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in the Earth’s Ionosphere
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Spinning or tumbling CubeSats with Langmuir probes deployed on booms will render spin-modulated plasma

densities as the probes move in and out of the spacecraft wake. It is traditionally assumed that the lower-density

measurements from the spin cycle aremade in the spacecraft wake, and the higher-densitymeasurements are outside

the wake. Although this assumption is valid for larger spacecraft in the Earth’s ionosphere, this paper scrutinizes its

validity for CubeSats in similar conditions. Spacecraft–plasma interactions (surface charging, plasma sheaths, and

wakes) are less understood for CubeSats, and the small CubeSat dimensions must be considered with respect to

characteristic length scales of the space plasma environment, namely, the Debye length. Spacecraft Plasma

Interaction Software, a spacecraft charging analysis tool, is used to investigate CubeSat interactions with the

mesothermal plasma environment. For low-density and cold-plasma ionospheric conditions, the CubeSat dimension

of 10 cm is comparable to the sheath thickness. The simulations show that, under such circumstances, a negatively

chargedCubeSat inmesothermal ionospheric conditions creates an ion focus region in the farwake.An independently

written, first-principles code inMATLABdemonstrates that this feature is a direct result of theCubeSatbehaving like

a Langmuir probe in the thick-sheath model. The work performed in this paper cautions the community toward

assuming CubeSats to have density depletion in their wake and stresses the necessity of having an accurate attitude

solution and proper boom length design to derive ambient plasma densities from spin-modulated Langmuir probe

measurements on CubeSats.

Nomenclature

A = surface area, m−2

a = ion acceleration vector, m · s−2

Ie = electron current, A
Ii = ion current, A
l = dimension of conductor, m
ne = electron density, m−3

ni = ion density, m−3

n0 = quasi-neutral plasma density, m−3

ri = ion position vector, m
Te = electron temperature, K
Ti = ion temperature, K
vSC = spacecraft velocity vector, m · s−1

vi = ion velocity vector, m · s−1

vthe = electron thermal velocity vector, m · s−1

vthi = ion thermal velocity vector, m · s−1

λD = Debye length, m
τC = charging time, s
ϕf = floating potential, V
ϕp = plasma potential, V
ϕs = sheath potential, V
χ = ion focusing parameter, m
ωp = plasma frequency, rad · s−1

I. Introduction

L ANGMUIR probes are the most routinely used plasma
diagnostic instruments aboard satellites and sounding rockets

[1,2]. Spacecraft typically deploy Langmuir probes on booms into

the space plasma environment and apply electrostatic probe theory as
developed by Irving Langmuir [3] andMott-Smith and Langmuir [4]
in themid-1920s for data analysis.With thewidespread acceptance of
the CubeSat specification for small satellites [5], Langmuir probes
are being deployed on multiple CubeSats [6]. Because Langmuir
probes are among the most simple instruments that offer in situ
plasma diagnostic measurements, their inclusion in a future CubeSat
constellation is imminent. As a result, spacecraft–plasma interactions
of a CubeSat (charging, sheaths, and wakes) must be studied to
properly design Langmuir probes and analyze the acquired
measurements.
High relative velocity of an object traveling with respect to the

plasma generates a plasma wake [7]. Particle-in-cell (PIC) codes
track the trajectories of charged particles in a Lagrangian reference
frame in phase space with respect to a background Eulerian
coordinate system in response to self-consistent electrodynamic or
electrostatic fields. PIC codes are commonly employed to simulate
plasma wakes for various conditions [8–11]. In general, plasma
wakes have been seen to be generated by various objects in the space
plasma environment: from high-velocity dust grains [8,12,13] to
spacecraft [14–16] and planetary bodies [9,17–20].
In the absence of spurious currents (photoemission, backscattered

