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Plans for developing different components of an airport system depend to a 

great extent on the levels of activity that are anticipated. To plan facilities and 

infrastructures of an airport or system/group of airports, and to be able to satisfy 

future needs, it is essential to predict the level and distribution of demand in the 

various components of the airport system (Transportation Research Board [TRB], 

2002). Forecasting demand in an industry as dynamic and sensitive to exogenous 

factors as aviation is an extremely difficult task. However, it is necessary to make 

air traffic estimates as a preliminary step in planning and designing airport facilities, 

be it an airport, an airport system, or a network (Horonjeff et al., 2010; Wells & 

Young, 2004). 

Understanding future demand patterns enables the airport planner to evaluate 

the future performance of the airport and, thereby, recommend consistent 

development programs so that the costs associated with these development plans 

are estimated and the sources and level of income to support future capital 

investments are projected (Ashford et al., 2011). Demand forecasting is a basic 

requirement to develop an airport master plan or an airport system plan at the 

regional or national level, thus understanding the entire airport network of a region 

or country (International Civil Aviation Organization [ICAO], 1987; Janic, 2021, 

2009).  

To assess the characteristics of future demand, it is necessary to develop 

reliable predictions of airport activity. Many factors will affect demand, so planners 

preparing demand forecasts or updating existing forecasts should consider, in 

addition to historical aeronautical data (air traffic), local socio-economic data 

(historical series) such as national wealth, purchasing power of the inhabitants, 

demographics (population), industrial production, consumer price index, an 

exchange rate (of the local currency against the US dollar), etc. These indicators 

have a great influence on the behavior of air traffic demand (García Cruzado, 2013; 

Horonjeff et al., 2010; ICAO, 2006; Rodríguez et al., 2020). 

So, the objective of this research is to make a short and medium-term forecast 

of air passenger demand. For this, Colombia (a complete network of airports as a 

whole) has been used as a case study, with the particularity that the analysis 

includes data on demand for 2020, which has been severely affected by the COVID-

19 pandemic. This analysis will serve to estimate as a complementary result (but of 

great interest approximate date of recovery of both the volume of demand and its 

growth trend to the pre-pandemic period (2019). To achieve this objective, and as 

a calculation tool, a model derived from Artificial Neural Networks of the 

ConvLSTM2D type (<Conv> of Convolutional and <LSTM2D> of long-short-

term memory 2-dimensional) is developed. This type of architecture is a hybrid 

between Convolutional Neural Networks (CNN), very useful for the extraction of 

invariant patterns in their spatial position, and Recurrent Neural Networks (RNN), 

very appropriate for the extraction of patterns within their temporal context, as it is 
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the case of time series forecast (Hermans & Schrauwen, 2013; Malhotra et al., 

2015; Millstein, 2018; Sewak et al., 2018; Yang et al., 2015). These prediction 

techniques, based on Machine Learning/Deep Learning (ML/DL), can incorporate 

more elements of analysis for pattern extraction and, therefore, potentially be more 

efficient (Ketkar & Moolayil, 2021). Another advantage of ConvLSTM2D 

networks, compared to classical methods based on autoregression, is that they admit 

a more complex multivariate treatment (several input features) (Calin, 2020; 

Pedrycz & Chen, 2020). Finally, when applying this type of neural model (ML/DL 

ConvLSTM2D) to the case study of the present research, it comes to represent the 

abstract knowledge model, inferred from the learning of historical patterns in the 

time series of air traffic, which predicts the future evolution of these time series. 

 

Literature Review 

In the scientific literature, there are various approaches based on ANN for 

forecasting passenger demand and air travel. The first is a hybrid neural model with 

data preprocessing by decomposition of variables, which allows for improving the 

performance of the network and, thus, optimizing the results in the forecast of 

demand (Alekseev & Seixas, 2009). The second is the Ensemble Empirical Mode 

Decomposition (EEMD) based on Support Machines Vector (SMV), with a 

modeling framework that incorporates slope-based methods to constrain the 

problem of the final effect that occurs during the process of change of the EEMD; 

in other words, an EEMD-Slope-SVMs model (Bao et al., 2012).  

The third is the use of Backpropagation Neural Network (BNN) to improve 

the accuracy of the demand forecast (Chen et al., 2012; Kuo & Chen, 2010). The 

fourth is a hybrid approach VMD-ARMA/KELM-KELM, which consists of the 

Variational Mode Decomposition (VMD) in an Autoregressive Moving Average 

(ARMA) model and in a Kernel Extreme Learning Machine (KELM). This means 

that the VMD is first adopted to break down the original data into various functions, 

in order to reduce its complexity. Then ARMA and KELM models are used to 

forecast the stationary and non-stationary components, respectively, and the final 

result is integrated by another KELM model, which incorporates the forecast results 

of all components (Jin et al., 2020).  

