.2 Fail Case I: Feature 0 sc2 vs Feature 16 sc2
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TP = 8650
FN = 48206

FP = 41
TN = 56815
FA = 0.07%

DR = 15.21%

Figure 5.3 Fail Case I: Feature 0 sc2 vs Feature 9 sc2

TP = 8812
FN = 48044

FP = 16
TN = 56840
FA = 0.03%

DR = 15.50%

Figure 5.4 Fail Case I: Feature 0 sc2 vs Feature 19 sc2

TP = 9482
FN = 47374
FP = 623

TN = 56846
FA = 1.09 %
DR = 16.68%

Figure 5.5 Fail Case I: Feature 0 sc2 vs Feature 11 sc2
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Failure Case II:

Figures 5.6 to 5.9 illustrate relevant results with high DR and low FA from selves able

to detect abnormal conditions when Failure Case II occurs. As can be noted, the selected

features are good candidates for detecting torque saturation in RWs. It is worth discussing

the interesting fact revealed by self ([0-16]) in Figure 5.2 and Figure 5.7, where the same

feature combination is able to detect Failure Case I and Failure Case II, but the pattern of

the failure data (green) is different. This provides evidence for a failure identification logic,

considering that different types of failure generate different patterns within a generated self

more sensitive to specific failures.

TP = 53288
FN = 3568
FP = 10

TN = 56846
FA = 0.017 %
DR = 93.72%

Figure 5.6 Fail Case II: Feature 0 sc2 vs Feature 10 sc2

TP = 54336
FN = 2520

FP = 0
TN = 56856

FA = 0%
DR = 95.56%

Figure 5.7 Fail Case II: Feature 0 sc2 vs Feature 16 sc2
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TP = 53321
FN = 3535
FP = 16

TN = 56840
FA = 0.03 %
DR = 93.78%

Figure 5.8 Fail Case II: Feature 0 sc2 vs Feature 19 sc2

TP = 35533
FN = 21323
FP = 112

TN = 56744
FA = 0.19 %
DR = 62.50%

Figure 5.9 Fail Case II: Feature 4 sc2 vs Feature 20 sc3

Failure Case III:

Figures 5.10 to 5.13 illustrate some samples of selves with high DR and low FA, and able

to detect abnormal conditions when Failure Case III is present. As can be noted, the selected

features are good candidates for detecting when two RWs operate in abnormal conditions.
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TP = 26104
FN = 30752

FP = 0
TN = 56856

FA = 0%
DR = 45.91%

Figure 5.10 Fail Case III: Feature 0 sc2 vs Feature 16 sc2

TP = 52319
FN = 4537
FP = 55

TN = 56801
FA = 0.09 %
DR = 92.02%

Figure 5.11 Fail Case III: Feature 0 sc2 vs Feature 20 sc2

TP = 35780
FN = 21076

FP = 0
TN = 56856
FA = 0 %

DR = 62.93%

Figure 5.12 Fail Case III: Feature 4 sc2 vs Feature 17 sc2
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TP = 40459
FN = 16397
FP = 112

TN = 56744
FA = 0.2 %

DR = 71.16%

Figure 5.13 Fail Case III: Feature 4 sc2 vs Feature 20 sc2

5.3 Global HMS Detection Capabilities

Off-nominal conditions on a single system within a network can affect mission perfor-

mance of the complete network. Implementing a global HMS is beneficial for neighboring

systems to notice abnormal conditions and trigger collaborative actions to maintain mission

objectives. Recalling that from an individual system is possible to built a local HMS based

on its own feature states, similarly, from a network of systems is possible to built a global

HMS based on a cross-combination of feature states by treating the network as a single dy-

namic system. This concept is illustrated in Figure 5.14 where the monitoring of the network

states allows to detect misbehaving agents within the network.

In the following detection examples, the faulty agent is selected to be SC#2, and V-

detector and AISO-SVM selves are generated from features taken from a cross-combination

of futures from SC#2 and SC#3, and SC#3 and SC#4. It is therefore expected that selves

that include features from the faulty agent (SC#2) would be more prone to detect such

abnormal behaviours in SC#2. A set of crossed combination features ([4-17]), ([0-16]) and

([25-30]) was selected based on the performance shown in the local HMS to detect failures

with high DR and low FA.
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Figure 5.14 Representation of Global HMS for detecting abnormal conditions in a single spacecraft

Figures 5.15 to 5.20 show the results for selected cross-feature projections against Failures

Cases II and III (in green). These detection results are representative for detecting abnormal

conditions in a network and identifying the possible faulty agent. As can be analyzed from

Figures 5.15, 5.17 and 5.19, when SC#2 is misbehaving because a failure, only selves that

contain features of that particular faulty agent will be activated. This information can be

used to isolate the agent and it can followed by a local self analysis to determine the cause.
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TP = 53059
FN = 3791

DR = 93.32%

Figure 5.15 Fail Case II: Feature 0 sc2 vs Feature 16 sc3

TP = 0
FN = 56856
DR = 0.0%

Figure 5.16 Global Self, Fail Case II: Feature 0 sc4 vs Feature 16 sc3
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TP = 9061
FN = 47795

