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ABSTRACT

Space vehicles that implement hardware such as antennas, solar panels, and other ex-

tended appendages necessary for their respective missions must consider the nonlinear ro-

tational and vibrational dynamics of these flexible structures. Formulation and analysis of

these flexible structures must account for the rigid-flexible coupling present in the system

dynamics for stability analysis and control design. The system model is represented by a

flexible appendage attached to a central rigid body, where the flexible appendage is mod-

eled as a cantilevered Euler-Bernoulli beam. Discretization techniques, such as the assumed

modes method and the finite element method, are used to model the coupled dynamics by

transforming the partial differential equations of motion into a finite set of differential equa-

tions. State feedback control laws are designed to achieve stability and desired motion in the

presence of rigid-flexible coupling. An optimal controller in the form of a linear quadratic

regulator (LQR) is presented and compared with a Lyapunov-based control law that guar-

antees asymptotic stability. Conventional and adaptive sliding mode control (SMC) laws are

also presented to account for any uncertainties in the linearized system model. Full-order

(FO) and reduced-order (RO) observers are included in the control system to account for

lack of velocity state measurements that are generally unavailable in real world applications.

The results demonstrated that the Lyapunov-based and LQR control laws both control the

motion of the rigid-flexible system and suppress flexible vibrations. Appropriate tuning of

the control gains and weighting matrices, respectively, determines the settling time and over-

shoot of the system response as well as vibration suppression during motion. The results also

demonstrated that the SMCs are capable of correcting for any uncertainties in the system

model. Conventional SMCs (CSMC) required a longer convergence time, and chattering was

significant for one CSMC. The adaptive sliding mode control provided quick convergence

to the ideal trajectory while also avoiding chattering. Lastly, the FO and RO observers

provided quick estimation of the states that were implemented in the control laws.
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1 Introduction

This chapter introduces the idea of coupled body dynamics of space vehicles with flexible

structures and its interaction with control systems. The nonlinear dynamics of a rigid-flexible

structure can be discretized into a linear set of differential equations that provide an accurate

approximation of the rigid-flexible dynamics that can be implemented in closed-loop feedback

control design. Firstly, previous research and analytical history of the dynamics of flexible

structures, particularly those attached to space vehicles, and the control laws designed and

implemented for such systems are presented. Next, the motivation and objective of this

thesis research are stated, followed by the organization of this thesis.

1.1 Background and Literature Review

The physical phenomenon of structural-flexibility present in structural dynamics and its

effects on control design and application is not unique to spacecraft design and control. In

fact, it has caused considerable difficulty as a persistent challenge throughout engineering

history in the development and practical application of aircraft, missiles, and launch vehi-

cles [2]. Lack of knowledge on the interaction between flexible structures, their rigid-body

counterparts, and the designed vehicle control systems can lead to unforeseen consequences,

ranging from small, stable oscillations to motions and interactions of such magnitude that

may lead to system instability and possible mission failure. The first satellite launched into

space by the United States and successfully achieve orbit, Explorer I, was designed in such a

way that it was considered to be sufficiently rigid so that, in the presence of low magnitude

forces and moments from the space environment, any rigid-flexible coupling interactions with

the control systems could be considered negligible. However, the presence of the four flex-

ible whip antennae invalidated the necessary complete rigid body assumption that ensures

spin-stabilization about the principle moment of inertia. Soon after orbital insertion, the

intended motion was unstable and the spin axis was diverging from the minimum inertia

axis [3, 4]. Experiences and post-flight analyses of other space vehicles and missions over

time, such as Ranger, Alouette I and II, the 1963-22A satellite, and the OGO-III (Orbit-
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ing Geophysical Observatory) satellite, have provided valuable insight on the effects that

the nonlinear dynamic behavior of flexible structures have on the resulting vehicle motion,

stability, and control system outcomes as well as effective methods of accounting for this

coupled interaction [3, 4].

Structural flexibility of a space vehicle with flexible components is intrinsic in the vehicles

dynamics. The translational and rotational dynamics of a rigid-body spacecraft under nu-

merous different conditions and environments have been analytically derived and numerically

simulated with relative ease. However, the presence of a flexible structure or appendage, such

as a communication antennae or solar panel, immediately necessitates major changes in the

formulation of the systems equations of motion [5]. Unfortunately, the nonlinear ordinary

and partial differential equations of motion of a space vehicle with flexible structures require

a different analytical approach from the traditional methods of analysis. The common ap-

proach initially applied, and still utilized today, for the vibration analysis of elastic systems

consists of formulating continuous, differentiable systems of second-order differential equa-

tions through a specified method. Initially, the normal-coordinate method traditionally used

in vibration analysis was considered. This approach formulates the equations of motion as

a system of independent and uncoupled scalar second-order differential equations. The use

of modal coordinates and the independence of these normal-mode coordinates permits the

independent calculation of their participation in the vehicle motion. This is the key feature

of the normal-coordinate approach because it permits the exercise of engineering judgment

in determining which coordinates are so significant as to warrant retention, and which may

be abandoned in coordinate truncation [5]. However, this method has not been widely used

due to its theoretical and practical limitations and underlying assumptions. Instead, meth-

ods of analysis that involve series discretization of the system have gained more traction and

appreciation for their generality, especially with the help of technological advancements in

computer hardware and software. The chosen method is often applied in conjunction with

the Newton-Euler equations [6–10] or the Hamiltonian or Lagrangian approach [11].
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The origin of the series discretization methods can be traced to Rayleigh’s energy method,

a technique for approximating the lowest natural frequency of a conservative system [12–14].

It is based on Rayleigh’s principle, which states that Rayleigh’s quotient has a minimum value

equal to the lowest eigenvalue when the trial function used in conjunction with Rayleigh’s

quotient is the lowest eigenfunction. To improve the approximation, it is only necessary

to find a trial function capable of lowering the approximation. This is the essence of the

Rayleigh-Ritz method [12]. Several other methods have built upon the fundamental prin-

cipal of the Rayleigh-Ritz method: lumped-parameter method, truncated mode method,

method of weighted residuals, the Galerikin method, etc. Furthermore, numerous research

papers, journals, and projects have utilized these different methods to discretize these non-

linear equations of motion of rigid-flexible structures [15–19]. A technique known as the

assumed modes method (ASM) is regarded by some as the Rayleigh-Ritz method. It is more

physically motivated, and it obtains the same results as the Rayleigh-Ritz method. Another

technique that is similar to the Rayleigh-Rits method but has only been in existence since

the 1950s is the finite element method (FEM) [20]. This method found use early on as

a solution for structural-related problems involving geometrically complicated and irregu-

lar structures. However, the versatility of this method resulted in an explosion of interest

across many scientific fields. FEM works similarly to the ASM, utilizing trial, or admissible,

functions. What distinguishes the two is that FEM employs local functions defined over

small subdomains instead of global functions over the entire system domain. This concept

curried favor for FEM because it permitted small, good approximations to be realized with

local admissible functions in the form of low-degree polynomials instead of requiring lengthy

derivations of complex global admissible functions that can only be applied to a select few

problems.

Finally, consideration of nonlinear rigid-flexible coupling in the dynamics of a space

vehicle plays a critical role in the design and implementation of closed-loop control systems.

Exclusion of the flexibility effect from the mathematical model of the system can lead to not
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only errors in control effort requirements and positioning inaccuracies but also instabilities.

The vibrations of the attached flexible structures excited by external forces or spacecraft

control inputs can induce small to severe reaction torques and forces at a large range of

frequencies on the space vehicle. Control systems for rigid-flexible space vehicles require very

accurate mathematical models in order to account for and reduce this vibration as much as

possible [21]. Generally, only the displacement of flexible structures can be measured with

sensors, such as strain gauges and piezoelectric sensors [22]. Another challenge in control

design is the lack of full-state measurements of the flexible structure. Unless full knowledge

of the system’s states is assumed, some form of state estimator or observer-based control is

necessary for closed-loop feedback control. Many studies have been conducted with a large

variety of both nonlinear and linear controllers with and without state observers [23–27].

Because different control laws provide distinct benefits, a variety of approaches have been

considered. Robust control allows for compensation against disturbances and uncertainties

in the system but often require knowledge of the system model. Meanwhile, adaptive control

laws are better suited for optimizing cycle time and control effort without necessarily knowing

the dynamics of the system [28]. Several adaptive approaches for the control of a rigid-

flexible structure with model uncertainties include an adaptive active control by Gaudiller

and Bochard [29] that makes it possible to render nearly constant the dynamic behavior of

multi-articulated flexible structures in spite of changes in the geometry of their masses and

an adaptive control by Balas and Frost [30] that uses residual mode filters to compensate for

troublesome modal subsystems that may inhibit the requirements of Almost Strict Positive

Realness when the system has unknown modeling parameters and poorly known operating

conditions .

