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Contamination effects on fixed-bias Langmuir probes
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Langmuir probes are standard instruments for plasma density measurements on many sounding rock-
ets. These probes can be operated in swept-bias as well as in fixed-bias modes. In swept-bias Lang-
muir probes, contamination effects are frequently visible as a hysteresis between consecutive up and
down voltage ramps. This hysteresis, if not corrected, leads to poorly determined plasma densities
and temperatures. With a properly chosen sweep function, the contamination parameters can be de-
termined from the measurements and correct plasma parameters can then be determined. In this paper,
we study the contamination effects on fixed-bias Langmuir probes, where no hysteresis type effect is
seen in the data. Even though the contamination is not evident from the measurements, it does affect
the plasma density fluctuation spectrum as measured by the fixed-bias Langmuir probe. We model
the contamination as a simple resistor-capacitor circuit between the probe surface and the plasma. We
find that measurements of small scale plasma fluctuations (meter to sub-meter scale) along a rocket
trajectory are not affected, but the measured amplitude of large scale plasma density variation (tens of
meters or larger) is attenuated. From the model calculations, we determine amplitude and cross-over
frequency of the contamination effect on fixed-bias probes for different contamination parameters.
The model results also show that a fixed bias probe operating in the ion-saturation region is affected
less by contamination as compared to a fixed bias probe operating in the electron saturation region.

© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4764582]

. INTRODUCTION

Langmuir probes' are the standard instruments for elec-
tron density measurements in laboratory plasmas® as well
as on satellites and sounding rockets in the ionosphere.*
Swept-bias Langmuir probes provide measurements of abso-
lute plasma density, temperature, and vehicle floating poten-
tial, but the probe I-V characteristics are known to be dis-
torted by surface contamination effects, which may lead to
erroneous measurements,>® unless the probe is cleaned, for
example, by heating or by using a fast sweep mode.” How-
ever, recent analysis has shown that with a properly chosen
sweep function, the contamination parameters can be deter-
mined from the measurements,® and consequently, an accu-
rate representation of the plasma characteristics can then be
recovered.” ' Unlike swept-bias probes, fixed-bias Langmuir
probes are mostly used to provide high temporal resolution
relative density measurements. Most rocket payloads include
a fixed-bias Langmuir probe because high time resolution
measurement is an important instrument design criterion for
studies of plasma turbulence and plasma gradients along the
rocket trajectory. While contamination effects may also be
present in the fixed-bias Langmuir probe data, they are not
directly measurable and, hence, typically ignored.

Fixed-bias Langmuir probes that are used for relative
density and density fluctuation measurements are calibrated
with absolute density measurements gathered by indepen-
dent techniques such as impedance probes or Faraday rota-
tion measurements. The resistance of the contamination layer
on any Langmuir probe reduces the probe voltage seen by
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the ambient plasma, which in turn reduces the absolute cur-
rent that is measured by the probe, leading to measurements
indicative of lower electron densities. Although the contribu-
tions from the contamination layer cannot be uniquely deter-
mined from the fixed-bias probe measurements, background
plasma densities derived by periodically cross-calibrating
fixed-bias Langmuir probes with other probes can still be very
accurate. The density fluctuations, however, are influenced by
the resistance-capacitance combination of the contamination
layer in a manner, which varies with frequency of the den-
sity variations and could lead to a measured spectrum that is
different than that of the actual fluctuations.

In this paper, we first detail our Langmuir probe contam-
ination model and compare its results with data from a con-
taminated Langmuir probe aboard a sounding rocket. We will
then use the same model to simulate density fluctuations on
Langmuir probes with varying levels of contamination. We
then conclude the paper with discussions of the results and
implications for probe design.

