
Doctoral Dissertations and Master's Theses

Fall 12-2022

Artificial Neural Network for Predicting Heat Transfer Rates in Artificial Neural Network for Predicting Heat Transfer Rates in

Supercritical Carbon Dioxide Supercritical Carbon Dioxide

Vinusha Dasarla Giri Babu
Embry-Riddle Aeronautical University, DASARLAV@my.erau.edu

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Aerodynamics and Fluid Mechanics Commons, and the Complex Fluids Commons

Scholarly Commons Citation Scholarly Commons Citation
Dasarla Giri Babu, Vinusha, "Artificial Neural Network for Predicting Heat Transfer Rates in Supercritical
Carbon Dioxide" (2022). Doctoral Dissertations and Master's Theses. 692.
https://commons.erau.edu/edt/692

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons.
For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/222?utm_source=commons.erau.edu%2Fedt%2F692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/243?utm_source=commons.erau.edu%2Fedt%2F692&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/692?utm_source=commons.erau.edu%2Fedt%2F692&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

ACKNOWLEDGMENTS

I would like to thank my research advisor and thesis committee chair Dr. Mark Ricklick

for his guidance and support. I also extend my gratitude to the members of my committee

for helping me complete the project. This research would not have been possible without

your advice and supervision.

I am also thankful for all the support I received from friends, lab mates and the sCO2

research group. I’m extremely grateful to my parents and sister for always believing in me

and pushing me to be a better person. Lastly, I’d like to mention my niece Akira, welcome

to the family and thank you for inspiring me to do more.

i

ABSTRACT

Supercritical carbon dioxide as a working fluid in a closed Brayton cycle is proving to

be more efficient than a conventional steam-based Rankine engine. Understanding the heat

transfer properties of supercritical fluids is important for the design of a working engine

cycle. The thermophysical properties of supercritical fluids tend to vary non-linearly near

the pseudo-critical region. Traditionally, empirical correlations are used to calculate the heat

transfer coefficient. It has been shown in the literature and within our own studies that these

correlations provide inaccurate predictions near the pseudo critical line, where heat transfer

may be deteriorated or enhanced, resulting from strong buoyancy and acceleration effects,

and strong variations in fluid properties. The current study successfully uses machine learn-

ing techniques to capture these non-linearities and complex physics, providing an accurate

tool for the design of heat transfer devices. The dataset is generated using highly validated

computational fluid dynamics analysis. The bulk temperature and wall temperature data

was obtained for a range of heat flux (q = [6, 12, 24, 36, 48]) and mass flux (G = [200, 400,

600, 800, 1000]) conditions. An artificial neural network base model was trained, validated,

and tested using the CFD data. The test case was strategically selected such that the artifi-

cial neural network model trained on the high heat flux and mass flux (extreme) cases. Using

the base model, hyperparameter tuning was performed, bringing down the prediction error

on the test case by 94%. The final model predicted on the test set with an error less than 1%.

This approach is computationally cost efficient compared to the traditional correlation-based

approach as it took only few minutes for the model to train and predict. Lastly, this study

published an artificial neural network tool that can be used to predict the wall temperature.

Establishing a machine learning model capable of accurately predicting the wall temperature

will aid in the design and development of future power generation cycles.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS i

ABSTRACT ii

LIST OF FIGURES vi

LIST OF TABLES vii

NOMENCLATURE viii

1 Introduction 1

1.1 Motivation 1

2 Literature Review 2

2.1 Supercritical Carbon-dioxide 2

2.1.1 Supercritical fluids 2

2.1.2 Property variations of CO2 in the critical region 2

2.1.3 Correlation based approach to predict the heat transfer rates of sCO2 3

2.2 Machine Learning 11

2.2.1 Types of Machine Learning Algorithms 13

2.2.2 Applications of Machine Learning 15

2.3 Artificial Neural Networks 16

2.3.1 Brief historical review 16

2.3.2 Artificial Neurons 17

2.3.3 Architecture of an Artificial Neural Network 19

2.3.4 Applications of Artificial Neural Networks 22

2.4 Research Gap 25

2.4.1 Objective 26

iii

3 Methodology 27

3.1 Data set 27

3.1.1 Computational Fluid Dynamic Analysis 27

3.2 Training, Validation and Test Set 28

3.3 Input and Output parameters 30

3.4 Scaling and Transforming the data 30

3.5 Training the Model 31

4 Results 36

4.1 Hyperparameter Study 36

4.1.1 Scaling Functions 37

4.1.2 Number of Layers 38

4.1.3 Number of Neurons 40

4.1.4 Dropout 41

4.1.5 Optimizer 43

4.1.6 Learning Rate and Weight Decay 45

4.2 Final Model 48

5 Conclusion and Future Work 53

REFERENCES 55

A Appendix Title 68

A.1 Code 68

A.1.1 Part 1 - Range of bulk temperature values 68

A.1.2 Part 2 - Single point prediction 71

iv

LIST OF FIGURES

Figure Page

2.1 Phase Diagram of Carbon Dioxide 2

2.2 Thermo-Physical properties of sCO2 at P = 8MPa [1] 3

2.3 Thermal conductivity versus temperature [1] 4

2.4 Viscosity versus temperature [1] 5

2.5 Density versus temperature [1] 6

2.6 Specific heat versus temperature [1] 7

2.7 Comparison of heat transfer coefficient α calculated using various correlations

and measured α [2] 10

2.8 Predictions of existing models vs. experimental data [3] 12

2.9 Components of a Machine Learning Model 12

2.10 Types of Machine Learning 13

2.11 Iris data set with feature variables and target variables 14

2.12 Schematic of a Perceptron 17

2.13 Activation Functions (a)Sigmoid Function (b)Hyperbolic Tangent Function

(c)Linear Function (d)ReLU Function 18

2.14 Feed Forward Neural Network 20

3.1 Geometry of the model [1] 28

3.2 Splitting the Dataset 29

3.3 Scaling function 31

3.4 Scaling function 32

3.5 Learning Process 33

3.6 Training and Validation Loss 34

4.1 Wall temperature predicted by ANN base model (C1) compared against the

CFD data (true values) 37

v

4.2 Wall temperature predicted by ANNmodel StandardScaler function compared

against the CFD data 39

4.3 Wall temperature predicted by ANN model RobustScaler function compared

against the CFD data 40

4.4 Wall temperature predicted by ANN model QuantileTransformer function

compared against the CFD data 41

4.5 Wall temperature predicted by ANN model (C2) compared against the CFD

data 42

4.6 Wall temperature predicted by ANN model (C3) compared against the CFD

data 43

4.7 Training and Validation loss for Case 3 (9 Hidden Layers) 44

4.8 Wall temperature predicted by ANN model (C4) compared against the CFD

data 45

4.9 Wall temperature predicted by ANN model (C5) compared against the CFD

data 46

4.10 Wall temperature predicted by ANN model (C5 d1) compared against the

CFD data 48

4.11 Wall temperature predicted by ANN model (C5 d2) compared against the

CFD data 49

4.12 Wall temperature predicted by ANN model (L1) compared against the CFD

data 50

4.13 Wall temperature predicted by ANN model (Wd) compared against the CFD

data 51

4.14 Wall temperature predicted by ANN (Final Model) compared against the

CFD data 52

vi

LIST OF TABLES

Table Page

2.1 Practical Applications of the different Learning Paradigms 15

3.1 Random Matrix (RM) - operating conditions 28

3.2 Training, Validation and Test data sets 30

3.3 Summary of base model C1 35

4.1 Hyperparameter tuning - Scaling Functions 38

4.2 Hyperparameter tuning - Number of Layers 44

4.3 Hyperparameter tuning - Number of Neurons 47

4.4 Hyperparameter tuning - Dropout (*p = input for dropout) 47

4.5 Hyperparameter tuning - Learning Rate and Weight Decay 50

A.1 Operating Conditions - summary 68

A.2 Input and output parameters used to predict sCO2 thermal behavior. 68

vii

NOMENCLATURE

λ thermal conductivity

µ viscosity

ρ density

Cp specific heat

CO2 carbon dioxide

sCO2 supercritical carbon dioxide

Tb bulk temperature

Tw wall temperature

Tpc pseudo-critical temperature

G mass flux

Gr Grashof number

h heat transfer coefficient

k thermal conductivity

Nu Nusselt number

Pr Prandtl number

q heat flux

Re Reynolds number

viii

1 Introduction

1.1 Motivation

Supercritical fluids have numerous applications [4–10] as working fluids due to their

superior heat transfer characteristics as compared to traditional sub critical fluids. Any fluid

held above its critical pressure and temperature is termed as a supercritical fluid. They

have accessible critical pressures and temperatures and so are used as solvents for different

industries such as the food, textile, cosmetic, petroleum, power generation, etc. These

proposals have increased as we work towards reducing our ecological impact.

There is a growing need for the development of alternative technological process with

minimized environmental impact, reduced energy consumption and lesser toxic residues [11].

Although supercritical fluids are highly regarded for being a green solvent, the prediction of

their performance through traditional approaches continues to be a challenge. This stems

from the fact that the fluid properties vary drastically near the critical point, affecting flow

physics and predictive capabilities. To fully take advantage of supercritical fluids in heat

transfer applications, a novel approach is needed.

1

2 Literature Review

2.1 Supercritical Carbon-dioxide

2.1.1 Supercritical fluids

The phase diagram as shown in fig.2.1 represents the physical state of a substance at

any given pressure and temperature. In the phase diagram, as the temperature and pressure

increases, liquids become less dense and gases become more dense and at a certain point

liquid phase and gaseous phase co-exist. This point where densities of liquid and gas are

identical is called the critical point. The pressure and temperature corresponding to this

point are referred as the critical pressure and critical temperature. When an element is

subjected to a pressure and temperature above critical point, the it becomes supercritical.

Supercritical fluids exhibit important characteristics, such as compressibility, homogeneity,

and a continuous change from gas-like to liquid-like properties.

supercritical fluid

critical pressure

critical temperature

critical point

vapour

liquid

phase

triple point

solid phase compressible

liquid

Temperature

P
re
ss
u
re

Figure 2.1 Phase Diagram of Carbon Dioxide

2.1.2 Property variations of CO2 in the critical region

Supercritical carbon dioxide is attained by holding the fluid pressure and temperature

above 7.39 MPa and 304.19 K respectively. The fluid properties of carbon dioxide vary

drastically in the supercritical region and are highly sensitive to small changes in tempera-

ture and pressure. Figure 2.2 represents the variation of thermophysical properties such as

2

specific heat (Cp), density (ρ), thermal conductivity (λ) and viscosity (µ) at a pressure of

8MPa. From the figure, pseudo-critical temperature or Tpc is defined as the temperature at

which specific heat reaches a maximum. For a fixed pressure, the density and viscosity de-

crease sharply near the pseudo-critical temperature. The peaks of specific heat and thermal

conductivity are in the vicinity of the pseudo-critical temperature.

Figure 2.2 Thermo-Physical properties of sCO2 at P = 8MPa [1]

Figures 2.3-2.6 shows the variation of thermal conductivity, viscosity and specific heat

vs temperature plotted for pressure values ranging from 8 MPa - 12 MPa. In fig.2.3, as

the temperature increases, the thermal conductivity for different pressure values decreases

gradually except at 8 MPa, where there is a sudden peak in temperature. Similar trends can

be observed in fig.2.5, where specific heat Cp for 8 MPa has a peak in specific heat. This

spike in Cp can be associated with the fact that it tends to ∞ at critical point. Hence from

the figures we can observe that the thermophysical properties vary sharply near the pseudo-

critical region and for assessing the heat transfer rates in this region, we require complex

heat transfer analysis, especially near the critical pressure.

2.1.3 Correlation based approach to predict the heat transfer rates of sCO2

Since the 1950s, there has been ongoing research on the heat transfer behaviour of su-

percritical fluids. These studies primarily focus on using supercritical fluids as a coolant in

3

Figure 2.3 Thermal conductivity versus temperature [1]

nuclear reactors. For heat transfer analysis, dimensionless Nusselt number (Nu) is correlated

against Reynolds (Re), Prandtl (Pr) and geometry. Nusselt number is the ratio of conduc-

tive resistance to the convective resistance (eq.2.1). Bringer and Smith [12] performed the

experimental analysis of sCO2 in a horizontal tube under uniform heating conditions and

produced a correlation for local heat transfer (eq.2.2). Here C is a constant and is equal to

0.0375 for sCO2. They use different reference temperatures such as bulk temperature Tb,

Tpc pseudo critical temperate and wall temperature Tw to evaluate parameters of Reynolds

number (eq.2.2).

Nu =
hL

k
(2.1)

where L is the characteristic length

Nu = C Re0.77x Pr0.55w (2.2)

4

Figure 2.4 Viscosity versus temperature [1]

Tx =

Tb if Tpc−Tb

Tw−Tb
< 0

Tpc if 0 ≤ Tpc−Tb

Tw−Tb
≤ 1

Tw if Tpc−Tb

Tw−Tb
> 1

(2.3)

In the 1970s, experimental investigation of tube-in-tube heat exchanger under heating

conditions was performed by Kransoshchekov and Protopopov [13] and after few modifica-

tions to the density correcting factor, the local heat transfer correlation of sCO2 was given

by eq.2.4. Here the Nuo which is based of the Petukhov and Kirillov [14] correlation (eq.2.6)

and ϵ which is the Filonenko correlation (eq.2.7) are evaluated using wall properties. Later,

Krasnoshechekov et al. [15] incorporated length factor into eq.2.8 that accounted the thermal

development near the tube entrance.

