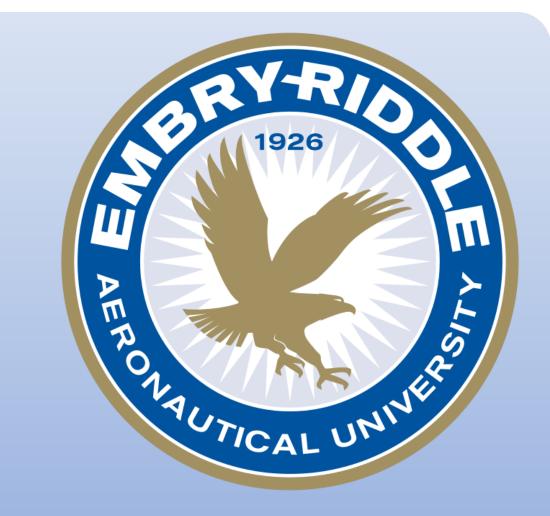
Utilizing Generative Adversarial Networks to Produce Airfoil Geometries



Zachary Eckley
Faculty Advisor – Khem Poudel

Background

- A generative adversarial network (GAN) uses a series of convolutional layers to create new instances of data that closely resemble real data from the training set.
- The model is made up of two submodels, the generator and the discriminator.
 - The generator creates new data.
 - The discriminator determines if the data is real.
- Over several iterations, or epochs, the models improve at their respective roles.
- In this study, a <u>GAN was applied to generate unique airfoil</u> geometries based on a set of airfoil performance data.
- Typically, airfoils are designed using CFD, optimization algorithms, and wind tunnel testing. These methods can be time consuming and costly.
- The objective was to create a faster, cheaper alternative to current industry design methods