1.2 Research Motivation and Objective

To the author’s knowledge, most research that analyzes the dynamics and control design

for space vehicles with flexible structures consider only the nonlinear equations of motion or

utilize more traditional linearization and discretization methods. Not as much research that
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formulates the dynamics of rigid-flexible structures with FEM and utilizes those systems of

equations to design feedback control laws has been conducted. Furthermore, most works

mention the presence of rigid-flexible coupling in the nonlinear dynamics of rigid-flexible

systems and its effects; however, they often do not expand on the topic and provide an

analytical representation of the coupling. This research formulates the dynamics of the

system by applying two discretization techniques that provide an analytical set of system

equations containing the dynamic behavior of the rigid body, the flexible structure, and the

rigid-flexible interaction between the two. Closed-loop feedback control systems are designed

in this thesis with the formulated dynamics in mind such that the rigid-flexible system is

controlled by a single control torque input applied to the central rigid body of the system.

The objective of the control laws is to propagate the system from an initial state to a desired

state while minimizing the vibrations of the flexible structure and counteracting the rigid-

flexible coupling present when the system is in motion. In order to account for a system

with uncertainties in the model, robust control laws are also implemented in the control

systems. An ASMC developed by Cho et al. [31] is compared with CSMCs. However, this

thesis expands the utility of the ASMC to include vector-matrix variables and provides an

adapted stability analysis.

1.3 Thesis Organization

The content of this thesis following the introduction of the dynamics analysis and control

design of rigid-flexible space vehicles begins with Chapter 2, where the preliminary mathe-

matical model that describes the elastic behavior of an Euler-Bernoulli beam is presented,

along with the system model for a rigid-body space vehicle with a flexible appendage that

will be adopted for this thesis. A space vehicle with flexible structures requires a math-

ematical model that can accurately characterize the behavior of the flexible body. The

characteristic design and behavior of an Euler-Bernoulli beam provides an accurate initial

model of a flexible structure. The full rigid-body system model and its nonlinear ordinary

and partial differential equations of motion are presented at the end of Chapter 2, along with
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the boundary conditions accompanied with the specified model.

The formulation of the rigid-flexible system dynamics through the application of two

discretization methods is presented in Chapter 3. This chapter explains the theoretical con-

cept of ASM and FEM, followed by the complete derivation of the space vehicle’s linearized

equations of motion through both methods. Since the formulation of dynamics from these

two methods does not include damping in the system, the introduction and incorporation of

proportional damping into the system is presented. At the end of Chapter 3, an analytical

comparison of ASM and FEM is presented, from which the dynamics formulated from FEM

are selected to be used in the control design and numerical simulations presented later on in

the thesis. Chapter 4 presents the stability analysis and control laws designed for closed-loop

feedback control of the rigid-flexible system. The equations of motion developed from Chap-

ter 3 are rewritten in a state-space representation, and the stability of the system is studied

through the application of Lyapunov’s direct and indirect methods. Before designing any

control law, the system’s observability and controllability are studied to ensure control law

requirements are satisfied. Full-state feedback control laws are first discussed. Besides the

Lyapunov-based control law defined through the stability analysis of the system, optimal

control and robust control are considered. The general linear quadratic regulator (LQR)

that minimizes a quadratic cost function to regulate the system’s states to zero is presented

for optimal control. Sliding mode control (SMC) that utilizes a sliding manifold to control

the system trajectory is presented for robust control. The conventional SMC (CSMC) that

utilizes a linear sliding manifold is discussed and implemented with different mathematical

functions that have varying degrees of effect on the control effort produced by the CSMC.

An adaptive SMC (ASMC) developed by Cho et al. [31] that utilizes a nonlinear sliding

manifold and an adaptive law that tunes the SMC in in real-time is also presented. These

SMCs serve to account for any uncertainties present in the mathematical model of the rigid-

flexible system. Chapter 4 ends with a derivation for a full-order (FO) and reduced-order

(RO) observer for observer-base control design.
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Numerical simulations and discussions for the rigid-flexible system under open-loop and

closed-loop feedback control are given in Chapter 5. To analyze the dynamic effects of a

flexible structure on a rigid-body spacecraft, an open-loop simulation of the system with-

out control law is performed. The interaction between the control system and rigid-flexible

coupling is also analyzed through a comparison of the different state-feedback control laws

applied to both an ideal system and a system with uncertainties. The impact and effective-

ness of observer-based feedback control on the system is also analyzed. Lastly, conclusions

and ideas for future work are provided in Chapter 6.
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2 Mathematical Modeling of the System

A model of a space vehicle with flexible structures is required to analyze the dynamics

design control laws for the rigid-flexible structure. The model specified must consist of

structures that replicate the dynamic behavior of both a rigid body and flexible structure.

2.1 Euler-Bernoulli Beam

For the flexible structure attached to the rigid body space vehicle, an Euler-Bernoulli

beam is considered as the flexible model. As such, the flexible model is modeled as a long,

slender structural member subjected to transverse loading that produces significant bending

effects as opposed to twisting or axial effects. This bending deformation is measured as a

transverse displacement and a rotation. Hence, the degrees of freedom considered per node

along the beam are a transverse displacement and a rotation [1]. Generally, beams have

a small cross-sectional area relative to their lengths. The calculations for the load-carrying

and deflection characteristics of an Euler-Bernoulli beam can be simplified without too much

loss of accuracy.

It is important to note that, as mentioned before, twisting and axial effects are not

considered as significant as the bending effects. For an Euler-Bernoulli beam, several further

assumptions about the beam are made. The shape and geometry of the beam’s cross-sections

do not change significantly. During deformation, the cross-section of the beam remains planar

and normal to the deformed neutral axis of the beam. Lastly, the deformed beam angles, or

slopes, remain small despite the neutral axis becoming curved. Therefore, as per the use of

an Euler-Bernoulli beam, shear deformation and axial deformation are not considered.

Before creating the full rigid-flexible dynamical model, the model and sign conventions of

the beam are established. Consider the beam element shown in Figure 2.1. The beam is of

length l with axial local coordinate x and transverse local coordinate y. The local transverse

nodal displacements are denoted by d̂iy ’s and the rotations by ϕ̂i’s. The local nodal forces

are denoted by f̂iy ’s and the bending moments by τ̂i’s as shown. The distributed load along

the length of the beam is denoted by w(x). Once again, all axial effects are neglected. At
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all nodes, the following sign conventions are used:

1. Displacements and forces are positive in the positive y direction.

2. Rotations and moments are positive in the counter-clockwise direction.

Figure 2.1 Beam element displaying positive nodal displacement, rotation, force, and
moment direction and subjected to applied loads [1].

Figure 2.2 Differential beam element.

Formulation of a beam’s characteristic behavior requires the elementary linear-elastic

beam differential equation to be first developed. The differential equation governing elemen-

tary linear-elastic beam behavior [32] (called the Euler-Bernoulli beam as derived by Euler

and Bernoulli) is based on plane cross sections perpendicular to the longitudinal centroidal

axis of the beam before bending occurs remaining plane and perpendicular to the longitudi-

nal axis after bending occurs. This occurs in practice only when a pure couple or constant

moment exists in the beam. However it is a reasonable assumption that yields equations

that quite accurately predict beam behavior for most practical beams [1].
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Consider the Euler-Bernoulli beam element in Figure 2.1 subjected to applied loads f̂0y

and f̂ly and a distributed load w(x) that cause deformations along the length l of the beam

element. From force and moment equilibrium of a differential element of the beam, shown

in Figure 2.2, we have

∑
Fy = 0 : S − (S + dS)− w(x)dx = 0 (2.1)

∑
τ2 = 0 : −Sdx+ dτ + w(x)dx

(
dx

2

)
= 0 (2.2)

Simplifying Eqs. (2.1) and (2.2) yields

w(x) = −dS
dx

(2.3)

and

S(x) =
dτ

dx
(2.4)

The final form of the shear force in Eq. (2.4) that relates the shear force to the bending

moment is obtained by dividing Eq. (2.2) by dx and taking the limit of the equation as

dx approaches 0. The w(x) term disappears when Eq. (2.3) is substituted into Eq. (2.2),

becoming negligibly small. The curvature of the beam and its relation to moment is

κ =
1

r
=

τ

EI
(2.5a)

where r is the radius of the deflected curve of the beam after some displacement occurred,

