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A GRAVITATIONAL-WAVE STANDARD SIREN MEASUREMENT OF THE HUBBLE CONSTANT

THE LIGO SCIENTIFIC COLLABORATION AND THE VIRGO COLLABORATION, THE 1M2H COLLABORATION,
THE DARK ENERGY CAMERA GW-EM COLLABORATION AND THE DES COLLABORATION,

THE DLT40 COLLABORATION, THE LAS CUMBRES OBSERVATORY COLLABORATION,
THE VINROUGE COLLABORATION, THE MASTER COLLABORATION, et al.

ABSTRACT
The detection of GW170817 (Abbott et al. 2017a) in both gravitational waves and electromagnetic waves

heralds the age of gravitational-wave multi-messenger astronomy. On 17 August 2017 the Advanced Laser
Interferometer Gravitational-wave Observatory (LIGO) (LIGO Scientific Collaboration et al. 2015) and
Virgo (Acernese et al. 2015) detectors observed GW170817, a strong signal from the merger of a binary
neutron-star system. Less than 2 seconds after the merger, a gamma-ray burst (GRB 170817A) was detected
within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source
(Abbott et al. 2017b; Goldstein et al. 2017; Savchenko et al. 2017). This sky region was subsequently
observed by optical astronomy facilities (Abbott et al. 2017c), resulting in the identification of an optical
transient signal within ∼ 10 arcsec of the galaxy NGC 4993 (Coulter et al. 2017; Soares-Santos et al. 2017;
Valenti et al. 2017; Arcavi et al. 2017; Tanvir et al. 2017; Lipunov et al. 2017). These multi-messenger
observations allow us to use GW170817 as a standard siren (Schutz 1986; Holz & Hughes 2005; Dalal et al.
2006; Nissanke et al. 2010, 2013), the gravitational-wave analog of an astronomical standard candle, to mea-
sure the Hubble constant. This quantity, which represents the local expansion rate of the Universe, sets the
overall scale of the Universe and is of fundamental importance to cosmology. Our measurement combines
the distance to the source inferred purely from the gravitational-wave signal with the recession velocity
inferred from measurements of the redshift using electromagnetic data. This approach does not require
any form of cosmic “distance ladder” (Freedman et al. 2001); the gravitational-wave (GW) analysis can be
used to estimate the luminosity distance out to cosmological scales directly, without the use of intermedi-
ate astronomical distance measurements. We determine the Hubble constant to be 70.0+12.0

−8.0 km s−1 Mpc−1

(maximum a posteriori and 68% credible interval). This is consistent with existing measurements (Planck
Collaboration et al. 2016; Riess et al. 2016), while being completely independent of them. Additional
standard-siren measurements from future gravitational-wave sources will provide precision constraints of
this important cosmological parameter.
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The Hubble constant H0 measures the mean ex-
pansion rate of the Universe. At nearby distances
(d . 50 Mpc) it is well approximated by the ex-
pression

vH = H0d, (1)

where vH is the local “Hubble flow” velocity of a
source, and d is the distance to the source. At such
distances all cosmological distance measures (such
as luminosity distance and comoving distance) dif-
fer at the order of vH/c where c is the speed of
light. As vH/c ∼ 1% for GW170817 we do not
distinguish between them. We are similarly insen-
sitive to the values of other cosmological parame-
ters, such as Ωm and ΩΛ.

To obtain the Hubble flow velocity at the posi-
tion of GW170817, we use the optical identifica-
tion of the host galaxy NGC 4993 (Abbott et al.
2017c). This identification is based solely on the
2-dimensional projected offset and is independent
of any assumed value of H0. The position and red-
shift of this galaxy allow us to estimate the appro-
priate value of the Hubble flow velocity. Because
the source is relatively nearby the random relative
motions of galaxies, known as peculiar velocities,
need to be taken into account. The peculiar veloc-
ity is ∼ 10% of the measured recessional velocity
(see Methods).

The original standard siren proposal (Schutz
1986) did not rely on the unique identification of
a host galaxy. By combining information from
∼ 100 independent GW detections, each with a set
of potential host galaxies, a ∼ 5% estimate of H0

can be obtained even without the detection of any
transient optical counterparts (Del Pozzo 2012).
This is particularly relevant, as gravitational-wave
networks will detect many binary black hole merg-
ers over the coming years (Abbott et al. 2016a),
and these are not expected to be accompanied by
electromagnetic counterparts. Alternatively, if an
EM counterpart has been identified but the host
galaxy is unknown, the same statistical method
can be applied but using only those galaxies in

a narrow beam around the location of the opti-
cal counterpart. However, such statistical analyses
are sensitive to a number of complicating effects,
including the incompleteness of current galaxy cat-
alogs or the need for dedicated follow-up surveys,
as well as a range of selection effects (Messen-
ger & Veitch 2013). In what follows we exploit
the identification of NGC 4993 as the host galaxy
of GW170817 to perform a standard siren mea-
surement of the Hubble constant (Holz & Hughes
2005; Dalal et al. 2006; Nissanke et al. 2010,
2013).

Analysis of the GW data associated with GW170817
produces estimates for the parameters of the
source, under the assumption that general rela-
tivity is the correct model of gravity (Abbott et al.
2017a). We are most interested in the joint pos-
terior distribution on the luminosity distance and
binary orbital inclination angle. For the analysis in
this paper we fix the location of the GW source on
the sky to the identified location of the counterpart
(Coulter et al. 2017). See the Methods section for
details.