The fifth approach consists of the combined use of Machine Learning and 

Support Vector Regression (SVR) (Plakandaras et al., 2019; Sulistyowati et al., 

2018). The sixth is the Nonlinear Vector Autoregression Neural Network 

(NVARNN) approach, based on MIV. This approach consists of using: (1) a Mean 

Impact Value (MIV) method from a neural network to identify and extract input 

variables, and (2) NVARNN to deal with the irregularity and volatility of the time 

series (Sun et al., 2019). The seventh is the ensemble forecast modeling based on 

Singular Spectrum Analysis (SSA), this implies that the original time series is 

decomposed into three components: trend, seasonal oscillations, and irregular 
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components. The trend is predicted using a Generalized Regression Neural 

Network (GRNN), while seasonal oscillations are predicted using Radial Basis 

Function Network (RBF Network) (Xiao et al., 2015).  

The eighth approach consists of using a Multilayer Perceptron Architecture 

(MLP) with a feedback propagation algorithm (Dingari et al., 2019). The ninth 

entails using evolutionary metaheuristic algorithms (Mostafaeipour et al., 2018); 

the tenth, uses time-delayed feedback neural networks (Blinova, 2007), and, finally, 

the eleventh uses recurrent neural networks (RNN) based on long-short-term 

memory (LSTM) (Gupta et al., 2019). 

 

Data and Methodology 

In the methodology, before the development of the model, the data (or 

dataset) related to the annual historical time series of each of the six independent 

variables (or selected features) were prepared. These are the aeronautical variables 

(national/domestic passenger or international passenger), and the socioeconomic 

variables (at the national level) usually used in the calculation of forecasts in air 

transport (Díaz Olariaga & Girón, 2020; Rodríguez et al., 2020), which are: GDP 

(Gross Domestic Product), population, IPI (Industrial Production Index), IPC 

(Consumer Price Index), and TRM (US Dollar-Colombian Peso official exchange 

rate). The data of this research correspond to the country-case study selected, 

Colombia; historical data cover a continuous period of 42 years (1979-2020); 

aeronautical data were obtained from the statistical system of the Colombian 

Aeronautical Authority (Aerocivil, 2022) and socioeconomic data were obtained 

from related official sources existing in the country (BRC, 2022; DANE, 2022). 

Although the data –both air traffic and socioeconomic— for 2020 are very 

low compared to previous years due to the reasons explained previously, they are 

included in the calculation to impose the model to consider the COVID-19 effect. 

Finally, as far as data is concerned, an important part of preparing the dataset 

has consisted in extracting the temporal sequences of input to the model and split 

up them into selected parametric subsequences relative to the number of previous 

steps (lags or past) of each independent variable or feature, necessary to make the 

predictions (outs or future steps). Although the code trains the complete historical 

time series of 42 years, the data are prepared sequentially into temporal 

subdivisions of the steps of the previous years (called n_lags) before considering 

future prediction steps (called n_outs). These n_lags grouping can be seen as time 

context to extract time cycle features. In addition, these values have been hyper-

parametrized in the algorithm to study their cost sensitivity to them. Likewise, 

output data corresponding to a national or international passenger is extracted from 

the dataset, with the historical subsequences corresponding to the number of steps 

in future years to be predicted. For simplicity, the same number of steps from 
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previous years has been considered as future steps to be predicted (n_lags = 

n_outs).  

The model that is developed in the present research, which is one derived 

from Artificial Neural Networks, is called ConvLSTM2D (<Conv> of 

Convolutional and <LSTM2D> of long-short-term memory) (Hermans & 

Schrauwen, 2013; Malhotra et al., 2015; Millstein, 2018; Sewak et al., 2018; Yang 

et al., 2015). What the Conv2LSTM2D model aims, as expressed in equation (1), 

is that once the model has been trained or adjusted in the connections (weights) 

within the neurons of the different layers designed, symbolized by the function fmodel 

forecast, this predicts (output variables denoted  �̂� ) the n_outs temporary outputs after 

time t corresponding to the j feature selected as output (�̂�𝑖𝑡+𝑛_𝑜𝑢𝑡𝑠), from the input 

of the n_lags observations of previous times of the whole i input features considered 

( 𝑥𝑖𝑡−𝑛𝑙𝑎𝑔𝑠 ). 

 

�̂�𝑗𝑡+𝑛_𝑜𝑢𝑡𝑠,  �̂�𝑗𝑡+𝑛_𝑜𝑢𝑡𝑠−1, … ,  �̂�𝑗𝑡 =  𝑓𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ( 𝑥𝑖𝑡−1,  𝑥𝑖𝑡−2, … ,  𝑥𝑖𝑡−𝑛𝑙𝑎𝑔𝑠
)    (1) 

 

To describe the equations of the ConvLSTM2D model, we begin by outlining 

the basic architecture of ANN, on which the ConvLSTM2D model is based, called 

Multilayer Perceptron Networks (MLP) (Vang-Mata, 2020). These are made up of 

arbitrary several layers of neurons, with a first layer corresponding to the input 

(associated with the X tensor) and a last output layer (associated with the Y tensor), 

the hidden layers are interspersed between them, to modelized the output variables 

from the input ones. Each layer contains an arbitrary variable number of neurons 

(or nodes) that can be activated with different activation functions (Hastie et al., 

2013). 

