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The field of autonomous robotics has benefited from the implementation of convolutional 

neural networks in vision-based situational awareness. These strategies help identify 

surface obstacles and nearby vessels. This study proposes the introduction of high 

dynamic range cameras on autonomous surface vessels because these cameras capture 

images at different levels of exposure revealing more detail than fixed exposure cameras. 

To see if this introduction will be beneficial for autonomous vessels this research will 

create a dataset of labeled high dynamic range images and single exposure images, then 

train object detection networks with these datasets to compare the performance of these 

networks. Faster-RCNN, SSD, and YOLOv5 were used to compare. Results determined 

Faster-RCNN and YOLOv5 networks trained on fixed exposure images outperformed 

their HDR counterparts while SSDs performed better when using HDR images. Better 

fixed exposure network performance is likely attributed to better feature extraction for 

fixed exposure images. Despite performance metrics, HDR images prove more beneficial 

in cases of extreme light exposure since features are not lost.   
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Chapter I 

Introduction 

Carrying over 80% of international trade and 70% of the trade weight of the 

United States, the surface maritime domain proves to be a crucial component for the 

global community (statistics, n.d.). In recent years maritime trade has shown its impact 

on the world economy with the events of the Ever Given being stuck in the Suez Canal, 

where the accident caused a traffic jam that would cost the world economy $9 billion per 

day and strained supply chains around the world (refloated, n.d.). In the midst of the war 

in Ukraine, agreements have been made to allow the navigation of ships for grain exports, 

with these grains being an important food staple for many countries in the eastern 

hemisphere and needing the maritime domain for transport (council, n.d.). The movement 

of goods and food staples in the maritime environment are some of the reasons that make 

the maritime domain important and why it is crucial for the global community to be 

aware of events happening in this domain. 

The introduction of autonomous vessels in our waterways helps remove human 

operators from dull and dangerous jobs, making the increasing number of autonomous 

vessels a welcomed inevitability (Thompson D. J., 2017). Both the military and 

commercial/research groups are increasingly fielding autonomous vessels in our 

waterways. Already, there are autonomous surface vessels (ASVs) fulfilling different 

roles. For example, in Vancouver WA ASVs from David Evans and Associates Marine 

Services are surveying the Western Galveston Bay for the NOAA (Machines, n.d.). 

Another example is the Saildrone which has been used by various agencies to collect data 

in places like the coasts of Hawaii all the way to the Mediterranean Sea. In these missions 
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the Saildrones have mapped the sea floor, collected climate data, and even collected 

fisheries survey data (drone, n.d.). The United States Navy even employs, Sea Hunters, 

132 ft trimaran ASVs capable of autonomous operations in open-ocean environments 

(recognition, 2016) . With maritime trade growing and data collection being needed by 

more agencies, we can only expect the presence of ASVs to grow. With more ASVs 

operating in our waterways the robotics community must ensure these systems operate in 

a manner that is safe for the systems and those around them. 

There is always an inherent risk when operating an autonomous system and the 

risk can be greater in a maritime setting, where surroundings can be unpredictable. The 

maritime environment is vast, ASVs can find themselves in channels, open water, 

marinas, littoral zones and more. In all these settings boat traffic, sea states, weather 

conditions, and wake are all unpredictable factors that can hinder an ASV’s operational 

capabilities. An ASV’s best defense against these unpredictable conditions is to be aware 

of its surroundings, which is the concept of situational awareness. Situational awareness 

is “ a dynamic process of perceiving and comprehending the events in one’s 

environment” leading to predictions of the ways the environment may change and 

mission performance (Nofi & Analyses, 2000). Situational awareness aids in determining 

system behavior when avoiding objects and it helps in creating maps used for path 

planning and visualization (Cadena, et al., 2016). One way researchers approach 

situational awareness is through sensor fusion. In a study by Haghbayan et al. (2018), the 

researchers combined radar, LiDAR, thermal and RGB cameras to detect and classify 

objects with bounding regions in Finnish waterways (Haghbayan, et al., 2018). Likewise, 

David Thompson (2017) fused GPS/INS, LiDAR, and camera data for detection and 
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classification of maritime objects for the Maritime RobotX Challenge  (Thompson D. J., 

2017). 

 However, sensor fusion is not the only situational awareness approach available 

to researchers, sometimes situational awareness is done through a single type of sensor: 

like cameras or radar. In a research study by Kuwata et. al (2014), a stereo camera array 

provided situational awareness by sensing the position and velocity of boats in the nearby 

vicinity, the camera information was used to help implement the International 

Regulations for Preventing Collisions at Sea (COLREGS) (Kuwata, Wolf, Zarzhitsky, & 

Huntsberger, 2014).  Another reason ASVs need good situational awareness is the need 

to follow COLREGS. COLREGS are the rules that help vessels avoid each other, the type 

of maneuver that must be applied will depend on the location and direction of travel of 

one vessel relative to another. Using imagery for situational awareness opens the door for 

many strategies to be used. With imagery, researchers have the option for different tools: 

computer vision methods, neural networks methods, and camera type selection (stereo, 

thermal, monocular). 

Statement of the problem 

This paper focuses on the vision aspect of situational awareness. Computer vision 

and machine learning process camera data into useful perception information. Computer 

vision has benefited from the implementation of Convolutional Neural Networks 

(CNNs), which create the ability to find and classify objects in images. These type of 

networks were used in (Haghbayan, et al., 2018), (Keunhwan, Kim, & Kim, 2021), 

(Kowlaski, et al., 2021), (Bovcon, Muhovic, Pers, & Kristan, 2019), (Zhang, Ge, Lin, 

Zhang, & Sun, 2022). Two widely used methods for vision perception in mobile robotics 
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are object detection networks and semantic segmentation networks. Object detection 

networks are used to detect and classify objects by taking in an image input and returning 

regions or bounding boxes with the detected class of the object. On the other hand, 

semantic segmentation networks provide pixel wise detection and assign a class to each 

pixel in an image. These computer vision strategies will be further explained in the 

paper’s methods section. Situational awareness approaches using imagery include stereo, 

monocular, and thermal camera data  (Kuwata, Wolf, Zarzhitsky, & Huntsberger, 2014) 

(Park, Yonghoon, Yoo, & Kim, 2015) (Kowlaski, et al., 2021) ; a sensor net yet seen in 

the maritime domain is the high dynamic range camera (HDR). HDR cameras are able to 

process the entire range of visible light conditions from 10-4 to 108 cd/m2 , resulting in 

less information loss compared to images taken at a fixed exposure (Mukherjee, Bessa, 

Melo-Pinto, & Chalmers, 2021). In HDR images areas of the image that “are too dark or 

light to allow discernment of detail or color, have been removed” (Cox & Booth, 2008). 

For example, light areas that were washed out in white pixels in a fixed exposure image 

show more detail and color in the HDR image, similarly areas that are dark due to 

shadows are no longer just black pixels. HDR cameras take images at different light 

exposures and ‘stitch’ them to make the HDR image.  