An analysis of the GW data alone finds that
GW170817 occurred at a distance d = 43.8+2.9

−6.9 Mpc
(all values are quoted as the maximum posterior
value with the minimal width 68.3% credible inter-
val). We note that the distance quoted here differs
from that in other studies (Abbott et al. 2017a),
since here we assume that the optical counter-
part represents the true sky location of the GW
source instead of marginalizing over a range of
potential sky locations. The ∼ 15% uncertainty
is due to a combination of statistical measurement
error from the noise in the detectors, instrumen-
tal calibration uncertainties (Abbott et al. 2017a),
and a geometrical factor dependent upon the cor-
relation of distance with inclination angle. The
GW measurement is consistent with the distance
to NGC 4993 measured using the Tully-Fisher re-
lation, dTF = 41.1 ± 5.8 Mpc (Sakai et al. 2000;
Freedman et al. 2001).
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The measurement of the GW polarization is cru-
cial for inferring the binary inclination. This in-
clination, ι, is defined as the angle between the
line of sight vector from the source to the detec-
tor and the orbital angular momentum vector of
the binary system. For electromagnetic (EM) phe-
nomena it is typically not possible to tell whether a
system is orbiting clockwise or counter-clockwise
(or, equivalently, face-on or face-off), and sources
are therefore usually characterized by a viewing
angle: min (ι, 180◦ − ι). By contrast, GW mea-
surements can identify the sense of the rotation,
and thus ι ranges from 0 (counter-clockwise) to
180 deg (clockwise). Previous GW detections by
LIGO had large uncertainties in luminosity dis-
tance and inclination (Abbott et al. 2016a) because
the two LIGO detectors that were involved are
nearly co-aligned, preventing a precise polariza-
tion measurement. In the present case, thanks to
Virgo as an additional detector, the cosine of the
inclination can be constrained at 68.3% (1σ) con-
fidence to the range [−1.00,−0.81] corresponding
to inclination angles between [144, 180] deg. This
implies that the plane of the binary orbit is almost,
but not quite, perpendicular to our line of sight
to the source (ι ≈ 180 deg), which is consistent
with the observation of a coincident GRB (LVC,
GBM, & INTEGRAL 2017 in prep.; Goldstein et
al. 2017, ApJL, submitted; Savchenko et al. 2017,
ApJL, submitted). We report inferences on cos ι
because our prior for it is flat, so the posterior is
proportional to the marginal likelihood for it from
the GW observations.

EM follow-up of the GW sky localization re-
gion (Abbott et al. 2017c) discovered an opti-
cal transient (Coulter et al. 2017; Soares-Santos
et al. 2017; Valenti et al. 2017; Arcavi et al. 2017;
Tanvir et al. 2017; Lipunov et al. 2017) in close
proximity to the galaxy NGC 4993. The location
of the transient was previously observed by the
Distance Less Than 40 Mpc (DLT40) survey on
2017 July 27.99 UT and no sources were found
(Valenti et al. 2017). We estimate the probability
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Figure 1. GW170817 measurement ofH0. Marginal-
ized posterior density for H0 (blue curve). Constraints
at 1- and 2σ from Planck (Planck Collaboration et al.
2016) and SHoES (Riess et al. 2016) are shown in
green and orange. The maximum a posteriori value
and minimal 68.3% credible interval from this PDF is
H0 = 70.0+12.0

−8.0 km s−1 Mpc−1. The 68.3% (1σ) and
95.4% (2σ) minimal credible intervals are indicated by
dashed and dotted lines.

of a random chance association between the opti-
cal counterpart and NGC 4993 to be 0.004% (see
the Methods section for details). In what follows
we assume that the optical counterpart is associ-
ated with GW170817, and that this source resides
in NGC 4993.

To compute H0 we need to estimate the back-
ground Hubble flow velocity at the position of
NGC 4993. In the traditional electromagnetic cal-
ibration of the cosmic “distance ladder” (Freed-
man et al. 2001), this step is commonly carried
out using secondary distance indicator informa-
tion, such as the Tully-Fisher relation (Sakai et al.
2000), which allows one to infer the background
Hubble flow velocity in the local Universe scaled
back from more distant secondary indicators cal-
ibrated in quiet Hubble flow. We do not adopt
this approach here, however, in order to preserve
more fully the independence of our results from
the electromagnetic distance ladder. Instead we
estimate the Hubble flow velocity at the position
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Figure 2. Inference on H0 and inclination. Pos-
terior density of H0 and cos ι from the joint GW-EM
analysis (blue contours). Shading levels are drawn at
every 5% credible level, with the 68.3% (1σ, solid) and
95.4% (2σ, dashed) contours in black. Values ofH0 and
1- and 2σ error bands are also displayed from Planck
(Planck Collaboration et al. 2016) and SHoES (Riess
et al. 2016). As noted in the text, inclination angles
near 180 deg (cos ι = −1) indicate that the orbital an-
gular momentum is anti-parallel with the direction from
the source to the detector.

of NGC 4993 by correcting for local peculiar mo-
tions.

NGC 4993 is part of a collection of galaxies,
ESO-508, whose center-of-mass recession veloc-
ity relative to the frame of the CMB (Hinshaw et al.
2009) is (Crook et al. 2007) 3327± 72 km s−1. We
correct the group velocity by 310 km s−1 due to
the coherent bulk flow (Springob et al. 2014; Car-
rick et al. 2015) towards The Great Attractor (see
Methods section for details). The standard error on
our estimate of the peculiar velocity is 69 km s−1,
but recognizing that this value may be sensitive
to details of the bulk flow motion that have been
imperfectly modelled, in our subsequent analysis
we adopt a more conservative estimate (Carrick
et al. 2015) of 150km s−1 for the uncertainty on
the peculiar velocity at the location of NGC 4993,
and fold this into our estimate of the uncertainty
on vH . From this, we obtain a Hubble velocity
vH = 3017± 166 km s−1.

Once the distance and Hubble velocity distribu-
tions have been determined from the GW and EM
data, respectively, we can constrain the value of
the Hubble constant. The measurement of the dis-
tance is strongly correlated with the measurement
of the inclination of the orbital plane of the bi-
nary. The analysis of the GW data also depends on
other parameters describing the source, such as the
masses of the components (Abbott et al. 2016a).
Here we treat the uncertainty in these other vari-
ables by marginalizing over the posterior distribu-
tion on system parameters (Abbott et al. 2017a),
with the exception of the position of the system on
the sky which is taken to be fixed at the location of
the optical counterpart.

We carry out a Bayesian analysis to infer
a posterior distribution on H0 and inclination,
marginalized over uncertainties in the recessional
and peculiar velocities; see the Methods sec-
tion for details. Figure 1 shows the marginal
posterior for H0. The maximum a posteri-
ori value with the minimal 68.3% credible in-
terval is H0 = 70.0+12.0

−8.0 km s−1 Mpc−1. Our
estimate agrees well with state-of-the-art de-
terminations of this quantity, including CMB
measurements from Planck (Planck Collabora-
tion et al. 2016) (67.74 ± 0.46 km s−1 Mpc−1,
“TT,TE,EE+lowP+lensing+ext”) and Type Ia su-
pernova measurements from SHoES (Riess et al.
2016) (73.24 ± 1.74 km s−1 Mpc−1), as well as
baryon acoustic oscillations measurements from
SDSS (Aubourg et al. 2015), strong lensing mea-
surements from H0LiCOW (Bonvin et al. 2017),
high-l CMB measurements from SPT (Henning
et al. 2017), and Cepheid measurements from the
HST key project (Freedman et al. 2001). Our mea-
surement is a new and independent determination
of this quantity. The close agreement indicates
that, although each method may be affected by dif-
ferent systematic uncertainties, we see no evidence
at present for a systematic difference between GW
and established EM-based estimates. As has been
much remarked upon, the Planck and SHoES re-
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sults are inconsistent at & 3σ level. Our measure-
ment does not resolve this tension, and is broadly
consistent with both.

