
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 16 Article 4

June 2021

Windows Kernel Hijacking Is Not an Option: MemoryRanger Windows Kernel Hijacking Is Not an Option: MemoryRanger

Comes to the Rescue Again Comes to the Rescue Again

Igor Korkin
Independent Researcher, igor.korkin@gmail.com

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer and Systems Architecture Commons, Information Security Commons, OS and

Networks Commons, Software Engineering Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Korkin, Igor (2021) "Windows Kernel Hijacking Is Not an Option: MemoryRanger Comes to the Rescue
Again," Journal of Digital Forensics, Security and Law: Vol. 16 , Article 4.
DOI: https://doi.org/10.58940/1558-7223.1726
Available at: https://commons.erau.edu/jdfsl/vol16/iss1/4

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol16
https://commons.erau.edu/jdfsl/vol16/iss1/4
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.58940/1558-7223.1726
https://commons.erau.edu/jdfsl/vol16/iss1/4?utm_source=commons.erau.edu%2Fjdfsl%2Fvol16%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Windows Kernel Hijacking Is Not an Option: MemoryRanger Comes to the Rescue Windows Kernel Hijacking Is Not an Option: MemoryRanger Comes to the Rescue
Again Again

Cover Page Footnote Cover Page Footnote
I would like to thank Benjamin Stein, a teacher of English, Kings Education, London, UK for his invaluable
corrections of the paper. I am also extremely grateful to Michael Chaney, ERAU alumni, Cyber-Research
Editor, USA, for his time and effort in checking a preliminary version of this paper and providing
constructive feedback, which significantly contributed to improving the quality of this paper.

This article is available in Journal of Digital Forensics, Security and Law: https://commons.erau.edu/jdfsl/vol16/
iss1/4

https://commons.erau.edu/jdfsl/vol16/iss1/4
https://commons.erau.edu/jdfsl/vol16/iss1/4

JDFSL 2021

WINDOWS KERNEL HIJACKING IS NOT
AN OPTION: MEMORYRANGER COMES TO

THE RESCUE AGAIN
Igor Korkin, PhD

Independent Researcher
Moscow, Russian Federation

igor.korkin@gmail.com

ABSTRACT
The security of a computer system depends on OS kernel protection. It is crucial to reveal
and inspect new attacks on kernel data, as these are used by hackers. The purpose of this
paper is to continue research into attacks on dynamically allocated data in the Windows
OS kernel and demonstrate the capacity of MemoryRanger to prevent these attacks. This
paper discusses three new hijacking attacks on kernel data, which are based on bypassing
OS security mechanisms. The first two hijacking attacks result in illegal access to files
open in exclusive access. The third attack escalates process privileges, without applying
token swapping. Although Windows security experts have issued new protection features,
access attempts to the dynamically allocated data in the kernel are not fully controlled.
MemoryRanger hypervisor is designed to fill this security gap. The updated MemoryRanger
prevents these new attacks as well as supporting the Windows 10 1903 x64.

Keywords: hypervisor-based protection, Windows kernel, hijacking attacks on memory,
memory isolation, Kernel Data Protection

1. INTRODUCTION
The security of users’ data and applications
depends on the security of the OS kernel
code and data. Modern operating systems
include millions of lines of code, which makes
it impossible to reveal and remediate all vul-
nerabilities. Attackers can exploit the OS
vulnerabilities to perform malicious actions.
Windows OS kernel remains one of the most
desired targets for hackers. Another big chal-
lenge of OS kernel protection is the third-
party kernel-mode drivers, which execute at
the same high privilege level as the OS ker-
nel, and they also include a variety of vul-

nerabilities. Researchers consider that “ker-
nel modules (drivers) introduce additional
attack surface, as they have full access to
the kernel’s address space” (Yitbarek and
Austin, 2019). At the recent DEF CON
hacking conference researchers from Eclyp-
sium released a list of more than 40 drivers
from Microsoft-certified hardware vendors,
which are prone to privilege escalation at-
tacks (Jesse and Shkatov, 2019). Another vul-
nerability in a signed third-party driver was
presented at the Blue Hat IL conference by
security experts from the Microsoft Defender
ATP Research Team. The vulnerable driver
uses a watchdog mechanism based on user

© 2021 JDFSL Page 1

JDFSL 2021

APC injection, which can also be exploited
by attackers to bypass driver signature en-
forcement and gain escalated privileges. (Ra-
paport, 2019). Recently revealed Banking
trojan “Banload”, which targets bank cus-
tomers in Brazil and Thailand, applied a
malicious kernel-mode component to fight
with anti-malware and banking protection
programs. This digitally signed malware
driver is designed “to remove software drivers
and executables belonging to anti-malware
and banking protection programs”, such as
AVG, Avast, IBM Trusteer Rapport (Bisson,
2019; Kremez, 2019). Kernel-mode drivers
were also used during the recent RobbinHood
ransomware attack. Hackers installed a le-
gitimate driver and exploited its vulnerabil-
ity to temporarily disable the Windows OS
driver signature enforcement. Finally, they
installed a malicious kernel driver (Cimpanu,
2020). Notorious cryptocurrency mining mal-
ware also applies kernel-mode rootkits to pre-
vent them from being terminated. Windows-
based crypto miner infected more than 50000
servers from 90 countries (Harpaz and Gold-
berg, 2019; O’Donnell, 2019). The Microsoft
Security team do their best to maintain a
high level of OS kernel protection by issuing
various security features, for example, Mi-
crosoft Kernel Patch Protection (KPP) aka
PatchGuard etc. At the same, time secu-
rity researchers and rootkit developers are
discovering different techniques to bypass
PatchGuard. The most notable of them was
GhostHook, which abused the Intel Processor
Trace (PT) feature to overcome PatchGuard
and patch the kernel. Cimpanu (2019) under-
lines that two recently published bypassing
techniques InfinityHook and ByePg “estab-
lish a permanent foothold in the kernel itself
and open the door for the return of rootkits
on Windows 10”. We can see that on the one
hand, all drivers and the OS kernel share the
same memory space, and on the other hand,
there are no built-in mechanisms to restrict

access to the kernel memory. All drivers have
full access to the system and can be used by
attackers. Windows security features provide
limited kernel memory protection.

Threat model Let us assume that using
various approaches, intruders are able to exe-
cute malicious kernel code. This paper analy-
ses two types of attacks on kernel data, which
result in the following, see Figure 1:

• gaining access to the files open in an
exclusive mode (Handle Hijacking and
Hijacking NTFS data structures);

• escalating process privileges without us-
ing the token swapping technique (Token
Hijacking).

For the attacks on files, a legal driver cre-
ates a file via ZwCreateFile with zero flag
ShareAccess, which gives the caller exclusive
access to the open file. While the file remains
opened all attempts to gain access to this file
via ZwCreateFile are in vain. Windows OS
detects this illegal access and returns a status
sharing violation code (0xC0000043), which
indicates that “a file cannot be opened be-
cause the share access flags are incompatible”
(Microsoft, 2019).

