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GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave
detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected
with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per
8.0 × 104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M⊙, in
agreement with masses of known neutron stars. Restricting the component spins to the range inferred in
binary neutron stars, we find the component masses to be in the range 1.17–1.60 M⊙, with the total mass of
the system 2.74þ0.04

−0.01M⊙. The source was localized within a sky region of 28 deg2 (90% probability) and

had a luminosity distance of 40þ8
−14 Mpc, the closest and most precisely localized gravitational-wave signal

yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the
coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a
link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts
across the electromagnetic spectrum in the same location further supports the interpretation of this event as
a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides
insight into astrophysics, dense matter, gravitation, and cosmology.

DOI: 10.1103/PhysRevLett.119.161101

I. INTRODUCTION

On August 17, 2017, the LIGO-Virgo detector network
observed a gravitational-wave signal from the inspiral of
two low-mass compact objects consistent with a binary
neutron star (BNS) merger. This discovery comes four
decades after Hulse and Taylor discovered the first neutron
star binary, PSR B1913+16 [1]. Observations of PSR
B1913+16 found that its orbit was losing energy due to
the emission of gravitational waves, providing the first
indirect evidence of their existence [2]. As the orbit of a
BNS system shrinks, the gravitational-wave luminosity
increases, accelerating the inspiral. This process has long
been predicted to produce a gravitational-wave signal
observable by ground-based detectors [3–6] in the final
minutes before the stars collide [7].
Since the Hulse-Taylor discovery, radio pulsar surveys

have found several more BNS systems in our galaxy [8].
Understanding the orbital dynamics of these systems
inspired detailed theoretical predictions for gravitational-
wave signals from compact binaries [9–13]. Models of the
population of compact binaries, informed by the known
binary pulsars, predicted that the network of advanced
gravitational-wave detectors operating at design sensitivity

will observe between one BNS merger every few years to
hundreds per year [14–21]. This detector network currently
includes three Fabry-Perot-Michelson interferometers that
measure spacetime strain induced by passing gravitational
waves as a varying phase difference between laser light
propagating in perpendicular arms: the two Advanced
LIGO detectors (Hanford, WA and Livingston, LA) [22]
and the Advanced Virgo detector (Cascina, Italy) [23].
Advanced LIGO’s first observing run (O1), from

September 12, 2015, to January 19, 2016, obtained
49 days of simultaneous observation time in two detectors.
While two confirmed binary black hole (BBH) mergers
were discovered [24–26], no detections or significant
candidates had component masses lower than 5M⊙, placing
a 90% credible upper limit of 12 600 Gpc−3 yr−1 on the rate
of BNS mergers [27] (credible intervals throughout this
Letter contain 90% of the posterior probability unless noted
otherwise). This measurement did not impinge on the range
of astrophysical predictions, which allow rates as high as
∼10 000 Gpc−3 yr−1 [19].
The second observing run (O2) of Advanced LIGO, from

November 30, 2016 to August 25, 2017, collected 117 days
of simultaneous LIGO-detector observing time. Advanced
Virgo joined the O2 run on August 1, 2017. At the time of
this publication, two BBH detections have been announced
[28,29] from the O2 run, and analysis is still in progress.
Toward the end of the O2 run a BNS signal, GW170817,

was identified by matched filtering [7,30–33] the data
against post-Newtonian waveform models [34–37]. This
gravitational-wave signal is the loudest yet observed, with a
combined signal-to-noise ratio (SNR) of 32.4 [38]. After
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∼100 s (calculated starting from 24 Hz) in the detectors’
sensitive band, the inspiral signal ended at 12∶41:04.4 UTC.
In addition, a γ-ray burst was observed 1.7 s after the
coalescence time [39–45]. The combination of data from
the LIGO and Virgo detectors allowed a precise sky
position localization to an area of 28 deg2. This measure-
ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
M ¼ 1.188þ0.004

−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
2.73 and 3.29 M⊙. The individual masses are in the broad
range of 0.86 to 2.26 M⊙, due to correlations between their
uncertainties. This suggests a BNS as the source of the
gravitational-wave signal, as the total masses of known
BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01�
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.