One of the main sources of uncertainty in our
measurement of H0 is due to the degeneracy be-
tween distance and inclination in the GW measure-
ments. A face-on or face-off binary far away has
a similar gravitational-wave amplitude to an edge-
on binary closer in. This relationship is captured
in Figure 2, which shows posterior contours in the
H0–cos ι parameter space.

The posterior in Figure 1 results from the ver-
tical projection of Figure 2, marginalizing out
uncertainties in the cosine of inclination to de-
rive constraints on the Hubble constant. Alterna-
tively, it is possible to project horizontally, and
thereby marginalize out the Hubble constant to
derive constraints on the cosine of inclination.
If instead of deriving H0 independently we take
the existing constraints on H0 (Planck Collabo-
ration et al. 2016; Riess et al. 2016) as priors,
we are able to significantly improve our con-
straints on cos ι as shown in Figure 3. Assum-
ing the Planck value for H0, the minimal 68.3%
credible interval for the cosine of inclination is
[−1.00,−0.92] (corresponding to an inclination
angle range [157, 177] deg). For the SHoES value
ofH0, it is [−0.97,−0.85] (corresponding to an in-
clination angle range [148, 166] deg). For this latter
SHoES result we note that the face-off ι = 180 deg
orientation is just outside the 90% confidence
range. It will be particularly interesting to com-
pare these constraints to those from modeling of
the short GRB, afterglow, and optical counterpart
associated with GW170817 (Abbott et al. 2017c).

We have presented a standard siren determina-
tion of the Hubble constant, using a combination
of a GW distance and an EM Hubble velocity esti-
mate. Our measurement does not use a “distance
ladder”, and makes no prior assumptions about
H0. We find H0 = 70.0+12.0

−8.0 km s−1 Mpc−1, which
is consistent with existing measurements (Riess
et al. 2016; Planck Collaboration et al. 2016). This
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180 165 150 135 120 105
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Figure 3. Constraints on the inclination angle of
GW170817. Posterior density on cos ι, for various as-
sumptions about the prior distribution of H0. The anal-
ysis of the joint GW and EM data with a 1/H0 prior
density gives the blue curve; using values of H0 from
Planck (Planck Collaboration et al. 2016) and SHoES
(Riess et al. 2016) as a prior on H0 give the green and
red curves, respectively. Choosing a narrow prior onH0

converts the precise Hubble velocity measurements for
the group containing NGC 4993 to a precise distance
measurement, breaking the distance inclination degen-
eracy, and leading to strong constraints on the inclina-
tion. Minimal 68.3% (1σ) credible intervals are indi-
cated by dashed lines. Because our prior on inclination
is flat on cos ι the densities in this plot are proportional
to the marginalised likelihood for cos ι.

first GW–EM multi-messenger event demonstrates
the potential for cosmological inference from GW
standard sirens. We expect that additional multi-
messenger binary neutron-star events will be de-
tected in the coming years, and combining subse-
quent independent measurements of H0 from these
future standard sirens will lead to an era of preci-
sion gravitational-wave cosmology.
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METHODS

PROBABILITY OF OPTICAL COUNTERPART
ASSOCIATION WITH NGC 4993

We calculate the probability that an NGC 4993-
like galaxy (or brighter) is misidentified as the host
by asking how often the centre of one or more such
galaxies falls by random chance within a given an-
gular radius θ of the counterpart. Assuming Pois-
son counting statistics this probability is given by
P = 1 − exp [−πθ2S(< m)] where S(< m) is
the surface density of galaxies with apparent mag-
nitude equal to or brighter than m. From the lo-
cal galaxy sample distribution in the infrared (K-
band) apparent magnitude (Huang et al. 1998) we
obtain S(< K) = 0.68×10(0.64(K−10.0)−0.7) deg−2.
As suggested by (Bloom et al. 2002), we set θ
equal to twice the half-light radius of the galaxy,
for which we use NGC 4993’s diameter of ∼ 1.1
arcmin, as measured in the near infrared band (the
predominant emission band for early-type galax-
ies). Using K = 9.2 mag taken from the 2MASS
survey (Skrutskie et al. 2006) for NGC 4993, we
find the probability of random chance association
is P = 0.004%.

FINDING THE HUBBLE VELOCITY OF
NGC 4993

In previous EM determinations of the cosmic
“distance ladder”, the Hubble flow velocity of
the local calibrating galaxies has generally been
estimated using redshift-independent secondary
galaxy distance indicators, such as the Tully-Fisher
relation or type Ia supernovae, calibrated with
more distant samples that can be assumed to sit in
quiet Hubble flow (Freedman et al. 2001). We do
not adopt this approach for NGC 4993, however, in
order that our inference of the Hubble constant is
fully independent of the electromagnetic distance
scale. Instead we estimate the Hubble flow ve-
locity at the position of NGC 4993 by correcting
its measured recessional velocity for local peculiar
motions.

NGC 4993 resides in a group of galaxies whose
center-of-mass recession velocity relative to the
Cosmic Microwave Background (CMB) frame
(Hinshaw et al. 2009) is (Crook et al. 2007, 2008)
3327±72 km s−1. We assume that all of the galax-
ies in the group are at the same distance and there-
fore have the same Hubble flow velocity, which we
assign to be the Hubble velocity of GW170817.
This assumption is accurate to within 1% given
that the radius of the group is ∼ 0.4 Mpc. To cal-
culate the Hubble flow velocity of the group, we
correct its measured recessional velocity by the
peculiar velocity caused by the local gravitational
field. This is a significant correction (Springob
et al. 2014; Carrick et al. 2015); typical peculiar
velocities are 300 km s−1, equivalent to ∼ 10% of
the total recessional velocity at a distance of 40
Mpc.

