
Doctoral Dissertations and Master's Theses

Fall 2022

Supporting the Discovery, Reuse, and Validation of Cybersecurity Supporting the Discovery, Reuse, and Validation of Cybersecurity

Requirements at the Early Stages of the Software Development Requirements at the Early Stages of the Software Development

Lifecycle Lifecycle

Jessica Antonia Steinmann
Embry-Riddle Aeronautical University, steinmaj@erau.edu

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Artificial Intelligence and Robotics Commons, Information Security Commons, Software

Engineering Commons, and the Systems Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Steinmann, Jessica Antonia, "Supporting the Discovery, Reuse, and Validation of Cybersecurity
Requirements at the Early Stages of the Software Development Lifecycle" (2022). Doctoral Dissertations
and Master's Theses. 716.
https://commons.erau.edu/edt/716

This Dissertation - Open Access is brought to you for free and open access by Scholarly Commons. It has been
accepted for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly
Commons. For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=commons.erau.edu%2Fedt%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fedt%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=commons.erau.edu%2Fedt%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=commons.erau.edu%2Fedt%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=commons.erau.edu%2Fedt%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/716?utm_source=commons.erau.edu%2Fedt%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

Supporting the Discovery, Reuse, and
Validation of Cybersecurity Requirements

at the Early Stages of the Software
Development Lifecycle

Jessica Steinmann

Fall 2022

Embry-Riddle Aeronautical University

Daytona Beach, Florida

This page is intentionally left blank.

i

Acknowledgements

I would like to thank my advisor Dr. Omar Ochoa for all your feedback, endless revisions,

guidance and encouragement. I would like to thank my committee Dr. Salamah Salamah, Dr.

Massood Towhidnejad, Dr. Laxima Niure Kandel, and Dr. Kenji Yoshigoe for all of your feedback

and improvements. I would like to thank the EECS department and recognize Dr. Radu Babiceanu,

Dr. Remzi Seker for their leadership. I could not have fulfilled this dream without Professor

Farahzad Behi, thank you for all the opportunities throughout the years. I would like to thank the

research group for all your help, guidance, and feedback especially Khushboo Dhala, Yevgeniy

Lischuk, Timothy Elvira, Tyler Procko, Sarah Reynolds, Lynn Vonder Haar, Juan Ortiz Couder,

and Priscilla Carbo. I would also like to thank the students of SE/SYS 530 for participating in the

study. I would like to express my deepest gratitude to Dr. Ilteris Demirkiran, my McNair advisor,

Dr. Nancy Lawrence, and Dr. Bereket Berhane for all of your advice, support, and encouragement

through the years. Dr. Ashley Lear, I’m getting my shirt. Marian Yeneic who has supported me

since the early days of undergrad, thank you.

 Words cannot express my gratitude to Jennifer Heaton for all your encouragement and

reminders. I would also like to thank Srikanth Venkataraman for reminding me this is a small

period of time in my life.

 Finally, I would like to acknowledge and thank my mother, Mariemina Anglade Steinmann

if it weren’t for all of your sacrifices, support, and encouragements none of this could have been

possible. You have taught me that starting over is possible regardless of circumstances time and

time again. It is because of all your support and bravery that I was in lucky enough to get the

opportunities to not only follow my dreams but to achieve them. There is still much more to

accomplish. This is only the beginning. Thank you!

ii

Dedication

For Fabien Steinmann and Hubert Steinmann, you are both missed dearly.

For Mariemina Anglade Steinmann, Thank you!

iii

Abstract

The focus of this research is to develop an approach that enhances the elicitation and specification

of reusable cybersecurity requirements. Cybersecurity has become a global concern as cyber-

attacks are projected to cost damages totaling more than $10.5 trillion dollars by 2025.

Cybersecurity requirements are more challenging to elicit than other requirements because they

are nonfunctional requirements that requires cybersecurity expertise and knowledge of the

proposed system. The goal of this research is to generate cybersecurity requirements based on

knowledge acquired from requirements elicitation and analysis activities, to provide cybersecurity

specifications without requiring the specialized knowledge of a cybersecurity expert, and to

generate reusable cybersecurity requirements. The proposed approach can be an effective way to

implement cybersecurity requirements at the earliest stages of the system development life cycle

because the approach facilitates the identification of cybersecurity requirements throughout the

requirements gathering stage. This is accomplished through the development of the Secure

Development Ontology that maps cybersecurity features and the functional features descriptions

in order to train a classification machine-learning model to return the suggested security

requirements. The SD-SRE requirements engineering portal was created to support the application

of this research by providing a platform to submit use case scenarios and requirements and suggest

security requirements for the given system. The efficacy of this approach was tested with students

in a graduate requirements engineering course. The students were presented with a system

description and tasked with creating use case scenarios using the SD-SRE portal. The entered

models were automatically analyzed by the SD-SRE system to suggest the security requirements.

The results showed that the approach can be an effective approach to assist in the identification of

security requirements.

iv

v

Table of Contents

Acknowledgements .. i

Abstract .. iii

Table of Abbreviations ... x

Table of Equations ... xiii

Table of Figures ... xiv

Table of Tables ... xvii

1 Introduction ... 1

1.1 The Need for Secure Software Systems ... 1

1.1.1 The Cost of Cybercrime .. 2

1.2 The Difficulties of Building Secure Software Systems ... 7

1.2.1 Why is it Hard to Build Software Systems? ... 8

1.2.2 The Challenges of Eliciting Cybersecurity Requirements 11

1.3 Motivation .. 12

1.4 Research Questions .. 14

1.4.1 How can the elicitation and analysis of functional features be leveraged to assist

with the specification of cybersecurity requirements? .. 14

1.4.2 How can the use of existing best practices of cybersecurity be leveraged to assist in

the identification of cybersecurity requirements? ... 15

2 Background ... 16

2.1 Software Development Life Cycle ... 16

vi

2.1.1 Writing Requirements ... 18

2.1.2 Requirements Gathering ... 21

2.1.3 Use Case models ... 22

2.2 Security Requirement Elicitation Techniques .. 24

2.2.1 Threat Modeling.. 25

2.2.2 Abuse Cases .. 26

2.2.3 Misuse Cases ... 26

2.2.4 Attack Surface Analysis .. 28

2.2.5 Standards for Security Implementation .. 28

2.2.6 Security Requirement Frameworks... 29

2.3 Semantic Web Technologies .. 30

2.3.1 What are Semantic Web Technologies? ... 30

2.3.2 The Challenges of Semantic Technology ... 32

2.3.3 Why Use Semantic Web Technologies? ... 33

2.3.4 With the improvements in other parts of Artificial Intelligence and Machine

Learning is Semantic Web still relevant? ... 33

2.3.5 What is an Ontology?.. 34

2.3.6 Use of Semantic Technologies in Gather Requirements .. 39

2.3.7 The Use of Semantic Technologies in the Cybersecurity Domain 40

2.4 Machine Learning .. 40

2.4.1 Natural Language Processing ... 45

2.4.2 How to Know which ML model to Use? .. 48

2.4.3 How to evaluate Machine Learning Models? ... 48

vii

3 Approach ... 54

3.1 The Goals of this Research... 54

3.2 The Approach ... 54

3.2.1 Scenario Driven Security Requirements Elicitation (SD-SRE) 54

3.2.2 The SD-SRE Process .. 55

3.2.3 The Information Gathering Phase ... 56

3.2.4 Developing the Ontology .. 57

3.2.5 Determining the ML Model .. 59

3.2.6 The Aggregator ... 60

3.2.7 Validating the SD-SRE ... 62

3.3 Rationale for Technical Decisions ... 62

3.4 How Will the SD-SRE Approach be Used? ... 63

4 Scenario Driven Security Requirements Elicitation (SD-SRE) .. 64

4.1 Gathering Information .. 64

4.1.1 Use Case Scenarios ... 65

4.1.2 Security Concepts and Requirements ... 65

4.2 Secure Development Ontology .. 66

4.2.1 Security Concepts Competency Questions ... 68

4.2.2 Use Case Scenarios Parsing .. 72

4.3 Machine Learning Model ... 74

4.3.1 Login Requirements .. 76

4.3.2 Sensitive Information Requirements ... 78

viii

4.3.3 Authentication Requirements.. 80

4.3.4 Authorization Requirements ... 82

4.3.5 Email Collection Requirements .. 84

4.3.6 Input Validation Requirements ... 86

4.3.7 Encryption Requirements.. 88

4.3.8 Random Number Generator Requirements ... 90

4.3.9 Database Requirements ... 92

4.3.10 File Upload Requirements .. 94

4.3.11 Logging Requirements .. 96

4.3.12 Weakness .. 98

4.4 Validation ... 99

4.4.1 Student Educational Backgrounds .. 101

4.4.2 Student Results.. 102

4.4.3 Results of the Suggested Requirements .. 104

4.4.4 Comparison between Using the Portal or Not Using the Portal 114

4.4.5 Comparison Between Recommended Security Requirements and Student Security

Requirements .. 114

4.5 Research Questions Results ... 115

4.5.1 How can the elicitation and analysis of functional features be leveraged to assist

with the specification of cybersecurity requirements? .. 115

4.5.2 How can the use of existing best practices of cybersecurity be leveraged to assist in

the identification of cybersecurity requirements? ... 116

5 Related Work .. 118

ix

5.1 Development of Cybersecurity Ontologies .. 118

5.2 Applications of Cybersecurity Ontologies ... 120

5.3 The Use of Machine Learning in Requirement Elicitation .. 121

5.4 The Use of Machine Learning in Cybersecurity Requirement Elicitation 123

5.5 The Use of Ontologies with Machine Learning ... 124

5.6 The Use of Ontologies with Machine Learning in Cybersecurity 124

5.7 Comparison to Approach ... 125

6 Results and Conclusion ... 127

6.1 SD-SRE Results ... 127

6.2 Results of Best Practices .. 128

6.3 The Benefits of the SD-SRE .. 130

6.4 Future Work ... 132

7 References ... 134

8 Appendix ... 145

8.1 The SD-SRE Portal .. 145

8.2 All Suggested Security Related Requirements... 156

9 Glossary .. 164

10 Index ... 165

x

Table of Abbreviations

Abbreviation Definition
AHP Analytic Hierarchy Process
AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interfaced
AUC Area Under the Curve
BPMN Business Process Modeling Notation
BFO Basic Formal Ontology
CLASP Comprehensive Lightweight Application Security Process
CIA Confidentiality Integrity Availability
CISA Cybersecurity & Infrastructure Security Agency
CNN Convolution Neural Networks
CWE Common weakness Enumeration
DQN Deep Q Network
DevSecOps Development Security Operations
DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering
DOS Denial of Service
DDOS Distributed Denial of Service
FBI Federal Bureau of Investigation
FN False Negative
FP False Positive
GAN Generative Adversarial Networks
Glove Global Vectors
IC3 Internet Crime Complaint Center
IDE Integrated Development Environments
IDEF Integrated Definition for Function Modeling
IDEF5 Integrated Definition for Ontology Description Capture Method
IEEE Institute of Electrical and Electronics Engineers
IOT Internet of Things
IT Information Technology
IP Intellectual Property

xi

IRI Internationalized Resource Identifier
LSTM Long Short-term Memory Networks
ML Machine Learning
MLP Multilayer Perceptron
MODDALS Methodology for Designing Layered Ontology Structures
NIST National Institute of Standards and Technology
NLP Natural Language Processing
OSCO Ontologies of Secure Cyber Operations
OWASP Open Web Application Security Project
OWL Web Ontology Language
PASTA Process for Attack Simulation and Threat Analysis
PBAC Permission Based Access Control
RDF Resource Description Framework
RDFS Resource Description Framework Schema
RIF Rule Interchange Format
RNN Recurrent Neural Networks
ROC Curve Receiver-Operator Curve
SARSA State Action Reward State Action
SD-SRE Scenario Driven Security Requirements Elicitation
SDO Secure Development Ontology
SKOS Simple Knowledge Organization System
SML Supervised Machine Learning
SPARQL SPARQL Protocol and RDF Query Language
SRS Software Requirement Specifications
STEM Science Technology Engineering Math
STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service,

elevation of Privilege
STUCCO Situation and Threat Understanding by Correlating Contextual Observations
SUMO Suggested Upper Merged Ontology
SWEBOK Software Engineering Body of Knowledge
SWRL Semantic Web Rule Language
TF-IDF Term Frequency-Inverse Document Frequency
TN True Negative
TP True Positive

xii

UCO Unified Cybersecurity Ontology
UI User Interface
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniformed Resource Locators
URN Uniformed Resource Name
USML Unsupervised Machine Learning
WWW World Wide Web
XML Extensible Markup Language

xiii

Table of Equations

Equation 1: Term Frequency .. 46

Equation 2: Document Frequency .. 46

Equation 3: Reciprocal of Document Frequency .. 47

Equation 4: TF-IDF... 47

Equation 5: Accuracy Metric .. 50

Equation 6: Precision Metric .. 50

Equation 7: Recall Metric ... 50

Equation 8: F1 Score Metric ... 51

Equation 9: Specificity Metric .. 51

Equation 10: Fall-Out Metric .. 52

Equation 11: Miss Rate Metric ... 52

xiv

Table of Figures

Figure 1: The software development life cycle... 16

Figure 2: Non-functional requirements classification... 20

Figure 3: Example use case model .. 23

Figure 4: Example scenarios for the use case model shown in Figure 3 above. 24

Figure 5: Example misuse case ... 27

Figure 6: Semantic Web Stack ... 30

Figure 7: Confusion Matrix .. 49

Figure 8: Example ROC curve .. 53

Figure 9: The SD-SRE process ... 55

Figure 10: SDO snapshot of permission_based_access_control_(PBAC) 58

Figure 11: SDO snapshot of password_spraying vulnerability .. 58

Figure 12: The ontology development process ... 59

Figure 13: Data flow diagram ... 60

Figure 14: Requirements aggregator ... 61

Figure 15: Information gathering for SD-SRE ... 64

Figure 16: Ontology use in the SD-SRE ... 67

Figure 17: SDO object properties ... 69

Figure 18: Access_control described_by .. 69

Figure 19: Access_control Class in the SDO .. 70

Figure 20: Multifactor_authentication mitigation example for access control 71

Figure 21: Machine leaning model in the SD-SRE .. 76

Figure 22: Login requirements model confusion matrix .. 76

xv

Figure 23: Login requirements model ROC and AUC curve ... 77

Figure 24: Sensitive information requirements model confusion matrix 78

Figure 25: Sensitive information requirements model ROC and AUC Curve 79

Figure 26: Authentication requirements model confusion matrix .. 80

Figure 27: Authentication requirements model ROC and AUC Curve .. 81

Figure 28: Authorization requirements model confusion matrix .. 82

Figure 29: Authorization requirements model ROC and AUC Curve .. 83

Figure 30: Email collection requirements model confusion matrix .. 84

Figure 31: Email collection requirements model ROC and AUC Curve...................................... 85

Figure 32: Input validation requirements model confusion matrix .. 86

Figure 33: Input validation requirements model ROC and AUC Curve 87

Figure 34: Encryption requirements model confusion matrix .. 88

Figure 35: Encryption requirements model ROC and AUC Curve .. 89

Figure 36: Random number requirements model confusion matrix ... 90

Figure 37: Random number requirements model ROC and AUC Curve 91

Figure 38: Database requirements model confusion matrix ... 92

Figure 39: Database requirements model ROC and AUC Curve ... 93

Figure 40: File upload requirements model confusion matrix .. 94

Figure 41: File upload requirements model ROC and AUC Curve .. 95

Figure 42: Logging requirements model confusion matrix .. 96

Figure 43: Logging requirements model ROC and AUC Curve .. 97

Figure 44: Portal interface of the SD-SRE for validation ... 99

Figure 45: DirectCoins app ... 100

xvi

Figure 46: SD-SRE Portal welcome page ... 145

Figure 47: SD-SRE Portal add projects ability ... 146

Figure 48: SD-SRE Portal blank project ... 147

Figure 49: SD-SRE Portal add actors’ ability ... 148

Figure 50: SD-SRE Portal add scenario ability .. 149

Figure 51: SD-SRE Portal add scenario steps ability ... 150

Figure 52: SD-SRE Portal add requirement/specification ability ... 151

Figure 53: SD-SRE Portal add nonfunctional category requirement/specification ability 152

Figure 54: SD-SRE Portal example of instructional project ... 154

Figure 55: SD-SRE Portal example of use case scenario ... 155

xvii

Table of Tables

Table 1: The cost and number of days to identify and contain a data breach by initial attack

vector per IBM cost of a data breach report .. 3

Table 2: Example sparse matrix for text vectorization ... 46

Table 3: Train test split for model testing ... 60

Table 4: Use case scenario resources .. 65

Table 5: Security concept and requirements resources ... 65

Table 6: Security requirements ... 66

Table 7: Access_control class of the SDO .. 71

Table 8: Parsed used case scenarios classifications .. 72

Table 9: 4 security requirements for creating a username .. 73

Table 10: Login requirements model performance ... 77

Table 11: Sensitive information requirements model performance .. 79

Table 12:Authentication requirements model performance ... 81

Table 13: Authorization requirements model performance .. 83

Table 14: Email collection requirements model performance .. 85

Table 15:Input validation requirements model performance .. 87

Table 16: Encryption requirements model performance .. 89

Table 17: Random number requirements model performance ... 91

Table 18: Database requirements model performance .. 93

Table 19: File upload requirements model performance .. 95

Table 20: Logging requirements model performance ... 97

Table 21: Volunteer students educational background of portal users 101

xviii

Table 22: Volunteer students’ educational background of non-portal users 102

Table 23: Portal students submissions .. 103

Table 24: Student submissions not assigned the portal .. 103

Table 25: All student submission- the full validation set ... 104

Table 26: Validation results for login requirements ... 105

Table 27: Portal1 Login related Use Cases ... 106

Table 28: Example of Portal3 login Requirement Analysis ... 106

Table 29: Validation results for sensitive information requirements ... 107

Table 30: Validation results for authentication requirements ... 108

Table 31: Validation results for authorization requirements .. 108

Table 32: Validation results for email collection requirements ... 109

Table 33: Validation results for input validation requirements ... 110

Table 34:Validation results for encryption requirements ... 111

Table 35: Validation results for database requirements .. 112

Table 36: Validation results for file upload requirements .. 112

Table 37: Validation results for logging requirements ... 113

Table 38: Number of projects that return a requirements grouping.. 113

Table 39: Comparison of number of requirements student suggested vs the SD-SRE 115

Table 40: SD-SRE validation results .. 127

Table 41: All currently suggestable security related requirements ... 163

1

1 Introduction

This dissertation investigates supporting the discovery, reuse, and validation of cybersecurity

requirements at the early stages of the software development lifecycle. The approach leverages the

use of the popular requirements gathering techniques, use case models and scenarios, the

capabilities of domain mapping/discovery technologies; semantic technologies and machine

learning for the identification of security requirements. The proposed approach provides a rapid

discovery and correction of software vulnerabilities in the development process at the earliest

stages of the development life cycle. In addition, the approach also provides a way to reuse

cybersecurity requirements.

This chapter introduces the need for secure software systems, the difficulties of building

secure software systems, the challenges of eliciting cybersecurity requirements, the motivation for

this research, and the research questions.

1.1 The Need for Secure Software Systems

As our reliance on software systems continues to increase, so does the frequency and value of

cyberattacks, making them more devastating than ever before. The frequency of cyberattacks, and

the number of people affected, are increasing every year [1], [2], [3], [4]. The annual increasing

cost of cybercrime is estimated to hit $10.5 trillion globally by 2025 [5]. Due to the cost and risk

associated with cyberattacks and the continuing growth in dependency on software systems one of

the gravest issues facing society is the ability to improve cybersecurity capabilities of software

systems.

2

1.1.1 The Cost of Cybercrime

The Federal Bureau of Investigation (FBI) Internet Crime Complaint Center (IC3) collects and

analyzes cybercrime complaints. Every year they release a summary of the past year’s complaints.

The latest report is the Internet Crime Report of 2021. In the past 5 years the center has received

2.76 million complaints with a reported loss of $18.7 billion. The center received 847,376 reports

in 2021 up from 791,790 in 2020 with a reported loss of $6.9 billion in 2021 up from $4.2 billion

in 2020. That is a 7.02% increase in complaints and a 64.28% increase in losses. Cybercrimes such

as identity theft, personal data breach, and phishing/vishing/smishing/pharming are three out of

top five crime types identified in the report. The report identifies how many complaints are made

by 16 infrastructure sectors (defense, energy, food and agriculture, transportation, etc.). The top 3

infrastructure sectors affected are healthcare and public health, financial services, and information

technology. The rise in a social engineering technique called tech support fraud1 has more than

quadrupled in losses over the last 5 years from $14.8 million in 2017 to $347.6 million in 2021.

The IC3 on average receives more than 2,300 complaints daily for an average of 552,000 number

of complaints received per year over the last 5 years. The report summarized a total of $6.9 billion

dollars reported to have been lost in 2021 to cybercrimes [3].

The IBM 2022 Cost of a Data Breach Report studied 550 organizations and found that 83%

of the organizations they studied had more than one data breach with 45 % of breaches being cloud

based. The average cost of a data breach is $4.35 million up from $4.24 million in 2021 but for a

critical infrastructure data breach average cost are even higher at an average of $4.83 million.

Table 1 below shows the cost of a data breach in million and the total average time to identify and

1 Tech support fraud is a type of fraud where scammer pose as legitimate technical support for
various companies in order to gain access or information from victims.

3

contain a data breach by initial attack vector. According to the report it cost on average $4.9 million

when phishing is the initial attack vector, $3.94 million when a lost device is the initial attack

vector, $4.10 million when social engineering is the initial attack vector, $4.14 million when cloud

misconfiguration is the initial attack vector, $4.18 million when malicious insider is the initial

attack vector, and $4.55 million when vulnerability in third party software is the initial attack

vector.

Initial Attack Vector Average
Cost in

Millions

Average
Time to

Identify in
Days

Average
Time to
Contain
in Days

Total Average
Time to Identify
and Contain in

Days
System Error $3.82
Accidental data loss or lost device $3.94
Physical security compromise $3.96 217 63 280
Social engineering $4.10 201 69 270
Cloud misconfiguration $4.14 183 61 244
Malicious insider $4.18 216 68 284
Stolen or compromised credentials $4.50 243 84 327
Vulnerability in third-party software $4.55 214 70 284
Business email compromise $4.89 234 74 308
Phishing $4.91 219 76 295

Table 1: The cost and number of days to identify and contain a data breach by initial attack

vector per IBM cost of a data breach report [6]

The study also concludes that on average the cost of a single record in a data breach is

$164. These cost lead to 60% of organizations impacted by a data breach to raise their prices. Key

factors discovered in the study were that data breach cost increased due to security skills shortage

on average $206 thousand, lost or stolen devices on average $227 thousand, and security system

complexity on average $290 thousand.

Organizations on average took 277 days to identify and contain a data breach this is down

from 287 days in 2021 but the overall lifecycle of a data breach on average takes 304 days to detect

4

and respond. The study found 43% of organizations that were in early stages of development did

not apply security practices to safeguard their cloud environments and 59% of the organizations

didn’t deploy the zero trust2 framework. The average cost saving with a mature zero trust

deployment vs early adoption of zero trust is $1.51 million. The average cost savings with fully

deployed security AI and automation is $3.05 million. The total number of days to identify and

contain a data breach by a fully deployed AI and automation security system is 249 days compared

to 299 with partial deployment and 323 days without any deployment. The deployment of artificial

intelligence platforms decreases data breach cost by $300 thousand, Development Security and

Operations (DevSecOps) approaches by $276 thousand, extensive use of encryption by $252

thousand, participating in threat sharing $237 thousand, identity and access management by $224

thousand, multifactor authentication by $186 thousand [6].

The McAfee foundation distributed a report about the hidden costs of Cybercrime in 2020

in which they found the cost of cybercrime globally increased 50% in 2 years from $600 billion in

2018 to $900 billion in 2020. The reports highlights cost other than cash such as opportunity cost,

system downtime, reduced efficiency, brand damage and loss of trust, Intellectual Property (IP)

theft, incident response cost, outside assistance, cyber risk insurance, and damage to employee

morale [4].

The 2019 Ninth Annual Cost of Cybercrime Study by Accenture Security highlights

information theft as the most expensive and fastest rising consequence of cybercrime. The number

of data breaches in the study increased from 130 to 145 which is an 11% increase with an overall

67% percent increase over the previous 5 years. Their estimated annual cost in cybercrime

2 Zero Trust is a security framework/architecture NIST 800-207 that assumes no implicit trust is
granted to assets users must be authenticated, authorized, and regularly validated for access given
[84].

5

increased from $11.7 million in 2017 to $13 million in 2018 which is a 12% increase in cost with

a 72% increase over the 5 previous years. Malware attacks were the most expensive attack type

for an organization with malicious insider having the highest increase in frequency and cost.

Malware, web-based attacks, and denial of service attacks were the most prominent in 2018 [2].

The Accenture State of Cybersecurity Resilience 2021 report surveyed 4,744 executives

with 4,244 being security professionals from 18 countries and 23 industries. The report found that

attacks are up 31% from 2020 to 2021. Only 50% of companies using cloud service were

discussing or considering security, 18% had limited discussion about cloud security, while 32%

has not considered it [7].

Risk IQ’s 2021 Evil Internet Minute Report estimates that the average cost of a breach is

$7.2 per minute with the lost to cybercrime costing $1.79 million a minute. The total estimated

threats are 648 per minute while the estimated number of compromised records per minute is

525,600 [8].

Over the past century there have been news reports on data breaches from some the most

recognizable companies. Yahoo had the biggest data breach in 2013 affecting 3 billion accounts

that allowed hackers access to security questions and answers, and plain text passwords. Alibaba

had a data breach in 2019 where another shopping website targeted them and scrapped the

information of 1 billion pieces of user data. In 2019, First American Corporation announced that

hackers were able to bypass their authorization process on their website and obtained 885 million

mortgage documents [9]. In June of 2021, LinkedIn was also the target of someone scrapping 700

million user’s profile information through their API and selling it on the dark web. In April of

2019, 533 million Facebook users had their Facebook data exposed to the internet. Experian

experienced a data breach in 2013 where it exposed 200 million records of personal data such as

6

credit card and social security numbers when they fell victim to a social engineering attack. In

October 2013, Adobe had 153 million user records which included customer credit card records

and login data stolen by hackers [10].