II. DATA

At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
UTC. The amplitude scale in each detector is normalized to that
detector’s noise amplitude spectral density. In the LIGO data,
independently observable noise sources and a glitch that occurred
in the LIGO-Livingston detector have been subtracted, as
described in the text. This noise mitigation is the same as that
used for the results presented in Sec. IV.
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Additionally, a short instrumental noise transient
appeared in the LIGO-Livingston detector 1.1 s before
the coalescence time of GW170817 as shown in Fig. 2.
This transient noise, or glitch [71], produced a very brief
(less than 5 ms) saturation in the digital-to-analog converter
of the feedback signal controlling the position of the test
masses. Similar glitches are registered roughly once every
few hours in each of the LIGO detectors with no temporal
correlation between the LIGO sites. Their cause remains
unknown. To mitigate the effect on the results presented in
Sec. III, the search analyses applied a window function to
zero out the data around the glitch [72,73], following the
treatment of other high-amplitude glitches used in the
O1 analysis [74]. To accurately determine the properties
of GW170817 (as reported in Sec. IV) in addition to the
noise subtraction described above, the glitch was modeled
with a time-frequency wavelet reconstruction [75] and
subtracted from the data, as shown in Fig. 2.
Following the procedures developed for prior gravita-

tional-wave detections [29,78], we conclude there is no
environmental disturbance observed by LIGO environmen-
tal sensors [79] that could account for the GW170817
signal.
The Virgo data, used for sky localization and an

estimation of the source properties, are shown in the
bottom panel of Fig. 1. The Virgo data are nonstationary
above 150 Hz due to scattered light from the output optics
modulated by alignment fluctuations and below 30 Hz due
to seismic noise from anthropogenic activity. Occasional
noise excess around the European power mains frequency
of 50 Hz is also present. No noise subtraction was applied
to the Virgo data prior to this analysis. The low signal
amplitude observed in Virgo significantly constrained the
sky position, but meant that the Virgo data did not
contribute significantly to other parameters. As a result,
the estimation of the source’s parameters reported in
Sec. IV is not impacted by the nonstationarity of Virgo
data at the time of the event. Moreover, no unusual
disturbance was observed by Virgo environmental sensors.
Data used in this study can be found in [80].

III. DETECTION

GW170817 was initially identified as a single-detector
event with the LIGO-Hanford detector by a low-latency
binary-coalescence search [81–83] using template wave-
forms computed in post-Newtonian theory [11,13,36,84].
The two LIGO detectors and the Virgo detector were all
taking data at the time; however, the saturation at the LIGO-
Livingston detector prevented the search from registering a
simultaneous event in both LIGO detectors, and the low-
latency transfer of Virgo data was delayed.
Visual inspection of the LIGO-Hanford and LIGO-

Livingston detector data showed the presence of a clear,
long-duration chirp signal in time-frequency representations
of the detector strain data. As a result, an initial alert was

generated reporting a highly significant detection of a binary
neutron star signal [85] in coincidence with the independ-
ently observed γ-ray burst GRB 170817A [39–41].
A rapid binary-coalescence reanalysis [86,87], with the

time series around the glitch suppressed with a window
function [73], as shown in Fig. 2, confirmed the presence of
a significant coincident signal in the LIGO detectors. The
source was rapidly localized to a region of 31 deg2,
shown in Fig. 3, using data from all three detectors [88].
This sky map was issued to observing partners, allowing
the identification of an electromagnetic counterpart
[46,48,50,77].
The combined SNR of GW170817 is estimated to be