We employ the 6dF galaxy redshift survey pe-
culiar velocity map (Springob et al. 2014; Jones
et al. 2009), which used more than 8,000 Funda-
mental Plane galaxies to map the peculiar veloc-
ity field in the Southern hemisphere out to red-
shift z ' 0.055. We weight the peculiar veloc-
ity corrections from this catalog with a Gaussian
kernel centered on NGC 4993’s sky position and
with a width of 8h−1 Mpc; the kernel width is in-
dependent of H0 and is equivalent to a width of
800 km s−1 in velocity space, typical of the widths
used in the catalog itself. There are 10 galaxies in
the 6dF peculiar velocity catalog within one ker-
nel width of NGC 4993. In the CMB frame (Hin-
shaw et al. 2009), the weighted radial component
of the peculiar velocity and associated uncertainty
is 〈vp〉 = 310± 69 km s−1.

We verified the robustness of this peculiar ve-
locity correction by comparing it with the velocity
field reconstructed from the 2MASS redshift sur-
vey (Carrick et al. 2015; Huchra et al. 2012). This
exploits the linear relationship between the pecu-
liar velocity and mass density fields smoothed on
scales larger than about 8h−1 Mpc, and the con-
stant of proportionality can be determined by com-
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parison with radial peculiar velocities of individual
galaxies estimated from e.g. Tully-Fisher and Type
Ia supernovae distances. Using these reconstructed
peculiar velocities, which have a larger associated
uncertainty (Carrick et al. 2015) of 150 km s−1, at
the position of NGC 4993 we find a Hubble veloc-
ity in the CMB frame of vH = 3047 km s−1 – in
excellent agreement with the result derived using
6dF. We adopt this larger uncertainty on the pecu-
liar velocity correction in recognition that the pe-
culiar velocity estimated from the 6dF data may
represent an imperfect model of the true bulk flow
at the location of NGC 4993. For our inference of
the Hubble constant we therefore use a Hubble ve-
locity vH = 3017± 166 km s−1 with 68.3% uncer-
tainty.

Finally, while we emphasise again the indepen-
dence of our Hubble constant inference from the
electromagnetic distance scale, we note the consis-
tency of our GW distance estimate to NGC 4993
with the Tully-Fisher distance estimate derived by
scaling back the Tully-Fisher relation calibrated
with more distant galaxies in quiet Hubble flow
(Sakai et al. 2000). This also strongly supports the
robustness of our estimate for the Hubble velocity
of NGC 4993.

SUMMARY OF THE MODEL

Given observed data from a set of GW detec-
tors, xGW, parameter estimation is used to gener-
ate a posterior on the parameters that determine the
waveform of the GW signal. Parameters are in-
ferred within a Bayesian framework (Veitch et al.
2015) by comparing strain measurements (Abbott
et al. 2017a) in the two LIGO detectors and the
Virgo detector with the gravitational waveforms
expected from the inspiral of two point masses
(Hannam et al. 2014) under general relativity. We
use algorithms for removing short-lived detector
noise artifacts (Abbott et al. 2017a; Cornish & Lit-
tenberg 2015) and we employ approximate point-
particle waveform models (Buonanno & Damour
1999; Blanchet 2014; Hannam et al. 2014). We
have verified that the systematic changes in the re-

sults presented here from incorporating non-point-
mass (tidal) effects (Hinderer & Flanagan 2008;
Vines et al. 2011) and from different data process-
ing methods are much smaller than the statistical
uncertainties in the measurement of H0 and the bi-
nary orbital inclination angle.

From this analysis we can obtain the parame-
ter estimation likelihood of the observed GW data,
marginalized over all parameters characterizing the
GW signal except d and cos ι,

p(xGW | d, cos ι) =

∫
p(xGW | d, cos ι, ~λ) p(~λ)d~λ.

(2)

The other waveform parameters are denoted by ~λ,
with p(~λ) denoting the corresponding prior.

Given perfect knowledge of the Hubble flow ve-
locity of the GW source, vH , this posterior distri-
bution can be readily converted into a posterior on
cos ι and H0 = vH/d,

p(H0, cos ι|xGW)

∝ (vH/H
2
0 ) p(xGW | d = vH/H0, cos ι)

× pd(vH/H0) pι(cos ι), (3)

where pd(d) and pι(cos ι) are the prior distributions
on distance and inclination. For the Hubble veloc-
ity vH = 3017 km s−1, the maximum a posteriori
distance from the GW measurement of 43.8 Mpc
corresponds to H0 = 68.9 km s−1 Mpc−1, so this
procedure would be expected to generate a poste-
rior on H0 that peaks close to that value.

While the above analysis is conceptually straight-
forward, it makes a number of assumptions. In
practice, the Hubble-flow velocity cannot be de-
termined exactly and it must be corrected for un-
certain peculiar velocities. The above does not
explicitly set a prior on H0, but instead inherits
a 1/H4

0 prior from the usual pd(d) ∝ d2 prior
used in GW parameter estimation. In addition,
the logic in this model is that a redshift has been
obtained first and the distance is then measured
using GWs. As GW detectors cannot be pointed,
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we cannot target particular galaxies or redshifts for
GW sources. In practice, we wait for a GW event
to trigger the analysis and this introduces potential
selection effects which we must consider. We will
see below that the simple analysis described above
does give results that are consistent with a more
careful analysis for this first detection. However,
the simple analysis cannot be readily extended to
include second and subsequent detections, so we
now describe a more general framework that does
not suffer from these limitations.