 HDR images use different pixel structures to SDR images. HDR images use quad 

Bayer structures (QBS) which applies the same color filter to adjacent pixel clusters. This 

method helps prevent information loss and reduce noise (Group, 2023). Figure 1 shows 

the difference between the SDR and HDR pixel patterns.  
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Figure 1 QBC pixels. Shows the difference between SDR pixels (right) and HDR pixels 
(left). The left pixel is a representation of the QBC pixel structure, the structure used in 
HDR images and one of the reasons less data is lost in HDR images (Group, 2023).  
 
 
 
Synthetic and native HDR images 

HDR images can be synthetic or native. Synthetic HDR images are made by 

applying augmentations to SDR images and through the application of expansion 

operators (Mukherjee, Bessa, Melo-Pinto, & Chalmers, 2021). On the other hand, native 

HDR images come from hardware and cameras. These HDR sensors use image signal 

processors which apply tone mapping to convert the scene into an 8-bit representation 

whilst optimizing the HDR range (Thompson D. J., 2023). Synthetic HDR images would 

be involved in a post analysis process and not in real time as native HDR images. 
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Figure 2 Fixed exposure vs HDR image: This image compares an HDR image (top) and a 
fixed exposure image (bottom). The images have been cropped to fit on the page.    
 
 
 

Figure 2 shows the contrast between the fixed exposure image (top) and the HDR 

image (bottom). The difference is quite noticeable in fixed exposure image which has 

saturated white clouds and white pixels seem to blend together in the image, and the 

channel marker blends in the image. Since HDR images mitigate the effects of shadows 

and intense lighting by the nature of how they are made, there is a possibility that these 

images are better suited as inputs for object detection networks than fixed exposure 

images, in the maritime environment. The retention of detail in the presence of intense 

lighting or shadows in HDR images might help detection networks extract the features 

needed for classification. (Mukherjee, Bessa, Melo-Pinto, & Chalmers, 2021) and 

(Mukherjee, Melo, Filipe, Chalmers, & Bessa, 2020) show there are advantages when 

training neural networks with HDR images. 
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Purpose Statement 

For the reasons noted above, this paper proposes using HDR images as the inputs 

of object detection networks in the maritime environment instead of fixed-exposure 

imagers. Since HDR images can detect a wider range of color and mitigate the loss of 

information in the presence of too much light or too much shade, it is theorized that HDR 

cameras may be better suited than fixed exposure imagers for the dynamic settings of the 

maritime domain. This paper compares object detection networks trained on HDR and 

SDR images to determine which network is better suited for the maritime environment.  

Unlike (Mukherjee, Bessa, Melo-Pinto, & Chalmers, 2021) and (Mukherjee, Melo, 

Filipe, Chalmers, & Bessa, 2020) the HDR images collected from this study will have 

originated from HDR cameras rather than software-based HDR imagery, and the HDR 

image footage will have a counterpart of SDR images with almost identical footage to 

compare detections networks trained on the two sets of images. To do this comparison 

object detection networks and transfer learning will be used to compare networks on 

trained on HDR and SDR datasets. 

List of Acronyms 

ASV Autonomous surface vessel 
CNN Convolutional neural network 
RGB Red, green, blue  
HDR High dynamic range 
SDR Standard dynamic range 

RCNN Regional Convolutional Neural Net 

SSD Single Shot Detector 
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Chapter II 

Review of the Relevant Literature 

Scope of paper 

The literature review will cover various vision-based situational awareness 

methods. Strategies covered include sensor fusion, where vision-based strategies are a 

component of a larger perception strategy, and vision-based only methods, where only 

camera sensors are used. It is common practice, in vision-based situational awareness, to 

apply machine learning strategies, computer vision strategies, and CNNs on camera 

images to extract the location and class of objects. These approaches are common in 

literature because they can be used in real time. Although these different methods are 

covered, this paper focuses on the application of vision-based strategies using CNNs; 

spatial sensors, infrared cameras, clustering, or horizon finding methods are outside the 

scope of this paper. However, it is important to know these concepts to understand how 

vision-based situational awareness has reached this point and how it is applied.  

The domain where the strategies are being applied is another focus of this paper, 

the domain in question is the maritime domain. The strategies used in the ground, aerial, 

or underwater domain are outside of the scope of this paper, but there will be mentions of 

studies that use HDR imagers in the ground domain because until this point HDR imagers 

have not been widely used in the maritime domain as a part of a study.  

Vision-based and machine-learning maritime perception  

Methods that do not use CNNs in maritime perception to detect ships and other 

objects commonly rely on finding the horizon in images, performing background 

subtraction, performing edge detection, or use machine learning techniques on the 
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images. In (Bouma, et al., 2008) to detect ships in a harbor the study used edge extraction 

filters to get boat features and locate the boats in infrared (IR) images. IR cameras were 

used to reduce noise. Years later, (Park, Yonghoon, Yoo, & Kim, 2015)  paired horizon 

detection strategies with clustering algorithms like DBSAN to detect nearby boats in 

monocular camera images to apply COLREGS. They used the horizon to help their 

algorithm determine the distance of objects and clustering methods to distinguish the boat 

features from the background/ water surface, essentially locating the pixels that belonged 

to boats. The strategy of finding the horizon line in images still persists today, (Amed 

Hashamani & Umair, 2022) created a dataset focused on horizon line detection under 

different weather conditions to evaluate the performance of horizon finding methods. In 

(Kuwata, Wolf, Zarzhitsky, & Huntsberger, 2014) four stereo cameras were used to 

determine the velocity and direction of nearby boats to implement COLREGS using 

velocity objects. The stereo camera strategy consisted of generating range images from 

the stereo camera pairs, finding the water plane, and applying spatial and temporal 

filtering to identify and later classify objects like boats and other obstacles (Hunstberger, 

Aghazarian, Howard, & Trotz, 2011).  

 In (Prasad, Krishna Prasath, Rajan, Rachmawati, & Rajadbally, 2016) the team 

evaluates common computer vision techniques in the maritime environment. In the study, 

horizon detection, registration, background subtraction, and foreground object detection, 

were applied to the Singapore Maritime Dataset (SMD) to detect ships and other objects. 

The study found the strategies were not always useful, in detecting objects, due to effects 

from maritime weather, ship clustering of the horizon, and camera shaking. In the 
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discussion the team urges the need for better vision-based algorithms for the maritime 

domain.  

Convolutional Neural Networks 

The introduction of CNNs in the maritime domain simplified the process needed 

to detect vessels. In the nondeep learning era the detection task requires multiple steps 

while with neural networks the algorithms and learning are all completed through the 

neural network and in the time of application the process is an image input then an output 

result  (Zhan, Li, Ji, Li, & Pan, 2021). Improving CNN strategies in this domain is 

important because “CNN based methods significantly outperform conventional image 

processing techniques in detecting ship features under inherent noise in marine image 

data” (Keunhwan, Kim, & Kim, 2021). Object detection networks are common CNNs 

used in the maritime domain to detect objects. .In object detection networks a ‘learner’ 

tries to detect regions of an image containing objects. Objects are determined based on 

their features. Features are extracted from images using convolutional filters. The 

features are mathematically related to object types or class through activation functions. 