The ConvLSTM2D model adopted here is of the Deep Learning (DL) type 

and has an encoder-decoder structure in which the X inputs are first encoded, with 

hybrid layers of convolutional (CNN) and recurrent (RNN) characteristics 

(Aggarwal, 2018; Bianchi et al., 2017; Blokdyk, 2017; Mandic & Chambers, 2001). 

On the other hand, the decoding is performed only with the recurring layers of long-

short-term memory (LSTM). The coding provided by the convolutional layers 

facilitates the representation of the invariances of the sequences of the features of 

the inputs, while the contribution of the LSTM cells in the coding allows 

memorizing the context of the temporality of the inputs. The decoding part of the 

model is performed only by the LSTM layers, which allows extracting and 

identifying the patterns of the features and the present temporality, such as trend 

and seasonality (Pedrycz & Chen, 2020). Finally, the output of the LSTM networks 

is delivered to other dense layers of neurons, MLP type (where all neurons are 

connected between them) which are the ones that conduct the learning of the feature 

patterns extracted by the previous encoder-decoder block, until reaching the last 

layer, where the output tensor Y is obtained. In summary, the application of 
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encoding-decoding with convolutional CNN and recurring LSTM layers in the 

ConvLSTM2D model is equivalent to performing double deep learning (Brownlee, 

2018; Trifa et al., 2017; Yang et al., 2015). 

The group of equations (2) that define the layers of the ConvLSTM2D model, 

was proposed as an improvement of the traditional RNN (Donahue, 2015; Hu et al., 

2019), which managed the hidden states of the cell to map the output from the input. 

LSTM networks were proposed to solve the problems that appeared by gradient 

vanishing and exploding (Hochreiter & Schmidhuber, 1997). The superiority of the 

ConvLSTM2D layered architecture lies in its ability to handle short and long-term 

memory provided by the LSTM architecture by managing the three types of gates: 

input, forget and output, plus the new gate coming from the contribution of the 

convolutional layers with which they are combined to produce the new 

ConvLSTM2D layer (Shi et al., 2015). Then:  

 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑥𝑡 + 𝑊ℎ𝑖 ∗ ℎ𝑡−1 +   𝑊𝑐𝑖 ∘ 𝑐𝑡−1 + 𝑏𝑖)  (2a) 

 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑥𝑡 + 𝑊ℎ𝑓 ∗ ℎ𝑡−1 + 𝑊𝑐𝑓 ∘ 𝑐𝑡−1 + 𝑏𝑓)  (2b) 

 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑥𝑡 + 𝑊ℎ𝑜 ∗ ℎ𝑡−1 + 𝑊𝑐𝑜 ∘ 𝑐𝑡𝑏𝑜)  (2c) 

 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ∗ 𝑥𝑡 + 𝑊ℎ𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐)   (2d) 

 

𝑐𝑡 = 𝑓𝑡 ∘  𝑐𝑡−1 + 𝑖𝑡 ∘  𝑔𝑡     (2e) 

 

ℎ𝑡 = 𝑂𝑡 ∘ tanh(𝑐𝑡)       (2f); 

 

in which: 𝑖𝑡, 𝑓𝑡 ,  𝑜𝑡  represent respectively the input gate, the forget gate and the 

output gate of the ConvLSTM2D cell; 𝑥𝑡, the temporary t inputs of the cell; ℎ𝑡−1 

and 𝑐𝑡−1 , the output and the state respectively of the previous cell; * is the 

convolution operator and W is the convolution filter; with 𝑊⦁𝑖 and 𝑏𝑖 the equivalent 

of the weights and biases of the input gate; 𝑊⦁𝑓 and 𝑏𝑓 , the equivalents to the 

weights and biases of the forget gate; 𝑊⦁𝑜 and 𝑏𝑜, those at the output gate, and 

𝑊⦁𝑐 and 𝑏𝑐 the weights and biases of the cell state. The dimensions and processing 

of the ConvLSTM2D layers, while being analogous to those of the LSTM cell, are 

different, since the hybrid ConvLSTM2D cell also performs the convolution 

operation (Hu et al., 2019). Finally, the operator ∘ denotes the Hadamard product 

and 𝜎 the activation function.  

It is worth mentioning that, in the algorithm developed for the present 

research, the activation function 𝜎 chosen has been one of the Rectified Linear Unit 

Function (ReLU) (Nair & Hinton, 2010), because it offers better results for the 
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selected case study than the function of the hyperbolic tangent (tanh) present in the 

equations described in (2). 

