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Abstract. The ECOMA (Existence and Charge state Of Me-
teoric dust grains in the middle Atmosphere) series of sound-
ing rocket flights consisted of nine flights with almost iden-
tical payload design and flight characteristics. All flights car-
ried a radio wave propagation experiment together with a va-
riety of plasma probes. Three of these measured electron den-
sities, two ion densities. The rockets were all launched from
the Andøya Rocket Range, Norway, in four campaigns be-
tween 2006 and 2010. Emphasis is on the final three flights
from 2010 where the payloads were equipped with four in-
struments capable of measuring plasma densities in situ,
among them a novel probe flown for the first time in conjunc-
tion with a wave propagation experiment. Deviation factors
of all probe data relative to the wave propagation results were
derived and revealed that none of the probe data were close
to the wave propagation results at all heights, but – more im-
portantly – the instruments showed very different behaviour
at different altitudes. The novel multi-needle Langmuir probe
exhibits the best correlation to the wave propagation data, as
there is minimal influence of the payload potential, but it is
still subject to aerodynamics, especially at its location at the
rear of the payload. For all other probe types, the deviation
factor comes closer to unity with increasing plasma density.
No systematic difference of the empirical deviation factor be-
tween day and night can be found. The large negative payload
potential in the last three flights may be the cause for discrep-
ancies between electron and ion probe data below 85 km.

Keywords. Ionosphere (Auroral ionosphere)

1 Introduction

The series of nine sounding rockets of the ECOMA project
was dedicated to the investigation of large charged or neutral
particles in the mesosphere. In summer the largest of these
particles are ice crystals, but during all seasons aerosols and
cluster ions are expected to be present. Table 1 summarises
the launch times and dates, and the most relevant geophysical
conditions of the ECOMA flights. The primary instrument
contained on each payload was the ECOMA particle detec-
tor flown on all flights, but the other instrumentation varied
somewhat in the four campaigns. No results are reported for
the first two flights because the probes’ performance was af-
fected by another instrument within the payload. The flights
ECOMA-3 to -6 included two instruments providing data on
ion density and two instruments measuring electron density;
however, the data from those flights are not presented here in
detail, but only listed summarily for completeness. The first
campaign with three flights was conducted in the noctilu-
cent cloud (NLC) season when ice crystals were expected,
another one with two flights was conducted during back-
ground conditions (outside the NLC season), and the final
campaign was dedicated to the investigation of mesospheric
effects of a meteor shower. The data from these latter three
flights (ECOMA-7 to -9) are presented here in detail.

The final campaign conducted in December 2010
(ECOMA-7, -8 and -9) carried an additional novel probe to
measure electron densities with high resolution. Since the
payloads and the trajectories were almost identical, these
latter three flights provide a rare opportunity to assess the
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136 M. Friedrich et al.: Multi-instrument comparisons of D-region plasma measurements

Table 1.List of rockets and the geophysical conditions prevailing at the flights of the present analysis; emphasis is on flights 7 to 9.

Code Date Time, UT Zenith angle, deg Solar flux, sfu Sunspot number Conditions

ECOMA-3 3 Aug 2007 23:22 93.2 70.4 7 NLC
ECOMA-4 30 Jun 2008 13:22 50.9 66.7 0 NLC
ECOMA-5 7 Jul 2008 21:24 86.5 65.5 0 NLC, sporadicE

ECOMA-6 12 Jul 2008 10:46 47.7 64.9 0 NLC
ECOMA-7 4 Dec 2010 04:21 112.9 87.4 31 before meteor shower
ECOMA-8 13 Dec 2010 03:24 119.1 87.7 28 peak of meteor shower
ECOMA-9 19 Dec 2010 02:36 123.6 80.9 0 after meteor shower

Fig. 1. ECOMA payload in-flight configuration after payload sep-
aration at 70 s. PIP: positive ion probe; FEP: forward electron
probe (fixed-bias Langmuir probe); m-NLP: multi-needle Langmuir
probe; CONE EP: electron probe as part of the CONE instrument
(on upleg in the wake).

strengths and weaknesses of the various instruments un-
der different geophysical conditions. The instrument CONE
(COmbined sensor for Neutrals and Electrons) is a combina-
tion of an ionization gauge and a fixed-bias Langmuir probe.
Since it was mounted at the rear of the payload, whereas all
other instruments are located near the front, its data are diffi-
cult to compare with the others due to opposite ram/wake ef-
fects. The CONE data are most useful on downleg, whereas
the other instruments function best on upleg. Therefore, we
concentrate on the upleg of the flights and leave the CONE
results out of this report of the investigations.