This research reveals two different attacks,
which bypass Windows security features and
successfully gain unauthorized access to the
files opened without shared access by patch-
ing OS internal data structures, related to
the Object Manager and NTFS driver com-
ponents. The third attack escalates process
privileges by patching the static and the vari-
able portions of _TOKEN structure, without
using token swapping or token stealing tech-
niques. This type of attack is mapped to
MITRE ATTCK (2020) under Access Token
Manipulation. The type of escalation privi-
lege attack based on SeImpersonatePrivilege
function is out of the scope of this paper
(Bisht, 2020). All newly proposed attacks are
working transparently on Windows 10 1903

Page 2 © 2021 JDFSL

JDFSL 2021

64 bit as well as for its security features, such
as Patch Guard, Device Guard, and Security
Reference Monitor.
To prevent all these attacks on Windows

OS kernel data the updated MemoryRanger
hypervisor will be presented. MemoryRanger
prevents attacks on files by running newly
loaded drivers in separated kernel spaces as
well as restricting access to the correspond-
ing sensitive memory areas. The newest key
feature of MemoryRanger allows it to run a
special data enclave for sensitive OS kernel
data, such as _TOKEN structures. This en-
clave includes these sensitive OS structures,
OS kernel core, and a limited number of OS
kernel built-in drivers. This new scheme pre-
vents illegal access from all drivers whether
loaded before and after MemoryRanger. The
remainder of the paper is as follows. Sec-
tion 2 provides the details of the control flow
and corresponding internal data structures
involved during file operations in kernel mode.
Two examples of hijacking attacks on files will
be given. Section 3 presents the details of
access control issues in the Windows OS ker-
nel and shows how attackers can hijack the
corresponding structure in order to escalate
the process privileges. Section 4 contains the
details of adapting MemoryRanger to prevent
these attacks.

Section 5 and Section 6 focus on the main
conclusions and further research directions
respectively.

2. TWO HIJACKING
ATTACKS ON THE FILES

OPENED WITHOUT
SHARED ACCESS

This section describes the internals of file op-
erations in the Windows OS kernel: data
structures and correlations between them.
Two given hijacking attacks make it possible
to illegally read and overwrite the content of

the file opened in an exclusive mode. These
two hijacking attacks are based on modifying
the OS internal data structures involved in
file operations.

2.1 Control Flow and Internal
Data Structures Involved
in Read and Write File

Operations
Windows OS provides four main kernel API
routines to create, read/write, and close files:
ZwCreateFile, ZwReadFile, ZwWriteFile, Zw-
Close. During file operations, several OS ker-
nel components are involved (Russinovich,
Solomon, and Ionescu, 2012; Tanenbaum and
Bos, 2014). Each time a driver calls ZwCre-
ateFile the control goes to the following OS
kernel subsystems: I/O manager, Object
Manager, Security Reference Monitor, NTFS
driver, and finally, the control goes to the
low-level drivers, such as Disk Filter Driver
and Disk Class Driver. These are in charge of
access to the physical disk. The key features
revealed by Korkin (2019) are that Security
Reference Monitor checks access rights to the
file for ZwCreateFile routine, while routines
ZwReadFile, ZwWriteFile are uncontrolled
by the Security Reference Monitor. Once a
file is created via calling ZwCreateFile, the
OS creates a file handle, adds an entry to
the Handle Table, allocates file object, NTFS
data, and other structures. The created file
handle is returned to the caller and is used
as a key to read and write the open file using
functions ZwReadFile and ZwWriteFile. The
details of the control flow and internal data
structures involved in read and write file op-
erations are given in Figure 2. Using a file
handle, the OS traverses through the handle
table to acquire the file object. By reading
file object fields the OS locates control block
structures (NTFS data structures) and moves
to them. Disk drivers access the opened file
on a disk by using NTFS data structures.

© 2021 JDFSL Page 3

JDFSL 2021

Figure 1. The following attacks will be considered: attacks on files and a privilege escalation
attack.

OS kernel treats read and write file access by
traversing through these structures without
any checks by Security Reference Monitor.
This vulnerability can be used to gain full il-
legal access to the files opened without shared
access. To achieve it, intruders can create a
file hijacker and patch any of the structures,
see Figure 2. As a result, all intruders’ access
attempts using the file hijacker handle will
be redirected by the OS to the secret file, see
Figure 3. This is the key point of all hijack-
ing attacks on files. Intruders can modify the
following data to change the control flow, the
corresponding attacks are in brackets:

• handle table entries (Handle Table Hi-
jacking);

• file object (Hijacking FILE_OBJECT);

• NTFS data structures (Hijacking NTFS
structures).

A File Object Hijacking attack was pre-
sented by Korkin (2019). The next two sub-
sections will describe the details of Handle
Hijacking and Hijacking NTFS structures.

2.2 Handle Table Hijacking
This section describes the details of the Ker-
nel Handle Table and how attackers can hi-
jack its values to gain illegal access to the
files.

Handle Table Basics The security issue
with access to the files, locked by an applica-
tion from another application is typical for
Windows OS. Sysnap (2011) describes the
details of illegal access to the locked file by
modifying the handle table, belonging to the
application. The author’s approach is de-
signed for the user-mode handles and process
for Windows XP and 2003. This section de-
scribes how to adapt Sysnap’s idea of patch-
ing the handle table for kernel case in the
most recent Windows OS. A way for patching
handle table entries for user process in order
to change handle access rights is implemented
in Blackbone by DarthTon (2019-a).
The Kernel Handle Table is used by the

Windows OS to store the mapping from the
handles to the corresponding object struc-
tures (Tanenbaum and Bos, 2014; Probert,
2010; Schreiber, 2000). Using a handle,
the OS traverses through Kernel Handle

Page 4 © 2021 JDFSL

JDFSL 2021

Figure 2. OS subsystems and corresponding data structures involved during read and write
file operations. (Russinovich, Solomon, and Ionescu, (2012), part2, pp 441).

Figure 3. An attacker creates a file hijacker and applies three different hijacking attacks:
Handle Table Hijacking, Hijacking FILE_OBJECT structure, Hijacking NTFS structures,
which are based on patching handle table entries, file object, and NTFS data structures.