Ultimately, object detection networks find objects in images and output the regions where 

these objects are located, in the image, along with a label for the type of the object found.  

Another CNN strategy, but outside the scope of this paper, is semantic segmentation. 

Semantic segmentation networks do pixel wise detection and classification and can be 

used to find object instances or to parse the background finding the sky, ocean, or land. 

Segmentation networks are good for detecting areas of similar texture giving them the 

ability to identify these big background objects. 
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Since this study focuses on object detection networks it is important to understand 

some widely used object detection network architectures: Faster-RCNN, SSD,s and 

YOLO (Ren, Kaiming, Girshick, & Sun, 2017) (Liu, et al., 2016) (Dwyer, 2020). 

Faster-RCNN  

Faster-RCNN or Faster Regional Convolutional Network is an object detection 

network from the RCNN family. The RCNN family of detection networks started in 2014 

with the introduction of RCNN in (Girshik, Donahue, Darrell, & Malik, 2014). The 

network consists of three modules, one of the modules uses selective search to propose 

regions of interest, the second module then uses convolutional neural networks to extract 

features from these regions, and the last module uses support vector machines to classify 

the objects inside each of the region proposals. After RCNN came Fast-RCNN in 

(Girshick, 2015) which increased training and deployment speed over RCNN. Fast-

RCNN improved over RCNN by reducing the number of modules that had to be trained 

and using backpropagation over the network layers. To increase speed Fast-RCNN also 

applied the convolutional layers once to the entire image, instead applying convolutions 

to each region proposal, then regions of interests were used on the feature maps which 

were turned into feature vectors and then fed to classifiers. The improvements from Fast-

RCNN made it 9 times faster for training than RCNN (Girshick, 2015). 

 The Faster-RCNN version combines a region proposal network (RPN) and the 

‘Fast RCNN’ detector in a bundle where the two networks share convolutional layers 

during training. The RPN will find regions of interest in the feature map and then the 

Fast-RCNN uses those regions to find objects (Ren, Kaiming, Girshick, & Sun, 2017). 

Faster-RCNN is meant to be able to find objects at different scales thanks to its anchor 



12 

 

box methods and their translation-Invariant anchors, meaning the network is able to keep 

track of the position of different objects throughout convolutions. Anchor boxes are pre-

determined and define the scale and aspect ratio of bounding boxes that best match the 

ground truth boxes in the dataset (Ren, Kaiming, Girshick, & Sun, 2017).  

 
 

 
Figure 3 Faster-RCNN modules: the left side of the image shows the RPN anchor boxes, 
and the classification and regression scores given to each anchor box in the feature map. 
On the right it’s the RCNN module, the figure shows how the RPN shares convolutions 
with classifier (Ren, Kaiming, Girshick, & Sun, 2017). 
 
 
 

Figure 3 shows the usage of anchor boxes in Faster RCNN and how the RPN 

module and the classifications module work together. Figure 3 is also to show how 

important the anchor boxes are for proper detection with this network. Although this 

network can be more accurate than its counterparts it tends to be slower than them. 

Single Shot Detectors 

Compared to Faster RCNN, SSDs are faster and with comparable detection 

accuracy based on common object detection datasets, however, SSDs are not as good as 

RCNN models at detecting small objects (Liu, et al., 2016). SSDs function off a feed-
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forward network method and produce a predetermined number of detection bounding 

boxes and scores each of the bounding boxes for the likelihood there is an object inside it. 

The bounding boxes are produced using pre-determined aspect ratios, the pre-determined 

aspect ratios are placed on feature maps at different scales (this is done so SSDs are able 

to detect different scaled objects). After the bounding boxes are scored for object 

confidence a non max suppression step is applied to reduce the number of repeated 

predictions for a single object. 

 
 

 
Figure 4 SSD architecture: shows handling of images from input to classification (Liu, et 
al., 2016) 

 
 
 
Figure 4 shows the architecture of an SSD network. The input images go through 

the VGG16 feature extractor until a certain convolution layer, after that point is reached 

the convolution layer goes through different convolutions making feature maps at 

different scales. At the differently scaled feature maps the bounding boxes are applied to 

detect objects (Liu, et al., 2016).For this study the SSD network was paired with an 

inceptionV1 backbone. Only hyperparameter values were changed for this network, as 

discussed in the methods. 
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You Only Look Once (YOLO)v5 

The YOLO object detection models are similar to the SSD models where there is 

a single module, and the architecture is quick to detect objects. YOLO detection networks 

started with (Redmon, Divvala, Girshick, & Farhadi, 2015), the goal of the model was to 

perform detections in a single stage and reduce inference time. The model divided images 

into grids, calculating the probability of the grid containing an object and then merging 

these grids. Later versions of YOLO improved the speed and accuracy of the algorithm 

with YOLOv2 introducing anchor boxes, YOLOv3 introducing feature pyramid networks 

and YOLOv4 introducing the ‘bag of freebies’ method to reduce the size of the network 

and increase speed and accuracy again (Maindola, 2021). The YOLOv5 model used in 

this study is an improvement on the YOLOv3 version. 

 
 

Figure 5 YOLOv5 Architecture. Shows the architecture of YOLOv5 (Dwyer, 2020). The 
layers of the YOLOv5 network and backbone are shown. 
 
 
 

One of the biggest additions from the YOLOv5 model is the use of data 

augmentation methods like mosaic augmentation. Where 4 source images are combined 

into one whilst keeping object scale, the advantage is that it acts like a crop and combines 
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classes that may not have been seen together in one scene (Dwyer, 2020). YOLOv5 also 

has autolearning anchor boxes, the anchor boxes are determined through the distribution 

of the annotations and k-means and genetic algorithms (Solawetz, 2020). 