E is the modulus of elasticity of the beam, and I is the area moment inertia of the beam.
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For small slopes, where the rotational displacement at a node along the beam is ϕ = dy
dx
, the

curvature is given by

κ =
d2y

dx2
(2.5b)

where y is the transverse displacement function. Applying Eq. (2.5b) in Eq. (2.5a), the

equation for moment is obtained as

τ(x) = EI
d2y

dx2
(2.6)

Substituting τ from Eq. (2.6) into Eq. (2.4) gives the equation for shear force:

S(x) = EI
d3y

dx3
(2.7)

Substitution of S in Eq. (2.3) produces the beam differential equation

d2

dx2

(
EI

d2y

dx2

)
= −w(x) (2.8a)

Assuming there is no distributed load along the beam, i.e w(x) ≡ 0, and the EI is constant,

the final differential beam equation is reduced to

EI
d4y

dx4
= 0 (2.8b)

2.2 2-D Rigid-Flexible System Model

The system model is comprised of two components: a rigid-body central hub and a

flexible-body appendage, or structure. Both parts are assumed to have constant uniform
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masses and moments of inertia. The rigid-body central hub is modelled as a circular rigid-

body with a body-fixed frame fixed at the origin of the inertial reference frame. The flex-

ible structure is modelled as an Euler-Bernoulli beam with uniform mass density and the

preceding assumptions stated in the previous section. The flexible structure is considered

cantilevered to the central rigid body at one end and free at the other end. The rigid-flexible

system is also controlled by a scalar control torque applied to the central rigid body. The

system is assumed to move only in a planar rotational motion. This is an important as-

sumption of the system model that follows into the formulation of the system dynamics.

Figure 2.3 provides a visual representation of the 2-D rigid-flexible system model.

Figure 2.3 Rigid-flexible body system model.

The central rigid body has a moment of inertia Jh and a radius denoted as L0. The

control torque input applied to the central rigid body is denoted a u and is a function time.

12



The flexible structure has a total length L. The inertial reference frame N : {C, n̂1, n̂2, n̂3}

shares its origin C with the body-fixed frame B :
{
C, b̂1, b̂2, b̂3

}
, where (̂) denotes a unit

vector. The rotation of the central rigid body is denoted by θ with a final desired angular

position θf . The flexible structure’s transverse displacement is a function of time t and

position x and denoted by y(x, t) in the b̂2 axis, where x is the position coordinate along the

b̂1 axis.

The hybrid system of ordinary and partial differential equations governing the dynamics

of this system is readily obtained from Hamilton’s principle to be [33, 34]

Jh
∂2θ

∂t2
= u+ (τ0 − S0L0) (2.9a)

−(τ0 − S0L0) =

∫ L

0

ρx

(
∂2y

∂t2
+ x

∂2θ

∂t2

)
dx+H.O.T. (2.9b)

ρ

(
∂2y

∂t2
+ x

∂2θ

∂t2

)
+ EI

δ4y

δx4
= 0 + H.O.T. (2.9c)

The boundary conditions that accompany a cantilevered Euler-Bernoulli beam that is

pinned at one end, i.e. x = 0, and free at the other end, i.e. x = L, are [1, 14, 33, 34]:

y|(x=0) =
∂y

∂x

∣∣∣
(x=0)

= EI
∂2y

∂x2

∣∣∣
(x=L)

= EI
∂3y

∂x3

∣∣∣
(x=L)

= 0 (2.10)

In the following chapter, two discretization techniques are introduced to formulate a

linearized system of equations. The discretized displacement along the length of the flexible

structure is substituted into the mathematical model characterized by Eqs. (2.9a), (2.9b),

and (2.9c). These equations are also utilized in the derivation of the Lyapunov-based control

law in Chapter 4.
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3 Dynamics Approximation Using Assumed Modes and Finite Element

Methods

The formulation of the dynamics of a rigid-flexible system can be accomplished through

several methods, such as the lumped-parameter method, Myklestad’s method, the Rayleigh-

Ritz method, the method of weighted residuals, the Galerkin method, etc. [12, 14]. This

chapter covers and utilizes two of those methods – assumed modes method and finite element

method – and explains the motivation behind which is used for the continuation of the work.

Both of these approaches lead to linear, finite-dimensional, continuous-time equations of

motion for approximating the dynamics of rigid-flexible structures.

3.1 Assumed Modes Method

The assumed modes method is a procedure for the discretization of distributed systems

closely related to the Rayleigh-Ritz method [35]. Although the motivation and details are

different, the results are the same as those obtained by the Rayleigh-Ritz method using the

energy form of Rayleigh’s quotient. The main advantage of the assumed modes method is

that it is somewhat easier to grasp. However, this method may require significant problem-

solving through trial-and-error if the interest lies in the finer points of analysis [14].

In the assumed modes method, the deflection of continuous elastic structures is mod-

eled by a finite series of space-dependent functions that are multiplied by specified time-

dependent amplitude functions [13, 36–39]. The amplitudes become a set (or subset) of

generalized configuration coordinates, in the usual Lagrangian interpretation of generalized

coordinates. The space-dependent functions are typically chosen as a complete set of linearly

independent functions, selected to satisfy at least the geometric boundary conditions, and

they differentiate at least half as many times as the order of the system. All such functions

are referred to as admissible functions.

Admissible functions are the most widely encountered choice for the basis functions in the

assumed modes method. However, if the problem formulation and a priori insight permit,

the basis functions may be selected to satisfy, in addition, some or all of the physical (nat-
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ural) boundary conditions, and are differentiable as many times as the order of the system.

This more restricted subset of admissible functions that satisfy both geometric and physical

boundary conditions are referred to as comparison functions. With comparison functions,

more efficient convergence can be obtained as a general rule, but cannot be guaranteed for

every forced response application. That is, for a given number of functions, we expect bet-

ter accuracy in approximating the true system dynamics when using comparison functions

instead of admissible functions [33].

While the best space-dependent functions are usually the system’s eigenfunctions, which

satisfy not only all boundary conditions but also the rigorous spatial differential equations

(resulting from the separation of variable technique applied to the governing partial differen-

tial equations), these are not always available. This is because the rigorous partial differential

equations must usually be formulated and solved exactly to obtain the eigenfunctions and,

obviously, it is impossible to carry these developments to completion for complicated struc-

tures. It is difficult to converge exactly on all of the eigenvalues and the corresponding

eigenfunctions, even when an analytically derived characteristic equation can be obtained,

because the number of eigenfunctions which can be retained is finite, and the arithmetic

errors made in solving the characteristic equation to obtain the eigenvalues cannot always

be ignored [33]. The assumed modes approach is shown to be useful for problems whose ge-

ometry is sufficiently simple to permit the insight necessary to select a ”good” set of global

displacement functions [14].

In order to derive the equations of motion, consider the rigid-flexible system in Figure 2.3,

modeled in Chapter 2. Note that L0 is the radius of the rigid hub, x is the coordinate of

a mass element measured along the undeformed beam, and y(x, t) is the local deformation

measured perpendicular to the x axis. The inertial position vector r̄(x, t) that goes from the

origin to a deformed point in the flexible structure is given by

r̄(x, t) = (L0 + x)b̂1 + yb̂2 (3.1)
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where (ˆ) denotes a unit vector. The velocity of the deformed point is then

ṙ(x, t) =
d

dt
(r) + ω × r = −θ̇yb̂1 + (ẏ + θ̇(L0 + x))̂b2 (3.2)

where ω = θ̇n̂3 = θ̇b̂3 is the angular velocity of the central rigid body in both the inertial

and body-fixed frames. To enforce zero elongation, small radial motion along b̂1 is neglected.

This yields the final velocity

ṙ(x, t) = (ẏ + θ̇(L0 + x))̂b2 (3.3)

In order to apply the Lagrangian approach, the kinetic and potential energies of the

rigid-flexible system are obtained. The total kinetic energy is expressed as the sum of the

rigid body’s kinetic energy and flexible structure’s kinetic energy, i.e.,

T = Thub + Tapp =
1

2
Jhθ̇

2 +

∫ L

0

ρ ˙̄r · ˙̄r dx (3.4)

where Jh is the rotary inertia of the rigid body, θ̇ is the angular velocity of the rigid body,

L is the length of the appendage, and ρ is the linear mass density of the flexible structure.

Substituting the velocity in Eq. (3.3) into Eq. (3.4) leads to a quadratic expression of the

kinetic energy as a function of the spatial integrals in the form

T
1

2
Ĵ θ̇2 +

∫ L

0

ρẏ2 dx+ θ̇

∫ L

0

ρ(L0 + x)ẏ dx (3.5)

where the total moment of inertia Ĵ is

Ĵ = Jh + 2

∫ L

0

ρ(L0 + x)2 dx (3.6)
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The total potential energy of the rigid-flexible system under the Euler-Bernoulli assump-

tions is expressed as

V =

∫ L

0

EI(y′′)2 dx (3.7)

where EI is the flexural rigidy of the flexible structure, and (·)′′ denotes the second partial

derivative of (·) with respect to x.