32.4, with values 18.8, 26.4, and 2.0 in the LIGO-Hanford,

FIG. 2. Mitigation of the glitch in LIGO-Livingston data. Times
are shown relative to August 17, 2017 12∶41:04 UTC. Top panel:
A time-frequency representation [65] of the raw LIGO-Living-
ston data used in the initial identification of GW170817 [76]. The
coalescence time reported by the search is at time 0.4 s in this
figure and the glitch occurs 1.1 s before this time. The time-
frequency track of GW170817 is clearly visible despite the
presence of the glitch. Bottom panel: The raw LIGO-Livingston
strain data (orange curve) showing the glitch in the time domain.
To mitigate the glitch in the rapid reanalysis that produced the sky
map shown in Fig. 3 [77], the raw detector data were multiplied
by an inverse Tukey window (gray curve, right axis) that zeroed
out the data around the glitch [73]. To mitigate the glitch in the
measurement of the source’s properties, a model of the glitch
based on a wavelet reconstruction [75] (blue curve) was sub-
tracted from the data. The time-series data visualized in this figure
have been bandpassed between 30 Hz and 2 kHz so that the
detector’s sensitive band is emphasized. The gravitational-wave
strain amplitude of GW170817 is of the order of 10−22 and so is
not visible in the bottom panel.
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LIGO-Livingston, and Virgo data respectively, making it
the loudest gravitational-wave signal so far detected. Two
matched-filter binary-coalescence searches targeting
sources with total mass between 2 and 500 M⊙ in the
detector frame were used to estimate the significance of this
event [9,12,30,32,73,81–83,86,87,91–97]. The searches
analyzed 5.9 days of LIGO data between August 13,
2017 02∶00 UTC and August 21, 2017 01∶05 UTC.
Events are assigned a detection-statistic value that ranks
their probability of being a gravitational-wave signal. Each
search uses a different method to compute this statistic and
measure the search background—the rate at which detector
noise produces events with a detection-statistic value equal
to or higher than the candidate event.
GW170817 was identified as the most significant event

in the 5.9 days of data, with an estimated false alarm rate of
one in 1.1 × 106 years with one search [81,83], and a
consistent bound of less than one in 8.0 × 104 years for the
other [73,86,87]. The second most significant signal in this
analysis of 5.9 days of data is GW170814, which has a
combined SNR of 18.3 [29]. Virgo data were not used in
these significance estimates, but were used in the sky
localization of the source and inference of the source
properties.

IV. SOURCE PROPERTIES

General relativity makes detailed predictions for the
inspiral and coalescence of two compact objects, which

may be neutron stars or black holes. At early times, for low
orbital and gravitational-wave frequencies, the chirplike
time evolution of the frequency is determined primarily by
a specific combination of the component masses m1 and
m2, the chirp mass M ¼ ðm1m2Þ3=5ðm1 þm2Þ−1=5. As the
orbit shrinks and the gravitational-wave frequency grows
rapidly, the gravitational-wave phase is increasingly influ-
enced by relativistic effects related to the mass ratio
q ¼ m2=m1, where m1 ≥ m2, as well as spin-orbit and
spin-spin couplings [98].
The details of the objects’ internal structure become

important as the orbital separation approaches the size of
the bodies. For neutron stars, the tidal field of the
companion induces a mass-quadrupole moment [99,100]
and accelerates the coalescence [101]. The ratio of the
induced quadrupole moment to the external tidal field is
proportional to the tidal deformability (or polarizability)
Λ ¼ ð2=3Þk2½ðc2=GÞðR=mÞ�5, where k2 is the second Love
number and R is the stellar radius. Both R and k2 are fixed
for a given stellar massm by the equation of state (EOS) for
neutron-star matter, with k2 ≃ 0.05–0.15 for realistic neu-
tron stars [102–104]. Black holes are expected to have
k2 ¼ 0 [99,105–109], so this effect would be absent.
As the gravitational-wave frequency increases, tidal

effects in binary neutron stars increasingly affect the phase
and become significant above fGW ≃ 600 Hz, so they are
potentially observable [103,110–116]. Tidal deformabil-
ities correlate with masses and spins, and our measurements
are sensitive to the accuracy with which we describe
the point-mass, spin, and tidal dynamics [113,117–119].
The point-mass dynamics has been calculated within the
post-Newtonian framework [34,36,37], effective-one-body
formalism [10,120–125], and with a phenomenological
approach [126–131]. Results presented here are obtained
using a frequency domain post-Newtonian waveform
model [30] that includes dynamical effects from tidal
interactions [132], point-mass spin-spin interactions
[34,37,133,134], and couplings between the orbital angular
momentum and the orbit-aligned dimensionless spin com-
ponents of the stars χz [92].
The properties of gravitational-wave sources are inferred

by matching the data with predicted waveforms. We
perform a Bayesian analysis in the frequency range
30–2048 Hz that includes the effects of the 1σ calibration
uncertainties on the received signal [135,136] (< 7% in
amplitude and 3° in phase for the LIGO detectors [137] and
10% and 10° for Virgo at the time of the event). Unless
otherwise specified, bounds on the properties of
GW170817 presented in the text and in Table I are 90%
posterior probability intervals that enclose systematic
differences from currently available waveform models.
To ensure that the applied glitch mitigation procedure

previously discussed in Sec. II (see Fig. 2) did not bias the
estimated parameters, we added simulated signals with
known parameters to data that contained glitches analogous