CNN applications in the maritime domain 

This section will outline studies that focus on the application of CNNs in the 

maritime domain. Most of these studies use RGB images or IR images to sense the 

environment. In  (Bovcon, Muhovic, Pers, & Kristan, 2019) semantic segmentation 

networks were used to classify the sky, water, and land, in order find navigable paths for 

ASVs to travel on. Some studies focused on benchmarking neural networks on the few 

available maritime domain datasets. One of these studies is by (Moosbauer, Konig, Jakel, 

& Teutsch, 2019), where they tested different versions of Faster-RCNN and Mask-RCNN 

whilst fine tuning them for the objects in Singapore Maritime Dataset (SMD) (Prasad, D., 

L, E, & C, 2016) , the best performance for the Faster-RCNN model was an f score of 

0.854. In (Betti, Michelozzi, Bracci, & Masini, 2020) a YOLO detection network was 

trained using RGB images taken from internet search engines to create a dataset of 12 

boat classes. In another comparison study by (Soloveiv, et al., 2020), the researchers 

created their own dataset using RGB and IR cameras for over 13 days in the Finnish 

archipelago and compared SSD networks and Faster-RCNN networks finding the Faster-

RCNN with Resnet101 outperformed the other detection networks on their dataset. In 

another YOLO application, (Keunhwan, Kim, & Kim, 2021) combine RGB cameras with 

radar for a maritime situational awareness package. The researchers effectively trained a 

YOLOv3 network using a dataset composed of their own images along a coastal setting 

and ship images from PASCAL VOC and the Singapore Maritime Dataset (SMD) 
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(Prasad, D., L, E, & C, 2016). In (Kowlaski, et al., 2021) IR cameras were used to detect 

inflatable boats in Polish rivers. The team collected and annotated their own dataset to 

train YOLOv2, YOLOv3, and Faster-RCNN with different backbones. They found 

Faster-RCNN outperformed the YOLO networks based on ‘classification rate,’ the total 

number of correctly classified objects to the total number of correctly detected objects, a 

metric akin to precision. The study also showed YOLO networks were significantly faster 

than the Faster-RCNN networks. In (Zhang, Ge, Lin, Zhang, & Sun, 2022) the team 

modified a YOLOv4-tiny model to make it better suited for foggy maritime scenarios. 

The team introduced 3 modifications to the original YOLOv4-tiny architecture. The 

modifications try to filter out the effects of fog before feature extraction occurs, increase 

the field of view of the feature maps, and combine information in different dimensions of 

the channel space. The modified model was then tested on ocean images from COCO and 

TinyPerson, which were augmented to add the effect of fog. The team found their 

modified model had a 10-percentage point improvement over the original YOLOv4 

network. 

Literature review influence 

 The similar findings by (Soloveiv, et al., 2020) and (Kowlaski, et al., 2021) 

indicate Faster-RCNN outperforms YOLO and SSD models. These findings influenced 

the CNN architecture focus of this paper, these studies made Faster-RCNN with a 

resnet101 backbone the initial focus of the networks. Although the literature does show 

YOLO networks being used a lot, those networks were not trained using images that were 

collected solely by researchers, parts of their dataset were made from online images or 

taken from other datasets. Because the YOLO networks were not being trained with 
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images collected by the researchers the focus of this study was initially centered around 

Faster-RCNN. 

Challenges of object detection in images 

To put it briefly, vision based situational awareness in a maritime domain can be 

considered to be an immature area of cross-disciplinary research with challenges it needs 

to address (Quiao, Liu, Lv, Li, & Zhang, 2021).  One of the challenges that must be faced 

by the field is the quantity and quality of training data needed for vision-based perception 

to create robust neural networks. In general, there is a lack of labeled data available, 

especially compared to datasets available for ground vehicles containing cars and 

pedestrians. There are only a few maritime datasets that have full scene images and fully 

annotated images, making it difficult for research (Quiao, Liu, Lv, Li, & Zhang, 2021) 

(Environments). In this case there are no HDR maritime datasets known to the researcher.   

The lack of maritime/ship datasets is not the only dataset challenge, these datasets 

must also capture different conditions that will be encountered by ships in the maritime 

environment. In real world application, the ships and their camera sensors will encounter 

objects under different conditions, these conditions are affected by lighting, scale, 

background, and viewpoint (Quiao, Liu, Lv, Li, & Zhang, 2021).  
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Figure 6 Scene challenges: shows the different conditions found in images taken in the 
maritime domain. A good detection network would need to work well with all these 
scenes, making detection in the maritime domain difficult (Quiao, Liu, Lv, Li, & Zhang, 
2021) 
 
 
 

Figure 6 shows the different situations that object detection networks must 

surpass in order to be effective in a maritime environment. Lighting challenges can be 

caused by weather conditions and even the time of day. Morning, noon, and dusk change 

the way the sun is reflected off objects and the water. Additionally, scale challenges are 

affected by the distance of objects to the camera. Another challenge has to do with 

background objects in the image. Background objects can confuse the network when 

running inference on images. Another challenge is the viewpoint or orientation of objects  

relative to the camera. For a neural network to perform well under all these situations the 

dataset must have all of these conditions present in it or augmentations can be done to 

simulate of these conditions. 
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Datasets in channels 

There is greater difficulty when detections must occur in inland rivers or 

waterways than in an open water setting. In an inland river setting there are more objects 

of interest in the foreground and background as opposed to an open ocean setting with a 

clear scene and perhaps a few ships. With more background and foreground objects 

present the detector faces more difficulties in isolating the object bounds. Some of the 

foreground objects that can be found in inland rivers are mountains, rivers, trees, and 

onshore buildings (Quiao, Liu, Lv, Li, & Zhang, 2021). The dataset used in this study 

was collected in an inland river where there are plenty of background objects cluttering 

the background.  

Studies in high dynamic range cameras 

One of the few examples of HDR cameras being implemented in robotics is one 

where HDR cameras were used to detect traffic lights in an urban environment, where the 

researchers found the HDR cameras helped reduce false positive predictions due to 

reflections (Wang & Zhou, 2019). Some studies, outside the field of robotics, have 

compared the effect of CNNs trained on regular standard dynamic range (SDR) images 

and HDR images. In one of these studies,  Mukherjee et al (2021) use datasets like 

PASCAL VOC and COCO to create synthetic HDR images to train an object detection 

network and compare it to a network trained with the original SDR images from the 

dataset. The researchers also used HDR images collected by cameras to test how an HDR 

trained network would perform in a real world application, but this part of their study did 

not have a network trained with a set of SDR images of the same scenes to compare 

against (Mukherjee, Bessa, Melo-Pinto, & Chalmers, 2021). In (Mukherjee, Bessa, Melo-
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Pinto, & Chalmers, 2021) there were some advantages to using HDR images for training, 

the HDR trained network helped detect objects in extreme lighting conditions and 

outperformed the SDR trained network on the same images. In a similar study, with some 

of the same researchers, HDR images were mapped and transformed into SDR images to 

train object detection networks and make them better suited for difficult lighting 

conditions (Mukherjee, Melo, Filipe, Chalmers, & Bessa, 2020). 

Chapter III 

Methodology 

 The methods section will outline the tools used for image acquisition, image 

annotation, detection performance metrics and the training of neural networks.  

Image acquisition 

As explained, this study will use one datasets composed of native HDR images 

taken by an HDR camera and SDR images taken by a fixed exposure camera, the images 

from both cameras show the same scene and same horizontal field of view. The HDR and 

fixed exposure datasets used for this study were collected in a previous study exploring 

sensor fusion of visual and spatial data. The images were collected onboard a deck boat 

navigating through the Halifax River in the Daytona Beach area in Florida. The cameras 

used were the Flir Blackly S USB3 for the fixed exposure footage and the HDR camera 

was the Leopard Imaging LI-IMX390.  