© 2021 JDFSL Page 5

JDFSL 2021

Table to acquire the object. Exported
symbol nt!ObpKernelHandleTable points to
this table. The address of this table can
also be gained by reading the field EPRO-
CESS.ObjectTable for SYSTEM:4 process.
Kernel Handle Table is involved each time a
driver reads and writes a file. This handle-
based mechanism manipulates various ob-
jects, such as files, processes, threads, or reg-
istry keys. The presented research is focused
only on handles related to the file system,
but the achieved results can be applied to all
kernel objects as well. For each newly created
file, the kernel handle table has an entry and
an index of each entry equals the returned
handle value (Hale-Ligh, M. Case, A, Levy,
J., Walters, 2014). Each entry is defined
in a HANDLE_TABLE_ENTRY structure,
which includes access rights granted to the ob-
ject (field GrantedAccessBits) and the link to
the created object (field ObjectPointerBits).
The field ObjectPointerBits includes 44 low
bits of OBJECT_HEADER address, which
can be used to gain the FILE_OBJECT ad-
dress (Monnappa, 2018; CodeMachine, 2019).
Tanenbaum and Bos (2014) found that “sys-
tem calls, like ZwReadFile and ZwWriteFile,
use the kernel handle table created by the
object manager to translate a handle into a
referenced pointer on the underlying object,
such as a file object, which contains the data
that is needed to implement the system calls”
(pp 899). Handle table can have several levels,
the number of levels and the number of en-
tries in each level depends on which Windows
version is being used (Suma, Dija, Thomas,
2014; Probert, 2010; Schreiber, 2000). Win-
dows OS provides a function ExEnumHan-
dleTable to enumerate all the valid handles
in a handle table. ExEnumHandleTable spec-
ifies an enumeration callback function, which
is called for each valid handle in the handle
table (DarthTon, 2019-b; Treadwell, 1989).
The enumeration procedure needs to release
implicit locks for each handle via call ExUn-

lockHandleTableEntry (ReactOS, n.d.; WRK.
n.d.). The enumeration procedure returns a
bool value. To stop the enumeration the pro-
cedure needs to return a TRUE value and
as a result ExEnumHandleTable also returns
TRUE. To continue the enumeration, the
procedure needs to return FALSE. Using Ex-
EnumHandleTable intruders can access the
handle table entry, which belongs to the file
hijacker, and patch it.

The Algorithm of Handle Table Hijacking
The research reveals that during read and
write access OS traverses through the ker-
nel handle table and acquires the file object,
without any checks. Attackers can use this
vulnerability to gain illegal access to the ex-
clusively open file in this way:

1. Reveal OBJECT_HEADER address of
the secret file.

2. Create a file hijacker and locate a corre-
sponding entry in the handle table entry.

3. Overwrite the ObjectPointerBits
field in this entry using the OB-
JECT_HEADER address of the secret
file.

After this handle hijacking attack all read
and write access using a hijacked file handle
will be redirected to the secret file, see Figure
4.

This hijacking attack requires overwriting
just 44 bits of dynamically allocated data,
which is enough to gain illegal access to the
exclusively opened file. This redirection will
be carried out by the Windows OS automat-
ically and transparently for the built-in se-
curity features. On the one hand, intruders
can tamper with entries of the kernel han-
dle table in order to exploit the translation
mechanism, and on the other hand, Win-
dows security features do not check the in-
tegrity of this table and cannot reveal this
attack. 2.3. Hijacking NTFS data struc-
tures This section describes the details of the

Page 6 © 2021 JDFSL

JDFSL 2021

Figure 4. The control flow between files structures: a) before and b) after Handle Table
Hijacking

attack called “Hijacking NTFS data struc-
tures”. This attack is an improvement of the
attack presented by Korkin (2019), which was
based on Hijacking FILE_OBJECT. Let us
assume, that a security service continuously
provides integrity and confidentiality for all
FILE_OBJECT structures. As a result, only
OS kernel has access to the FILE_OBJECT
structures, while access attempts from all
other drivers are forbidden. In this new situ-
ation, attackers cannot use FILE_OBJECT
hijacking attack and they need to prepare
a new attack. Attackers decide to organize
a new lower level attack on control block
structures or NTFS data structures, which

FILE_OBJECT fields point to, see Figure 4
b). FILE_OBJECT structure includes fields
FsContext and FsContext2, which point to
the control block structures: FsContext mem-
ber points to the File Control Block, FCB
(Stream Control Block, SCB) and FsContext2
points to the Context Control Block, CCB.
Each file stream is uniquely represented in
memory by an FCB structure. CCB struc-
ture is created by file system drivers to rep-
resent an open instance of a file stream (Na-
gar, 1997). This mechanism is deeply inte-
grated into the Windows OS kernel and is
very rarely updated. FsContext and FsCon-
text2 represent the physical stream context

© 2021 JDFSL Page 7

JDFSL 2021

and the user handle stream context. FsCon-
text2, is used to point to the Channel Control
Block or CCB (Miller, 1991; Probert, 2004).
Let us move on to the details of FCB and
CCB structures. These structures pointed
by FsContext and FsContext2 are only par-
tially documented, but at the same time, the
research has revealed the following details.
The definition of the SCB, FCB and CCB for
Windows NT 4.0 are in the file “ntfsstru.h”
(Microsoft, n.d.-a). The definition of these
structures can also be found in file “cdstruc.h”
from ReactOS (ReactOS, n.d.-a). These defi-
nitions can be used for understanding some
basic file principles because the structures
are partially updated in the most recent Win-
dows. According to the MSDN file object’s
FsContext member stores a pointer to the FS-
RTL_ADVANCED_FCB_HEADER struc-
ture, which uniquely identifies the file stream
to the file system (MSDN, 2018-a, MSDN,
2018-b, MSDN, 2018-c). The research shows
that an appropriate target for this new attack
is a FSRTL_ADVANCED_FCB_HEADER
structure, which FsContext fields from a
FILE_OBJECT structure points to. In
addition, the research has revealed that
fields FsContext and FsContext2 point to
the contiguous memory blocks and, when
using a hijacking attack, intruders can
copy and overwrite the content of these
two structures simultaneously. Structures
FSRTL_ADVANCED_FCB_HEADER are
not protected by the OS security features,
and their patching does not cause any kernel
security check failure errors, such as BSOD.
In a nutshell, Hijacking NTFS data struc-
tures is based on locating internal file ob-
ject structures from FsContent and FsCon-
tent2 fields, copying their content to the cor-
responding memory areas pointed by the
fields of file object hijacker and additional
patching. Without this patching during read
or write operation, the OS detects afore-
mentioned copying and causes BSOD with

RESOURCE_NOT_OWNED (0x000000E3)
bug check.

The Algorithm of Hijacking NTFS
data To implement Hijacking NTFS data
structures, intruders have to locate the
NTFS data structures, which correspond
to the secret file and to the file hijacker,
and engage in the following three steps:
Step 1. Overwrite the content of attack-
ers’ FSRTL_ADVANCED_FCB_HEADER
structure using the data from the FS-
RTL_ADVANCED_FCB_HEADER struc-
ture, which belongs to the secret file. How-
ever, this overwriting is not enough, be-
cause Windows OS reveals that a malware
driver’s thread tries to release a resource
it did not own and Windows OS causes
BSOD with RESOURCE_NOT_OWNED
bug check. To overcome this BSOD attack-
ers move to the second step. Step 2. Set
attackers’ thread ID gained by PsGetCur-
rentThread to the following fields in FS-
RTL_ADVANCED_FCB_HEADER struc-
ture:

• Resource->OwnerEntry.OwnerThread;

• PagingIoResource-
>OwnerEntry.OwnerThread.