Nu = Nu0

(
cp
cp,b

)n(
ρw
ρb

)m

(2.4)

m = 0.35− 0.05

(
P

Pc

)
(2.5)

5

Figure 2.5 Density versus temperature [1]

Nu0 =
(ξ/8)RePr

1.07 + 12.7
√
ξ/8 (Pr2/3 − 1)

(2.6)

ξ =
1

(1.82 log10(Re) − 1.64)2
(2.7)

Nu = Nu0

(
cp
cp,b

)n(
ρw
ρb

)0.3

f
(x
d

)
(2.8)

where

f
(x
d

)
=

1 forx/d > 15

0.95 + 0.95
(
d
x

)0.8
for 2 ≤ x/d ≤ 15

(2.9)

The most commonly referred Gnielinski [16] correlation was obtained modifying the

Petukhov et al. [17]. This correlation predicts the heat transfer rates over a transitional

range Re = 2300− 104. Equation 2.10 was further modified to account the tube length and

local temperature resulting in eq.2.11.

6

Figure 2.6 Specific heat versus temperature [1]

Nu =
(ξ/8) (Re− 1000)Pr

1 + 12.7
√
ξ/8 (Pr2/3 − 1)

(2.10)

Nu =
(ξ/8) (Re− 1000)Pr

1 + 12.7
√

ξ/8 (Pr2/3 − 1)

[
1 +

(
d

l

)2/3
]
K (2.11)

where

K =

(

Prb
Prw

)0.11

for liquids in the range Prb
Prw

= 0.05− 20(
Tc

Tw

)0.45

for gases in the range Tc

Tw
= 0.5− 1.5

(2.12)

In the early 2002s, Pitla et al. [18] performed numerical investigation, experimental

analysis of supercritical carbon dioxide in a series of horizontal tubes and developed the

correlation (eq.2.13) where Nusselts number is evaluated using bulk and wall properties.

Nu =

(
Nuw +Nub

2

)
kw
kb

(2.13)

where Nuw and Nub are evaluated using

7

Nu =
(ξ/8) (Re− 1000)Pr

1.07 + 12.7
√
ξ/8 (Pr2/3 − 1)

(2.14)

Liao et al. [19] performed experimental analysis of supercritical carbon dioxide in hor-

izontal tubes of various diameters under cooling conditions (eq.2.15). They also developed

correlations for horizontal flow, upward and downward flow (eq.2.17-eq.2.19). Here, the

buoyancy effects on are accounted including Rib and Bu parameters.

Nu

Nudb

= 5.57Ri0.205b

(
ρb
ρw

)0.437(
cp
cp,w

)0.411

(2.15)

where

Nudb = 0.023Re0.8 Pr0.3 (2.16)

is the Dittus-Boelter correlation for cooling

For horizontal flow

Nu = 0.124Re0.8b Pr0.4b Ri0.203b

(
ρw
ρb

)0.842(
cp
cp,b

)0.384

(2.17)

For upward flow

Nu = 0.354Re0.8b Pr0.4b Bu0.157

(
ρw
ρb

)1.297(
cp
cp,b

)0.296

(2.18)

For downward flow

Nu = 0.643Re0.8b Pr0.4b Bu0.186

(
ρw
ρb

)2.154(
cp
cp,b

)0.751

(2.19)

where Bu is the buoyancy parameter defined by eq.2.20 from Jackson and Hall [20].

Bu =
Grb
Re2.7b

(2.20)

8

In 2004, Dang and Hihara [2] investigated sCO2 the heat transfer rates of supercritical

carbon-dioxide in a horizontal tube. A new correlation (eq.2.21) was proposed by modifying

the Gnielinski correlation (eq.2.11) and basing it on the bulk, wall and film temperature.

Nu =
(ξf/8) (Reb − 1000)Pr

1.07 + 12.7
√
ξf/8 (Pr2/3 − 1)

(2.21)

where

Pr =

cp,b µb

kb
for cp,b ≥ cp

cp µb

kb
for cp,b < cp and

µb

kb
≥ µf

kf

cp µf

kf
for cp,b < cp and

µb

kb
<

µf

kf

(2.22)

This section covers a few of the main correlations and the operating conditions for all these

correlations are provided in Appendix (Table A.1). An extensive review of all the existing

correlations for supercritical carbon dioxide can be found in the review paper by Lopes et

al.[21]. The paper covers all the modifications of the existing correlations and identifies the

errors made. The addition of correcting factors, buoyancy and flow acceleration combined

with the advancement of thermal and flow properties has made heat transfer correlations

complex. This has resulted in the the development of multiple correlations. Apart from

developing a correlation for sCO2 in horizontal tube by performing experimental analysis,

Dang et al.[2] also compares few of the existing correlations against experimental data. Figure

2.7 is taken from the paper, it shows different correlations Gnielinski (eq.2.11), Petro-Popov

[22], Pitla (eq.2.13), Liao (eq.2.15) and Yoon [23] model compared against the experimental

data (measured data). Most of these correlations were discussed in the previous section.

The operating conditions are heat flux q = 24 kW/m2, mass flux G = 200 kg/m2s, diameter

= 6mm, pressure = 8 MPa. This is considered as high heat flux and low mass flux case,

here the distribution of properties in the radial direction has considerable effect on the heat

transfer coefficient.

9

Figure 2.7 Comparison of heat transfer coefficient α calculated using various correlations
and measured α [2]

In the fig. 2.7, the heat transfer coefficients (α) are plotted against the bulk temperature

(Tb). Note that since all the fluid properties in a tube depend on the bulk temperature,

it would be efficient to represent data in terms of bulk temperature. The Tm line in the

figure is the pseudo critical temperature. When Tb < Tm, the Gnielinski correlation predicts

well relative to the experimental data. But when Tb > Tm, the correlation under-predicts

by about 30%. The Petro-Popov model performs well in the regions Tb < Tm and Tb > Tm

but overestimates the peak by 30%. Similarly the Yoon model over predicts the peak by

50%. Dang et al. [2] states that the reason Pitla model why doesn’t do well is because the

model was based on a different pressure range (P= 9.4MPa to 13.4MPa) and a large mass

flux (G = 1152 to 2300 kg/m2). Since is there is discontinuity in the operating conditions,

the model fails after Tm. The Liao model is stated to be highly sensitive to heat flux and so

it overestimates the heat transfer coefficient at high heat flux.

In 2011, Fang et al. [3] conducts a comprehensive review on the available experimental

data and correlations for in-tube heat transfer of sCO2 under cooling conditions. The paper

compares the 12 correlations(Krasnoshchekov[13], Baskov[24], Petrov-Popov[22, 25], Fang[3],

10

Liao[19], Pitla[18], Yoon[23], Dang[2], Huai[26, 27], Son-Park[28], Kuang[29], Oh-Son[30])

with experimental data from Dang et al. [2]. The fig.2.8 is pulled from the paper. The heat

transfer coefficient α is compared against bulk temperature over pseudo-critical temperature

(Tb

Tp,c
) for q = 24 kW/m2, mass flux G = 200 kg/m2s, diameter = 6mm, pressure = 8 MPa.

Note that these operating conditions are similar to the conditions discussed in the previous

paper but the the x-axis label is represented in a different manner. It was reported that the

Petrov-Popov [25] and Fang [3] correlations performed the best. We can observe huge peaks

produced from the Oh-Son, Yoon and Son-Park model. The correlations of Kuang, Huai, and

Pitla models can not predict the trends after the pseudo-critical points if heat flux or mass

flux is greater. Although several correlations are available, there has not been a significant

increase in the prediction capabilities [31, 32]. From literature review we observe that there

are several correlations for one operating condition. Most of these correlations under or over-

predict near the pesudocritical region. Empirical based approach is not able to model the

complex heat transfer behaviour of supercritical carbon dioxide. And so, researchers have

started to explore other methods to predict the heat transfer rates of supercritical carbon

dioxide.

2.2 Machine Learning

The idea of Machine Learning was first proposed by Alan Turing in the 1950s [33].

His paper posed the question ”Can machines think?”. In the late 1950s, IBM computer

scientist Arthur Samuel wrote a computer program to play checkers. The performance of

the computer program was improved by playing thousands of games against itself and by mid

1970s, the program was capable of playing as efficiently as a amateur human player. But the

foundation for machine learning started way back in the 18th and 19th centuries where the

fundamentals of machine learning concepts such as Bayes Theorem and the method of Least

Squares were introduced [34]. Machine Learning is generally defined as the development and

usage of computer systems that uses algorithms and statistical models to analyze and draw

inferences from patterns in data. These systems must be capable of learning without any

11

Figure 2.8 Predictions of existing models vs. experimental data [3]

explicit instructions. While there are several interpretations of what machine learning means,

the universally accepted way to describe machine learning is given by Tom M. Mitchell. He

defines machine learning as ” A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance at tasks in

T, as measured by P, improves with experience E ”. This statement implies that a machine

is considered to be learning if it gains experience by doing a task and improves it’s efficiency

by performing the similar tasks in the future.

Data Machine Learning
Algorithm Model

Figure 2.9 Components of a Machine Learning Model

12

The main components of a machine learning model is shown in fig.2.9. The data usually

contains patterns. The machine learning algorithms recognizes and learns these patterns.

Once the algorithm has completed the learning process, a machine learning model is gener-

ated. This trained model should be capable of identifying the patterns when new data is fed

to the model. Before discussing the different types of machine learning, it is important that

we define a well posed machine learning problem. It requires a specific task, performance

metrics and source of training experience. For example, the classifying spam emails is a well

posed machine learning problem. The task is to identify spam emails, performance can be

measured by checking the fraction of emails accurately classified as spam or not and the

training experience is observing if we label the email as spam or not.

2.2.1 Types of Machine Learning Algorithms

Machine Learning is broadly classified into three categories: supervised learning, unsu-

pervised learning and reinforcement learning. The most frequently used learning paradigm is

supervised learning. It is task oriented and requires labeled data as input. On the other hand

unsupervised learning is data driven and uses unlabeled data for training. Reinforcement

learning is used when data is time dependent or has hysteresis.

Machine Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

ClusteringRegression Association AnalysisClassification

Figure 2.10 Types of Machine Learning

Supervised Learning

Supervised Machine learning is based on learning information from the past. Referring

to the definition of a well posed machine learning problem, for supervised learning the past

information is the training experience. This can be further explained by considering the

13

following example. If a parent wants the child to learn the colours of an object, the parent

teaches the child using basic information. Supervised learning also requires fundamental

information which can be provided in the form of ’training data’. This training data is

tagged with ’labels’. For a computer to identify different colours of objects, the training

data will contain images of objects with their respective colours as their labels. Supervised

learning can be further segregated into classification and regression problems. Predicting a

categorical or nominal variable is a classification problem. In this case, the labelled training

data is fed to a classifier algorithm. Once the trained model is obtained, it should be able

to classify new data. This new data on which the trained model predicts is termed as the

’test data set’. For a regression problem, a continuous variable is predicted based on the

value of one or more predictor variables. The input data/ training data should must feature

variables and target variables. Features are the data elements that are analysed and targets

are labels true values on which prediction is made. Consider this example, fig.2.11 shows

a data snippet obtained from a public data set. The iris data set contains the following

attributes, sepal length, sepal width, petal length and petal width. These form the features

of this data set. Based on these features, a prediction is made on the species of the iris

flower. The species columns contains labels or target values for this data set.

Figure 2.11 Iris data set with feature variables and target variables

The classification and regression problems can be solved using different algorithms [35].

The most common ones are listed below

• Classification - Naive Bayes, Logistic Regression, K-Nearest Neighbours, Support Vec-

14

tor Machines(SVM), Random Forests, Decision Trees and Rule based Classifiers .

• Regression - Linear, Polynomial, Lasso and Ridge regression.

Unsupervised Learning

In Unsupervised learning there is no labelled data. Here the goal is get input data and

sort the data into different groups based on the patterns in the data elements. Unsupervised

learning is data driven as in there aren’t any specific tasks assigned. The data given as

input drives the algorithm to group or organize similar data together. Clustering is one of

main type of unsupervised learning. Here data is grouped together by applying a measure

of similarity. The most commonly used measure of similarity is distance. The data elements

are considered to be in the same cluster if the distance between them is less. Another form of

unsupervised learning is association analysis, where the the relationship/association between

the data is identified.

Reinforcement Learning

In this types of learning, the model learns by trial and error. Unlike the other learning

paradigms, reinforcement learning is centered on interacting with the environment. The

model improves its efficiency by performing the task and if it is successful, the model is

rewarded. This learning process is autonomous and model learns from its mistakes.

Table 2.1 Practical Applications of the different Learning Paradigms

Supervised Unsupervised Reinforcement

Handwriting recognition Market based analysis Self driving cars

Stock market prediction Customer segregation intelligent robots

Fraud detection User recommendation AI games

2.2.2 Applications of Machine Learning

Machine Learning is becoming increasingly popular and is being used for various applica-

tions because of its intelligent learning capabilities [35]. Banking and finance industries use

15

machine learning to identify fraudulent transactions on a real time basis. Predictive learning

can be used to identify customers who are more likely to switch banks [36]. Risk management

is essential for insurance industries, machine learning can be used to asses risk of a potential

customer [37]. Disease control and management is an important sector under the Healthcare

industry. Machine learning algorithms can be used to forecast where or when the disease is

likely to spread. Ahmad et al [38] reviews the application of interpretable machine learn-

ing in healthcare. Machine learning is becoming increasing popular in autonomous vehicle

industry, smart electric power systems, image processing in engineering fields, renewable en-

ergy and heat transfer. Kwon et al. [39] reviews the application of random forest algorithm

to predict the convection heat transfer coefficients for a high-order nonlinear heat transfer

problem. Artificial neural networks are used by Baghban et al. [40] to predict the heat

transfer rates of a helically coiled tube. In a attempt to develop a condensation heat transfer

coefficient for a cooling system, Lee et al. [41] used convolution neural network approach for

the study. Alizadeh et al. [42] used artificial intelligence based physics models to predict the

transport and thermodynamic processes in multi-physics systems. Recently, a lot of research

is based on implementing artificial neural networks to predict the heat transfer coefficients.