2 Instrumentation

2.1 Wave propagation experiment

When a magnetic field is superimposed on a plasma, an elec-
tromagnetic wave propagates in ordinary and extraordinary
modes (o, x). The ionosphere and the Earth’s magnetic field
represents such a scenario. The accepted theory of radio wave
propagation in a magneto-plasma is described by Sen and
Wyller (1960), and a somewhat more generalised form is
given by Friedrich et al. (1991). Both refractive indices are
complex, i.e. their real parts control the phase velocity, the

imaginary parts lead to absorption. The refractive indices are
functions of the electron density,Ne, the wave frequency, the
strength and direction of the magnetic field and the collision
frequency. In the height region where the collision frequency
matters (<100 km), it is proportional to the atmosphere’s
pressure (Thrane and Piggott, 1966). In a study using colli-
sion frequencies obtained from many sounding rocket flights,
Friedrich and Torkar (1983) derived a proportionality factor
to pressure of 6.41× 105 m2 s−1 N−1, which agrees with the
laboratory value of Phelps and Pack (1959) within the accu-
racy of the derivation.

When the magnetic field has a component in propagation
direction, the polarisation orientation of a linearly polarised
wave rotates (Faraday rotation). The rotation of the plane of
the polarisation relative to that of the antenna on the ground
provides a measure of the electron content (electrons m−2)

between ground and rocket; differentiation with respect to
altitude yields electron densityNe (electrons m−3). The eas-
iest way to make use of this phenomenon is to rotate an an-
tenna with the spinning rocket and observe the modulation
pattern (double-spin modulated). A signal maximum is ob-
served when the local polarisation is parallel to the receiving
antenna, and a minimum occurs when it is at 90◦. By using
a spatial reference such as a magnetometer, a gyro or a Sun
sensor, one can establish the Faraday rotation as a function
of altitude. Most rocket payloads, notably after separation
from the motor (second stage), not only rotate with the in-
tended, pre-determined spin (3 to 5 Hz), but will generally
also exhibit coning with periods of a few seconds and open-
ing angles of up to, say, 20◦. Unfortunately, the coning mo-
tion modulates the spatial reference resulting in an apparent
Faraday rotation superimposed on the one due to the electron
content. Since the receivers are fed in series from the same
antenna, one can eliminate the influence of coning by deriv-
ing the phase between the receiver outputs of different fre-
quencies (differential Faraday rotation). Except if only one
frequency is available – i.e. when the lower ones are all ab-
sorbed or reflected – we use an aspect sensor as the spatial
reference.

Ann. Geophys., 31, 135–144, 2013 www.ann-geophys.net/31/135/2013/



M. Friedrich et al.: Multi-instrument comparisons of D-region plasma measurements 137

2.2 Fixed-bias Langmuir probe

According to the basic derivation by Smith (1969), the elec-
tron current density,i, to a cylindrical probe that is biased
with a voltage,V , is

i = i0

√
1+

eV

kT
, (1)

wherei0 =
Neevth

4 is the current density to a stationary probe,

andvth =

√
8kT
π me

is the thermal velocity of the electrons. For

eV/kT >> 1, the current,I , collected by a cylindrical probe
with length,l, and diameter,d, becomes independent of tem-
perature:

I = Neld

√
e3V π

2me
. (2)

A cylindrical probe is thus largely unaffected by the elec-
tron temperature, and by putting it on a boom long enough
to always reach outside the shock cone, it should – at least
within the flow conditions on upleg – ideally not experience
any spin modulation of the measured signal on the FEP (for-
ward electron probe; see Fig. 1). The actual probe of the final
ECOMA flights (-7, -8 and -9) was 14 mm long, had a di-
ameter of 3 mm, and was at a bias potential of+2.5 V. The
length of the boom was 500 mm from the payload.