and secondary electrons, electron beams, etc.), spacecraft surfaces in
the ionosphere tend to charge to negative potentials. Furthermore, the
Earth’s ionosphere is typically a mesothermal environment for
satellites such that vthe ≫ vSC ≫ vthi, where vthe, vSC, and vthi are
electron thermal velocity, spacecraft velocity, and ion thermal
velocity, respectively. The thermal velocity for the s-species particle
of temperature Ts and mass ms is taken here as the most-probable
thermal velocity of the form vths � �2kBTs∕ms�1∕2, where kB is the
Boltzmann constant. Positively charged ions are subsonic with
respect to the bulk flow velocity such that they contribute to the ram-
side flux current [7]. This generally results in an ion density depletion
in the wake of spacecraft. Consequently, density measurements from
Langmuir probes differ when taken within or outside a plasma wake;
an asymmetry in the wake current distribution has been shown to
exist [21]. For spin-modulated Langmuir probe measurements, it is
assumed that the lesser density at any given time corresponds to the
probe being in the wake, whereas the greater density is thought to be
given by the probe outside the wake. Furthermore, it has been
numerically verified that positively charged ion trajectories may be
modulated in the presence of a negatively charged object giving rise

Received 2 August 2015; revision received 10 November 2015; accepted
for publication 14 November 2015; published online 28 April 2016.
Copyright © 2015 by the American Institute of Aeronautics andAstronautics,
Inc. All rights reserved. Copies of this paper may be made for personal and
internal use, on condition that the copier pay the per-copy fee to the Copyright
Clearance Center (CCC). All requests for copying and permission to reprint
should be submitted to CCC at www.copyright.com; employ the ISSN 0022-
4650 (print) or 1533-6794 (online) to initiate your request.

*Ph.D. Candidate, Engineering Physics, Department of Physical Sciences,
600 South Clyde Morris Boulevard.

†Associate Professor, Engineering Physics, Department of Physical
Sciences, 600 South Clyde Morris Boulevard.

393

JOURNAL OF SPACECRAFT AND ROCKETS

Vol. 53, No. 3, May-June 2016

D
ow

nl
oa

de
d 

by
 E

M
B

R
Y

-R
ID

D
L

E
 A

E
R

O
 U

N
IV

. o
n 

N
ov

em
be

r 
29

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

33
40

2 



to an ion density enhancement in the wake [11,22]. Heavy ions
contribute to the geometric wake structure, whereas the negatively
charged conductor acts as an electrostatic lens for light ions [23]. The
region of light ion focusing is typically referred to as the ion focus
region [17].
The ion focus region is dependent on the geometry of the

negatively charged body; a degree of asymmetry in focusing is
present for elongated objects [24].Density enhancements in the focus
region are more prevalent for cold ions because they lack the energy
to escape electrostatic lensing [11]. The maxima of density
enhancement in the ion focus region resides farther downstream for
high-velocity objects [23]. Moreover, a potential maximum follows
the density enhancement downstream as given by Poisson’s equation
[25]. The ion focus region has been studied for electrically charged
dust grains [12,13], non-CubeSat spacecraft [23], and planetary
bodies [9,18]. Nevertheless, previous studies of plasma wakes have
not discovered ion focusing for the CubeSat form factor [26,27].
In this paper, the open-source PIC code Spacecraft Plasma

Interaction Software (SPIS) is used to model the plasma wake of a
CubeSat with densities that are typical of nighttime, midlatitude,
topside ionospheric environment where the local Debye length is
comparable to the CubeSat dimension. SPIS has been successfully
employed in the past to model spacecraft–plasma interactions [28–
30]. For simplicity, zero background magnetic field is assumed. The
ion enhancement in the far wake rendered by SPIS is validated by a
first-principles code inMATLAB. The ion focus region has profound
implications on Langmuir probe design and data analysis for
CubeSats.

II. CubeSat Surface Charging

A negatively charged conducting surface results in a departure
from quasi neutrality in the local ambient plasma; a net electron
deficit occurs in the immediate vicinity of the surface, generating an
ion dominant region of negative plasma potential [31]. For a Debye
length λD, plasma potential ϕp, electron density ne, and ion density
ni, ne < ni (ϕp < 0) within the Debye sheath of thickness nλD, where
n ∼ 5 − 7. Outside the Debye sheath, plasma attains quasi neutrality,
that is, ne � ni � n0 and ϕp � 0. The electron and ion density
profile as a function of distance froma charged surface is illustrated in
Fig. 1 [32].
In general, the electrostatic influence of a charged conductor on the

angular momentum of charged particles dominates when the
dimension of the conductor,l, is less than or comparable to the sheath
thickness, that is, nλD ≥ l. This type of interaction is characterized
by orbital-motion-limited theory and constitutes the thick-sheath
model. Alternatively, when l ≥ nλD, particle angular momentum is
relatively unchanged in what constitutes the space charge regime or
thin-sheath model [33].