To generate an A degree-of-freedom approximate differential equation model for a contin-

uous system, the displacement of the continuous system is expanded as a linear combination

of A prescribed shape functions. Thus the deformation y(x, t) is approximated by

y(x, t) =
A∑
j=1

ψj(x)qj(t), j = 1, · · · ,A, 0 ≤ x < L (3.8)

where ψj(x) denotes jth assumed mode shape, qj(t) denotes the jth generalized coordi-

nate, and A denotes the number of terms retained in the approximation. The approximate

expansion Eq. (3.8) will be used in conjunction with Lagrange’s equations to obtain a finite-

dimensional approximate system of ordinary differential equations of motion that govern the

time evolution of the amplitudes qj(t).

The admissible functions derived by [33]

ψj(x) = 1− cos

(
jπx

L

)
+

1

2
(−1)j+1

(
jπx

L

)2

, for j = 1, · · · ,A (3.9)

satisfy the geometric and physical boundary conditions of a clamped-free beam, and have

been found to be excellent admissible functions for clamped free appendages [33]. Through

substitution of Eqs. (3.8) and (3.9) into Eqs. (3.5) and (3.7), the finitie dimensional systm

of ordinary differential equations of motion for θ(t), and qj(t) can be derived by using the

Lagrangian approach, i.e.,
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d

dt

(
δT

δ ˙̃qj

)
−
(
δT

δq̃j

)
+

(
δV

δq̃j

)
= F (3.10)

where F is the generalized force, and q̃j is the jth element of the configuration vector q̃, i.e.,

q̃ = [θ, q1, q2, . . . , qA]
T (3.11)

The generalized force F can be determined by finding the virtual work, δW , associated

with the control torque, u. For a general motion of the system, the total work done by the

control torque is

W =

∫ x2

x1

u dθ (3.12)

where x1 and x2 denote arbitrary initial and final configurations of the system. The virtual

work δW has the same form as the integrand of the work integral with actual differential

displacements replaced with virtual variations. Making this replacement to Eq. (3.12), the

virtual work can be expressed as

δW = uδθ (3.13)

Since the only control torque is the one applied to the central rigid body, the generalizes

force vector F̄ can be expressed in matrix form as

F̄ =



F1

F2

F3

...

Fn


=



Fθ

Fy1

Fy2

...

FyA


=



1

0

0

...

0


u (3.14)

using Eqs. (3.5),(3.7),(3.8),(3.11), and (3.14) in Eq. (3.10) yields the following matrix form
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for the system equation of motion:

Jh +Mθθ MT
θq

Mθq Mqq


θ̈
¨̄q

+

0 0

0 Kqq


θ
q̄

 =

1
0̄

u (3.15)

where the elements of the mass and stiffness matrices are obtained from

Mθθ =

∫ L

0

ρ(L0 + x)2 dx (3.16a)

Mθq =

∫ L

0

ρ(L0 + x)ψj(x) dx (3.16b)

Mqq =

∫ L

0

ρψi(x)ψj(x) dx (3.16c)

Kqq =

∫ L

0

EIψ′′
i (x)ψ

′′
j (x) dx (3.16d)

3.2 Finite Element Method

The finite element method is used to generate the flexible body characteristics for use

in a time domain simulation which integrates external forces and moments to the flexible

body. FEM is a method of structural and dynamic analysis that enables the numerical

integration of a system. Through FEM, the system’s mass and stiffness matrices are devel-

oped to generate the system’s characteristic behavior. In the finite element approach, the

system is regarded as an assembly of many geometrically simple discrete elements where,

in each element, simple local interpolation functions of motion on the element boundaries

are used to model deformations interior to the finite element. The family of piece-wise con-

tinuous elements constitutes a finite element model, and the boundary coordinates become
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the system’s generalized coordinates. In FEM, the admissible functions are local interpo-

lation functions defined over small subdomains usually consist of simple functions such as

low-degree polynomials.

To analyze the beam as an element with nodes, an equation for the transverse displace-

ment variation through the length of an element of the beam is chosen to be [1]

y(x) = c1x
3 + c2x

2 + c3x+ c4 (3.17)

where c1, c2, c3, and c4 are constants determined such that the function above satisfies the

basic beam differential equation and the condition of displacement and slope continuity at

nodes shared by two elements [1], i.e.

y(0) := d1y = c4 (3.18a)

dy

dx

∣∣∣
(x=0)

:= ϕ1 = c3 (3.18b)

y(l) := d2y = c1l
3 + c2l

2 + c3l + c4 (3.18c)

dy

dx

∣∣∣
(x=l)

:= ϕ2 = 3c1l
2 + 2c2l + c3 (3.18d)

By solving for the constants ci(i = 1, 2, 3, 4) in Eqs. (3.18a)-(3.18d) in terms of the displace-

ments d1y and d1y and slopes ϕ1 and ϕ2, and substituting them into Eq. (3.17), the transverse

displacement is obtained as

20



y(x) =

[
2

l3
(d1y−d2y)+

1

l2
(ϕ1+ϕ2)

]
x3+

[
− 3

l2
(d1y−d2y)+

1

l
(2ϕ1+ϕ2)

]
x2+ϕ1x+d1y (3.19)

which can be expressed in matrix-vector form as

y = Nd (3.20)

where d = [d1y, ϕ1, d2y, ϕ2]
T , N = [N1, N2, N3, N4], and the interpolation (or shape) functions

for the beam element, also known as Hermite cubic interpolation (or cubic spine) functions,

are defined as

N1 =
1

l3
(2x3 − 3x2l + l3), N2 =

1

l3
(x3l − 2x2l2 + xl3)

N3 =
1

l3
(−2x3 + 3x2l), N4 =

1

l3
(x3l − x2l2)

(3.21)

3.2.1 Local Stiffness and Mass Matrices of the Beam

With the interpolation functions acquired for each beam element, the local stiffness and

mass matrices for a beam element can be obtained. To derive the local stiffness matrix and

equations, a direct equilibrium approach can be used. Relating the nodal and beam theory

sign conventions to shear forces and bending moments yields

f̂1y = S(0) = EI
d3y

dx3

∣∣∣
(x=0)

=
EI

l3
(12d1y + 6lϕ1 − 12d2y + 6lϕ2) (3.22a)

τ̂1 = −τ(0) = −EI d
2y

dx2

∣∣∣
(x=0)

=
EI

l3
(6ld1y + 4l2ϕ1 − 6ld2y + 2l2ϕ2) (3.22b)
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f̂2y = −S(l) = −EI d
3y

dx3

∣∣∣
(x=l)

=
EI

l3
(−12d1y − 6lϕ1 + 12d2y − 6lϕ2) (3.22c)

τ̂2 = τ(l) = EI
d2y

dx2

∣∣∣
(x=l)

=
EI

l3
(6ld1y + 2l2ϕ1 − 6ld2y + 4l2ϕ2) (3.22d)

where f̂iy and τ̂i are the local forces and moments, respectively, at each end of a beam

element. Eqs. (3.22a)-(3.22d) can be rewritten in matrix form as

F = kd (3.23)

where F = [F T
1 , F

T
2 ]

T , Fi = [f̂iy, τ̂i]
T (i = 1, 2), and the local stiffness matrix for each element

is given by

k =
EI

l3



12 6l −12 6l

6l 4l2 −6l 2l2

−12 −6l 12 −6l

6l 2l2 −6l 4l2


(3.24)

The dynamic analysis of the system uses a consistent-mass matrix for a more accurate

depiction of the system. To develop the local mass matrix equation for a beam element,

D’Alembert’s principle is used. By utilizing the shape functions used to obtain the local

stiffness matrix, the local mass matrix is obtained as

m =

∫ l

0

ρNTN dx (3.25)

where ρ is the mass per unit length and is assumed to be constant. Substituting the shape

functions in Eq. (3.21) into Eq. (3.25) yields
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m =
ρl

420



156 22l 54 −13l

22l 4l2 13l −3l2

54 13l 156 −22l

−13l −3l2 −22l 4l2


(3.26)