This patching helps malware
driver to overcome BSOD with RE-
SOURCE_NOT_OWNED bug check.
Windows OS kernel changes the content of
FSRTL_ADVANCED_FCB_HEADER
structure while returning the result of
reading and writing to the driver and
if attackers try to access the file using
previously modified structure the Windows
OS will cause BSOD again. If attackers
want to access the secret file several times,
they move on to Step 3. Step 3. Repeat
Step 1 and Step 2 before each read and
write access attempt during every hijacking
attack. Attackers have to repeat Step 1 and
Step 2 before each unauthorized read and

Page 8 © 2021 JDFSL

JDFSL 2021

write access attempt, thus preventing the
aforementioned BSOD. As a result, each
time attackers read and write a file using
a hijacked file handle, OS walks through
patching structure and provides illegal read
and write access to the secret file, without
BSOD.

3. TOKEN HIJACKING
ATTACK: WHAT AND

HOW
The process privilege mechanism is crucial
for OS security. This section describes the
process privileges mechanism and how it can
be hijacked by modifying the content of dy-
namically allocated memory. For each newly
created process, Windows OS allocates a new
EPROCESS structure and adds it to the
list. This structure includes internal infor-
mation about this process: its name and ID,
threads and handles details, etc. (Monnappa,
2018; Tanenbaum and Bos, 2014). _TOKEN
structure describes the process access token,
which contains the security related informa-
tion about the process: user’s and group SIDs,
process privileges, etc. (Hoglund and Butler,
2006). The _TOKEN structure is pointed by
the field Object, which is located in Token
_EX_FAST_REF in _EPROCESS struc-
ture, see Figure 6. Windows OS provides
discretionary access control, which is gov-
erned by two main parts (Ismail, Aboelseoud,
and Senousy, 2014; Johnson, 2015):

• an access token associated with each pro-
cess;

• a security descriptor associated with
each object, such as a file.

According to the Russinovich (1998) and
Stallings (2002) each time a process tries
to access the object; the Security Reference
Monitor reads the SIDs and group SIDs from

_TOKEN structure to determine whether or
not this access is allowed. Attackers apply
various techniques to elevate privileges for
the malware process (Chebbi, (2019). API-
based approach to steal tokens in Windows
was proposed by Barta (2009). The author
leverages several kernel API routines, which
makes it difficult to apply this approach via
the malware payload. The ideas of applying
direct kernel object manipulation (DKOM)
to the process token in order to gain elevated
access were discussed by Hoglund and But-
ler (2006) more than 10 years ago. On the
Black Hat USA 2004 for the first time, they
proposed an idea of adding groups to To-
ken structure using DKOM (Hoglund and
Butler, 2004). The authors’ idea is based
on patching UserAndGroups array so that
the required high privileges will be enabled
for the process. To prevent these manipula-
tions Windows experts moved one step ahead
and since Windows kernel 6.x several fields
such as SidHash and RestrictedSidHash have
been added into the _TOKEN structure to
provide the integrity of this structure. OS
checks these hashes to ensure that the SID
list is not patched. These new fields pre-
vent attackers from directly modifying the
SID list. Perla and Oldani (2010, pp. 295)
underlined three alternatives to bypass this
security hash-based barricade. One of them
is token stealing or token swapping and it
is based on overwriting the Object field in
the _EPROCESS structure from the mal-
ware process. This uses the value from the
_EPROCESS structure corresponding to the
higher-privileged process, for example, SYS-
TEM:4 (Perla and Oldani, 2010, pp 305).
However, newly updated Microsoft Windows
Defender Antivirus detects such escalation
by monitoring token-swapping attempts (Oh,
2017; Singh, Kaplan, Feng, and Sanossian,
2019). Bui (2019) shows that access token
manipulation can be detected using auditpol,
which is based on ETW, but this detection

© 2021 JDFSL Page 9

JDFSL 2021

Figure 5. The control flow between files structures: a) before and b) after hijacking the NTFS
control block structures, e.g. FSRTL_ADVANCED_FCB_HEADER

approach can also be tampered with due to
attacks on ETW. A New Token Hijacking At-
tack I propose a new Token Hijacking Attack,
which is a development of ideas of Hoglund
and Butler (2006). In a nutshell, attackers
need to escalate privileges so that the calcu-
lated SidHash value will be corrected and the
integrity check will not reveal any changes.
Attackers can achieve this by overwriting the
following whole three fields using the corre-
sponding values from the Token structure
corresponding to the higher-privileged pro-
cess:

• UserAndGroupCount;

• UserAndGroups array: Attributes and
Sid structures;

• SidHash structure;

The key feature is to completely copy the
UserAndGroups array with updated internal
structure arrangement from the Token for
higher privilege process, while Hoglund and
Butler (2006) proposed to overwrite just a few
fields. During this attack copying UserAnd-
GroupCount field and SidHash structure is
trivial because they have the same size while
copying a variable part pointed by UserAnd-
Groups is quite complicated. The number of
entries in UserAndGroups and sizes of SID
structures are not the same for various pro-
cesses with different credentials, Figure 6.
The following two facts make this attack pos-
sible. Firstly, this updating is more than
enough to gain elevated privileges yet not
being detected by the OS. Secondly, TOKEN
structure for common processes always has
enough space, because a variable portion of
_TOKEN structure for System:4 process is

Page 10 © 2021 JDFSL

JDFSL 2021

Figure 6. The content of _EPROCESS and _TOKEN structures for SYSTEM:4 and malware
processes: a) before and b) after Token Hijacking

© 2021 JDFSL Page 11

JDFSL 2021

less than the corresponding structure for a
common one. This attack has been success-
fully tested on the newest Windows 10 1903
x64, the source code and demo in this paper
(Korkin, 2020).

4. MEMORYRANGER
PREVENTS KERNEL

HIJACKING
STRUCTURES

This section describes the details of how
the updated MemoryRanger hypervisor pre-
vents hijacking attacks (Korkin, 2018; Korkin,
2019).

4.0.1 MemoryRanger Overview

MemoryRanger is a hypervisor-based solution
(a bare metal hypervisor), designed to provide
integrity and confidentiality for kernel-mode
code and data. MemoryRanger leverages
Intel VT-x technology and Extended Page
Tables (EPT). MemoryRanger protects ker-
nel memory by using isolated kernel enclaves
with specified memory access restrictions. By
running kernel drivers in separate memory
enclaves MemoryRanger protects kernel mem-
ory from being tampered with:

• It prevents attacks on OS kernel code
and data from newly loaded drivers;

• It protects the code and data of newly
loaded drivers from the attacks from
each other.

After loading, MemoryRanger allocates
the default kernel enclave: OS kernel and
all drivers loaded before are running inside
this enclave. Newly loaded drivers are run-
ning in separate enclaves. MemoryRanger
traps the loading of each new driver and allo-
cates an isolated kernel enclave for this driver.
Each newly loaded kernel driver is running
only inside the corresponding allocated kernel

memory enclave. MemoryRanger updates the
memory access restrictions for each enclave
in run-time, which makes it possible to pro-
tect sensitive memory areas. MemoryRanger
can monitor access to the kernel-mode mem-
ory and redirect the illegal access to the fake
page.

4.1 MemoryRanger: Key
components

MemoryRanger has the following key compo-
nents:

• A kernel-mode driver;

• DdiMon;

• MemoryMonRWX;

• Memory Access Policy (MAP).