 
 

Table 1 
Camera Information 

HDR imager data 
Model Leopard Imaging LI-IMX390 

Resolution (pixel) 2880x1440 
Field of view (degrees) 65 
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Fixed exposure imager data 
Model Flir Blackfly S USB3 (IMX226) 

Resolution 4000x3000 (12 megapixel) 
Field of view 65 

The table shows the resolution and field of view of each camera used in the study. 
 
 

Table 1 shows some of the capabilities for the sensors used, it is important to 

notice the fields of view are equal and the resolutions are different. The footage collected 

by the cameras was logged continuously in two-minute segments. Each video file was 

saved with the date in epoch time for the time the segment started recording and then a 

sequence number for each video. These file names are used to identify corresponding 

HDR and 4k video segments. To produce images from the video footage, a parsing script 

was used to extract frames from the camera footage at 2 frames per second, extracted 

frames kept the name of the video used for extraction and then received a sequence 

number to identify the order in which the frames were pulled. The scheme looks like 

“hdr-(video sequence)-(frame sequence). This method was used to collect frames from 

select videos in the dataset. This amounted to 240 frames per video in almost all cases.  

With regards to sensor mounting, both sensors are housed in the same 

compartment and are facing the same direction to collect images. 
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Figure 7 Camera enclosure: shows the layout of the camera enclosure, where the cameras 
are housed. 
 
 
 

Figure 7 shows the layout inside the camera enclosure used to collect the camera 

footage. The two cameras used in this study are the HDR camera and the visible range 

camera left of the HDR camera. To clarify, there are three fixed exposure cameras set up 

at different angles but for this study only the center fixed exposure camera is being used, 

only the footage for the front-facing fixed exposure camera was annotated and used in the 

comparison, images from the two side cameras were not used in this study.  
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Figure 8 Image scene example. The HDR image is shown at the top and the fixed 
exposure image is show in the bottom. These images are not cropped but shrunk to fix in 
the page. 

 
 
 
Figure 8 shows an example of data collected by the cameras. The figure shows the same 

scene as collected by the fixed exposure camera and the HDR camera. Figure 9 shows the 

locations where images were taken in (Thompson D. J., 2023). Most of the images came 

from the Daytona Beach and New Smyrna Beach areas. The areas covered for data 

collection are highlighted in orange. These images were taken from Google Earth. 
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Figure 9 Data collection routes. Shows the maritime routes where data was collected for 
the study. The left image shows the route for data collected on October 16, 2021, and the 
right image shows the data collected on September 25, 2021. The names of prominent 
bridges are shown in the image. 
 
 
 
Labelling tools 

A helpful tool in this project was the machine learning platform ‘Supervisely’. 

With supervisely images can be stored and annotated in the cloud. This platform helps 

obtain statistics on the annotation data and allows different users to annotate 

simultaneously with any computer that can connect to the internet. Supervisely facilitated 

getting annotation help in this study. Supervisely was used to store frames extracted from 

the video footage. Once the images were in supervisely these were labelled according to 

the classes discussed below. 

Annotation filter 

 A filter was applied to annotations in the dataset for objects that were smaller than 

1000 pixels in area. This filter was applied after metrics revealed objects with areas less 
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than 322 pixels were not being detected well. The filter was applied to both the fixed 

exposure images and the HDR images.  

 
 
 

 
Figure 10 Annotation size example. Shows an annotation with the yellow bounding box 
showing bridge objects while the red bounding boxes show boat objects. The area of 
these bounding boxes are shown near the classes. 
 
 
 

Figure 10 shows an example of an annotation and the size of the objects. The two 

boats in the image with a bounding box area of 375 and 512 pixels would be removed 

from the dataset with this filter.  

Proposed classes 

Since this study is concerned with the maritime domain, the classes selected 

represent objects vessels need to avoid or recognize for navigation. Water channels prove 

to be more difficult than an open water setting due to background objects that may be 

affecting features of interest. The classes selected in the study are in table 2. 
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Table 2 
Annotation classes 

Classes 
Boat 
Dock 

Buoy/channel marker 
Bridge 

Shows the list of object classes considered for annotations in the dataset. The objects in 
the dataset were labelled using these classes. 
 
 

All boats in the study were considered to be one class regardless of type: deck 

boats, sail boats, yachts, catamarans, pontoons, and jet skis all belong to the boat class. 

The decision to make all boats one class is to generalize boat instances and because 

identifying different boat classes would require a lot of instances of each class. The 

bridge class includes any bridges in the dataset. The dock class included piers, dock 

houses, and decks. Lastly, channel markers and buoys were combined into one class since 

there were not many instances of these objects individually. Some classes that were 

considered but left out of the study were ‘person’ and ‘aerial.’ There were not enough 

instances of the person and aerial objects for the detection networks to learn them. 

 
 
 

Figure 11  Class instances: shows class instances for HDR and fixed exposure images.  
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Figure 11 shows how classes were distributed in the fixed exposure and HDR set. 

It should be noted that most of the samples in the dataset are boats. There is a 

considerable difference in boat instances between the SDR set and the HDR set, this is 

due to a decision to filter out labelled objects with an area less than 1000 pixels from the 

HDR and SDR images. The decision to filter out objects with areas less than 1000 pixels 

was made after detection metrics from the HDR images showed that the regional CNNs 

were not detecting small objects well. The difference, in boat labels, is due to the 

4000x3000 pixel resolution of SDR images and the 2880x1440 pixel resolution of HDR 

images. Because the SDR resolution is bigger the same objects were not affected by the 

filter since they appeared bigger in the SDR image. These objects were not removed from 

the SDR set because they were clearly visible and might hurt the training process if 

removed. 

 
 

Figure 12 Images per class. Shows how many images have at least one instance for any 
class in the fixed exposure and HDR sets. 
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Figure 12 shows how many images there were per class in the dataset, so it shows 

how many images contain at least one instance of a specific class. It differs from figure 

11 since figure 11 shows the total amount of objects that were of a certain class while 

figure 12 shows the number of images that contain at least one object of a specific class. 

Discrepancies here can also be attributed to the 1000-pixel area filter applied to the 

labels. 

TensorFlow 2 

To train the object detection networks the TensorFlow2 (TF2) object detection 

API was used. Object detection networks can be trained using pipeline configuration files 

through the TF2 object detection API. Training tools and hyperparameters for the 

networks can be selected through the protocol buffers in the pipeline configuration files. 

Feeding the training images/labels to the training process was done through TF 

record files. This means the datasets were partitioned, 85% for training and the rest for 

validation, and later converted from xml and image files into the binary TF record file, 

meant to save space and improve efficiency.  