3.2.2 Application of FEM to the Rigid-Flexible System

In this section, FEM is applied to the rigid-flexible system to transform the partial differ-

ential equations of motion into a finite-dimensional set of second-order differential equations

in terms of the displacements, velocities, and accelerations of the finite element coordinates,

and the external forcing functions [33]. The total transverse velocity (of a mass element on

the beam) is given by

v(x, t) = ẏ(x, t) + (x+ L0)θ̇(t) (3.27)

where x is measured from the outer radius of the hub along the undeformed appendage

axis. Assuming Euler-Bernoulli beam theory and small deformation, the kinetic energy and

potential energy are expressed, respectively, as

T =
1

2
Jhθ̇

2 +
1

2

∫ L

0

ρv2 dx (3.28)

and

U =
1

2

∫ L

0

EI

(
d2y

dx2

)2

dx (3.29)

where Jh is the moment of inertia of the central rigid body. The virtual work done by the

external torque u is given by

δWnc = uδθ(t) (3.30)

Applying the extended Hamilton’s principle with Eqs. (3.28)-(3.30) yields
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∫ t2

t1

[
Jhθ̇δθ̇+

∫ L

0

ρ(δẏ+(x+L0)δθ̇)(ẏ+(x+L0)θ̇) dx+

∫ L

0

EI

(
∂2y

∂x2

)
δ

(
∂2y

∂x2

)
dx+uδθ

]
dt = 0

(3.31)

Through integration by parts and some manipulations to collect the δy and δθ terms,

Eq. (3.31) is transformed into

∫ t2

t1

[ ∫ L

0

(
ρ(ÿ + (x+ L0)θ̈)δy + EI

(
∂2y

∂x2

)
δ

(
∂2y

∂x2

))
dx

+

(∫ L

0

ρ(x+ L0)(ÿ + (x+ L0)θ̈) dx+ Jhθ̈ − u

)
δθ

]
dt = 0

(3.32)

The displacement y(x, t) can be discretized using the finite element expansion

y(x, t) =
4∑

i=1

N
(e)
i (x)d

(e)
i (t) (i = 1, 2, 3, 4) (3.33)

where N
(e)
i (x) are the interpolation functions from Eq. (3.21) for any beam element e (e =

1, 2, ..., n) and di are the nodal displacements. The acceleration and curvature are expressed

as

ÿ(x, t) =
4∑

i=1

N
(e)
i (x)d̈

(e)
i (t) (i = 1, 2, 3, 4) (3.34)

∂2y

∂x2
=

4∑
i=1

∂2

∂x2

(
N

(e)
i (x)

)
d
(e)
i (t) (i = 1, 2, 3, 4) (3.35)

Substitution of Eqs. (3.33)-(3.35) into Eq. (3.32) and integration over the spatial do-

mains leads to the global mass, stiffness, and forcing matrices. The assembled set of matrix

differential equations is as follows:
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Jh +Mθθ Mθd

MT
θd Mdd


θ̈
¨̄d

+

0 0

0 Kdd


θ
d̄

 =

1
0̄

u (3.36a)

where

Mθθ =

n∑
e=1

M
(e)
11 (3.36b)

Mθd =

[
M

(1)
13 +M

(2)
12 , M

(2)
13 +M

(3)
12 , M

(3)
13 +M

(4)
12 , . . . , M

(n−1)
13 +M

(n)
12 , M

(n)
13

]
(3.36c)

Mdd =



M
(1)
33 +M

(2)
22 M

(2)
32

M
(2)
32 M

(2)
33 +M

(3)
22 M

(3)
23

M
(3)
32 M

(3)
33 +M

(4)
22 M

(4)
23

M
(4)
32

. . .

M
(n−1)
32 M

(n−1)
33 +M

(n)
22 M

(n)
23

M
(n)
32 M

(n)
33


(3.36d)

Kdd =



K
(1)
33 +K

(2)
22 K

(2)
32

K
(2)
32 K

(2)
33 +K

(3)
22 K

(3)
23

K
(3)
32 K

(3)
33 +K

(4)
22 K

(4)
23

K
(4)
32

. . .

K
(n−1)
32 K

(n−1)
33 +K

(n)
22 K

(n)
23

K
(n)
32 K

(n)
33


(3.36e)

and the local stiffness and mass matrices from Eqs. (3.24) and (3.26), respectively, for each

element are used to obtain the beam’s global stiffness and mass matrices. Imposing the
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boundary conditions on these global matrices produces Mdd and Kdd. The submatrix ele-

ments are defined as

M (e) =


M

(e)
11 M

(e)
12 M

(e)
13

M
(e)
21 M

(e)
22 M

(e)
23

M
(e)
31 M

(e)
32 M

(e)
33

 , K(e) =


0 0 0

0 K
(e)
22 K

(e)
23

0 K
(e)
32 K

(e)
33

 (e = 1, 2, . . . , n)

where

M
(e)
11 =

ρl

3

(
(xe + L0)

2 + (xe + L0 + l)(xe + L0)
2 + (xe + L0 + l)2

)

M
(e)
12 =M

(e) T
21 = ρl

[
3
20
l + 1

2
(xe + L0),

1
30
l + 1

12
l(xe + L0)

]

M
(e)
13 =M

(e) T
31 = ρl

[
7
20
l + 1

2
(xe + L0), − 1

20
l − 1

12
l(xe + L0)

]

M
(e)
22 =

ρl

420

156 22l

22l 4l2



M
(e)
23 =M

(e) T
32 =

ρl

420

 54 −13l

−13l −3l2
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M
(e)
33 =

ρl

420

 156 −22l

−22l 4l2


and

K
(e)
22 =

EI

l3

12 6l

6l 4l2



K
(e)
23 = K

(e) T
32 =

EI

l3

−12 6l

−6l 2l2



K
(e)
33 =

EI

l3

 12 −6l

−6l 4l2


and where xe is the distance from the root of the appendage to the left end of the eth finite

element, L0 is the radius of the hub, l is the length of the finite element, and ρ is the constant

mass per unit length of the beam.

3.3 Inclusion of Beam Damping

Along with the global mass and stiffness matrices, the damping effect is also considered.

For this system, proportional, or Rayleigh, damping is considered. The global damping

matrix utilizes the global mass and stiffness matrices, each multiplied by a proportional

constant, α and β, i.e.,

D = αM + βK :→Mẍ+Dẋ+Kx = Fu (3.38)

From Eq. (3.38), the eigenvalue problem of the homogeneous form
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(Mλ2 +Dλ+K)Φ̄ = 0̄, λ = −σ + jΩ, (3.39)

where σ is the damping decay constant, and Ω is the damped natural frequency, can be

obtained. Solving the eigenvalue yields

(Mλ2 + (αM + βK)λ+K)Φ̄ = 0̄ (3.40)

(
M((σ2 − Ω2 − ασ) + j(−2σΩ + αΩ)) +K((−σβ + 1) + jβΩ)

)
Φ̄ = 0̄ (3.41)

The real and imaginary parts of Eq. (3.41) can be separated, respectively, i.e.,

(
M(σ2 − Ω2 − ασ) +K(−σβ + 1)

)
Φ̄ = 0̄ (3.42a)

(
(σ2 − Ω2 − ασ)

−σβ + 1
M +K

)
Φ̄ = 0̄ (3.42b)

and

(
M(−2σΩ + αΩ) +K(βΩ)

)
Φ̄ = 0̄ (3.43a)

(
(−2σ + α)

β
M +K

)
Φ̄ = 0̄ (3.43b)

From real and imaginary parts, each eigenvalue, or pole, is found

(σ2
i − Ω2

i − ασi)

−σiβ + 1
=

(−2σi + α)

β
= −ω2

ni
(3.44)
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where ω2
ni

= σ2
i +Ω2

i is the undamped natural frequency squared. With the first two non-zero

circular natural frequencies and two specified damping ratios, ζ = σ/ωn, α and β can be

found from

α + βω2
ni

= 2ωni
ζi , (i = 1, 2) (3.45)

where

α =
2ωn1ωn2

ω2
n2

− ω2
n1

(ωn2ζ1 − ωn1ζ2), (3.46)

and

β =
2

ω2
n2

− ω2
n1

(ωn2ζ2 − ωn1ζ1) (3.47)

Once the global damping matrix D is obtained from Eq. (3.38), it is included in the final

set of vector-matrix differential equations for the assumed modes method,

Jh +Mθθ MT
θq

Mθq Mqq


θ̈
¨̄q

+

αMθθ αMT
θq

αMθq αMqq + βKqq


θ̇
˙̄q

+

0 0

0 Kqq


θ
q̄

 = Fu (3.48)

and the finite element method,

Jh +Mθθ Mθd

MT
θd Mdd


θ̈
¨̄d

+

αMθθ αMθd

αMT
θd αMdd + βKdd


θ̇
˙̄d

+

0 0

0 Kdd


θ
d̄

 = Fu (3.49)

3.4 Formulation Method Comparison

The nonlinear ordinary and partial differential equations of motion of the rigid-flexible

system in Eqs. (2.9a), (2.9b), and (2.9c) have been linearized into a set of vector-matrix
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differential equations shown in Eqs. (3.48) and (3.49) from the assumed modes method

and finite element method, respectively. Both methods provided linearized approximations

of the nonlinear model that also include the rigid-flexible coupled dynamics. Although

at first glance they may seem to have produced identical equations of motion, there are

several underlying qualitative differences that can have a significant impact when it comes

to simulation and practical application.