Just as Langmuir probe surface currents are determined by applied
bias potentials, the potential of a spacecraft is a response from
accumulated surface currents [7]. In this manner, CubeSats in the
Earth’s ionosphere behave as Langmuir probes in the thick-sheath
regime, that is, l ≈ nλD for typical topside ionospheric values of
λD ≈ 3 cm and l ≈ 10 cm. In the absence of photoemission,
CubeSats charge negatively to low potentials in mesothermal topside
ionospheric conditions. We use the nonlinear Poisson solver in the
SPIS numerical kernel (SPIS-NUM) with an O� ion population
simulated as particle-in-cell in electrostatic balance with a
Maxwellian electron velocity distribution function. The nonlinearity
occurs from the electron distribution function tending toward
thermodynamic equilibrium by stochastic collisions with the O�
population. Particle dynamics on these time scales are guaranteed to
be captured in the simulation because a 1 × 10−6 s plasma time step is
selected to be on the order of the local plasma frequency inverse [28].
The time step selected is much less than the ion acoustic frequency
inverse such that all PIC ion dynamics are resolved on these time
scales.
Within the SPIS simulation, the time it takes for the PIC simulation

to converge to a floating potential ϕf corresponding to zero net
surface current, τC, is considered. The values of τC and ϕf for two
different densities (n0 � 1 × 109 m−3 and n0 � 1 × 108 m−3) and
three different temperatures (1000, 2000, and 3000 K) are tabulated
in Table 1. For a stationary CubeSat, charged particles accumulate on
surfaces by purely thermal motion. As expected, Table 1 and Fig. 2
show thatϕf is independent of plasma density and only dependent on
plasma temperature. The figures and the table also show that τC ∝
�Te; Ti� and τC ∝ n−10 . Note that τC is not the same as the time it takes
for a simulation to run.With a 1 s : 100min PIC-to-real-time ratio, for
t ≥ τC the plasma potential field is steady-state. For the simulation
time steps and plasma volume size considered, more particles than
n0 � 1 × 1010 m−3 exceeded the processing power for the large
computational domain in SPIS.

III. Simulation Parameterization

To remainwithin reasonable computational expenseofSPIS-NUMin
the thick-sheath approximation ofLangmuir probe theory,we simulate a
space plasma environment that is absent of energetic particles, spurious
surface currents, and magnetic fields. The plasma densities chosen are
representative of midlatitude, nighttime, geomagnetically quiet, topside
(greater than 400 km) ionospheric regions or, equivalently, low-density
plasmabubbles,where theDebye sheath is comparable or larger than the
CubeSat size. Thus, we simulate a single-electrical-node 1.5U CubeSat
traveling at 7.5 km · s−1 immersed in a quasi-neutral plasma density of
n0 � 8 × 109 m−3 in SPIS. The electron (ion) temperature is Te �
2000 K (Ti � 1400 K) such that the local Debye length is λD �
3.5 × 10−2 m. The local plasma frequency is ωp � 5 × 106 rad · s−1.
A 0.75 m (≈21.5λD) radius spherical computational volume
accommodates the 1.5U CubeSat with the 15 cm dimension along the
velocity vector (the x axis) at zero ram angle. TheCubeSat is offset from
the center of the computational domain by 30 cm toward the ram
directionwith ions flowingwith velocity v � vSCêx for vSC ≫ vthi and
vSC � 7500 m · s−1. The geometry designed in Gmsh is illustrated
in Fig. 3.
The spacecraft surface is modeled as an aluminum cuboid with

300K surface temperature. Realistically, only the rails of theCubeSat
constitute the conducting area. As a result, as long as the Debye
length is comparable or larger to the dimensions of the CubeSat, the

Fig. 1 The sheath extends nλD (for n ∼ 5 − 7) from the negatively
charged conducting surface. Beyond nλD, quasi neutrality holds and
ϕp � 0 (not to scale). Adapted from [32].