DR = 15.93%

Figure 5.17 Fail Case II: Feature 4 sc2 vs Feature 17 sc2

TP = 0
FN = 56856
DR = 0.0%

Figure 5.18 Global Self, Fail Case II: Feature 4 sc4 vs Feature 17 sc3
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TP = 38654
FN = 18202

DR = 67.98%

Figure 5.19 Fail Case III: Feature 25 sc2 vs Feature 30 sc3

TP = 0
FN = 56856
DR = 0.0%

Figure 5.20 Global Self, Fail Case III: Feature 25 sc4 vs Feature 30 sc3

These detection results are representative for detecting abnormal conditions in a network

and identifying the possible faulty agent. As can be analyzed from Figures 5.15, 5.17, and

5.19, only selves that contain features from the faulty agent (SC#2) are prone to detect

abnormal conditions. From these plots it can be inferred that there is some malfunctioning,

even though there exist uncertainty about which spacecraft is the faulty system. The global

HMS can follow a local HMS logic to confirm the faulty agent by verifying outputs from the

local selves. On the other hand, when flight data of non-faulty systems is plotted against
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selves that do not include features from the faulty agent, there is no detection, as these

systems remain in nominal conditions.

5.4 Attitude Controllers

An adaptive attitude controller based on DRL and optimal control concepts that uses an

actor-critic-adverse architecture is strategically implemented in this study, looking forward

to the future goals of this research. The DRL controller has online adaptive capabilities to

learn the optimal control solution for the worst failure scenario by evaluating a cost function

that considers system performance, control actuation and disturbances. Furthermore, other

constraints defined by the user can be included in the cost function with the aim of obtaining

the optimal control law that accounts for the considered limitations of the system. This

approach provides a connection between the HMS output data and the decision making

process for modifying the controller or modifying the trajectory optimization algorithms

based on the new flight conditions.

To test the capabilities of the DRL controller, a comparison against a NDLI and Pole

Placement controller was made for two different failure cases. For these failure cases, the

faulty spacecraft was SC#4, while the rest of vehicles in the network remain in nominal

conditions. A description of the tested cases is presented below:

• Case I: Progressive decrease in RW2 of SC#4 and a sinusoidal disturbance of mag-

nitude d = sin(πt) is added in the control channels Mx,My,Mz, starting at t = 0

s.

• Case II: RW1 in SC#4 operating at 20% of its capacity, progressive decrease in RW2

of SC#4, and a sinusoidal disturbance d = 100sin(πt) is added in the control channels

Mx,My,Mz, starting at t = 0 s.
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5.4.1 Design Parameters

Using the spacecraft linear model presented in Section 3.2, the DRL controller based in

optimal control concepts was designed. Also, the Pole Placement controller was designed

based on the referenced linear model. On the other hand, the NLDI controller was designed

based on the nonlinear equations presented in Equation 3.10. A description of the parameters

for each controller are:

• DRL controller

The Q and R matrices along with the optimal gain K∗ and S matrix from the solution

to the ARE, are shown in Equations 5.2, 5.3, 5.4, and 5.5.

Q =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(5.2)

R =


0.7 0 0

0 0.7 0

0 0 0.7

 (5.3)

K∗ =


1.2382 0 0 1.1952 0 0

0 1.2507 0 0 1.1952 0

0 0 1.2169 0 0 1.1952

 (5.4)
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S =



0.0758 0 0 0.0731 0 0

0 0.0995 0 0 0.0950 0

0 0 0.0372 0 0 0.0366

0.0731 0 0 2.0718 0 0

0 0.0950 0 0 2.0929 0

0 0 0.0366 0 0 2.0362


(5.5)

Furthermore, the tuning parameters for the adaptive weight laws are:

γ = 1, αo = 1, αc = 10, αa = 1

The quadratic form of NN was chosen for both actor and critic based on x1, x2, x3, x4, x5

and x6, as follows:

Φc =

x2
1 x1x2 x2

2 x1x3 x2x3 x2
3 x1x4 x2x4 x3x4 x2

4 x1x5

x2x5 x3x5 x4x5 x2
5 x1x6 x2x6 x3x6 x4x6 x5x6 x2

6


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where their respective gradients are:

∇Φc =



2x1 0 0 0 0 0

x2 x1 0 0 0 0

0 2x2 0 0 0 0

x3 0 x1 0 0 0

0 x3 x2 0 0 0

0 0 2x3 0 0 0

x4 0 0 x1 0 0

0 x4 0 x2 0 0

0 0 x4 x3 0 0

0 0 0 2x4 0 0

x5 0 0 0 x1 0

0 x5 0 0 x2 0

0 0 x5 0 x3 0

0 0 0 x5 x4 0

0 0 0 0 2x5 0

x6 0 0 0 0 x1

0 x6 0 0 0 x2

0 0 x6 0 0 x3

0 0 0 x6 0 x4

0 0 0 0 x6 x5

0 0 0 0 0 2x6



• Pole Placement

The desired poles were chosen arbitrarily to design the Pole Placement gain K∗
PP as
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follows:

λ1 = −2, λ2 = −3, λ3 = −1, λ4 = −4, λ5 = −5, λ6 = −2

where the gain K∗
PP is:

K∗
PP =


0.6118 0 0 1.7480 0 0

0 0.4544 0 0 0.6816 0

0 0 0.2622 0 0 0.6992

 (5.6)

• Nonlinear Dynamic Inversion

The gains used in the pseudo controller from Equation 3.27 were chosen as:

Kq =


2.0934 0 0

0 2.0934 0

0 0 2.0934

 KΩ =


2.8571 0 0

0 2.8571 0

0 0 2.8571

 (5.7)

5.4.2 Controllers Performance Comparison

Figure 5.21 presents the attitude tracking performance when the DRL, NLDI and Pole

Placement controllers are implemented when Failure Case I occurs in SC#4.
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Figure 5.21 Attitude tracking with DRL based controller - Case I

As can be noted in Figure 5.21, all three controllers are able to cope with the tracking

requirements with some oscillations, mainly in the pitch state. The controller that tracks

better is the NLDI controller, followed by the DRL controller with some oscillations at the

beginning and finally the Pole Placement controller with less accuracy.

Figure 5.22 shows the control effort of the various controllers compared to the control

effort in nominal conditions, when Failure Case I occurs. From these results, it can be

concluded that the NLDI controller requires the greatest control effort to provide the attitude

tracking performance, followed by the DRL and the Pole Placement controller. Hence, the

DRL controller demonstrates a good balance between control effort and attitude tracking

performance.
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Figure 5.22 Attitude tracking with DRL based controller - Case I

Furthermore, Figures 5.23 and 5.24 show the adverse weight adaptation and adverse

function approximation, respectively. The adverse weights are initialized at zero and their

behaviour converges to a constant value, which provides evidence about the adaptation of

the NNs to approximate the optimal solution of the control law while accounting for the

disturbance w in the system.
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Figure 5.23 Adverse adaptive weights - Case I

Figure 5.24 Adverse function approximation - Case I
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Similarly to Failure Case I above, Figure 5.25 presents the attitude tracking performance

when the DRL, NLDI and Pole Placement controllers are implemented when Failure Case

II occurs in SC#4.

Figure 5.25 Attitude tracking with DRL based controller - Case II

As can be noted, Failure Case II is more aggressive, which makes it harder for the

controllers to cope with the attitude tracking requirements. The DRL controller tries to

follow the reference attitude with good approximation, while the NLDI controller performs

better with less oscillations. On the other hand, the Pole Placement controller is not able

to comply with the attitude requirements. However, the Pole Placement controller could be

improved by setting design requirements.

Figure 5.26 shows the control effort of the various controllers when Failure Case II occurs

compared to the control effort in nominal conditions. From these results, it can be concluded

that the Pole Placement controller experiences the greatest control effort, followed by NLDI

and DRL. These results provide evidence of the robustness of the DRL controller in the
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presence of disturbances and demonstrates a good balance between control effort and attitude

tracking performance.

Figure 5.26 Attitude tracking with DRL based controller - Case II

Finally, Figures 5.27 and 5.28 show the adverse weight adaptation and adverse function

approximation, respectively.
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Figure 5.27 Adverse adaptive weights - Case II

Figure 5.28 Adverse function approximation - Case II
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6 Conclusions and Future Work

On-orbit and deep space missions involving Distributed Spacecraft Systems have gained

significant interest for their extensive range of benefits and possibilities; as a consequence, it

is important to guarantee flight safety and mission performance. The importance of gathering

real-time data from a health management system and using it for decision-making processes

is highlighted in this research, which could improve the robustness and resiliency of aerospace

systems. A Health Monitoring System based on the Variable Detector and the AISO- SVM

algorithm has been implemented to obtain system status. To assess the capabilities of the

proposed health-management framework, a simulation environment for a fleet of spacecraft

performing a low-Earth orbit inspection was developed. Three types of failures in the attitude

control system that uses Reaction Wheels were also modeled. Results presented in this

thesis show the potential capabilities of the proposed architecture for the detection of subtle

changes or failures during multi-spacecraft operations. Furthermore, a Deep Reinforcement

Learning-based controller was compared against an NDLI and Pole Placement controller for

two different failure scenarios. The Deep Reinforcement Learning controller demonstrated

a good balance between control effort and attitude-tracking performance in the presence of

failures and disturbances, which makes it suitable for future research goals, such as executing

adjustments in the controller accounting for information of the Health Monitoring System.

Future research should consider investigating a mathematical way to include the Health

Monitoring System information in the controller and trajectory optimization algorithms to

demonstrate the potential for resource allocation. Additionally, it is of interest to develop

new adaptation laws for the Deep Reinforcement Learning based controller using Lyapunov

analysis in conjunction with other mathematical tools to guarantee the boundedness of the

states and adaptive gains. Further work implementing the Health Monitoring System on

networks with communication topologies is a matter of interest, as faulty agents might affect

neighboring agents’ performance.
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