The admissible functions of the assumed modes method are global functions defined

over the entire domain of the system. These functions are often complicated and require

complex derivation and analysis in order to accurately represent the entire system. The finite

element method, instead, uses local admissible functions defined over small subdomains that

constitute the whole system, which allows for simple and low-degree polynomials to be chosen

in conjunction with the element boundaries. However, because the element boundaries are

used to model deformations interior to the finite element, the boundary coordinates of each

element become the system’s generalized coordinates, which results in a high order system.

The assumed modes method utilizes time-dependent amplitude functions as the general-

ized coordinates, which typically results in lower order systems. It is important, however, to

recall that the generalized coordinates from the assumed modes method are not explicitly

correlated to the propagated motion of the flexible structure. The actual deformation of

the flexible structure at each location along the length of the beam requires a summation of

all the amplitude functions multiplied with the space-dependent admissible functions. The

generalized coordinates from the finite method represent physical coordinates. Finally, the

assumed modes method is generally applicable for problems with simple geometry and often

require a new set of functions for each new problem, unlike the finite element method that

can be broadly applicable to arbitrary geometries and can typically use the similar low-degree

polynomial functions. Therefore, the linearized equations of motion derived from the finite

element method are considered for control design and simulation.
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4 Stability Analysis and Control Design

If an open-loop system is found to be naturally unstable, a control law may be applied to

guarantee stability of the new closed-loop system. However, if no control law is capable of

stabilizing the system, the system model and equations of motion may require a re-evaluation,

especially in the case of the linearization of a nonlinear system.

The control laws designed and applied to the rigid-flexible system are all closed-loop,

feedback control laws with the following control objectives:

• Begin at some arbitrary initial condition.

• Rotate the central rigid body to a new, desired angular position and with a zero final

angular velocity.

• Suppress vibration of flexible appendage during motion and reduce flexural deformation

to zero in the final position.

4.1 System Stability

Two general methods of stability analysis are introduced and summarized in this section:

Lyapunov’s indirect method and Lyapunov’s direct method. Lyapunov’s indirect method

serves to study the stability of the open-loop system. Lyapunov’s direct method provides a

control law that guarantees asymptotic stability for the closed-loop form of the rigid-flexible

system.

4.1.1 Lyapunov’s Indirect Method

One method of determining the stability of a linear time-invariant system is by studying

the eigenvalues of the system. The linearized equations of motion of the rigid-flexible system

in Eqs. (3.48) and (3.49) can be rewritten in a state-space representation as
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Ẋ(t) = AX(t) +Bu(t) =

 0p×p Ip

−M−1K −M−1D

X(t) +

 0p×1

M−1F

u(t) (4.1a)

Y (t) = CX(t) (4.1b)

where X(t) = [θ, d̄T , θ̇, ˙̄dT ]T ∈ R2p (p = 2e + 1) is the augmented state variable vector,

Y (t) ∈ Rg is the output or measurement vector for g outputs, A ∈ R2p×2p is the state

matrix, B ∈ R2p×r is the input matrix, and C ∈ Rg×2p is the output or measurement matrix.

The output matrix C is generally defined as as C = [Ip 0p×p] in Eq. (4.1b) because only

the position state variables are generally measurable. However, when assuming a full-state

system, all of the state variables are assumed to be measurable, redefining the output matrix

as C = I2p. However, . The eigenvalues, {λi} (i = 1, . . . , 2p), of the system in Eq. (4.1a) are

determined by solving for the roots of the characteristic polynomial obtained from taking

the determinant of λI − A, i.e.,

det(λI − A) = 0 (4.2)

The stability of the linear time-invariant system can then be determined by analyzing its

eigenvalues under the following criteria [40]:

• The system is asymptotically stable if and only if Re(λi) < 0 for all λi.

• The system is stable if and only if Re(λi) ≤ 0 for all simple or semi-simple λi and

Re(λi) < 0 for all nonsemi-simple λi.

• The system is unstable if and only if Re(λi) > 0 for any simple or semi-simple λi and

Re(λi) ≥ 0 for any nonsemi-simple λi.
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4.1.2 Lyapunov’s Direct Method

Stability analysis of the rigid-flexible system can also be performed with the direct Lya-

punov method, which requires only the form of the differential equations to be known.

Lyapunov’s direct method utilizes a scalar function of the states similar to a generalized

energy of the system and is called the Lyapunov function V(x̄). Consider a single valued

continuously differentiable function V(x̄) such that V(0̄) = 0 and in some region D around

the system equilibrium x̄ = 0̄. Although it is not necessarily the case here, it is important

to note if the equilibrium is not at the origin, the system can be translated to an equivalent

system with equilibrium at the origin. The following theorems explain the stability of the

system about the equilibrium point through the Lyapunov function.

Theorem 4.1. If a positive definite function V(x̄) (V(x̄) > 0 ∀x̄ ̸= 0̄ ∈ D) can be

determined such that V̇(x̄) is negative semidefinite (V̇(x̄) ≤ 0), then the origin is locally

stable in the neighborhood D of the origin.

Theorem 4.2. If a positive definite function V(x̄) (V(x̄) > 0 ∀x̄ ̸= 0̄ ∈ D) can be deter-

mined such that V̇(x̄) is negative definite (V̇(x̄) < 0), then the origin is locally asymptotically

stable in the neighborhood D of the origin.

Theorem 4.3. If a positive definite function V(x̄) (V(x̄) > 0 ∀x̄ ̸= 0̄ ∈ D) can be

determined such that V̇(x̄) is negative definite for all x̄ ̸= 0̄ and V(x̄) → ∞ as ||x̄|| → ∞,

then the origin is globally asymptotically stable.

4.2 Observabilty and Controllability

A linear system is said to be observable at some time t if x(t) can be determined from

the output function y(t). If this is true for all t and x(t), then the system is considered

fully observable. The observability is a major requirement in filtering and state estimation

problems. Many feedback control laws that require knowledge of the states often rely on the

output variables instead for feedback signals. If the system is observable, then y contains

sufficient information about the internal states so that most of the power of the state feedback

can still be realized [40].
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The LTI system in Eqs. (4.1a) and (4.1b) is considered observable if and only if any of

the following equivalent conditions is satisfied [41]:

• The observability Grammian WO(t) :=
∫ t

t0
eA

T τCTCeAτ dτ is positive definite and in-

vertible for all t > 0.

• The columns of CeAt are linearly independent for all t > 0.

• The columns of C(sI − A)−1 are linearly independent.

• The observability matrix

PO =

[
CT ... (CA)T

... (CA2)T
... · · · ... (CAn−1)T

]T
∈ R2pg×2p (4.3)

has full rank, i.e. rank = 2p.

• The matrix

λiI − A

C

 has full rank for every eigenvalue of A; therefore, the matrix

sI − A

C

 has full rank for all values of s.

• If the matrix A is Hurwitz, i.e., stable with negative real-part eigenvalues, then there is

a unique positive definite solution W to the Lyapunov equation ATW +WA = −CTC

given by W = WO(∞)

If the linear system is not fully observable, it may still be detectable. A system is

detectable if the unobservable states are asymptotically stable. The detectability of a system

can be determined by checking if

rank

(λiI − A

C

) = 2p (4.4)

for all Re (λi) ≥ 0.
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A linear system is said to be controllable at t0 if it is possible to find some input function

u(t), defined over t ∈ T , which will transfer the initial state x(t0) to the origin at some finite

time t1 ∈ T , t1 > t0. That is, there exists some input u[t0,t1], which gives x(t1) = 0 at a

finite time t1 ∈ T . If this is true for all initial times and all initial states, the system is

completely controllable. If the system is not completely controllable, then for some initial

states no input exists which can drive the system to the zero state. If a linear system is

controllable, it is possible to design a state feedback control law with specified closed-loop

eigenvalues. Thus, an unstable system can be stabilized, a slow system can be sped up, the

natural frequencies can be changed, etc.

The LTI system in Eqs. (4.1a) and (4.1b) is considered observable if and only if any of

the following equivalent conditions is satisfied [41]:

• The controllability Grammian WC(t) :=
∫ t

t0
eAτBBT eA

T τ dτ is positive definite and

invertible for all t > 0.

• The columns of eAtB are linearly independent for all t > 0.

• The columns of (sI − A)−1B are linearly independent.

