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Onset conditions for equatorial spread F determined during EQUIS II
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M. F. Sarango,5 R. F. Woodman,5 and J. L. Chau5
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[1] An investigation into the dynamics and layer structure
of the postsunset ionosphere prior to the onset of equatorial
spread F (ESF) took place during the NASA EQUIS II
campaign on Kwajalein Atoll on August 7 and 15, 2004. On
both nights, an instrumented rocket measured plasma
number density and vector electric fields to an apogee of
about 450 km. Two chemical release rockets were launched
both nights to measure lower thermospheric wind profiles.
The Altair UHF/VHF radar was used to monitor coherent
and incoherent scatter. In both experiments, strong plasma
shear flow was detected. Periodic, patchy bottom-type
scattering layers were observed in the westward-drifting
plasma below the shear nodes. The large-scale plasma
depletions that formed later during ESF reproduced the
periodic structure of the original, precursor layers. The
layers were therefore predictive of the ESF that followed.
We surmise that collisional shear instabilities may have
given rise to large-scale plasma waves that were highlighted
by the bottom- type layer structure and that preconditioned
the postsunset ionosphere for ESF. Citation: Hysell, D. L.,

M. F. Larsen, C. M. Swenson, A. Barjatya, T. F. Wheeler, M. F.

Sarango, R. F. Woodman, and J. L. Chau (2005), Onset conditions

for equatorial spread F determined during EQUIS II, Geophys.

Res. Lett., 32, L24104, doi:10.1029/2005GL024743.

1. Background

[2] We describe a NASA sounding rocket investigation
into the dynamics of the postsunset equatorial F region
ionosphere and the role of thin ‘‘bottom-type’’ coherent
scattering layers that form at sunset. Coherent scatter from
these layers is thought to be a precursor to fully developed
equatorial spread F (ESF) [Woodman and La Hoz, 1976].
The enigmatic layers exhibit no vertical development and
reside in the valley region, below the shear node, where the
plasma flow is westward and retrograde (opposite the
wind direction) [Hysell and Burcham, 1998]. Kudeki and
Bhattacharyya [1999] argued that plasma irregularities in
the layers are generated by wind-driven interchange
instabilities operating near the equatorial evening vortex.
Hysell et al. [2004] found the layers to be patchy,
suggesting the presence of large-scale waves stable and

unstable to horizontal wind-driven instabilities in opposite
phases. Hysell and Kudeki [2004] then hypothesized that
the shear flow in the bottomside may destabilize the
bottomside, generating the large-scale waves and precon-
ditioning the ionosphere for ESF.
[3] The objectives of this investigation were to 1) under-

stand and quantify vertical shear in the horizontal plasma
drift in the bottomside F region around sunset, 2) identify
the mechanism producing the bottom-type scattering layers,
and 3) assess the impact of the layers and shear flow on the
overall stability of the postsunset equatorial F region.
[4] The investigation took place in August, 2004, during

the NASA EQUIS II campaign on Kwajalein Atoll using a
combination of sounding rockets and with the support of the
Altair VHF/UHF coherent/incoherent scatter radar [Tsunoda
et al., 1979]. Two sets of launches took place on separate
nights from the Roi Namur range. Each consisted of an
instrumented payload launched north-westward and two
chemical release payloads, one also launched north-west-
ward, and the other launched to the northeast. The instru-
mented payloads measured plasma density, electron
temperature, electron collision frequency, and electric field
profiles to an altitude of about 450 km while the chemical
release payloads afforded measurements of lower thermo-
speric neutral wind profiles at three locations though photo-
graphing and triangulation of chemiluminiscent TMA trails
[Larsen and Odom, 1997]. Radio beacons on the chemical
release rockets along with the AFRL Digisonde were
provided additional diagnostics.