2.3 Spherical ion probe

A gridded sphere (45 mm diam, ca. 90 % transparency) with
a negatively biased inner collector measures a current by
(a) the thermal motion of the ions, and (b) the motion of the
probe through a stationary plasma. Typical thermal veloci-
ties of ionospheric ions are on the order of 300 to 600 m s−1,
hence usually lower than the velocity of the probe (the
rocket) passing through the plasma. Once the rocket velocity
exceeds the ion velocity by a factor of two or more, the cur-
rent measured by such a device is largely proportional to the
probe’s collection cross section, the grid’s transparency and
the rocket velocity (Folkestad, 1970). An accurate knowl-
edge of the ions’ thermal velocity (their mass and tempera-
ture) is therefore not crucially important in view of the much
larger velocity of the rocket. This probe is also mounted in
the forward section on a long boom (opposite FEP) to al-
ways reach outside the shock cone (PIP: positive ion probe;
Fig. 1).

2.4 Multi-needle Langmuir probe

In addition to the above described probes, the final three
ECOMA flights carried a novel instrument, namely a multi-
needle Langmuir probe (m-NLP). This instrument was flown
earlier on two rocket payloads, but the present flights for
the first time provide opportunities to test the absolute val-
ues by comparison to the wave propagation data. According

to Eq. (2), the current drawn by a thin, fixed-bias Langmuir
probe is proportional to

√
V , whereV is the voltage applied

to the probe relative to an a priori unknown payload potential.
As long asV is larger than the floating potential of the pay-
load, the squares of the currents of probes with different volt-
ages will be linearly related to the applied voltage. This idea,
developed at the University of Oslo, was tested in a plasma
chamber (Bekkeng et al., 2010) and flown for the first time
on a sounding rocket using four very thin probes (“needles”;
Jacobsen et al., 2010). On the rockets ECOMA-7, -8 and -9,
the four needles, much thinner than the fixed-bias probe de-
scribed above (0.5 by 25 mm), were on two booms 400 mm
from the payload, opposite to each other at the rear of the
payload (Fig. 1). Due to this unfavourable location only one
boom (with two needles) at a time was in the ram and thus
measured the presumed “good” current values of the undis-
turbed plasma, whereas the other in general was in the wake
and thus recorded a current less likely representing the iono-
spheric electron density. Since we want to test the credibility
of the measurements by checking if the currents of all needles
with the different biases indeed obey the

√
V law, we need

the “good” values of all four needles at the same time; this is
achieved by interpolating between consecutive “good” (ram)
values (one per spin period) and forming the

√
V relation at

any desired time increment. The intersect of the extrapola-
tion of the currents from the different needles to zero current
yields the payload potential (see the paper dedicated to this
aspect by Bekkeng et al., 2013). The measurements of this
probe begin later than those of the other plasma instruments
because the relevant booms at the rear section could only be
deployed after payload separation, i.e. at about 83 km on up-
leg.

In the present three ECOMA flights, the probe biased at
+4.29 V deviates from the straight line ofI2 vs. V given
by the three remaining probes. Probes biased with about the
same potential on the Investigation of Cusp Irregularities 3
(ICI-3) payload from Spitsbergen and on the 36.273 MICA
payload flown from Poker Flat, Alaska, show the same be-
haviour. By comparing to probe characterisation experiments
carried out in the plasma chamber at ESTEC, this deviation
is believed to be caused by a difference in work function be-
tween the bootstrap part of the miniaturised Langmuir probe
and the collecting element of the probe. Final conclusions
concerning this behaviour will only be available when more
is learned about the probe characteristics during future test-
ing at ESTEC. The quality of theI2 vs.V fit reaches values
of between 0.97 and 0.99 above typically a 90 km altitude;
this does not translate into electron density error bars, but in-
dicates that the optimum performance of the instrument has
been reached.