Table 1 CubeSat charging times and floating
potentials for topside-ionospheric conditions

Simulation n0, m
−3 Te � Ti, K τC, s ϕf , V

1 1 × 109 1000 6.22 × 10−5 −0.30
2 1 × 109 2000 9.28 × 10−5 −0.59
3 1 × 109 3000 1.19 × 10−4 −0.87
4 1 × 108 1000 4.70 × 10−4 −0.27
5 1 × 108 2000 1.10 × 10−3 −0.58
6 1 × 108 3000 2.10 × 10−3 −0.90
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effect of only the rails being charged is similar to the CubeSat being

approximated as a solid cuboid. In this investigation, we have not

studied the effect of a biased Langmuir probe extended on a boom.

Note that, while using Langmuir probes, one always designs the

probe to be such that the measurement itself does not disturb the

environment that needs to be measured. Furthermore, when one is

doing Langmuir probe analysis, one again assumes that the

measurement from the probe is representative of the environment and

that the environment is not being disturbed by the probe presence

itself. Thus, we have only concentrated on the effect that the presence

of the spacecraft has on the surrounding plasma environment.

Surface currents are computed for a specified particle distribution

function: bi-Maxwellian,Maxwellian, backtracking, or particle-in-cell

(PIC). Spacecraft surface and plasma sheath potentials are, likewise,

derived by electrodynamic boundary conditions. Thermal motion

toward thermodynamic equilibrium in the spacecraft vicinity is itself

nonlinear. With a PIC modeled O� ion population and given quasi-

neutral density, the nonlinear Poisson solver of SPIS-NUM obtains a

plasma potential field by the common preconditioned conjugate

gradient algorithm. Particle accelerations coherent to the potential field

are thus consistent with collisional effects, ambipolar diffusion, and

other magnetohydrodynamic phenomena. Plasma field densities are

interpolated in SPIS-NUM from particle positions that result from

integrating particle accelerations by the leap-frog scheme.

Because of simulated mesothermal conditions, the CubeSat ram

surface area is subject to a flux of PIC-modeled O� ions with

vthi ≪ vSC. Differential surface charging is nonexistent for an

electrically connected structure. Because the spacecraft is subsonic

with respect to electrons, that is, vSC ≪ vthe, the CubeSat is subject to
an isotropic thermal flux of Maxwellian electrons. Background

magnetic fields are not considered, and spacecraft charge

neutralization omits the inclusion of induced magnetic fields after

τC. Pertinent plasma and simulation global parameters are referenced

in Table 2.

IV. Simulation Results of CubeSat–Plasma Interactions

TheMaxwellian electron population is isotropically repelled from

the negatively charged CubeSat surface in the exponential fashion of

the Boltzmann repulsion factor. The CubeSat floats to ϕf ≈ −0.67 V
at τC ≈ 5.20 × 10−5 s, as seen in Fig. 4. The time of charging onset τC
is defined as the time of minimum absolute net current IT . Here, as
time approaches τC ≈ 5.20 × 10−5 s, the surface current is

neutralized, and the spacecraft potential ϕ approaches the floating

potential of ϕf ≈ −0.67 V, that is, IT → 0 and ϕ → ϕf for t → τC.
However, for 0 < t < τC, when the simulation has not converged to

the final bias point, the thermal electron collection current is larger

than the thermal ion collection current. Thus, the net current

collection is initially negative. For t ≥ τC and vSC ≫ vthi, the sheath
potential and thickness are modulated according to ambipolar

diffusion of Maxwellian electrons in response to the nonsymmetric

ion density distribution in the ram and wake sides until surface

currents are neutralized by attracted ions. Constant surface charge

neutralization causes continuous yet minor (less than 10%)

Fig. 2 CubeSat floating potentials for an O� dominant plasma environment.

Fig. 3 The 1.5U CubeSat within a spherical computational volume of 0.75 m radius. No external appendages are modeled.