2. Campaign Data

[5] The first experiment was conducted on August 7,
2004 following the appearance of F region coherent scatter
in Altair radar scans at about 1930 SLT. Figure 1 shows
UHF (422 MHz) radar data for three sequential scans
occurring at 0840 UT, 0858 UT, and 0946 UT. Note that
SLT � UT + 11 hr on Kwajalein. For these scans, the main
beam of the radar was perpendicular to the geomagnetic
field at F region altitudes. A combination of coherent and
incoherent scatter was therefore detected. The incoherent
scatter data have been processed so as to represent plasma
density. Coherent echoes appear as intense patches super-
imposed on the incoherent scatter and signify the presence
of nonthermal field-aligned plasma irregularities. Their
widespread appearance signals the onset of ESF.
[6] The first two scans in Figure 1 show a bottom-type

coherent scattering layer at 200–250 km altitude. The scans
reveal that the layers are patchy, made up of periodically
spaced regions of irregularities, separated in this case by
about 150–200 km. Note that the same periodicity is seen in
large-scale wave forming in the bottomside in the first two
panels as well as in the radar plumes in the rightmost panel,
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when fully developed spread F was underway and distinct
radar plumes separated by 150–200 km were visible.
[7] An instrumented rocket (29.036) was launched into

the event at 0852:56 UT, followed by the two chemical
release rockets. Rocket data are shown in Figure 2. The
electron densities were derived by the Utah State University
(USU) Swept Langmuir Probe, and the vector electric fields
from the Penn State University (PSU) E-field experiment. In
Figure 2, positive fields are eastward and upward and
correspond, respectively, to upward and westward E � B
drifts. (Here, 1 mV/m corresponds to 33 m/s at 250 km
altitude). The density profiles suggest a postsunset F region
ionosphere with a steep bottomside density gradient and a
kink in the density at 350 km associated with the upwelling
seen in the middle panel of Figure 1. The zonal electric field
was small throughout the upleg except around 275 km
where the vehicle entered the upwelling. Finally, the vertical
electric field profile indicates strong shear flow, with the
plasma moving eastward at up to 190 m/s above 250 km
and westward at up to 50 m/s below 250 km. Values for the
velocity shear (change in eastward plasma drift velocity
with altitude) calculated from a low-pass filtered version of
Ez approach +4 m/s/km in the bottomside. A rapid eastward
plasma jet at 275 km is co-located with the upwelling and
presumably associated with the electric field of the growing
large-scale wave.
[8] The payload also intercepted intermediate- and small-

scale bottom-type plasma irregularities between 200–250 km
altitude. The irregularities existed in the rarefied valley

region, where the density profile was flat, rather than the
steep bottomside, where Rayleigh-Taylor type instabilities
are expected to occur. Moreover, the irregularities were
confined to thewestward-drifting strata below the shear node.
Finally, the irregularities were anisotropic, with the vertical
electric field components being significantly stronger than the
zonal field components.
[9] The downleg data shown in Figure 3 are substantially

similar to the upleg data. The steep bottomside F region
density gradient remains present. Strong shear flow con-
tinues, with the shear node falling at about 280 km. Weak
plasma irregularities were grazed between 225–275 km
altitude.
[10] The second set of rockets was launched on August

15 into the conditions depicted in Figure 4. A strong
bottom-type scattering layer was forming directly overhead
between about 225–300 km altitude. The layer was patchy
rather than continuous and displayed regular, 30 km spacing
between patches. Depletions and radar plumes ultimately
formed exhibiting the same characteristic spatial periodicity
as the bottom-type layer patches. A large-scale bottomside
undulation also emerged overhead during the experimental
interval, seen most clearly near the rocket apogee in
Figure 4. The instrumented rocket (29.037) launch occurred
at 0821:53 UT, followed by two chemical release rockets.
The arc in the middle panel of Figure 4 suggests that the
instrumented rocket intercepted bottom-type layer patches
on the upleg at 250–300 km altitude and on the downleg at
somewhat lower altitude.

Figure 1. Altair radar scans prior to, during, and after the August 7 rocket flights. A combination of incoherent scatter
(electron density) and coherent scatter (irregularity intensity) is shown. The white arc is the instrumented rocket trajectory.
The rightmost panels depict electron density profiles at zenith.

Figure 2. Upleg data from 29.036. Left: electron density.
Center: zonal electric field. Right: vertical electric field.
Right, light line: velocity shear.