On January 17, 2022, 500 cryptocurrency wallets were compromised on crypto.com

because attackers were able to bypass the two-factor authentication. On March 20th, 2022

Microsoft was targeted by a hacker group called Lapsus$. The hacker group retrieved some

information from Microsoft by compromising Cortana and Bing. No customer data was

compromised, and Microsoft was recognized for their quick response. In April 2022, A former

Cash App employee targeted Cash App and compromised user records. The employee was only

able to steal a limited amount of identifiable data, but Cash App had to inform more than 8 million

users about the incident [11].

Data breaches are the most notorious, well documented, and often easy to equate to dollars

lost types of attacks by hacker but there are many more different types of attacks to be concerned

about such as remote start apps exposing thousands of cars to hackers [12]. Data and money are

not always the motive for attacks. In 2015, security researcher Charlie Miller demonstrated the

ability to remotely shut down a Jeep going 70 mph. In 2016, the democratic national committee

had their emails hacked and leaked possibly affecting the outcome of the election [13]. In October

2022, a Russian hacker group by the name Killnet targeted 14 airport websites in the US through

a Distributed Denial Of Service (DDOS) attack [14]. Another famous hacker group, Anonymous,

is famous for their hacktivist attacks by constantly conducting data breaches and denial of service

attacks such as: Project Chanology in 2008, Project Skynet in 2009, Operation Didgeridie in 2009,

Operation Titstorm in 2010, Operation Payback in 2010, Operation WikiLeaks in 2010, Arab

Spring in 2011, HBGary Federal in 2011, Geohot in 2011, Operation Egypt in 2011, Occupy Wall

7

Street in 2011, Operation Syria in 2011, Operation Darknet in 2011, Operation Russia in 2012,

CIA Attack in 2012, and more recently targeting QAnon [15], [16], [17].

1.2 The Difficulties of Building Secure Software Systems

The need for secure software systems is growing but cybersecurity features are often addressed

late in the software development life cycle, e.g., released in later versions when the system is

already in use. These features are often only addressed once a vulnerability has been found and

exploited. Eliciting and specifying the requirements, the initial stage of the software development

life cycle, identifies the behaviors that a system must exhibit. This is a critically important step in

the creation and implementation of software systems. Building secure software systems requires a

greater need for secure software engineering approaches that can detect and address security

vulnerabilities.

The development of systems is often a difficult task due to the size of systems and lack of

clear customer expectations. Cybersecurity requirements are even more difficult to elicit as

customers are not aware of the threats their systems may face and many developers lack the

necessary skills to properly elicit the security requirements on their own. Developers mainly focus

on eliciting functional requirements which are the expected behaviors of a system, but

cybersecurity requirements are nonfunctional requirements which are the expected qualities of the

system. Developers often work with various stakeholder to develop functional requirements. These

stakeholders are often users of the system or have domain knowledge to support the functional

requirements. Security requirements require domain knowledge to gather, are often not a behavior

of the system. Developers often fail to partner with security experts to develop security

requirements and as such delayed security features to later phases of the development process.

8

Thus, there is a need to effectively elicit the correct cybersecurity requirement at the initial stages

of the development process.

1.2.1 Why is it Hard to Build Software Systems?

Software systems are difficult to build for several reasons: the software industry is relatively

young, there are no barriers to becoming a programmer, there can often be a lack of user input,

customers often do not know what they want until they see it, estimating is seen as art and not a

science, every line of code is a potential failure point with most systems having hundreds of

thousands even millions of lines of code, there are limits to the amount of testing that can

realistically carried out, and systems are impacted by external factors.

1.2.1.1 Software Industry is Relatively Young

Software engineering had been around since the late 1940s but emerged as a profession in the

1980s. The timespan between 1965-1985 is considered the software crisis because developers

struggled to deliver projects on time, on budget, and that met the customers’ expectations.

Developers and researchers worked on developing methods and tools to address the problems of

the software crisis. The internet helped speed up the need for more formalized approach to software

development during the 1990s. The methodologies developed during that time provided some

relief but overburdened developers with processes and still led to projects begin late, over budget,

and not what the customer expected. In the early 2000s lightweight methodologies were developed

to assist with connecting the customer with prototypes throughout the whole process [18].

1.2.1.2 General Education of Programmers

There is a lack of barriers to becoming a programmer. For the past decade there has been a myth

that there is a shortage of programmers which has led to many schools providing 3-month boot

9

camp programmer development programs. With the vast array of resources available on the

internet anyone can teach themselves how to program. The main barrier is having a computer and

access to the internet, as many development environments are free. There is also confusion around

the difference between a programmer and a software engineer. A programmer is similar to a line

worker while a software engineer designs and plans the work to be done on the line. In 2018, many

have come to conclude that there is not a lack of programmers or software engineers but there is a

lack of good programmers and software engineers [19]. In the past couple of years, the number of

computer science graduates has not had extreme growth in the US causing a shortage in skilled

workers with the basic knowledge of software engineering. Even with a college degree, a person

may not be qualified. A college degree often provides the basic knowledge to be a software

engineer but there is a need for mentorship and experience developed thru hands on projects [20].

Many companies have become desperate for good programmers and software engineers, e.g.,

Google and Apple, that they have drop the requirement for college degrees and instead are relying

on experience [19]. The need for skilled software engineers and programmers is not going to

decrease as our reliance on software systems continues to increase [20].

1.2.1.3 The Nature of Software System Development

Karl Wiegers and Joy Beatty, in their 3rd edition of Software Requirements, state “Despite decades

of industry experience, many software organizations struggle to understand, document, and

manage their product requirements. Inadequate user input, incomplete requirements, changing

requirements, and misunderstood business objectives are major reasons why so many information

technology projects are less than successful… Customer’s often do not have the time or patience

to participate in requirements activities. In many cases, project participants even disagree on what

a “requirement” is [21].”

10

The first stage of the software development process is requirements elicitation, which

results in a requirements specification document, and several other artifacts that can be used to

assist in the understanding of the specification, e.g., use case models, scenarios, class diagrams,

and data flow diagrams. The requirements specification document represents the contract between

developers and customers. These requirements are to be traced throughout the development

process to guarantee their implementation. Requirements gathering is difficult as customers may

not be the system users, customers may not have the time and patience to deal with the

requirements process, and customers often do not know what they want and do not want until they

see it. It is difficult for humans to communicate ideas that provide a common vision due to

differences in experiences; this is a challenge that carries over into requirements gathering

activities. It takes an experienced developer to ask the right questions to elicit the proper

requirements. The next two stages are design and development. This is where most software

defects and bugs are introduced. The design stage lays out the plan for development while the

development stage is the implementation of the design plan. This requires a common language to

communicate amongst all developers and coordination to integrate the different parts of the

system.

The last three stages of the software development life cycle are testing, implementation,

and maintenance. Testing is challenging as 100% test coverage is difficult to achieve due to time,

resources, and the combination of system executions. Many techniques have been developed to try

to mitigate the inability to perform 100% test coverage.

Testers and customers will use the requirements specification to verify that the system

meets the specifications, this is referred to as the verification process. Testers also use the

specifications to validate the system, which determines if they built what the specifications

11

required. System testing also faces other challenges such as the user will execute code that has

never been tested, the order in which statements are tested are executed differently than how they

will actually execute in the production environment, the user will likely use a combination of

untested inputs, and the users operating environment is never tested [22]. Implementation is

turning the system over to the customers for users to use. Maintenance is the upkeep of the system.

The implementation and maintenance stages often identify new and late requirements.

Due to the complexity of developing software systems, it is challenging and expensive to

add requirements late in the development life cycle. Analysis would need to be conducted to

determine which requirements the new requirement would potentially impact, the parts of design

impacted, which part of the system the new requirement would be implemented in, and the

implementation of the new requirement could potentially require bringing the system offline.

Researchers are constantly attempting to improve the development process of systems. Much

progress has been made but there is still quite bit of room for improvement. John Dooley, author

of Software Development and Professional Practice, summed it up perfectly stating ”Not only are

there no silver bullets now in view, the very nature of software makes it unlikely that there will be

any—no inventions that will do for software productivity, reliability, and simplicity what

electronics, transistors, and large-scale integration did for computer hardware [23].”

1.2.2 The Challenges of Eliciting Cybersecurity Requirements

Most requirement gathering activities focus on the elicitation and analysis of functional

requirements. Functional requirements are requirements that describe the behavior of the system.

Cybersecurity requirements are nonfunctional requirements, they are a quality of the system. The

source of many cybersecurity requirements are customers, expressing them as non-functional

requirements, that is desired qualities of the system. However, the implementation of these must

12

be done through specific functional requirements, and therein lies the challenge. There has been

previous work that expand on use case modeling to discover cybersecurity requirements: abuse

cases and misuse cases [24]. Abuse cases identify the ways the system could purposefully be

threatened while misuse cases identify unintended actions the system may accidently allow users

to commit. Both result in a loss or damage to the system or actors. For example, imagine a system

with a coupon code that is intended to be used once. If the system allows the same user to reuse

that coupon code multiple time, this would be an example of misuse. If a user creates multiple

accounts in order to reuse the code multiple times this would be considered an abuse case. In both

cases, the company loses more money than intended. When developers elicit requirements, they

consult with several stakeholders. The problem with these approaches is that they do not require

the consultation of cybersecurity experts, instead the approaches are limited to the imagination of

the developers. Even if a developer can successfully identify threats against the system this does

not mean that they have the necessary knowledge to properly mitigate those threats.

Another challenge with cybersecurity requirements is that they depend on knowledge of the

functional requirements. Many of the techniques that exist, such as SQUARE [25], depends on

security goals and risk assessment of the system in order to elicit cybersecurity requirements. This

adds levels of activities to perform on top of an already complicated processes. This can become

a challenge especially as functional requirements change.

1.3 Motivation

During the earliest era of development of software systems, the exploitation of these systems was

not considered. Once development of software systems began to become more popular,

development life cycles and techniques for stages of these life cycles were created to make

implementation of these systems more efficient. It is quite difficult to communicate the expected

13

behaviors of a system and even more difficult to try to estimate how that system may be exploited.

Cyberattacks are becoming more technically sophisticated in nature, there is a need to design

systems that can withstand malicious attacks [26]. These attacks often do not follow generic trends;

specific environments, programming languages, and tools to exploit system vulnerabilities [27].

Due to the unpredictability, formal approaches to counter cyberattacks can be challenging to adopt.

Information about weaknesses can be discovered at any time so there is a constant need to monitor

and continuously update the system when vulnerabilities are discovered. In addition, there is a lack

of addressing security needs of a system throughout the software development life cycle. Security

is often pushed off to the maintenance stage. In 2019, WhiteHat security conducted a survey with

108 participants at a developer’s event. The survey found that 43 percent of participants prioritized

meeting release deadline over security, 70% had not received security certifications, and only half

the participants surveyed had a security expert on their team. [28].

Although cyberattacks can be non-generic in nature, they still pose similar threats to software

systems thereby an approach integrating the best cybersecurity implementation practices with the

knowledge base of functional requirements can be powerful against cyberattacks. An example is

a system requirement for users to be able to access specific parts of the system designated only for

them. A developer will likely write a requirement specifying a user login and password feature.

There are various attacks that attackers can use to retrieve usernames and passwords, e.g., phishing

attacks, man in the middle attacks, brute force attacks. Having a strong password may possibly

prevent or delay the consequences of brute force attacks but it does not prevent or delay the

consequences of phishing or man in the middle attacks. One way to prevent the consequences of

those attacks is two-factor authentication but having a requirement for two-factor authentication is

not enough. That requirement needs to also have additional accompanying requirements that

14

explain features that securely implement two-factor authentication, e.g., alerting the account owner

or administrator of a failed login attempts.

Semantic technologies are flexible in nature and can assist in data categorization and storage

[29]. One of semantic technologies most diverse tools are ontologies, which have been used to

create data collections, which are relationship maps of data and their respective categorizations.

Ontologies are invaluable in that they not only store data collections, but they also highlight

connections between them.

Machine learning has proven that computers can learn to identify patterns in data. The ability

to identify patterns makes machine learning a powerful tool in identifying possible security

requirements from descriptions of functional features of a system. The problem with machine

learning is that it is able to identify patterns but needs a user to discern the meaning of the pattern.

This is addressed by supervised machine learning models. Supervised machine learning models

requires the data to have labels in order to train the model. The labeling of data is a tedious task if

the data is not already prelabeled. Ontologies can be used to assist in the labeling of data in order

to train machine learning models to identify security requirements from descriptions of system

features.

1.4 Research Questions

The following are the questions that drive the focus of this research.

1.4.1 How can the elicitation and analysis of functional features be leveraged to assist with the

specification of cybersecurity requirements?

There are two sets of knowledge needed in order to elicit cybersecurity requirements: cybersecurity

knowledge and knowledge of functional system requirements. Functional system requirements are

15

extracted from requirement eliciting activities. Cybersecurity requirements depend on functional

requirements because they are extension of the quality of the functional requirement. The

knowledge of what a system is supposed to do is stored in the functional requirements. It is difficult

to protect something you do not know the details about. For example, in order to properly secure

a building, the blueprints are needed to determine where to best place resources. The functional

requirements are the blueprints of the system and store the information needed to determine where

to best place resources, which in this case are cybersecurity requirements.

1.4.2 How can the use of existing best practices of cybersecurity be leveraged to assist in the

identification of cybersecurity requirements?

Semantic web technologies stores, categorizes, and links data together. Cybersecurity

requirements require knowledge links between two domains: software engineering, and

cybersecurity. Semantic web technologies are flexible enough to model these two growing and

constantly evolving domains for inferences and requirements to be extracted. Semantic web

technologies are a well-documented structured data representation and can be used to map

cybersecurity best practices to common functional feature descriptions. The combination of

semantic web technologies and machine learning can be used to leverage the identification of

cybersecurity requirements based on best practices. This is discussed further in Chapter 2.

16

2 Background

This chapter discusses an introduction to the software development life cycle with a focus on the

requirements gathering phase, a discussion of current security requirements elicitation techniques,

an introduction to semantic technologies, and the foundations of machine learning.

2.1 Software Development Life Cycle

Software development life cycle models were developed after the software crisis in the late 1960s

to the early 1970’s. The software crisis was due to software development projects not being

delivered on time, full of bugs, which did not meet stakeholder’s requirements, and were difficult

to maintain. The crisis was attributed to the nature of software systems. Software systems are

intangible, easy to change, complex, and construction is human intensive. As a result, software

processes were developed to provide guidance on what should be created, when they should be

created, and how to evaluate those artifacts that are created.

The software development life cycle is an iterative process that consists of 6 stages:

Requirements, Design, Development/Implementation, Testing, Deployment, and Maintenance.

Figure 1: The software development life cycle

17

There are two kinds of software development processes, namely prescriptive and agile.

Prescriptive processes are orderly, while agile processes are flexible with quick delivery. Some

well-known prescriptive processes are waterfall, incremental, spiral, unified process, and

collaborative object modeling and architectural design method. Some well-known agile processes

are extreme programming, lean, and scrum. There are also processes that are considered

prescriptive and agile, e.g., feature driven. The earliest stage for all these processes is the

requirements stage. In prescriptive processes a requirements specification document is produced.

In agile processes user stories and acceptance test criterion are produced. All these approaches go

through the same six design phases but in differing order. For example, waterfall starts with the

planning phase and follows the cycle as shown in Figure 1 one time for the whole project while

agile does the same process but multiple times for smaller parts of the project.

The requirements phase is the earliest stage of the software development lifecycle. The

requirements phase determines project scope, identifies stakeholders, identifies resources,

identifies timelines, and develops requirements. In this work the word requirements and

specification are used interchangeably although they are different. Requirements are a description

of what the stakeholder desires or needs, while specifications are precise descriptions of what the

system ought to be. For example: A requirement might state the system should allow users to select

the color and the specification will state the system shall allow the user to select one of the

following colors from a drop-down menu: red, blue, black. The design phase is when the

architecture for the project is determined, and a design for the system is defined. The

development/implementation phase is when the system is created. The testing phase is when the

system is verified. Verification is making sure the system meets the specifications determined

during the requirements phase. Validation also takes place during the requirements phase and

18

design phase to ensure the requirements are understood and match the desire and needs of the

stakeholders.

2.1.1 Writing Requirements

Requirements are a collection of statements that describe the needs and desires of the users.

Requirements tell what the system should do and not how the system should do it. How the system

should do is described in the design phase. Requirements are one of the top reasons software

projects fail. Requirements engineering comprises of several activities: elicitation, documentation

and definition, specification, prototyping, analysis, review/validation, and agreement/acceptance.

There are two levels of requirements elicitation: high level and low level. High level elicitation

attempts to understand the business purposes and justification for the project whereas low level

elicitation attempts to gather the user’s needs and desires [30].

In addition to the two levels requirements also fall into two category types: functional and

non-functional. Functional requirements describe what the system is supposed to do. They are

described as a verb often captured through the description of a use case that results in a product

feature. Functional requirements are easy to capture as they are focused on user requirements and

are used to verify the functionality of the software; they describe product features. Non-functional

requirements describe system qualities (i.e., user expectation vs user requirements) and are

described as quality attributes; they describe product properties. Non-functional requirements are

difficult to capture as they focus on the user’s expectation and verify the performance of the

software. Some examples of non-functional requirements are availability, capacity, data integrity,

environmental, interoperability, maintainability, manageability, recoverability, reliability,

regulatory, scalability, security, serviceability, and usability [31].

19

There are many ways to group non-functional requirements. The two main ways to group

them are by impact and aspect. Impact has three grouping categories: product requirements,

process/organizational requirements, and external requirements [32]. Product requirements are

requirements that are influenced by the expected product behaviors such as latency or data

integrity. Process/organizational requirements are influenced by business requirements such as

implementation needs and limitations. External requirements are influenced by forces outside the

product and business organization such as government regulations.

These same requirements can also be grouped by their aspects: operational, revisional, and

transitional [32]. Operational aspects are influenced by how the system is intended to be used.

Revisional aspects are influenced by how the system is intended to be changed. Transitional

aspects are influenced by how the system is meant to interact within its environment. The grouping

of non-functional requirements is shown below in Figure 2 below.

20

Figure 2: Non-functional requirements classification [32], [33]

It is important to get the requirements correct because they are one of the main sources of

software errors but the relative cost to fix those errors are cheapest at this stage. The cost to fix

software errors at the requirements stage is just 1 time the cost, at the design phase it is 5 times the

cost, at the coding phase it is 10 times the cost, and at the testing phase it is 30 times the cost [23].

There are several characteristics of good requirements: they should be correct,

unambiguous, complete, consistent, verifiable, and traceable [21]. The requirements should be

correct thereby describing the user needs, it should not be an assumption of the user’s needs. The

21

requirements should unambiguous because stakeholders, developers, and testers will all depend

on the requirements as one source of truth therefore there should only be one interpretation of what

the software will do. The requirements should be complete by representing all functionality,

performance, design constraints, attributes, and external interfaces that the system shall have. The

requirements should not conflict amongst each other or other documents, the requirements should

be consistent. The requirements should be verifiable in order to check that the system does what it

is supposed to do. Requirements should be able to be assessed whether or not the requirement has

been met. Requirements should be traceable throughout the project to ensure they are being

implemented and validated.

2.1.2 Requirements Gathering

Requirements gathering is an important part of understanding the essential parts of a system. The

requirements document can be thought of as a contract between the stakeholders and the

developers. A requirements specification document states the key objectives of the specifications,

explains the environment the system will work in, and the design constraints. The process includes

generating a list of requirements which can be functional or non-functional. These requirements

are generated from various stakeholders such as customer, users, administrators, vendors, IT, staff,

etc. Requirement gathering can be challenging because often stakeholders are not sure what they

want because they are not aware of what is possible. Other challenges can include stakeholders

not having the time and patience to participate in requirements gathering activities, stakeholders

not agreeing on requirements, stakeholders not being the user of the system, and stakeholder not

being the domain expert for the functions of the system.

There are several techniques that can be used for requirement gathering such as interviews,

questionnaires, user observations, workshops, brainstorming, role playing, use cases and scenarios,

22

and prototyping. Once high-level requirements, abstractions of the conceptual functions of the

systems, are identified then lower-level requirements, application of functions, can be elicited

through requirements analysis techniques to determine how the users and other systems will

interact with the system. There are several requirements analysis techniques such as Business

Process Modeling Notation (BPMN), data flow models, flow charts, Integrated Definition (IDEF)

for function modeling, and Unified Modeling Language (UML). UML is well used in the

development of software systems as it provides several diagrams for analyzing requirements.

These diagrams are separated into two types of diagrams structure and dynamic behavior. Structure

type diagrams model static parts of the system and how they relate to one another. Structure type

diagrams are class, component, deployment, object, package, and composite structure. Dynamic

behavior diagrams are diagrams that show change over time in the system. Dynamic type diagrams

are use case, activity, state machine, sequence, communication, interaction, and timing.

2.1.3 Use Case models

Use Case models are a requirement gathering technique and analysis tool that describes the

interaction between actors and the system. Use cases represent an abstract view of the system, its

interaction with its environment and external entities as shown in Figure 3 below. Use case models

also describes the system boundaries and the relationship between use case models whether

through extension or inclusion. The keywords include and extend are used to signify use case

inclusion (it invokes the other use case) and use case extension (the other use case adds additional

steps). An actor is a user of the system which could be a human or another system. External entities

are depicted as actors and can include human users, organizations, and other systems. Lines are

then drawn to represent the interactions between the actor and the system. Use case models

facilitate the elicitation of functional requirements by providing an abstraction of the main uses of

23

a software system and the actors that will interact with the system, enabling a way for requirement

engineers to analyze and identify the functional needs. This assist in the analysis of the value the

actor will get from interacting with the system. It helps document the information the actor and

the system will exchanged, thus, highlighting requirements about the interfaces.

Figure 3: Example use case model

2.1.3.1 Scenarios

Scenarios are an extensions of use case models that describe the specific exchange of information

between actors and a system as shown in Figure 4 below. Scenarios are written in steps and is

where the in-depth analysis of a use case model occurs. The use case provides the general

abstraction of the interaction between the actor and the system, but the scenario text provides the

requirements concepts of what the system must do. The steps can include alternative flows which

24

describes different patterns of behavior for a system that could be taken while executing the main

flow. Use cases can have one of more scenarios as artifacts and because they are written in simple

text stakeholders can use the scenarios to validate the elicited behavior.

Use case models and scenarios can also be used to build other analysis models, create user interface

prototypes, walkthrough design and implementation, and generate test cases.

Figure 4: Example scenarios for the use case model shown in Figure 3 above.

2.2 Security Requirement Elicitation Techniques

There have been previous efforts at capturing security requirements at the earliest stage of the

development life cycle through two approaches, abuse cases and misuse cases, that attempt to

enhance use case models and scenarios. In addition, there are standards for security

implementations from well-known organizations such as: Open Web Application Security Project

(OWASP), Cybersecurity & Infrastructure Security Agency (CISA), Carnegie Mellon University,

25

and MITRE. Researchers have also introduced security requirements frameworks such as: System

Quality Requirements Engineering (SQUARE) and UMLsec. All security approaches and

standards are inspired by the threat modeling process.

2.2.1 Threat Modeling

Threat modeling is an approach to assess and address the security risk of a system through the

identification of vulnerabilities and their mitigations. Threat models structure the security aspects

of the system through four common steps:

1. Identify – Identify the depth and scope of the analysis and the system assets to be

analyzed.

2. Analyze – Analyze assets for vulnerabilities and the mitigations to the identified

vulnerabilities.

3. Prioritize – Prioritize vulnerabilities to determine the order in which their mitigations will

be implemented.

4. Validate – Trace asset vulnerabilities to ensure their mitigations are implemented.

There are many in depth and light approaches to threat modelling that are applied at different

phases of the software development lifecycle.

Popular threat modeling approaches are:

• Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service,

elevation of Privilege (STRIDE), which was invented at Microsoft and is an approach

that identifies threats by six categories which make up the names acronym. Stride is

often applied to data flow diagrams.

• Process for Attack Simulation and Threat Analysis (PASTA) is a risk based seven

step approach: define objectives, define the scope, decompose application, analyze

26

the threats, vulnerabilities and weakness analysis, analyze the attacks, and risk and

impact analysis.

• Attack Trees are a diagrams that show identified assets and how they may be

attacked.

• Abuse and Misuse cases are models that extend use case models to identify the way

in which a systems can be taken advantage of. This topic is expanded on in sections

2.2.2 and 2.2.3.

• Surface Attack Analysis is a threat model that analyzes the system by looking at data

paths into and out of the system. This topic is expanded on in section 2.2.4.

Section 2.2.6 below discusses security requirement frameworks which also follow the threat

model analysis process.

2.2.2 Abuse Cases

Abuse cases are adaptions of use cases that define a sequence of actions between actors and the

system that result in harm caused to the system or an actor. Abuse cases include a description of

the range of security privileges that may be abused and a description of the harms that result from

the abuse case. For example, imagine a system with a coupon code that is intended to be used once.

If a user creates multiple accounts in order to reuse the code multiple times this would be

considered an abuse case.

2.2.3 Misuse Cases

Misuse cases are also an adaption of use cases that specifies the unwanted behavior and

interactions with the system. Misuse cases describe sequence of actions which when completed

results in loss for the organization or some specific stakeholder [34]. In both abuse cases and

misuse cases the analysis of security requirements requires the modeling of a malicious user

27

performing attacks on the system. Using the same coupon example used above in the abuse case

section, if the system allows the same user to reuse that coupon code multiple time, this would be

an example of misuse. An example misuse case is shown below in Figure 5 from research that

expanded misuse diagrams into collaboration diagrams to add more context as to how the attack

would take place against the system [35].

Figure 5: Example misuse case [35]

2.2.3.1 The Problem with Abuse and Misuse Cases

During the elicitation and analysis of requirements developers are constantly consulting with

different stakeholders that are subject matter experts in the functionality for the part of the system

they are developing. When developing abuse and misuse cases they do not require the input of a

subject matter expert but instead rely on the imagination of the developer. Cybersecurity engineers

are not consulted on the vulnerabilities the system could have. Cybersecurity engineers are often

consulted after a system has been developed to do security assessments. Often the system owner

is then responsible for finding a solution, usually third party, to address the vulnerabilities found.