We suppose that we have observed a GW event,
which generated data xGW in our detectors, and
that we have also measured a recessional velocity
for the host, vr, and the peculiar velocity field, 〈vp〉,
in the vicinity of the host. These observations are
statistically independent and so the combined like-
lihood is

p(xGW, vr, 〈vp〉 | d, cos ι, vp, H0) =

p(xGW | d, cos ι) p(vr | d, vp, H0) p(〈vp〉 | vp).
(4)

The quantity p(vr | d, vp, H0) is the likelihood of
the recessional velocity measurement, which we
model as

p (vr | d, vp, H0) = N
[
vp +H0d, σ

2
vr

]
(vr) (5)

where N [µ, σ2] (x) is the normal (Gaussian) prob-
ability density with mean µ and standard deviation
σ evaluated at x. The measured recessional ve-
locity, vr = 3327 km s−1, with uncertainty σvr =
72 km s−1, is the mean velocity and standard error
for the members of the group hosting NGC 4993
taken from the two micron all sky survey (2MASS)
(Crook et al. 2007, 2008), corrected to the CMB
frame (Hinshaw et al. 2009). We take a similar
Gaussian likelihood for the measured peculiar ve-
locity, 〈vp〉 = 310 km s−1, with uncertainty σvp =
150 km s−1:

p (〈vp〉 | vp) = N
[
vp, σ

2
vp

]
(〈vp〉) . (6)

From the likelihood (4) we derive the posterior

p(H0, d, cos ι, vp | xGW, vr, 〈vp〉)

∝ p(H0)

Ns(H0)
p(xGW | d, cos ι) p(vr | d, vp, H0)

× p(〈vp〉 | vp) p(d) p(vp) p(cos ι), (7)

where p(H0), p(d), p(vp) and p(cos ι) are the pa-
rameter prior probabilities. Our standard analy-
sis assumes a volumetric prior, p (d) ∝ d2, on
the Hubble distance, but we explore sensitivity to
this choice below. We take a flat-in-log prior on
H0, p (H0) ∝ 1/H0, impose a flat (i.e. isotropic)
prior on cos ι, and a flat prior on vp for vp ∈
[−1000, 1000] km s−1. These priors characterise
our beliefs about the cosmological population of
GW events and their hosts before we make any
additional measurements or account for selection
biases. The full statistical model is summarized
graphically in Extended Data Figure 1. This model
with these priors is our canonical analysis.

In Eq. (7), the term Ns(H0) encodes selection
effects (Loredo 2004; Mandel et al. 2016; Abbott
et al. 2016a). These arise because of the finite sen-
sitivity of our detectors. While all events in the
Universe generate a response in the detector, we
will only be able to identify, and hence use, sig-
nals that generate a response of sufficiently high
amplitude. The decision about whether to include
an event in the analysis is a property of the data
only, in this case {xGW, vr, 〈vp〉}, but the fact
that we condition our analysis on a signal being
detected, i.e., the data exceeding these thresholds,
means that the likelihood must be renormalized to
become the likelihood for detected events. This is
the role of

Ns(H0) =

∫
detectable

d~λ dd dvp dcos ι dxGW dvr d〈vp〉

×
[
p(xGW | d, cos ι, ~λ) p(vr | d, vp, H0)

× p(〈vp〉 | vp) p(~λ) p(d) p(vp) p(cos ι)
]
, (8)

where the integral is over the full prior ranges of
the parameters, {d, vp, cos ι, ~λ}, and over data sets
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that would be selected for inclusion in the analy-
sis, i.e., exceed the specified thresholds. If the in-
tegral was over all data sets it would evaluate to 1,
but because the range is restricted there can be a
non-trivial dependence on parameters characteriz-
ing the population of sources, in this case H0.

In the current analysis, there are in principle se-
lection effects in both the GW data and the EM
data. However, around the time of detection of
GW170817, the LIGO-Virgo detector network
had a detection horizon of ∼ 190 Mpc for binary
neutron star (BNS) events (Abbott et al. 2017a),
within which EM measurements are largely com-
plete. For example, the counterpart associated with
GW170817 had brightness ∼ 17 mag in the I band
at 40 Mpc (Valenti et al. 2017; Arcavi et al. 2017;
Tanvir et al. 2017; Lipunov et al. 2017; Coul-
ter et al. 2017); this source would be ∼ 22 mag
at 400 Mpc, and thus still detectable by survey
telescopes such as DECam well beyond the GW
horizon. Even the dimmest theoretical lightcurves
for kilonovae are expected to peak at ∼ 22.5 mag
at the LIGO–Virgo horizon (Metzger & Berger
2012). We therefore expect that we are dominated
by GW selection effects at the current time and
can ignore EM selection effects. The fact that the
fraction of BNS events that will have observed
kilonova counterparts is presently unknown does
not modify these conclusions, since we can restrict
our analysis to GW events with kilonova counter-
parts only.

In the GW data, the decision about whether or
not to analyse an event is largely determined by the
signal-to-noise ratio (SNR), ρ, of the event. A rea-
sonable model for the selection process is a cut in
SNR, i.e., events with ρ > ρ∗ are analysed (Abbott
et al. 2016b). In that model, the integral over xGW

in Eq. (8) can be replaced by an integral over SNR
from ρ∗ to ∞, and p(xGW|d, cos ι, ~λ) replaced by
p(ρ|d, cos ι, ~λ) in the integrand. This distribution
depends on the noise properties of the operating
detectors, and on the intrinsic strain amplitude of
the source. The former are clearly independent of

the population parameters, while the latter scales
like a function of the source parameters divided by
the luminosity distance. The dependence on source
parameters is on redshifted parameters, which in-
troduces an explicit redshift dependence. How-
ever, within the ∼ 190 Mpc horizon, redshift cor-
rections are at most . 5%, and the Hubble constant
measurement is a weak function of these, mean-
ing the overall impact is even smaller. At present,
whether or not a particular event in the population
ends up being analysed can therefore be regarded
as a function of d only. When GW selection effects
dominate, only the terms in Eq. (8) arising from the
GW measurement matter. As these are a function
of d only and we set a prior on d, there is no explicit
H0 dependence in these terms. Hence, Ns(H0) is
a constant and can be ignored. This would not
be the case if we set a prior on the redshifts of
potential sources instead of their distances, since
then changes in H0 would modify the range of de-
tectable redshifts. As the LIGO–Virgo detectors
improve in sensitivity the redshift dependence in
the GW selection effects will become more impor-
tant, as will EM selection effects. However, at that
point we will also have to consider deviations in
the cosmological model from the simple Hubble
flow described in Eq. (1) of the main article.

Marginalising Eq. (7) over d, vp and cos ι then
yields

p(H0 | xGW, vr, 〈vp〉) ∝ p(H0)

∫
dd dvp dcos ι

× p(xGW | d, cos ι) p(vr | d, vp, H0)

× p(〈vp〉 | vp) p(d) p(vp) p(cos ι) . (9)

The posterior computed in this way was shown
in Figure 1 in the main article and has a max-
imum a posteriori value and minimal 68.3%
credible interval of 70.0+12.0

−8.0 km s−1 Mpc−1, as
quoted in the main article. The posterior mean
is 78 km s−1 Mpc−1 and the standard deviation is
15 km s−1 Mpc−1. Various other summary statis-
tics are given in Extended Data Table 1.