Table 2 SPIS-NUM simulation parameters for a
single-electric-node 1.5 U CubeSat geometry

Parameter Value

Electron volume distribution Global Maxwell–Boltzmann
Ion volume distribution PIC
Electron density ne 8 × 109 m−3

Ion density ni 8 × 109 m−3

Electron temperature Te 2000 K
Ion temperature Ti 1400 K
Plasma Dt 1 × 10−6 s
Simulation duration τC 2 × 10−4 s
CubeSat ram velocity vSC 7500 m · s−1
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fluctuations in spacecraft floating potential and ambient plasma

density even after the spacecraft reaches the floating potential ϕf.

The triangulation of vthi and vSC at a distance nλD downstream

along thewake axis creates aMach conewith an ion density depletion

in the near wake, as seen in Fig. 5. The simulation also shows an

enhanced ion density region in the far wake. This is a direct effect of

electrostatic lensing of the ion that did not impact the ram surface but

got influenced by the negative potential of the CubeSat surface.

Via ambipolar electric fields, an electron density enhancement also

exists within the ion focus region, as well as a positive plasma

potential, as shown in Figs. 6 and 7, respectively. Note that, because

electron charge is negative, the left of the scale (blue) signifies higher

electron density. Figure 6 also shows a bow shock in electron density.

The ion density also has a bow shock but is not clear in Fig. 5 due to

the linear color scale. Figure 7 demonstrates that, because the

CubeSat surface is charged negative, the ambient plasma potential

slowly rises to zero after several Debye lengths, just as expected

in Fig. 1.

Figures 8 and 9 show the plasma parameters (ne, ni, and ϕp) along

slices of the computational volume: one perpendicular to the ram

direction and another parallel to the ram direction, respectively. The

Fig. 4 CubeSat net surface current IT and potential ϕ as a function of
time.

Fig. 5 Ion chargedensity through the principal axis along the spacecraft
velocity vector.

Fig. 6 Electron charge density through the principal axis along the
spacecraft velocity vector.

Fig. 7 Plasma potential through the principal axis along the spacecraft

velocity vector.

Fig. 8 Plasma density and potential profiles perpendicular to the
velocity vector through the spacecraft center, v � vSCêx. The Debye
length is λD � 3.5 × 10−2 m.

Fig. 9 Plasma density and potential profiles along the velocity vector
through the spacecraft center, v � vSCêx. The Debye length is
λD � 3.5 × 10−2 m.
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plasma parameter profiles in Fig. 8 are similar to a nonflowing case:
electron depletion close to the negatively charged CubeSat, and an
increase of the sheath potential to plasma potential as well quasi
neutrality in plasma density outside the Debye sheath. On the other
hand, the plasma parameter profiles in Fig. 9 show a distinct ion
enhancement above the background ion density in the CubeSat wake.
Because of ambipolar diffusion, this also leads to electron
enhancement in the wake as well as a positive sheath potential.
Massive ions do not assume diffusive equilibrium in the perturbed
sheath potential on time scales comparable to the local plasma
frequency inverse. As a result, the sheath potential ϕs is governed by
the rate PIC ions respond to fluctuations in ϕf. The ion number
densities interpolated from PIC macroparticle positions incur small
(less than 10%) fluctuations at these time scales.
When Langmuir probes are deployed on booms on a spinning

spacecraft, the measurable maxima is accepted as being detected
outside the wake and is thus considered to be an ambient density
measurement. This relies purely upon the assumption that there is
always a plasma depletion in thewake,which is valid for spacecraft in
the space charge regime of probe theory. The formation of an ion
focus region downstream of a negatively charged conductor with
dimensions comparable to the Debye sheath thickness is thus of
significant concern when developing CubeSat Langmuir probes with
extended booms that may lie along the velocity vector. Langmuir
probes deployed on long enough booms that place it in the ion focus
region will measure a plasma density enhancement over the ram-side
detection and the background density.
For this particular simulation, the near wake resides within 27 cm