Before training the model, the compilation method is implemented. In the 

compilation method, the model’s arguments are defined, such as: gradient 

optimizers, cost or error function, and metric evaluation. The next step in the 

methodology involves training the ConvLSTM2D model. Training the 

ConvLSTM2D model is under supervised learning, that involves defining the error 

metric, which measures the ‘distance’ or norm between the value of the real outputs 

of the time series used from the Y tensor, and the predicted or estimated �̂� value by 

the ConvLSTM2D model, after applying it to the tensor input X (Goodfellow et al., 

2016). In this research, the mean square error (MSE) has been used for the cost 

function. Equation (3) defines this error with the norm 2 || ||, where E is the error 

and n is the number of samples from the mean.  

 

𝐸 =
1

𝑛
 ∑‖(𝑦(𝑥) − �̂�(𝑥))‖2       (3)

𝑥

 

 

In ML, Backpropagation (BP) is the fundamental process for the automatic 

adjustment of the model weights going backward from the cost function 

(Goodfellow et al., 2016). BP calculates the gradient of said total error (in this case 

the MSE) compared to each of the weights or connections of the neurons of each 

layer of the model. For this, the chain rule in the derivation applies, to propagate 

said error backward, to distribute the error among all the weights of the model, 

neuron by neuron, layer by layer. With this, the new adjustment of weights of the 

model is sought to produce a smaller error when it is iterated with the next batch of 

input samples X. If the solution converges, said error becomes smaller or 

asymptotic, as is the case analyzed here. The group of equations (4) shows the 

derivation chain rule in ANN networks (Aggarwal, 2018; Hassoun, 1995): 

 
𝜕𝐸

𝜕𝑤𝑖𝑗
=

𝜕𝐸

𝜕𝑜𝑗
 

𝜕𝑜𝑗

𝜕𝑤𝑖𝑗
=

𝜕𝐸

𝜕𝑜𝑗
 

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗
 
𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑖𝑗
                        (4𝑎) 

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑖𝑗
=

𝜕

𝜕𝑤𝑖𝑗
(∑ 𝑤𝑘𝑗𝑜𝑘

𝑛

𝑘=1

) =
𝜕

𝜕𝑤𝑖𝑗
 𝑤𝑖𝑗𝑜𝑖 =  𝑜𝑖        (4𝑏) 

 

The problem of minimum searching of the cost function is implemented 

through different optimizers, generically known as Stochastic Gradient Descent 

(SGD) (Kingma & Ba, 2014). These optimizers try to avoid that the solution is 

trapped in some of the local minima that the cost function presents when it is not a 

convex function. To this end, each of them has implemented different strategies to 

seek the global optimum. 
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For the present research, one of the most efficient optimizers has been used, 

given its high convergence speed and robust stability, known as Adaptive Moment 

Estimation (ADAM) (Kingma & Ba, 2014). This is an improved version of the 

RMSProp that implements a variable/adaptive speed (or learning step) and a 

moment or inertia that tries to avoid getting stuck in the local minima of the cost 

function. The group of equations (5) describes the update of the weights by the 

ADAM optimizer (Kingma & Ba, 2014):  

 

𝑚𝑤
(𝑡+1) ← 𝛽1𝑚𝑤 + (1 + 𝛽1) ∇𝑤 𝑙

(𝑡)  (5a) 

 

𝑣𝑤
(𝑡+1) ← 𝛽2𝑣𝑤

(𝑡) + (1 − 𝛽2) (∇𝑤 𝑙
(𝑡))2  (5b) 

 

�̂�𝑤 =
𝑚𝑤

(𝑡+1)

1+𝛽1
(𝑡+1)      (5c) 

 

𝑣𝑤 =
𝑣𝑤

(𝑡+1)

1+𝛽2
(𝑡+1)       (5d) 

 

𝑤(𝑡+1) ← 𝑤𝑡 − 𝜂
�̂�𝑤

√�̂�𝑤+𝜖
                                          (5e); 

 

in which 𝑤(𝑡+1) represents the weights in iteration t+1; η, the learning speed or 

step;  ∇𝑤 𝑙
(𝑡)  represents the gradient of the cost function l with respect to the 

weights; ϵ, a minimum value to avoid dividing by 0 (in Keras 10-7 is used); 𝛽1 and 

𝛽2  are the forget factors for the gradient or the first and second moments, 

respectively; 𝑚𝑤
(𝑡+1) is the moving mean of the weights or first moments in the 

iteration t+1, and 𝑣𝑤
(𝑡+1)  is the moving variance (or second moment) of the 

weights in the iteration t+1. It should be noted that in the notation of equations (5) 

the superscripts with the variable t correspond to the iterations (or learning cycles), 

while the notation of the subscripts t of the rest of the equations corresponds to the 

different instants of time dataset features from the time series.  