Abuse and Misuse case are accompanied by descriptions of the attack but not to the level of details

that use case scenarios are written. This lack of detail limits the potential identifiable attack surface

28

of the system. Abuse and misuse case call for mitigations for the identified vulnerabilities but

without input from security professionals the mitigation maybe inadequate to properly protect the

system. In addition, abuse and misuse cases are an additional task for developers to conduct during

the elicitation phase. It takes at least the same amount of effort as developing use case models.

2.2.4 Attack Surface Analysis

Attack surface analysis is a technique that helps security personal determine the all the ways a

system could be attacked externally; where an attacker can get access to the system and get data

out. It helps identify security vulnerabilities, areas that require defense in depth, and when the

attack surface has changed. The analysis considers all paths in and out of the system, the

implementation that protects these paths, where data is stored, and the implementation that protects

these data. The parsing of use case scenarios in this project is based on the attack surface analysis

approach. Example entry and exit points are Application Programming Interfaced (API), files, user

interfaces, databases, and email.

2.2.5 Standards for Security Implementation

There are several cybersecurity standards that provide guidance for developing secure software

such as OWASP - secure coding practices [36], CISA/Carnegie Mellon University CERT- secure

coding [37], and MITRE - Common Weakness Enumeration (CWE) [38]. The OWASP-secure

coding practices is a software security coding practices reference guide that can be used as a secure

coding checklist that can be integrated into the development life cycle. Cert - Secure coding

standard provides rules and recommendations that reflect the current thinking of the secure coding

community. MITRE- common weakness enumeration is a list of known discovered software

vulnerabilities. These standards and list can be used as a basis for eliciting cybersecurity

requirements.

29

2.2.6 Security Requirement Frameworks

There are several well-known security requirement frameworks such as System Quality

Requirements Engineering (SQUARE), Software Requirements Engineering Process (SREP),

Secure Tropos, CLASP, CoRAS, and UMLsec. These frameworks lay out the process for eliciting

security requirements. Some call for the advisement of security professionals in order to apply the

framework. SQUARE is a framework that consist of 9 steps to elicit, categorize, and prioritizing

security requirements for a system. SREP is a 9-step asset and risk driven framework that combines

the common criteria (a framework for Information Technology (IT) security evaluation) with a

requirements repository to elicit reusable security requirements and their associated threats. Secure

Tropos is framework that focuses on security constraints, security dependencies, secure goals,

secure tasks, and secure resources to elicit security requirements. Comprehensive Lightweight

Application Security Process (CLASP) is a framework that focuses on roles and their associations.

CoRAS is a framework that focuses on asset, threats, and vulnerabilities. Unified Modeling

Language for security (UMLsec) is a framework based on UML models for the analysis of security

features at the design phase.

30

2.3 Semantic Web Technologies

Figure 6: Semantic Web Stack [39], [40], [41]

2.3.1 What are Semantic Web Technologies?

Semantic means “relating to meaning in language or logic” [42]. Semantic data is data that is

linked in a way that is meaningful to humans and understandable by computers. Semantic web

technologies are the structure that store and use semantic data as shown in Figure 6 above. This

stack is explained further in the coming paragraphs. Semantic web technologies have been used in

web development but more recently has increasingly been used to power intelligent assistants.

Semantic web technologies allow computers to understand the connection between pieces of data

such that the computer is able to transform data into information to be consumed, thereby making

it a resource. The semantic web technology architecture/stack consists of multiple parts:

identifiers, character sets, syntax, data interchanges, taxonomies, ontologies, rules, querying

abilities, unifying logic, cryptography, proof, trust, user interface, and applications which sit on

top of this stack.

31

Identifiers used in semantic web technologies are referred to as Uniform Resource

Identifier (URI)3. URIs are strings of characters that identify specific resources. Theses identifiers

follow a set of syntax rules, often URI syntax also dictates a hierarchical naming scheme; a popular

example is http:// or https://. Identifiers allow interaction over a network by representing resources

with a globally unique string. For example, in the World Wide Web (WWW), protocols are used

to set the specific rules for defining URIs and exchanging resources. Two common URIs are

Uniformed Resource Locators (URL) and Uniformed Resource Name (URN). Many are familiar

with and understand the rules of URLs as they identify web addresses. A URL allows access to a

named resource. A URN identifies a resource by name without identifying its location or how to

access it. To exemplify the difference between URNs and URLs, consider a person’s social

security card and the same person’s driver’s license. A social security card is an example of a URN

as it identifies an individual but does not identify the location of the individual or how to access

the individual. A driver’s license is an example of a URL as it identifies an individual and informs

others as to how to find or access the individual.

Character sets are a collection of characters that are understandable by a computer. Semantic web

technologies use Unicode which assigns a code and number to every character. Syntax is a set of

rules that govern a language. In English, we consider grammar the syntax; in semantic web

technologies, eXtensible Markup Language (XML) is the governing syntax.

Data interchanges are a set of frameworks that specify the governing rules for exchanging,

gathering, storing, and merging data. In semantic web technologies, the Resource Description

3 At times there are references to Internationalized Resource Identifier (IRI) instead of a URI. IRI
were made to replace URIs to accommodate a larger character set. This allows for international
languages. Every URI is an IRI.

32

Framework (RDF) is used. RDF is a set of metadata models that set the specifications for the

WWW.

Taxonomies are a set of groupings. It is used for classification of data. In semantic web

technologies, Resource Description Framework Schemas (RDFS) are used to define taxonomies.

Ontologies are a set of grouping of groupings. The comparison of a taxonomy to an ontology can

be best described as comparing a house (taxonomy) to a neighborhood (ontology), or a tree

(taxonomy) to a forest (ontology). Taxonomies store data instances while ontologies store

schemas. Both also imply hierarchies in data. Ontologies use Web Ontology Language (OWL),

which is a web language used to represent relationships between entities sometimes referred to as

the specification for ontologies.

Semantic web technologies also use a set of rules governed by Rule Interchange Format

(RIF) and Semantic Web Rule Language (SWRL). Rules set a standard for exchanging rules

between rule systems. SPARQL Protocols And RDF Query Language (SPARQL) is used to query

knowledge bases stored within a sematic web technology stack.

There are a few more layers to the semantic web technology stack (unifying language,

proof trust, cryptography, user interface, and applications) which describe ways of accessing and

storing data. Some of these layers have not been fully developed and utilized, namely: the unifying

language and proof trust. They are still being explored.

2.3.2 The Challenges of Semantic Technology

This section discusses two challenges of semantic web technology: representing modeling

languages and scalability.

33

2.3.2.1 Representing Modeling Languages

The representation of data storage, categorization, and collections is not trivial. Personal

perception may be grounds for debate: the diversity of the web and its users makes it difficult to

represent relationships in a way that fits everyone’s point of view. Even when the modeling rules

are established and followed, any representation is still based on the perception of the individual

representing the modeling language.

2.3.2.2 Scalability

Semantic web technologies are very scalable, but the size of the WWW is infinitely large with the

amount of content that can be created. This is both a challenge and an advantage. It is difficult to

efficiently scale semantic technologies accurately (i.e., making sure the data connections reflect

the correct relationships). Scalability can be an advantage as it allows for the quick growth of data

models.

2.3.3 Why Use Semantic Web Technologies?

The sematic web is a complex, proven structure that requires technical language to create content.

It has a well-established structure for storing and categorizing data. The purpose of the semantic

web is to store, categorize, and create relationships between data that can quickly be shared.

2.3.4 With the improvements in other parts of Artificial Intelligence and Machine Learning is

Semantic Web still relevant?

Semantic web technologies fall under the artificial intelligence purview; semantic web

technologies is artificial intelligence. With the improvement of other parts of artificial intelligence

technologies semantic web technologies still have their place. Other parts of artificial intelligence

technologies have improved greatly in identifying patterns in data and uses those patterns to

34

produce results. Semantic web technologies support the identification of patterns but that is a

byproduct. Semantic web technologies stores known patterns. They can be leveraged to train

supervised artificial technologies and to verify unsupervised artificial technologies.

2.3.5 What is an Ontology?

An Ontology is a data storage and categorization model that represents domains of knowledge,

their properties, and the relationships between them. Ontologies find tremendous use in

documenting and sharing explicit domain assumptions, understanding the structure of domain

information, separating domain knowledge from operational knowledge, their ability to analyze

domain knowledge, and their reuse of domain knowledge [43]. There are three defined levels of

ontologies: upper or user level, middle level, and foundational level. Upper or user level ontologies

are domain specific often harder to merge. Middle ontologies are domain oriented such as a music

ontology or Suggested Upper Merged Ontology (SUMO) [44]. Foundational ontologies are

domain independent or generic such as Descriptive Ontology for Linguistic and Cognitive

Engineering (DOLCE) [45]. It is much easier to merge middle and foundational level ontologies.

2.3.5.1 What is the Difference between and Ontology and a Knowledge Model?

A knowledge model instantiates an ontology. Ontologies are the general concepts of a domain

while a knowledge model is the individual examples of that domain. Some ontologies do blur the

line when including individuals in classes.

2.3.5.2 How to Create an Ontology?

There is no best way to create an ontology though there are some approaches such as Simple

Knowledge Organization System (SKOS) [46], Integrated Definition for Ontology Description

Capture Method (IDEF5) [47], Methodology for Ontology Design based in Domain Analysis and

35

Layered Structure (MODDALS) [48], and Basic Formal Ontology (BFO) [49] that can be

followed. Although there is no best way there are a few common steps in creating an ontology:

1. Define the scope of the ontology and questions to be answered.

2. Gather the information to populate the ontology.

3. Create an outline or draft of the ontology.

4. Formalize the ontology by adding additional properties.

5. Evaluate the ontology.

6. Share the ontology.

In step one it is important to understand the scope of the ontology and what information the

ontology is to convey. This can be determined through the establishment of goals or competency

questions. The next step is to gather information to create the ontology. Since the scope of the

ontology is already defined it is important to consider ontologies that have already been developed.

Already existing ontologies can replace the need to create an ontology or can serve as a base or

extension of the ontology to be created. Now assuming that there are no available ontologies to

accomplish the goals of the ontology to be created then you continue in the gathering of

information and creating the skeleton of the ontology.

When creating an ontology, it is important to enumerate import terms. First, a list of concepts

must be created without worrying about the overlapping ideas being represented, relationships

between the concepts, properties of the concepts, or whether a certain concept is a class, subclass,

or individual.

From this list of concepts then classes can be identified in the schema. Classes are often

board concepts or ideas that are defined by creating relationships to sub-concepts and ideas. For

example, in cybersecurity, the Confidentiality, Integrity, and Availability (CIA) triad can be split

36

into three classes: confidentiality, integrity, and availability. These classes would become parent

classes to subclasses that further specify the concepts inherent to the CIA triad. After the classes

are defined, they are arranged in a taxonomic hierarchy. This starts to create the ontology skeleton.

There are two kinds of classes primitive and defined. A primitive class has at least some conditions

while a defined class has a specific criterion to adhere to.

Next, the allowed values for direct links needs to be established; these are referred to as

slots. After the links, have been established, the relationships need to be filled. For example, when

defining the slots for the CIA triad a direct link may be established from the subclass

“authentication” to its parent classes, “access_control”; this link would be given the “is” value.

Therefore, authentication is access_control. This creates a triple: entity, relationship, entity.

The next step is to create a hierarchy to start to formalize the ontology. This can be

approached in three ways: top –down, bottom-up, or a combination of both. In a top-down

approach one would begin with the general concept and work their way down to the subclasses of

these concepts. In a bottom-up approach, a person would start with the sub classes and work their

way up to the general class. In a combination approach one would create their ontology like a

spider web from which one can pinch a general topic and show the hierarchy. Defining a hierarchy

allows for inheritance between parent and child classes.

Formalizing the model means adding structure and properties to the ontology to in order

for a computer to interrupt the ontology. The next step is to continue to define add properties to

the slots, which are properties of the classes. There are four general object properties that can

become slots: intrinsic, extrinsic, parts, and relationships. Intrinsic properties are properties that

naturally belong to the concept; they are essential to defining the concept. A property that is

intrinsic to a person’s identity would be their DNA. Extrinsic properties are properties that are not

37

essential to the concept and often are influenced from the outside of the concept. A property that

could be argued is extrinsic to a person’s identity is their first name. It is normally given to a person

by their parents. It helps identify a person, but many people may share the same name, so it only

helps narrow the search scope. Parts are things that belong to that concept, e.g., such as a heart is

a part of a body. Relationships are how concepts relate to each other, e.g., a mother would have

parent relationship to a child.

There are other properties that are not distinctly defined through slots but through the

modeling that should also be considered such as transitive, symmetric, asymmetric, reflexive, and

irreflexive. Transitive implies which entities precede another. For example, a grandmother

precedes her daughter who precedes her granddaughter. This has a transitive property that the

grandmother precedes the granddaughter. Symmetric properties imply which entities are equal.

For example, synonyms. Asymmetric properties imply a one-way relationship. For example, a

daughter cannot precede her mother. Reflexive properties imply when two entities are the same

though described differently. For example, George Washington can be a founding father as well

as the first president of the United States. Irreflexive properties imply a property cannot have a

relationship with itself as it does with other entities [50]. For example, a person cannot be born

before they are born.

Next, the facets of the slots need to be identified; this is similar to declaring a variable in a

programming language. For example, slots can have the following value types: string, number,

boolean, enumerated, and instance. Strings are a set of characters, numbers represent numerical

values, booleans represents true or false values, and enumerated type represent identifiers that are

constants in language, e.g., card suits: club, spades, diamonds, and hearts. An instance is a type

used to define the relationships between concepts. In the case of an instance, the allowed classes,

38

an instant slot can link to are labelled as the range and the classes that an instance may attach to

are called the domain of the slot. Slot cardinality must also be defined. Some slots may be single

cardinality while others may be multiple cardinalities. To create instances of a class, a class must

first be selected. Then an individual instance of that class must be created with the slot values filled

with actual data. For example: assume you have a class “bottled_water” it has the flowing slots

properties and values:

Type: Still, Sparkling

Source: Spring, Distilled, Reverse_Osmosis

Flavor: Unflavored, Lemon, Cucumber, Strawberry

PH: 7, 8 ,8.5,9, 9.5

When adding an instance to the class this creates an individual which is an instantiation of

the class. One could add the Essentia brand bottled water which would be still, Reverse_Osmosis,

Unflavored, 9.5. There can also be inverse slots which allows for properties to flow both ways.

When defining classes and a class hierarchy, many guides will state that it is important to keep in

mind the “is-a” or “kind-of” relationship between classes but that is to make sure all triple

relationships make sense. One does not have to only use the “is-a” relationship between classes.

Any word(s) that describes the relationship between two entities is acceptable. Often ontology

builders start with predicates before moving to more complex relationship descriptions.

It is important to keep the scope and goals of the ontology in mind when developing an

ontology. An ontology does not have to define every possible instance if it is outside the scope of

the ontology. Other things to consider when building an ontology are naming conventions often

camel case or underscore and whether to pluralize collections of objects. In addition to applying

relationships, defining properties is also important to define when classes are disjoined. Disjoint

classes are classes that do not share an instance with one another. Since ontologies are built to use

39

reasoners to discover unspecified relationships it is important to specify when a relationship does

not exist if it is known. Instances of classes that are disjoined cannot be of the other class. An

example of this is a student cannot be both absent and present in a class. The classes absent and

present would be disjoined. All these tips help formalize the ontology in order to use reasoners and

queries.

The next step is to evaluate the ontology. There are several ways to evaluate an ontology

by checking for different evaluation metrics such as: accuracy, completeness, adaptability, clarity,

computational efficiency, and consistency. This can be done through gold standard-base, corpus

base, task-base, and criteria base. The gold standard base compares the created ontology to

previously created ontologies. The corpus base compares the ontology to domain corpuses to see

how much of the domain the ontology covered. The task-based approach measures how an

ontology helps improve a certain task. Criteria based measures how an ontology follows a

predefined criteria [51]. Another method for evaluating an ontology are competency questions

which are determine during the scope definition and goals step of the ontology development. The

ontology is queried to answer these questions.

The last step is to share the ontology. Ontologies can be shared through GitHub, Onothub,

and Kbox to name a few. They can also be shared through a DOI or permanent link. It is important

that shared ontologies are accompanied by the proper open-source license such as creative

commons, and opensource to encourage the community to use them.

2.3.6 Use of Semantic Technologies in Gather Requirements

Semantic Technologies ontologies have been used for capturing requirements engineering

knowledge. Ontologies for requirements engineering knowledge have captured the software

40

engineering book of knowledge, requirements specification document, requirements ontology, and

application domain.

2.3.7 The Use of Semantic Technologies in the Cybersecurity Domain

The development of cybersecurity ontologies has been of interest to the MITRE, ARL, and

DARPA [52], [53], [54]. The current development of ontologies has focused on cybersecurity

situational awareness, capturing cybersecurity threat indicators, capturing incident responses, and

integrating the knowledge base of cybersecurity threats. The target audience of these ontologies

are usually cybersecurity analysts. Cybersecurity from a system perspective can be classified into

two categories, either the design of an optimal system or the address of problems appearing from

system operations [52]. There has been little attention in the development of ontologies to help

address the design of optimal systems. Most ontologies focus on capturing knowledge of problems

that appear from system operations.

2.4 Machine Learning

Machine Learning (ML) is a sub-field of Artificial Intelligence (AI). AI is the scientific study of

the theory and development of computer intelligence to perform tasks that would normally require

human interaction. Examples of this are visual recognition, speech recognition and understanding,

and decision making. ML is the use of AI for a computer system to learn without explicitly being

programmed with the learned knowledge. UnSupervised Machine Learning (USML) does not have

labeled data therefore the algorithm is not trained to make a conclusion but to instead group data.

USML instead only has inputs and no feedback system. These models depend on the probability

distributions of the data or clustering if the data is not normalized in order to make conclusions.

Supervised Machine Learning (SML) uses a feedback system to learn. SML models takes in inputs,

41

analyzes it based on what it has learned already from the training set, and produces an output; the

accuracy of the output is rated and fed back into the model in order to update the model [55].

Human interaction is required to set up and train the model but once the model has met accuracy

thresholds human interaction is no longer needed for the model to continue to perform. ML

underperformance is often due to overfitting and underfitting. Overfitting a model is when a model

is trained to account for the noise of the training data. This usually negatively impacts the

performance of the model in the future because it believes the noise in the training data is part of

the data details. On the other hand, is underfitting which usually occurs when data is limited, or

the training data set does not account for new generalizations. Much like any other predictive

analysis models it is important that the training set properly identifies the problem the model is to

make decisions about; learning depends on the quality of the training data.

2.5.1 Approaches in Machine Learning

This section discusses the six common approaches in machine learning: supervised, unsupervised,

semi-supervised, reinforcement, ensemble learning, and neural networks/deep learning [56].

2.5.1.1 Supervised Learning

Supervised learning is when a model is trained with a data set that labels the input with an expected

output. The expected output is called the supervisory signal. This trains the model to make

decisions based on inferences for new data. Supervised learning approaches are used in problems

where data links are well understood. There are two categories of supervised learning: regression

and classification. Regression is measuring data points against the mean of the data set and

assigning a value to each data point. Example regression models are Linear Regression,

Polynomial Regression, and Ridge Regression. Classification is the grouping of data points based

42

on characteristics. Example classification models are SVM, Decision Trees, Logistic Regression,

Naïve Bayes, and K-NN.

2.5.1.2 Unsupervised Learning

Unsupervised learning is when the model is trained with a data set that has the input but does not

label the expected output. There are no indicators on whether or not the inferences are correct.

Unsupervised learning approaches are used in problems where the data links are not well

understood, or researcher are trying to discover new relationships. These methods are used to

discover data structures without defining a structure. This approach is usually tackled by clustering

data points to create categories. The three categories of unsupervised learning: Clustering,

Associated Rule Learning, and Dimensionality Reduction. Clustering is the grouping of data based

on similarities. Example of clustering algorithms are K-means, Birch, Mean Shift, and Gaussian

Mixture Model. Associated rule learning maps data points based on their dependency of other data

points. Examples of associated rule algorithms are Apriori, Eclat, and FP-growth. Dimensionality

reductions is the transformation of data from a high dimension to a lower dimension such as 3-D

to 2-D. Examples of dimensionality reduction algorithms are Singular Value Decomposition and

Isomap Embedding,

2.5.1.3 Semi-supervised Learning

Semi-supervised learning is the use of both approaches of supervised and unsupervised learning.

It is used when some data links are understood, and others are not or the cost of labeling all known

data links is too high. This approach has the benefit of being more accurate than unsupervised

learning but without all the cost of supervised learning.

43

2.5.1.4 Reinforcement Learning

Reinforcement learning works on a rewards system that maximizes the reward for agent actions

when the action is favorable and limits the reward when the action is unfavorable thereby

encouraging and discouraging actions. Therefore, two outcomes of reinforcement learning are

positive reinforcement and negative reinforcement. This approach is used when the exact error of

the data is unknown or when the data environment is dynamic or non-deterministic [55].

Supervisory learning approaches help establish data relationship links while reinforcement

learning approaches establishes decision making. Reinforcement learning algorithms can be model

free, or model based with agents that are on-policy and off-policy. Model free algorithms rely on

trial and error while model based rely on the transition probability. An example of model base

algorithm is Alphazero and model free is Deep Q Network (DQN). On-policy agents attempt to

improve the policy used to make decisions while off-policy agents improve the policy not based

on the decision maker. An example of off policy algorithm is Q-learning and on-policy is State-

Action-Reward-State-Action (SARSA).

2.5.1.5 Ensemble Learning

Ensemble learning establishes multiple hypothesis to solve the same problem. This is done by

establishing multiple learners with different approaches to the problem and combines them to solve

the problem. This approach is usually more effective as it helps boost weak learners. There are two

approaches to ensemble learning algorithms sequential and parallel ensemble. There are three

categories of ensemble learning: stacking, bagging, and boosting. Stacking is training a model to

combine the predictions of several other learning algorithms. Examples of stacking algorithms are

Canonical Stacking, Blending, and Super Ensemble. Bagging is a form of bootstrapping that

allows all the learners to vote with equal weights on random samples selected for the training set.

44

Examples of bagging ensemble learning algorithms are Canonical Bagging, Random Forest, and

Extra Trees. Boosting is incrementally training the learners. Each reiteration of training

emphasizes the misclassification or the previous instance. Examples of boosting ensemble

algorithms are AdaBoost, Gradient Boosting Machines, Stochastic Gradient Boosting.

2.5.1.6 Neural Networks and Deep Learning

Neural networks and deep learning are models inspired by the brain that are designed to recognize

patterns that in turn assist with clustering and classifying. These models are trained by looking at

examples and making conclusions of those examples. Deep learning algorithms are stacked neural

networks algorithms. Neural networks utilize nodes to represent relationships between

classifications. There are five categories of neural networks and deep learning: Perceptrons,

Convolution Neural Networks (CNN), Recurrent Neural Networks (RNN), Generative Adversarial

Networks (GAN), and Autoencoders. Perceptrons are binary classification algorithms. An

example perceptron algorithm is Multilayer Perceptrons (MLP). CNN (also the name of the

algorithm) are MLP and all nodes are connected to one another. RNN recognize sequential

characteristics and use the recognized pattern to predict the next conclusion. An example RNN

algorithm is Long Short-Term Memory (LSTM) networks. These algorithms exhibit dynamic

behavior of data sets therefore the time and dependency of relations of data point is important.

Generative Adversarial Networks (also the name of the algorithm) pins two neural networks

against each other to produce the best dataset output that most closely resembles the training set

statistics. Autoencoders (also the name of the algorithm) uses dimensionality reduction to remove

noise from datasets.

45

2.4.1 Natural Language Processing

Natural Language Processing (NLP) is the ability for a computer to analyze and understand human

language in order to make decisions. NLP is a popular application of several machine learning

algorithms to achieve information extraction, spam filters, sentiment analysis, auto predict, auto

correct and speech recognition. NLP uses all of the techniques discussed in the previous section

but in order to work with language the data needs to be transformed in a manner for the computer

to do statistical analysis. This processing is referred to as vectoring. Vectorizing is mapping word

to numbers to make predictions. There are several steps to preparing data for vectorizing:

tokenization, stemming, lemmatization, part-of-speech tagging, named entity recognition, and

chucking. Not all steps need to be performed it depends on the data and goals of using NLP.

Tokenization is the breakdown of sentences into tokens often into individual words. During this

process stop words can be identified and eliminated from the data. Stop words are commonly used

words such as ‘the’, ‘is’, and ‘and’. Eliminating stop words is helpful when trying to balance data.

Stemming strips, the word to the root word by removing pre- and suf-fixes. Lemmatization groups

words with liked meaning such as the present, past, and future tense of the word referring to just

the root word. An example of lemmatization is of the word ‘eating’. The root lemma word would

be to ‘eat’. ‘Eaten’ would also reduce to ‘eat’. Parts of speech tagging would tag words as noun

(n), verb (v), adjective (a), and adverb (r). Named entity recognition were named entities are

classified into categories. Chunking is recombining tokens into large tokens that assist in

predicting meaning. Depending on the type of data and the expected outcome of the NLP model

all of these preprocessing techniques may or may not be used.

46

There are many well established vectorization algorithms that implore a combination of

the preprocessing steps above and map the words to numbers: Bag of Words, Term Frequency-

Inverse Document Frequency (TF-IDF), Word2Vec, Global Vectors (GloVe), and FastText.

Bag of Words tokenizes, creates a vocabulary, and they vectorizes. It splits sentences up into

individualized words then it creates a vocabulary of unique words and finishes up by creating a

sparse matrix with the frequency of each unique word. The columns of the matrix would represent

the unique words and rows would represent each sentence that is processed. An example sparse

matrix is show in below for the following two sentences “It is a lovely day today”, and “Yesterday

was a lovely day”.

it is a lovely day today yesterday was
1 1 1 1 1 1 0 0
0 0 1 1 1 0 1 1

Table 2: Example sparse matrix for text vectorization

TF-IDF attempts to determine how important a word is by giving less frequent words more

weight. To accomplish this three equations, Equation 1: Term Frequency, Equation 2: Document

Frequency, and Equation 3: Reciprocal of Document Frequency are calculated to determine the

parts of Equation 4: TF-IDF.