Another reason to use TensorFlow is the use of transfer learning. Transfer 

learning depends on pre-trained models, pre-trained models are trained on large datasets 

with varying classes and have already generalized on different objects. Transfer learning 

takes advantage of the features and generalizations learned by the pre-trained models and 

trains these models to detect specific objects for new tasks. In transfer learning, the layers 

of the pre-trained model are frozen (meaning new training does not change them, 

retaining what the pre-trained model learned) and new layers trained on the new task are 

added. The new layers are trained to output the new classes of interest. The benefit from 
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of this method is it helps avoid having to train the model from start, reducing the amount 

of time and images needed to get results (TensorFlow, 2022).  Pre-trained models can be 

accessed from the TF2 Detection Model Zoo. The Model Zoo has different model 

architectures with the pre trained weight checkpoints as well as the configuration 

pipelines needed to edit the model for transfer learning.  The disadvantage of using pre-

trained models, in this study, is the datasets use SDR images and the feature extraction 

might not be ideal for HDR images. The effects of this are explained in the 

recommendations section. 

After the models are trained, they can be exported into TF2’s saved model format. 

At this point the model is a frozen model so that it can’t be trained anymore but it is 

ready for inference on images.  

Pre-trained networks 

As mentioned in the previous section, the pre-trained models used in this study 

originated from TensorFlow model zoo in GitHub. All the models provided in the model 

zoo are trained on COCO17. The dataset contains 80 classes, some of these classes are 

cars, motorcycles, boats, airplanes, trucks, bus; some classes are animal related and even 

some appliance/ household objects (Simalango, 2018). Although this does not allow for 

selection, the COCO dataset has been described as having many small objects which 

should be an advantage when using this model for transfer learning  (Kowlaski, et al., 

2021).  
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Table 3 

Pre-trained TensorFlow networks 
Model name backbone Dataset trained on 
Fasrter-rcnn-resnet101-v1-1024-1024 Resnet50 COCO17 
ssd-mobilenet-v1-fpn-640-640 Mobilenet COCO17 

Shows the pre-trained models used, the backbone architecture, and the dataset the 
network was trained on. 
 
 
 

Faster-RCNN with resnet101 was selected because studies in the literature 

claimed it outperformed models compared against it. The specific version of the SSD 

model was chosen because it was the most similar to the original paper, among the model 

zoo models. 

COCO Metrics 

The common objects in context (COCO) detection metrics were used to evaluate 

the performance of the trained models in this study. COCO was used because it provides 

metrics based on the size of objects as well as metrics based on recall. The metrics also 

include the mean average precision from PASCAL VOC, a common metric used to 

evaluate detection model performance. COCO detection metrics use 12 characteristics to 

analyze the performance of detection models (Context, n.d.). Due to different training 

methods for YOLOv5, only the COCO and PASCAL VOC metrics will be shown for the 

YOLOv5 models.  

Before diving into the COCO performance metrics it is important to understand 

three important concepts the metrics are based on. The COCO detection metrics are based 

on intersection over union (IoU), precision, and recall. 
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Intersection over union - IoU 

IoU is widely used in object detection models and segmentation models to 

measure how close the bounding box predicted by the detector is to the ground truths in 

the dataset. The formula for IoU is simply the area of overlap divided by the area of the 

union of the bounding box estimation and the ground truth. 

 
 

 
Figure 13 Intersection over union. Shows a visual for the concept of intersection over 
union (Hasty, Hasty, 2023) 
 
 
 

Figure 13 shows a visual of the area of intersection and the area of union between 

two bounding boxes. The closer the IoU is to 1 the better the prediction or localization of 

the detector.  

Precision and recall 

On the other hand, precision can’t evaluate the localization or localization 

accuracy of the bounding box. Instead, it evaluates the class prediction. Precision uses the 

class predictions of the detector and the classes annotated in the dataset.  It uses the 

concepts of true positive (TP) predictions and false positive (FP) predictions from 

models. In the case of object detection, TP is when the model correctly predicts an object 

in the image, a FP prediction is when the model predicts an object that is not present or 

when the model misclassifies an object. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
்
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                                               (1) 

 

Equation 1 shows the equation for precision. In essence, the precision metric 

indicates the amount of correct class predictions made over the total amount of class 

predictions made by the model. Similarly, the recall metric measures how well the model 

can find ground truths or the objects of interest. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
்

்ାிே
                                                   (2) 

 

Equation 2 shows how recall is calculated. A false negative FN is when a ground 

truth goes unnoticed by the model. This metric essentially indicates how well a model 

can find samples in the dataset. These three concepts are what COCO builds on to 

measure object detection performance.  

 
Table 4 

COCO Detection metrics 
Average Precision (AP) 

AP AP at IoU = .5: .05 : .95 
APIoU = .50 AP at IoU = .50 (used in PASCAL VOC) 
APIou = .75 AP at IoU = .75 

AP Across Scales 
APsmall AP small objects: area < 322 

APmedium AP medium objects: 322 < area < 962  

APlarge AP large objects: area > 962 

Average Recall (AR) 
ARmax = 1 AR given 1 detection per image 
ARmax=10 AR given 10 detections per image 
ARmax=100 AR given 100 detections per image 

AR Across Scales 
ARsmall AR small objects: area < 322 

ARmedium AR medium objects: 322 < area < 962 

ARlarge AR large objects: area > 962 

List of metrics to evaluate object detection performance. 



33 

 

 
 
 

Table 4 shows the detection metrics that will be used in this study to evaluate 

models, it is meant to outline the factors considered by the performance evaluation 

metrics. This table should help better understand how the models are being evaluated.  

The “AP” metric is the mean average precision (mAP) averaged over all categories, it is 

also average over 10 IoU values, going from .5 to .95 in .05 percent steps. The  AP IoU = .50 

and  APIou = .75 are not averaged over several IoU values, they just use that threshold. The 

COCO metrics include the average over different metrics because it rewards detectors 

that localize well (Context, n.d.). 

Image size and batch size 

 An important hyperparameter for training networks, image size and batch size 

help determine the duration of training and can increase performance. Image size is the 

dimension raw images are shrunk to when inputted to the neural network for training. 

Larger image sizes retain more information, this helps in feature extraction. The batch 

size is the number of examples considered by the learner every step update of the 

weights. These hyperparameters were selected in a way that would prevent out of 

memory errors and increase model performance. 

 
 

Table 5 
Batch size and image size selection 

Network Image size (square) Batch size 
Faster-RCNN 800px 6 

SSD 640px 6 
YOLO 800px 6 

Shows the batch size and image size used for each network in the study. The image size 
is squares so 800px means an 800 by 800px image input. 
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Anchor boxes and stride 

 Another hyperparameter, anchor boxes determine the bounding box shapes used 

by networks to find objects in images. The aspect ratios of anchor box shapes were 

determined using ground truth bounding box heights and widths. The heights and widths 

of all annotations in the dataset were used as data points and the K-means algorithm 

(Matworks, n.d.) was used to separate the data into clusters. The mean/center of these 

clusters are used to calculate the aspect ratios for the anchor boxes in the training, the 

algorithm was set to find seven clusters in the data. The new aspect ratios then replace the 

already existing aspect ratios in the model’s configuration file. 