In this work, both the number of iterations and the learning batch size have 

been hyper-parametrized. A batch is a unit or subset of the dataset from which the 

error of the cost function is estimated and, therefore, the weights are adjusted. Also, 

the gradient has the stochastic attribute or name, since it cannot be calculated for 

the full dataset, due to time, process, and memory computational constraint, then 

SGD choose a stochastic batch instead. All of this makes the learning process 

sensitive to the batch size (and the number of epochs or iterations), so these values 

were hyper-parameterized in the algorithm (Pedrycz and Chen, 2020; Calin, 2020; 

Yi and Tan, 2004) to optimize learning process via cost-sensitivity analysis.  
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The next step in the methodology is the evaluation of the model, in which the 

goodness of the training or adjustment of the model weights is compared and 

evaluated. The sensitivity of training variations is taken into account through 

performing different hyperparameters configurations defining both the model and 

the training process itself. In the field of ML/DL, the search for the best solution is 

a heuristic problem, in which different solutions of architectures and model training 

processes are proposed and tested, extracted from the infinite space of possible 

solutions to, then, measure their performances and be able to select among them the 

best models and configurations (Aggarwal, 2018; Patterson & Gibson, 2017).  

For this reason, in the evaluation process it is required, on the one hand, to 

define the space of the hyperparameters used to configure the model and its 

training, and, on the other hand, to define the metrics used to evaluate and compare 

the accuracy of the results. As evaluation metrics for regression problems the Mean 

Absolute Percentage Error (MAPE), which measures the prediction error as a 

percentage, has been implemented here. This is an advantage since it provides an 

intuitive way to evaluate the error of the model; the smaller the MAPE, the better 

the prognosis (Kim & Kim, 2016; Ren & Glasure, 2009; Rodríguez et al., 2020). 

Additionally, the Root Mean Square Error (RMSE) was also implemented. To 

implement this, once the model has been trained with all the data, so that the 

weights of all the connections of the neurons/layers of the model are finally fixed, 

the full output values Y of the dataset are again compared to the predicted or 

estimated �̂�  values, after applying the model to the full input values X.  

Regarding the ConvLSTM2D model, the hyperparameters initially managed 

to define the possible space of solutions have been the number of filters per 

convolutional-recurrent layer, the size of the sliding windows of the convolution, 

the number of times the encoder of ConvLSTM2D layers is repeated, the presence 

or absence of specific layers such as dropouts and batch normalization (which help 

to avoid overfitting and be trained robustly) and, finally, varying the number of 

neurons in the LSTM layer (Donahue et al., 2015). With all this, a (relative to space 

research) robust model has finally been obtained regarding its performance. 

In relationship to the process of training and splitting up the time series 

dataset into sequences of n_lags length to predict future sequences n_outs, after 

performing several internal tests the framework analysis has focused on two 

forecast scenarios: the first one, 6 years (short-term) and the second, 12 years 

(medium term), with the two hyperparameters n-lags and n_outs equal. Given that 

implementing Keras callbacks techniques, such as EarlyStopping and 

ModelCheckpoint, related to stopping learning when the threshold error is reached 

and saving the optimal learning model found in training respectively, the algorithm 

is, to some extent, independent of the number of iterations used. Finally, the 

hyperparameters that have been taken into account have been the number of 

subsequences, and the number of features used as inputs to predict national 
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passengers or international passengers, together with previous steps n_lags and 

future steps to predict n_outs.  

Finally, and as the last stage of the methodology, the prediction of the model 

is developed, which consists of making the predictions of the future series (n_outs) 

with the trained model, from the series of the previous years (n_lags) chosen and 

from the features taken into account as independent input variables.  

For this evaluation, applying said prediction to the historical (real) series Y 

and, thus, be able to observe the deviation with the estimated outputs �̂� or predicted 

by the ConvLSTM2D model was considered good enough and promising (since the 

final optimization was not performed due to time and resources constraint). This 

prediction process is ultimately the final objective of this methodology, since the 

development of the algorithm to predict the demand for air passengers for future 

years is what is sought. Although the objective has been focused on two of the 

features, national (or domestic) passenger and international passenger (annually), 

the model could predict for the coming years any of the other five additional 

features included in the historical data set (as are socioeconomic data).  

It should be noted that the model weights for each of the possible 

combinations between any number of the seven possible output features, depending 

on the seven input features, are different, since the training Y = f (X), or adjustment 

of weights of the ConvLSTM2D model, is done only with the appropriate features 

of the X and Y tensors extracted from the historical data set.  

 
 

Results 

The results of the prediction of passenger demand are presented, interpreted, 

and discussed, for the short and medium term, corresponding to the domestic and 

international cases gathered from the Colombian airport’s system dataset, and 

getting with the defined, developed, trained, and evaluated own specific algorithm.  