𝑇𝑇𝑇𝑇 =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
= 𝑇𝑇𝑇𝑇(𝑡𝑡,𝑑𝑑) =

𝑓𝑓𝑑𝑑(𝑡𝑡)
𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤∈𝑑𝑑𝑓𝑓𝑑𝑑(𝑤𝑤)

Equation 1: Term Frequency

𝐷𝐷𝐷𝐷 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑊𝑊
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Equation 2: Document Frequency

47

𝐼𝐼𝐼𝐼𝐼𝐼 = log �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑊𝑊
� = 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡,𝐷𝐷) = ln (

|𝐷𝐷|
|{𝑑𝑑 ∈ 𝐷𝐷 ∶ 𝑡𝑡 ∈ 𝑑𝑑}|

)

Equation 3: Reciprocal of Document Frequency

𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑇𝑇𝑇𝑇 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑇𝑇𝑇𝑇(𝑡𝑡,𝑑𝑑) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡)

Equation 4: TF-IDF

Word2Vec uses neural networks to make the vectorization contextually aware by not

ignoring the semantic of words. Word2Vec is often used when analogies are important.

GloVe expands on the basis of semantic importance of Word2Vec but doesn’t only consider the

relationship of words in the same sentence but across sentence. It has greater attention. GloVe is

best used when analogies are important and works well on small datasets.

FastText is similar to Word2Vec and GloVe but instead of looking at relationships at the

word-to-word level it looks at understanding how the combination of characters provides meaning

of words. FastText is advantageous with datasets that contain unusual or very less frequently used

words. Once the data is vectorized it can usually be used just as any other dataset.

2.5.2 Why Use Machine Learning?

ML helps identify unknown relationship links in data and supports computer system decision when

a set of inputs are provided. This project will take a set of use case scenarios and output a set of

cybersecurity requirements. This will not only require a storage method for data link relationships

but also a need for automatically identifying and updating data link relationships as the human

interaction with the system will be limited. ML can be used to speed up the patterns in linking

functional requirement descriptions to the cybersecurity requirements as it can be used for

48

classifying requirements and pattern recognition between the requirements to help identify new

relationships.

2.4.2 How to Know which ML model to Use?

Choosing the right ML model starts with understanding the problem you are trying to solve, your

data set, and the outcome that ML is expected to provide. Does your problem require the outcome

to be text extraction, categorization, value prediction, recommendation, new pattern detection? It

is important to understand your problem because it will drive the expected outcome. Once the

problem is identified and the expected outcome is identified the next thing to consider is the type

of data and features you will feed your model. Is it numbers, categories, text, pictures, audio,

video? Is your data labeled? If it is labeled, you can easily use a supervised learning technique. If

it is not labelled and the outcome does not have a fixed outcome, then an unsupervised learning

model is probably a good fit. SciKit Learn [57] and Microsoft [58] both provide cheat sheets or

diagrams to help choose the right estimator based on the dataset available and the expected

outcome. The best way to choose a model is to understand your problem, the applications of the

ML models, the advantages and disadvantages of the models, and the data that is available to train

the models.

2.4.3 How to evaluate Machine Learning Models?

Each type of machine learning algorithm has established metrics for determining performance.

Since this research will use classification models this section will focus on how to evaluate

classification models. The metrics for evaluating a classification model are accuracy, precision

(positively predicted value), recall (sensitivity, true positive rate), F1 Score, specificity (selectivity,

true negative rate), fall-out (false positive rate), miss rate (false negative rate), and Receiver-

Operator Curve (ROC Curve)/ Area Under the Curve (AUC).

49

2.4.3.1 Confusion Matrix

In order to understand these metrics first it is important to understand a confusion matrix.

Figure 7: Confusion Matrix

A confusion matrix is a cross tab of predicted values and real values. TP stands for true

positive which means that the real value is positive and the predicted value is also positive, FP

stands for false positive which means the real value is negative but the predicted value is positive,

this is also referred to as a Type I error, FN referred to as a Type II error stands for false negative

which means the real value is positive and the model predicted value is negative, and TN which

stand for true negative and means the real and predicted values are both negative.

These metrics are important in evaluating how well the model is performing but also in

understanding how often the model is wrong when making a decision. This can be crucial

depending on the domain in which the model is deployed. For example, in the medical field it is

important to properly diagnose a patient. A TP and TN are great, but a FN can be very devastating

for diseases that continue to worsen with time. An FP can also be devastating assuming there are

no other ways to confirm the disease. The doctors may give a patient a treatment they do not need.

Therefore, it is very important to consider the consequences of a model’s mis-predictions.

2.4.3.2 Accuracy

The accuracy metric is the percentage of correct predictions of all the predictions made. The

accuracy equation is shown in Equation 5 below. Accuracy is not a reliable metric when the data

50

set is unbalanced. A balanced dataset is a dataset that has an equal number of positives and

negatives, for an equal distribution amongst data classes. If the data is heavily skewed to one side,

it is considered unbalanced. This may cause the accuracy metric to give a false idea on the model’s

performance.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹)

Equation 5: Accuracy Metric

2.4.3.3 Precision

The precision metric shown in Equation 6 below, also referred to as the positive predicted value,

is the number of true positives predicted over the number of true and falsely predicted positives.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

Equation 6: Precision Metric

2.4.3.4 Recall

The recall metric, also referred to as the sensitivity or true positive rate, measures the model’s

sensitivity which is the ability of the model to determine all of the relevant instances in the dataset.

The equation is shown in Equation 7 below.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

=
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

Equation 7: Recall Metric

51

2.4.3.5 F1 Score

The F1 score shown in Equation 8 below, is one of the most reliable metrics for evaluating

classification models. It determines if there is a good balance between recall and precision. Later

in this chapter in the tradeoff section there is a discussion on why a good balance between metrics

are important.

𝐹𝐹1 = 2 �
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

�

Equation 8: F1 Score Metric

2.4.3.6 Specificity

The specificity metric shown in Equation 9 below, also referred to as selectivity or true negative

rate, is the rate of true negative predictions that are correctly identified.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

=
𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑣𝑣𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

Equation 9: Specificity Metric

2.4.3.7 Fall-Out

The fall-Out metric shown in Equation 10 below, also referred to as the false positive rate, is the

likeness of the model to predict a positive value when there are no positive values.

52

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑂𝑂𝑂𝑂𝑂𝑂

=
𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
𝐹𝐹𝐹𝐹

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

Equation 10: Fall-Out Metric

2.4.3.8 Miss Rate

The miss rate metric shown in Equation 11 below, also referred to as the false positive rate, is the

number of positive true values incorrectly predicted as negative.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

=
𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

=
𝐹𝐹𝐹𝐹

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)

Equation 11: Miss Rate Metric

2.4.3.9 ROC/AUC

The Receiver-Operator Curve (ROC) and Area Under the Curve (AUC) is a chart of the

relationship between sensitivity and fall-out. This metric is referred to when determining the

model’s performance. The ROC chart plots the true positive rates vs the false positive rate. There

is a dashed line going from the bottom left corner where the axes meet to the top right corner. This

line represents the 50% chance threshold of the model predicting correctly. The other line is AUC

which has the best performance when far away from the dashed 50% line and hugging the upper

left-hand corner of the chart.

53

Figure 8: Example ROC curve

2.4.3.10 Metric Tradeoffs

There are several tradeoffs to consider when developing a model as having a perfect model is

rarely achievable. It is often a sign of error when a model performs at 100%. This is a signal of

overfitting. This is not ideal unless every single permutation of input and outcome were determined

and used to train the model. The reason being is that the model is likely to perform poorly when

presented with new datasets that contains combinations not seen previously. The F1 score

determines the balance between precision and recall. There is a tradeoff between precision and

recall when increasing precision recall decreases and vice versa. There is an optimal threshold for

this trade off. This threshold is best determined by the problem and the deployment domain for the

model. Usually, the threshold makes the model biased towards one of these two metrics. For high

stake domains where the model is alerting the user to a problem it is preferable for the model to be

biased towards recall. It is better to have more false positives than a false negatives. For low stake

domains precision is preferred because it is more important for the model to be correct more often

than wrong. As stated, this is not true in all examples provided it truly depends on the problem,

the deployment domain, and the expected model outcome.

54

3 Approach

This chapter discusses the goals of this research, the proposed approach, the development of the

approach, the technical decisions behind the approach, and how the approach will be used.

3.1 The Goals of this Research

Cybersecurity requirements are more challenging to elicit than other requirements because they

are nonfunctional requirements that requires cybersecurity expertise and knowledge of the

proposed system in order to elicit them.

The goals of this research are to generate cybersecurity requirements based on knowledge

acquired from requirements elicitation and analysis activities, to provide cybersecurity

specifications without requiring the specialized knowledge of a cybersecurity expert at the earliest

stage of the development lifecycle, and to generate reusable cybersecurity requirements.

3.2 The Approach

This section discusses the approach followed to achieve the goals and ultimately answer the

research questions.

3.2.1 Scenario Driven Security Requirements Elicitation (SD-SRE)

The approach leverages use case scenarios and uses cybersecurity best practices and existing

requirements to create a secure development ontology that then uses the ontology to label the use

case scenarios in order to train a ML model to identify potential security requirements. This

approach is named the Scenario Driven Security Requirements elicitation (SD-SRE). The SD-SRE

utilizes a web portal, i.e., the SD-SRE portal, which developers can use to enter their use case

scenarios and get security requirement suggestions for the system they are designing. The proposed

system employs a ML model that is trained on use case scenarios that were labeled based on a

55

secure development ontology. The efficacy of the approach was validated through an experiment

presented via the web SD-SRE portal that allowed new users to contribute use case scenarios and

security requirements as a comparison repository.

3.2.2 The SD-SRE Process

Figure 9: The SD-SRE process

56

These are the following phases that encompassed the SD-SRE development process:

1. Information gathering phase

2. Building the ontology

3. Determining the ML model

4. Validating the SD-SRE

Figure 9 describes the overview of the whole process discussed further in the steps listed above.

3.2.3 The Information Gathering Phase

There are several pieces of information that need to be gathered at the same time. One of the pieces

of information that needs to be gathered continuously throughout the project are use case model

scenarios and requirement specification documents. A repository is used to host the use case model

scenarios in a format that could easily be digested by a vectorizer in order to run the scenarios

through the machine learning model.

Another step taken is the analysis of already existing cybersecurity and requirements

engineering semantic web projects to determine if they can be leveraged in the SD-SRE to generate

cybersecurity requirements. There are several already existing cybersecurity and requirements

related semantic web projects. The reuse of existing projects is an advantage of semantic

technologies that can be leveraged here to build the new knowledge base. The currently existing

projects that capture security knowledge for systems that are already deployed. They tackle

security after the fact such as intrusion detection. For this research the ontology captures secure

development knowledge for the building of optimal systems. There are also many projects that

capture requirements engineering knowledge but many of them cover the theories of requirements

engineering such as the Software Engineering Body of Knowledge (SWEBOK) and not

57

requirements themselves or they are more of a knowledge model than an ontology as they capture

requirements for a particular system.

The next step is to analyze secure system implementation standards and existing security

requirements techniques, frameworks, processes, and methodologies to map the domain and to

gather cybersecurity requirements. The existing standards and frameworks provide a basis of

cybersecurity expertise to generate best practice requirements. These initiatives are often used in

development today to assist with generating security requirements and are a good base for a best

practice secure development requirements knowledge domain. These steps are continuous through

the development of this approach, labeled 1, and highlighted in Figure 9 above by the orange

dashed line ().

3.2.4 Developing the Ontology

The first step to developing the ontology is to determine the scope of the ontology and competency

questions. Competency questions were created based on the analysis of use case scenarios and

security artifacts. Then cybersecurity development requirements knowledge base is mapped using

semantic web technologies to make connections between the best practices discovered in the

security artifacts to frequently used functional features discovered in the use case scenarios. The

use case model scenarios were re-analyzed for missed functional features and to determine the

word(s) used to best describe these features using the attack surface analysis approach (identifying

parts of the system where data enters and leaves the system). These descriptions are also mapped

in the ontology. The ontology is then tested with the competency questions created from use case

scenarios. The ontology is available here: https://github.com/JessicaSteinmann/SDO.git. Figure 9

below shows a snapshots of the ontology for permission_based_access_control (PBAC) and

password_spraying attack.

58

Figure 10: SDO snapshot of permission_based_access_control_(PBAC)

Figure 11: SDO snapshot of password_spraying vulnerability

This step is labeled 2 and highlighted in the purple dotted line () in Figure 9 above. Figure

12 below shows the ontology development process.

59

Figure 12: The ontology development process [59]

3.2.5 Determining the ML Model

After the secure development requirements domain knowledge is mapped. It is parsed for the terms

that described functional features and their attached generic security topic. This information is

used to automatically label the scenario steps in the use case repository.

A classification machine learning model is then trained on 70% of the labeled scenario

steps to determine whether a scenario step triggers a generic security topic. The system is tested

with the remaining 30% of the scenarios. The test train split was increased as the model

performance increased. The final model is based on a 90/10 split. If a topic is triggered the system

labels it a yes in the repository. Table 3 below shows the model iterations for the train test spit.

60

Model Iteration Train (% of labeled data) Test (% of labeled data)
1,2,3,4 70 30

5 80 20
6 90 10

Table 3: Train test split for model testing

Then the system aggregator deduplicates the requirements by project and pulls the

requirements from the cybersecurity requirements repository. This process is labeled 3 and

highlight in Figure 9 above by the gold dash dot line (). Figure 13 below show the data flow

of the above process. The aggregator returns the suggested security requirements to the SD-SRE

portal.

Figure 13: Data flow diagram

3.2.6 The Aggregator

The aggregator performs two functions gathers liked topics and deduplicates the requirements. The

aggregator is required because the security requirements are grouped into 11 distinct topics but

some of the topics overlap. For example: email collection would also employ requirements from

input validation and database, login would also employ requirements from authentication,

61

authorization, logging, input validation, and encryption. The aggregator needs to pull those

requirements and return them along with the email collection or login requirements in case they

weren’t flagged by other scenario steps. The aggregator will also need to deduplicate the

requirements because the model is run on each scenario step therefore a requirement may be

duplicated and would need to be unduplicated for the end user.

Figure 14 below shows an example of how the aggregator works. The first table shows the

requirements flagged by the model. As shown, there are duplicated requirements and missing

requirements. In the middle table the aggregators pulls the missing requirements and groups the

like requirements. There are missing requirements because requirements such as authorization has

a place in the login process, but it also has a place in accessing databases and other system

resources. The authorization requirements were not looped into the login requirements as they

have unique requirements that can apply to situation other than login. Therefore, if the system

doesn’t flag authorization requirements but flags login requirements then the system would pull

the authorization requirements also. In the third table the aggregator deduplicates the requirements

and these are the requirements presented to the end user. This is done to avoid having duplicated

requirements in multiple topics.

Figure 14: Requirements aggregator

62

3.2.7 Validating the SD-SRE

In order to validate the SD-SRE a portal was created that captures use case scenarios and

requirements/specifications in a way that could automatically be parsed into the ML model.

Students from a requirements engineering course were asked to participate in a study. The students

are presented with a system description and asked to generate the use case scenarios with a focus

on security and security requirements/specifications for the system. The use case scenarios are run

through the model to suggest the security requirements for the system. The system suggested

requirements were compared to the student’s requirements. The details of this experiment are

further discussed and shown in section 4.4 below. This step is highlighted in Figure 9 above by

the solid light blue line ().

3.3 Rationale for Technical Decisions

Knowledge of the proposed system is determined during the requirements elicitation and analysis

phase. There are several requirements engineering activities that take place during this phase, (e.g.,

interviews, use case modeling, scenario development, and prototyping) in order to determine the

system’s functional requirements. Use case models and scenarios are one of the more complete

activities for the elicitation and analysis of requirements as it details the expected uses of the

system, the actors that interact with the system, and the system’s environment and boundaries. Use

case models are further expanded with scenarios that provide more insight into the exact functions

of the system. The scenarios explain how the interaction with the system will occur. They describe

actions actors, and the system will take. This approach is inspired by attack surface analysis

approach to determine system vulnerabilities. Use case scenarios are one of the earliest activities

describing the system that has the complete description of the intended interaction between the

63

actor and the system and therefore are good for analyzing the many ways an attacker could access

the system and its data.

Semantic technologies and machine learning can be used to elicit cybersecurity requirements

by storing, categorizing, and linking knowledge domains that can be utilized to elicit cybersecurity

requirements. The knowledge of systems gathered during the requirements elicitation phase can

be leveraged to generate new cybersecurity requirements as new functional features are described.

Semantic technologies in combination with machine learning are best used as it easily allows

relations between actors, functional features, threats, vulnerabilities, and cybersecurity

requirements to be documented. Semantic technologies supports security experts and developers

experienced with querying ontologies to ask questions about different functional features and their

security requirements while the machine learning model allows less experienced developers to

enter their scenarios and get security suggestions. The ontology also allows for quick adaption of

security concepts as no longer features become standard practice (such as security questions or

SHA-1) and for the addition of new security concepts and functional features.

3.4 How Will the SD-SRE Approach be Used?

It is envisioned that developers will use the requirements elicitation SD-SRE portal to conduct

elicitation activities and to document their requirements. Within the SD-SRE portal developers can

run the security recommender to analyze their use case scenarios to get security requirements. This

is the first step for developers in determining the security requirements of their systems. The model

can continue to improve as new systems are added, new security recommendations are proposed,

and with developer feedback.

64

4 Scenario Driven Security Requirements Elicitation (SD-SRE)

This section details the SD-SRE and elaborates on the sections above detailed in Figure 9. It

discusses the overall data collection to support this research, example competency questions and

outcomes of the ontology, the performance of the machine learning model, and the validation of

the SD-SRE.

4.1 Gathering Information

This section discusses the resources gathered for this research. This research required the gathering

of use cases and security frameworks, standards, and requirements. Figure 15 below is the

highlighted portion of the SD-SRE (shown fully in Figure 9) discussed in this section.

Figure 15: Information gathering for SD-SRE

65

4.1.1 Use Case Scenarios

Use case scenarios were gathered from requirements engineering courses and fellow students.

Table 4 below shows the breakdown of how many resources were gathered and used. A total of

77 resources were gathered. These resources compromised of requirements specification

documents, use case scenarios, and customer interview documentations.

Resources Gathered Resources Used Use Case Scenarios Number of Unique
Projects

77 61 1183 8

Table 4: Use case scenario resources

Of the 77 resources gathered 61 were usable as they had at least one-use case with

accompanying scenarios. The 16 resources not used did not have use case scenarios in the

document. The 61 resources represented 8 unique projects which had 1183 use case scenarios.

These scenarios were used to train the machine learning models.

4.1.2 Security Concepts and Requirements

The security frameworks, standards and requirements were used to determine generic security

requirements and to create the secure development ontology. Table 5 below shows how many

sources were reviewed and how many were used.

Source Number of Sources Reviewed Number of Sources Used
CWE 933 3
NIST 9 2
IEEE 6 0
OWASP 102 27
Other 26 1
Total 1076 33

Table 5: Security concept and requirements resources

66

A total of 1076 security related sources were reviewed but only 33 had ideas and concepts

related to the requirements stage. The 1076 sources compromises of 933 weaknesses from the

MITRE’s Common Weakness Enumeration (CWE) [38]. 9 sources from the National Institute of

Standards and Technology (NIST) [60]. 6 sources from Institute of Electrical and Electronics

Engineers (IEEE). 102 sources from OWASP [61]. 26 sources from various other security related

information distributors.

This resulted in 154 security requirements. The requirements groupings and topics are

shown in Table 6 below. All currently suggestable security requirements are listed in the appendix

in Table 41.

Topic Number of Requirements
Login 56
Sensitive Information 6
Authentication 7
Authorization 10
Email Collection 7
Input Validation 10
Encryption 18
Random Number 1
Database 16
File Upload 13
Logging 10
Total 154

Table 6: Security requirements

4.2 Secure Development Ontology

The Secure Development Ontology (SDO) models the secure development of common features,

security principles, attackers, vulnerabilities, and mitigations. The SDO has 858 axioms, 178

classes, 29 object properties, 3 data properties, and 159 individuals to describe how entities relate

to each other. The ontology serves two purposes: allows users familiar with ontologies the ability

to query the ontology for secure development concepts and provides the words that describe a path

67

in and out of the system used to train the machine learning models. The ontology was provided to

the public through GitHub and Ontohub. Figure 16Figure 15 below is the highlighted portion of

the SD-SRE (shown fully in Figure 9) discussed in this section. The ontology comprises of

security concepts, functional feature description concepts, and training label terms.

Figure 16: Ontology use in the SD-SRE

The most important classes of the ontology are actor, attack, mitigation, security,

vulnerability, development life cycle, and secure development. This actor class identifies users

that interact with the system and classifies them as malicious or non- malicious users. This class

contains 2 subclasses: Malicious Actor and Non-Malicious Actor. The attack class identifies

attacks that can occur to a system. This class contains 16 subclasses. The mitigation class identifies

mitigations to attacks and vulnerabilities in systems. This class contains 10 sub-classes. The

security class identifies the CIA triad. This class contains 3 sub-classes: confidentiality, integrity,

and availability. The vulnerabilities class identifies vulnerabilities that can exist in a system. This

68

class contains 14 sub-classes. The development life cycle stage class identifies the life cycle stage

for the consideration of the security concept. This class contains 5 sub-classes. The secure

development class identifies common development features and their most secure

implementations. This class contains 8 sub-classes.

4.2.1 Security Concepts Competency Questions

An example modeling of an attack from the attack class is shown in Figure 11 below. The example

shows the use of rainbow tables to crack hashes to perform a brute force attack.

Figure 12: Hash cracking attack modeled in the SDO

The SDO has 29 object properties as shown in Figure 17 below.

69

Figure 17: SDO object properties

The described_by object property was queried to obtain the labels for the machine learning

models. The individuals that describe access control are shown in Figure 18 below. These words

were used to label the login machine learning model.

Figure 18: Access_control described_by

70

The ontology was tested with competency questions. Here we will detail the competency

questions surrounding access control as it is the most expansive and complete topic in the ontology.

Concept competency questions for access control:

1. During which phase of the development life cycle is access control determined?

2. What part of the CIA triad does access control support?

3. What vulnerabilities is access control susceptible to?

4. What are the mitigations for the vulnerabilities of access control?

Figure 19 below shows part of the SDO pertaining to access control. Questions 1-3 can be

answered with a query that is directly connected to access control as they are direct connections.

Figure 19: Access_control Class in the SDO

Table 7 below shows the competency questions and their answer from the ontology.

Competency Question Object Property Class

During which phase of
the development life
cycle is access control
determined?

determined_during Requirements_Analysis

What part of the CIA
triad does access
control support?

isa Integrity, Confidentiality

71

What vulnerabilities is
access control
susceptible to?

susceptible_to Broken_Access_Control, Insufficient_Logging,
Insufficient_Monitoring, Leaked_Credentials,
Security_Misconfiguration, Brute_Force

What are the
mitigations for the
vulnerabilities of
access control?

mitigation Block_Known_Breached_Credentials
Delays
Encryption
Hash-Based_Message_Authentication_Codes
Hashing
IP_Address_Restrictions
Logging
Monitoring
Mutlifactor_Authentication
Notifications
Risk_Based_Restrictions
Secure_Storage
Soft_Lockout

Table 7: Access_control class of the SDO

Question 4 is more complicated to query as the mitigations are at least 2 hops from

access_control. Figure 20 below shows an example of one of the mitigations of access control,

multifactor authentication, which is a sub-class of authentication and should occur before

authorization. This shows an example of how mitigations are not directly connected to access

control.

Figure 20: Multifactor_authentication mitigation example for access control

72

4.2.2 Use Case Scenarios Parsing

Below are a few use case scenario steps and how they were parsed to identify security and

functional feature descriptions. The scenarios were parsed using the attack surface analysis threat

modeling method. The scenario steps describe a use case for creating a new user profile.

Step 1: The user enters the username they would like to use.

Step 2: The system returns whether the username is available.

Step 3: The user uploads their profile picture.

Step 4: The user enters the password they would like to use.

Step 5: The user clicks submit.

Step 6: The system returns a verification that a new user profile was created.

From these scenario steps the following keywords were parsed and labeled to identify data

paths, actors, and data exchanges. The results of this are shown below in Table 8.

Words/ phrases that identify
data path into and out of the

system:

Words that identify the actor: Words and phrases that
identify data exchanged

terms:
enters (in) user username

uploads (in) system password
submit (in) picture

returns (out)

Table 8: Parsed used case scenarios classifications

From the scenario steps above 3 word/phrases were identified to mean that data enters the

system. 1 word/phrase was identified to mean that data enters the system. 2 actors were identified.

3 data exchange terms were identified. From the attack surface analysis perspective these scenarios

steps would trigger login requirements due to the data exchange of username and password which

describes access control, input validation due to the data path of enters and uploads, and file upload

due to data path uploads and data exchange of a picture. Attack surface analysis was used to

identify and link functional features to security requirements. From parsing the use case scenarios

73

in the repository 159 unique word/phrases that identified a data path, and 37 unique actors. These

159 unique words were attached to security concepts in the ontology with the described_by

relationship queried to train the machine learning models.

Creating a username and password as well as using that information to access a system is

very common in most systems today, but as research continues to show, compromised credentials

continues to be the number one attack vector. From the example scenario steps above the approach

suggested 4 security requirements for creating a username of which 3 directly apply and 1 should

be considered, 24 security requirements for creating and storing a password, and 13 security

requirements for input validation. Table 5 below shows the suggested security requirements for

creating the UserID/Username.

Requirement
Topics

Requirement Sub-
Topics Requirements

Direct
Application?

Login UserID/Username
The system shall only allow case insensitive user
IDs.

Yes

Login UserID/Username
The system shall only allow unique user
IDs/Username.

Yes

Login UserID/Username

For high security systems the system shall assign
a secret username that is not based on user’s
public data.

Consideration

Login UserID/Username

The system shall not allow sensitive accounts
such as system administrators to log in from the
front end of the system.