Il. spice MODEL SETUP

Our circuit model simulates contamination as a parallel
combination of resistor-capacitor (RC) circuit elements.!!
The implementation of this circuit in SPICE is similar
to that as developed by Barjatya and Swenson,'? and is
shown in Figure 1. In essence, the payload surface, the
probe, and plasma create a closed circuit, as shown in
Figure 1. The inputs to the SPICE model are: area of the
payload surface, area of the probe surface, plasma density,
and temperature, voltage applied to probe, and contamina-
tion parameters (R and C). The SPICE software then finds

© 2012 American Institute of Physics
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FIG. 1. SPICE model of a rocket payload with a Langmuir probe. Each SPICE
sub-circuit (gray filled parallelogram) contains two voltage controlled current
sources (white unfilled parallelograms) representing ion and electron thermal
currents.

the equilibrium bias point where the electron and ion current
through the circuit (i.e., payload-probe-plasma) is equal and
consistent with Kirchhoffs laws. The electron and ion thermal
currents are modelled as voltage dependent current sources
represented by current collection equations from a simpli-
fied version of the orbital motion limited (OML) theory.'3 !4
While the Langmuir probe can be modelled as any geome-
try (planar, cylindrical, or spherical) by choosing appropriate
OML expressions, the rocket payload is always modeled with
cylindrical electric probe OML expressions as our paper con-
centrates on sounding rocket missions specifically. The con-
tamination on the probe is modelled as the parallel combi-
nation of R, and C,, and the contamination on the payload
surface as the parallel combination of R, and C,. While R,
and C, can typically be derived from measured in situ swept
Langmuir probe data,’ the contamination parameters on the
rocket payload skin are expected to be very patchy in nature
and cannot be directly determined. However, contamination
on the large payload surface can be approximated as a par-
allel combination of several resistors and capacitors. As the
value of the equivalent resistance goes down when several
resistors are in parallel, whereas the value of the equivalent
capacitance adds up, we model Ry = 1 Q2 and C; = 100 uF.
Assuming that the sheath is one to two Debye lengths in size,
the sheath capacitance is expected to be in several tenths of
a pF in the mesosphere and several pF in the thermosphere.
As the contamination capacitance is expected to be in uFs,
we ignore sheath capacitance in our model. Finally, to keep
the model simple and tractable, we have also ignored ion ram
current as well as magnetic field effects on Langmuir probe
I-V characteristics.

Our choice of using simplified OML theory expressions
in the model warrants further explanation. OML or orbit
motion limited theory was introduced by Mott-Smith and
Langmuir! in their seminal paper on the subject. The expres-
sions we use are an approximate version of the theory in the
limit that the sheath is much larger than the probe radius. The
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following equation represents the current collected in either
the electron, or ion saturation regions for a non-drifting, un-
magnetized, and collisionless plasma, when the probe dimen-
sions are much smaller than the Debye length:
B
1) = I, (1 T %Tf”)) , M
where I, is the random thermal current of charge species
to the probe. Under these approximate OML expressions, the
current in the electron and ion saturation regions depends on
sensor geometry. Planar sensors measure a current that is in-
dependent of the probe voltage (8 = 0), spherical sensors
measure a current that increases linearly with probe voltage
(B = 1), and cylindrical sensors measure an increase that
goes with the square root of the probe voltage (8 = 1/2).
The requirement of probe dimensions being smaller than the
Debye length is hard to meet in practice for ionospheric mea-
surements, where the Debye length varies from a few mm to
several cm. Because of this as well as because of contamina-
tion, the actual probe characteristics often differ from the ap-
proximated OML theory expressions. In fact, Piel et al.® and
Barjatya et al.* have shown that that although the general
expression remains the same, the 8 factor varies even for a
specific probe geometry. At the same time, recent work by
Bekkeng et al.'> and Chen'® has shown that the approximated
expressions are indeed valid, both in space and in laboratory
plasma, as long as the probe design adheres to keeping the di-
mensions smaller than any Debye length encountered. Thus,
we have chosen to use the approximated OML theory current
collection expressions in the model, not only because they
are easier to implement, but also because effects on the I-V
characteristic due to deviation from OML expressions are ex-
pected to be smaller than that caused by contamination or by
surface to probe area ratio. This is tested next by a qualita-
tive comparison with in situ measured data, where the probe
dimensions were comparable or larger than the Debye length
encountered during the rocket flight.
Figure 2 shows the measured I-V characteristics from
a spherical probe sweep measurement during a nighttime

DEOS F06: nighttime launch from SHAR

70 T 5

-current [pA]
probe potential [V]
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FIG. 2. Probe current versus time after the start of the sweep. Also shown is
the applied probe potential. The slight current increase after 0.08 s is a spin
effect.
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FIG. 3. SPICE model simulation results for N, =7 x
T, = 1300 K. Dotted line: applied potential.