The two hyperparameters to which the possible prediction scenarios have 

been reduced are those relative to the number of previous input and prediction 

years, respectively n_lags and n_outs. On the other hand, said pre-post times are 

subdivided into subsequences, because results are sensitive to those number of 

subsequences, among other hyperparameters, since they define the temporality 

context from which the patterns of the short-term cycles may exist and have to be 

extracted, within those longer historical periods.  

This sensitivity study is common in the analysis of ConvLSTM2D networks 

and it is derived from the fact that the input data set X has many (five in this case) 

dimensions: the number of samples, the number of subsequences, the time series, 

the number of years per subsequence associated to n_lags, and finally the number 

of features selected as X input tensor variables (e.g. GDP, Population, IPI, IPC, 

TRM). On the contrary, output tensor Y has 3 dimensions: the number of samples, 
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the number of forecast years (n_outs) and the number of dependent variables to be 

forecasted (domestic or international passenger). In the scenarios considered, the 

time series itself of the dependent variable for the next years to be predicted is 

always, taken also as an input variable (of previous years), to provide greater 

robustness and predictability to the model.  

Before describing the hyperparameters and results achieved in each of the 

most relevant scenarios, Figure 1 shows the learning curve of the model, relative to 

the iterations of learning cycles (where the robustness of convergence towards 

asymptotic values of MAPE is observed, with small fluctuations). While Figure 2 

shows the prediction of the historical series with the model already trained where 

we can realize how the decrease in passenger traffic in 2020 (full pandemic 

situation) was not predicted, as a result of pre-pandemic values. Both curves have 

been taken as examples of scenario 1, which is described later. 

 

Figure 1 

Evolution of MAPE According to the Learning Curve of the Trained Model 

Described in Scenario 1. Source: authors 
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Figure 2 

Evolution of Passenger Prediction vs. the Real Historical Series, Started n_lags 

Years After 1979 of the Model Already Trained and Described in Scenario 1. 

Source: authors 

 

 
 

Results are generated and presented in various scenarios to deal with the fact 

that ML/DL models are stochastics in nature. It means, results are sensitive to many 

external factors, such as dataset quality (veracity on historical values collected 

without noise and biases), or the number of inputs (features) and output selected, 

but also to the internal factors associated with the own ConvLSTM2D model such 

as the hyperparameters deeply described here as, the number of subsequences, 

length of years considered as previous inputs (n_lags) and predicted outputs 

(n_outs), number of model training epochs (or iterations), training batch size, 

training, and test dataset size, optimizers and cost function chosen, number and type 

of layers implemented, number of neurons per layer, to mention the import ones.     

Scenario 1 

A first prediction is presented, based on sequences of the previous 12 years 

and the following 12 years, from the total historical series, with the time series of 
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six features chosen as input variables (national passenger, GDP, population, IPI, 

IPC, and TRM) and with national passengers as the only output variable to be 

predicted. The previous 12 years’ n_lags are grouped into three subsequences (or 

possible sub-cycles) of 4 years each. Figure 3 shows this medium-term prediction 

with a MAPE value of 6.7% for the last 11 years and 8.1% for the whole historical 

series of 29 years, where 12 years after 1979 are counted as previous n_lags steps 

to predict the following 12 years n_outs. In Figure 3 it can be observed that by the 

beginning of 2024 the traffic (or demand) of domestic passengers at the country 

level, would recover the existing level of the pre-pandemic period (2019), with a 

recovery of the trend in demand slightly higher than the one corresponding to 2019 

year, but showing oscillations that could indicate potential echoes of the impact of 

COVID-19.  

 

Figure 3 

Forecast of Domestic Passenger Demand at the Country Level (Colombia), 

Period 2021-2032; Scenario 1. Source: authors 

 
 

Scenario 2 

A second prediction is presented considering sequences of the previous 12 

years and the following 12 years, from the total historical series, with the time series 

but with only two features chosen as input variables (international passenger and 

GDP) and with the international passenger as the only output variable to be 
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predicted. The previous 12 years n_lags are grouped into three subsequences (or 

possible sub-cycles) of 4 years each. Figure 4 shows this medium-term prediction 

with a MAPE value of 9.3% for the last 11 years and 9.7% for the total historical 

series of 29 years (12 years after 1979 are counted as previous n_lags steps to 

predict the following 12 years n_outs). In Figure 4 it can be observed that by the 

beginning of the year 2024 the traffic (or demand) of an international passenger in 

Colombia would recover to the level existing in the pre-pandemic period (2019) 

and with a recovery of the trend in demand very similar to that of the year 2019 but 

without fluctuations.  