All the details about MemoryRanger com-
ponents are given by Korkin (2019). Memo-
ryRanger does the following:

• registers a driver-supplied callback that
is notified whenever a new process is
created/deleted and an image is loaded;

• hooks kernel API by using DdiMon com-
ponent;

• restricts memory access even to a byte
by using MemoryMonRWX;

• provides dynamically updated access
control rules using MAP.

4.2 Main Updates of
MemoryRanger to Block
New Hijacking Attacks

In order to prevent the newly presented
hijacking attacks, the following modifica-
tions have been added to the MemoryRanger.
MemoryRanger prevents Handle Hijacking
and Hijacking NTFS data structures by do-
ing the following:

Page 12 © 2021 JDFSL

JDFSL 2021

• it hooks ZwCreateFile() and ZwClose
routines to locate the involved data
structures in memory;

• To prevent Handle Hijacking, it locates
the HANDLE_TABLE_ENTRY struc-
ture corresponding to the opened file
using the ExEnumHandleTable routine;

• To prevent Hijacking NTFS
Data, it locates the FS-
RTL_ADVANCED_FCB_HEADER
structure using the pointers from
FILE_OBJECT.

• MemoryRanger restricts access to the
structures in the corresponding enclaves.

To prevent Token Hijacking Memo-
ryRanger implements a new technique, which
is based on allocating a special isolated en-
clave, which includes only sensitive kernel
data, see Figure 7. The details of these
prevention techniques are given below. The
source code of updated MemoryRanger, at-
tacker, and allocator drivers as well as video
demos are here (Korkin, 2020).

4.3 Details of Prevention of
Handle Hijacking Attack

Preventing Handle Hijacking requires a fine-
grained approach. MemoryRanger prevents
Handle Hijacking by blocking only write ac-
cess to ObjHeader field, which has 6 bytes
and corresponds to the file object header, see
Figure 7. Neither does MemoryRanger re-
strict read access for ObjHeader, nor does
it prevent any access to other fields of this
entry, because they are used by the OS. In
fact, some fields of these entries have to be
accessed for write attempts due to synchro-
nization issues and their restriction causes
BSOD. MemoryRanger is notified about cre-
ating a new file by hooking ZwCreateFile
routine and next it locates handle table entry

by using file handle and the ExEnumHan-
dleTable routine.

4.4 Details of Prevention of
Hijacking NTFS data

structures
For Hijacking NTFS data structures in-
truders modify the control block structures
(FSRTL_ADVANCED_FCB_HEADER),
which correspond to the file hijacker. To pre-
vent this attack MemoryRanger implements
a similar approach based on locating control
block structures and restricting access to
them.

4.5 Details of Prevention of
Token Hijacking

Token Hijacking Attack is tampering with
static and dynamic parts of _TOKEN struc-
tures, which results in local privilege esca-
lation. To block Token Hijacking a special
isolated kernel enclave is allocated to host sen-
sitive data. This new enclave includes only
sensitive kernel data, such as _TOKEN struc-
tures, Windows kernel core (ntoskrnl.exe),
and a limited number of trusted Windows
drivers. All other drivers will be excluded
from this enclave, see Figure 7. This new
scheme isolates token structures from all
drivers loaded after and even before Memo-
ryRanger without restricting the OS kernel.
MemoryRanger is notified about creating a
new process by registering a callback routine
via call PsSetCreateProcessNotifyRoutineEx.

4.6 Empirical Test Results
All these attacks and their prevention have
been successfully tested on Windows 10 1903
x64, details are in (Korkin, 2020).

4.7 Performance Impact
MemoryRanger causes affordable perfor-
mance degradation. Switching between ker-
nel enclaves is the main problem of this per-

© 2021 JDFSL Page 13

JDFSL 2021

Figure 7. MemoryRanger prevents Handle Hijacking and Token Hijacking

formance degradation. Changing the EPT
pointer causes the flushing of TLB and fur-
ther filling the TLB. Details about measur-
ing the performance were given previously by
Korkin (2018). I can conclude that Memo-
ryRanger is suitable to protect the rarely ac-
cessed safe areas. To avoid this degradation,
the new version will support VPID, which is
designed to meet this need.

4.8 MemoryRanger vs. Virtual
Secure Mode

One of the global security challenges for mod-
ern operating systems is to prevent illegal
access to the kernel data from drivers, while
all drivers and OS share the same mem-
ory space. MemoryRanger is designed to
tackle this issue by isolating newly loaded
drivers inside allocated separated memory
enclaves from the rest of the OS kernel. This
drivers’ isolation can prevent attacks from
kernel rootkits as well as providing exploit
mitigation. MemoryRanger can be applied
to protect Unix-based systems running on
AMD and ARM CPUs. MemoryRanger in-
cludes a kernel driver, which allows it to trap
and parse OS-related events. Using a hy-
pervisor component MemoryRanger restricts

access to the memory transparently for the
OS kernel. MemoryRanger is protected from
kernel attacks, due to running in ring -1)
Windows OS comprises a new technology
called Virtual Secure Mode (VSM), which
is designed to maintain a secure Windows en-
vironment. VSM provides a particular case
of enclave-based protection with only two
memory partitions called VTL0 and VTL1,
while MemoryRanger implements a general
case with an infinite number of kernel en-
claves. MemoryRanger has been tested using
three (Korkin, 2019), four (Figure 7), and
five separate enclaves (Korkin, 2018).

5. CONCLUSION
To sum up I would like to highlight the fol-
lowing:

1. Windows OS kernel manipulates dynam-
ically allocated data, which can be tam-
pered with by intruders during cyberat-
tacks. Windows security features pro-
vide integrity only for limited memory
areas, while others are becoming suscep-
tible.

2. Two new presented attacks on files: Han-
dle Hijacking and Hijacking NTFS struc-

Page 14 © 2021 JDFSL

JDFSL 2021

tures make it possible to gain illegal ac-
cess to the files opened in an exclusive
mode bypassing Security Reference Mon-
itor.

3. Hijacking Attack on NTFS data struc-
tures has never been presented before.

4. A new Token Hijacking attack results in
process privilege escalation via copying
SID with their attributes as well as SID
hashes from a higher privileges process.
This attack gains elevated privileges with
the correct hash value.

5. Updated MemoryRanger prevents at-
tacks on files by running drivers inside
isolated enclaves and restricting access
to the corresponding data structures.

6. To prevent Token Hijacking, updated
MemoryRanger implements a new spe-
cial enclave, which includes only sensi-
tive data and a part of the Windows OS
kernel; all other drivers as well as newly
loaded ones are not able to tamper with
this data.

7. All new attacks on files and tokens have
been successfully tested on the most re-
cent Windows 10 1903. Updated Memo-
ryRanger can prevent all mentioned hi-
jacking attacks.

8. Various cybersecurity solutions will ben-
efit from applying MemoryRanger. The
source code and all demos are uploaded
here (Korkin, 2020).