• The controllability matrix

PC =

[
B

... AB
... A2B

... · · · ... An−1B

]
∈ R2p×2pr (4.5)

has full rank, i.e. rank = 2p.

• The matrix

[
λiI − A B

]
has full rank for every eigenvalue of A; therefore, the matrix[

sI − A B

]
has full rank for all values of s.

• If the matrix A is Hurwitz, i.e. stable with negative real-part eigenvalues, then there is

a unique positive definite solution W to the Lyapunov equation ATW +WA = −BBT

given by W = WC(∞)
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If the linear system is not completely controllable, it may still be stabilizable. A system

is stabilizable if all unstable states are controllable and all uncontrollable states are already

stable. The stabilizability of a system can be determined by checking if

rank

([
λiI − A B

])
= 2p (4.6)

for all Re (λi) ≥ 0.

4.3 State-Feedback Control Design

A control system is defined as any system which exists for the purpose of regulating

or controlling the flow of information or data in some desired fashion to yield a desired

result. Two general classes of control systems are open-loop and closed-loop systems. The

control input u(t) for an open-loop system is selected based on the goals for the system

and all available a priori knowledge about the system. It is in no way influenced by the

output y(t) of the system. Therefore, if unexpected disturbances act upon an open-loop

system, or the behavior of the system is not completely understood, then the output will not

behave precisely as expected or desired [40]. On the other hand, a closed-loop, or feedback,

control system utilizes a control input that is modified in some way by the information about

the behavior of the system output. A feedback system is often better able to deal with

unexpected disturbances and uncertainties about the system’s dynamic behavior. However,

it is important to keep in mind that closed-loop control is not always superior to open-loop.

In this section, the state-feedback control laws are designed with the assumption that all

of the state variables are measurable and contain all pertinent information about the system.

Note that this assumption is not always the case in real-life application as only some states

are measurable depending on the available output sensors. State-estimation for such cases

are also considered and designed later on in the chapter.
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4.3.1 Lyapunov-Based Control Law

With Lyapunov’s direct method in mind, the stability of the rigid-flexible system has

already been determined through the application of a Lyapunov candidate function [33].

Utilizing a generalized energy equation E = T + U where T and U are given in Eqs. (3.28)

and (3.29), the following Lyapunov candidate function

2V = a1Jh

(
dθ

dt

)2

+ a2(θ − θf )
2 + a3

[∫ L

L0

ρ(ẏ + xθ̇)2 dx+

∫ L

L0

EI

(
∂2y

∂x2

)2

dx

]
(4.7)

is positive-definite and zero only at the desired states (θ = θf rad/s and
dθf
dt

= 0 rad/s2)

[33, 34]. The time derivative of the Lyapunov function in Eq. (4.7) is first taken.

2
dV
dt

=2a1Jh

(
dθ

dt

)(
d2θ

dt2

)
+ 2a2(θ − θf )

(
dθ

dt

)
+ a3

[
2

∫ L

L0

ρ(ẏ + xθ̇)(ÿ + xθ̈) dx+
d

dt

∫ L

L0

EI

(
∂2y

∂x2

)2

dx

] (4.8)

The partial differential equations of the rigid-flexible body system from Eqs. (2.9a) and (2.9a)

are then substituted into Eq. (4.8). replacing the angular acceleration such that

2
dV
dt

=2a1

(
dθ

dt

)(
u−

∫ L

L0

ρx(ÿ + xθ̈) dx

)
+ 2a2(θ − θf )

(
dθ

dt

)
+ a3

[
2

∫ L

L0

ρ(ẏ + xθ̇)(ÿ + xθ̈) dx+
d

dt

∫ L

L0

EI

(
∂2y

∂x2

)2

dx

] (4.9)

By taking Eq. (2.9c), multiplying x throughout, and integrating over the space domain from

L0 to L, i.e,

−
∫ L

L0

ρx(ÿ + xθ̈) dx =

∫ L

L0

xEI
∂4y

∂x4
dx (4.10)
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Eq. (4.10) can be substituted into Eq. (4.9),

2
dV
dt

=2a1

(
dθ

dt

)(
u+

∫ L

L0

xEI

(
∂2y

∂x2

)2

dx

)
+ 2a2(θ − θf )

(
dθ

dt

)
+ a3

[
2

∫ L

L0

ρ(ẏ + xθ̇)(ÿ + xθ̈) dx+
d

dt

∫ L

L0

EI

(
∂2y

∂x2

)2

dx

] (4.11)

Once again, recall Eq. (2.9c). After multiplying (ẏ + xθ̇) throughout Eq.(2.9c), the first

integral in the brackets in Eq.(4.11) can be rewritten as

∫ L

L0

ρ(ẏ + xθ̇)(ÿ + xθ̈) dx =−
∫ L

L0

EI
∂4y

∂x4
(ẏ + xθ̇) dx (4.12)

Through integration by parts, the right-hand side of Eq. (4.12) can be simplified to

∫ L

L0

ρ(ẏ + xθ̇)(ÿ + xθ̈) dx =−
∫ L

L0

EI
∂4y

∂x4
(ẏ + xθ̇) dx

=−
∫ L

L0

EI(ẏ
∂4y

∂x4
+ xθ̇

∂4y

∂x4
) dx

=0− (τ0 − L0S0)θ̇

(4.13)

Substituting Eq. (4.13) into Eq. (4.11) produces the final time-derivative of the Lyapunov

function as

2
dV
dt

= 2a1

(
dθ

dt

)(
u+(τ0−L0S0)

)
+2a2(θ− θf )

(
dθ

dt

)
+ a3

[
− 2(τ0−L0S0)

(
dθ

dt

)]
(4.14)

where the Lyapunov-based control law is defined as
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u =

(
− 1

a1

)
[−ũ+ a2(θ − θf ) + (a3 − a1)(L0S0 − τ0)], (4.15)

and ũ is a freely assignable part of the control torque u. The weighting gains ai are positive

scalar constants that allow relative emphasis on the three contributors to the error of the

system. To guarantee asymptotic stability, the time-derivative of the Lyapunov function dV
dt

can be forced to be negative definite if ũ is selected as

ũ = −a4
(
dθ

dt

)
, a4 > 0. (4.16)

The term (L0S0 − τ0) denotes the moment, or torque, about the center of rotation of

the rigid body due to the vibration of the flexible beam, where τ0 and S0 are obtained by

substituting Eq. (3.20) into the moment and shear force equations, respectively, i.e.,

τ |x=L0 = τ0 = EIGd (4.17)

and

S|x=L0 = S0 = EIHd (4.18)

where

G =
d2N

dx2
=

[
12x−6l
l3

6xl−4l2

l3
−12x+6l

l3
6xl−2l2

l3

]
(4.19)

and

H =
d3N

dx3
=

[
12
l3

6l
l3

−12
l3

6l
l3

]
. (4.20)

4.3.2 Linear Quadratic Regulator

One of the fundamental design objectives of state-feedback control is the achievement

of suitable pole locations to ensure satisfactory transient response while ensuring a stable
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system. What constitutes as a suitable pole location depends upon the design specifications

regarding relative stability, response times, accuracy, etc. Some optimal control laws also

stem from state-feedback control and often take a similar form. For a state-feedback control

law, the control input u is defined as

u(t) = −KgX(t) + r(t) (4.21)

where Kg is the constant state-feedback gain matrix, and r(t) is some reference input for

tracking a desired state. The regulation of a linear system with the goal of minimizing a

defined quadratic cost function is also known as a linear quadratic regulator (LQR). To

obtain an optimal gain matrix that provides a minimal cost requirement, a quadratic cost

function J for the continuous time system is first defined as

J =

∫ ∞

0

(XT (t)QX(t) + uT (t)Ru(t) + 2XT (t)Nu(t)) dt (4.22)

where Q, R, and N are symmetric weighting matrices that are predetermined according to

the desired form of optimization. Solving for the positive-definite solution S of the associated

algebraic Riccati equation

ATS + SA− (SB +N)R−1(BTS +N) +Q = 0 (4.23)

results in an asymptotically stable closed-loop system [42] where the state-feedback gain

matrix is found to be

Kg = R−1(BTS +N). (4.24)

When applying the LQR, several conditions must be satisfied. The pair (A,B) must be

at least stabilizable. Q ≥ 0, R > 0, N ≥ 0, and Q − NR−1NT ≥ 0. (Q − NR−1NT , A −

BR−1NT ) must also have no unobservable mode on the imaginary axis.
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4.3.3 Sliding Mode Control

The control laws designed up until this point are capable of achieving the control objec-

tives and guaranteeing stability in the system; however, this is only true for an ideal system

without any model uncertainties. A more robust control of the rigid-flexible system model

is required to compensate for any uncertain terms that enter the state equation at the same

point as the control input [43]. These uncertain terms that occur at the same order of dif-

ferentiation as the control inputs are known as matched uncertainties. In some cases, the

uncertain dynamics are not directly coupled to the control input. In fact, if the system under

consideration presents these unmatched disturbances, the system trajectories may not con-

verge about any known fixed point [44]. In SMC, trajectories starting off a sliding manifold

are forced to reach the manifold in a finite time and to stay on the manifold for all future

time. This is known as the reaching phase and is followed by the sliding phase, during which

the motion is confined to the manifold. This makes SMC optimal as a robust control law

because the motion on the manifold is independent of any matched uncertainties. In this

section, a CSMC with a conventional sliding manifold is first introduced to summarize the

general SMC theory.