2.3 Artificial Neural Networks

2.3.1 Brief historical review

Artificial Neural Networks, commonly used to solve complex machine learning problems,

are capable of identifying non linear and dynamic relationships in data. They are loosely

based on biological neural networks and are made up several mathematical neurons. This idea

dates back to the 1940s when McCulloch and Pitts [43] proposed their seminal work. They

considered the neuron as functional logic device. This led to the proposal of a ’Perceptron

Model’ by Rosenblatt [44] in 1957, shown in fig.2.12. Later Minsky and Papert [45] showed

the limitations of a single perceptron and this prompted a down fall in the development

of the neural networks. In the 1980s, interest in artificial neural networks started to grow

again when Werbos [46] developed the back propagation learning algorithm for multi-layer

16

perceptron. This algorithm was rebuilt several times and was well-familiarized by McClelland

[47]. The detailed history of the development of Artificial Neural Networks is given by We

et al. [48]

2.3.2 Artificial Neurons

Figure 2.12 Schematic of a Perceptron

The perceptron as depicted in fig.2.12 is a computational model of an biological neuron.

This mathematical neurons receives n input parameters xi(i = 1, 2,n). The main com-

ponents of an artificial neuron are the weighted inputs, summation and activation function.

The artificial neuron uses these mathematical functions to processes the inputs. The inputs

are assigned weights which signifies the importance of the inputs. If the weight is a posi-

tive values, it means that that input has a positive influence on the output parameter. A

negative weight would have an inhibitory effect on the output. The summation functions

adds all the weighted inputs. A bias (b) is added to this summation which adjusts the in-

put to the activation function. The last component of the artificial neural network is the

activation function (σ) which produces an output (σ(z)) only when the input it receives

passes a certain threshold. The activation function introduces a non linearity and defines

the prediction accuracy of the neural network. In the absence of an activation function, the

artificial neural network is reduced to a simple linear regression model. The output (z) of

the artificial neuron is given by eq.2.23.

17

z =

[
n∑

i=1

(xi ∗ wi) + b

]
(2.23)

Types of Activation Functions

Figure 2.13 Activation Functions (a)Sigmoid Function (b)Hyperbolic Tangent Function
(c)Linear Function (d)ReLU Function

The different types of activation functions are reviewed by Sharma et al. [49]. The most

common ones, as shown in fig.2.13, are discussed below. The identify function is a linear

function of form eq.2.24 and is usually used in the input layer. The binary step function,

mathematically given by eq.2.25 produces 1 as output if the input is either positive or zero.

The step function gives output as zero if the input is negative. The threshold function

(eq.2.26) is similar to the step function, but instead of zero the input x is dependent on

a threshold value (θ). ReLU or rectified linear unit is the most popularly used activation

function. It reforms the input value between the maximum of zero and input value itself.

Sigmoid activation function modifies the output values in the range of 0 and 1. This activa-

18

tion function is given by eq.2.29. The hyperbolic tangent function is similar to the sigmoid

function. Here the activation function is symmetric at the origin.

yout = σ(x), for all x (2.24)

yout = σ(z) =

1 if x >= 0

0 if x < 0

(2.25)

yout = σ(z) =

1 if x >= θ

0 if x < θ

(2.26)

yout = σ(z) = max(0, x) (2.27)

yout = sigma(z) =
1

1 + e−z
(2.28)

yout = sigma(z) =
ez − e−z

ez + e−z
(2.29)

2.3.3 Architecture of an Artificial Neural Network

The artificial neural network which is made up several interconnected neurons, can be

classified into two types based on the connection pattern, feed forward neural network and

recurrent neural network. Feed forward neural network is the most common unidirectional

network, that is there are no loops in the network. It is commonly referred as a multi-layer

perceptron model. The recurrent neural network on the other hand has feedback connections

and are not unidirectional. Jain et al [50] reviews different architectures of neural networks

and their respective applications. In this study, we focus on the working a feed forward neural

network. The schematic of a simple feed forward neural network is shown in fig.2.14. The

training or learning process of a neural network involves reforming the network and weights

19

such that the neural network predicts with least errors. It consists of two parts, learning

paradigm and back propagation. As discussed earlier, for supervised learning we use labelled

data. That is we provide the network with correct output for all the input values. In this

type of learning paradigm, the weights are randomly assigned to the inputs, information is

propagated through the neurons and the initial predicted output ŷ is obtained. Since the

neural network has the true values, the error between the true values (y′) and predicted

output is obtained. Cost function (eq.2.30) measures the loss of the entire network. Mean

Squared loss or the root mean squared loss is commonly used as the loss criterion to asses

regression problems.

Figure 2.14 Feed Forward Neural Network

CostFunction(J) =
1

n

n∑
i=1

(y − ŷ)2 (2.30)

20

The aim of the learning process is to reduce the cost function. This brings us to the second

part of the learning process, back propagation. Based on the error obtain, the weights are

adjusted and this information is propagated back into the network. This process is done

using an optimization function. Gradient descent is one of the most popular algorithms

used for optimization. It iteratively calculates the the local minimum of the cost function

by using the negative gradient of the initial position. The gradient is scaled by a constant

called the learning rate. This is termed as hyper parameter that affects the efficiency of the

learning process. The Cost function (J) is a function of weights and bias, they are adjusted

using gradient descent such that the cost is brought to a minimum. Equation 2.31 and 2.32

gives formulas for the adjusted weights and bias respectively. This entire process is repeated

until the error reaches zero or close to zero. Artificial neural networks teach themselves the

patterns in the data through the learning process. This adaptive learning technique allows

the neural network to be more efficient than convectional modelling approaches.

w = w − learningrate ∗ ∂J

∂w
(2.31)

b = b− learningrate ∗ ∂J

∂b
(2.32)

The learning process of a neural network is dependent on three major aspects. 1. The

number of hidden layers - there can be multiple hidden layers. As the number of layers

increase, the processing time also increases. If time is an important factor, lesser number

of hidden layers are preferred. If accuracy is more important factor, a deeper network is

suggested i.e higher number of layers. 2. The number of neurons - this number can be varied

to obtain the optimal number using train and analysis method. A larger number of nodes

can led to either increased performance or over-fitting. 3. Weights - the weights assigned

to a neuron plays a significant role in determining the importance of that neuron. They

can corrected by varying hyperparameters such as changing the number of layers, number

21

of neurons, optimizer, etc.

2.3.4 Applications of Artificial Neural Networks

Artificial Neural networks has been applied to different industries. Abiodun et al. [51]

summarizes the various application of artificial neural networks. They are applied to prob-

lems which has highly complex data sets. Artificial Neural Network implementation in

energy systems is discussed in detail by Kalogirou et al. [52]. A relatively older industry

application is clinical medicine. Baxt et al. [53] discusses the application of artificial neural

networks to predict diagnosis and outcomes. Himmel et al. [54] describes the practical uses,

advantages and disadvantages of artificial neural networks for chemical engineering appli-

cations. Other industrial applications include using ANNs to predict catalysis [55], quality

control of foods [56, 57] and structural mechanics [58]. Scalabrin et al. [59] was the first

to implement artificial neural networks to model the forced convection heat transfer for su-

percritical carbon dioxide inside a heated tube. The paper developed four multi-layer feed

forward neural network with one hidden layer as a function of working conditions. The first

architecture uses conventional dimensionless number Re, Pr and Ec as input parameters.

The scaled Nusselt number is consider to be the output parameter. The optimal number of

neuron in the hidden layer was identified to be 7 using trial and error analysis. The second

architecture has scaled heat transfer coefficient α as the output parameter and in the in-

put layer we have reduced pressure (Pr), reduced temperature (Tr), mass flow rate (m) and

heat flux (q). The third architecture inputs was based the elements of the Krashnoschekov-

Protopopov-Petukhov-Gnielinski (KPPG) correlation (eq.2.33 - eq.2.36) and the output was

set to Nusselts number. This architecture was trained using the data generated by the KPPG

correlation. Although 8000 data points was generated, only a fifth of those values was used

for training. Lastly the fourth architecture considered independent variables reduced pres-

sure (Pr), reduced temperature (Tr), mass flow rate (m) and the fraction of wall temperature

over bulk temperature Tw

Tb
. The output parameter was taken to be heat transfer coefficient

α. Two versions of each of these architectures, one with a small data set and other with

22

enlarged data set was trained with the experimental data from Olson et al. [60]. The paper

compares the average absolute deviation (AAD) of all the architectures against the KPPG

correlation and concludes that the third architecture produced an AAD of 3.98% against

4.09% for the conventional equation and the fourth architecture an AAD of 2.67% against

4.30% for the conventional equation. The paper shows that there isn’t evident advantage in

using the dimensionless number over physical variables. It also highlights the importance of

regularly distributed data which is needed to generalize the transfer equation.

NuCP =
(ξ/8) (Re− 1000)Pr

1 + 12.7
√

ξ/8 (Pr2/3 − 1)

[
1 +

(
d

l

)2/3
]

(2.33)

NuSC = NuCP

(
cp
cp,b

)n(
ρw
ρb

)0.4

(2.34)

cp =
hw − hb

Tw − Tb

(2.35)

n =

0.4 when cp
cp,b

< 1, Tw

Tpc
< 1 , and Tb

Tpc
≥ 1.2

n1 = 0.22 + 0.18 Tw

Tpc
when cp

cp,b
< 1 and 1 ≤ Tw

Tpc
< 2.5

n1 − (5n1 − 2)
(

Tb

Tpc
− 1

)
when cp

cp,b
< 1 and 1 ≤ Tb

Tpc
< 1.2

0.7 when cp
cp,b

> 1

(2.36)

Chen et al. [61] used a similar approach where experimental data from Olsen et al.

[60] and KPPG correlation was compared against a Modified Radial Bias Function Network

(MRBFN). These networks have universal approximation, fast learning and use Gaussian

functions as threshold functions [62]. Four different combinations of input parameters and

output parameter was used in this study(given in Table A.2). Out of the 1115 data points

from Olson et al. [60] only 250 random points was selected to train the model. The paper

compared their results with the results obtained against a simple back propagation network,

23

a normal RBFN and concluded that the MRBFN with 10 neurons performed better than

the correlation as it was able to predict large changes in the near critical region. Pesteei et

al. [63] used experimental data from Jiang et al. [64] who obtained the wall temperature of

supercritical carbon dioxide in a vertical set up(upward flow). Polynomial neural networks

was implemented by Pesteei et al. [63], here each layer contains units (similar to neurons)

that are considered as polynomials. The mass flux (G), Reynolds number (Re), buoyancy

number (Bo), axial coordinate (x) and heat flux on the inner surface (qw) are considered to

be the input parameters and heat transfer coefficient (h) is the output parameter. The root

mean squared error was found to be 25.643 W/m2K with an R2 errors of 0.984. The model

developed is concluded to be in agreement with the experimental data.

Recently, Chu et al. [65] in 2018 incorporated Direct Numerical Simulation (DNS) with

Deep Neural Network (DNN). The data (2100 data points) for training the neural network

was generated using DNS for 35 different operating conditions. The proposed model has 2

hidden layers with 50 neurons in each layer. The pipe diameter, inlet pressure, heat flux,

inlet temperature and bulk specific enthalpy are taken as the input parameters and the wall

temperature and wall shear stress are considered to be the output parameters. This paper

separates their data points into only training and validation. The resulting mean percentage

error on wall temperature and wall shear stress are 0.07 and 1.02 respectively. Chu et al.

[65] concludes by stating that the combination of DNS and DNN model was able to produce

the same accuracy as true DNS model but with lesser computational cost. Ye et al. [66]

developed a artificial neural network with 5 inputs - heat flux, mass flux, tube diameter,

pressure and bulk specific enthaply and wall temperature as output. They use experimental

data from several papers [67–74] that obtained the heat transfer coefficient of supercritical

carbon dioxide in a vertical set up. From these experimental papers, data corresponding to

significant buoyancy force and acceleration force are ignored because during the occurrence

of Deteriorated Heat transfer (DHT) and Increased Heat transfer (IHT) the buoyancy force

and acceleration force have significant influence on the heat transfer rates. So a total of 4354

24

data points were obtained for 14 different operating conditions. The ANN has one hidden

layer and the number of neurons in the hidden layer are varied to find the best fit. They

evaluated the ANN model against different available correlations and concluded that the

ANN model has the lowest standard deviation of 0.99%.

In 2021, Zhu et al. [75] performed experimental analysis to obtain the heat transfer rates

of supercritical carbon dioxide in a vertical set up. The paper uses their own experimental

data as well as data from literature [68, 74, 76–78]. A total of 2674 data points are used to

train, validate and test the model. The input parameters and output parameters are same

as Ye et al. [66] but ANN model in Zhu et al. [75] has two hidden layers. The number of

neurons in the hidden layers are varied and the best fit is found by comparing the training

and validation mean squared errors. The paper states that increasing the number of layers

increases the model’s efficiency to capture peaks during Deteriorated Heat transfer. Zhu et

al. [75] compared the neural network model with correlations [79–81] & experimental data

and found that the artificial neural network model has a root mean square error of 7.29%.