(∼7λD) from the wake-side surface. The far wake begins 27 cm
downstream and extends 88 cm (∼25λD) before the background
density is recovered. The ion focus region itself extends 61 cm
(∼17λD) or, equivalently, 4ljj (6l⊥) for 1.5U CubeSat dimension
parallel (perpendicular) to the direction of motion ljj � 15 cm
(l⊥ � 10 cm). It is also noted that the potential maximum of ϕ ≈
0.07 V exists in the focus region 17 cm (∼5λD) downstream the
density maximum (i.e., 60.35 cm downstream the CubeSat). This is
in agreement to what has previously been shown for focus regions of
dust particles [25]. Ultimately, the ion focus region denotes an ion
density enhancement of about 66% over n0. Quasi neutrality is
recuperated once ion trajectories are dominated by thermal velocity
components toward the wake axis beyond the negatively charged
near wake. The generation of the ion focus region as rendered by
SPIS is central to this investigation and is independently verified to a
leading approximation in the next section.

V. Confirmation of the O� Ion Focus Region

A first-principles two-dimensional ion-lensing code was
developed in MATLAB to validate the far-wake ion density
enhancements rendered by SPIS. This section confirms that the ion
focus region is a result of the CubeSat operating in the thick-sheath
regime where the local Debye length is comparable to the CubeSat
dimensions. O� ion trajectories and spacecraft interactions are
modeled on a per-particle basis in the spacecraft reference framewith
ionvelocity vSC. For simplicity, edge effects of theCubeSatmodel are
avoided by simulating a spherical geometry of 1.5U form factor. The
spherical satellite has a radius of 9 cm and is placed at the origin.O�
ions are released at vSC along the x axis with 1400 K ion thermal
velocities vthi. Although ion thermal velocities are in random
directions, we only consider the two extreme cases of either directly
toward or away from the principal wake axis (i.e., the x axis).
Particlemotion is initiated by a bulk flow velocity vSC and a thermal

velocity vthi toward the wake axis such that vi � vSCêx � vthiêy.
Figure 10 shows the thermal wake of an uncharged spherical
spacecraft, where the blue trajectories correspond to ions with thermal
components away from thewake axis and red trajectories correspond to
the ionswith thermal components toward thewake axis. The traditional
view of plasma wakes in the ionosphere has quasi neutrality for all
regions outside the thermal Mach cone. The distance traveled by O�
ions from injection to thewake axis is given by the focusing parameter
χ. For an uncharged satellite, the thermal focusing parameter is

χt � �v2SC � v2thi�1∕2. The conventional heavy ion geometric wake,

effectively, Mach cone, of a satellite in the space charge regime of

mesothermal conditions is a result of the velocity triangulation of χt.
Thewake in the absence of electrostatic interactionswith the spacecraft

in a mesothermal flow is effectively a thermal wake. As expected, the

near-thermal wake is devoid of ions as vSC ≫ vthi. For a charged

spacecraft, the wake is expected to be different because the CubeSat

dimensions are comparable to theDebye length. Thus,we introduce an

electrostatic potential in the MATLAB model.
A plasma potential field modulates trajectories of ions for a

satellite at ϕf ≠ 0. Ion kinematics are iteratively computed at 1 μs
time steps according to the field produced by ϕf � −0.67 V. With

the sphere at the origin, the ion positionvector is ri � xêx � yêy. The
potential field at the ion, ϕp, is proportional to the e-fold decay of ϕf

(i.e.,ϕp ∝ ϕfe
−ri∕λD ) in accordance to theDebye–Hückel potential in

the plasma field [34]. Figure 11 illustrates that the potential as a

function of distance in the near-spacecraft environment is dominated

by the exponential decay of the potential within nλD of the spacecraft.

The exponential contribution to the potential falls off much faster

than the inverse distance term such that, in the sheath, the inverse

distance term is negligible.
The electric force of the spacecraft on an ion ofmassmi and charge

qi attracts the particle toward the spacecraft antiparallel to ri with an
acceleration magnitude of

a � qi
mi

ϕp

ri
(1)

Particle trajectories are constructed by integrating the preceding

for velocities and positions. Number densities are then interpolated

from the positions.
It is expected that ions within nλD of the spacecraft at ϕf ≠ 0 will

be influenced by the potential field at the ion, ϕp. An attractive force

governed by Eq. (1) on O� ions of massmi is introduced. The wake

produced by the electrostatic lensing of ion trajectories is what is

Fig. 10 Thermal plasma wake of an uncharged sphere with thermal
velocities away from the wake axis (blue trajectories) and toward the

wake axis (red trajectories).