ROBUSTNESS TO PRIOR SPECIFICATION
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d cos vp H0

xGW vr vp

Extended Data Figure 1. Graphical model illustrat-
ing the statistical relationships between the data and
parameters. Open circles indicate parameters which
require a prior; filled circles described measured data,
which are conditioned on in the analysis. Here we as-
sume we have measurements of the GW data, xGW, a
recessional velocity (i.e. redshift), vr, and the mean pe-
culiar velocity in the neighborhood of NGC 4993, 〈vp〉.
Arrows flowing into a node indicate that the conditional
probability density for the node depends on the source
parameters; for example, the conditional distribution for
the observed GW data, p (xGW | d, cos ι), discussed in
the text, depends on the distance and inclination of the
source (and additional parameters, here marginalized
out).

Our canonical analysis uses a uniform volumet-
ric prior on distance, p(d) ∝ d2. The distribu-
tion of galaxies is not completely uniform due to
clustering, so we explore sensitivity to this prior
choice. We are free to place priors on any two of
the three variables {d,H0, z}, where z = H0d/c is
the Hubble flow redshift of NGC 4993. A choice
of prior for two of these variables induces a prior
on the third which may or may not correspond to
a natural choice for that parameter. A prior on
z could be obtained from galaxy catalog observa-
tions (Dalya et al. 2016), but must be corrected for
incompleteness. When setting a prior on H0 and z,

the posterior becomes

p(H0, z, cos ι, vp | xGW, vr, 〈vp〉)

∝ p(H0)

Ns(H0)
p(xGW | d = cz/H0, cos ι) p(vr | z, vp)

× p(〈vp〉 | vp) p(z) p(vp) p(cos ι), (10)

but now

Ns(H0) =

∫
detectable

dz dvp dcos ι dxGW dvr d〈vp〉

× p(xGW | d = cz/H0, cos ι) p(vr | z, vp)
× p(〈vp〉 | vp) p(z) p(vp) p(cos ι) . (11)

When GW selection effects dominate, the integral
is effectively

Ns(H0) =

∫
dz dcos ι dxGW

× p(xGW | d = cz/H0, cos ι)p(z) p(cos ι)

=

∫
dd dcos ι dxGW

× p(xGW | d, cos ι)p(dH0/c) p(cos ι) (H0/c) ,
(12)

which has an H0 dependence, unless p(z) takes a
special, H0-dependent form, p(z) = f(z/H0)/H0.
However, if the redshift prior is volumetric, p(z) ∝
z2, the selection effect term is ∝ H3

0 , which can-
cels a similar correction to the likelihood and gives
a posterior on H0 that is identical to the canonical
analysis.

For a single event, any choice of prior can be
mapped to our canonical analysis with a different
prior on H0. For any reasonable prior choices on d
or z, we would expect to gradually lose sensitivity
to the particular prior choice as further observed
events are added to the analysis. However, to il-
lustrate the uncertainty that comes from the prior
choice for this first event, we compare in Extended
Data Figure 2 and Extended Data Table 1 the re-
sults from the canonical prior choice p (d) ∝ d2

to those from two other choices: using a flat prior
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on z, and assuming a velocity correction due to the
peculiar velocity of NGC 4993 that is a Gaussian
with width 250 km s−1. (To do the first of these, the
posterior samples from GW parameter estimation
have to be re-weighted, since they are generated
with the d2 prior used in the canonical analysis.
We first “undo” the default prior before applying
the desired new prior.)

The choice of a flat prior on z is motivated by the
simple model described above, in which we imag-
ine first making a redshift measurement for the host
and then use that as a prior for analysing the GW
data. Setting priors on distance and redshift, the
simple analysis gives the same result as the canon-
ical analysis, but now we set a prior on redshift
and H0 and obtain a different result. This is to
be expected because we are making different as-
sumptions about the underlying population, and it
arises for similar reasons as the different biases in
peculiar velocity measurements based on redshift-
selected or distance-selected samples (Strauss &
Willick 1995). As can be seen in Extended Data
Table 1, the results change by less than 1σ, as mea-
sured by the statistical error of the canonical anal-
ysis.

By increasing the uncertainty in the peculiar ve-
locity prior, we test the assumptions in our canoni-
cal analysis that (1) NGC 4993 is a member of the
nearby group of galaxies, and (2) that this group
has a center-of-mass velocity close to the Hubble
flow. The results in Extended Data Table 1 summa-
rizes changes in the values of H0 and in the error
bars.

We conclude that the impact of a reasonable
change to the prior is small relative to the statis-
tical uncertainties for this event.

INCORPORATING ADDITIONAL
CONSTRAINTS ON H0

By including previous measurements of H0

(Planck Collaboration et al. 2016; Riess et al.
2016) we can constrain the orbital inclination
more precisely. We do this by setting the H0

prior in Eq. (7) to p(H0|µH0 , σ
2
H0

) = N [µH0 , σ
2
H0

],

50 75 100 125 150 175 200 225
H0 (km s 1 Mpc 1)

0.00

0.01

0.02

0.03

0.04

p(
H

0)
 (k

m
1
sM

pc
)

Canonical
Flat z prior

250 km s 1 Uncertainty
Planck17

SHoES18

Extended Data Figure 2. Using different assump-
tions compared to our canonical analysis. The pos-
terior distribution on H0 discussed in the main text is
shown in black, the alternative flat prior on z (discussed
in the Methods section) gives the distribution shown in
blue, and the increased uncertainty (250 km s−1) ap-
plied to our peculiar velocity measurement (also dis-
cussed in the Methods section) is shown in pink. Mini-
mal 68.3% (1σ) credible intervals are shown by dashed
lines.

where for ShoES (Riess et al. 2016) µH0 =
73.24 km s−1 Mpc−1 and σH0 = 1.74 km s−1 Mpc−1,
while for Planck (Planck Collaboration et al.
2016) µH0 = 67.74 km s−1 Mpc−1 and σH0 =
0.46 km s−1 Mpc−1. The posterior on cos ι is then

p(cos ι | xGW, vr, 〈vp〉, µH0 , σ
2
H0

) ∝
∫

dd dvp dH0

× p(xGW | d, cos ι) p(vr | d, vp, H0) p(〈vp〉 | vp)
× p(H0|µH0 , σ

2
H0

) p(d) p(vp) . (13)