Figure 3. Downleg data from 29.036. Left: electron
density. Center: zonal electric field. Right: vertical electric
field. Right, light line: velocity shear.
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[11] Upleg rocket measurements are shown in Figure 5,
where irregularities are evident between about 240–300 km
altitude. These irregularities were qualitatively different
from the ones in the first experiment, existing both in the
valley and the bottomside and demonstrating a greater
degree of isotropy in their electric fields. Their relative
RMS amplitude was smaller, but because the background
density was an order of magnitude greater than before, the
absolute density fluctuations were stronger. This is consis-
tent with the detection of stronger coherent scatter from
these layers. These irregularities moreover resided in a
slowly ascending ionospheric layer that spanned the vertical
shear node, occupying both eastward- and westward-
drifting strata. The vertical electric field profile appears to
be highly distorted, having jets moving eastward and
westward with respect to the plasma at the F peak at
altitudes just below and above 300 km respectively. We
attribute this as well as the kinks in plasma density to the
large-scale wave forming in the region and the emergence of
ESF.
[12] Downleg data for the second instrumented rocket

flight appear in Figure 6. These data are similar to those
from August 7; the irregularities resided mainly in the
valley region where the vertical density gradient was
gradual and the plasma drifts were upward and westward.
The irregularities were anisotropic, with larger RMS vertical
electric field components than zonal. A strong westward jet
in the plasma flow existed at about 300 km, a feature we
associate with the growing large-scale bottomside undu-
lation and imminent ESF. The velocity shear was as large
as 6 m/s/km above the jet.

3. Summary and Analysis

[13] The vertical electric fields measured in situ confirm
and quantify the strong shear flow and retrograde drifts in
the postsunset bottomside F region inferred from radar
observations by Kudeki et al. [1981] and Tsunoda et al.
[1981]. The rocket experiments further show that bottom-
type layers reside mainly in the valley region, below the
altitudes where the vertical plasma density gradient is
steepest and instead in the altitude range where the retro-
grade plasma drift is fastest. This, the fact that the vertical
RMS perturbed electric fields in the layers are stronger than
the zonal fields, and the widespread presence of zonal

Figure 4. Altair radar scans prior to, during, and after the
August 15 rocket flights. The white arc is the instrumented
rocket trajectory. The rightmost panels depict electron
density profiles at zenith.

Figure 5. Upleg data from 29.037. Left: electron density.
Center: zonal electric field. Right: vertical electric field.
Right, light line: velocity shear.

Figure 6. Downleg data from 29.037. Left: electron
density. Center: zonal electric field. Right: vertical electric
field. Right, light line: velocity shear.
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plasma density gradients in the Altair data, support the
theory of Kudeki and Bhattacharyya [1999] attributing the
layers to wind-driven interchange instabilities.
[14] Moreover, coherent scatter data from the Altair radar

confirm the observation that the bottom-type layers gener-
ally consist of patches regularly distributed in space as
delineating the unstable western walls of an emerging
large-scale wave. That the regular spacing of the patches
was later replicated in the morphology of the depletions
during full-blown ESF (Figures 1 and 4) argues that the
layer patches are telltale of preconditioning or seed waves in
the bottomside existing well in advance of ESF. Patchy
bottom-type layers preceded the onset of ESF on every
night that it occurred during our experiments on Kwajalein.
[15] Hysell and Kudeki [2004] analyzed whether shear

flow could generate such large-scale seed waves. Following
the analysis of Keskinen et al. [1988], they found a
collisional branch of the electrostatic Kelvin Helmholtz
instability that could operate in the bottomside in regions
of retrograde plasma motion. The growth rate could com-
pete with the Rayleigh Taylor instability but with potentially
earlier onset. Nonlocal analysis predicted a maximum
growth rate for kL � 1/2, where k is the horizontal wave-
number and L is the vertical scale length of the shear.
Taking L � 15 km on the basis of Figure 3 implies a
preferred wavelength of about 200 km. An initial value
analysis, meanwhile, suggested that the instability would
exhibit a shorter dominant wavelength in its early stages, of
the order of 30 km in simulation. The transient response of
the instability could therefore account for the decakilometric
large-scale waves in the postsunset ionosphere and that the
steady-state response could account for the large scale (L 5
200 km) waves. The instability is inherently nonlocal, and a
growth rate cannot be evaluated on the basis of the local
measurements presented here. A modeling effort dedicated
to ascertaining the role of shear instability in the EQUIS II
observations is underway.
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