 

Table 6 
Aspect ratios  
Image set Aspect ratios 
HDR 0.14, 0.36, 0.5, 1, 1.6, 3.0, 3.7 
Fixed exposure 0.17, 0.42, 0.5, 1, 1.6, 2.0, 3.7 

Shows different aspect ratios used making anchor boxes for training.  
 
 
 

Table 6 shows the different aspect ratios used for training. It is important to not 

that these values must be recalculated when new data is added. 

Width stride and height stride is another hyperparameter related to anchor boxes. 

These strides determine the pixel offset from center to center of the anchor boxes as they 

are distributed along feature maps (Huang J, 2017). Experimental tests found a width and 

height stride of 16 was best for model performance. As shown in figure 14. 
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Figure 14 Stride effects. Shows the comparison of two models using different stride 
values. The red curve represents a model with width/height stride of 16 whilst the black 
curve shows a model with a width/height stride of 8. Other hyperparameters were equal. 
 
 
 
Learning rate and optimizer 

 The learning rate for the training of the models was set on a schedule. In this 

scheme, the learner is given an initial learning rate and the learning rate changes after a 

predetermined amount of training steps are reached. Several learning rates can be 

implemented in one training session with the schedule method. The optimizer used for 

these models was the ADAM optimizer because it has become a standard in neural 

network training as it combines the momentum and RPM optimizers. For training an 

initial learning rate of .0003 was used and at 9000 num steps the learning rate was 

changed to .00002 until the training ended at 15,000 num steps.  

 

 



36 

 

 
Figure 15 Learning Schedule. shows a learning schedule graph during training. 
  

Data augmentation 

Different data augmentation methods were used to train the 3 different networks 

to suite their architectures. For Faster-RCNN only horizontal flips were used in the image 

since the network performs well with just original images and horizontal flips (Liu, et al., 

2016). For the SSD the default augmentations in the pipeline were used, these were 

horizontal flips and random crops. For YOLOv5 mosaic and crops were used. Mosaic 

crops make new images by combining images together, this helps combine classes that 

normally would not be together in the same image. 

 
 
 

 
Figure 16 Augmentations. Shows a mosaic augmentation on the left and shows different 
flips on the right (Hasty, Horizontal Flip, 2022). 
 
 
 

Figure 16 shows mosaic augmentation and a depiction of flips. Vertical flips were 

not used for data augmentation because it would assume the vessel capsized.  
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Chapter IV 

Results 

After different training sessions, the best results from the selected detection 

networks are shown in table five. 

Table 7 
Results Table 
 Faster-RCNN SSD YOLOv5 

Metric HDR SDR HDR SDR HDR SDR 

mAP .69 .751 .557 .578 .58 .64 
mAP50 .900 .961 .769 .811 .85 .93 
mAP75 .776 .841 .584 .601   

mAP large .843 .833 .809 .782   
mAP medium .547 .604 .334 .286   

mAPsnall .227 .407 .315 .183   
ARlarge .879 .807 .848 .833   

ARmedium .637 .705 .491 .496   
ARsmall .343 .642 .294 .233   

Shows the detection metrics achieved by each network and the image type used to train 
each network. Columns under ‘HDR’ represent networks trained using HDR images and 
columns under SDR represent networks trained using fixed exposure images. The metric 
column shows the metric criteria used for the comparison. 
 
 

Faster-RCNN Comparison 

Detection performance from table five shows the Faster-RCNN network trained 

on fixed exposure images outperforms its HDR counterpart in all the performance metrics 

except mAPlarge and ARlarge. The fixed exposure network has a clear advantage over its 

HDR counterpart in terms of metrics. The mAP metric is six percentage points higher for 

the fixed exposure trained neural network.    
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Figure 17  Faster-RCNN comparison. comparison of Faster-RCNN networks trained on 
HDR images (red) and fixed exposure images (blue) 
 
 
 
 Figure 17 shows the performance metrics of the HDR and fixed exposure neural 

networks. The performance is quite similar and in the case of detecting large objects the 

difference is almost negligible. However, the fixed exposure network largely outperforms 

the HDR network at detecting small objects. This training method took around 5 hours 
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and 30 minutes to train for each network. The only difference in the training parameters 

were the anchor boxes and scales used. 

These networks have converged, this is indicated by the plateau of the 

performance metrics. This means these networks have learned all they could from their 

input data. 
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Figure 18 Inference comparison. HDR images (left) fixed exposure images (right) the 
black text on top of the bounding boxes show what class was detected and the confidence 
of the detection. The images have been cropped to fit to the page.  
 
 
 

Figure 18 shows inference performed on test images. These images belong to 

video sets that were not included in the training, meaning there are no similar images in 

either the HDR or fixed exposure training sets. On row one a group of vessels containing 

catamarans and sail ships are detected well by both networks. In row two the image was 

taken under a bridge and there is a lot of lighting on the fixed exposure image, making it 
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hard to distinguish some of the boats. The fixed exposure network fails to detect 2 vessels 

while the HDR network successfully detects all nearby vessels, the HDR performance is 

probably due to better contrast, compared to the fixed exposure image, between the 

vessels and the background of the image. In row 3 the HDR network fails to detect the 

sailing ship while the fixed exposure network tracks it well. Lastly, on row four the HDR 

network detects boats and marker channel signs while the fixed exposure network fails to 

detect any. Similar to row two, there seems to be worse contrast in the fixed exposure 

image than the HDR image. As can be seen in Figure 18, the accuracy of the HDR 

detections are higher than their fixed exposure counterparts which is common in images 

with high exposure. 

SSD Comparison 

The detection performance of the models while using an SSD architecture implies 

networks trained on fixed exposure images or HDR images are evenly matched. The 

HDR trained network outperformed the fixed exposure images in all the metrics 

considering size: mAPlarge, mAPmedium,mAPsmall and the AR counterparts. However, the 

network trained on fixed exposure images outperformed the HDR trained network on 

mAP, mAP50, and mAP75.  This means the fixed exposure network is classifying objects 

better than its HDR counterpart but not localizing them as well. 



42 

 

 
Figure 19 SSD comparison: shows the performance curves of SSD networks trained on 
HDR images (red) and fixed exposure images (blue) over 15k training steps. 
 
 
 

 Figure 19 shows the performance of the SSDs. The faded or lightly 

colored curves are the raw values while the solid curves are the smoothed values of the 

curves. The performance seems evenly matched in this presentation. The plateaus in the 
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mAP metric indicate these networks have converged, learning all they could from this 

data. 

 

YOLOv5 Comparison 

 

 
Figure 20 YOLOv5 Comparison. Shows the mAP of the YOLOv5 models on the left and 
the mAP at IoU 50 on the right. The red curve represents the HDR model, and the blue 
curve represents the fixed exposure images trained model. 
 
 
 

Figure 20 shows the comparison between the YOLOv5 networks trained on HDR 

and fixed exposure images. In this case the fixed exposure image trained network 

outperforms its HDR counterpart. These graphs seem different compared to the graphs 

from Faster-RCNN and SSDs and that is because the training does not happen through 

TensorFlow so some of the values used to train the network end up being different.  