Note that some of these correlations were developed for supercritical water. Sun et al. [82]

applied artificial neural networks to predict the thermal characteristics of in-tube upward

supercritical carbon dioxide flow. Genetic algorithm and back propagation was used in this

study and two networks with one and two hidden layers was compared. This study used data

points from several experimental papers [67, 69–73, 83–86]. The trained model is compared

with the correlations and in all cases ANN performed the best with a mean relative error

less than 2.8 %.

2.4 Research Gap

Throughout the years, the parameters required to train an artificial neural network model

has changed slowly. Dimensionless parameters are preferred while performing experimental

analysis as they reduce the amount of data required to develop correlations. But the litera-

ture review has shown that physical values and dimensionless quantities have the same effect

on artificial neural networks for supercritical carbon dioxide. We observed that in the recent

25

years artificial neural networks use wall temperature as output parameter instead of heat

transfer coefficient (α or h). Similarly diameter, pressure, heat flux, mass flux and bulk en-

thalpy are considered to be the input parameters when initially Re, Pr and Ec (dimensionless

numbers) was used in an effort to eliminate sensitivity to reference temperature. Machine

learning based application reduced the need for a large number of material properties to

predict the heat transfer rates.

From literature review, usage of artificial neural networks pose as a viable solution as

they capture the non linear behaviour of fluid properties in the near-critical region. But

the artificial neural network application has been limited to the prediction of heat transfer

rates of upward flow of supercritical carbon dioxide. There are not many artificial neural

network papers that discuss the heat transfer rates of transfer supercritical carbon dioxide

in a horizontal set up. Also note that the ANN papers discussed in the literature review

very have less data points to train on. More data points are required to reduce the errors

of a distribution which might be difficult with experimental analysis of supercritical carbon

dioxide.

2.4.1 Objective

The aim of this study is to establish an artificial neural network model that has trained

on a large and uniform data set and is capable of accurately predicting the heat transfer

rates of supercritical carbon dioxide in a horizontal set up under cooling conditions. The

data set will be generated using highly validated computational fluid dynamic analysis. The

study also focuses on establishing a procedure for hyperparameter tuning of a neural network

model. Lastly, an artificial network tool is published in Github that can be used to predict

the wall temperature for a fixed pressure at any bulk temperature, heat flux and mass flux.

26

3 Methodology

This section focuses on developing and training an artificial neural network model from

scratch using PyTorch Framework. PyTorch is a popular tool used in the machine learning

research community. It was developed focusing on both usability and speed [87]. Google

colab is a web based Jupyter Notebook that is user friendly and accessible by everyone. Colab

is capable of accessing all the data science libraries without any installations (PyTorch, SciKit

learn, Numpy, Pandas, Matplotlib, etc.) and has free cloud service with GPU.

3.1 Data set

For any machine learning problem, the quality of the data plays a principal role as it

drives the algorithm [88]. For this study we require a large data set that is spread uniformly

across a range of inlet temperatures. Since experimental analysis provides a limited set

of results, data for the training the algorithm will be developed from computational fluid

dynamic analysis. By using CFD analysis, we can generate a regularly distributed data set

that can used for training the machine learning algorithm. So computational fluid dynamic

analysis is performed and it is highly validated against experimental data [2]. The data

generated was part of Masters Thesis work by Ph.D. candidate Yang Chao [1]. A quick over

view of the process is given here.

3.1.1 Computational Fluid Dynamic Analysis

A horizontal circular tube of diameter 6mm is modeled to study the flow characteristics

of sCO2 and this is based on experimental analysis performed by Dang et al. [2]. A 3D

model is employed to account for the buoyancy, temperature and velocity distribution. To

obtain a fully developed flow in the pipe, the entrance effects are eliminated by adding an

adiabatic section of length 200 mm. Thermal effects are applied on rest of the pipe which is

of length 500 mm.

Computational fluid dynamic analysis is performed in ANSYS fluent with k-ω SST as

the turbulence model. The analysis process is repeated and wall temperature is obtained for

a range of random heat flux and mass flux conditions. The data generated is organized into

27

 15

be the opposite of inflow direction, and positive y direction is set to be the opposite

direction of gravity.

Figure 4.6 Geometry of model

4.2.2. Governing Equations

In the research, steady state conditions are assumed, the heat loss to the environment

is neglected. The continuity, momentum and energy equations are described as follows:

(Menter, 1994; Garg & Ameri, 2001; Guo, Xu & Cheng, 2010):

Continuity equation:

∂ሺ𝜌𝑢𝑖ሻ
∂𝑥𝑖

= 0
(1)

Momentum equation:

∂(𝜌𝑢𝑖𝑢൯
∂𝑥𝑖

= −
∂P
∂𝑥𝑖

+
∂

∂𝑥
ቈሺ𝜇 + 𝜇𝑡ሻ ቆ

∂𝑢𝑖

∂𝑥
+

∂𝑢

∂𝑥𝑖
ቇ −

2
3

ሺ𝜇 + 𝜇𝑡ሻ
∂𝑢𝑘

∂𝑥𝑘
 + 𝜌𝑔𝑖

(2)

Energy Equation:

∂(𝜌𝑢𝑖𝐶𝑝𝑇൯
∂𝑥𝑖

=
∂

∂𝑥𝑖
ቈ(

𝜇
𝑃𝑟

+
𝜇𝑡

𝑃𝑟𝑡
൰

∂ሺ𝐶𝑝𝑇ሻ
∂𝑥𝑖

(3)

where 𝜌 is density, 𝜇 is dynamic viscosity, 𝜇𝑡 is turbulence viscosity, 𝐶𝑝 is specific

heat at constant pressure, 𝑃𝑟 is Prandtl number and 𝑃𝑟𝑡 is turbulent Prandtl number.

The Shear Stress Transport (SST) 𝑘 − 𝜔 turbulence model is used, which integrates

the robustness of 𝑘 − 𝜔 model close to the boundary layer with a high Reynolds number

Figure 3.1 Geometry of the model [1]

10 files, this combination of ten files will be referred as the ”Random Matrix”. Table 3.1

shows the individual file names and their corresponding operating conditions. The pressure

and diameter for all these runs is set to 8MPa and 6mm respectively.

Table 3.1 Random Matrix (RM) - operating conditions

File name Bulk Wall Inlet Heat flux Mass Flux
Temperature (Tb) Temperature (Tw) Temperature (q) (G)

(K) (K) (K) (kW/m2) (kg/m2s)

RM1 291 - 320 288 - 319 293 - 320 6 400
RM2 303 - 333 295 - 329 303 - 333 24 400
RM3 297 - 318 296 - 317 298 - 318 6 1000
RM4 296 - 343 273 - 333 307 - 343 36 200
RM5 306 - 333 301 - 329 307 - 333 24 600
RM6 307 - 333 302 - 328 307 - 333 48 1000
RM7 307 - 333 299 - 326 307 - 333 48 600
RM8 305 - 333 300 - 330 306 - 333 24 800
RM9 305 - 333 299 - 329 306 - 333 36 800
RM10 304 - 333 301 - 331 305 - 333 12 600

3.2 Training, Validation and Test Set

The data for a well-posed problem is usually split into training and test set. The training

set forms the largest part of the data and is used to fit (train) the model. For a fixed set of

hyperparameters, the training data is used to fit the parameters of a model and the fitted

model is used to predict on test data (new data). After the big data era, another set was

introduced into the process called the validation set. This set is primarily used as part of

the model development. We can change the hyperparamters and obtain different trained

models and these model’s performance can be checked using the validation data set. Using

a validation set helps the model to provide an unbiased prediction on the test set. So for

28

Figure 3.2 Splitting the Dataset

this study, the data set will be split into training, validation and test set. Although is not

highly uncommon to do so, most of machine learning-sCO2 papers have only used a training

and validation set. The training, test and validation files are tabulated in table 3.2. We

see that except for file RM5 all the other files are considered as the training and validation

set. The RM5 corresponding to (heat flux) q = 24kW/m2 and mass flux G = 600kg/m2s is

taken as the test case. In the range of heat flux (q = [6, 12, 24, 36, 48]) values and mass

flux values (G = [200, 400, 600, 800, 1000]), the q = 24kW/m2 and G = 600kg/m2s are

centered. The extreme cases (low heat flux - low mass flux and high heat flux - high mass

flux) are weighed into the training and validation data so that model can learn the patterns

in the data. Since the extreme cases are incorporated into the training data, the trained

model should eventually be able to predict well when a complex input is given. Being able

to predict these extreme cases will enable us to develop a model that can efficiently capture

the non-linear heat transfer behaviour of supercritical carbon dioxide in the pseudo critical

region.

29

Table 3.2 Training, Validation and Test data sets

Feature Feature Feature Target
File name Bulk Heat flux Mass Flux Wall

Temperature (Tb) (q) (G) Temperature (Tw)
(K) (kW/m2) (kg/m2s) (K)

RM1 291 - 320 6 400 288 - 319
RM2 303 - 333 24 400 295 - 329
RM3 297 - 318 6 1000 296 - 317

Training RM4 296 - 343 36 200 273 - 333
and RM6 307 - 333 48 1000 302 - 328
Validation RM7 307 - 333 48 600 299 - 326

RM8 305 - 333 24 800 300 - 330
RM9 305 - 333 36 800 299 - 329
RM10 304 - 333 12 600 301 - 331

Test RM5 306 - 333 24 600 301 - 329

3.3 Input and Output parameters

The data generated from computational fluid dynamics contains four parameters that are

of our interest and are to be sorted in terms of features and targets. As previously stated,

the features will be the input parameters in the artificial neural network model and target is

assigned to the output parameter. The input layer must contain independent variables that

has significant influence on the variable that is to be predicted. From review of literature

papers, the pressure, diameter, fluid bulk temperature, wall heat flux and inlet mass flux

affects the heat transfer coefficient the most. For the generated dataset the pressure and

diameter is fixed at 8MPa and 6mm respectively. Hence we consider bulk temperature (Tb),

heat flux (q) and mass flux (G) to be our model’s features. The heat transfer coefficient

can be obtained from wall temperature, bulk temperature & wall heat flux and to reduce

complexity, we take independent parameter wall temperature as the target value.

3.4 Scaling and Transforming the data

All the training and validation data needs to scaled before training. During the learning

process, weights are randomly assigned to the input data. If certain input values are higher

than others, this might affect how weights are assigned and this in turn would affect the

30

Figure 3.3 Scaling function

learning process. So it is highly recommended to perform Feature Scaling so that all the

input data has equal importance. Normalization and Standardization are used to scale the

data. Normalization bounds the data between either [0,1] or [-1,1] and Standardization

transforms the data such that it has zero mean and unity variance. MinMax Scaler, is a

Scikit Learn [89] preprocessing function that scales data between [-1,1]. Figure.3.3 shows

a code snippet where the X(features) and y(target) are scaled using MinMaxScaler and

transformed using fit.transform(), another Scikit Learn [89] preprocessing function. The

fit.transform() is used only on the training data so that we can learn the scaling parameters

of the training data. While working on the validation data we use only transform(). This

is because we don’t want to learn the new scaling parameters, instead we only want to

transform the validation data using the scaling parameters from training data. Once the

data is scaled, we also shuffle the rows of the data set using ”numpy.random.shuffle” where

Numpy is a library that performs mathematical functions.

3.5 Training the Model

To the train the data, the following must be established.

• Neural Network Definition

• Error Criterion

• Training and Validation Set

• Optimizer

• Epochs

31

A neural network module is defined using the torch.nn.module from Pytorch library [90].

Figure 3.4 shows the defined neural network. The parent class is constructed using the int

function. The three self.layers indicate the number of neurons and their connections in

each layer of the artificial neural network. The first layer has 3 inputs and is connected to

10 neurons in the next layer. The nn.Linear suggest that we have linear transformation

applied and nn.ReLU is the activation function applied. Similarly, the second self.layer

represents the hidden layers. There are initially 5 hidden layers defined with 10,30,50,50,50

number of neurons in each layer. Lastly, the output layer is defined with one output neuron

and no activation function. By instantiating the model, the function definition is ran and

its output is assigned to a variable.

Figure 3.4 Scaling function

The error criterion defined here of this study is Mean Squared Error (MSE). Scikit learn

library has several pre-programmed performance metrics that can be used for different types

of problems. For a regression problem, we have Mean Squared Error MSE, Root Mean

Squared Error RMSE, Mean Absolute Percent Error MAPE, R2, etc. Mean Squared Error

given by eq.?? is the squared residuals of the true value and predicted value. The training

data and validation data that contains elements from 9 files, is split using ”Train.test.split”

32

Figure 3.5 Learning Process

function. This function splits the data into two sets. Although the name suggests that it is

splitting the data into training and test set, note that we use it to split the data into training

and validation. The 9 files from the Random Matrix has a total of 23,550 data points.

From this 10% of data points are assigned to the validation set(2,355 data points) using the

”train.test.split” function. It is essential to allocate a fixed number for random.state so that

we can reproduce the randomness. Every time we run the code, we want the algorithm to

pick the same random numbers. Once the data is split, the learning process of the neural

network is coded. Figure 3.5 shows the block of code used to define the feed forward and back

propagation process. As mentioned previously, the learning process involves an optimizer and

a cost function. Firstly the gradients of the inputs are zeroed by using optimizer.zero.grad().

The inputs are now passed into the neural network model and the loss criterion is estimated.

This leads to the next step back propagation, the loss.backward() is used perform this task.

33

0 200 400 600 800 1000
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ss

train loss
val loss

Figure 3.6 Training and Validation Loss

Lastly, we use optimizer.step() which a function that updates the parameters of the process.