2.5 ECOMA shielding grid

The entrance of the particle detector ECOMA is shielded
from the ambient plasma by two grids biased by±3 V,

www.ann-geophys.net/31/135/2013/ Ann. Geophys., 31, 135–144, 2013



138 M. Friedrich et al.: Multi-instrument comparisons of D-region plasma measurements

Fig. 2. Electron densities from the radio wave propagation experiment (flight ECOMA-7). In this flight all results are based on differential
Faraday rotation, e.g. 2.200 vs. 3.883 etc.

whereof the outer one has the negative bias. This grid there-
fore collects ions, the current of which is monitored by a lin-
ear housekeeping channel. We process the data (currents) as
for a plane Langmuir probe biased for ions. The grid biased
at −3 V accelerates the ions with typical mass 32 amu to a
velocity of about 4.3 km s−1, i.e. larger that the rocket veloc-
ity. The ion density calculation ignores the rocket velocity
of typically only 1 km s−1, which we consider permissible in
view of other uncertainties.

3 Results

3.1 ECOMA-7

The rocket ECOMA-7 was launched on 4 December 2010, at
04:21 UT. The solar zenith angle was 112.9◦, the solar flux
was 87.4 sfu and the number of sunspots on that day was 31
(for a summary of the flight conditions, see Table 1). Fig-
ure 2 shows the electron density results from the RWP (radio
wave propagation) experiment due to the various sounding
frequencies. Because of the extremely small electron density,
the 3.883 MHz signal could be used all the way to apogee,
and the highest frequency (7.835 MHz) only served as a spa-
tial reference. The phase values (Faraday rotation) were not
entered at equidistant increments of flight time, but rather
in steps that were chosen to roughly correspond to 0.5 km of
altitude. The profile RWP, used for comparisons with the var-
ious probes, is based on weighing the results of the various
datasets (Faraday rotation, differential absorption, different
frequencies, etc.) according to their respective sensitivity and
reliability.

As mentioned above, only three of the four needles of the
m-NLP provided data; however the relation of the currents
of these three remaining needles still provides a check of the
reliability of the data. The resulting electron density profile
depicted in Fig. 3 shows much more detail than RWP, which
is based on wave propagation only and appears to be too large
by a factor of about 2.30 at the prominent peak at 97 km.

Applying Eq. (2) to the FEP data yields a profile 8.09 times
larger at 97 km than RWP. The relative variations appear to
be consistent with both the wave propagation results and the
multi-needle probe (m-NLP). The FEP profile normalised at
97 km is up to a factor of 10 larger than the RWP profile
below 85 km. This part of the FEP profile is much more akin
to those of instruments measuring ions (see below).

The currents of the spherical positive ion probe (PIP) were
converted to ion density assuming “reasonable” thermal ve-
locities of the ions together with the known parameters such
as the probe diameter, the grid transparency and the rocket
velocity. The resulting ion density profile is too large by a
factor of 3.09 at 97 km. Expectedly, below 86 km this factor
becomes larger due to the presence of negative ions.

The current to the outer grid of the ECOMA instrument
was considered housekeeping data and was only measured
by a linear amplifier. As a result the threshold (first quantisa-
tion level) corresponds to a current which in this flight was
only exceeded in consecutive telemetry samples at 86 km and
above. The profile below that height down to 80 km in Fig. 3
is therefore not considered a reliable measurement. Between
86 and 95 km, the ion density deduced from the ECOMA grid
is consistently somewhat larger than that from PIP; this may
be due to discrimination of heavier ions/charged particles by
PIP with its relatively low bias of only−2.5 V. Otherwise

Ann. Geophys., 31, 135–144, 2013 www.ann-geophys.net/31/135/2013/
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Fig. 3.Nominal (uncalibrated) plasma densities due to the various probes together with the absolute values RWP from the wave propagation
instrument (flight ECOMA-7).

Fig. 4. Residual deviation from the RWP profile as a function of altitude of the various probes together with the measured payload potential
(flight ECOMA-7).

these data provide the best height resolution since no spin-
related variation is observed in the data; however, credible
results only begin above 86 km and the nominal values are
excessively larger by a factor of 170 (!).

Next, we shift all probe profiles to match the RWP data at
97 km and form the ratio between the probe plasma densities
and the wave propagation data RWP. This normalisation alti-
tude is chosen just above the height where negative ions (or
negatively charged dust) may conceivably exist (cf. the ac-
companying paper by Friedrich et al., 2012). Figure 4 shows
the residual variation of the deviations with altitude. Clearly,
the multi-needle Langmuir probe data not only shows the
smallest deviation, but also displays the least altitude vari-
ation of this factor.