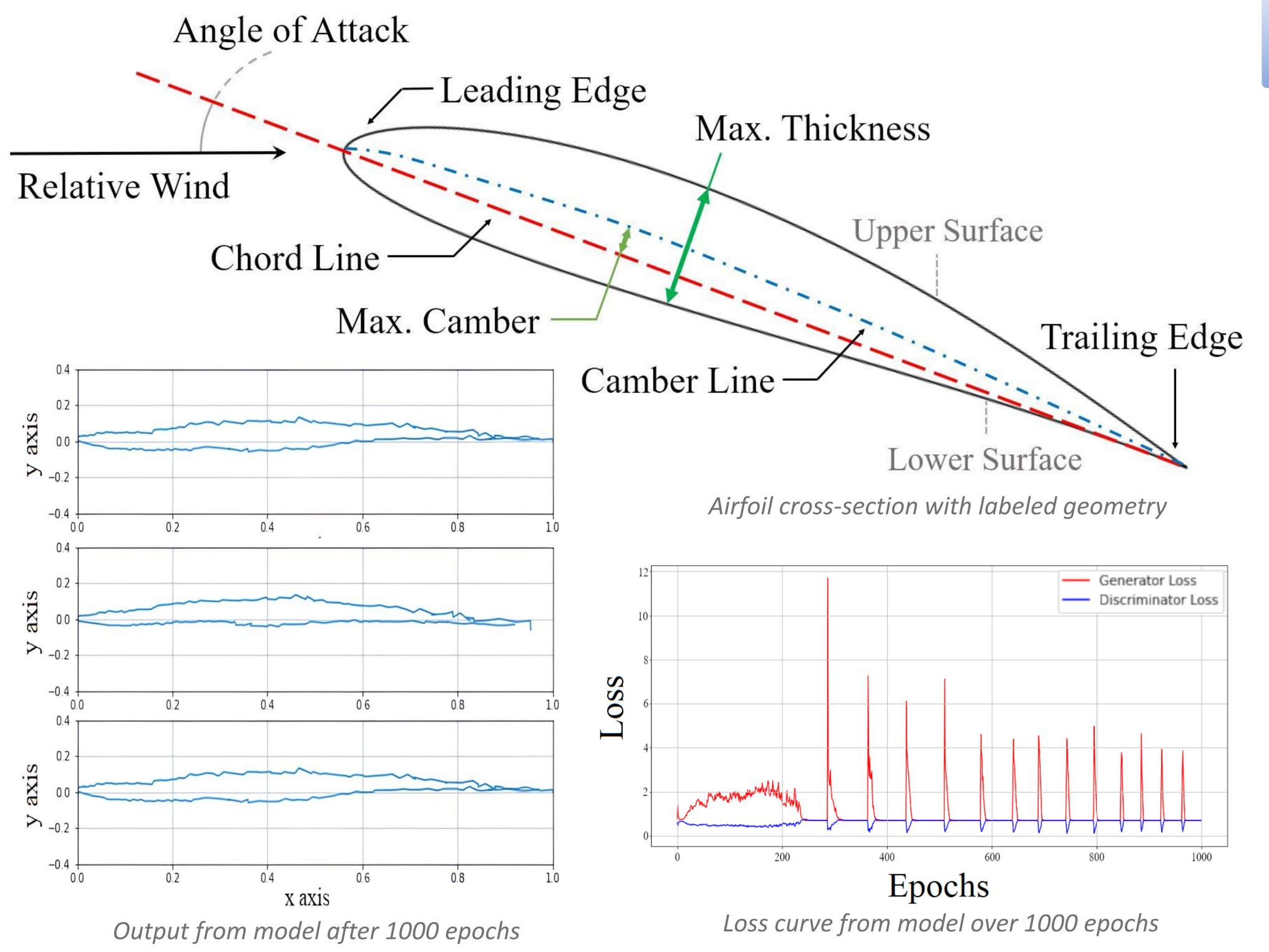
Model Structure

Generator

Layer	Filters	Kernel Size	Stride	Output Shape
Input Layer				(100,1)
Dense	_			(100,1)
Spectral Normalization	 —			
Reshape	_			(2,25,1024)
2D Deconvolution	1024	(2,4)	(1,2)	(2,50,1024)
Spectral Normalization	_			
2D Deconvolution	512	(2,4)	(1,2)	(2,100,512)
Spectral Normalization	 —			
2D Deonvolution	256	(2,4)	(1,2)	(2,200,256)
Spectral Normalization	_			
2D Convolution	1	(2,2)	(1,1)	(2,200,1)

Discriminator

Disci illiliatoi						
Layer	Filters	Kernel Size	Stride	Output Shape		
Input Layer	_	_		(2,200,1)		
2D Convolution	128	(2,4)	(2,2)	(2,100,128)		
Batch Normalization	 —					
2D Convolution	128	(2,4)	(2,2)	(2,50,128)		
Batch Normalization	_			_		
Flatten	<u> </u>			(12800,1) Scalar		
Dense	<u> </u>			Scalar		