6. FUTURE PLANS
Updated MemoryRanger is a very promising
project and the following future directions
can be outlined.

6.1 Prevent patching of OS
Internal Structures by

Intel Memory Protection
Keys (MPK)

Prakash, Venkataramani, Yin, and Lin (2013)
revealed the following examples of how at-
tackers can patch the OS internal structures
to gain ongoing and undetectable access to
the target system:

• Hackers can prevent a malicious pro-
cess from terminating by changing
the corresponding EPROCESS.Flags to
0xFFFFFFFF value;

• Hackers can make a file completely inac-
cessible by changing the file name field
in FILE_OBJECT to an empty string;

• Hackers can hide a program from
the process list in the Task Manager
by changing the corresponding EPRO-
CESS.UniqueProcessId to 0.

Despite the fact that the results were checked
on Windows XP, the similar principles can
be expanded on the most recent Windows
10 and for more OS internal structures. A
recently issued key-based permission control
called Intel Memory Protection Keys (MPK)
can be leveraged to maintain and enforce
memory access permission. MPK has several
key benefits over the page-table mechanism
(Park, Lee et al. 2019).

6.2 MemoryRanger can do
Deep Inspection of

Memory Access
The current version of MemoryRanger checks
access rights using only the address of the
module, which implements this access. As
a result, malware can gain illegal access to
sensitive data by exploiting any vulnerable
function in the trusted module. The idea is
to verify the function call stack additionally

© 2021 JDFSL Page 15

JDFSL 2021

to check which sequence of functions leads
to access this sensitive memory area. This
new check helps to inspect memory access a
bit deeper and prevent the mentioned attack.
Finally, intruders have to exploit not only the
function which accesses sensitive data but
also the whole sequence of functions, which
is very difficult and time consuming.

6.3 MemoryRanger vs.
Mimikatz

One more advanced direction is to analyze
and prevent activities of Mimikatz, which
is an effective post-exploitation tool (Delpy,
2020). Mimikatz applies its driver to pro-
vide various commands to play with kernel
memory:

• read and write kernel-mode memory
from user-mode applications;

• disable Protected Process Light (PPL)
mode;

• duplicate process token;

• set all privileges for a process.

6.4 MemoryRanger vs.
Privilege Escalation by
using buggy StopZilla

driver
Security researchers have revealed that
StopZilla AntiVirus Software includes a vul-
nerable driver, which can be used to elevate
process privilege. For this attack hackers
need to have SeLoadDriverPrivilege to load
a vulnerable driver and launch the exploit
to patch TOKEN structure. Ideas and de-
tails of such attacks were discussed by Pierini
(2019) at Hack In Paris conference and by
Cocomazzi and Pierini (2020) at the HITB-
SecConf2020. Protection of the OS kernel
from vulnerable signed third-party drivers
is a serious security problem, because these

drivers run in the kernel memory without any
restrictions. MemoryRanger can be updated
to run StopZilla’s driver in isolated enclaves
and prevent the overwriting of the sensitive
data, such as TOKEN structures. We cannot
reveal all vulnerabilities, but we can protect
the sensitive data, which is usually the top
target of attacks by hackers.

6.5 Isolated Enclave for the OS
Scheduler: Unikernels

Based Protection
The current version of MemoryRanger has an
issue with the protection of data from being
tampered with by drivers loaded before it.
MemoryRanger protects rarely accessed data
with acceptable performance degradation,
while protection of frequently accessed data
causes significant performance degradation.
To overcome this performance degradation
and protect sensitive OS kernel data, such
as EPROCESS structures from all drivers,
MemoryRanger can allocate the following en-
claves:

• the Scheduler enclave includes sensi-
tive OS structures, such as EPROCESS,
ETHREAD etc., which are frequently
used by OS kernel scheduler. OS sched-
uler is located in this enclave. Likewise,
this enclave contains file system drivers
and their structures. As a result, this
enclave includes a minimal list of drivers
and their structures.

• the Default enclave contains all other
drivers loaded before MemoryRanger.
This enclave excludes all OS internal
data structures from the Scheduler en-
clave, while drivers from the Default en-
clave are excluded from the Scheduler
enclave.

• the Data-Only enclave includes only sen-
sitive data structures, which are rarely

Page 16 © 2021 JDFSL

JDFSL 2021

accessed by the OS kernel drivers, such
as Token structures.

• a new enclave is allocated for each newly
loaded driver.

This scheme could help to isolate sensitive
OS kernel data from being tampered by the
drivers, loaded before the MemoryRanger.
Another solution to this challenge is to load
MemoryRanger at boot time; it can be solved
by using UEFI hypervisor that supports boot-
ing an operating system (Tanda, 2020).

6.6 MemoryRanger and
Hyper-V

The current version of MemoryRanger does
not support concurrent execution with Hyper-
V, which is a Windows built-in hypervisor.
This issue can be solved by installing Win-
dows OS in a virtual CPU without VT-
x/EPT support and further enabling VT-
x/EPT support to run MemoryRanger. An-
other way is to manually disable or uninstall
Hyper V to run MemoryRanger. However, A.
Eremeev (2020) implemented a bare-metal
hypervisor with VT-x/EPT support, which
works well with enabled Hyper-V. This ex-
perience can be used to expand features of
MemoryRanger.

© 2021 JDFSL Page 17

JDFSL 2021

REFERENCES
[1] Barta, C. (2009). Access token steal-

ing on Windows. Retrieved from
https://docplayer.net/20917850-
Access-token-stealing-on-
windows-csaba-barta.html

[2] Bisht, S. (2020). Understanding and
Abusing Process Tokens — Part II. Re-
trieved from https://securitytimes.
medium.com/understanding-and-
abusing-access-tokens-part-ii-
b9069f432962

[3] Bisson, D. (March 6, 2019). Fileless
Malware Targeting Brazilian and Thai
Bank Customers With Multiple Threats.
Security Intelligence. Retrieved from
https://securityintelligence.
com/news/fileless-malware-
targeting-brazilian-and-thai-
bank-customers-with-multiple-
threats/

[4] Bui, J. (2019). Understanding and
Defending Against Access Token Theft:
Finding Alternatives to winlogon.exe.
Retrieved from https://posts.
specterops.io/understanding-and-
defending-against-access-token-
theft-finding-alternatives-to-
winlogon-exe-80696c8a73b

[5] Chebbi, C. (2019, April 24). Win-
dows Kernel exploitation: Eleva-
tion of privilege (EoP) with Token
stealing. Retrieved from https:
//www.peerlyst.com/posts/windows-
kernel-exploitation-elevation-
of-privilege-eop-with-token-
stealing-chiheb-chebbi

[6] Cimpanu, C. (2019, November
22). New bypass disclosed in Mi-
crosoft PatchGuard (KPP). https:
//www.zdnet.com/article/new-

bypass-disclosed-in-microsoft-
patchguard-kpp/

[7] Cimpanu, C. (2020, February 7). Ran-
somware installs Gigabyte driver
to kill antivirus products. ZD-
Net. Retrieved from https://www.
zdnet.com/article/ransomware-
installs-gigabyte-driver-to-
kill-antivirus-products/