The Adam optimizer from PyTorch library is used. This whole process is repeated for a

number of epochs. An epoch is completed when the learning algorithm passes through the

entire training and validation data set once. For this study, we use 1000 epochs. We also

record the training and validation errors to keep an eye on over-fitting or under-fitting. The

training and validation loss plotted for each epoch is shown in fig.3.6. During training,

the losses should decrease as the epochs are increased. With the initial parameters defined

we obtained a trained and validated model C1 (base model). A summary of the model

is given in table 3.3. The parameters in the table were taken as the starting point based

on trail & error, literature and the fact that they are most commonly used parameters for

artificial neural network models. Using this model, a neural network is developed and will

be trained and validated on the training data set and validation data set. Based on error

(MSE) produced by the base model on the test case, the model’s efficiency will be improved

by hyperparameter tuning.

34

Table 3.3 Summary of base model C1

Model Base model C1

Input parameters 3 - [Tb, q, G]
Hidden layer 5
Number of neurons in each layer 10-30-30-30-50
Output parameter 1 - [Tw]
Activation Function ReLU
Optimizer Adam
Loss MSE
Epochs 1000

35

4 Results

With the trained and validated neural network model, an initial prediction is made

on the test data set (q = 24KW/m2 and G = 200kg/m2s). Note that the test data is

kept hidden from the model during training and validation. The prediction is made on the

unseen data using the scaling parameters obtained from the trained model. Figure 4.1 shows

the wall temperature predicted using the neural network model (C1) compared against the

computational fluid dynamics data. In the x-axis, we have bulk temperature and in y -axis,

we have wall temperature. The Mean Squared error obtained from this model is 1.41 K2. In

the figure, we can see that around bulk temperature of 308 K, there is a small peak in wall

temperature and C1 model is unable to capture it. Also, after Tb > 320K, the neural network

model starts to overestimate the wall temperature. This over-prediction can be associated

to the fact that there are gaps in the computational fluid dynamics data. For a good model,

the mean squared error should be close to zero. Although the training and validation losses

were low for this model, the prediction on the test data is producing a high mean squared

error. Therefore, we need to tune the model further by changing the hyperparameters such

that the loss on test cases become relatively lower. This process is called Hyperparameter

tuning.

4.1 Hyperparameter Study

In this section, the hyperparameters of a neural network model are varied to see which

parameters will produce a better model. The error on test data is compared for each of

these tuned models. For a neural network model, the main hyperparameters are - scaling

functions, number of hidden layers, number of neuron in layers, dropout, optimizer, learning

rates and weight decay. There is no procedure or order defined to vary the hyperparameters.

So, in this study each of the listed hyperparameters will be varied in the base model (C1)

and in the end and a procedure is established for hyperparameter tuning.

36

310 315 320 325 330
Bulk Temperature

300

305

310

315

320
W

al
l T

em
pe

ra
tu

re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.1 Wall temperature predicted by ANN base model (C1) compared against the
CFD data (true values)

4.1.1 Scaling Functions

The MinMaxScaler that was initially considered for the scaling the input data in base

model is the most widely recognised function used to standardize information [91]. In order to

cross check, other functions such as StandardScaler, RobustScaler and QuantileTranformer

are used instead in the base model. Training, Validation error, mean squared error and the

maximum error (higest deviation from the true values) on the test case are tabulated in table

4.1. Although RobustScaler function has the least error on the test set, MinMaxScaler has the

least training and validation errors. The presence of outliers in dataset negatively influences

the mean and variance in such cases the RobustScaler preforms better. This is because the

function removes the median and scales the data to the interquartile range(between 25th

37

Table 4.1 Hyperparameter tuning - Scaling Functions

Function Training Validation Test Max error
error error error in test case
K2 K2 K2 K

MinMaxScaler 2.87E-05 3.24E-05 1.41 1.86
StandardScaler 3.65E-04 3.12E-04 1.10 2.76
RobustScaler 5.37E-04 4.46E-04 0.15 0.83
QuantileTransformer 1.48E-04 1.36E-04 0.93 2.31

quantile and 75th quantile)[92]. Figures 4.2 - 4.4 depicts the neural network models with

different scaling function making prediction on the test data set. The QuantileTransformer

that scales the data under a normal distribution, does not consider the outliers. Since our

data has outliers in the test set, it fails to predict well. Note that the maximum error on

the test set was obtained when the training data was scaled using StandardScaler. The

drawback of StandardScaler is if a feature has high variance, it might lead the estimator

to incorrectly learn the features that have lower variance [93]. Comparing the prediction of

RobustScaler case on test data (fig.4.3) with the MinMaxScaler case (fig.4.1), we visually

see that the former model is capturing the initial peak well(Tb < 308K). But looking at the

training and validation errors of the two models, the MinMaxScaler has the lowest loss and

is considered to be the better scaling option for this dataset.

4.1.2 Number of Layers

Choosing the number of layers in the neural network plays a substantial role in deter-

mining the complexity of the model. The increase in number of hidden layers might increase

the accuracy but also might lead to over-fitting and a predominant increase in computa-

tional cost. Initially for the base model we start with 5 layers and since this is already a

deeper neural network, we should pay attention to the training and validation error while

increasing the number of layers. Over-fitting will occur when we fit a complex model to a

simple problem. With the base model, two layers are added each time and prediction on the

test set is obtained. Figures 4.5 and 4.6 shows the C2 and C3 model prediction respectively.

The model C2 with 7 hidden layers under predicts the CFD data But when we increase the

38

310 315 320 325 330
Bulk Temperature

305

310

315

320
W

al
l T

em
pe

ra
tu

re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.2 Wall temperature predicted by ANN model StandardScaler function compared
against the CFD data

number of layers to 9 layers, the model performs relatively better.

The training and validation loss was plotted while running these two cases. As the

model is trained, both training and validation errors should decrease, but at some point the

validation error would increase and this would indicate that the model is starting to over-fit.

Figure 4.7 depicts the training and validation loss plotted while training C3 model. The

model has 9 hidden layers and in the figure we can see the errors are tending to zero. This

essentially means that the model is not over-fitting. It is not clear why the C2 model with

7 layers has a larger deviation from true value but the efficient number of hidden layers can

only be estimated through trial and error method. Although it took only few minutes for

these deeper models to train and predict, the C3 model took more time to train compared

39

310 315 320 325 330
Bulk Temperature

302.5

305.0

307.5

310.0

312.5

315.0

317.5

320.0

W
al

l T
em

pe
ra

tu
re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.3 Wall temperature predicted by ANN model RobustScaler function compared
against the CFD data

to other models.

4.1.3 Number of Neurons

The number of neurons in the hidden layer have a similar effect as the number of hidden

layers. Increasing the number of neurons comes with the penalty of over-fitting. The base

model has 5 layers with 10, 30, 30, 30 and 50 number of neurons in each layer. This was

decided using trail and error method. We can increase the number of neuron in the 5 layers

and see how the model behaves to tuning this hyperparameter. For model C4, the number

of neurons in the hidden layers are doubled (20, 60, 60, 60 and 100) and for model C5, the

number of neurons are tripled (30, 90, 90, 90, 90 and 150).

Table 4.3 shows the training and validation losses obtained for model C4 and C5. While

40

310 315 320 325 330
Bulk Temperature

302.5

305.0

307.5

310.0

312.5

315.0

317.5

320.0

W
al

l T
em

pe
ra

tu
re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.4 Wall temperature predicted by ANN model QuantileTransformer function
compared against the CFD data

the training error and validation error of model C5 is lesser than model C4, the errors on the

test set are higher. The C5 model has learned the parameters too well leading to over-fitting.

Figures 4.8 and 4.9 shows the wall temperature prediction of the models compared against

the CFD data. We see that model C5 under-predicts at Tb < 315K and Tb > 325K.

4.1.4 Dropout

Regularization of the model is performed to avoid over-fitting. L1, L2 penalty and

Dropout are some of the general regularization methods. L1 and L2 methods adds a penalty

to the weight terms so that some features will have lesser influence on the final output.

Dropout is the most popular technique against over-fitting. In this method, some neurons

and connections are dropped randomly during training. The model is trained by dropping

41

310 315 320 325 330
Bulk Temperature

300.0

302.5

305.0

307.5

310.0

312.5

315.0

317.5

320.0

W
al

l T
em

pe
ra

tu
re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.5 Wall temperature predicted by ANN model (C2) compared against the CFD
data

different batches of neurons, this helps in reducing the complexity of the neural network and

the process is repeated until ideal parameters are obtained [94]. ”nn.Dropout” is used in the

model definition, it receives a float data type (p) that represents the percent of neurons to

dropout. To evaluate Dropout hyperparameter, we use model C5 which had 30,90,90,90,90

and 150 neurons in the hidden layers. The higher number of neurons increased complexity of

this neural network. A dropout value of p = 0.2 is implemented in the last hidden layer and

this enables the algorithm to drop 20% of the neurons in the last hidden layer. Similarly for

another case, dropout value of p = 0.5 is implemented in the last layer. Figures 4.10 and 4.11

shows the neural network models C5 d1 and C5 d2 prediction on test data. Although the

training error and validation error are different for the cases, we see that the MSE and max

42

310 315 320 325 330
Bulk Temperature

302.5

305.0

307.5

310.0

312.5

315.0

317.5

320.0

W
al

l T
em

pe
ra

tu
re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.6 Wall temperature predicted by ANN model (C3) compared against the CFD
data

error on the test data are approximately equal. Although, the different dropout percentage

is not affecting the model’s prediction on the test data set, using dropout in the last layer is

enabling the model to correctly predict the wall temperature after Tb > 315K.

4.1.5 Optimizer

The learning process of the neural network is dependent on the optimizer. Gradient de-

scent is one of the most popular algorithms used for optimization. It iteratively calculates the

the local minimum of the cost function by using the negative gradient of the initial position.

It has many variants that are highly efficient. Ruder et al. [95] evaluates Batch Gradient

Descent, Stochastic Gradient Descent (SGD) and Mini Batch Gradient Descent, Adagrad,

RMSprop, etc. which are all different variants of Gradient Descent. ”Pytorch.optim” [96]

43

0 200 400 600 800 1000
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

train loss
val loss

Figure 4.7 Training and Validation loss for Case 3 (9 Hidden Layers)

Table 4.2 Hyperparameter tuning - Number of Layers

Case Training Validation Test Max error
error error error in test case
K2 K2 K2 K

Base Case (C1) (5 hidden layers) 2.87E-05 3.24E-05 1.41 1.86
Case 2 (C2) (7 hidden layers) 1.02E-04 1.11E-04 2.03 2.39
Case 3 (C3) (9 hidden layers) 2.35E-04 2.78E-04 0.36 1.22

package has various optimization algorithms. Adam (adaptive moment estimation) optimizer

which combines the advantages of two optimization algorithms (Adagrad and RMSprop) is

being widely used to solve machine learning problems. Derya [97] describes the working of

different optimization algorithms and their pros and cons. The Adam algorithm is appro-

priate for problems with noisy data and sparse gradients. Because Adam is considered to be

the better algorithm for the current dataset, we do not change or tune this hyperparameter.

But for someone with little domain knowledge predicting on a new problem, it is highly

encouraged to implement different optimization algorithms and choose the best algorithm

by trail and error.

44

310 315 320 325 330
Bulk Temperature

302.5

305.0

307.5

310.0

312.5

315.0

317.5

320.0

W
al

l T
em

pe
ra

tu
re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.8 Wall temperature predicted by ANN model (C4) compared against the CFD
data

4.1.6 Learning Rate and Weight Decay

Although, the optimizer is kept constant we can change the parameters of an optimizer.

The main parameters in Adam optimizer are learning rate, weight decay, betas and epsilon

[98]. The learning rate parameter by default is set to 0.001. It affects how quickly a model

can converge towards the local minima. A very high learning rate will cause the model

to converge quickly at a pseudo minima and a lower learning rate will lead the process to

fluctuate. In model C5, we increase the model learning rate to 0.01 and see how the model

performs. Figure 4.13 show the model’s (L1) prediction on test data set. We see that the

model is able to capture the peak well but under predicts near the gaps in CFD data.

Typically weight decay can be implemented in Adam optimizer directly and by default

45

310 315 320 325 330
Bulk Temperature

302.5

305.0

307.5

310.0

312.5

315.0

317.5

320.0

W
al

l T
em

pe
ra

tu
re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.9 Wall temperature predicted by ANN model (C5) compared against the CFD
data

the value is set to zero. But recently, there is an update on the weight implementation

in Adam optimizer. Loshchilov et al. [99] introduced the AdamW optimizer that uses a

modified weight decay formula in the gradient update. Weight decay is a introduced to

reduce the complexity of the model and prevent over-fitting. So we use AdamW optimizer

with a weight decay parameter equal = 0.1 in the C5 model and see if it is able to reduce

the mean squared error.

The table 4.5 summarizes the errors for Models L1(learning rate model) and Wd(weight

decay model). Increasing the learning rate has reduced the mean squared error on the test

set. A higher learning rate is helping the model to capture the first peak in the test data.

There isn’t significant difference between the model C5 and Wd. Increasing penalty on the

46

Table 4.3 Hyperparameter tuning - Number of Neurons

Case Training Validation Test Max error
error error error in test case
K2 K2 K2 K

Base Case (C1) (5 hidden layers) 2.87E-05 3.24E-05 1.41 1.86
Case 4 (C4) (x2 neurons) 7.34E-06 6.61E-06 0.12 0.53
Case 5 (C5) (x3 neurons) 5.82E-06 5.00E-06 0.38 1.42

Table 4.4 Hyperparameter tuning - Dropout (*p = input for dropout)

Case Training Validation Test Max error
error error error in test case
K2 K2 K2 K

Case 5 (C5) (x3 neurons) 5.82E-06 5.00E-06 0.38 1.42
Case 5d1 (C5 d1) (p=0.2) 4.03E-04 3.94E-04 0.56 1.24
Case 5d2 (C5 d2) (p=0.5) 9.49E-04 9.73E-04 0.76 1.42

weight decay from zero to 0.1 did not produce a better model. Since only weight decay is

being added to the model, there isn’t significant improvement.