 

Figure 4 

Forecast of the Demand for International Passengers in Colombia, Period 2021-

2032; Scenario 2. Source: authors 

 
 

Scenario 3 

A third prediction is presented based on sequences of six previous years and 

the six following years, out of the total historical series, with the time series for 

only two features chosen input variables (domestic passenger and GDP) and 

domestic passenger as the only output variable to be predicted. The previous six 

years n_lags are grouped into two subsequences (or possible sub-cycles), therefore, 

of three years each. Figure 5 represents this short-term prediction with a MAPE 
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value of 4.5% for the last five years (2020 is excluded) and 6.0% for the total 35-

year historical series (starting six years after 1979, the initial year of the available 

history, to predict the following n_outs years). The results show that by the end of 

2022 or the beginning of 2023, the traffic (or volume of demand) of national 

passengers at the country level, would have recovered to the previous pre-pandemic 

level (2019).  

 

Figure 5 

Forecast of the Demand of Domestic Passenger at the Country Level (Colombia), 

Period 2021-2026; Scenario 3. Source: authors 

 
 

Scenario 4 

A fourth prediction scenario is presented, calculated with the trends of the 

time series of domestic and international passengers used as input features. To 

analyze its impact the number of features used as inputs is left at three. Sequences 

of the previous six years and the following six years have been considered from the 

total historical series, with the time series for only 3 features chosen as input 

variables (international passenger, domestic passenger, GDP) and with the 

international passenger as the unique output variable to be predicted. The previous 
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six years n_lags are also grouped into two subsequences (or possible sub-cycles), 

therefore, of three years one. The results of this calculation are shown in Figure 6. 

The resulting MAPE values are 7.6% for the last five years (2020 is excluded) and 

5.8% for the total 35-year historical series (starting six years after 1979, the initial 

year of the available data history, to predict the following n_outs years). The results 

indicate by mid-2022 the demand for international passengers, at the country level, 

would recover the volume of pre-pandemic demand (the year 2019) and even with 

a higher trend (in demand growth).  

 

Figure 6 

Forecast of the Demand for the International Passenger in Colombia, Period 

2021-2026; Scenario 4. Source: authors 

 
 

Scenario 5 

Finally, a fifth prediction is presented with sequences of six previous years 

and the six following years, out of the total historical series, with the time series of 

only two features chosen as input variables (international passenger, GDP) and with 

the international passenger as the only output variable to predict. The previous six 

years n_lags were also grouped into two subsequences (or possible sub-cycles), 

therefore, of three years each. The results are shown in Figure 7, the MAPE values 

are 3% for the last five years (2020 is excluded) and 4.8% for the total 35-year 
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historical series (starting six years after 1979, the initial year of the available data 

history, and predicting the following n_outs years). Under this fifth scenario, the 

results indicate that by mid-2022, Colombia’s international passenger demand 

would have recovered to the level of pre-pandemic demand (2019). 

 

Figure 7 

Forecast of the Demand of International Passengers in Colombia, Period 2021-

2026; Scenario 5. Source: authors 

 
 

As a conclusion to the analysis of the results, three observations are made. In 

the first place, the algorithm developed here has a basic-medium complexity, 

characterized by the presence of 1,920,009 neural connections, which must be 

adjusted as unknowns in each iteration during the learning process. This value is 

specified for scenario 5 (with two features and six years of forecast) but grows to 

3,149,833 neural connections when six features and 12 years of forecast are 

considered for scenario 1. Second, as has been exhaustively shown in the 

description of the ML/DL model of ConvLSTM2D, these are stochastic processes, 
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that implicitly originated in the same process of calculating the Stochastic Gradient 

Descent (SGD), which has been improved here by choosing ADAM as loss (or cost 

function) optimizer (Kingma & Ba, 2014) and, therefore, subject to uncertainties or 

errors. Third, to constraint the uncertainties associated with the stochastic processes 

the algorithm has been executed several times, with the same hyperparameters –

that process is known as cross-validation techniques (K-fold cross-validation) 

(Chang & Lin, 2011; Pedrycz & Chen, 2020).  

Finally, the results obtained here coincide with the forecasts made in a recent 

study (Gudmundsson et al., 2021) on the recovery of air transport worldwide, which 

predicts that the demand for air passengers will recover to pre-pandemic levels at 

the end of 2022 (optimistic scenario). And the results also coincide with the IATA 

study (2020) which foresees the recovery of worldwide air passenger traffic at the 

2019 level by the end of 2022 for domestic passenger and the beginning of 2024 

for the international passenger. 