[8] Cocomazzi, A. Pierini, A. (2020).
Windows Privilege Escalations:
Still Abusing Local Service Ac-
counts to Get SYSTEM Privileges.
HITBSecConf2020, Amsterdam. Re-
trieved from https://conference.
hitb.org/hitbsecconf2020ams/
sessions/windows-privilege-
escalations-still-abusing-local-
service-accounts-to-get-system-
privileges/

[9] CodeMachine. (2019). Windows 7
Object Headers. Articles on Windows
Internals, Programming, Security
and Debugging. Retrieved from
https://codemachine.com/article_
objectheader.html

[10] DarthTon. (2019-a) Blackbone Win-
dows memory hacking library. Black-
bone source code. Retrieved from https:
//github.com/DarthTon/Blackbone

[11] DarthTon. (2019-b). BBGrantAccess
function. Change handle granted
access. Blackbone source code. Re-
trieved from https://github.com/
DarthTon/Blackbone/blob/master/
src/BlackBoneDrv/Routines.c

[12] Delpy, B. (2020). A little tool
to play with Windows secu-
rity. Source Code of Mimikatz.
GitHub. Retrieved from https:
//github.com/gentilkiwi/mimikatz

Page 18 © 2021 JDFSL

JDFSL 2021

[13] Eremeev, A. (2020). The Kernel-
Bridge Framework. Windows kernel
hacking framework, driver tem-
plate, hypervisor and API written
on C++. Github. Retrieved from
https://github.com/HoShiMin/
Kernel-Bridge/blob/master/Kernel-
Bridge/API/Hypervisor.cpp

[14] Hale-Ligh, M. Case, A, Levy, J., Walters,
A. (2014, July 28). The Art of Mem-
ory Forensics: Detecting Malware and
Threats in Windows, Linux, and Mac
Memory (1st ed.). Indianapolis, Indiana:
Wiley.

[15] Harpaz, O. and Goldberg, D. (2019, May
29). The Nansh0u Campaign: Hackers
Arsenal Grows Stronger. Retrieved from
https://www.guardicore.com/2019/
05/nansh0u-campaign-hackers-
arsenal-grows-stronger/

[16] Hoglund, G., Butler. J. (2006). Rootk-
its: Subverting the Windows Kernel (1st
ed.). Token Privilege and Group Ele-
vation with DKOM. New Jersey, US:
Addison-Wesley Professional.

[17] Ismail, M., A., Aboelseoud H.,
Senousy, M., B. (2014). An Investiga-
tion into Access Control in Various
Types of Operating Systems. In-
ternational Journal of Computer
Applications. Retrieved from https:
//pdfs.semanticscholar.org/6035/
d4420f6038aefc511d970fc630a41cf40df3.
pdf

[18] Jesse, M. and Shkatov, M. (2019).
Screwed Drivers – Signed, Sealed,
Delivered. Retrieved from https://
eclypsium.com/2019/08/10/screwed-
drivers-signed-sealed-delivered/

[19] Johnson, M. H. (2015, October 1). Win-
dows System Programming (4th ed.).

Chapter 15. Securing Windows Objects.
Massachusetts, US: Addison-Wesley Pro-
fessional.

[20] Korkin, I. (2018, December 5-6). Divide
et Impera: MemoryRanger Runs
Drivers in Isolated Kernel Spaces. In
Proceedings of the BlackHat Europe
Conference, London, UK. Retrieved
from https://www.blackhat.com/eu-
18/briefings/schedule/#divide-
et-impera-memoryranger-runs-
drivers-in-isolated-kernel-
spaces-12668

[21] Korkin, I. (2019, May 15-16).
MemoryRanger Prevents Hijack-
ing FILE_OBJECT Structures in
Windows Kernel. Paper presented at
the Proceedings of the 14th annual
Conference on Digital Forensics, Secu-
rity and Law (CDFSL), Embry-Riddle
Aeronautical University, Daytona
Beach, Florida, USA. Retrieved from
https://commons.erau.edu/adfsl/
2019/paper-presentation/7/

[22] Korkin, I. (2020). MemoryRanger source
code. GitHub repository. Retrieved from
https://github.com/IgorKorkin/
MemoryRanger

[23] Kremez, V. (May 13, 2019). Cyber-
crime: Groups Behind “Banload”
Banking Malware Implement New
Techniques. Security Research. Sen-
tinelLabs. Retrieved from https://
labs.sentinelone.com/cybercrime-
banload-banking-malware-fraud/

[24] Microsoft. (2019). 2.3.1 NTSTATUS Val-
ues. Windows Protocols. Retrieved from
https://docs.microsoft.com/en-
us/openspecs/windows_protocols/
ms-erref/596a1078-e883-4972-
9bbc-49e60bebca55

© 2021 JDFSL Page 19

JDFSL 2021

[25] Microsoft. (n.d.-a). NTFS File System
Data Structures. Microsoft Corpora-
tion. Retrieved from https://github.
com/ZoloZiak/WinNT4/blob/master/
private/ntos/cntfs/ntfsstru.h

[26] Miller, T. (1991, October 31).
Portable Systems Group Caching
Design Note. Revision 1.3. Copy-
right (c) Microsoft Corporation.
File: cache.doc. Retrieved from Win-
dows_Research_Kernel(sources)
NT_Design_Workbook
Get_Workbook

[27] MITRE ATTCK. (2020). Access Token
Manipulation.

[28] Monnappa, K. (2018). Learning Mal-
ware Analysis: Explore the Concepts,
Tools, and Techniques to Analyze and
Investigate Windows Malware (1st ed.),
Birmingham, United Kingdom: Packt
Publishing.

[29] MSDN. (2018-a). FsRtlGetPerStream-
ContextPointer Macro. Programming
reference for Windows Driver Kit. Re-
trieved from https://docs.microsoft.
com/en-us/windows-hardware/
drivers/ddi/ntifs/nf-ntifs-
fsrtlgetperstreamcontextpointer

[30] MSDN. (2018-b). FS-
RTL_COMMON_FCB_HEADER
structure. Programming reference for
Windows Driver Kit. Retrieved from
https://docs.microsoft.com/en-
us/windows-hardware/drivers/ddi/
ntifs/ns-ntifs-_fsrtl_common\
_fcb_header q

[31] MSDN. (2018-c). FS-
RTL_ADVANCED_FCB_HEADER
structure. Programming reference for
Windows Driver Kit. Retrieved from
https://docs.microsoft.com/en-

us/windows-hardware/drivers/
ddi/ntifs/ns-ntifs-_fsrtl\
_advanced_fcb_header

[32] Nagar, R. (1997). Windows NT File
System Internals: A Developer’s Guide.
Publisher: O’Reilly Media.