The tuning of the main hyperparameters in a neural network model was discussed. The

activation function and number of epochs can also be varied to obtain an optimal fit. It was

observed that changing certain parameters such as the increasing the number of layers and

adding dropout to model C5 enabled the model to capture the regions where we had gaps

in the computational fluid dynamics data. These variations helped the model predict well

on test data after the peak. On the other hand, changing other hyperparameters such as

the scaling function and learning rates allowed the model to predict the peak in test data

accurately. Also note that just by changing one hyperparameter - number of neurons in the

hidden layers, the trained model C4 was predicting comparatively better with an error of

0.05. This leads us to the next part where more than one hyperparameter is changed to

obtain an efficient model.

47

310 315 320 325 330
Bulk Temperature

302.5

305.0

307.5

310.0

312.5

315.0

317.5

320.0

W
al

l T
em

pe
ra

tu
re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.10 Wall temperature predicted by ANN model (C5 d1) compared against the
CFD data

4.2 Final Model

A combination of hyperparameters are tuned to obtain a final model. In the base model

C1, two layers are added and AdamW implemented with learning rate of 0.01 and weight

decay of 0.1. The final model predicts on the test data with a mean squared error of 0.08

K2 and the maximum error is 0.65 K. The scaling parameters and model definition from

this model are saved as ”pickle files”. A pickle file makes it easier to store and upload the

model parameters for future use. Figure 4.14 depicts the wall temperature predicted for the

the test case compared against CFD data. The gaps in the CFD data and the peak in bulk

temperature is captured well by this model. Reviewing the mean squared error produced by

the base model and final model on the test set, we can observe that there is 94% decrease

48

310 315 320 325 330
Bulk Temperature

302.5

305.0

307.5

310.0

312.5

315.0

317.5

320.0

W
al

l T
em

pe
ra

tu
re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.11 Wall temperature predicted by ANN model (C5 d2) compared against the
CFD data

in error. Using hyperparameter tuning we were able to obtain a better model.

The final model definition, scaling parameters and the trained model can be found in

the google drive folder (ANN Files). These files can be used by anyone to predict the wall

temperature of supercritical carbon dioxide held at 8MPa in a horizontal tube of diameter

6mm under cooling conditions using heat flux, mass flux and bulk temperature conditions

for a inlet temperature ranging between 25°C-30°C.

49

https://drive.google.com/drive/folders/1dDKbIZliVrCPGaSMj6sQVJWcLaVK1sK2?usp=share_link

Table 4.5 Hyperparameter tuning - Learning Rate and Weight Decay

Case Test Max error
error in test case
K2 K

Case 5 (C5) (x3 neurons) 0.38 1.42
Case L (Learning rate) (lr=0.01) 0.12 1.07
Case Wd (weight decay) (wd = 0.1) 0.36 1.61

310 315 320 325 330
Bulk Temperature

302.5

305.0

307.5

310.0

312.5

315.0

317.5

320.0

W
al

l T
em

pe
ra

tu
re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.12 Wall temperature predicted by ANN model (L1) compared against the CFD
data

50

310 315 320 325 330
Bulk Temperature

302.5

305.0

307.5

310.0

312.5

315.0

317.5

320.0

W
al

l T
em

pe
ra

tu
re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.13 Wall temperature predicted by ANN model (Wd) compared against the CFD
data

51

310 315 320 325 330
Bulk Temperature

302.5

305.0

307.5

310.0

312.5

315.0

317.5

320.0

W
al

l T
em

pe
ra

tu
re

(4) q: 24, G: 600
ANN Model
CFD Data

Figure 4.14 Wall temperature predicted by ANN (Final Model) compared against the CFD
data

52

5 Conclusion and Future Work

This study aimed to develop an artificial neural network model trained on highly validated

computational fluid dynamic analysis data. The operating pressure for CFD data is 8MPa

which is near the critical pressure (7.39 MPa). The heat flux, mass flux and bulk temperature

ranges from 6kW/m2−48kW/m2, 200kg/m2s−1000kg/m2s and 291K−333K respectively.

The computational fluid dynamic data has approximately 25,000 data points out of which

21,191 data points was used training and 2,355 data points was used to validate the model.

The trained model was tested on high heat flux and mass flux data corresponding to q =

24kW/m2 and G = 600kg/m2s. Initially the model C1 produced a high mean squared error

of 1.41 K2. Using hyperparameter tuning, a successful attempt was made to reduce the test

error while also not over-fitting on the training data. The significant hyperparameters in an

artificial neural network model were varied and it was found that some of hyperparameters

such as number of hidden layers and dropout helped the model predict near the gaps well and

other hyperparameters such as earning rate and weight decay helped the model predict the

peak in the data effectively. With this knowledge, a final artificial neural network model was

developed by varying a combination of hyperparameters. The final model has 7 hidden layer

with 10-30-30-30-30-30-50 neurons in each layer, AdamW as the optimizer with a learning

rate of 0.001 and a weight decay of 0.1. The final model produced a mean squared error

of 0.08 K2 on the test case. It only took a few minutes to train, validate and test the

final model and so neural network are computationally cost efficient compared to traditional

approaches. The final model’s scaling parameters, model definition and trained model can

be found in the google drive that is accessible to all. A code is also provided in Appendix

for anyone who wants to use the final model to make predictions on new data.

The study shows that artificial neural networks are highly capable of capturing the non-

linearity in heat transfer behaviour of supercritical carbon-dioxide. With a strong under-

standing on the working and hyperparameter tuning of artificial neural networks, more ef-

ficient models can be developed. Future works would include training the final model on

53

different data sets corresponding to different pressure ranges. A physics informed neural net-

work can used explored as it would employ differential equations and mathematical models

into machine learning to create powerful neural network models. Further, since there is very

less research on the uncertainty analysis of the artificial neural network predictions, Bayesian

neural network which is a combination of artificial neural network and Bayesian inference

must be explored.

54

REFERENCES

[1] Chao, Y., “Analysis of Local Convection Heat Transfer Rates of Supercritical Carbon

Dioxide in Tubes,” 2020.

[2] Dang, C., and Hihara, E., “In-tube cooling heat transfer of supercritical carbon dioxide.

Part 1. Experimental measurement,” International Journal of Refrigeration, Vol. 27,

No. 7, 2004, pp. 736–747. https://doi.org/10.1016/j.ijrefrig.2004.04.018.

[3] Fang, X., and Xu, Y., “Modified heat transfer equation for in-tube supercritical CO2

cooling,” Applied thermal engineering, Vol. 31, No. 14-15, 2011, pp. 3036–3042.

[4] Cooper, A. I., “Polymer synthesis and processing using supercritical carbon dioxide,”

Journal of Materials Chemistry, Vol. 10, No. 2, 2000, pp. 207–234.

[5] Murga, R., Ruiz, R., Beltran, S., and Cabezas, J. L., “Extraction of natural complex

phenols and tannins from grape seeds by using supercritical mixtures of carbon dioxide

and alcohol,” Journal of Agricultural and Food Chemistry, Vol. 48, No. 8, 2000, pp.

3408–3412.

[6] Dadashev, M., and Stepanov, G., “Supercritical extraction in petroleum refining and

petrochemistry,” Chemistry and technology of fuels and oils, Vol. 36, No. 1, 2000, pp.

8–13.

[7] Raventós, M., Duarte, S., and Alarcón, R., “Application and possibilities of supercritical

CO2 extraction in food processing industry: an overview,” Food Science and Technology

International, Vol. 8, No. 5, 2002, pp. 269–284.

[8] Park, H. S., Lee, H. J., Shin, M. H., Lee, K.-W., Lee, H., Kim, Y.-S., Kim, K. O., and

Kim, K. H., “Effects of cosolvents on the decaffeination of green tea by supercritical

carbon dioxide,” Food Chemistry, Vol. 105, No. 3, 2007, pp. 1011–1017.

55

https://doi.org/10.1016/j.ijrefrig.2004.04.018

[9] Dostal, V., Driscoll, M. J., and Hejzlar, P., “A supercritical carbon dioxide cycle for

next generation nuclear reactors,” 2004.

[10] Conboy, T., Wright, S., Pasch, J., Fleming, D., Rochau, G., and Fuller, R., “Per-

formance characteristics of an operating supercritical CO2 Brayton cycle,” Journal of

Engineering for Gas Turbines and Power, Vol. 134, No. 11, 2012.

[11] “Industrial applications of supercritical fluids: A review,” Energy, Vol. 77, 2014, pp.

235–243. https://doi.org/https://doi.org/10.1016/j.energy.2014.07.044.

[12] Bringer, R., and Smith, J., “Heat Transfer in the Critical Region,” AlChE, Vol. 3, No. 1,

1957, pp. 49–55.

[13] Krasnoshchekov, E., Kuraeva, I., and Protopopov, V., “Local Heat transfer of Carbon

Dioxide at Supercritical Pressure Under Cooling Conditions,” High Temperature, Vol. 7,

No. 5, 1970, pp. 922–930.

[14] Petukhov, B. S., and Kirillov, V. V., “About Heat Transfer at Turbulent Fluid Flow in

Tubes (in Russian),” Thermal Engineering, , No. 4, 1958, pp. 63–68.

[15] Krasnoshchekov, E., Protopopov, V., Parkhovnik, I., and Silin, V., “Some Results of an

Experimental Investigation of Heat Transfer to Carbon Dioxide at Supercritical Pressure

and Temperature Heads of up to 850 C,” High Temperature, Vol. 9, No. 5, 1972, pp.

992–995.

[16] Gnielinski, V., “New equations for heat and mass transfer in the turbulent flow in pipes

and channels,” NASA STI/recon technical report A, Vol. 41, No. 1, 1975, pp. 8–16.

[17] Petukhov, B., Kurganov, V., and Gladuntsov, A., “Heat transfer in turbulent pipe flow

of gases with variable properties,” Heat Transfer-Soviet Research, Vol. 5, No. 4, 1973,

pp. 109–116.

56

https://doi.org/https://doi.org/10.1016/j.energy.2014.07.044

[18] Pitla, S. S., Groll, E. A., and Ramadhyani, S., “New correlation to predict the heat

transfer coefficient during in-tube cooling of turbulent supercritical CO2,” International

Journal of Refrigeration, Vol. 25, No. 7, 2002, pp. 887–895. https://doi.org/10.1016/

s0140-7007(01)00098-6.

[19] Liao, S. M., and Zhao, T. S., “Measurements of Heat Transfer Coefficients From Su-

percritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels,” J of Heat

Transfer-Transactions of the ASME, Vol. 124, No. 3, 2002, pp. 413–420. https:

//doi.org/10.1115/1.1423906.

[20] Jackson, J. D., and Hall, W. B., Turbulent Forced Convection in Channels and Bun-

dles: Theory and Applications to Heat Exchangers and Nuclear Reactors, Hemisphere

Publishing Corporation, New York, 1979, chapter and pages, pp. 613–640.

[21] Lopes, N. C., Chao, Y., Dasarla, V., Sullivan, N. P., Ricklick, M. A., and Boetcher,

S. K., “Comprehensive Review of Heat Transfer Correlations of Supercritical CO2 in

Straight Tubes Near the Critical Point: A Historical Perspective,” Journal of Heat

Transfer, Vol. 144, No. 12, 2022, p. 120801.

[22] Petrov, N., and Popov, V., “Heat-transfer and resistance of carbon-dioxide being cooled

in the supercritical region,” Thermal Engineering, Vol. 32, No. 3, 1985, pp. 131–134.

[23] Yoon, S. H., Kim, J. H., Hwang, Y. W., Kim, M. S., Min, K., and Kim, Y., “Heat

transfer and pressure drop characteristics during the in-tube cooling process of carbon

dioxide in the supercritical region,” International journal of refrigeration, Vol. 26, No. 8,

2003, pp. 857–864.

[24] Baskov, V., Kuraeva, I., and Protopopov, V., “Heat-transfer with turbulent-flow of a

liquid at supercritical pressure in tubes under cooling conditions,” High Temperature,

Vol. 15, No. 1, 1977, pp. 81–86.

57

https://doi.org/10.1016/s0140-7007(01)00098-6
https://doi.org/10.1016/s0140-7007(01)00098-6
https://doi.org/10.1115/1.1423906
https://doi.org/10.1115/1.1423906

[25] Petrov, N., and Popov, V., “Heat transfer and hydraulic resistance with turbulent flow

in a tube of water at supercritical parameters of state,” Thermal Engineering, Vol. 35,

No. 10, 1988, pp. 577–580.

[26] Huai, X., Koyama, S., and Zhao, T., “An experimental study of flow and heat transfer

of supercritical carbon dioxide in multi-port mini channels under cooling conditions,”

Chemical engineering science, Vol. 60, No. 12, 2005, pp. 3337–3345.

[27] Huai, X., and Koyama, S., “Heat transfer characteristics of supercritical CO2 flow in

small-channeled structures,” Experimental Heat Transfer, Vol. 20, No. 1, 2007, pp. 19–

33.

[28] Son, C.-H., and Park, S.-J., “An experimental study on heat transfer and pressure

drop characteristics of carbon dioxide during gas cooling process in a horizontal tube,”

International Journal of Refrigeration, Vol. 29, No. 4, 2006, pp. 539–546.

[29] Kuang, G., Ohadi, M., and Dessiatoun, S., “Semi-empirical correlation of gas cooling

heat transfer of supercritical carbon dioxide in microchannels,” HVAC&R Research,

Vol. 14, No. 6, 2008, pp. 861–870.