At low altitudes (<85 km) the ion density is expected to
exceed that of electrons due to the presence of negative ions.
The fact that the (normalised) ECOMA shielding grid mea-
sures more ions than the dedicated gridded sphere (PIP) in
the region of 86 to 95 km can tentatively be explained by
the presence of heavy negative charges such as large water
cluster ions, or indeed charged aerosols, which are not fully
collected by the low bias of only−2.5 V on the inner collec-
tor of PIP (P̈urstl, 2000), whereas a mass discrimination of
the exposed grid is less pronounced.

3.2 ECOMA-8

ECOMA-8 was launched on 13 December 2010, at 03:24 UT.
The solar zenith angle was 119.1◦, the solar flux 87.7 sfu,

www.ann-geophys.net/31/135/2013/ Ann. Geophys., 31, 135–144, 2013



140 M. Friedrich et al.: Multi-instrument comparisons of D-region plasma measurements

Fig. 5.Electron densities from various sources of the radio wave propagation experiment (flight ECOMA-8). When the rocket was at 100 km,
the 7.835 MHz ground transmitter failed, and the three lower frequencies were all either absorbed or reflected (TR: total reflection [o and x
modes]; DA: differential absorption).

Fig. 6. As Fig. 3, but flight ECOMA-8. The dotted line is an extension of the RWP data primarily relying on the normalised data from the
forward electron probe FEP and the multi-needle probe (m-NLP).

and there were 28 sunspots on that day. The ionosphere was
more disturbed than either ECOMA-7 or -9. Unfortunately,
the transmitter of the highest frequency (7.835 MHz) failed
when the rocket was at 100 km and the lower frequencies
could no longer be received above that height due to the
large electron density. Otherwise, up to that height the data
from the wave propagation instrument are very good (Fig. 5).
Figure 6 shows the RWP together with the nominal (i.e. un-
normalised) results of the various probes. The dashed line is
based on the normalised profiles from FEP and the m-NLP;

we again adjust all probe profiles at 97 km to the radio wave
propagation results. FEP electron densities at lower altitudes
(<83 km) are reminiscent of the ion densities due to PIP or
the ECOMA grid. Whether the payload potential is responsi-
ble for that behaviour is doubtful, particularly since the ion-
like behaviour of FEP is evident at an altitude where the pay-
load potential is not excessively negative (Fig. 7). In contrast
to the case of ECOMA-7, there is no identifiable difference
between the (normalised) ion densities obtained from PIP or
the ECOMA grid.

Ann. Geophys., 31, 135–144, 2013 www.ann-geophys.net/31/135/2013/
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Fig. 7.As Fig. 4, but flight ECOMA-8.

Fig. 8.As Fig. 2, but flight ECOMA-9.

3.3 ECOMA-9

ECOMA-9 was launched on 19 December 2010, at 02:36 UT.
The solar zenith angle was 123.6◦, the solar flux 80.9 sfu,
and there were no sunspots on that day. The electron den-
sities during this flight were small enough that the highest
sounding frequency (7.835 MHz) was only needed as a spin
reference, and we make use of differential Faraday rotation
with different combinations of frequencies. In addition, the
total reflection of the 1.300 MHz was very pronounced and
thus yields an unambiguous electron density value (Fig. 8).

FEP again showed nominal values larger than RWP,
namely by a factor of 22.2. More worrying is the shape of
the FEP profile below 83 km since it too is almost identical to
those of instruments measuring ions (PIP and ECOMA grid).
Since the derived payload potential is always at least−2.5 V,

proper operation as a saturated Langmuir probe is doubtful
(Fig. 9).

The multi-needle probe results are closest to the com-
bined wave propagation results (RWP) and also show the
least height variation of the deviation (Fig. 10). Due to the
plasma densities being somewhat larger than in the case of
ECOMA-7, measurements using the grid current are credi-
ble down to 70 km.