This posterior was shown in Figure 3 of the main
article.
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Extended Data Table 1. Summary of constraints on the Hubble constant, binary inclination, and distance

Parameter 68.3% Symm. 68.3% MAP 90% Symm. 90% MAP

H0/
(
km s−1 Mpc−1

)
74.0+16.0

−8.0 70.0+12.0
−8.0 74.0+33

−12 70.0+28
−11

H0/
(
km s−1 Mpc−1

)
(flat in z prior) 81+27

−13 71.0+23.0
−9.0 81+50

−17 71.0+48
−11

H0/
(
km s−1 Mpc−1

)
(250 km s−1 σvr ) 74.0+16.0

−9.0 70.0+14.0
−9.0 74.0+33

−14 70.0+29
−14

cos ι (GW only) −0.88+0.18
−0.09 −0.974+0.164

−0.026 −0.88+0.32
−0.11 −0.974+0.332

−0.026

cos ι (SHoES) −0.901+0.065
−0.057 −0.912+0.061

−0.059 −0.901+0.106
−0.083 −0.912+0.095

−0.086

cos ι (Planck) −0.948+0.052
−0.036 −0.982+0.060

−0.016 −0.948+0.091
−0.046 −0.982+0.104

−0.018

ι/deg (GW only) 152+14
−17 167+13

−23 152+20
−27 167+13

−37

ι/deg (SHoES) 154.0+9.0
−8.0 156.0+10.0

−7.0 154.0+15
−12 156.0+21

−11

ι/deg (Planck) 161.0+8.0
−8.0 169.0+8.0

−12.0 161.0+12
−12 169.0+11

−18

d/ (Mpc) 41.1+4.0
−7.3 43.8+2.9

−6.9 41.1+5.6
−12.6 43.8+5.6

−13.1

NOTE—We give both one-sigma (68.3%) and 90% credible intervals for each quantity. “Symm.” refers
to a symmetric interval (e.g. median and 5% to 95% range), while “MAP” refers to maximum a posteriori
intervals (e.g. MAP value and smallest range enclosing 90% of the posterior). Values given for ι are derived
from arc-cosine transforming the corresponding values for cos ι, so the “MAP” values differ from those that
would be derived from the posterior on ι.
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Vines, J., Flanagan, É. É., & Hinderer, T. 2011, PRD,

83, 084051

http://dx.doi.org/10.3847/2041-8213/aa92c0
https://dcc.ligo.org/LIGO-P1600187/public
https://dcc.ligo.org/LIGO-P1600187/public
http://dx.doi.org/10.3847/2041-8213/aa8f94
http://dx.doi.org/10.3847/2041-8213/aa9059
http://dx.doi.org/10.3847/2041-8213/aa90b6
http://dx.doi.org/10.3847/2041-8213/aa8edf


All Authors and Affiliations

THE LIGO SCIENTIFIC COLLABORATION AND THE VIRGO COLLABORATION, THE 1M2H COLLABORATION,
THE DARK ENERGY CAMERA GW-EM COLLABORATION AND THE DES COLLABORATION,

THE DLT40 COLLABORATION, THE LAS CUMBRES OBSERVATORY COLLABORATION,
THE VINROUGE COLLABORATION, THE MASTER COLLABORATION, B. P. ABBOTT,1 R. ABBOTT,1

T. D. ABBOTT,2 F. ACERNESE,3, 4 K. ACKLEY,5, 6 C. ADAMS,7 T. ADAMS,8 P. ADDESSO,9 R. X. ADHIKARI,1

V. B. ADYA,10 C. AFFELDT,10 M. AFROUGH,11 B. AGARWAL,12 M. AGATHOS,13 K. AGATSUMA,14

N. AGGARWAL,15 O. D. AGUIAR,16 L. AIELLO,17, 18 A. AIN,19 P. AJITH,20 B. ALLEN,10, 21, 22 G. ALLEN,12

A. ALLOCCA,23, 24 P. A. ALTIN,25 A. AMATO,26 A. ANANYEVA,1 S. B. ANDERSON,1 W. G. ANDERSON,21

S. V. ANGELOVA,27 S. ANTIER,28 S. APPERT,1 K. ARAI,1 M. C. ARAYA,1 J. S. AREEDA,29 N. ARNAUD,28, 30

K. G. ARUN,31 S. ASCENZI,32, 33 G. ASHTON,10 M. AST,34 S. M. ASTON,7 P. ASTONE,35 D. V. ATALLAH,36

P. AUFMUTH,22 C. AULBERT,10 K. AULTONEAL,37 C. AUSTIN,2 A. AVILA-ALVAREZ,29 S. BABAK,38

P. BACON,39 M. K. M. BADER,14 S. BAE,40 P. T. BAKER,41 F. BALDACCINI,42, 43 G. BALLARDIN,30

S. W. BALLMER,44 S. BANAGIRI,45 J. C. BARAYOGA,1 S. E. BARCLAY,46 B. C. BARISH,1 D. BARKER,47

K. BARKETT,48 F. BARONE,3, 4 B. BARR,46 L. BARSOTTI,15 M. BARSUGLIA,39 D. BARTA,49 J. BARTLETT,47

I. BARTOS,50, 5 R. BASSIRI,51 A. BASTI,23, 24 J. C. BATCH,47 M. BAWAJ,52, 43 J. C. BAYLEY,46
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B. KRISHNAN,10 A. KRÓLAK,132, 133 G. KUEHN,10 P. KUMAR,90 R. KUMAR,105 S. KUMAR,20 L. KUO,87

A. KUTYNIA,132 S. KWANG,21 B. D. LACKEY,38 K. H. LAI,93 M. LANDRY,47 R. N. LANG,134 J. LANGE,57

B. LANTZ,51 R. K. LANZA,15 A. LARTAUX-VOLLARD,28 P. D. LASKY,6 M. LAXEN,7 A. LAZZARINI,1



18

C. LAZZARO,54 P. LEACI,97, 35 S. LEAVEY,46 C. H. LEE,92 H. K. LEE,135 H. M. LEE,136 H. W. LEE,130

K. LEE,46 J. LEHMANN,10 A. LENON,41 M. LEONARDI,110, 95 N. LEROY,28 N. LETENDRE,8 Y. LEVIN,6

T. G. F. LI,93 S. D. LINKER,109 T. B. LITTENBERG,137 J. LIU,64 X. LIU,21 R. K. L. LO,93

N. A. LOCKERBIE,62 L. T. LONDON,36 J. E. LORD,44 M. LORENZINI,17, 18 V. LORIETTE,138 M. LORMAND,7

G. LOSURDO,24 J. D. LOUGH,10 C. O. LOUSTO,57 G. LOVELACE,29 H. LÜCK,22, 10 D. LUMACA,32, 33
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S. MÁRKA,50 Z. MÁRKA,50 C. MARKAKIS,12 A. S. MARKOSYAN,51 A. MARKOWITZ,1 E. MAROS,1