It is likely the fixed exposure networks outperformed the HDR counterparts due 

to the use of transfer learning and that the pretrained models might need to extract and 

recognize features slightly different when using HDR inputs, this might have benefited 
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the fixed exposure networks. Another reason for the foxed exposure networks to 

outperform the HDR counterparts is the implementation of the annotation filter. This 

gave the fixed exposure networks more instances to learn from. 

Contrary to what was expected from the literature review, the SSD architecture 

outperformed the Faster-RCNN architecture at finding small objects in images according 

to APsmall, as shown in table five.  
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Chapter V 

Discussion, Conclusions, and Recommendations 

This section will share the conclusion, recommendations, and discussion resulting 

from this study. 

Discussion 

 Detection metric results shows the object detection networks trained on fixed 

exposure images outperform HDR trained networks as can be seen in figures 19 and 20. 

This means the fixed exposure networks learned the data in the images collected by this 

study better than the HDR. What these results do not show is the performance of the 

models in all real-world scenarios. In the few comparisons that could be made in this 

study (the main dataset only has one full day of matching images for the two front facing 

cameras) it seems the cameras are evenly matched. What this study fails to capture is the 

different weather conditions that can be encountered in a maritime setting. More images 

with fog, rain or during dusk and morning etc. are needed to make a better comparison. 

Consider the HDR is meant to mitigate the effects of too much sun or too much shadow. 

Most of the images in this dataset were on a bright sunny day meaning that the camera 

sensors would pick up image information without difficulty, so the true value of using 

HDR imagery might not have been fully extracted in these results. Figure 21 shows one 

of the situations where the HDR is advantageous. In the scene of figure 21 the fixed 

exposure network and the HDR network both detect the same vessel located on the left 

side of the image and with the same confidence. However, the mast of the ship is not 

discernable in the fixed exposure image and so the network can only detect the hull of the 

ship. On the contrary, the mast is discernible in the HDR image, and the network 
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captured the hull and the mast of the ship. In cases like this HDR imagery outperforms 

SDR imagery, more examples like this are needed for a better comparison. 

  
Figure 21 Extreme exposure inference. Shows model inference of a fixed exposure image 
(left) and HDR image (right). The objects of interest in this image are in the left corner of 
the image where a boat has been detected in both images. The confidence of the detection 
of that object is 100% for both networks. 
 
 
 
Yet in terms of metrics, using fixed exposure images for object detection in a maritime 

environment is a good choice. 

 Another consideration is the possible issue of the classes chosen. The HDR 

imagery might suffer from fewer classes since the HDR images can carry more detail 

than the HDR counterparts. Adding more classes can and should be done but it requires 

more images and more instances per class to be applied properly. 

Conclusions 

The COCO detection metrics results lead to the conclusion that there is no 

significant advantage in training object detection networks using HDR imagery over 

fixed exposure imagery in a maritime environment. The detection metrics on table five 

show the neural networks trained on fixed exposure images outperform their HDR 

counterpart. Although the difference in performance is quite small for the SSD networks; 
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the difference in performance on the Faster-RCNN network is not negligible. Although 

the object detection networks trained on HDR images were outperformed by the fixed 

exposure image trained networks, this does not mean HDR sensors should be disregarded 

in the maritime environment. The HDR sensor still provides capable performance, and it 

is likely that more data can be extracted from HDR image detections that would be useful 

in a maritime environment, as shown in figures 18, 19, and 20. The gap in performance is 

not big enough for HDR imagery to be discarded from a sensor suite and as stated in the 

discussion section, in cases of extreme exposure HDR imagery seems to do better.   

Recommendations 

Some changes, and topics to explore on this work would be changing the model 

training method, increasing the GPUs available, data discrimination, and new object 

detection architectures. 

Image filter 

The image filter was applied incorrectly in this study. The image filter does not 

affect the fixed exposure annotations the same way it affects the HDR annotations 

creating a discrepancy in instance numbers per class. This provided the fixed exposure 

networks with more objects to look at. To fix this it might be good to crop the fixed 

exposure images to the same size as the HDR images. 

TensorFlow object detection API as a tool 

  Although the TensorFlow 2 object detection API and its configuration pipeline 

tools are useful; these do enforce limits on the control over data and network training. 

The config pipeline method does not let the user easily ignore ground truth labels based 

on the size of the bounding box so the annotations themselves have to be changed and 



48 

 

TensorFlow records must be rewritten. Similarly, class weights must be set in the 

annotations before they are converted to TensorFlow record files and not all conversion 

files convert the class weights. Class weights were not applied due to this issue and lack 

of time, class weights could help the networks not overfit on classes like bridges or help 

learn classes with few instances. These data restriction result in time consuming 

solutions, using other versions of TensorFlow or pytorch instead of the pipeline 

configuration method should allow more control over the networks and better results. 

These different methods allow more control over training pipelines since the training is 

not dependent on the configuration file and instead done programmatically. This method 

allows for options without having to change the image annotations themselves, like class 

weights or discarding annotations based on size. 

GPU constraints 

With regards to the GPU, training for this study was mainly done on a single 

Nvidia Quadro RTX 5000. This restrained some of the hyperparameters like crop size 

and batch size. Training for the Faster-RCNN architecture had to happen with a batch 

size of 6 and an image size of 800x800 because anything larger than this would result in 

out of memory errors. It is recommended to use a GPU with more V-ram or use more 

than one GPU for the training, this would increase the amount of memory available for 

training and allow training with larger batch sizes and larger image input sizes. Increasing 

the image size would most likely increase the chances of detecting small objects, another 

benefit is that the mast of sail ships might still be visible in larger resized images, 

improving detection for these as well.  

Image selection process 
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With hindsight, there should have been a more strict image selection process for 

the datasets used to train the networks. Originally there were intensions to annotate more 

videos than what was done but the process is very time consuming and different labels 

were used at the start of the projects and relabeling these resulted in wasted time. A better 

approach would be to select specific videos, not consecutive videos, and focus on 

obtaining frames with different types of vessels and at different angles. As discussed 

earlier, the HDR images might be more advantageous during extreme exposure 

conditions, a metric to define extreme exposure conditions should be utilized to find 

images to compare. 

No anchor box architectures 

Some object detection network architectures that should be explored are centernet 

and DETRs (detection transformers) because these do not need anchor boxes for the 

training. Since maritime objects occur at an ample range of scales, these anchor box less 

modes might detect maritime objects well. 

Transfer learning  

 Although transfer learning is an invaluable tool that saves time and improves 

model performance, it might have hindered the results in this study. Since pre-trained 

models were used in this study, this means the models used features learned from fixed 

exposure images. The impact of using transfer learning is not known but future studies 

into this topic should fully train the detection networks using HDR images and then do 

the comparison. Although this would be a more lengthy and data intensive study, it would 

discard any doubts about transfer learning.  
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