launch from Sriharikota Range (SHAR), India (Dynamics of
the Equatorial Ionosphere over SHAR (DEOS) F06). There
are two features that pop-out in the plot: one, the electron sat-
uration region shows a nonlinear increase with applied volt-

spatial structure [m]
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age, and two, the current decays even though the potential is
held constant at the end of up-sweep. The analysis in Ref. 8
finds that the contamination on the spherical Langmuir probe
on the DEOS FO06 rocket payload can be characterized by a
parallel combination of R, =30k £ and C, = 0.1 uF. We use
these values in our SPICE model, and simulate the —2 Vto4 V
sweeps for the density and temperature combination that was
derived from the DEOS data after contamination corrections
as outlined in the Piel et al.® paper. The model simulation re-
sults are shown in Figure 3, which match qualitatively fairly
well with measured current. Thus, while our model using the
approximate OML theory expression in a case where probe
dimensions are larger than the Debye length cannot accurately
quantitatively simulate the observed currents, it should be
sufficient to qualitatively describe the effects of contamina-
tion on fixed bias probe measurements.

In addition to probe surface contamination, a small
payload-to-probe surface area ratio also leads to poorly de-
termined plasma parameters from a swept-bias Langmuir
probe’s measured I-V curves. Szuszczewicz has shown that
a swept-bias Langmuir probe should have a ratio of payload
surface area to the probe area of 10000 to guarantee no change
in payload floating potential during probe sweep.!” In a recent
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FIG. 4. Spice model simulation of a spherical Langmuir probe biased at +5 V in the electron saturation region. The simulation used N, = 10'2/m3 and T, =

2000 K. A density fluctuation of 10% was simulated at different frequencies as shown in the x-axis.
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experiment, Shimoyama et al. have shown'® that a small sur-
face ratio of 124 causes an underestimation of electron den-
sity by 50%. However, a small payload-to-probe surface area
ratio has a lesser effect on fixed-bias Langmuir probe data
set. This is because the payload will float to whatever poten-
tial is required to maintain current balance between fixed bias
probe and the payload surface. Thus, the only effect seen by
the fixed bias probe will be a smaller measured current be-
cause the probe is now not operating as far in the saturation
region as it was intended to be. The only instance a fixed bias
probe will fail is when the surface ratio is so small that the
payload floating potential shifts significantly enough to im-
pede the fixed bias probe from operating in the saturation re-
gion. We maintained a payload-to-probe surface area ratio of
2000 in our simulations, which is typical of most sounding

rockets.

lll. CONTAMINATION EFFECTS ON FIXED-BIAS

LANGMUIR PROBES

While contamination effects on a swept-bias probe are
easy to diagnose and account for in post-flight data analysis,
they cannot be assessed in a fixed-bias Langmuir probe data
set. The largest effect on a fixed-bias probe would occur when

spatial structure [m]
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the ambient density is fluctuating at a rate much slower than
the RC time constant of the probe contamination, in partic-
ular for the DC current. We model this effect by simulating
a 10% sinusoidal fluctuation in the plasma density at varying
frequencies from 1 mHz to 10 kHz. The simulation results
for a fixed-bias probe operating in the electron saturation re-
gion (+5 V) are plotted in Fig. 4. We use contamination resis-
tances of 1 k2 (black lines), 10 k2 (blue lines), and 100 k2
(red lines), and contamination capacitances of 0.1 wF (solid),
1 wF 10 uF, and 100 pF (dot). We simulate the density and
temperature that is found in the F-region ionosphere: plasma
density of 10'> m—> and a plasma temperature of 2000 K. The
bottom x-axis of the figure shows the fluctuation frequency,
while the top x-axis shows the spatial scale of density struc-
ture that corresponds to the frequency assuming a rocket ve-
locity of 1 km/s. The y-axis is presented as a percentage of
amplitude change, where we have assumed the current am-
plitude at higher frequency (i.e., smaller scale structure) as
100%. Figure 5 is a similar plot but for a fixed-bias probe op-
erating in the ion saturation region (—5 V) with a 10 times
larger probe area to collect a comfortably measurable current.
As mentioned before, relative density measurements de-
rived from fixed-bias probes are periodically cross cali-
brated/normalized to absolute density measurements from
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FIG. 5. Same simulation parameters as in Figure 4, but with the Langmuir probe biased at —5 Vin the ion saturation region.
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other instruments. Such a calibration/normalization is usually
done outside the plasma turbulence zone where the altitude-
density profile is smooth, i.e., large spatial scale or low fre-
quency (left side of Figure 4). If such a normalization is
done for a fixed-bias probe operating in electron saturation
region then the results shown in Figure 4 imply that the
apparent magnitude of turbulence can be as much as fac-
tor of three larger than actuality. The contamination resis-
tance determines the magnitude of the fluctuation amplifica-
tion, whereas the contamination capacitance determines the
cross-over frequency, i.e., the larger the contamination resis-
tance, the larger the observed amplitude of the small scale
spatial fluctuations, and the larger the contamination capac-
itance, the larger the spatial scale density fluctuation where
the magnitude amplification starts occurring. Figure 5 shows
us that a fixed-bias probe operating in ion saturation region
has a smaller such effect. This is to be expected as the ob-
served current in ion saturation region is an order of magni-
tude smaller than that in electron saturation region. It is im-
portant to note here that Figure 4 is unique to the chosen probe
area and plasma density. If we simulate a lower plasma den-
sity and a smaller sized probe then the collected current be-
comes smaller, resulting in the smaller amplification of fluc-
tuations, but an amplification nevertheless.