4 Conclusions

Because radio wave propagation results (Faraday rotation,
[differential] absorption) are neither influenced by aerody-
namics nor by the payload potential, they represent the ref-
erence for the other instruments measuring electron densi-
ties. The height resolution is only moderate since it is tied

www.ann-geophys.net/31/135/2013/ Ann. Geophys., 31, 135–144, 2013
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Fig. 9.As Fig. 3, but flight ECOMA-9.

Fig. 10.As Fig. 4, but flight ECOMA-9.

to the rocket’s spin rate, but owing to the narrow bandwidth
of today’s receivers (300 Hz) and the stable ionosphere con-
ditions, the data quality – including absorption – is very
good. The detection limit is primarily related to the colli-
sion frequency (i.e. proportional to pressure). In the case of
ECOMA-7, usable measurements extend down to 107 m−3

(at 80 km). In the other two flights the electron densities
are larger at lower altitudes (i.e. at larger collision frequen-
cies). At these larger collision frequencies, the threshold for
the electron density measurements is consequently larger by
about a factor of 2. This is in qualitative agreement with
the simulated detections limits according to Jacobsen and
Friedrich (1979).

The multi-needle Langmuir probe provides electron densi-
ties that are closest to the wave propagation values and only
show a small residual height-dependence relative to RWP.
Due to the probe arrangement, measurements only com-

menced after payload separation at about 83 km, and a test
of the performance of this novel probe at even lower alti-
tudes remains to be done. Apparently the method with dif-
ferent biases can indeed remove the influence of the payload
potential, but it is still subject to aerodynamics, i.e. the lo-
cation of the probes in relation to the shock cone; the aero-
dynamic impact is an issue in the present flights in the rela-
tively dense mesosphere. The problem did not exist for the
earlier flights from Spitsbergen and Poker Flat where the
agreement at higher altitudes with ground-based, incoherent
scatter data was close to unity. A simulation of the aerody-
namics of a payload of a similar geometry and dimensions
revealed that at the location of the m-NLP the needles are not
outside the shock cone. In fact, this simulation suggests that
the maxima are about a factor of two larger than the undis-
turbed ambient, whereas the minima in the spin period should
correspond to only a small angle between payload axis and

Ann. Geophys., 31, 135–144, 2013 www.ann-geophys.net/31/135/2013/
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Table 2.List of ECOMA flights with technical data of the various probes. In the last four columns, the deviation factors are given by which
the nominal probe results have to be reduced for agreement with the respective wave propagation electron densities at 97 km on upleg. The
values in brackets apply when using theminimain a spin period (see text).

Code Ne @ cal. FEP ECOMA grid m-NLP (1.1 cm2 each needle) FEP ECOMA grid m-NLP PIP

altitude 97 km bias area bias area bias bias bias bias factor factor factor factor
m−3 V cm2 V cm2 V V V V

ECOMA-3 1.05× 1010
+2.5 8.3 −3.0 33.3 2.66 177 2.49

ECOMA-4 7.75× 1010
+2.5 13.2 −3.0 33.3 3.63 75.4 1.49

ECOMA-5 9.36× 109
+2.5 13.2 −3.0 33.3 7.56 268 3.87

ECOMA-6 8.20× 1010
+2.5 13.2 −3.0 33.3 3.10 65.3 1.19

ECOMA-7 5.43× 109
+2.5 1.5 −3.0 66.4 +2.50 +3.37 +4.29 +5.10 8.09 170 2.20 (1.37) 3.09

ECOMA-8 2.08× 1010
+2.5 1.5 −3.0 33.3 +2.50 +3.37 +4.29 +5.10 24.0 137 2.30 (0.93) 2.91

ECOMA-9 9.50× 109
+2.5 1.5 −3.0 66.4 +2.50 +3.37 +4.29 +5.10 2.54 170 3.24 (0.92) 5.50

velocity vector, and result in values closer to the undisturbed
ionosphere (Barjatya and Swenson, 2006). We use the min-
ima in each spin period to test this hypothesis, which leads to
profiles that are only factors 1.37, 0.93 and 0.92 from RWP
results (ECOMA-7, -8, and -9, respectively). The conclusion
thus is that the booms for the m-NLP probe were simply
not long enough at that location at the rear of the payload,
whereas had they been attached at the forward deck, the nee-
dles would have sampled the undisturbed ionosphere.