[33] O’Donnell, L. (2019, May 29). 50k
Servers Infected with Cryptomining
Malware in Nansh0u Campaign. Re-
trieved from https://threatpost.
com/50k-servers-infected-with-
cryptomining-malware-in-nansh0u-
campaign/145140/

[34] Oh, M. (2017). Detecting and mitigat-
ing elevation-of-privilege exploit for
CVE-2017-0005. Retrieved from https:
//www.microsoft.com/security/
blog/2017/03/27/detecting-
and-mitigating-elevation-of-
privilege-exploit-for-cve-2017-
0005/

[35] Park, S., Lee, S., Xu, W., Moon, H.,
Kim, T. (2019). libmpk: Software Ab-
straction for Intel Memory Protection
Keys (Intel MPK). Id in the Proceed-
ings of the 2019 USENIX Annual
Technical Conference. July 10–12, 2019
• Renton, WA, USA. Retrieved from
https://www.usenix.org/system/
files/atc19-park-soyeon.pdf

[36] Perla, E. and Oldani, M. (2010). A
Guide to Kernel Exploitation: Attack-
ing the Core (1st ed.). Massachusetts,
US: Syngress.

[37] Pierini, A. (2019). Whoami priv - show
me your privileges and I will lead you
to SYSTEM. Hack in Paris. Retrieved
from https://hackinparis.com/
archives/2019/#talk-2019-whoami-
priv-show-me-your-privileges-
and-i-will-lead-you-to-system

Page 20 © 2021 JDFSL

JDFSL 2021

[38] Prakash, A., Venkataramani, E., Yin,
H., Zhiqiang, L. (2013). Manipulat-
ing Semantic Values in Kernel Data
Structures: Attack Assessments and
Implications. 43rd Annual IEEE/I-
FIP International Conference on
Dependable Systems and Networks
(DSN), Budapest. Retrieved from
http://web.cse.ohio-state.edu/
~lin.3021/file/DSN13.pdf

[39] Probert, D. (2010). Windows Kernel
Architecture Internals. MSRA/UR
Workshop – Beijing, China. Retrieved
from https://repo.zenk-security.
com/Linux\%20et\%20systemes\%20d.
exploitations/Windows\%20Kernel\
%20Architecture\%20Internals.pdf

[40] Probert, D. (2010). Windows Kernel
Architecture Internals. Retrieved
from https://repo.zenk-security.
com/Linux\%20et\%20systemes\%20d.
exploitations/Windows\%20Kernel\
%20Architecture\%20Internals.pdf

[41] Probert, D. B. (2004). Windows Kernel
Internals: Cache Manager. Windows
Kernel Development Microsoft Corpora-
tion. Retrieved from https://www.i.u-
tokyo.ac.jp/edu/training/ss/
lecture/new-documents/Lectures/
15-CacheManager/CacheManager.pdf

[42] Rapaport, A. (2019, March 25).
From alert to driver vulnerability:
Microsoft Defender ATP investi-
gation unearths privilege escala-
tion flaw. Retrieved from https:
//www.microsoft.com/security/
blog/2019/03/25/from-alert-to-
driver-vulnerability-microsoft-
defender-atp-investigation-
unearths-privilege-escalation-
flaw/

[43] ReactOS. (n.d.). ExUnlockHan-
dleTableEntry. ReactOS Kernel.
Retrieved from https://doxygen.
reactos.org/de/d51/ntoskrnl_2ex_
2handle_8c_source.html#l00887

[44] ReactOS. (n.d.-a). CDFS File Sys-
tem Data Structures. Microsoft
Corporation. Retrieved from
https://doxygen.reactos.org/
de/dc7/cdstruc_8h.html

[45] Russinovich, M. (1998, March 31).
Windows NT Architecture, Part 2.
ItProToday. Retrieved from https:
//www.itprotoday.com/compute-
engines/windows-nt-architecture-
part-2

[46] Russinovich, M., Solomon, D., and
Ionescu, A. (2012, September 25). Win-
dows Internals (6th ed.). Parts 1 and 2.
Redmond, Washington: Microsoft Press.

[47] Schreiber, S. B. (2000). Undocumented
Windows 2000 Secrets. Object Han-
dles. WINDOWS 2000 OBJECT
MANAGEMENT. pp 411. Retrieved
from http://users.du.se/~hjo/
cs/common/books/Undocumented\
%20Windows\%202000\%20Secrets/
sbs-w2k-7-windows-2000-object-
management.pdf

[48] Singh, A., Kaplan, D., Feng, C., and
Sanossian, H. (2019). How Windows
Defender Antivirus integrates hardware-
based system integrity for informed,
extensive endpoint protection. Retrieved
from https://www.microsoft.com/
security/blog/2019/07/31/how-
windows-defender-antivirus-
integrates-hardware-based-
system-integrity-for-informed-
extensive-endpoint-protection/

© 2021 JDFSL Page 21

JDFSL 2021

[49] Stallings, W. (2014). Operating
System Security. Computer Secu-
rity Handbook edited by Bosworth,
S., Kabay, M. E., Whyne, E, New
Jersey: John Wiley Sons. Re-
trieved from http://index-of.co.uk/
Networking/Computer\%20Security\
%20Handbook\%204th.pdf

[50] Suma, G. S., Dija, S., Thomas, K. L.
(2014). A Novel Methodology for Win-
dows 7 x64 Memory Forensics. DOI:
10.1109/ICCIC.2014.7238400

[51] Sysnap. (2011). Hijacking Kernel
Handle. 0tutorials: Unpacking Tuto-
rials, Programming Tutorials, Kernel
Tutorials, Reverse Engineering Tutorials
Retrieved from http://0tutorials.
blogspot.com/2011/08/hijacking-
kernel-handle.html

[52] Tanda, S. (2020). The research UEFI hy-
pervisor that supports booting an oper-
ating system. Retrieved from https://
github.com/tandasat/MiniVisorPkg

[53] Tanenbaum, A. and Bos., H. (2014,
March 20). Modern Operating Systems
(4th ed.). New Jersey: Pearson Prentice-
Hal.

[54] Tango. (2018, January 14). A Light on
Windows 10’s “OBJECT_HEADER-
>TypeIndex”. Retrieved from https:
//medium.com/@ashabdalhalim/a-
light-on-windows-10s-object-
header-typeindex-value-
e8f907e7073a

[55] Treadwell, D. (1989). Windows NT
Executive Support Routines Specifi-
cation. Manage Object Handles and
Handle Tables. Retrieved from “Win-
dows_Research_Kernel(sources)
NT_Design_Workbook

Get_Workbook
execsupp.doc”

[56] WRK. (n.d.). ExUnlockHan-
dleTableEntry. The Windows Re-
search Kernel Retrieved from https:
//github.com/Aekras1a/Labs/blob/
9c9121da3fcc34f840a3f67e14fcc2a76d4aa053/
Labs/WRK/base/ntos/ex/handle.c

[57] Yitbarek, S. F., and Austin, T. (2019).
Neverland: Lightweight Hardware Ex-
tensions for Enforcing Operating Sys-
tem Integrity. Retrieved from https:
//arxiv.org/pdf/1905.05975.pdf

Page 22 © 2021 JDFSL

	Windows Kernel Hijacking Is Not an Option: MemoryRanger Comes to the Rescue Again
	Recommended Citation

	Windows Kernel Hijacking Is Not an Option: MemoryRanger Comes to the Rescue Again
	Cover Page Footnote

	Windows Kernel Hijacking Is Not an Option: MemoryRanger Comes to the Rescue Again