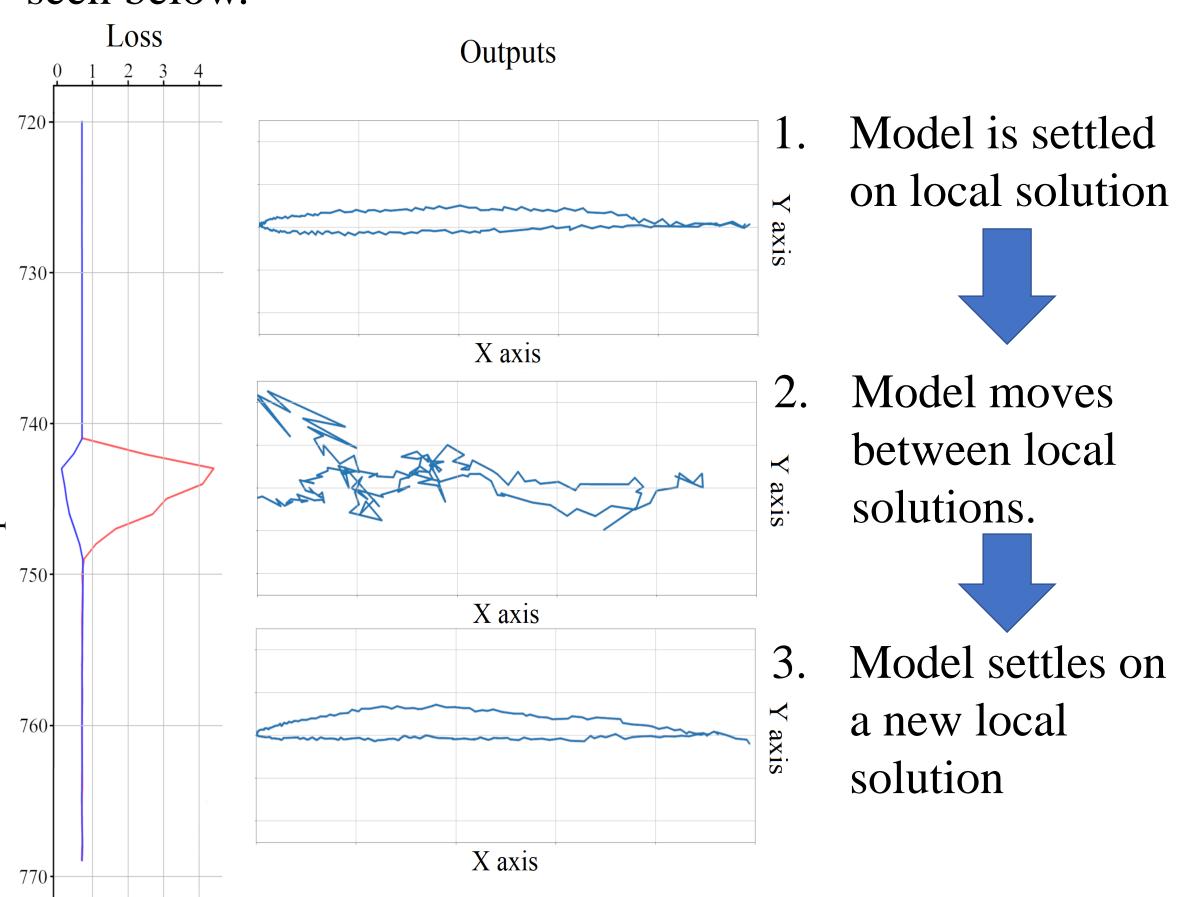


Methodology

- 1. Airfoil Coordinates were collected from a database created by University of Illinois Urbana-Champaign (UIUC). Bezier curves were fit to the dataset coordinates to interpolate a constant 200 points for each airfoil.
- 2. The interpolated coordinates were analyzed at 121 Reynolds numbers. At each Reynolds number, several performance characteristics such as lift, drag, and moment are found at several angles of attack.
- 3. The resulting performance data forms a large matrix [121x201x7], this matrix was passed through an encoder model that reduced the dimensionality without losing information.
- 4. The reduced performance matrix is then used as input for the generator.
- 5. The discriminator is given some of the original airfoil coordinates and some of the generated airfoil coordinates and determines which are real and which are fake.
- 6. The loss is calculated for the discriminator based on its accuracy. The lower the loss the better. Incorrect identifications of real/fake airfoil coordinates increase the loss score.
- 7. The model was trained for several epochs to continuously lower the loss. Training was stopped after 1000 epochs or when the loss converged on a value.
- 8. Adjustments were made to both model's structure to improve the results.

Results

- Outputs resemble airfoil geometry. Smoothness could be fixed with post-processing.
- Most of the outputs look very similar
- The generator loss works through a transient period before equalizing with the discriminator.
- Once the generator and discriminator equalize massive spikes in the generator's loss begin to occur.
- Further analysis of these spikes resulted in the conclusion seen below.



Output of model at each epoch compared to the loss from model at each epoch

• Generator suffers from mode collapse, a common problem with GANs where the outputs represent a small subset of the original dataset.

Looking Ahead

- 1. Use Wasserstein loss function rather than binary-crossentropy.
- 2. Use a conditional GAN to provide the performance data to the generator rather than the standard structure.
- 3. Have the generator output an image of the airfoil coordinates rather than numeric values
- 4. Additional layers could be added to the generator and discriminator, but more computing power would be required.