18h

15h 12h
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-30° -30°

0 25 50 75
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 5°
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FIG. 3. Sky location reconstructed for GW170817 by a rapid
localization algorithm from a Hanford-Livingston (190 deg2,
light blue contours) and Hanford-Livingston-Virgo (31 deg2,
dark blue contours) analysis. A higher latency Hanford-Living-
ston-Virgo analysis improved the localization (28 deg2, green
contours). In the top-right inset panel, the reticle marks the
position of the apparent host galaxy NGC 4993. The bottom-right
panel shows the a posteriori luminosity distance distribution
from the three gravitational-wave localization analyses. The
distance of NGC 4993, assuming the redshift from the NASA/
IPAC Extragalactic Database [89] and standard cosmological
parameters [90], is shown with a vertical line.
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to the one observed at the LIGO-Livingston detector during
GW170817. After applying the glitch subtraction tech-
nique, we found that the bias in recovered parameters
relative to their known values was well within their
uncertainties. This can be understood by noting that a
small time cut out of the coherent integration of the phase
evolution has little impact on the recovered parameters. To
corroborate these results, the test was also repeated with a
window function applied, as shown in Fig. 2 [73].
The source was localized to a region of the sky 28 deg2

in area, and 380 Mpc3 in volume, near the southern end of
the constellation Hydra, by using a combination of the
timing, phase, and amplitude of the source as observed in
the three detectors [138,139]. The third detector, Virgo, was
essential in localizing the source to a single region of the
sky, as shown in Fig. 3. The small sky area triggered a
successful follow-up campaign that identified an electro-
magnetic counterpart [50].
The luminosity distance to the source is 40þ8

−14 Mpc, the
closest ever observed gravitational-wave source and, by
association, the closest short γ-ray burst with a distance
measurement [45]. The distance measurement is correlated
with the inclination angle cos θJN ¼ Ĵ · N̂, where Ĵ is the
unit vector in the direction of the total angular momentum
of the system and N̂ is that from the source towards the
observer [140]. We find that the data are consistent with an
antialigned source: cos θJN ≤ −0.54, and the viewing angle
Θ≡minðθJN; 180° − θJNÞ is Θ ≤ 56°. Since the luminos-
ity distance of this source can be determined independently
of the gravitational wave data alone, we can use the
association with NGC 4993 to break the distance degen-
eracy with cos θJN . The estimated Hubble flow velocity
near NGC 4993 of 3017� 166 km s−1 [141] provides a
redshift, which in a flat cosmology with H0 ¼ 67.90�
0.55 km s−1 Mpc−1 [90], constrains cos θJN < −0.88 and
Θ < 28°. The constraint varies with the assumptions made
about H0 [141].

From the gravitational-wave phase and the ∼3000 cycles
in the frequency range considered, we constrain the chirp
mass in the detector frame to be Mdet ¼ 1.1977þ0.0008

−0.0003M⊙
[51]. The mass parameters in the detector frame are related
to the rest-frame masses of the source by its redshift z as
mdet ¼ mð1þ zÞ [142]. Assuming the above cosmology
[90], and correcting for the motion of the Solar System
Barycenter with respect to the Cosmic Microwave
Background [143], the gravitational-wave distance meas-
urement alone implies a cosmological redshift of
0.008þ0.002

−0.003 , which is consistent with that of NGC 4993
[50,141,144,145]. Without the host galaxy, the uncertainty
in the source’s chirp mass M is dominated by the
uncertainty in its luminosity distance. Independent of the
waveform model or the choice of priors, described below,
the source-frame chirp mass is M ¼ 1.188þ0.004

−0.002M⊙.
While the chirp mass is well constrained, our estimates

of the component masses are affected by the degeneracy
between mass ratio q and the aligned spin components χ1z
and χ2z [38,146–150]. Therefore, the estimates of q and
the component masses depend on assumptions made
about the admissible values of the spins. While χ < 1
for black holes, and quark stars allow even larger spin
values, realistic NS equations of state typically imply
more stringent limits. For the set of EOS studied in [151]
χ < 0.7, although other EOS can exceed this bound. We
began by assuming jχj ≤ 0.89, a limit imposed by
available rapid waveform models, with an isotropic prior
on the spin direction. With these priors we recover q ∈
ð0.4; 1.0Þ and a constraint on the effective aligned spin of
the system [127,152] of χeff ∈ ð−0.01; 0.17Þ. The aligned
spin components are consistent with zero, with stricter
bounds than in previous BBH observations [26,28,29].
Analysis using the effective precessing phenomenological
waveforms of [128], which do not contain tidal effects,
demonstrates that spin components in the orbital plane are
not constrained.