Strangely, the plane grid at the entrance of the ECOMA
detector in some cases shows less altitude dependence of
the deviation relative to RWP than the spherical gridded ion
probe. The measured currents do not show any spin sig-
natures because this grid is mounted exactly in the rocket
axis; hence, the current provides a time resolution for the
ion density, only limited by the telemetry sampling rate. Us-
ing an altitude-dependent normalisation, one can thus obtain
the best height resolution of all the plasma instruments. The
present measurements are restricted to larger densities be-
cause only a linear housekeeping channel was available for
monitoring the current to the grid.

The profiles of both forward probes (FEP and PIP), after
normalisation to RWP at 97 km, show a deficit above 100 km.
Since it affects both species, it is not likely to be caused by a
change in the payload potential, but must rather be related to
some aerodynamic effect. Also, a decaying of the ionosphere
during the flight can be ruled out since this decrease of the
deviation is a feature observed in all three flights; notably, in
flight ECOMA-9 the downleg data are actually larger by a
factor of 2, hence the ionospheric densitiesincreasedduring
the measurement. Below about 85 km the fixed-bias, forward
electron probes measured almost as much as the dedicated
ion probes. The relatively large negative payload potential
of 2 to 2.5 V may have caused this behaviour. Why the pay-
loads ECOMA-7 to -9 should have charged more negative
than the earlier ECOMA payloads is still unknown. Accord-
ing to simulations of these payloads (see the accompany-
ing paper by Bekkeng et al., 2013), the main source of the
negative charge is the positively biased grid of the CONE

instrument at the rear of the payload. However, this instru-
ment was part of all ECOMA payloads, including the flights
where FEP definitively measured electrons (i.e. never more
electrons than ions). The earlier ECOMA flights (all in day-
light) had no instrument to measure the payload potential,
but the “correct” performance of FEP and PIP suggests that
there was no excessive negative potential, i.e. FEP measured
a profile essentially simply shifted by a fairly constant factor
relative to the RWP profile. The behaviour of FEP in flights 7
to 9, different from the earlier flights 3 to 6, cannot be ex-
plained by the absence of sunlight and, in consequence, ab-
sence of photoemission. Similar Langmuir-type probes were
flown in full darkness (two each from Alcântara, Brazil, and
from northern Scandinavia) and behaved expectedly, i.e. the
measurements yielded more positive ions than electrons.

The behaviour of the probes described here differs signif-
icantly from that observed in four equatorial rocket flights
(Friedrich et al., 1997). In 1994 two rockets each were
launched from Alĉantara, Brazil, near local noon and lo-
cal midnight, respectively. The efficiency of both PIP and a
hemispherical Langmuir probe was distinctly higher in dark-
ness, and the cylindrical Langmuir probe (similar to FEP in
the ECOMA flights) was only 10 % from the final electron
densities. The payload potential was measured using a pair
of spheres on relatively short booms; such a configuration
is of course not as sophisticated as the m-NLP on ECOMA,
but still the data suggest negative potentials never exceeding
1.3 V. Also the height dependence of the residual normali-
sation factors (cf. Figs. 4, 7 and 10) of the various probes
showed much less variation with altitude than in the ECOMA
flights.

The correlation between the payload potential structure
and the various probe-derived plasma densities is not very
obvious, but perhaps a little more apparent when the plasma
densities are low. A perfect height-independent deviation
close to unity cannot reasonably be expected since the wave
propagation instrument relies on (a) only vertical structure
of the ionosphere and (b) stable conditions during the pas-
sage of the rocket (ca. 1 min), whereas probes measure in
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situ and are unaffected by conceivable temporal variations of
the ionosphere underneath.

Table 2 lists the relevant features of the flights ECOMA-3
to -9, indicating the mean normalisation factors of the vari-
ous probes when adjusted to RWP at 97 km. Despite the poor
statistics of only seven flights, it is interesting that the nor-
malisation factors of all probes – or probe proxies – (except
for the m-NLP) come closer to unity for larger electron densi-
ties, both for electrons (FEP) and ions (PIP and grid), and no
systematic difference between day and night-time data can
be seen.
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