Yes

Table 9: 4 security requirements for creating a username

There was a total of 141 requirements identified for the 6 scenario steps of which 32 are

direct applications and 109 should be considered. Example requirements that don’t directly apply

to the 6 scenario steps but should be considered are requirements pertaining to forgotten

passwords, changing passwords, login alerts, session management, etc. These suggested

requirements tackle common vulnerabilities such as broken access control, using weak hashing

74

algorithms, broken authentication, insufficient logging and monitoring, security

misconfigurations, neglecting input validation, and leaked credentials.

4.3 Machine Learning Model

This ML problem is a multi-label problem. In classification models there are two type of problems

multi-class which are problems that classify predictions into one of multiple labels vs binary labels

and multi-label problems which means something can have multiple labels. For example, a binary

class would be classified as ‘yes, or ‘no’ while a multi-class would classify something such as

color ‘red’, ‘blue’, ‘black’. For multi-class problems the thing being classified can only be of one

of the multiple classes. Contrary in multi-label problems the thing being classified can have

multiple classes. For example: A woman can be a mother, a daughter, a sister, and a grandmother

all at the same time. Each of those labels is a class. They can all be true. The problem in this

research is a multi-label problem. A use case scenario can trigger login requirements which would

trigger authentication, logging, session management, input validation, and encryption.

There were many models considered: Linear SVC, Navies Bayes, Multi-Layer Perceptron

classifier. The linear SVC performed better than Navies Bayes and just as well as Multi-Layer

Perceptron therefore it was chosen.

Liner SVC has the following hyper parameters: penalty, loss, dual, tol, c, mutli_class, fit

intercept, intercept_scaling, class_weight, verbose, random_state, max_iter. penalty is the

normalization used to penalize the model’s prediction. This parameter keeps the model from

overfitting the data. The choices are l1 and l2. The default is l2 and this was used for all models.

Loss can be ‘hinge’ or ‘squared hinge’. The default is squared hinge and was used for all models.

The loss function is often referred to as the cost or error function it represents the cost of a value.

tol is the tolerance for stopping criteria which means it tells the model when to stop searching

75

when the model performance is no longer improving. c is the regularization parameter which is

the control for penalizing the model’s flexibility; fitting. multi_class determine the strategy to use

for data with more than two classes. This is not the case for this research therefore the default ‘ovr’

was selected. fit_intercept determines where to calculate the intercept if the data is not already

centered. intercept_scaling is weight attached to the features when fitting the intercept in order to

offset penalty. class_weight was adjusted to ‘balanced’ for all models in order to adjust the

predictions weights to the inverse proportionality of the frequencies. verbose enables a verbose

output. random_state sets a seed to rerun the same model. Max_iter set the maximum number of

iterations to run assuming the tol is not reached [62].

There are 11 distinct labels identified for this research. The labels group like requirements.

The 11 labels are: login, sensitive information, authentication, authorization, email collection,

input validation, encryption, random number generation, database, file upload, and logging.

Therefore, when a scenario step is processed through the model it is taken through 11 binary class

classification models to pull the requirements. Each model started with an 70/30 train/test split

then the final model was on a 90/10 split. All the models had unbalanced data therefore accuracy

will look very high but should not be relied upon. In this domain it is better for the model to falsely

label a scenario step as a false positive (Type I error) vs a false negative (Type II error) because it

is best to alert to all the possible security requirements a developer should consider vs not alerting

them at all. It is less consequential to suggest a requirement that doesn’t pertain to a system than

to miss a requirement. The next sections detail the performance of each model. Figure 21 below is

the highlighted portion of the SD-SRE (shown fully in Figure 9) discussed in this section. The

ML models digest use case scenario steps and suggest the security requirements that should be

76

pulled from the security requirements repository. The requirements are then aggregated to provide

complete and unduplicated security requirements to the user.

Figure 21: Machine leaning model in the SD-SRE

4.3.1 Login Requirements

The login requirements model predicts whether the system requires security requirements that

properly implements a login feature (access control). The data is unbalanced with scenario steps

7623 labeled ‘No’ and 566 labeled ‘Yes’. This model uses 37 terms [login, credentials, registers,

username, password, sign in, etc.] to label the model. These terms were also showed in Figure 18

above.

Figure 22: Login requirements model confusion matrix

77

Figure 22 shows the confusion matrix which shows a type I error of 50 miss classified

scenario steps as being a login trigger and 41 as a type II error which is mean the scenario steps

did trigger a login requirement but were not properly identified. 6816 scenarios were properly

identified as not triggering a login requirement while 464 did properly trigger a login requirement.

This is not the full picture the roc curve, precision, recall, and f1-score should also be examined.

The accuracy can be examined but should not be emphasized as the data is unbalanced and it will

lead to false implications as to how well the model performed.

Figure 23: Login requirements model ROC and AUC curve

Figure 23 above is the ROC and AUC curve which plots the true positive rate against the

false positive rate. The more curve hugs the upper left-hand corner of the chart the better the

performance of the model, but this can also be a false indicator as this can also show that a model

is overfitted. The AUC is .96 for this model. It performs very well on the training data.

Table 10: Login requirements model performance

78

Table 10 above shows the precision score, recall, the f1-score and the accuracy. The

accuracy is .99 but this is a false indication of model performance as the data is mostly ‘No’ vs

‘Yes’ on triggering login requirements. Precision is the measure of quality of the model and recall

is the measure of quantity. The higher the precision the more likely it is for the model to return

relevant predictions; the percentage of the predictions that are relevant. The higher the recall the

more likely it is for the model to return most of the relevant predictions; the percentage of relevant

predictions properly classified. The F1 score displays the balance between precision and recall.

This model has a precision of .99 ‘No’ and .90 ‘Yes’, recall of .99 ‘No’ and .92 ‘Yes’, f1 score of

.99 ‘No’ and .91 ‘Yes’.

4.3.2 Sensitive Information Requirements

The sensitive information requirements model predicts whether the system requires security

requirements that pertain to protecting sensitive data. The data is unbalanced with scenario steps

7247 labeled ‘No’ and 942 labeled ‘Yes’. This model uses 35 terms [social security number,

keys, encrypt, name, national id, admin, etc.] to label the model.

Figure 24: Sensitive information requirements model confusion matrix

Figure 24 above shows the confusion matrix for the sensitive information label which

shows a type I error of 141 miss classified scenario steps and 172 as a type II error which is mean

79

the scenario steps did trigger a sensitive information requirement but were not properly identified.

6387 scenarios were properly identified as not triggering a sensitive information requirement while

671 did properly trigger a sensitive information requirement. This is not the full picture the roc

curve, precision, recall, and f1-score should also be examined. The accuracy can be examined but

should not be emphasized as the data is unbalanced and it will lead to false implications as to how

well the model performed.

Figure 25: Sensitive information requirements model ROC and AUC Curve

Figure 25 above is the ROC and AUC curve which plots the true positive rate against the

false positive rate. The more curve hugs the upper left-hand corner of the chart the better the

performance of the model, but this can also be a false indicator as this can also show that a model

is overfitted. The AUC for this model is .89 which is a moderately well performance.

Table 11: Sensitive information requirements model performance

80

Table 11 above shows the precision score, recall, the f1-score and the accuracy. The

accuracy is .96 but this is a false indication of model performance as the data is mostly ‘No’ vs

‘Yes’ on triggering sensitive information requirements. This model has a precision of .97 ‘No’ and

.83 ‘Yes’, recall of .98 ‘No’ and .80 ‘Yes’, f1 score of .98 ‘No’ and .81 ‘Yes’.

4.3.3 Authentication Requirements

The authentication requirements model predicts whether the system requires security requirements

that properly implements a login feature. The data is unbalanced with scenario steps 7342 labeled

‘No’ and 847 labeled ‘Yes’. This model uses 13 terms [access, allows, displays, etc.] to label the

model.

Figure 26: Authentication requirements model confusion matrix

Figure 26 above shows the confusion matrix for the authentication label which shows a

type I error of 5 miss classified scenario steps and 72 as a type II error which is mean the scenario

steps did trigger an authentication requirement but were not properly identified. 6606 scenarios

were properly identified as not triggering an authentication requirement while 688 did properly

trigger an authentication requirement. This is not the full picture the roc curve, precision, recall,

and f1-score should also be examined. The accuracy can be examined but should not be

81

emphasized as the data is unbalanced and it will lead to false implications as to how well the model

performed.

Figure 27: Authentication requirements model ROC and AUC Curve

Figure 27 above is the ROC and AUC curve which plots the true positive rate against the

false positive rate. The more curve hugs the upper left-hand corner of the chart the better the

performance of the model, but this can also be a false indicator as this can also show that a model

is overfitted. The AUC for this model is .95 which is a very good performance.

Table 12:Authentication requirements model performance

Table 12 above shows the precision score, recall, the f1-score and the accuracy. The

accuracy is .99 but this is a false indication of model performance as the data is mostly ‘No’ vs

82

‘Yes’ on triggering authentication requirements. This model has a precision of .99 ‘No’ and .99

‘Yes’, recall of 1.00 ‘No’ and .91 ‘Yes’, f1 score of .99 ‘No’ and .95 ‘Yes’.

4.3.4 Authorization Requirements

The authorization requirements model predicts whether the system requires security requirements

that properly implements a login feature. The data is unbalanced with scenario steps 7334 labeled

‘No’ and 855 labeled ‘Yes’. This model uses 15 terms [access, allow, displays, third party, tool,

etc.] to label the model.

Figure 28: Authorization requirements model confusion matrix

Figure 28 above shows the confusion matrix for the authorization label which shows a type

I error of 3 miss classified scenario steps and 32 as a type II error which is mean the scenario steps

did trigger an authorization requirement but were not properly identified. 5122 scenarios were

properly identified as not triggering an authorization requirement while 572 did properly trigger

an authentication requirement. This is not the full picture the roc curve, precision, recall, and f1-

score should also be examined. The accuracy can be examined but should not be emphasized as

the data is unbalanced and it will lead to false implications as to how well the model performed.

83

Figure 29: Authorization requirements model ROC and AUC Curve

Figure 29 above is the ROC and AUC curve which plots the true positive rate against the

false positive rate. The more curve hugs the upper left-hand corner of the chart the better the

performance of the model, but this can also be a false indicator as this can also show that a model

is overfitted. The AUC for this model is .97 which is a very good performance.

Table 13: Authorization requirements model performance

Table 13 above shows the precision score, recall, the f1-score and the accuracy. The

accuracy is .99 but this is a false indication of model performance as the data is mostly ‘No’ vs

‘Yes’ on triggering authorization requirements. This model has a precision of .99 ‘No’ and .99

‘Yes’, recall of 1.00 ‘No’ and .95 ‘Yes’, f1 score of 1.00 ‘No’ and .97 ‘Yes’.

84

4.3.5 Email Collection Requirements

The email collection requirements model predicts whether the system requires security

requirements that properly implements a login feature. The data is unbalanced with scenario steps

8137 labeled ‘No’ and 52 labeled ‘Yes’. This model uses 3 terms [email, email address, emails] to

label the model.

Figure 30: Email collection requirements model confusion matrix

Figure 30 above shows the confusion matrix for the email collection label which shows a

type I error of 2 miss classified scenario steps and 5 as a type II error which is mean the scenario

steps did trigger an email collection requirement but were not properly identified. 7322 scenarios

were properly identified as not triggering an email collection requirement while 42 did properly

trigger an email collection requirement. This is not the full picture the roc curve, precision, recall,

and f1-score should also be examined. The accuracy can be examined but should not be

emphasized as the data is unbalanced and it will lead to false implications as to how well the model

performed.

85

Figure 31: Email collection requirements model ROC and AUC Curve

Figure 31 above is the ROC and AUC curve which plots the true positive rate against the

false positive rate. The more curve hugs the upper left-hand corner of the chart the better the

performance of the model, but this can also be a false indicator as this can also show that a model

is overfitted. The AUC for this model is .95 which is a very good performance.

Table 14: Email collection requirements model performance

Table 14 above shows the precision score, recall, the f1-score and the accuracy. The

accuracy is 1.00 but this is a false indication of model performance as the data is mostly ‘No’ vs

‘Yes’ on triggering email collection requirements. This model has a precision of 1.00 ‘No’ and .95

‘Yes’, recall of 1.00 ‘No’ and .89 ‘Yes’, f1 score of 1.00 ‘No’ and .99 ‘Yes’.

86

4.3.6 Input Validation Requirements

The input validation requirements model predicts whether the system requires security

requirements that properly implements a login feature. The data is unbalanced with scenario

steps 7154 labeled ‘No’ and 1035 labeled ‘Yes’. This model uses 14 terms [input, enter, enters,

edit, edits, text box, etc.] to label the model.

Figure 32: Input validation requirements model confusion matrix

Figure 32 above shows the confusion matrix for the input validation label which shows a

type I error of 29 miss classified scenario steps and 53 as a type II error which is mean the scenario

steps did trigger an input validation requirement but were not properly identified. 6412 scenarios

were properly identified as not triggering an input validation requirement while 877 did properly

trigger an input validation requirement. This is not the full picture the roc curve, precision, recall,

and f1-score should also be examined. The accuracy can be examined but should not be

emphasized as the data is unbalanced and it will lead to false implications as to how well the model

performed.

87

Figure 33: Input validation requirements model ROC and AUC Curve

Figure 33 above is the ROC and AUC curve which plots the true positive rate against the

false positive rate. The more curve hugs the upper left-hand corner of the chart the better the

performance of the model, but this can also be a false indicator as this can also show that a model

is overfitted. The AUC for this model is .97 which is a very good performance.

Table 15:Input validation requirements model performance

Table 15 above shows the precision score, recall, the f1-score and the accuracy. The

accuracy is .96 but this is a false indication of model performance as the data is mostly ‘No’ vs

‘Yes’ on triggering input validation requirements. This model has a precision of .99 ‘No’ and .97

‘Yes’, recall of 1.0 ‘No’ and .94 ‘Yes’, f1 score of .99 ‘No’ and .96 ‘Yes’.

88

4.3.7 Encryption Requirements

The encryption requirements model predicts whether the system requires security requirements

that properly implements a login feature. The data is unbalanced with scenario steps 7865 labeled

‘No’ and 324 labeled ‘Yes’. This model uses 9 terms [password, credentials, encrypt, database,

etc.] to label the model.

Figure 34: Encryption requirements model confusion matrix

Figure 34 above shows the confusion matrix for the encryption label which shows a type I

error of 0 miss classified scenario steps and 11 as a type II error which is mean the scenario steps

did trigger an encryption requirement but were not properly identified. 7078 scenarios were

properly identified as not triggering an encryption requirement while 282 did properly trigger an

encryption requirement. This is not the full picture the roc curve, precision, recall, and f1-score

should also be examined. The accuracy can be examined but should not be emphasized as the data

is unbalanced and it will lead to false implications as to how well the model performed. This model

is likely to miss positive identifications based on their being more type II errors vs Type I errors,

but not more likely than the other models as the number of Type II errors is low.

89

Figure 35: Encryption requirements model ROC and AUC Curve

Figure 35 above is the ROC and AUC curve which plots the true positive rate against the

false positive rate. The more curve hugs the upper left-hand corner of the chart the better the

performance of the model, but this can also be a false indicator as this can also show that a model

is overfitted. The AUC for this model is .98 which is a very good performance.

Table 16: Encryption requirements model performance

Table 16 above shows the precision score, recall, the f1-score and the accuracy. The

accuracy is 1.00 but this is a false indication of model performance as the data is mostly ‘No’ vs

‘Yes’ on triggering encryption requirements. This model has a precision of 1.00 ‘No’ and 1.00

‘Yes’, recall of 1.00 ‘No’ and .96 ‘Yes’, f1 score of 1.00 ‘No’ and .98 ‘Yes’.

90

4.3.8 Random Number Generator Requirements

The random number generator requirements model predicts whether the system requires security

requirements that properly implements a login feature. The data is unbalanced with scenario steps

8185 labeled ‘No’ and 4 labeled ‘Yes’. This model uses 7 terms [random, random number,

randomize, randomly, etc.] to label the model. This model is worrisome as there were only 4

samples in the data set that trigger random numbers.

Figure 36: Random number requirements model confusion matrix

Figure 36 above shows the confusion matrix for the random number generator label which

shows a type I error of 4 miss classified scenario steps and 0 as a type II error which is mean the

scenario steps did trigger a random number requirement but were not properly identified. 7364

scenarios were properly identified as not triggering a random number requirement while 3 did

properly trigger a random number requirement. This is not the full picture the roc curve, precision,

recall, and f1-score should also be examined. The accuracy can be examined but should not be

emphasized as the data is unbalanced and it will lead to false implications as to how well the model

performed.

91

Figure 37: Random number requirements model ROC and AUC Curve

Figure 37 above is the ROC and AUC curve which plots the true positive rate against the

false positive rate. The more curve hugs the upper left-hand corner of the chart the better the

performance of the model, but this can also be a false indicator as this can also show that a model

is overfitted. The AUC for this model is 1.0 which is a very well performing model, but this is

unfortunately not a good indicator for this model as there were only 4 samples in the dataset.

Table 17: Random number requirements model performance

Table 17 above shows the precision score, recall, the f1-score and the accuracy. The

accuracy is 1.00 but this is a false indication of model performance as the data is mostly ‘No’ vs

‘Yes’ on triggering random number requirements. This model has a precision of 1.00 ‘No’ and .43

‘Yes’, recall of 1.00 ‘No’ and 1.00 ‘Yes’, f1 score of 1.00 ‘No’ and .60 ‘Yes’.

92

4.3.9 Database Requirements

The login requirements model predicts whether the system requires security requirements that

properly implements a login feature. The data is unbalanced with scenario steps 5834 labeled ‘No’

and 2355 labeled ‘Yes’. This model uses 27 terms [database, store, save, selects, etc.] to label the

model.

Figure 38: Database requirements model confusion matrix

Figure 38 above shows the confusion matrix for the database label which shows a type I

error of 93 miss classified scenario steps and 104 as a type II error which is mean the scenario

steps did trigger a database requirement but were not properly identified. 5142 scenarios were

properly identified as not triggering a database requirement while 2032 did properly trigger a

database requirement. This is not the full picture the roc curve, precision, recall, and f1-score

should also be examined. The accuracy can be examined but should not be emphasized as the data

is unbalanced and it will lead to false implications as to how well the model performed.

93

Figure 39: Database requirements model ROC and AUC Curve

Figure 39 above is the ROC and AUC curve which plots the true positive rate against the

false positive rate. The more curve hugs the upper left-hand corner of the chart the better the

performance of the model, but this can also be a false indicator as this can also show that a model

is overfitted. The AUC for this model is .97 which is a very good performance.

Table 18: Database requirements model performance

Table 18 above shows the precision score, recall, the f1-score and the accuracy. The

accuracy is .97 but this is a false indication of model performance as the data is mostly ‘No’ vs

‘Yes’ on triggering database requirements. This model has a precision of .98 ‘No’ and .96 ‘Yes’,

recall of .98 ‘No’ and .95 ‘Yes’, f1 score of .98 ‘No’ and .95 ‘Yes’.

94

4.3.10 File Upload Requirements

The file upload requirements model predicts whether the system requires security

requirements that properly implements a file upload feature. The data is unbalanced with scenario

steps 7915 labeled ‘No’ and 274 labeled ‘Yes’. This model uses 23 terms [upload, image, pdf,

video, song, etc.] to label the model.

Figure 40: File upload requirements model confusion matrix

Figure 40 above shows the confusion matrix for the file upload label which shows a type I

error of 8 miss classified scenario steps and 54 as a type II error which is mean the scenario steps

did trigger a file upload requirement but were not properly identified. 7118 scenarios were properly

identified as not triggering a file upload requirement while 191 did properly trigger a file upload

requirement. This is not the full picture the roc curve, precision, recall, and f1-score should also

be examined. The accuracy can be examined but should not be emphasized as the data is

unbalanced and it will lead to false implications as to how well the model performed.

95

Figure 41: File upload requirements model ROC and AUC Curve

Figure 41 above is the ROC and AUC curve which plots the true positive rate against the

false positive rate. The more curve hugs the upper left-hand corner of the chart the better the

performance of the model, but this can also be a false indicator as this can also show that a model

is overfitted. The AUC for this model is .89 which is a moderately good performance.

Table 19: File upload requirements model performance

Table 19 above shows the precision score, recall, the f1-score and the accuracy. The

accuracy is .99 but this is a false indication of model performance as the data is mostly ‘No’ vs

‘Yes’ on triggering file upload requirements. This model has a precision of .99 ‘No’ and .96 ‘Yes’,

recall of 1.00 ‘No’ and .78 ‘Yes’, f1 score of 1.00 ‘No’ and .86 ‘Yes’.

96

4.3.11 Logging Requirements

The logging requirements model predicts whether the system requires security requirements that

properly implements a logging feature. The data is unbalanced with scenario steps 6798 labeled

‘No’ and 1391 labeled ‘Yes’. This model uses 16 terms [error, errors, click, invalid, notify, notifies,

etc.] to label the model.

Figure 42: Logging requirements model confusion matrix

Figure 42 above shows the confusion matrix for the logging label which shows a type I

error of 88 miss classified scenario steps and 72 as a type II error which is mean the scenario steps

did trigger a logging requirement but were not properly identified. 6045 scenarios were properly

identified as not triggering a logging requirement while 1166 did properly trigger a logging

requirement. This is not the full picture the roc curve, precision, recall, and f1-score should also

be examined. The accuracy can be examined but should not be emphasized as the data is

unbalanced and it will lead to false implications as to how well the model performed.

97

Figure 43: Logging requirements model ROC and AUC Curve

Figure 43 above is the ROC and AUC curve which plots the true positive rate against the

false positive rate. The more curve hugs the upper left-hand corner of the chart the better the

performance of the model, but this can also be a false indicator as this can also show that a model

is overfitted. The AUC for this model is .96 which is a moderately good performance.

Table 20: Logging requirements model performance

Table 20 above shows the precision score, recall, the f1-score and the accuracy. The

accuracy is .98 but this is a false indication of model performance as the data is mostly ‘No’ vs

‘Yes’ on triggering logging requirements. This model has a precision of .99 ‘No’ and .93 ‘Yes’,

recall of .99 ‘No’ and .94 ‘Yes’, f1 score of .99 ‘No’ and .94 ‘Yes’.

98

4.3.12 Weakness

This section describes the weaknesses of this approach.

4.3.12.1 Weaknesses of the model

There are a few weaknesses of the model and the Ontology. The use case scenarios used in this

research is student data. These are relatively new developers learning how to work with these

models. The scope of the use cases used were limited to the project’s students were assigned. A

lot of the use cases came from past requirements engineering courses, so the students were assigned

the same project for the semester. This is both an advantage and disadvantage. It is an advantage

to see if the model is assigning the same set of requirements to the same project. There are cases

in which the model did not and on further inspection it is because the students did not describe that

feature in the use case scenarios. It is a disadvantage as there wasn’t much variety in project domain

scope. There are many more label identifying terms left to be discovered that were not represented

in the dataset. These labels in the future could be missed as the model has never encountered them

before. This is a concern, but this approach is made to evolve with the times. In addition, the multi-

layer approach to this problem by analyzing the scenarios at the individual steps helps duplicate

the likeliness to trigger a security requirement.

4.3.12.2 Weaknesses of the approach

This approach is weak in addressing the security of Internet of Things (IOT) devices. The security

requirements for this project can be applied to IOT devices but with the limited computing power

of some of these devices make implement unfeasible. This approach is also limited on physical

security requirements as many of the security recommendations for physical security were mostly

referenced at the design level.

99

4.4 Validation

The efficacy of this approach was tested with volunteer students from a hybrid systems and

software engineering graduate requirements engineering course. The students were presented with

a fictitious product description for the DirectCoins app as shown in Figure 45 below. The

DirectCoins app describe a money transfer mobile and web app. There are six key features of the

app: create an account, send money, receive money, add money, cash out money, and view

transactions.

Students were asked to provide the use case scenarios with a focus on security and the

security requirements for this system. Figure 44 below is the highlighted portion of the SD-SRE

(shown fully in Figure 9) discussed in this section.

Figure 44: Portal interface of the SD-SRE for validation

Students were split into two groups. One group of students used their own approach to

develop the use case scenarios and security requirements while the other group used SD-SRE

portal. In additional both group of students were asked to track the amount of time they worked

on the activity. The use case scenarios were directly entered into the security development SD-

SRE portal by the students who were assigned the portal. The SD-SRE portal is designed to provide

the security requirements back to the user but this was disabled for this activity in order to compare

the security requirements produced by the students and the requirements produced by the system.

100

Pictures of the SD-SRE portal are included in the appendix. The students were given five days to

complete the use cases and requirements. All the use cases were then run through the security

requirements recommender for comparison. The quantity and quality of the requirements were

compared between the systems recommendations and those provided by the students.

Figure 45: DirectCoins app

101

4.4.1 Student Educational Backgrounds

A total of 19 students volunteered to participate in the study. Nine were assigned the portal while

ten were not. Of the nine assigned the portal six entered data into the portal. Of the six, five had

use case scenario steps and requirements and four were complete enough to describe the key

functions of the DirectCoins app. Of the ten not assigned the portal six returned the activity with

five being complete. All students had Science, Technology, Engineering, and Math (STEM)

undergraduate majors. Their graduate degrees were a majority Software Engineering, Systems

Engineering, and Unmanned Systems Engineering. Table 21 and Table 22 below shows the

breakdown of student majors for all student who agreed volunteered for this study.

Undergraduate
Major

of
students
who
submitted
the activity

Total # of
students

Graduate Major # of
students
who
submitted
the activity

Total # of
students

Computer Science 3 4 Human Factors 1 1
Mechanical
Engineering

1 1 Software
Engineering

3 4

Meteorology 0 1 Systems
Engineering

0 2

Psychology 1 1 Unmanned and
Autonomous
Systems
Engineering

2 2

Spaceflight
Operations

0 1

Unmanned Aircraft
Systems Science

1 1

Total 6 9 Total 6 9
Table 21: Volunteer students educational background of portal users

102

Undergraduate
Major

of
students
who
submitted
the activity

Total # of
students

Graduate Major # of
students
who
submitted
the
activity

Total # of
students

Aerospace
Engineering

2 2 Electrical
Engineering and
Computer Science

1 1

Computer
Engineering

0 1 Software
Engineering

3 4

Human Factors 0 1 Systems
Engineering

2 4

Physics 0 1 Unmanned and
Autonomous
Systems
Engineering

0 1

Software
Engineering

2 3

Systems
Engineering

1 1

Unmanned
Aircraft Systems

1 1

Total 6 10 Total 6 10

Table 22: Volunteer students’ educational background of non-portal users

4.4.2 Student Results

Six of the nine students assigned the portal submitted something in the portal of which one was

unusable as it was just a project description and no use case scenarios. Of the five remaining

three were complete and two had completed use cases but not enough to describe the whole

system. The one unusable was removed from the analysis the partial use cases were kept for

analysis. Table 23 below shows the use case, requirements, and time it took for students using

the portal.