TABLE I. Source properties for GW170817: we give ranges encompassing the 90% credible intervals for different assumptions of the
waveform model to bound systematic uncertainty. The mass values are quoted in the frame of the source, accounting for uncertainty in
the source redshift.

Low-spin priors ðjχj ≤ 0.05Þ High-spin priors ðjχj ≤ 0.89Þ
Primary mass m1 1.36–1.60 M⊙ 1.36–2.26 M⊙
Secondary mass m2 1.17–1.36 M⊙ 0.86–1.36 M⊙
Chirp mass M 1.188þ0.004

−0.002M⊙ 1.188þ0.004
−0.002M⊙

Mass ratio m2=m1 0.7–1.0 0.4–1.0
Total mass mtot 2.74þ0.04

−0.01M⊙ 2.82þ0.47
−0.09M⊙

Radiated energy Erad > 0.025M⊙c2 > 0.025M⊙c2
Luminosity distance DL 40þ8

−14 Mpc 40þ8
−14 Mpc

Viewing angle Θ ≤ 55° ≤ 56°
Using NGC 4993 location ≤ 28° ≤ 28°
Combined dimensionless tidal deformability ~Λ ≤ 800 ≤ 700
Dimensionless tidal deformability Λð1.4M⊙Þ ≤ 800 ≤ 1400
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From M and q, we obtain a measure of the component
masses m1 ∈ ð1.36; 2.26ÞM⊙ and m2 ∈ ð0.86; 1.36ÞM⊙,
shown in Fig. 4. As discussed in Sec. I, these values are
within the range of known neutron-star masses and below
those of known black holes. In combination with electro-
magnetic observations, we regard this as evidence of the
BNS nature of GW170817.
The fastest-spinning known neutron star has a dimension-

less spin≲0.4 [153], and the possible BNS J1807-2500B has
spin≲0.2 [154], after allowing for a broad range of equations
of state. However, among BNS that will merge within a
Hubble time, PSR J0737-3039A [155] has the most extreme
spin, less than ∼0.04 after spin-down is extrapolated to
merger. If we restrict the spin magnitude in our analysis to
jχj ≤ 0.05, consistent with the observed population, we
recover the mass ratio q ∈ ð0.7; 1.0Þ and component masses
m1 ∈ ð1.36;1.60ÞM⊙ andm2 ∈ ð1.17; 1.36ÞM⊙ (see Fig. 4).
We also recover χeff ∈ ð−0.01; 0.02Þ, where the upper limit
is consistent with the low-spin prior.
Our first analysis allows the tidal deformabilities of the

high-mass and low-mass component, Λ1 and Λ2, to vary
independently. Figure 5 shows the resulting 90% and
50% contours on the posterior distribution with the
post-Newtonian waveform model for the high-spin and

low-spin priors. As a comparison, we show predictions
coming from a set of candidate equations of state for
neutron-star matter [156–160], generated using fits from
[161]. All EOS support masses of 2.01� 0.04M⊙.
Assuming that both components are neutron stars described
by the same equation of state, a single function ΛðmÞ is
computed from the static l ¼ 2 perturbation of a Tolman-
Oppenheimer-Volkoff solution [103]. The shaded regions in
Fig. 5 represent the values of the tidal deformabilitiesΛ1 and
Λ2 generated using an equation of state from the 90% most
probable fraction of the values ofm1 andm2, consistent with
the posterior shown in Fig. 4. We find that our constraints on
Λ1 and Λ2 disfavor equations of state that predict less
compact stars, since the mass range we recover generates
Λ values outside the 90% probability region. This is con-
sistent with radius constraints from x-ray observations of
neutron stars [162–166]. Analysis methods, in development,
that a priori assume the same EOS governs both stars should
improve our constraints [167].
To leading order in Λ1 and Λ2, the gravitational-wave