A. MARQUINA,100 F. MARTELLI,121, 122 L. MARTELLINI,66 I. W. MARTIN,46 R. M. MARTIN,111

D. V. MARTYNOV,15 K. MASON,15 E. MASSERA,106 A. MASSEROT,8 T. J. MASSINGER,1 M. MASSO-REID,46

S. MASTROGIOVANNI,97, 35 A. MATAS,45 F. MATICHARD,1, 15 L. MATONE,50 N. MAVALVALA,15

N. MAZUMDER,68 R. MCCARTHY,47 D. E. MCCLELLAND,25 S. MCCORMICK,7 L. MCCULLER,15

S. C. MCGUIRE,139 G. MCINTYRE,1 J. MCIVER,1 D. J. MCMANUS,25 L. MCNEILL,6 T. MCRAE,25

S. T. MCWILLIAMS,41 D. MEACHER,63 G. D. MEADORS,38, 10 M. MEHMET,10 J. MEIDAM,14

E. MEJUTO-VILLA,9 A. MELATOS,96 G. MENDELL,47 R. A. MERCER,21 E. L. MERILH,47 M. MERZOUGUI,66

S. MESHKOV,1 C. MESSENGER,46 C. MESSICK,63 R. METZDORFF,70 P. M. MEYERS,45 H. MIAO,58

C. MICHEL,26 H. MIDDLETON,58 E. E. MIKHAILOV,140 L. MILANO,78, 4 A. L. MILLER,5, 97, 35

B. B. MILLER,89 J. MILLER,15 M. MILLHOUSE,101 M. C. MILOVICH-GOFF,109 O. MINAZZOLI,66, 141

Y. MINENKOV,33 J. MING,38 C. MISHRA,142 S. MITRA,19 V. P. MITROFANOV,61 G. MITSELMAKHER,5

R. MITTLEMAN,15 D. MOFFA,84 A. MOGGI,24 K. MOGUSHI,11 M. MOHAN,30 S. R. P. MOHAPATRA,15

M. MONTANI,121, 122 C. J. MOORE,13 D. MORARU,47 G. MORENO,47 S. R. MORRISS,103 B. MOURS,8

C. M. MOW-LOWRY,58 G. MUELLER,5 A. W. MUIR,36 ARUNAVA MUKHERJEE,10 D. MUKHERJEE,21

S. MUKHERJEE,103 N. MUKUND,19 A. MULLAVEY,7 J. MUNCH,72 E. A. MUÑIZ,44 M. MURATORE,37

P. G. MURRAY,46 K. NAPIER,76 I. NARDECCHIA,32, 33 L. NATICCHIONI,97, 35 R. K. NAYAK,143 J. NEILSON,109

G. NELEMANS,65, 14 T. J. N. NELSON,7 M. NERY,10 A. NEUNZERT,118 L. NEVIN,1 J. M. NEWPORT,124

G. NEWTON,46, † K. K. Y. NG,93 T. T. NGUYEN,25 D. NICHOLS,65 A. B. NIELSEN,10 S. NISSANKE,65, 14

A. NITZ,10 A. NOACK,10 F. NOCERA,30 D. NOLTING,7 C. NORTH,36 L. K. NUTTALL,36 J. OBERLING,47

G. D. O’DEA,109 G. H. OGIN,144 J. J. OH,131 S. H. OH,131 F. OHME,10 M. A. OKADA,16 M. OLIVER,102

P. OPPERMANN,10 RICHARD J. ORAM,7 B. O’REILLY,7 R. ORMISTON,45 L. F. ORTEGA,5

R. O’SHAUGHNESSY,57 S. OSSOKINE,38 D. J. OTTAWAY,72 H. OVERMIER,7 B. J. OWEN,83 A. E. PACE,63

J. PAGE,137 M. A. PAGE,64 A. PAI,116, 145 S. A. PAI,60 J. R. PALAMOS,69 O. PALASHOV,128 C. PALOMBA,35

A. PAL-SINGH,34 HOWARD PAN,87 HUANG-WEI PAN,87 B. PANG,48 P. T. H. PANG,93 C. PANKOW,89

F. PANNARALE,36 B. C. PANT,60 F. PAOLETTI,24 A. PAOLI,30 M. A. PAPA,38, 21, 10 A. PARIDA,19 W. PARKER,7

D. PASCUCCI,46 A. PASQUALETTI,30 R. PASSAQUIETI,23, 24 D. PASSUELLO,24 M. PATIL,133

B. PATRICELLI,146, 24 B. L. PEARLSTONE,46 M. PEDRAZA,1 R. PEDURAND,26, 147 L. PEKOWSKY,44 A. PELE,7

S. PENN,148 C. J. PEREZ,47 A. PERRECA,1, 110, 95 L. M. PERRI,89 H. P. PFEIFFER,90, 38 M. PHELPS,46

O. J. PICCINNI,97, 35 M. PICHOT,66 F. PIERGIOVANNI,121, 122 V. PIERRO,9 G. PILLANT,30 L. PINARD,26

I. M. PINTO,9 M. PIRELLO,47 M. PITKIN,46 M. POE,21 R. POGGIANI,23, 24 P. POPOLIZIO,30 E. K. PORTER,39

A. POST,10 J. POWELL,46, 149 J. PRASAD,19 J. W. W. PRATT,37 G. PRATTEN,102 V. PREDOI,36

T. PRESTEGARD,21 M. PRIJATELJ,10 M. PRINCIPE,9 S. PRIVITERA,38 G. A. PRODI,110, 95 L. G. PROKHOROV,61
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23

101Montana State University, Bozeman, MT 59717, USA
102Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain
103The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
104Bellevue College, Bellevue, WA 98007, USA
105Institute for Plasma Research, Bhat, Gandhinagar 382428, India
106The University of Sheffield, Sheffield S10 2TN, United Kingdom
107Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
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