103

Project
Submissions

Number of
Student

Submitted
Scenarios

Number of
Scenario

Steps

Time Students
Took to

Complete
Scenarios

Number of
Student

Submitted
Requirements

Time Students
Took to

Complete
Requirements

Portal1 7 44 70 25 64
Portal2 6 24 42 10 32
Portal3 7 15 23 13 19
Portal4 6 41 98 21 36
Portal5 7 33 42 19 21
Total 33 157 275 88 172
Mean 6.6 31.4 55 17.6 34.4
Median 7 33 42 19 32
Mode 7 N/A 42 N/A N/A

Table 23: Portal students submissions

Six of the ten students not assigned the portal submitted something. one was unusable for

suggesting security requirements as it was just a use case scenarios description and no steps. Of

the five remaining four were complete and one had completed use cases but not enough to

describe the whole system. The one unusable project was removed from the analysis for

generating security requirements, but the student security requirements were kept. The other

partial use cases were kept for analysis.

Project
Submissions

Number of
Student

Submitted
Scenarios

Number of
Scenario

Steps

Time Students
Took to

Complete
Scenarios

Number of
Student

Submitted
Requirements

Time Students
Took to

Complete
Requirements

NoPortal1 14 186 260 32 30
NoPortal2 2 66 59 0* 0*
NoPortal3 6 62 83 7 15
NoPortal4 6 90 40 13 30
NoPortal5 11 115 140 20 30
NoPortal6 9*4 0* 35* 22 60
Total 39 519 582 94 165
Mean 7.8 103.8 116.4 18.8 33
Median 6 90 83 20 30
Mode 6 N/A N/A N/A 30

Table 24: Student submissions not assigned the portal

4 * means not used in the analysis due to lack of data.

104

 Table 24 above shows the use case, requirements, and time it took for students not using

the portal.

Table 25 below shows the statistics for the whole validation set. There were a total of 10 projects

used for this study.

 Number of
Student

Submitted
Scenarios

Number of
Scenario

Steps

Time
Students
Took to

Complete
Scenarios

Number of
Student

Submitted
Requirements

Time
Students
Took to

Complete
Requirements

Total 72 676 857 168 337
Minimum 2 15 23 7 15
Maximum 14 186 260 25 64
Mean 7.2 67.6 85.7 16.9 33.7
Median 6.5 53 64.5 19 30
Mode 6 N/A 42 13,19 30

Table 25: All student submission- the full validation set

4.4.3 Results of the Suggested Requirements

This next section shows the results by requirements topic. All of the possible suggestable

requirements are in the appendix in Table 41. The number of steps classified as true are taken

from seeing if the model returned a yes or a no for the suggested requirement topic for the step.

This is compared to the labeling of the scenario steps as done to train the model by using the

describe_by terms in the ontology. The scenario steps are labeled after the suggested security

requirements were obtained.

Table 26 below shows the results of parsing the projects through the SD-SRE for the

login suggested requirements.

105

Project
submissions

Login # of steps
classified

as true

of steps
expected

to be
classified

as true

Student login
requirements

of directly
related

requirements

of
requirements

Portal1 Yes 4 12 8 0 56
Portal2 Yes 4 2 2 1 56
Portal3 Yes 2 2 3 0 56
Portal4 Yes 18 18 4 1 56
Portal5 Yes 8 23 5 1 56
NoPortal1 Yes 86 32 11 0 56
NoPortal2 Yes 44 29 N/A 1 56
NoPortal3 Yes 12 15 3 0 56
NoPortal4 Yes 1 12 6 0 56
NoPortal5 Yes 30 36 5 1 56
NoPortal6 N/A N/A N/A 9 N/A N/A

Table 26: Validation results for login requirements

While analyzing the scenario step for this particular topic it is discovered that

descriptions entered by NoPortal4 barely acknowledge a login was needed. The use cases

referred to the user/username as handle as stated in the project description and this is was used

by some of the student submissions. This was not a case encountered in the test and train data

prior to this validation however it was identified in the ontology for the describe_by link in

access control.

Scenario Name Step Type Step Description
Create custom handles Flow User inputs a custom handle
Create custom handles Flow If the handle is taken, step 2a is run
Create custom handles Flow The handle is saved
Create custom handles Flow End of scenario
Create custom handles Alternate Flow The user is given an error message indicating for

them to try again. Return to step 1
Create account Flow The user fills out the form, providing legal name,

phone number, email address, mailing address,
date of birth, city of birth, country of birth,
national id number.

Create account Flow The user uploads documents into the form for
pictures of the government id and check.

Create account Flow The user selects account type, either user or
merchant.

Create account Flow The user submits the form

106

Create account Flow The form is reviewed by the client
Create account Flow If a form problem is detected, 6a is run.
Create account Flow The form is processed, and the account is created.
Create account Flow End of scenario
Create account Alternate Flow The client contacts the user to collect the correct

documents. Return to step 2
Table 27: Portal1 Login related Use Cases

Portal1 had no directly relatable login security requirements because the provided

scenario step descriptions did not have a directly relatable security requirement. The scenario

steps are displayed above in Table 27. A relatable requirement would be “The user enters their

password”, or the “The user enters their username”. Instead Portal1 used the term “handle” to

identify the user. This would relate to 30 login password related requirements. Portal1 did trigger

the login requirement because it identified different account types between user and merchant.

This model can be improved training the machine learning model on the “handle” example as a

substitute for username. The word handle was captured in the ontology for the describe_by for

access control as shown in Figure 18 above.

Table 28 shows an example of Portal3 scenario steps that were tagged for triggering a

login requirement vs those that were not. As shown below four scenario steps were tagged but

only two are directly related to login.

Use Case Name Alternate
Step

Scenario Step Description Portal Login_prediction

Create Account Flow Allows user to register with
DirectCoins

Yes Yes

Create Account Alternate
Flow

Enter personal information Yes Yes

Create Account Alternate
Flow

Enter payment type (credit/wire
transfer)

Yes Yes

Verify User Flow DirectCoins App verifies the user
logging in to their account

Yes Yes

Table 28: Example of Portal3 login Requirement Analysis

107

Table 29 below shows the results of parsing the projects through the SD-SRE for the

sensitive information suggested requirements.

Project
submissions

Sensitive
information

of
steps

classified
as true

of
steps

expected
to be

classified
as true

Student
sensitive

information
requirement

of directly
related

requirements

of
requirements

Portal1 Yes 1 7 0 0 6
Portal2 Yes 5 2 0 0 6
Portal3 No 0 0 0 0 6
Portal4 No 0 0 0 0 6
Portal5 Yes 10 9 0 0 6
NoPortal1 Yes 9 2 0 0 6
NoPortal2 Yes 66 49 N/A N/A 6
NoPortal3 Yes 17 13 0 0 6
NoPortal4 Yes 2 8 0 0 6
NoPortal5 Yes 11 10 1 0 6
NoPortal6 N/A N/A N/A 0 N/A N/A

Table 29: Validation results for sensitive information requirements

Portal3 and Portal4 did not have any information sensitivity indicators in its use cases.

Portal3 simply stated the “Enter personal information”. Portal4 states the “The systems prompts

user for ID number” in reference to collecting social security/national ID. Although Portal3 and

Portal4 did not trigger any sensitive information requirements the system returns it them any how

because the system ping them for login requirements which are extended by sensitive

information requirements. This model can be improved by allowing users to tag data sensitivity

as they would tag the sensitivity of actors; the sensitivity of data an actor has when interacting

with the system.

Table 30 below shows the results of parsing the projects through the SD-SRE for the

authentication suggested requirements.

108

Project
submissions

Authentication # of steps
classified

as true

of steps
expected

to be
classified

as true

Student
authentication
requirements

of directly
related

requirements

of
requirements

Portal1 No 0 0 4 0 7
Portal2 No 0 0 1 0 7
Portal3 No 0 0 1 0 7
Portal4 No 0 0 4 0 7
Portal5 No 0 0 3 0 7
NoPortal1 No 0 0 6 0 7
NoPortal2 No 0 0 N/A N/A 7
NoPortal3 No 0 0 1 0 7
NoPortal4 No 0 0 3 0 7
NoPortal5 No 0 0 4 0 7
NoPortal6 N/A N/A N/A 3 N/A N/A

Table 30: Validation results for authentication requirements

There were no direct authentication requirement triggers in the use case scenario

description, but the requirements were triggered due to the pining of login, and database

requirements.

Table 31 below shows the results of parsing the projects through the SD-SRE for the

authorization suggested requirements.

Project
submissions

Authorization # of steps
classified

as true

of steps
expected

to be
classified

as true

Student
authorization
requirements

of directly
related

requirements

of
requirements

Portal1 No 0 0 0 0 10
Portal2 Yes 5 3 3 0 10
Portal3 No 0 0 3 0 10
Portal4 No 0 0 4 0 10
Portal5 No 0 0 4 0 10
NoPortal1 No 0 0 0 0 10
NoPortal2 No 0 0 N/A N/A 10
NoPortal3 Yes 12 7 1 0 10
NoPortal4 No 0 0 2 0 10
NoPortal5 No 0 0 3 0 10
NoPortal6 N/A N/A N/A 3 N/A N/A

Table 31: Validation results for authorization requirements

109

There were a few direct authorization requirement triggers in the use case scenario

description, but the requirements were also triggered due to the pining of login, and database

requirements.

Table 32 below shows the results of parsing the projects through the SD-SRE for the

email collection suggested requirements.

Project
submissions

Email
Collection

of
steps

classified
as true

of steps
expected

to be
classified

as true

Student
email

collection
requirements

of directly
related

requirements

of
requirements

Portal1 No 0 1 1 0 0
Portal2 No 0 0 0 0 0
Portal3 No 0 0 0 0 0
Portal4 Yes 5 5 0 4 7
Portal5 No 0 2 0 0 0
NoPortal1 Yes 3 3 0 4 7
NoPortal2 Yes 5 5 N/A N/A 7
NoPortal3 No 0 0 0 0 0
NoPortal4 Yes 2 2 0 4 7
NoPortal5 No 0 0 0 0 0
NoPortal6 N/A N/A N/A 0 N/A N/A

Table 32: Validation results for email collection requirements

The email collection did not perform as well as desired. The requirements were missed

for two systems that had email use case scenario descriptions. These descriptions were low with

the most being five for one project. There were no other requirements that would also trigger this

requirement. These set of requirements are specific to email collection and would not be

applicable in the overall input validation set of requirements. This model can be improved by

getting more data with email descriptions.

Table 33 below shows the results of parsing the projects through the SD-SRE for the

input validation suggested requirements.

110

Project
submissions

Input
validation

of
steps

classified
as true

of
steps

expected
to be

classified
as true

Student input
validation

Requirements

of directly
related

requirements

of
requirements

Portal1 Yes 3 5 0 0 10
Portal2 Yes 5 4 0 0 10
Portal3 No 0 2 0 0 10
Portal4 Yes 8 8 0 0 10
Portal5 Yes 7 7 0 0 10
NoPortal1 Yes 26 16 0 0 10
NoPortal2 Yes 22 26 N/A N/A 10
NoPortal3 Yes 6 10 0 0 10
NoPortal4 Yes 7 9 1 0 10
NoPortal5 Yes 3 11 0 0 10
NoPortal6 N/A N/A N/A 0 N/A N/A

Table 33: Validation results for input validation requirements

Most of the projects except Portal3 triggered the input validation requirements. Portal3

should have done so based on two steps but did not. It was triggered however for Portal3 due to

login requirements. If Portal3 had triggered email collection and file upload requirements those

would have also triggered the input validation requirements but that was not the case for Portal3

as it did not have requirements that triggered either. Portal1 had a lot of false negatives because

the use case identifies when a user does not take the action of entering data which was not

expected. NoPortal6 uses the word prompt and create for identifying users entering data which

was not accounted for in the test and train set. This model can be improved by looking for when

users are prompted and when users are creating.

Table 34 below shows the results of parsing the projects through the SD-SRE for the

encryption suggested requirements.

111

Project
submissions

Encryption # of
steps

classified
as true

of
steps

expected
to be

classified
as true

Student
encryption

requirements

of directly
related

requirements

of
requirements

Portal1 No 0 1 0 0 18
Portal2 No 0 0 1 0 18
Portal3 No 0 0 0 0 18
Portal4 No 0 0 0 0 18
Portal5 Yes 5 7 0 0 18
NoPortal1 No 0 0 2 0 18
NoPortal2 No 0 0 N/A N/A 18
NoPortal3 Yes 2 3 0 0 18
NoPortal4 No 0 2 0 0 18
NoPortal5 No 0 0 1 0 18
NoPortal6 N/A N/A N/A 0 N/A N/A

Table 34:Validation results for encryption requirements

Encryption is automatically triggered by login, sensitive information, and database.

Although it did not have many steps trigger it, it was still pulled for all projects.

 The random number requirement table is not added as no scenario steps required a

random number directly. The random number scenario was return for all projects that ping login,

sensitive information, encryption, or database as they all would likely require a random key or

token.

Table 35 below shows the results of parsing the projects through the SD-SRE for the

database suggested requirements.

Project
submissions

Database # of steps
classified

as true

of steps
expected

to be
classified

as true

Student
database

Requirements

of directly
related

requirements

of
requirements

Portal1 Yes 3 10 0 0 16
Portal2 Yes 5 9 1 0 16
Portal3 Yes 2 4 0 0 16
Portal4 Yes 9 13 0 0 16
Portal5 Yes 6 14 0 0 16
NoPortal1 Yes 31 37 0 0 16

112

NoPortal2 Yes 23 19 N/A N/A 16
NoPortal3 Yes 6 11 1 0 16
NoPortal4 Yes 9 15 0 0 16
NoPortal5 Yes 2 17 0 0 16
NoPortal6 N/A N/A N/A 0 N/A N/A

Table 35: Validation results for database requirements

Database is triggered for a lot a steps. Any step that suggest making a choice, entering

data, or displaying data should trigger a database step in addition to login, input validation, email

collection, file upload, and logging requirements.

Table 36 below shows the results of parsing the projects through the SD-SRE for the file

upload suggested requirements.

Project
submissions

File
upload

of steps
classified

as true

of steps
expected

to be
classified

as true

Student file
upload

Requirements

of directly
related

requirements

of
requirements

Portal1 No 0 1 0 0 0
Portal2 No 0 0 0 0 0
Portal3 No 0 0 0 0 0
Portal4 No 0 2 0 0 0
Portal5 No 0 2 0 0 0
NoPortal1 Yes 25 4 1 1 13
NoPortal2 No 0 3 N/A N/A 0
NoPortal3 No 0 1 0 0 0
NoPortal4 Yes 26 10 0 1 13
NoPortal5 Yes 2 4 1 1 13
NoPortal6 N/A N/A N/A 0 N/A N/A

Table 36: Validation results for file upload requirements

Portal1 only had one step to upload files. Portal2, Portal3 did not describe the need to

upload files in the scenarios. NoPortal1 describes the user not uploading files which triggered a

lot more steps than expected. Even the labels assumed that it should be labeled to trigger that

step. It was left as is although not an expected description.

113

Project
submissions

Logging # of steps
classified

as true

of steps
expected

to be
classified

as true

Student
logging

Requirements

of directly
related

requirements

of
requirements

Portal1 Yes 9 21 0 10
Portal2 Yes 11 16 0 10
Portal3 No 0 4 0 10
Portal4 Yes 12 32 0 10
Portal5 Yes 10 26 1 10
NoPortal1 Yes 52 34 0 10
NoPortal2 Yes 13 15 N/A N/A 10
NoPortal3 Yes 33 28 0 10
NoPortal4 Yes 24 31 0 10
NoPortal5 Yes 22 25 5 10
NoPortal6 N/A N/A N/A 0 N/A N/A

Table 37: Validation results for logging requirements

Table 37 above shows the results of parsing the projects through the SD-SRE for the

logging suggested requirements.

Portal3 did not trigger a logging requirement but it is triggered if any other requirements

topic is triggered. Table 38 below shows the number of projects that were triggered just by a

standalone scenario from a project rather than because it extends another set of requirements.

Topic Number of projects
that triggered based

on Use Case
Scenarios

Number of projects
that trigged additional

requirement due to
extending another

requirement

Number of projects
that should have
had requirements
trigger but didn’t

Login 10 0 0
Sensitive Information 8 2 0
Authentication 0 10 0
Authorization 2 8 0
Email Collection 4 0 2
Input Validation 9 1 1
Encryption 2 8 2
Random Number 0 10 0
Database 10 10 0
File Upload 3 0 5
Logging 9 10 1

Table 38: Number of projects that return a requirements grouping.

114

4.4.4 Comparison between Using the Portal or Not Using the Portal

Students not using the portal provided better quality use case scenarios. Based on feedback,

although some students liked the portal layout, they prefer to see everything on the same page as

you would for an SRS or while documenting use case models. Students who did not use the portal

also submitted their use case model while the portal did not collect the use case model which may

have discouraged students from drawing it prior to writing scenarios. Some students who did not

use the portal stated that they would step away from the model and come back to it when they had

an idea while this was not described by students using the portal. The portal was a learning curve

as it was the first-time students were using it. The portal however had it pros it provided

consistency for capturing the scenarios and making sure all of the fields were provided to be filled.

The students who did not use the portal did not have consistency across their submissions. For

example, on student did not have any preconditions for any of their use case.

4.4.5 Comparison Between Recommended Security Requirements and Student Security

Requirements

Overall the SD-SRE performed better than the student requirements which was expected. The

students used were not security experts but instead early career system developers. On average

the SD-SRE produced more than 140 requirements while students suggested only 18. The quality

of the requirements are related to security are more complete in the SD-SRE than what students

produced.

115

Project
Submissions

of student
suggested
Requirements

of SD-SRE
Suggested
Requirements

Portal1 25 134
Portal2 10 134
Portal3 13 134
Portal4 21 141
Portal5 19 134
NoPortal1 32 154
NoPortal2 0 141
NoPortal3 7 134
NoPortal4 13 154
NoPortal5 20 147
NoPortal6 22 0

Table 39: Comparison of number of requirements student suggested vs the SD-SRE

4.5 Research Questions Results

This section summarizes how the SD-SRE approach addresses the research questions.

4.5.1 How can the elicitation and analysis of functional features be leveraged to assist with the

specification of cybersecurity requirements?

SD-SRE combines semantic web technologies and machine learning to analyze use case models

which capture the functional features for systems to be developed. An ontology, the secure

development ontology, was created to capture best practice security requirements of common

functional features, vulnerabilities of these common functional requirements, mitigations of those

vulnerabilities, and the common use case scenarios step descriptions of those functional features.

1183 use case scenarios were analyzed to determine the functional feature descriptions that are

documented in the ontology. In creating the ontology 154 requirements were documented and

stored in a repository. The security requirements were grouped into 11 topics that match functional

features. The ontology was queried for the step descriptions and this was used to quickly label the

116

use case scenarios. The labeled data was used to train 11 machine learning models, one for every

topic. This was then incorporated into a web portal where users can enter use case models and get

suggested security requirements.

The efficacy of the SD-SRE was tested by having students create use case scenarios for a

new project the system had not previously been trained on. The students were also asked to produce

security requirements which were compared to the systems security requirements.

4.5.2 How can the use of existing best practices of cybersecurity be leveraged to assist in the

identification of cybersecurity requirements?

The use of existing best practices of cybersecurity were used to create a secure development

ontology and a security requirements repository for generic frequently implemented functional

features. The ontology captures best practices by documenting security requirements that were

captured by reviewing 1076 security development sources. This ontology was leveraged to train a

machine learning model that digest use case models and returns the security requirement

recommendations from the security requirements repository. ML was used to make the matching

of security requirements to functional requirements automatic.

The SD-SRE will continue to improve as more use case scenarios are added and analyzed to

continue to improve the ML models. The ontology will continue to evolve as new security

recommendations are made. The ontology also documents security requirements that use to be

common practice but have since been considered insecure, for example the use of security

questions as an authenticator or the use of SHA-1. As more hash algorithms are found to have

collisions or currently adopted practices are abandoned such as abandoning passwords for

multifactor authenticators the ontology will continue to be updated as well as the security

requirements.

117

118

5 Related Work

This chapter describes related works in the development and application of cybersecurity

ontologies, the use of machine learning in cybersecurity requirements elicitation, the use of

ontologies with machine learning, the use of ontologies with machine learning in cybersecurity

and is followed by a comparison to the proposed work.

5.1 Development of Cybersecurity Ontologies

The MITRE Corporation produced a trade study on developing an ontology for the cybersecurity

domain using the middle out approach [52]. The authors chose malware as the cybersecurity topic

to develop a method to be reused iteratively in the evolution of their cybersecurity ontology. This

work took into consideration the perspective of the ontology user, an analysis of the data source,

and reused existing ontologies that had security related concepts. The authors verified their

ontology through the development of competency questions that they used to create use cases. The

two goals of this work were to document a process for developing cybersecurity ontologies, and

to catalog useful resources for the cybersecurity domain.

A similar project presented a framework for building an ontology for cybersecurity focused

on situational awareness [53]. The research proposed adopting a semantic model of cybersecurity

to overcome the limitations of situational awareness of analysts due to the complex interaction of

human and machine in a widespread communication network. The authors reviewed multiple

ontologies to extract the foundations for an ontology of secure operations in cyberspace. The

Ontologies of Secure Cyber Operations (OSCO) was developed by incorporating three ontologies;

the CRATELO ontology, which is an ontology used as a base reference, the DOLCE_SPRAY, and

SECCO ontologies, which defined additional security concepts.

119

The approach was used to develop parts of the OSCO ontology, which was verified using

two use cases, the secure retrieval of a file and the detection of an intrusion. One of the goals of

this research was to build an ontology that could reduce the number of alarms by identifying false

alarms to assist analyst in using resources more effectively.

Another paper discussed the efforts of researchers to combine several general world and

security related ontologies together to make the Unified Cybersecurity Ontology (UCO) [63]. The

authors developed this ontology to provide a common understanding of cybersecurity domain and

standards, map existing ontologies, map industry knowledge, and develop foundational use cases

to verify the UCO ontology. The development of the UCO ontology focused on supporting

information integration and situational awareness. The authors incorporated ontologies to expand

the diversity of use cases that the UCO ontology could handle. UCO is based on the Intrusion

Detection System that describes cybersecurity related events. The use cases developed to verify

the ontology were based on situation and threat understanding by correlating contextual

observations (STUCCO) [64], an ontology that extracted entities from the national vulnerability

database. Using the UCO ontology, four example results were presented: identification of PDF

reader vulnerabilities, identification of vulnerabilities in other products, suggestion of alternate

software without the vulnerability the user is trying to avoid, and the assessment of changing a

product vendor based on product vulnerability counts.

These papers define approaches for building cybersecurity ontologies through the reuse of

existing ontologies or combining previously defined ontologies. The development of cybersecurity

ontologies can be described as either a combination of security ontologies or a combination of

domain (i.e., human factors) and security ontologies. These ontologies were developed from the

perspective of addressing cybersecurity problems in system operations.

120

5.2 Applications of Cybersecurity Ontologies

Researchers have used ontologies to predict cybersecurity threats. One example of this is a system

that was developed to use cybersecurity ontologies to analyze web conversations scraped off the

internet to predict when hackers are planning attacks and to assess the viability of the attack [65].

Another use of cybersecurity ontologies was for solving the problem of determining security

breaches [54]. In this instance the system scans data across enterprises and links them in a semantic

graph that uses ontologies to identify breaches and suggest responses. This paper describes

establishing an ontology with the dual purpose of providing a data map and the ability to provide

an automatic translation. The authors state, “The main weakness of these ontologies is that they

focus more on objects rather than events.” The authors argue that capturing events in addition to

objects is necessary to construct a timeline of events that can increase situational awareness.

The aforementioned approaches all target solving problems that arise from system

operations. Contrary to this, the approach proposed in this research aims to establish an ontology

to solve the first category of cybersecurity type of problems, developing optimal systems, by using

an ontology to assist in the elicitation of cybersecurity requirements at the earliest stages of

software development i.e., the requirements gathering stage. Because software developers are not

necessarily security experts, there are security issues that continuously appear in newer systems.

One possible reason is that developers may not be aware of the existence of the issue and the

solution, or they might have missed the security requirement. Cybersecurity developments are

reactive to discovered threats but many of these threats have simple proven solutions, but those

solutions are slowly implemented and are often after the system has been deployed. Therefore, the

ontology developed in this research is based on secure development. The Secure Development

121

Ontology (SDO) maps security attacks, mitigation, and the implementation to mitigate the threat

[59].

5.3 The Use of Machine Learning in Requirement Elicitation

The use of machine learning in requirement elicitation has been used to prioritize elicited

requirements for implementation, to elicit requirements based on inductive learning approaches,

to help select which requirement elicitation techniques are best used for a proposed project, and

automatic requirements elicitation in agile processes [66], [67], [68], [69].

Machine learning in the requirements gathering phase of the development lifecycle has been

used to prioritize requirements. Determining which requirements to focus on first is a strategic

process that software developers take on after requirements are gathered. It is tedious and time

consuming because like requirements need to be grouped in addition to system critical

requirements. A novel framework was developed that interweaves human and machine activities

to properly prioritize requirements. The approach is similar to Analytic Hierarchy Process (AHP)

in that it is based on pairwise preferences but differs in that it allows prioritization over a large set

of requirements [70]. Later the same authors explored the scalability issues of requirements

prioritizations with machine learning techniques. AHP is impractical with requirement sets greater

than 20. The method instead relied on a case-based ranking by combining human preference

elicitation and automatic preference approximation [71]. Case-based ranking considers the

stakeholders preferences with requirements ordering approximations by taking in the human effort

input and encoding the domain knowledge with a partial order requirements attributes [66].