phase is determined by the parameter

~Λ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
ð1Þ

[101,117]. Assuming a uniform prior on ~Λ, we place a 90%
upper limit of ~Λ ≤ 800 in the low-spin case and ~Λ ≤ 700 in
the high-spin case. We can also constrain the functionΛðmÞ
more directly by expanding ΛðmÞ linearly about m ¼
1.4M⊙ (as in [112,115]), which gives Λð1.4M⊙Þ ≤ 1400
for the high-spin prior and Λð1.4M⊙Þ ≤ 800 for the low-
spin prior. A 95% upper bound inferred with the low-spin
prior, Λð1.4M⊙Þ ≤ 970, begins to compete with the 95%
upper bound of 1000 derived from x-ray observations
in [168].
Since the energy emitted in gravitational waves depends

critically on the EOS of neutron-star matter, with a wide
range consistent with constraints above, we are only able to
place a lower bound on the energy emitted before the onset
of strong tidal effects at fGW∼600Hz asErad > 0.025M⊙c2.
This is consistent with Erad obtained from numerical
simulations and fits for BNS systems consistent with
GW170817 [114,169–171].
We estimate systematic errors from waveform modeling

by comparing the post-Newtonian results with parameters
recovered using an effective-one-body model [124] aug-
mented with tidal effects extracted from numerical relativity
with hydrodynamics [172]. This does not change the
90% credible intervals for component masses and effective
spin under low-spin priors, but in the case of high-spin priors,
we obtain the more restrictive m1 ∈ ð1.36; 1.93ÞM⊙, m2 ∈
ð0.99; 1.36ÞM⊙, and χeff ∈ ð0.0; 0.09Þ. Recovered tidal
deformabilities indicate shifts in the posterior distributions
towards smaller values, with upper bounds for ~Λ and
Λð1.4M⊙Þ reduced by a factor of roughly (0.8, 0.8) in the

FIG. 4. Two-dimensional posterior distribution for the compo-
nent massesm1 andm2 in the rest frame of the source for the low-
spin scenario (jχj < 0.05, blue) and the high-spin scenario
(jχj < 0.89, red). The colored contours enclose 90% of the
probability from the joint posterior probability density function
for m1 and m2. The shape of the two dimensional posterior is
determined by a line of constant M and its width is determined
by the uncertainty inM. The widths of the marginal distributions
(shown on axes, dashed lines enclose 90% probability away from
equal mass of 1.36M⊙) is strongly affected by the choice of spin
priors. The result using the low-spin prior (blue) is consistent with
the masses of all known binary neutron star systems.
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low-spin case and (1.0, 0.7) in the high-spin case. Further
analysis is required to establish the uncertainties of these
tighter bounds, and a detailed studyof systematics is a subject
of ongoing work.
Preliminary comparisons with waveform models under

development [171,173–177] also suggest the post-
Newtonian model used will systematically overestimate
the value of the tidal deformabilities. Therefore, based on
our current understanding of the physics of neutron stars,
we consider the post-Newtonian results presented in this
Letter to be conservative upper limits on tidal deform-
ability. Refinements should be possible as our knowledge
and models improve.

V. IMPLICATIONS

A. Astrophysical rate

Our analyses identified GW170817 as the only BNS-
mass signal detected in O2 with a false alarm rate below
1=100 yr. Using a method derived from [27,178,179], and
assuming that the mass distribution of the components of
BNS systems is flat between 1 and 2 M⊙ and their
dimensionless spins are below 0.4, we are able to infer
the local coalescence rate density R of BNS systems.
Incorporating the upper limit of 12600 Gpc−3 yr−1 from O1
as a prior, R ¼ 1540þ3200

−1220 Gpc−3 yr−1. Our findings are

consistent with the rate inferred from observations of
galactic BNS systems [19,20,155,180].
From this inferred rate, the stochastic background of

gravitational wave s produced by unresolved BNS mergers
throughout the history of the Universe should be compa-
rable in magnitude to the stochastic background produced
by BBH mergers [181,182]. As the advanced detector
network improves in sensitivity in the coming years, the
total stochastic background from BNS and BBH mergers
should be detectable [183].