 

Discussion on Methodology 

Due to the non-linear characteristics of air traffic demand, classical time 

series such as econometric-statistical approaches are currently not considered the 

most convenient methodology, as these approaches are severely criticized due to 

their poor and limited forecasting capacity (Ensafi et al., 2022; Li et al., 2020; Liu 

et al., 2020; Rodríguez et al., 2020; Suryani et al., 2012; Tascón & Díaz Olariaga, 

2021; Tsui et al. al., 2014). For this reason, a methodology based on a type of 

Artificial Neural Network architecture called ConvLSTM2D is proposed, which, 

although they have been very successful in areas of Machine Learning (such as 

computer vision and natural language processing (Alayba & Palade, 2022; Chaiani 

et al., 2022; Elboushaki et al., 2020; Fang et al., 2021; Kumar et al., 2022; Xingjian 

et al., 2015), have not yet been tested in time series forecasting of air passenger 

demand until now. The reason for choosing this methodology lies in the fact that 

these Artificial Neural Network architectures have shown to be very robust and 

successful in the fields of Deep Learning (DL) mentioned, which they come, by 

automatically extracting the intrinsic patterns of the non-linear relationships 

between the variables considered, without a priori knowledge about the existing 

relationships between the input variables among themselves and between these and 

the output variables  considered, so, in short, it is estimated that this model can be 

a viable and promising tool to be explored for new flexible modeling of the forecast 

(Dingari et al., 2019; Gupta et al., 2019). Therefore, this research pursues (with a 

certain specific scope) to demonstrate the feasibility of applying these Artificial 

Neural Network models defined by the ConvLSTM2D architecture, which are of 

the Deep Learning (DL) type, and show it can be obtained acceptable and hopefully 

results when applied to multivariate time series forecasting such as our air traffic 
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demand forecasting (Agga et al., 2022; Ensafi et al., 2022; Huang et al., 2022; 

Prince, 2022; Shastri et al., 2020). 

As mentioned before, this promise ConvLSTM2D-ML/DL model needs to be 

optimized in terms of tuning the hyperparameters and architecture design of the 

model (number and type of layers, number, and types of neurons in each layer, 

batch size, number of training epochs, different input features, number of 

subsequences, etc.). Therefore, this study has been limited to performing certain 

variability analyses considering different scenarios (number of subsequences, 

number of years to be predicted, number and types of input features), due to time 

and resource constraints to work within the unlimited search ML/DL hyperspace. 

But on the contrary, the different and similar MAPE obtained for the variability 

analysis performed on the model vs. different scenarios seems to work sufficiently 

robust and stable, concluding that this model is appropriate and convenient to keep 

on developing for air passenger demand.  

On the other hand, it is considered appropriate to make certain observations 

and constraints on the development of the proposed model and/or its operativity. In 

the first place, 42 years could be not considered the ideal amount of data to gather 

all possible air passenger demand patterns. Even to have only one year (2020) of 

COVID-19 time series included, is not enough information about COVID-19 

patterns, but due to currently available dataset constraints on Colombia air 

passenger demand at the moment to perform the study, we must accept this (not as 

extensive as we would have liked) dataset and study limitation. 

 

Conclusions 

Firstly, estimating the demand for air passengers at the national level in the 

short and medium term provides valuable information so that the aviation/air 

transport planners of a country can well in advance design, plan, and implement: 

(a) development strategies (infrastructures, facilities, equipment, technological 

modernization, training of technical personnel, etc.); (b) a capital investment 

calendar (to address the proposed development programs); and (c) related public 

policies (to consolidate and reinforce the development of the local air transport 

industry).  

Secondly, academics, analysts, planners, and decision-makers in the 

international civil aviation industry around the world are currently developing 

forecast studies that allow them to know when and how air traffic will recover 

(mainly the volume of the air passenger demand) to pre-pandemic levels (the year 

2019), due to the importance of the aviation industry, not only in terms of 

local/regional/global connectivity but also because of its contribution to the global 

economy. The present work had the objective of contributing from the academic 

point of view to these two mentioned points. On the other hand, this work provides 

a novel and original geographic character, as one of the first studies (of an academic 
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nature) in the Latin American subcontinent on air traffic forecasting for the post-

COVID-19 era. 

Regarding the approach, it was decided to develop a model based on an 

Artificial Neural Network architecture compared to other possible classical 

statistical techniques, considering that ML/DL prediction techniques can not only 

incorporate more elements of analysis but also extract more complex patterns from 

historical time series dataset, without any previous feature engineering and, 

therefore, be more potentially effective and accurate. In particular, for the analysis 

of the time series, techniques of encoder-decoder networks of the ConvLSTM2D 

type have been applied. The ConvLSTM2D model developed here admits a 

multivariate treatment (the same does not happen with the classic methods based 

on autoregression). On the other hand, the ConvLSTM2D model developed is of 

the supervised learning type, which means that the model is trained with tensor 

inputs and tensor outputs extracted from the historical series of the dataset. The 

possibility of hybridization of the convolutional CNN networks with the recurrent 

networks of long-short-term memory LSTM has allowed the implementation of the 

ConvLSTM2D model in the present research (novel in terms of its application for 

air traffic prediction time series). The application of encoder-decoder blocks with 

hybrid convolutional-recurrent networks represents a novelty for the treatment of 

time series. Finally, the results of the application of the model based on ML/DL 

present very acceptable MAPE values (in the order of 3% to 9%, depending on the 

scenario), which makes the model developed here a feasible alternative to develop 

reliable air traffic forecasts, at least in the short and medium term.  
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