A hybrid machine learning model was created to determine the best requirements elicitation

techniques. A multi regression model was built based on the strengths and weaknesses of each

technique to determine how each techniques attributes rank alone and how each attribute would

122

affect one another. The authors stated that most activities are performed due to familiarity or

history of using a technique regardless of whether or not it is the best technique to elicit

requirements for a specific problem. Then the authors used an Artificial Neural Network (ANN)

to select elicitation techniques given the proposed project [68].

An empirical study was conducted that used machine learning to predict project effort. Effort

was defined as cost in this study. The authors looked at projects from the bottom-up perspective

in two different organizations. They were able to apply a neural network approach to produce

predictions for different parts of project with about 90% accuracy. The authors concluded that this

method had potential with the ability to scale the data [72].

Another machine learning approach was designed to identify expert stakeholders in the

requirements gathering process. The machine learning technique analyzed stakeholder

contributions, extracted domain specific topics, and made profiles of stakeholder’s interest. These

profiles are then filtered and chosen based a given requirements elicitation topic [73].

Methodologies have been created to classify the quality of requirements using machine learning.

The methodology is a learning-based machine learning approach based on metrics that represent

attributes of requirements that experts would consider good or bad qualities of requirements. The

classifier was trained with requirements that were pre-classified then tested against a new set of

requirements [74].

Another method used ML to automatically gather functional requirements from agile

processes [69]. The method is based on task adaptive leaning by justification trees algorithm. This

method supports many of the agile processes that extreme programming requires. The authors used

a knowledge base that applied some of the extreme programming techniques which allowed for

123

adjustments and expansion. The authors were able to produce a set of requirements that could serve

as final requirements.

A semi supervised learning approach was used to identify non-functional requirements in

textual specifications. The authors used pre-classified non-functional requirements to train the

model. The classification was based on categorization of text properties and feedback from users.

The approach was 70% accurate in the detection non-functional requirements [75]. ML is applied

in various ways in the requirements elicitation domain such as classifying the best elicitation

techniques, prioritizing requirements for implementation, to determining project effort, identifying

stakeholders, determining quality of requirements. Two previous works stand out when compared

to the proposed approach in this research: gathering functional requirements from agile processes

and classifying non-functional requirements from a set of requirements. Classifying non-

functional requirements is of interest to extend this work in the future because the current

methodology does not consider if the security requirement is already present it assumes that it is

not. There are times security requirements may already be present and having the system identify

them may be of interest in the future. Gathering non-functional requirements from agile processes

is the closest to this approach but this approach focuses on suggesting security requirements.

5.4 The Use of Machine Learning in Cybersecurity Requirement Elicitation

In 2016 researchers mined Software Requirement Specifications (SRS) for security requirements

and developed a classification model. The security requirements were broken down into four

classifications: authentication-authorization, access control, cryptography- encryption, and data

integrity. From the collected mined data, the authors classified the requirements then tested this

against security requirements projects [67].

124

The authors work is similar to the proposed approach, but the authors are not suggesting new

security requirements whereas this approach is suggesting new security requirements not

classifying already written requirements.

5.5 The Use of Ontologies with Machine Learning

Researchers explored the multiple ways ontologies have been used with machine learning. In one

study the researchers used artificial intelligence methods to determine if two life science ontologies

were the same or similar. The authors also use unsupervised machine learning techniques to embed

new information in ontologies. Then the authors explored methods that use ontologies to constrain

machine learning problems [76].

A survey paper looked at 15 published in 2018 and 2019 in the medical field that

incorporated the use of ontologies, ML, and a hybrid of ML and ontologies. The hybrid approaches

focused on vectorizing ontologies to be consumed by ML algorithms, tries to predict the context

node given a node, and the embedding of ontologies to classify patients [77]. Another survey paper

looked at how ML is being applied to the semantic web in order to find missing links and enrich

ontologies [78].

These works incorporate the use of ontologies with machine learning but many of the

applications are for training a model on the ontology in order to improve the ontology by finding

missing links and entities not as data labels themselves.

5.6 The Use of Ontologies with Machine Learning in Cybersecurity

Researcher leveraged ontologies and ML techniques for malware analysis. The authors created an

ontology of 4570 Android apps with their associated features then used ML to identify malware

features and flag whether or not the app may have malware [79].

125

Another implementation of ontologies with ML was the creation of an automatic attack

detection ontology that trained a deep learning algorithm to identify cyber-attacks specifically

intrusion detection from system logs [71]. Other researchers trained a ML model on UCO to detect

early cyber security attacks [75].

Other researchers created an ontology of security requirements to train a ML algorithm on

how to identify and classify security requirements from general requirements in requirements

specifications [80]. One of the authors has previous work on identifying security requirements

based on linguistic analysis and machine learning. In that work the author used linguistic rules to

train the model and did not create an ontology of security requirements [81].

Researchers used an ontology to validate the results of a supply chain treat analysis and

prediction ML model [82]. Other authors used ML to extract entities from cybersecurity domain

corpuses to build an ontology and a cybersecurity knowledge base [83]. Similarly, other

researchers developed a security related ontology to train an NLP ML model to find entities and

relations from cybersecurity related documents [84].

These works focus on security for implemented systems, the classification of security

requirements from general requirements, and ML to implement ontologies in the cybersecurity

domain. In contrast the proposed approach uses an ontology to label use case scenarios to suggest

cybersecurity requirements that should be considered in the implementation of the functional

features described within the scenarios.

5.7 Comparison to Approach

The cybersecurity related ontologies were developed from the perspective of addressing

cybersecurity problems in system operations. While the ontology proposed in this work is from

the perspective of building optimal systems.

126

ML is applied in various ways in the requirements elicitation domain such as classifying the

best elicitation techniques, prioritizing requirements for implantation, to determining project

effort, identifying stakeholders, determining quality of requirements, identification of non-

functional requirements, gathering requirements from elicitation techniques, and classifying

requirements. These works differ from the proposed approach as the proposed approach is

suggesting security requirements from functional requirements elicitation activities.

127

6 Results and Conclusion

This section discusses the results of the SD-SRE validation, the benefits of the SD-SRE and the

future work to be done to continue to improve the SD-SRE.

6.1 SD-SRE Results

The SD-SRE performed better in both quantity and quality of requirements when compared to

those who did not use the SD-SRE. The SD-SRE on average suggested 140 security requirements

while students on average suggested 18 with an average of 8 being security related. If the

aggregators, which allows for piggybacking requirements, was not part of the system the SD-SRE

would on average return 107 requirements.

The students on average had 2-3 security related requirements the SD-SRE did not capture

directly. These requirements were very specific to the system and will not be added to the SD-

SRE. The requirements discussed limiting the amount of money that a user could send.

Project
Submissions

of student
suggested

requirements

of security
related
student

suggested
requirements

of security
related
student

suggested
requirements
not capture
by SD-SRE

of SD-SRE
suggested

requirements
without

Aggregator

of SD-SRE
Suggested

Requirements

Portal1 25 4 3 98 134
Portal2 10 7 2 108 134
Portal3 13 4 3 72 134
Portal4 21 7 2 99 141
Portal5 19 6 2 116 134
NoPortal1 32 26 1 118 154
NoPortal2 0 0 0 105 141
NoPortal3 7 3 1 126 134
NoPortal4 13 6 0 118 154
NoPortal5 20 10 0 111 147
NoPortal6 22 3 3 0 0

Table 40: SD-SRE validation results

128

6.2 Results of Best Practices

The students are novice system developers and none of the students indicated having a specialty

in cybersecurity. The lack of cybersecurity expertise and training is a motivator for this project as

it is a representation of a majority of industry developers. Below we see a comparison of security

requirements produced by the students compared to similar requirements produced by the SD-

SRE.

Noportal1 had 26 security related requirements but of those 26, three requirements are no

longer recommended security requirements as they are considered unsecure due to the rise of social

media. Security questions are not secure because the typically suggest security questions ask about

information that can easily be found on the internet due to the nature of social media, which

encourages users to overshare. Examples such as “what was your elementary school teachers

name” can easily be found through various digital yearbook website or “what is the name of your

dog” can likely be found by looking at someone’s social media. The three requirements suggested

by Noportal1 in regard to security questions are the following:

“The system shall prompt the user to create security questions during account

creation.”

“Users shall have 3 to 5 security questions at all times.”

“The system shall prompt the user to update security questions every 4 months.”

The SD-SRE returns this requirements which recommends not using security requirements:

“The system shall not use security questions for account recovery.”

Another example of security requirements suggested that did not follow best practices

focused on password creation. NoPortal1 also had security requirements about password length

and character requirements as shown here:

129

“Passwords shall be 10 or more characters.”

“Passwords shall include 1 or more numbers.”

“Passwords shall include 1 or more special characters.”

“Passwords shall contain no spaces.”

NoPortal4 also had similar requirements:

 “A valid password shall be between 10 and 20 characters long.”

“A valid password shall include at least one lower case letter, one upper case letter,

one number, and one special symbol.”

The SD-SRE returns these requirements in relation to password selection:

“The system shall ensure the password is not blank.”

“The system shall require passwords with a minimum of 12 characters.”

“The system shall require passwords with a maximum of 128 (some still

recommend 64…depends on hashing implementation) characters limitation. Note

that this may be adjusted in the future as hashing algorithms have more capacity.”

“The system shall allow usage of all characters in passwords including Unicode,

whitespaces, and emojis.”

 “The system shall not limit or require the number or type of characters a user may

use in the password field (i.e. no password composition rule).”

Both Noportal1 and Noportal4 are suggesting password composition rules which are no

longer best practice and the SD-SRE returns a requirement stating to not implement a composition

rule. NoPortal4 suggest the length of the password be at least 10 characters but no longer than 20

characters. Best practices for password length suggest a minimum of 12 characters and a maximum

of 128 which is limited due to the hashing algorithm to be used.

130

Portal4 did capture a best practice security requirement about using a strength meter which

is also suggested by the SD-SRE.

Portal4 suggested strength meter requirement:

“The system shall include a strength meter when the user is choosing a password.”

SD-SRE suggested strength meter requirement:

“The system shall use a password strength meter and present it to the users.”

The security requirements suggested by the students are likely due to features they’ve

experienced themselves such as password composition rules. The SD-SRE suggest the best

practices for these requirements based on current security standards.

6.3 The Benefits of the SD-SRE

This research could be an effective way to implement cybersecurity requirements into the earliest

stage of the software development life cycle because this approach will allow developers to elicit

cybersecurity requirements throughout the requirements gathering stage.

It is envisioned that the SD-SRE provides a way to elicit cybersecurity requirements that can

be reused. This approach will allow requirements engineers to focus on, what use cases are best

used for, functional requirements through the analysis of requirement engineering techniques. The

SD-SRE can minimize the added layer of activities of current security requirement approaches

such as abuse and misuse cases allowing developers to focus on the elicitation of functional

requirements. Abuse/misuse cases add a layer to use case modeling for security by having

developer describe the many ways that a malicious user could abuse/misuse a system. This requires

the developer to have cybersecurity skills in order to properly determine the multitude of ways a

system can be targeted and to write effective requirements to mitigate those instances. In contrast

to this, the SD-SRE does not require the requirements engineer to consider the many ways a system

131

is vulnerable. It also does not require the requirements engineer to come up with requirements to

mitigate those vulnerabilities. The SD-SRE will use the knowledge of the system stored in

requirements gathering activities to assist with the elicitation and analysis of cybersecurity

requirements.

The SD-SRE can be a seamless manner to discover cybersecurity requirements, in a

lightweight way as it can easily handle changes to requirements without the extensive steps

proposed by already existing frameworks. The SD-SRE allows researchers to capture more data

to continue to enhance the approach. The capture of functional system features could be reanalyzed

by researchers with cybersecurity domain knowledge to see if new security related requirements

should be added to the domain knowledge map and security requirements repository. As existing

standards and frameworks are updated this approach can easily be updated to reflect those new

improvements.

Using the SD-SRE requirements engineers can rapidly, non-invasively, identify security

related requirement at the earliest stages of the development lifecycle. Requirements engineers are

already performing requirement elicitation and analysis activities which are often used to later

develop other models and test cases. These techniques can now be used to analyze the security of

a system. This is beneficial because the security requirement will be integrated in the system,

through design and architecture. Instead of later once the system is deployed. Additionally, this

can facilitate the sharing of cybersecurity requirements as requirements engineering activities can

also be reused. Furthermore, using requirements engineering activities, software engineers can

develop testing plans of the system. The SD-SRE can then in the future be expanded to also support

the validation and verification of the system security.

132

6.4 Future Work

This research proposes an approach to elicit security requirements at the earliest stage of the

development lifecycle. This work can continue to expand as new requirements and vulnerabilities

are discovered. For example, as hashing algorithms are cracked or common practices such as

security questions are shown to not be secure. These new discoveries will need to be added and

adjusted in the ontology. As the SD-SRE portal continues to populate with new scenarios new

description of features will be discovered and the models will need to be trained on those new

descriptions. The approach can be improved by categorizing requirements based on the severity of

vulnerability the requirement is mitigating. The use case parser can also be improved by

implementing a more in-depth threat model. The model can be expanded to suggest security

requirements from functional requirements and to digest user stories in addition to use case

scenarios. The model can also be adjusted to identify already existing security requirements to not

duplicate the requirements in the suggestions and to identify incomplete requirements. If the SD-

SRE portal reaches tens of thousands of scenarios the model can be adjusted to a semi supervised

model in order to limit the interaction needed when new descriptions are added.

This approach can also be expanded to the design and implementation phase. Design phase

models can be analyzed to train a model to identify security design suggestions based on existing

security frameworks. This would address the current weakness in the model for physical systems

as many of the security suggestions for the physical devices rely on design. There are many

security standards for secure coding based on programming languages. A plug in can be designed

for popular Integrated Development Environments (IDE) or code editors to identify security flaws

in code and implementation decisions. For example, preventing tab nabbing and clickjacking in

HTML, tokenside jacking in JSON, properly implementing Docker security, and preventing unsafe

133

javascript by using the “eval” function. Although not full proof all these examples can be mitigated

through certain practices.

The SD-SRE portal can be expanded to allow developers to interact with other developers on

the suggested requirements whether through a comments section or a forum feature. There can be

deliberate features for developers to provide feedback or suggestions on the suggested

requirements. The SD-SRE portal can also host security development related new, trainings, and

seminars on security requirements elicitation, design, and implementation. The SD-SRE portal can

link to additional resources for suggested requirements, design, or code suggestions.

134

7 References

[1] Ponemon Institute, "2017 Cost of cybercrime study, insights on the security investments

that make A difference," [Online]. Available: https://www.accenture.com/_acnmedia/PDF-

62/Accenture-2017CostCybercrime-US-FINAL.pdf#zoom=50. [Accessed 15 October

2022].

[2] Ponemon, Accenture, "The cost of cybercrime, ninth annual cost of cybercrime study

unlocking the value of improved cybersecurity protection," [Online]. Available:

https://www.accenture.com/_acnmedia/pdf-96/accenture-2019-cost-of-cybercrime-study-

final.pdf. [Accessed 15 October 2022].

[3] Federal Bureau of Invetigation, "Internet crime report 2021," Internet Crime Complaint

Center, [Online]. Available:

https://www.ic3.gov/Media/PDF/AnnualReport/2021_IC3Report.pdf. [Accessed 15

October 2022].

[4] Z. M. Smith, E. Lostri and J. A. Lewis, "The hidden cost of cybercrime," McAfee

Foundation, [Online]. Available: https://www.mcafee.com/enterprise/en-

us/assets/reports/rp-hidden-costs-of-cybercrime.pdf. [Accessed 15 October 2022].

[5] S. Morgan, "Cybercrime to cost the world $10.5 trillion annually by 2025," Cybercrime

Magazine, 13 November 2020. [Online]. Available:

https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/. [Accessed 15

October 2022].

135

[6] IBM Security, "Cost of a data breach report 2022," IBM, [Online]. Available:

https://www.ibm.com/downloads/cas/3R8N1DZJ. [Accessed 15 October 2022].

[7] Accenture, "State of cybersecurity resilience 2021," [Online]. Available:

https://www.accenture.com/_acnmedia/PDF-165/Accenture-State-Of-Cybersecurity-

2021.pdf. [Accessed 15 October 2022].

[8] RISKIQ, "Evil internet minute 2021," [Online]. Available: https://safe.riskiq.com/rs/455-

NHF-420/images/Evil-Internet-Minute-RiskIQ-Infographic-2021.pdf. [Accessed 15

October 2022].

[9] A. Dellinger, "Understanding the first american financial data leak: how did it happen and

what does it mean?," Fornes, 26 May 2019. [Online]. Available:

https://www.forbes.com/sites/ajdellinger/2019/05/26/understanding-the-first-american-

financial-data-leak-how-did-it-happen-and-what-does-it-mean/?sh=2828dfdc567f.

[Accessed 15 October 2022].

[10] M. Hill and D. Swinhoe, "The 15 biggest data breaches of the 21st century," CSO,

[Online]. Available: https://www.csoonline.com/article/2130877/the-biggest-data-

breaches-of-the-21st-century.html. [Accessed 15 October 2022].

[11] D. R. L. Sveinsson, "Top 10 data reaches so far in 2022," ERMProtect Cybersecurity

Solutions, [Online]. Available: https://ermprotect.com/blog/top-10-data-breaches-so-far-in-

2022/. [Accessed 15 October 2022].

[12] A. Greenberg, "A remote-start app exposed thousands of cars to hackers," WIRED, 10

August 2019. [Online]. Available: https://www.wired.com/story/mycar-remote-start-

vulnerabilities/. [Accessed 15 October 2022].

136

[13] "Here are the latest, most damaging things in the DNC’s leaked emails," The Washington

Post, 25 July 2016. [Online]. Available: https://www.washingtonpost.com/news/the-

fix/wp/2016/07/24/here-are-the-latest-most-damaging-things-in-the-dncs-leaked-emails/.

[Accessed 2022 October 2022].

[14] G. oladipo, "Cyberattacks force over a dozen US airport websites offline," TheGuardian,

10 October 2022. [Online]. Available: https://www.theguardian.com/us-

news/2022/oct/10/cyberattacks-disrupt-us-airport-websites. [Accessed 25 October 2022].

[15] InfoSec, "A history of anonymous," InfoSec, 2011 October 11. [Online]. Available:

https://resources.infosecinstitute.com/topic/a-history-of-anonymous/. [Accessed 15

October 2022].

[16] TrendMicro, "Hacktivism 101: a brief history and timeline of notable incidents,"

TrendMicro, 17 August 2015. [Online]. Available:

https://www.trendmicro.com/vinfo/pl/security/news/cyber-attacks/hacktivism-101-a-brief-

history-of-notable-incidents. [Accessed 15 October 2022].

[17] S. Langlois, "Hacktivism 101: A brief history and timeline of notable incidents,"

MarketWatch, 2 November 2020. [Online]. Available:

https://www.marketwatch.com/story/founder-of-hacker-group-anonymous-reveals-his-

ultimate-endgame-11604336926. [Accessed 15 October 2022].

[18] J. Abbate and W. Aspray, Recoding gender: women's changing participation in computing,

Cambridge: MIT Press, 2012.

[19] C. Connley, "Google, Apple and 12 other companies that no longer require employees to

have a college degree," CNBC, 2018.

137

[20] J. Baker, "2018's Software engineering talent shortage- It's quality, not just quantity,"

Hackernoon, 2017.

[21] K. Wiegers and J. Beatty, "Software requirements," Pearson Education, 2013.

[22] J. Whittaker, "What is software testing? And why is it so hard?," vol. 17, no. 1, pp. 70-79,

2000.

[23] J. Dooley, Software development and professional practice, Apress, 2011.

[24] P. Hope, G. McGraw and A. Annie, "Misuse and abuse Cases: getting past the positive,"

IEEE Security and Privacy, vol. 2, no. 03- May-June, pp. 90-92, 2004.

[25] D. Mellado, C. Blanco, L. Sánchez and E. Fernández-Medina, "A systematic review of

security requirements engineering," Computer Standards and Interfaces, vol. 32, pp. 153-

165, 2010.

[26] "14 Annual CSI computer crime and security survey," Computer Security Institute, 2009.

[27] A. Razzaq, Z. Anwar, F. H. Ahmad, K. Latif and F. Munir, "Ontology for attack detection:

an intelligent approach to web application security," Computers & Security, vol. 45, pp.

126-146, 2014.

[28] E. Sheridan, "While most developers worry about security, many development teams lack a

dedicated security expert," DEVOPSdigest, 2020. [Online]. Available:

https://www.devopsdigest.com/while-most-developers-worry-about-security-many-

development-teams-lack-a-dedicated-security-expert. [Accessed 15 October 2022].

[29] P. A. Laplante, "A requirements engineering for software and systems," Taylor and

Francis Group LLC., 2009.

[30] B. Nuseibeh and S. Easterbrook, Requirements engineering, Academic Press, 2003.

138

[31] U. Eriksson, "Why is the difference between functional and Non-functional requirements

important?," ReQTest, 5 4 2012. [Online]. Available: https://reqtest.com/requirements-

blog/functional-vs-non-functional-requirements/. [Accessed 15 3 2021].

[32] Requirements Quest, "Nonfunctional requirements," Requirements Quest, 2018. [Online].

Available: https://requirementsquest.com/nonfunctional-requirement-examples/. [Accessed

5 3 2021].

[33] Tech Talk, "Requirement analysis in software design," Tech Talk, 06 2 2015. [Online].

Available: https://tech-talk.org/2015/02/06/requirement-analysis-in-software-design/.

[Accessed 5 3 2021].

[34] S. G. Yoo, H. P. Vaca and J. Kim, "Enhanced misuse cases for prioritization of security

requirements," in Proceedings of the 9th International Conference on Information

Management and Engineering, Barcelona, 2017.

[35] Z. Dwaikat and F. Parisi-Presicce, "From misuse cases to collaboration diagrams," in 3rd

International Workshop on Critical Systems Development with UML, 2004.

[36] OWASP, "OWASP secure coding practices - quick reference guide," OWASP, 2010.

[37] CERT, "Secure coding standard," CERT, 2018.

[38] MITRE, "Common weakness enumeration (CWE)," MITRE, 2022.

[39] T. Berners-Lee, Semantic web, Washington DC: W3C, 2000.

[40] S. Faubel, "Semantic web stack," 2007.

[41] G. Tumarello, The semantic web, Milano: W3C, 2005.

[42] "Semantic definition," Oxford Dictionary, [Online]. Available:

https://en.oxforddictionaries.com/definition/semantic.

139

[43] N. F. Noy and D. L. McGuinness, Ontology development 101: a guide to creating your,

Stanford university.

[44] IEEE, "Suggested upper merged ontology (SUMO)," IEEE, [Online]. Available:

https://www.ontologyportal.org/. [Accessed 15 October 2022].

[45] ISTC-CNR Laboratory for Applied Ontology, "DOLCE : descriptive ontology for

linguistic and cognitive engineering," ISTC-CNR Laboratory for Applied Ontology,

[Online]. Available: http://www.loa.istc.cnr.it/dolce/overview.html. [Accessed 15 October

2022].

[46] W3C, "SKOS Simple Knowledge Organization System," 18 August 2009. [Online].

Available: https://www.w3.org/TR/skos-reference/. [Accessed 15 October 2022].

[47] IDEF, "Integrated DEFinition Methods (IDEF)," IDEF, [Online]. Available:

https://www.idef.com/idef5-ontology-description-capture-method/. [Accessed 15 Octoboer

2022].

[48] J. Cuenca, F. Larrinaga and E. Curry, "MODDALS methodology for designing layered

ontology structures," Applied Ontology, vol. 15, no. 2, pp. 185-217, 2020.

[49] "Basic Formal Ontology," BFO, [Online]. Available: https://basic-formal-ontology.org/.

[Accessed 15 October 2022].

[50] T. Chungoora, "Practical knowledge modelling: ontology development 101," Knowledge

Graph Consultant. [Online]. [Accessed 15 October 2022].

[51] J. Raad and C. Cruz, "A survey on ontology evaluation methods," in International

Conference on Knowledge Engineering and Ontology Development, part of the 7th

International, Lisbonne, 2015.

140

[52] L. Obrst, P. Chase and R. Markeloff, "Developing an ontology of the cyber security

domain," in Seventh International Conference on Semantic Technologies for Intelligence,

Defense, and Security, 2012.

[53] A. Oltramari, L. F. Cranor, R. J. Walls and P. McDaniel, "Building an ontology of cyber

security," in STIDS 2014 (9th International Conference on Semantic Technology for

Intelligence, Defense, and Security, 2014.

[54] M. B. Salem and C. Wacek, "Enabling new technologies for cyber security defense with

the ICAS cyber security ontology," in Semantic Technology for Intelligence, Defense, and

Security, 2015.

[55] G. Bonaccorso, Machine learning algorithms : popular algorithms for data science and

machine learning, Packt Publishing Ltd, 2018.

[56] O. Trekhelb, "Homemade machine learning in python," [Online]. Available:

https://medium.com/datadriveninvestor/homemade-machine-learning-in-python-

ed77c4d6e25b.

[57] Scikit Learn, "Choosing the right estimator," [Online]. Available: https://scikit-

learn.org/stable/tutorial/machine_learning_map/index.html. [Accessed 15 October 2022].

[58] Microsoft, "Machine learning algortihm cheatsheet," [Online]. Available:

https://learn.microsoft.com/en-us/azure/machine-learning/algorithm-cheat-sheet. [Accessed

15 October 2022].

[59] J. Steinmann and O. Ochoa, "Supporting security requirements engineering through the

development of the secure development ontology," in 2022 IEEE 16th International

Conference on Semantic Computing (ICSC), 2022.

141

[60] NIST, "Information Technology Cybersecurity," NIST, [Online]. Available:

https://www.nist.gov/cybersecurity. [Accessed 15 October 2022].

[61] OWASP, "OWASP," [Online]. Available: https://owasp.org/. [Accessed 15 October 2022].

[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot and E. Duchesnay, "Scikit-learn: machine learning in python," Journal of

Machine Learning Research, pp. 2825-2830, 2011.

[63] Z. Syed, A. Padia, T. Finin, L. Mathews and A. Joshi, "UCO: a unified cybersecurity

ontology," in AAAI Workshop on Artificial Intelligence for Cyber Security, 2016.