[30] Oh, H.-K., and Son, C.-H., “New correlation to predict the heat transfer coefficient

in-tube cooling of supercritical CO2 in horizontal macro-tubes,” Experimental Thermal

and Fluid Science, Vol. 34, No. 8, 2010, pp. 1230–1241.

[31] Ehsan, M. M., Guan, Z., and Klimenko, A., “A comprehensive review on heat transfer

and pressure drop characteristics and correlations with supercritical CO2 under heating

and cooling applications,” Renewable and Sustainable Energy Reviews, Vol. 92, 2018,

pp. 658–675. https://doi.org/https://doi.org/10.1016/j.rser.2018.04.106, URL https:

//www.sciencedirect.com/science/article/pii/S1364032118303241.

[32] Bodkha, “Heat Transfer in Supercritical Fluids: A Review,” Journal of Nuclear Engi-

58

https://doi.org/https://doi.org/10.1016/j.rser.2018.04.106
https://www.sciencedirect.com/science/article/pii/S1364032118303241
https://www.sciencedirect.com/science/article/pii/S1364032118303241

neering and Radiation Science, Vol. 7, No. 3, 2021. https://doi.org/10.1115/1.4048898,

URL https://doi.org/10.1115/1.4048898, 030802.

[33] TURING, A. M., “I.—COMPUTING MACHINERY AND INTELLIGENCE,” Mind,

Vol. LIX, No. 236, 1950, pp. 433–460. https://doi.org/10.1093/mind/LIX.236.433, URL

https://doi.org/10.1093/mind/LIX.236.433.

[34] Chandramouli, S., Dutt, S., Das, A., and Safari, a. O. M. C., Machine Learning, Pearson

Education India, 2018. URL https://books.google.com/books?id=R6ZJzQEACAAJ.

[35] Sarker, I. H., “Machine learning: Algorithms, real-world applications and research di-

rections,” SN Computer Science, Vol. 2, No. 3, 2021, pp. 1–21.

[36] Leo, M., Sharma, S., and Maddulety, K., “Machine learning in banking risk manage-

ment: A literature review,” Risks, Vol. 7, No. 1, 2019, p. 29.

[37] Lamberton, C., Brigo, D., and Hoy, D., “Impact of Robotics, RPA and AI on the

insurance industry: challenges and opportunities,” Journal of Financial Perspectives,

Vol. 4, No. 1, 2017.

[38] Ahmad, M. A., Eckert, C., and Teredesai, A., “Interpretable machine learning in health-

care,” Proceedings of the 2018 ACM international conference on bioinformatics, com-

putational biology, and health informatics, 2018, pp. 559–560.

[39] Kwon, B., Ejaz, F., and Hwang, L. K., “Machine learning for heat transfer correlations,”

International Communications in Heat and Mass Transfer, Vol. 116, 2020, p. 104694.

[40] Baghban, A., Kahani, M., Nazari, M. A., Ahmadi, M. H., and Yan, W.-M., “Sensitivity

analysis and application of machine learning methods to predict the heat transfer per-

formance of CNT/water nanofluid flows through coils,” International Journal of Heat

and Mass Transfer, Vol. 128, 2019, pp. 825–835.

59

https://doi.org/10.1115/1.4048898
https://doi.org/10.1115/1.4048898
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://books.google.com/books?id=R6ZJzQEACAAJ

[41] Lee, D. H., Yoo, J. M., Kim, H. Y., Hong, D. J., Yun, B. J., and Jeong,

J. J., “Application of the machine learning technique for the development of a

condensation heat transfer model for a passive containment cooling system,” Nu-

clear Engineering and Technology, Vol. 54, No. 6, 2022, pp. 2297–2310. https:

//doi.org/https://doi.org/10.1016/j.net.2021.12.023, URL https://www.sciencedirect.

com/science/article/pii/S1738573321006926.

[42] Alizadeh, R., Abad, J. M. N., Ameri, A., Mohebbi, M. R., Mehdizadeh, A., Zhao,

D., and Karimi, N., “A machine learning approach to the prediction of transport and

thermodynamic processes in multiphysics systems - heat transfer in a hybrid nanofluid

flow in porous media,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 124,

2021, pp. 290–306. https://doi.org/https://doi.org/10.1016/j.jtice.2021.03.043, URL

https://www.sciencedirect.com/science/article/pii/S1876107021001516, applications of

Nanofluid in Renewable Energy.

[43] McCulloch, W. S., and Pitts, W., “A logical calculus of the ideas immanent in nervous

activity,” The bulletin of mathematical biophysics, Vol. 5, No. 4, 1943, pp. 115–133.

[44] Rosenblatt, F., “The perceptron: a probabilistic model for information storage and

organization in the brain.” Psychological review, Vol. 65, No. 6, 1958, p. 386.

[45] Minsky, M. L., and Papert, S. A., “Perceptrons: expanded edition,” , 1988.

[46] Werbos, P. J., The roots of backpropagation: from ordered derivatives to neural networks

and political forecasting, Vol. 1, John Wiley & Sons, 1994.

[47] McClelland, J. L., Rumelhart, D. E., and Hinton, G. E., “The appeal of parallel dis-

tributed processing,” MIT Press, Cambridge MA, Vol. 3, 1986, p. 44.

[48] Wu, Y.-c., and Feng, J.-w., “Development and application of artificial neural network,”

Wireless Personal Communications, Vol. 102, No. 2, 2018, pp. 1645–1656.

60

https://doi.org/https://doi.org/10.1016/j.net.2021.12.023
https://doi.org/https://doi.org/10.1016/j.net.2021.12.023
https://www.sciencedirect.com/science/article/pii/S1738573321006926
https://www.sciencedirect.com/science/article/pii/S1738573321006926
https://doi.org/https://doi.org/10.1016/j.jtice.2021.03.043
https://www.sciencedirect.com/science/article/pii/S1876107021001516

[49] Sharma, S., Sharma, S., and Athaiya, A., “Activation functions in neural networks,”

towards data science, Vol. 6, No. 12, 2017, pp. 310–316.

[50] Jain, A. K., Mao, J., and Mohiuddin, K. M., “Artificial neural networks: A tutorial,”

Computer, Vol. 29, No. 3, 1996, pp. 31–44.

[51] Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., and Arshad,

H., “State-of-the-art in artificial neural network applications: A survey,” Heliyon, Vol. 4,

No. 11, 2018, p. e00938. https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938,

URL https://www.sciencedirect.com/science/article/pii/S2405844018332067.

[52] Kalogirou, S. A., “Applications of artificial neural-networks for energy systems,” Applied

energy, Vol. 67, No. 1-2, 2000, pp. 17–35.

[53] Baxt, W., “Application of artificial neural networks to clinical medicine,” The

Lancet, Vol. 346, No. 8983, 1995, pp. 1135–1138. https://doi.org/https://doi.org/10.

1016/S0140-6736(95)91804-3, URL https://www.sciencedirect.com/science/article/pii/

S0140673695918043.

[54] Himmelblau, D. M., “Applications of artificial neural networks in chemical engineering,”

Korean journal of chemical engineering, Vol. 17, No. 4, 2000, pp. 373–392.

[55] Li, H., Zhang, Z., and Liu, Z., “Application of artificial neural networks for catalysis: a

review,” Catalysts, Vol. 7, No. 10, 2017, p. 306.

[56] Huang, Y., Kangas, L. J., and Rasco, B. A., “Applications of Artificial Neural Networks

(ANNs) in Food Science,” Critical Reviews in Food Science and Nutrition, Vol. 47,

No. 2, 2007, pp. 113–126. https://doi.org/10.1080/10408390600626453, URL https:

//doi.org/10.1080/10408390600626453, pMID: 17364697.

[57] Debska, B., and Guzowska-Świder, B., “Application of artificial neural network in food

classification,” Analytica Chimica Acta, Vol. 705, No. 1, 2011, pp. 283–291. https:

61

https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
https://www.sciencedirect.com/science/article/pii/S2405844018332067
https://doi.org/https://doi.org/10.1016/S0140-6736(95)91804-3
https://doi.org/https://doi.org/10.1016/S0140-6736(95)91804-3
https://www.sciencedirect.com/science/article/pii/S0140673695918043
https://www.sciencedirect.com/science/article/pii/S0140673695918043
https://doi.org/10.1080/10408390600626453
https://doi.org/10.1080/10408390600626453
https://doi.org/10.1080/10408390600626453
https://doi.org/https://doi.org/10.1016/j.aca.2011.06.033
https://doi.org/https://doi.org/10.1016/j.aca.2011.06.033

//doi.org/https://doi.org/10.1016/j.aca.2011.06.033, URL https://www.sciencedirect.

com/science/article/pii/S0003267011008622, a selection of papers presented at the 12th

International Conference on Chemometrics in Analytical Chemistry.

[58] Berke, L., and Hajela, P., “Applications of artificial neural nets in structural mechanics,”

Shape and Layout Optimization of Structural Systems and Optimality Criteria Methods,

Springer, 1992, pp. 331–348.

[59] Scalabrin, G., and Piazza, L., “Analysis of forced convection heat transfer to super-

critical carbon dioxide inside tubes using neural networks,” International Journal of

Heat and Mass Transfer, Vol. 46, No. 7, 2003, pp. 1139–1154. https://doi.org/https://

doi.org/10.1016/S0017-9310(02)00382-4, URL https://www.sciencedirect.com/science/

article/pii/S0017931002003824.

[60] Olson, D. A., Allen, D. W., et al., “Heat transfer in turbulent supercritical carbon

dioxide flowing in a heated horizontal tube,” 1998.

[61] Chen, J., Wang, K.-P., and Liang, M.-T., “Predictions of heat transfer coefficients

of supercritical carbon dioxide using the overlapped type of local neural network,”

International Journal of Heat and Mass Transfer, Vol. 48, No. 12, 2005, pp. 2483–

2492. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.040, URL

https://www.sciencedirect.com/science/article/pii/S0017931005000943.

[62] Sharifahmadian, A., Numerical models for submerged breakwaters: coastal hydrodynam-

ics and morphodynamics, Butterworth-Heinemann, 2015.

[63] Pesteei, S., and Mehrabi, M., “Modeling of convection heat transfer of supercritical car-

bon dioxide in a vertical tube at low Reynolds numbers using artificial neural network,”

International Communications in Heat and Mass Transfer, Vol. 37, No. 7, 2010, pp.

901–906.

62

https://doi.org/https://doi.org/10.1016/j.aca.2011.06.033
https://doi.org/https://doi.org/10.1016/j.aca.2011.06.033
https://doi.org/https://doi.org/10.1016/j.aca.2011.06.033
https://www.sciencedirect.com/science/article/pii/S0003267011008622
https://www.sciencedirect.com/science/article/pii/S0003267011008622
https://doi.org/https://doi.org/10.1016/S0017-9310(02)00382-4
https://doi.org/https://doi.org/10.1016/S0017-9310(02)00382-4
https://www.sciencedirect.com/science/article/pii/S0017931002003824
https://www.sciencedirect.com/science/article/pii/S0017931002003824
https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.040
https://www.sciencedirect.com/science/article/pii/S0017931005000943

[64] Jiang, R., Wang, X., Cao, S., Zhao, J., and Li, X., “Deep Neural Networks for Channel

Estimation in Underwater Acoustic OFDM Systems,” IEEE Access, Vol. 7, 2019, pp.

23579–23594. https://doi.org/10.1109/ACCESS.2019.2899990.

[65] Chu, X., Chang, W., Pandey, S., Luo, J., Weigand, B., and Laurien, E., “A com-

putationally light data-driven approach for heat transfer and hydraulic characteristics

modeling of supercritical fluids: From DNS to DNN,” International Journal of Heat and

Mass Transfer, Vol. 123, 2018, pp. 629–636.

[66] Ye, K., Zhang, Y., Yang, L., Zhao, Y., Li, N., and Xie, C., “Modeling convective

heat transfer of supercritical carbon dioxide using an artificial neural network,” Applied

Thermal Engineering, Vol. 150, 2019, pp. 686–695.

[67] Bae, Y.-Y., Kim, H.-Y., and Kang, D.-J., “Forced and mixed convection heat transfer to

supercritical CO2 vertically flowing in a uniformly-heated circular tube,” Experimental

Thermal and Fluid Science, Vol. 34, No. 8, 2010, pp. 1295–1308.

[68] Li, Z.-H., Jiang, P.-X., Zhao, C.-R., and Zhang, Y., “Experimental investigation of

convection heat transfer of CO2 at supercritical pressures in a vertical circular tube,”

Experimental thermal and fluid science, Vol. 34, No. 8, 2010, pp. 1162–1171.

[69] Kim, D. E., and Kim, M. H., “Experimental study of the effects of flow acceleration

and buoyancy on heat transfer in a supercritical fluid flow in a circular tube,” Nuclear

Engineering and Design, Vol. 240, No. 10, 2010, pp. 3336–3349.

[70] Kim, D. E., and Kim, M.-H., “Experimental investigation of heat transfer in vertical

upward and downward supercritical CO2 flow in a circular tube,” International Journal

of Heat and Fluid Flow, Vol. 32, No. 1, 2011, pp. 176–191.

[71] Kim, D. E., and Kim, M. H., “Two layer heat transfer model for supercritical fluid flow

in a vertical tube,” The Journal of Supercritical Fluids, Vol. 58, No. 1, 2011, pp. 15–25.

63

https://doi.org/10.1109/ACCESS.2019.2899990

[72] Liu, G., Huang, Y., Wang, J., and Leung, L. H., “Heat transfer of supercritical carbon

dioxide flowing in a rectangular circulation loop,” Applied Thermal Engineering, Vol. 98,

2016, pp. 39–48.