Due to the nature of operation of fixed-bias probes, it
is not possible to isolate and remove contamination effects.
However, confirmation of these effects in the actual spectra of
density fluctuations acquired with fixed-bias Langmuir probes
could be made through comparisons of, for example, simul-
taneous high time resolution plasma density measurements
through impedance probes that track the upper hybrid fre-
quency. Note that these contamination effects on fixed-bias
Langmuir probes pose a problem only for those missions that
aim to identify the size of plasma density fluctuations, and not
those missions where the sole objective is to identify the alti-
tudes where the turbulence exists. In fact, this accentuation of
small scale density fluctuations may be an asset in the latter
case.

IV. CONCLUSION

In most cases, Langmuir probes used on sounding rock-
ets are contaminated. Even if care has been taken to wipe
the probes with alcohol, internally heat them while on the
launch-pad, and nitrogen purge the payload, the probes can
still be quickly contaminated in the atmosphere after launch.
This contamination severely affects measurements with swept
Langmuir probes, which can lead to large errors in the deter-
mination of plasma parameters. The contamination parame-
ters can be determined from the probe measurements when
the sweep function includes both an up- and down-ramp, and
sufficient settle time between the ramps. Based on the deter-
mined contamination constants, we can calculate the poten-
tial that the plasma sees. In this manner, the correct plasma
parameters can be determined from swept-bias probes.

As shown in this paper, probe contamination also affects
fixed-bias measurements. The presence of contamination may

Rev. Sci. Instrum. 83, 113502 (2012)

not pose a noticeable problem in cases where the fixed-bias
probe is frequently cross-calibrated with an independent den-
sity measurement during the flight and/or the instrument is
only used for “DC” density measurements. It creates a prob-
lem specifically for those missions where the fixed-bias Lang-
muir probes are used to study plasma turbulence and the mag-
nitude of the density gradients. If the fixed-bias Langmuir
probe data are normalized to absolute density measurements
outside the turbulence zone then this would increase the ap-
parent amplitude of the fluctuations in the turbulence zone.
Thus, the degree by which the amplitude of the fluctuations in
the turbulence zone has been enhanced as a function of spa-
tial small scale structure will not be readily determined. If the
probe is never operated in a sweep mode, the contamination
will probably remain undetected and fluctuation magnitude
measurements will be unreliable. However, if the sole pur-
pose of the fixed-bias probe measurements is the location of
small scale density fluctuations along the payload trajectory,
then the contamination effects may actually be helpful as this
would make even the smallest scale density changes easily no-
ticeable in the data. This paper also shows that contamination
effects are comparatively benign for fixed-bias probes oper-
ating in ion saturation region, with the caveat that the mea-
surement electronics have to be more sensitive as the ion sat-
uration current is an order of magnitude smaller than electron
saturation current. Nevertheless, since the contamination pa-
rameters are expected to change only slowly during a sound-
ing rocket flight, it should be sufficient to measure the con-
tamination by sweeping the probe a few times during the
flight, especially near the apogee where the rocket velocity
is slow.
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