Fig. 11 Plasma potential decay rate, as measured from the skin of the
satellite, is dominated by the exponential decay of ϕp ∝ exp�−ri∕λD�.
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referred to here as an electrostatic wake. The distance that ions reach
thewake axis from initialization by thermal and electrostatic effects is
given by the electrostatic focusing parameter χe. The focusing

parameter for the electrostatic wake is given by the distance of the
wake axis crossing from injection, χe � jxf − xij, where xf is the

final ion position along the wake axis, and xi is the location of
injection.
Figure 12 demonstrates how the negatively charged sphere focuses

ions directly toward the wake axis, as symmetry suggests. Focusing
applies both to ions with initial thermal velocities toward and away

from the principal axis, alike. Thus, more ions reach the wake axis at
distances closer to the spacecraft in the presence of ϕf < 0. Attracted
charges generate a density enhancement through the Mach cone and
are characterized by the electrostatic focusing parameter χe. For the
thermal wake (i.e., ϕf � 0), the focusing parameter is
χt � �v2SC � v2thi�1∕2, and for the electrostatic wake, χe � jxf − xij.
With ion attraction, random thermal motions ensure a background
thermal wake with a superposed electrostatic wake structure. For
attracted species, 0 ≤ χe ≤ χt. Ion thermal velocity components

toward the wake axis are inversely proportional to χ, that is, χ ∝ v−1thi
for vthi ⊥ vSC.
Focused ions are primarily attracted from negatively charged

Debye sheaths adjacent to surfaces parallel to the wake axis. The
exponential decay of the sheath potential deems distant ions immune

to electrostatic lensing. At 3λD, the trajectories of particles subject to
electrostatic attraction are minimally modulated. At the sheath edge,

such trajectories are solely dominated by thermal and bulk velocities.
As one moves farther away from the charged spacecraft (i.e., greater

jyi − rj, and thus lower electrostatic lensing), the electrostatic
focusing parameter converges to the thermal focusing parameter. For

a charged spacecraft atϕf, χe → χt for jyi − rj → nλD until χe ≈ χt at
jyi − rj ≈ 3λD. Figure 13 shows how ions at far distances jyi − rj
from the spacecraft perpendicular to the flow will tend toward purely
thermal trajectories, that is, χe → χt as jyi − rj → nλD. Note that, for
this figure, we are only considering the population of ion thermal

velocities toward thewake axis. Here, yi is the initial particle position
along local vertical, and r � 9 cm is the satellite radius. Generally,

ions injected upstream the spacecraft center within the Debye sheath
(i.e., xi ≤ 0 and r ≤ jyij ≤ nλD) are collected on the ram hemisphere

and may act to enhance the net ion current collection over thermal

flux levels. The ion depletion in the near wake gradually becomes
populated due to the electrostatic lensing of ions into the midwake
and far wake.

VI. Wake Analysis

The rudimentary MATLAB simulation models a severely low ion
density. Thus, the relative ion density along thewake axis is extracted
by binning particles and expressing the densities as percentages of the
background level set at the start of the simulation, which is an
arbitrarily valuedn0. For each bin ranging 0.2m, the density profile is
normalized by the preselected background level. It is important to
note that the thermal wake depicts a Mach cone, outside of which
quasi neutrality holds. In actuality, ion thermal motions and energies
are quasi-random according to some unknown velocity distribution
function. However, the preselected ion thermal velocity vectors
shown in Figs. 10 and 12 ensure a rudimentary remedy for neglecting
the ion distribution function a priori. Thus, to compute the wake
density due to electrostatic lensing, the background quasi-neutral
plasma density starting at the location where the thermal Mach cone
would have existed must be added. The net ion density along the
wake axis is the superposition of normalized thermal and electrostatic
wake densities.
The resulting density profile of the electrostatic wake combined