[73] Bae, Y.-Y., Kim, H.-Y., and Yoo, T. H., “Effect of a helical wire on mixed convection

heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures,”

International journal of heat and fluid flow, Vol. 32, No. 1, 2011, pp. 340–351.

[74] Jiang, K., “An experimental facility for studying heat transfer in supercritical fluids,”

Ph.D. thesis, Université d’Ottawa/University of Ottawa, 2015.

[75] Zhu, B., Zhu, X., Xie, J., Xu, J., and Liu, H., “Heat transfer prediction of supercritical

carbon dioxide in vertical tube based on artificial neural networks,” Journal of Thermal

Science, Vol. 30, No. 5, 2021, pp. 1751–1767.

[76] Liu, S., Huang, Y., Liu, G., Wang, J., and Leung, L. K., “Improvement of buoyancy and

acceleration parameters for forced and mixed convective heat transfer to supercritical

fluids flowing in vertical tubes,” International Journal of Heat and Mass Transfer, Vol.

106, 2017, pp. 1144–1156.

[77] Zhang, Q., Li, H., Kong, X., Liu, J., and Lei, X., “Special heat transfer characteristics of

supercritical CO2 flowing in a vertically-upward tube with low mass flux,” International

journal of heat and mass transfer, Vol. 122, 2018, pp. 469–482.

[78] Lei, X., Zhang, J., Gou, L., Zhang, Q., and Li, H., “Experimental study on convection

heat transfer of supercritical CO2 in small upward channels,” Energy, Vol. 176, 2019,

pp. 119–130.

[79] Bishop, A. A., Sandberg, R. O., and Tong, L. S., “High-temperature supercritical pres-

sure water loop Part IV: Forced convection heat transfer to water at near-critical tem-

peratures and super-critical pressures,” Tech. Rep. WCAP-2056, Westinghouse Electric

Corp. Atomic Power Div., Pittsburgh, 1964.

64

[80] Mokry, S., Pioro, I., and Duffey, R., “Experimental heat transfer to supercritical CO2

flowing upward in a bare vertical tube,” Supercritical CO2 Power Cycle Symposium,

Troy, New York, 2009.

[81] Yu, J., Jia, B., Wu, D., and Wang, D., “Optimization of heat transfer coefficient cor-

relation at supercritical pressure using genetic algorithms,” Heat and Mass Transfer,

Vol. 45, No. 6, 2009, pp. 757–766. https://doi.org/10.1007/s00231-008-0475-4.

[82] Sun, F., Xie, G., Song, J., Li, S., and Markides, C. N., “Thermal characteristics of

in-tube upward supercritical CO2 flows and a new heat transfer prediction model based

on artificial neural networks (ANN),” Applied Thermal Engineering, Vol. 194, 2021, p.

117067.

[83] Lei, X., Zhang, Q., Zhang, J., and Li, H., “Experimental and numerical investigation

of convective heat transfer of supercritical carbon dioxide at low mass fluxes,” Applied

Sciences, Vol. 7, No. 12, 2017, p. 1260.

[84] Song, J., Kim, H., Kim, H., and Bae, Y., “Heat transfer characteristics of a supercritical

fluid flow in a vertical pipe,” The Journal of Supercritical Fluids, Vol. 44, No. 2, 2008,

pp. 164–171. https://doi.org/10.1016/j.supflu.2007.11.013.

[85] S. Gupta, I. P., E. Saltanov, “Heat Transfer Correlation for Supercritical Carbon Dioxide

Flowing in Vertical Bare Tubes,” Proceedings of the 2013 21st International Conference

on Nuclear Engineering, Chengdu, China, 2013.

[86] Zahlan, H., Groeneveld, D., and Tavoularis, S., “Measurements of convective heat

transfer to vertical upward flows of CO2 in circular tubes at near-critical and su-

percritical pressures,” Nuclear Engineering and Design, Vol. 289, 2015, pp. 92–107.

https://doi.org/10.1016/j.nucengdes.2015.04.013.

[87] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,

65

https://doi.org/10.1007/s00231-008-0475-4
https://doi.org/10.1016/j.supflu.2007.11.013
https://doi.org/10.1016/j.nucengdes.2015.04.013

Z., Gimelshein, N., Antiga, L., et al., “Pytorch: An imperative style, high-performance

deep learning library,” Advances in neural information processing systems, Vol. 32, 2019.

[88] Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula, S., Mujumdar, S.,

Afzal, S., Sharma Mittal, R., and Munigala, V., “Overview and importance of data qual-

ity for machine learning tasks,” Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2020, pp. 3561–3562.

[89] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

D., Brucher, M., Perrot, M., and Duchesnay, E., “Scikit-learn: Machine Learning in

Python,” Journal of Machine Learning Research, Vol. 12, 2011, pp. 2825–2830.

[90] “Module x2014; PyTorch 1.13 documentation — pytorch.org,” https://pytorch.org/

docs/stable/generated/torch.nn.Module.html#torch.nn.Module, 2011.

[91] Raju, V. G., Lakshmi, K. P., Jain, V. M., Kalidindi, A., and Padma, V., “Study

the influence of normalization/transformation process on the accuracy of supervised

classification,” 2020 Third International Conference on Smart Systems and Inventive

Technology (ICSSIT), IEEE, 2020, pp. 729–735.

[92] “sklearn.preprocessing.RobustScaler — scikit-learn.org,” https://scikit-learn.

org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html#sklearn.

preprocessing.RobustScaler, 2011.

[93] “sklearn.preprocessing.StandardScaler — scikit-learn.org,” https://scikit-learn.

org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.

preprocessing.StandardScaler, 2011.

[94] Ying, X., “An overview of overfitting and its solutions,” Journal of physics: Conference

series, Vol. 1168, IOP Publishing, 2019, p. 022022.

66

https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html#sklearn.preprocessing.RobustScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html#sklearn.preprocessing.RobustScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html#sklearn.preprocessing.RobustScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler

[95] Ruder, S., “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[96] “torch.optim x2014; PyTorch 1.12 documentation — pytorch.org,” https://pytorch.org/

docs/stable/optim.html, 2011.

[97] Soydaner, D., “A comparison of optimization algorithms for deep learning,” Interna-

tional Journal of Pattern Recognition and Artificial Intelligence, Vol. 34, No. 13, 2020,

p. 2052013.

[98] “Adam x2014; PyTorch 1.12 documentation — pytorch.org,” https://pytorch.org/docs/

stable/generated/torch.optim.Adam.html, 2011.

[99] Loshchilov, I., and Hutter, F., “Decoupled weight decay regularization,” arXiv preprint

arXiv:1711.05101, 2017.

67

https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

A Appendix Title

Table A.1 Operating Conditions - summary

Author Equation Cooling Flow Operating
/Heating Direction Condition

Bringer & Smith (2.2) heating horizontal d = 4.57 mm, P = 8.27 MPa, Reb = 3 · 104 − 3 · 105
[12] q = 31.55− 315.5 kW/m2, Tb = 21− 49 ◦C

Krasnoshchekov & (2.4) heating horizontal d = 4.08 mm, Tb/Tpc = 0.9− 1.2, Tw/Tpc = 0.9− 2.5,
Protopopov P/Pc = 1.02− 5.25, Reb = 8 · 104 − 5 · 105

[13] Prb = 0.85− 65, ρw/ρb = 0.09− 1.0
cp/cp,b = 0.02− 4.0

q = 4.6 · 104 − 2.6 · 106 W/m2, l/d ≥ 15
Petukhov & (2.6) cooling horizontal µw/µb = 0.08− 40, Prb = 0.7− 200
Kirillov[14] heating Reb = 104 − 106, subcritical
Gnielinski (2.11) – horizontal Reb = 2300− 106, Prb = 0.6− 105, subcritical

[16]
Pitla et al. (2.13) cooling horizontal d = 4.72 mm, Tb = 20− 124 ◦C,

[18] ṁ = 0.020− 0.039 kg/s, P = 9.4− 13.4 MPa
Liao & Zhao (2.15) cooling horizontal P = 7.4− 12 MPa, Tb = 20− 110 ◦C

[19] (Tb − Tw) = 2− 30 ◦C, ṁ = 0.02− 0.2 kg/min
Rib = 10−5 − 10−2, d = 0.5− 2.16 mm

Dang & Hihara (2.21) cooling horizontal d = 1− 6 mm, l = 500 mm,
[2] P = 8− 10 MPa, Tb,in,CO2 = 30− 70 ◦C,

GCO2 = 200− 1200 kg/m2·s, q = 6− 33 kW/m2

Table A.2 Input and output parameters used to predict sCO2 thermal behavior.

Author Output Input Operating Range
Scalabrin & Piazza [59] 1.) Nu Re, Pr, Ec –

Chen et al. [61] 2.) α Pr, Tr, ṁ, q

3.) Nu Re, Pr, ρw

ρb
,

c̄p
cp,b

4.) α Pr, Tr, ṁ, Tw

Tb

Pesteei & Mehrabi [63] αx Re, G, Bo∗, x+, q q = 4.49− 36.8 kW/m2, Rein = 1810− 1993, Tb,in = 24.6 ◦C, and P = 9.57 MPa
Chu et al. [65] Tw, τw d, P , Tin, hb, q d = 2, 5, 10 mm, q = 5, 10, 20, 30 kW/m2, Tin = 15, 28 ◦C, P = 8, 8.8 MPa
Ye et al. [66] Tw d, P , G, hb, q d = 2− 22 mm, Tb = −6− 115 ◦C, P = 7.5− 9.23 MPa, G = 100− 3079 kg/m2·s, and q = 0.479− 616.3 kW/m2

Zhu et al. [75] d = 2− 16 mm, P = 7.5− 20.8 MPa, q = 5− 350 kW/m2, and G = 488− 2000 kg/m2·s

A.1 Code

The following code can be used to upload the final model, scaling parameters and model

definition. This code has two parts, one where a range of Bulk temperaturess in .xlsx file

can be used as input and the second part where a single bulk temperature point can be used

as an input.

A.1.1 Part 1 - Range of bulk temperature values

The data science libraries are imported here

#required libraries

68

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import torch

import torch.nn as nn

from torchsummary import summary

from google.colab import files

The google drive is connected so that all the data files can be accessed/uploaded directly

from/to the drive

#mounting the google drive

from google.colab import drive

drive.mount(’/content/drive’)

#upload bulk temperature file (xlsx file with a single column)

uploaded = files.upload()

#enter the heat flux and Mass flux value

q = 15

G = 550

Input = pd.read excel(”Bulk Temperature.xlsx”)

Tb new = np.array([Input]).reshape(-1,1)

q new = q*np.ones([len(Tb new),1])

G new = G*np.ones([len(Tb new),1])

X test new = np.concatenate((Tb new,q new,G new),axis = 1)

#Import ScalerX and ScalerY files

69

from pickle import load

scaler x = load(open(’/content/drive/MyDrive/final model scalerX.pkl’, ’rb’))

scaler y = load(open(’/content/drive/MyDrive/final model scalerY.pkl’, ’rb’))

#Import the Model def

import sys

sys.path.append(”/content/drive/MyDrive/Model def”) location where Model def folder is

located (Note: Enter file name in the next line)

from ModelDef import * # (f3 is the file name)

#Import the Model

model = sCO2()

PATH model = ’/content/drive/MyDrive/final model.pt’ load the model path here

new model = torch.load(PATH model)

Predicting

new model.eval()

X test norm = scaler x.transform(X test new)

X test norm t = torch.from numpy(X test norm.astype(np.float32))

with torch.no grad():

Yhat norm = new model(X test norm t).numpy()

pred Y = scaler y.inverse transform(Yhat norm)

print(pred Y)

70

A.1.2 Part 2 - Single point prediction

#required libraries

import numpy as np

import torch

Input values

Tb = 299 #Enter bulk temperature in K

q = 6 #Enter Heat flux in kW/m2

G = 1000 #Enter Mass flux kg/m2.s

inputs = np.array([Tb, q, G]).reshape(1,-1)

mounting my google drive

from google.colab import drive

drive.mount(’/content/drive’)

#Import ScalerX and ScalerY files

from pickle import load

scaler x = load(open(’/content/drive/MyDrive/final model scalerX.pkl’, ’rb’))

scaler y = load(open(’/content/drive/MyDrive/final model scalerY.pkl’, ’rb’))

#Import the Model def

import sys

sys.path.append(”/content/drive/MyDrive/Model def”) location where Model def folder is

located (Note: Enter file name in the next line)

from ModelDef import * # (f3 is the file name)

#Import the Model

71

model = sCO2()

PATH model = ’/content/drive/MyDrive/final model.pt’ load the model path here

new model = torch.load(PATH model)

Predicting

new model.eval()

X test norm = scaler x.transform(X test new)

X test norm t = torch.from numpy(X test norm.astype(np.float32))

with torch.no grad():

Yhat norm = new model(X test norm t).numpy()

pred Y = scaler y.inverse transform(Yhat norm)

print(pred Y)

72

	Artificial Neural Network for Predicting Heat Transfer Rates in Supercritical Carbon Dioxide
	Scholarly Commons Citation

	tmp.1670453701.pdf.EV_5d

	Text3: 12/07/2022
	Text2: 10/07/2022
	Text1: 12/06/2022
		2022-12-07T15:51:17-0500
	Christopher Grant

		2022-12-07T14:50:33-0500
	James Gregory

		2022-12-06T12:10:31-0500
	Hever Moncayo

		2022-12-06T09:58:17-0500
	Prashant Shekhar

		2022-12-05T21:39:47-0500
	Habib Eslami
	I am the author of this document