[64] M. Lannacone, S. Bohn, G. Nakamura, J. Gerth, K. Huffer, R. Bridges, E. Ferragut and J.

Goodall, "Developing an ontology for cyber security knowledge graphs," in Cyber and

Information Security Research Conference, 2015.

[65] T. M. Georgescu and I. Smeureanu, "Using ontologies in cybersecurity field," Informatica

Economică, vol. 21, no. 3/2017, pp. 5-15, 2017.

[66] A. Perini, A. Susi and P. Avesani, "A machine learning approach to software requirements

prioritization," International Journal of Scientific Engineering and Technology Research,

vol. 3, no. 32, pp. 6409-6416, 2014.

[67] R. Jindal , R. Malhotra and A. Jain, "Automated classification of security requirements," in

2016 International Conference on Advances in Computing, Communications and

Informatics, Jaipur, 2016.

142

[68] N. R. Darwish, A. A. Mohamed and A. S. Abdelghany, "A hybrid machine learning model

for selecting suitable requirements elicitation techniques," International Journal of

Computer Science and Information Security, vol. 14, no. 6, pp. 380-391, 2016.

[69] . A. (. Ronit, "Automatic requirements elicitation in agile processes," in IEEE International

Conference on Software - Science, Technology and, Engineering, 101-109, 2005.

[70] P. Avesani, C. Bazzanella, A. Perini and A. Susi, "Supporting the requirements

prioritization process," in SEKE 2004: International Conference on Software Engineering

and Knowledge Engineering, Povo-Trento, 2004.

[71] P. Avesani, C. Bazzanella, A. Perini and A. Susi, "Facing scalability issues in requirements

prioritization with machine learning techniques," in 13th IEEE International Conference on

Requirements Engineering, Paris, 2005.

[72] G. D. Boetticher, "Using machine learning to predict project effort: empirical," San Diego,

2001.

[73] C. Castro-Herrera and J. Cleland-Huang, "A machine learning approach for identifying

expert stakeholders," in 2009 Second International Workshop on Managing Requirements

Knowledge, Atlanta, 2010.

[74] E. Parra, C. Dimou, J. Llorens, V. Moreno and A. Fraga, "A methodology for the

classification of quality of requirements using machine learning techniques," Information

and Software Technology, vol. 67, pp. 180-195, 2015.

[75] A. Casamayor, D. Godoy and M. Campo, "Identification of non-functional requirements in

textual specifications: a semi-supervised learning approach," in National Council for

Scientific and Technical Research, 2009.

143

[76] M. Kulmanov, F. Z. Smaili, X. Gao and R. Hoehndorf, "Semantic similarity and machine

learning with ontologies," Briefings in Bioinformatics, vol. 22, no. 4, 2021.

[77] P. N. Robinson and M. A. Haendel, "ontologies, knowledge representation, and machine

learning for translational research: recent contributions," Yearb Med Inform, pp. 159-162,

2020.

[78] C. d'Amato, "Machine learning for the semantic web: lessons learnt and next research

directions," Semantic Web, vol. 11, no. 1, pp. 195-203, 2020.

[79] L. C. Navarro, A. K. Navarro, G. André, A. Rocha and R. Dahab, "Leveraging ontologies

and machine-learning techniques for malware analysis into Android permissions

ecosystems," Computers and Security, vol. 78, pp. 429-453, 2018.

[80] T. Li and Z. Chen, "An ontology-based learning approach for automatically classifying

security requirements," Journal of Systems and Software, vol. 165, p. 110566, 2020.

[81] T. Li, "Identifying security requirements based on linguistic analysis and machine

learning," in 2017 24th Asia-Pacific Software Engineering Conference (APSEC), 2017.

[82] A. Yeboah-Ofori, H. Mouratidis, U. Ismai and S. Islam, "Cyber supply chain threat

analysis and prediction using machine learning and ontology," in IFIP International

Conference on Artificial Intelligence Applications and Innovations: AIAI 2021: Artificial

Intelligence Applications and Innovations, 2021.

[83] Y. Jia, Y. Qi, H. Shang, R. Jiang and A. Li, "A practical approach to constructing a

knowledge graph for cybersecurity," Engineering, vol. 4, no. 1, pp. 53-60, 2018.

[84] T.-M. Georgescu, "Natural language processing model for automatic analysis of

cybersecurity-related documents," Symmetry, vol. 12, no. 3, 2020.

144

[85] NIST, "SP 800- 207 zero trust architecture," August 2020. [Online]. Available:

https://csrc.nist.gov/publications/detail/sp/800-207/final. [Accessed 15 October 2022].

[86] H. Zheng, Y. Wang, C. Han, F. Le, R. He and J. Lu, "Learning and applying ontology for

machine learning in cyber attack detection," in 018 17th IEEE International Conference On

Trust, Security And Privacy In Computing And Communications/ 12th IEEE International

Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 2018.

[87] S. N. Narayanan, A. Ganesan, K. Joshi, T. Oates, A. Joshi and T. Finin, "Early detection of

cybersecurity threats using collaborative cognition," in 2018 IEEE 4th International

Conference on Collaboration and Internet Computing (CIC), 2018.

145

8 Appendix

8.1 The SD-SRE Portal

The requirements SD-SRE portal welcome page is shown below in Figure 46 with the example

project that explains how the SD-SRE portal works.

Figure 46: SD-SRE Portal welcome page

146

The add project ability is shown in Figure 47 below.

Figure 47: SD-SRE Portal add projects ability

147

The blank SD-SRE portal when a new project is added is shown below in Figure 48 below. It

shows the ability to add actors, use case scenarios, and requirements/specifications.

Figure 48: SD-SRE Portal blank project

148

The ability to add actors is shown below in Figure 49 below. It allows users to indicate how

sensitive the actors access is to the proposed system.

Figure 49: SD-SRE Portal add actors’ ability

The ability to add scenarios, attach actors, to detail the preconditions and trigger conditions are

shown in Figure 50 below.

149

Figure 50: SD-SRE Portal add scenario ability

150

The ability to add scenario steps is shown in Figure 51 below.

Figure 51: SD-SRE Portal add scenario steps ability

151

The ability to add requirements or specifications is shown below in Figure 52 as well as the ability

for users to detail is the requirement is functional and non-functional. Figure 53 below shows the

nonfunctional categories requirements/specifications can be classified as.

Figure 52: SD-SRE Portal add requirement/specification ability

152

Figure 53: SD-SRE Portal add nonfunctional category requirement/specification ability

Below in Figure 54 is an example of what a system documentation looks like once entered in the

SD-SRE portal.

153

154

Figure 54: SD-SRE Portal example of instructional project

Below in Figure 55 is an example of what a system use case scenario documentation looks like

once entered in the SD-SRE portal.

155

Figure 55: SD-SRE Portal example of use case scenario

156

8.2 All Suggested Security Related Requirements

Topic Sub-Topic Requirement
Authentication Authentication The system shall authenticate users before

authorizing users.
Authentication Authentication The system shall have a different authentication

solutions for internal access and public access.
Authentication Authentication The system shall have multi-factor authentication.
Authentication Least Privileges The system shall enforce least privileges for users.
Authentication Least Privileges The system shall provide minimal privileges to third

party systems where required.
Authentication Third Party The system shall verify communication from third

party systems.
Authentication Least Privileges The system shall use a secure access control

mechanism for authentication prior to accessing
sensitive data.

Authorization Permissions The system shall not assign permissions by role.
Authorization Permissions The system shall verify a user’s access to a feature by

user and not role.
Authorization Permissions The system shall verify a user’s access to data by

user and not role.
Authorization Transactions The system shall have a second form of authorization

for transactions.
Authorization Access Control The system shall use an attribute-based access control

over a relationship-based access control over a role-
based access control.

Authorization Access Control The system shall exit safely when authorization
checks fail.

Authorization Access Control The system shall provide generic failure messages
when authorization fails.

Authorization Tokens The system shall hash all randomized token values.
Authorization Permissions The system shall deny access by default.
Authorization Permissions The system shall validate the permissions on every

request.
Database

The system shall only allow database access through
local socket file or named pipe.

Database

The system shall only bind the database on local host.
Database

The system shall have database servers in a separate
DMX isolated from the application server.

Database

The system shall only allow encrypted connections to
databases.

Database

The system shall have a trusted digital certificate on
the servers.

157

Database

The system shall store database credentials outside
the Webroot, not in the source code, nor in
repositories.

Database

The system database shall not have root, sa, or sys
accounts.

Database

The system shall not grant account administrative
rights over a database instance.

Database

The system shall apply permissions at the table level.
Database

The system shall apply permissions at the column
level.

Database

The system shall apply permissions at the row level.
Database

The system shall store the database transactions logs
on a separate disk than the main database files.

Database

The system shall block access to underlying tables.
Database

The system shall require access through restricted
views.

Database

The system shall regularly X (many suggestions of
how often…no set standard) backup the database
files.

Database

The system shall limit server-side sessions based on
inactivity and timeout.

Email Collection Email The system shall ensure emails contain two parts
separated by an at symbol (i.e. XXXX@XXX.XXX).
Make sure there is an @ and a .domain.

Email Collection Email The system shall ensure domain parts of emails can
only contain letters, numbers, hyphens, and periods.

Email Collection Email The system shall ensure the part before the @ symbol
in the email is no longer than 63 characters.

Email Collection Email The system shall ensure the total length of the email
is not more than 254 characters.

Email Collection Email The system shall verify emails by sending an
verification email that requires the user to click a link
to verify their email.

Email Collection Email The system verification email should contain a
pseudo secure random token that is: one-time use,
time X (usually 24 hours) limited , and at least 32
characters long.

Email Collection

For systems requiring email address collection the
system shall check domains against a blacklist of
disposable email domains and return invalid email
error to user if email is not acceptable.

Encryption

The system shall be encrypted at the application
level.

Encryption

The system shall be encrypted at the database level.
Encryption

The system shall be encrypted at the filesystem level.

158

Encryption

The system shall be encrypted at the hardware level.
Encryption

For symmetric encryption the system shall use AES
with keys that are at least 128 bits but ideally 256
bits.

Encryption

The system shall use encryption algorithms that are
approved by NIST's algorithmic validation program
or similar entities.

Encryption

The system shall use random padding for algorithms
that require padding.

Encryption

The system shall generate keys using a secure
pseudo-random number generator.

Encryption

The system shall ensure the generated keys are
independent of each other (i.e. keys for encrypting
data should be different than key-encrypting keys).

Encryption

The system shall rotate encryption keys after X (refer
to NIST SP 800-57) crypto period of time.

Encryption

The system shall rotate encryption keys after X (34
GB for 64-bit keys, 295 exabytes for 128-bit keys)
amount of data is encrypted.

Encryption

The system shall track data encryption key matches
via ID.

Encryption

The system shall store keys in a secure storage
mechanism such as HSMs, key vaults and storage
APIs.

Encryption

The system shall protect the configuration files
containing the keys with restrictive permissions.

Encryption

The system shall store keys in a separate location as
the data it is encrypting.

Encryption

The system shall store encryption keys in an
encrypted form.

Encryption

The data encryptions keys shall be as strong as the
key encryption keys.

Encryption

The system shall not reuse cryptographic keys for
multiple functions.

File Upload

The system shall limit file upload size.
File Upload

The system shall validate file inputs before validating
extensions.

File Upload

The system shall limit file upload extensions. i.e. if
expecting an image then only allow image
extensions.

File Upload

The system shall limit file upload to authorized users.
File Upload

The system shall store the files on a different serve
than the application.

File Upload

The system shall store the files outside the Webroot.
File Upload

The system shall run the file through an antivirus.

159

File Upload

The system shall have a maximum file name length.
File Upload

The system shall restrict characters in the filename.

File Upload

The system shall generate a new file name for
storage.

File Upload

The system shall rewrite image files.
File Upload

The system shall not allow zip files.

File Upload

The system shall scan files for viruses prior to saving
them.

Input Validation Input The system shall sanitize all inputs.
Input Validation Input The system shall encode the data when displayed to

the user.
Input Validation

The system shall use the allow list approach for input
validation.

Input Validation

The system shall escape user data from special
characters when allow list approach is not viable.

Input Validation

The system shall enforce correct syntax for structured
fields such as dates. i.e. The system shall force
formatting of data for known formatted fields such as
birth date, SSN/national number, passport number. If
there is a known format for a field the system shall
facilitate a way for the user to enter it in that manner.

Input Validation

The system shall enforce values are within the
expected range.

Input Validation

The system shall use canonical encoding across all
input text to validate no invalid characters are
present.

Input Validation

The system shall set maximum length of data for all
input fields.

Input Validation

The system shall restrict form submissions.
Input validation

The system shall escape all outputs shown to the
user.

Logging Input The system shall log the action taken and by which
user.

Logging Input The system shall not log sensitive information in the
log but rather that the action taken and by which user.

Logging Password change The system shall log the password change action.
Logging UserID/Username The system shall log the creation of a new account.
Logging Login The system shall log all login failure attempts.
Logging Login The system shall log all forgot password request.
Logging General The system shall use a firewall.
Logging Integrity The system shall not delete log entries. When

changes need to be made the old log entry shall be
preserved as well as the new log entry.

Logging Alert The system shall alert admins of sensitive log
occurrences (i.e. authorization failure).

160

Logging Expiration time The system shall keep log records for at least X 450
days. No set standard but a data breach lifecycle is
about 300 days on average therefore logs should be
kept 1.5 times longer.

Login UserID/Username The system shall only allow case insensitive user IDs.
Login UserID/Username The system shall only allow unique user

IDs/Username.
Login UserID/Username For high security systems the system shall assign a

secret username that is not based on users public
data.

Login UserID/Username The system shall not allow sensitive accounts such as
system administrators to log in from the front end of
the system.

Login Password The system shall ensure the password is not blank.
Login Password The system shall require passwords with a minimum

of 12 characters.
Login Password The system shall require passwords with a maximum

of 128 (some still recommend 64…depends on
hashing implementation) characters limitation. Note
that this may be adjusted in the future as hashing
algorithms have more capacity.

Login Password The system shall require the user to confirm the
password by reentering it.

Login Password The system shall not truncate passwords.
Login Password The system shall allow usage of all characters in

passwords including Unicode, whitespaces, and
emojis.

Login Password The system shall ensure passwords are rotated at least
once a year or immediately when passwords are
discovered leaked.

Login Password The system shall use a password strength meter and
present it to the users.

Login Password The system shall block commonly used passwords.
Login Password The system shall block previously breached

passwords.
Login Password The system shall not limit or require the number or

type of characters a user may use in the password
field (i.e. no password composition rule).

Login Password The system shall use the stored password hash when
doing password check.

Login Password The system shall use a secure password function
provided by the language or framework the system is
implemented in.

Login Password The system shall require the user to reauthenticate
when updating sensitive information.

161

Login Password The system shall allow users to paste passwords.
Login Password The system shall allow the use of external password

helpers such as browser password helpers.
Login Password The system shall mask/obscure all password entries.
Login Password The system shall allow the user to temporarily view

the masked/obscured password.
Login Password The system shall allow the user to navigate between

the username and password field with a single press
of the tab key.

Login Password The system shall transport passwords over TLS or
other strong Transport Layer protocols.

Login Password Change The system shall allow users to change their
passwords.

Login Password Change The system shall ensure the session is active when
changing passwords.

Login Password Change The system shall verify current password prior to
allowing it to be changed. This is different than
forgot password.

Login Password Change The system shall uphold all password standards for
the new password.

Login Password Change The system shall send the user an email that the
password has been changed.

Login Password Change The system shall alert the user of an account
password change request and allow the user the
ability to lock/disable the account.

Login Forgot Password The system shall use a side channel (email, text, pin)
to communicate how to reset password.

Login Forgot Password The system shall not allow the user to retrieve old
password.

Login Forgot Password The system shall require the user to confirm the new
password by reentering it.

Login Forgot Password The system shall require the user to login once
password has been reset. The system shall not auto
log in the user.

Login Forgot Password The system shall ask the user if they want to
invalidate their existing sessions when changing their
password.

Login Forgot Password The system shall alert the user (i.e. send the user an
email) that the password has changed.

Login Forgot Password The system shall not lock/disable an account due to a
forgot password request.

Login Forgot Password The system shall not use security questions for
account recovery.

Login Password Storage The system shall hash all passwords for storage. The
system shall not store plain text passwords.

162

Login Password Storage The system shall salt password hashes.
Login Password Storage The system shall pepper salted password hashes.
Login Password Storage The system shall use a hashing library that accepts all

Unicode characters.
Login Account Access

Failure
The system shall provide a generic message when
there is a password failure.

Login Account Access
Failure

The system shall provide a generic message when
there is a username failure for both existent and non-
existent users.

Login Account Access
Failure

The system shall provide a generic message when the
account doesn't exist.

Login Account Access
Failure

The system shall return all responses in the same
amount of time.

Login Account Access
Failure

The system shall provide a CAPTCHA feature where
a generic message cannot be provided after X
(usually 3) failed attempts.

Login Account Access
Failure

The system shall provide an account lock or disable
the account after X (usually 3) attempts to login
failures within X (usually 5) minutes of attempts.

Login Account Access
Failure

The system lockout/disability functions shall count
base on the account and not the I.P. address.

Login Account Access
Failure

The system shall provide a generic message when
accounts are locked out/disabled.

Login Account Access
Failure

The system shall use an exponential time lockout
system instead of a fixed lockout duration.

Login Account Access
Failure

The system shall allow users to unlock/reenable their
account through a forgot login functionality.

Login Account Access
Failure

The system shall alert the user of an account log in
failure and provide them the option to lock their
account.

Login Login Alert The system shall alert the user of a login alert and
provide them the ability to lock/disable the account.

Login Session
Management

The system shall prompt the user if they are still
active once the system has been idle for X (10 min)
amount of time and if user does not respond within
30 seconds the system shall log the user
out/invalidate the session.

Login Session
Management

When account access information is updated the
system shall prompt the user as to whether or not to
invalidate all sessions.

Random
Number

The system shall use cryptographically secure
Pseudo-Random Number Generators.

Sensitive
Information

The system shall require the user to reauthenticate
when updating sensitive information.

Sensitive
Information

The system shall obscure sensitive information.

163

Sensitive
Information

The system shall allow user to unobscure sensitive
information temporarily where applicable.

Sensitive
Information

The system shall have only obfuscated selector
names in public facing code such as CSS.

Sensitive
Information

The system shall hide feature lookup ids.

Sensitive
Information

The system shall not expose behind the scenes
identifiers to the user.

Table 41: All currently suggestable security related requirements

164

9 Glossary

Term Definition

Click Jacking Click jacking is a UI redress attack where an attacker layers malicious
components on a legitimate web page to redirect a user to a malicious
site.

Initial Attack Vector The method used to gain access unauthorized to a system.

Malicious Insider An actor with insider information of an organization misused to cause
harm, often an employee.

Phishing A social engineering attack that send a person a message to trick them
into giving sensitive information.

Pharming A social engineering attack that uses a fake website meant to mimic a
real website that tricks a user into giving sensitive information.

Smishing A social engineering attack that send a person a text (SMS) message
to trick them into giving sensitive information.

Tab Nabbing A social engineering attack that falls under the phishing category that
allows an attacker to redirect a victim to a duplicated malicious site
when they click away from an open tab.

Tokenside Jacking A man in the middle attack where an attacker has stolen a token and
used it to impersonate a user.

Vishing A social engineering attack that send a person a phone call to trick
them into giving sensitive information.

Zero Trust An approach to cybersecurity that eliminates implicit trust and
requires constant revision of trust.

165

10 Index

accuracy, 39, 41, 48, 75, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 122

attack vector, 3
AUC. See roc
authentication, 66, 80, 81, 113
authorization, 66, 82, 83, 113
brute force, 13
cyberattacks, 1
data breach, 2
database, 66, 92, 93, 113
denial of service

DOS, 5, 6
distributed denial of service

DDOS. See : denial of service
email collection, 66, 84, 113
encryption, 66, 88, 89, 113
F1 score, 51
fall-Out, 51
false negative, 48, 75
false positive, 48, 51, 52, 75, 77, 79, 81, 83,

85, 87, 89, 91, 93, 95, 97
file upload, 66, 94, 95, 113
input validation, 66, 86, 87, 113

logging, 66, 96, 97, 113
login, 66, 76, 77, 78, 113
man in the middle, 13
miss rate, 52
ontologies, 14
OWASP, 24
pharming, 2
phishing, 2
precision, 50
random number, 66, 90, 113
recall, 50
roc, 52
semantic, 30
semantic web technologies, 30
sensitive information, 66, 78, 113
smishing, 2
specificity, 51
tech support fraud, 2
true negative, 48, 49, 51
true positive, 48, 50, 52, 77, 79, 81, 83, 85,

87, 89, 91, 93, 95, 97
verification, 17
vishing, 2, 164
zero trust, 4

	Supporting the Discovery, Reuse, and Validation of Cybersecurity Requirements at the Early Stages of the Software Development Lifecycle
	Scholarly Commons Citation

	Acknowledgements
	Abstract
	Table of Abbreviations
	Table of Equations
	Table of Figures
	Table of Tables
	1 Introduction
	1.1 The Need for Secure Software Systems
	1.1.1 The Cost of Cybercrime

	1.2 The Difficulties of Building Secure Software Systems
	1.2.1 Why is it Hard to Build Software Systems?
	1.2.1.1 Software Industry is Relatively Young
	1.2.1.2 General Education of Programmers
	1.2.1.3 The Nature of Software System Development

	1.2.2 The Challenges of Eliciting Cybersecurity Requirements

	1.3 Motivation
	1.4 Research Questions
	1.4.1 How can the elicitation and analysis of functional features be leveraged to assist with the specification of cybersecurity requirements?
	1.4.2 How can the use of existing best practices of cybersecurity be leveraged to assist in the identification of cybersecurity requirements?

	2 Background
	2.1 Software Development Life Cycle
	2.1.1 Writing Requirements
	2.1.2 Requirements Gathering
	2.1.3 Use Case models
	2.1.3.1 Scenarios

	2.2 Security Requirement Elicitation Techniques
	2.2.1 Threat Modeling
	2.2.2 Abuse Cases
	2.2.3 Misuse Cases
	2.2.3.1 The Problem with Abuse and Misuse Cases

	2.2.4 Attack Surface Analysis
	2.2.5 Standards for Security Implementation
	2.2.6 Security Requirement Frameworks

	2.3 Semantic Web Technologies
	2.3.1 What are Semantic Web Technologies?
	2.3.2 The Challenges of Semantic Technology
	2.3.2.1 Representing Modeling Languages
	2.3.2.2 Scalability

	2.3.3 Why Use Semantic Web Technologies?
	2.3.4 With the improvements in other parts of Artificial Intelligence and Machine Learning is Semantic Web still relevant?
	2.3.5 What is an Ontology?
	2.3.5.1 What is the Difference between and Ontology and a Knowledge Model?
	2.3.5.2 How to Create an Ontology?

	2.3.6 Use of Semantic Technologies in Gather Requirements
	2.3.7 The Use of Semantic Technologies in the Cybersecurity Domain

	2.4 Machine Learning
	2.4.1 Natural Language Processing
	2.4.2 How to Know which ML model to Use?
	2.4.3 How to evaluate Machine Learning Models?
	2.4.3.1 Confusion Matrix
	2.4.3.2 Accuracy
	2.4.3.3 Precision
	2.4.3.4 Recall
	2.4.3.5 F1 Score
	2.4.3.6 Specificity
	2.4.3.7 Fall-Out
	2.4.3.8 Miss Rate
	2.4.3.9 ROC/AUC
	2.4.3.10 Metric Tradeoffs

	3 Approach
	3.1 The Goals of this Research
	3.2 The Approach
	3.2.1 Scenario Driven Security Requirements Elicitation (SD-SRE)
	3.2.2 The SD-SRE Process
	3.2.3 The Information Gathering Phase
	3.2.4 Developing the Ontology
	3.2.5 Determining the ML Model
	3.2.6 The Aggregator
	3.2.7 Validating the SD-SRE

	3.3 Rationale for Technical Decisions
	3.4 How Will the SD-SRE Approach be Used?

	4 Scenario Driven Security Requirements Elicitation (SD-SRE)
	4.1 Gathering Information
	4.1.1 Use Case Scenarios
	4.1.2 Security Concepts and Requirements

	4.2 Secure Development Ontology
	4.2.1 Security Concepts Competency Questions
	4.2.2 Use Case Scenarios Parsing

	4.3 Machine Learning Model
	4.3.1 Login Requirements
	4.3.2 Sensitive Information Requirements
	4.3.3 Authentication Requirements
	4.3.4 Authorization Requirements
	4.3.5 Email Collection Requirements
	4.3.6 Input Validation Requirements
	4.3.7 Encryption Requirements
	4.3.8 Random Number Generator Requirements
	4.3.9 Database Requirements
	4.3.10 File Upload Requirements
	4.3.11 Logging Requirements
	4.3.12 Weakness
	4.3.12.1 Weaknesses of the model
	4.3.12.2 Weaknesses of the approach

	4.4 Validation
	4.4.1 Student Educational Backgrounds
	4.4.2 Student Results
	4.4.3 Results of the Suggested Requirements
	4.4.4 Comparison between Using the Portal or Not Using the Portal
	4.4.5 Comparison Between Recommended Security Requirements and Student Security Requirements

	4.5 Research Questions Results
	4.5.1 How can the elicitation and analysis of functional features be leveraged to assist with the specification of cybersecurity requirements?
	4.5.2 How can the use of existing best practices of cybersecurity be leveraged to assist in the identification of cybersecurity requirements?

	5 Related Work
	5.1 Development of Cybersecurity Ontologies
	5.2 Applications of Cybersecurity Ontologies
	5.3 The Use of Machine Learning in Requirement Elicitation
	5.4 The Use of Machine Learning in Cybersecurity Requirement Elicitation
	5.5 The Use of Ontologies with Machine Learning
	5.6 The Use of Ontologies with Machine Learning in Cybersecurity
	5.7 Comparison to Approach

	6 Results and Conclusion
	6.1 SD-SRE Results
	6.2 Results of Best Practices
	6.3 The Benefits of the SD-SRE
	6.4 Future Work

	7 References
	8 Appendix
	8.1 The SD-SRE Portal
	8.2 All Suggested Security Related Requirements

	9 Glossary
	10 Index