with the thermal wake shows a density enhancement of 32% over
background between 0.4 m ≤ χ ≤ 0.6 m. As shown in Fig. 9, the ion
enhancement for a 1.5U CubeSat in the focus region is 66% over the
background, which does not agree particularly well with MATLAB
model results, which is for a sphere. We thus simulate a 1.5U form
factor sphere with the same dimensions as the MATLAB model
within SPIS. We keep all the plasma parameters the same as in
Table 2. The ion density in the computational domain for spherical
geometry is shown in Fig. 14. Unlike the 1.5U CubeSat of Fig. 5, the
ion wake for the sphere reveals a bow shock best seen in the
appropriate scaling of the color bar.
The ion density profile downstream the spherical model rendered

by SPIS normalized by the background simulation density of n0 �
8 × 109 m−3 is overlaidwith the normalized density profile produced
by the same spacecraft geometry in MATLAB. This is illustrated in
Fig. 15. The binned densities of the electrostatic wake and thermal
wake are in upward and downward triangle markers, respectively.
The combined electrostatic and thermal densities show an ion
enhancement of 32% above background (circle markers); the
normalized SPIS density along thewake axis in dash-dot agrees well.
The ion focus region for the sphere in theSPIS simulation has a≈36%
density enhancement at≈0.4 m downstream, which agrees relatively
well with our independent ion-lensing MATLAB code. Thus,
although our validation model does not consider particle distribution
functions, ambipolar electric fields, and other Debye-scale plasma
dynamics, we show that these effects are secondary to the formation
of anO� ion focus region for CubeSats charged to ϕf < 0. Our work

Fig. 12 Electrostatic plasma wake of a charged sphere with floating
potential ϕf � −0.67 V. Ion trajectories with thermal velocities toward
(away) the wake axis are in red (blue).

Fig. 13 Distance of particle injection from the satellite along the local
vertical (y axis) and through the spacecraft center jyi − rj as a function of
focusing parameter χ .

Fig. 14 Ion charge density through the principal axis along the
spacecraft velocity vector for a 9 cm radius spherical satellite.
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also shows that, when the spacecraft dimensions are comparable to
Debye sheath dimensions, the spacecraft geometry plays a significant
role. For a low-density and cold-plasma environment, such as the one
we have modeled, geometrical effects are significant; a 66% density
enhancement is shown in the ion focus region for a 1.5U CubeSat as
opposed to a 36% enhancement in the far wake of a similarly sized
spherical spacecraft.

VII. Conclusions

The study of spacecraft–plasma interactions for CubeSats and
small satellites is a growing field. Charging effects and plasmawakes
of small satellites incur a departure from the thin-sheath
approximation of Langmuir probe theory commonly known to
describe interactions of large spacecraft in the Earth’s ionosphere.
Furthermore, the charging simulation package, SPIS, is gaining
recognition as a robust tool in the worldwide spacecraft charging
community. Inmesothermal conditions of the Earth’s ionosphere, the
relative densities detected by wake-side and ram-side Langmuir
probes are most pronounced when probes are deployed along the
velocity vector, and the spin axis is perpendicular to the velocity
vector. Previous studies of plasmawakes for dust grains and satellites
in other environments have also revealed ion focus regions in the far
wake. This paper shows that, in low-density and cold-plasma
conditions, where the Debye sheath is on the same order as the
CubeSat dimensions, there is a significant density enhancement in
the CubeSat wake caused by ion focusing. One such condition might
be in the Earth’s F-region ionosphere in a low/mid latitude region
inside a plasma bubble or at the topside (greater than 600 km) of the
low/midlatitude ionosphere.
Using particle-in-cell simulations, this investigation cautions the

experimentalists that, for small satellites, especially CubeSats, it is
possible to have a plasma density enhancement above the ambient
plasma density in the satellite wake. Thus, for determining the true
ambient plasma density from CubeSats that deploy Langmuir probes
on booms, it becomes crucial to have a correct attitude solution to
determine the boom location with respect to the satellite wake.
Alternatively, one can also have a properly designed length of the
boom after doing a series of PIC simulations for anticipated plasma
densities and spacecraft charging potentials, thusmaking sure that the
boom tips lie outside the ion focus region. Future work includes the
detailed study of geometrical dependencies on thewake structure and
a refined characterization of the ion focus region.
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