B. Remnant

Binary neutron star mergers may result in a short- or long-
lived neutron star remnant that could emit gravitational
waves following the merger [184–190]. The ringdown of
a black hole formed after the coalescence could also produce
gravitational waves, at frequencies around 6 kHz, but the
reduced interferometer response at high frequencies makes
their observation unfeasible. Consequently, searches have
been made for short (tens of ms) and intermediate duration
(≤ 500 s) gravitational-wave signals from a neutron star
remnant at frequencies up to 4 kHz [75,191,192]. For the
latter, the data examined start at the time of the coalescence
and extend to the end of the observing run on August 25,
2017. With the time scales and methods considered so far
[193], there is no evidence of a postmerger signal of

FIG. 5. Probability density for the tidal deformability parameters of the high and low mass components inferred from the detected
signals using the post-Newtonian model. Contours enclosing 90% and 50% of the probability density are overlaid (dashed lines). The
diagonal dashed line indicates the Λ1 ¼ Λ2 boundary. The Λ1 and Λ2 parameters characterize the size of the tidally induced mass
deformations of each star and are proportional to k2ðR=mÞ5. Constraints are shown for the high-spin scenario jχj ≤ 0.89 (left panel) and
for the low-spin jχj ≤ 0.05 (right panel). As a comparison, we plot predictions for tidal deformability given by a set of representative
equations of state [156–160] (shaded filled regions), with labels following [161], all of which support stars of 2.01M⊙. Under the
assumption that both components are neutron stars, we apply the function ΛðmÞ prescribed by that equation of state to the 90% most
probable region of the component mass posterior distributions shown in Fig. 4. EOS that produce less compact stars, such as MS1 and
MS1b, predict Λ values outside our 90% contour.
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astrophysical origin. However, upper limits placed on the
strength of gravitational-wave emission cannot definitively
rule out the existence of a short- or long-lived postmerger
neutron star. The implications of various postmerger scenar-
ios are explored in [45,193].

C. Tests of gravity

GRB 170817A was observed 1.7 s after GW170817.
Combining this delay with the knowledge of the source
luminosity distance, strong constraints are placed on the
fundamental physics of gravity. The observed arrival times
are used to investigate the speed of gravity, Lorentz
invariance, and tests of the equivalence principle through
the Shapiro time delay, as reported in [45].
We also expect the much longer duration of the BNS

signal compared to previous BBH gravitational-wave
sources to yield significantly improved constraints when
testing for waveform deviations from general relativity
using a parametrized waveform expansion [194], especially
at low post-Newtonian orders. Placing these bounds
requires a deep understanding of the systematic uncertain-
ties resulting from waveform modeling and data condition-
ing, and is the subject of ongoing investigations.

D. Cosmology

The gravitational-wave signal gives a direct measure-
ment of the luminosity distance of the source, which, along
with a redshift measurement, can be used to infer cosmo-
logical parameters independently of the cosmic distance
ladder [141,195]. Using the association with the galaxy
NGC 4993 and the luminosity distance directly measured
from the gravitational-wave signal, the Hubble constant
is inferred to be H0 ¼ 70þ12

−8 km s−1Mpc−1 [141] (most
probable value and minimum 68.3% probability range,
which can be compared to the value from Planck H0 ¼
67.90� 0.55 km s−1Mpc−1 [90]). Alternatively, we may
assume the cosmology is known and use the association
with NGC 4993 to constrain the luminosity distance of the
source, in which case the gravitational-wave measurement
of the inclination angle of the source is significantly
improved, with consequences for the γ-ray burst opening
angle and related physics [45].

VI. CONCLUSIONS

In this Letter we have presented the first detection of
gravitational waves from the inspiral of a binary neutron star
system. Gravitational-wave event GW170817, observed and
localized by the two Advanced LIGO detectors and the
Advanced Virgo detector, is the loudest gravitational-wave
signal detected to date. This coalescence event was followed
by a short burst of γ rays observed with the Fermi Gamma-
Ray Burst Monitor [39–42] and INTEGRAL [43,44]. The
coincident observation of a gravitational-wave signal and a γ-
ray burst appears to confirm the long-held hypothesis that

BNS mergers are linked to short-γ-ray bursts [196,197].
Subsequent observations have determined the location of the
source and followed its evolution through the electromag-
netic spectrum [50].
Detailed analyses of the gravitational-wave data,

together with observations of electromagnetic emissions,
are providing new insights into the astrophysics of compact
binary systems and γ-ray bursts, dense matter under
extreme conditions, the nature of gravitation, and indepen-
dent tests of cosmology. Less than two years after the debut
of gravitational-wave astronomy, GW170817 marks the
beginning of a new era of discovery.
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