Conventional Sliding Mode Control

Consider a general second-order system

ẋ1 = x2

ẋ2 = h(x) + g(x)u

(4.25)

where h and g are unknown nonlinear functions and g(x) ≥ g0 > 0 for all x. To stabilize the

origin, a state-feedback control law is designed to constrain the motion of the system to the

sliding manifold

s = αsx1 + x2 = 0. (4.26)
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On this manifold, the motion is governed by ẋ1 = −αx1. Choosing αs > 0 guarantees that

x(t) tends to zero as t goes to infinity, and the rate of convergence can be controlled by

choice of α. The motion on the manifold s = 0 is independent of h and g. The variable s

satisfies the equation

ṡ = αsẋ1 + ẋ2 = αsx2 + h(x) + g(x)u (4.27)

Suppose h and g satisfy the inequality

∣∣∣∣αsx2 + h(x)

g(x)

∣∣∣∣ ≤ ϱ(x) (4.28)

for some known function ϱ(x). The stability of the sliding manifold is determined with the

positive definite Lyapunov function candidate V(x) = 1
2
s2, where

V̇ = sṡ = s(αx2 + h(x)) + g(x)su ≤ g(x)|s|ϱ(x) + g(x)su (4.29)

Taking

u = −βs(x)sgn(s) (4.30)

where βs(x) ≥ ϱ(x) + βs0 , βs0 > 0, and

sgn(s) =


1, s > 0

0 s = 0

−1, s < 0

(4.31)

yields

V̇ ≤ g(x)|s|ϱ(x)− g(x)s(ϱ(x) + βs0)sgn(s) = −g(x)βs0 |s| ≤ −g0βs0|s| (4.32)
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Thus, W =
√
2V = |s| satisfies the differential inequality D+W ≤ −g0βs0 , and the compar-

ison lemma shows that W (s(t)) ≤ W (s(0)) − g0βs0 . Therefore, the trajectory reaches the

manifold s = 0 in finite time and, once om the manifold, it cannot leave it, as seen from

the inequality V̇ ≤ −g0βs0|s|. In summary, the motion consists of a reaching phase during

which trajectories starting off the manifold s = 0 move toward it and reach it in finite time,

followed by a sliding phase during which the motion is confined to the manifold s = 0 and

the dynamics of the system are represented by the RO model ẋ1 = −αsx1. The manifold

s = 0 is called the sliding manifold, and the control law u = −βs(x)sgn(s) is called the sliding

mode control. The striking feature of sliding mode control is its robustness with respect to

h and g. We only need to know the upper bound ϱ(x), and during the sliding phase, the

motion is completely independent of h and g. The sliding mode controller simplifies if h and

g satisfy the inequality

∣∣∣∣αsx2 + h(x)

g(x)

∣∣∣∣ ≤ kSMC (4.33)

for some known nonnegative constant kSMC . In this case, we can take

u = −KSMCsgn(s), KSMC > kSMC (4.34)

which takes the form of a simple relay. This form, however, usually leads to a finite region

of attraction, which can be estimated.

Because of imperfections in switching devices and delays, SMC suffers from chattering.

As the trajectory heads towards s = 0, it hits the manifold at some point. Although it would

ideally begin to slide along that manifold, delays between the time the sign of s changes and

the time the control switches causes the trajectory to cross the manifold. When the control

switches, the trajectory reverses directions and heads towards the manifold; however, it will

cross the manifold again, repeating this process. Chattering can cause low control accuracy,

high heat losses in electrical power circuits, and high wear of moving mechanical parts. It
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may also excite unmodeled high-frequency dynamics, which degrades the performance of the

system and may even lead to instability. This is especially possible for a rigid-flexible system

that consists of a large range of frequencies [43].

In application of the CSMC to a rigid-flexible structure, consider Eq. (3.49). If the sliding

manifold is defined as

s(t) = CCSMCϵ+ ϵ̇ (4.35)

where CCSMC is a positive scalar constant, ϵ = x − xd is the difference between the actual

position states x = [θ, d̄T ]T and desired position states xd = [θd, d̄
T
d ]

T , and ϵ̇ = ẋ− ẋd is the

difference between the actual velocity states and desired velocity states, the sliding surface

will begin with a non-zero error for desired non-zero states. Unless a nonlinear surface with

an initial zero error is defined, or the desired states are selected as functions of time that

start at the initial conditions and go to the final desired states, the motion may not remain

stable. Note that Eq. (3.49) does not include any matched uncertainties. Instead, some

uncertainty in the model is included in Eq. (3.49) such that the equations of motion become

[MI + δM ]ẍ+ [DI + δD]ẋ+ [KI + δK]x = [F ](uI + uSMC) (4.36)

where M =MI + δM , D = DI + δD, K = KI + δK, and u = uI + uSMC . The actual mass,

damping, and stiffness matrices are written as the sum of their ideal matrices (MI , DI , KI)

without uncertainties and model uncertainties (δM, δD, δK). The total control input is also

written as a sum of the nominal control uI for an ideal system without uncertainties and

control that mitigates the uncertainty uSMC . The nominal control is computed by state

feedback controllers, such as PID, LQR, and Lyapunov-based controllers to name a few.

The uncertainty control is computed by the SMC law defined in Eq. (4.35); however, the

state error terms e and ė are defined differently. The error ē is now the difference between

the actual states of the system x and the ideal states xI of the system without uncertainties.
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The nominal control law and CSMC law, respectively, are defined as

uI = −KgxI + r(t) (4.37)

and

uCSMC = −KCSMCsgn(s) (4.38)

where KCSMC ∈ R1×2p is the upper uncertainty bound. Because the sliding surface is no

longer a function of the error between the current state and desired state that was non-zero

at initial conditions but instead a function of the error between the actual state and ideal

state, it is zero at initial conditions and maintains stable motion as the actual states try to

remain equal to the ideal states, which are tracking the desired states. This also allows for

the desired states to be chosen as constants if desired.

A prominent source of chattering from SMC can be found from the implementation of

the sign function, sgn(·). As defined in Eq. (4.31), the sign function is an odd function,

i.e. sgn(−s) = −sgn(s), that returns the positive or negative sign of a real number. As

the derivative of the absolute value function, up to but not including the indeterminacy

at zero, the sign function provides a discontinuous step between −1 and 1 [45]. Although

providing the full control effort instantaneously at each time t, the trajectory can never

remain smoothly on the manifold because of this. One solution is to replace the sign function

with an error function, erf(·). The error function is defined by the integral

erf(s) =
2√
π

∫ s

0

exp−t2 dt (4.39)

This function is encountered in probability theory, the theory of errors, the theory of

heat conduction, and various branches of mathematical physics [46]. By representing the

exponential function in Eq. (4.39) in terms of its power series expansion, we have
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erf(s) =
2√
π

∫ s

0

∞∑
n=0

(−1)n

n!
t2n dt (4.40)

from which we deduce

erf(s) =
2√
π

∞∑
n=0

(−1)ns2n+1

n!(2n+ 1)
|s| <∞ (4.41)

Examination of Eq. (4.41) reveals that the error function is also an odd function. We also

see that

erf(0) =
2√
π

∫ 0

0

exp−t2 dt = 0 (4.42)

and

erf(∞) =
2√
π

∫ ∞

0

exp−t2 dt = 1 (4.43)

A graph of erf(s) is shown in Figure 4.1 to demonstrate this.
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Figure 4.1 Relationship between error function erf(s) and s.
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The important behavior of this function pertains to its final limits and convergence to

known values at quantitative arguments. Unlike the sign function, the error function does

not have a discontinuity between the negative and positive convergence values, which can

reduce the chattering present in SMC. In return, the transition rate from −1 and 1 decreases,

which may pose an issue if the system cannot acquire the necessary control input to achieve

its desired control objectives and result in steady-state errors or even instability. A modified

error function defined as

erf

(
s√
2σ2

)
, (4.44)

where σ is the standard deviation that stipulates how quickly the switch is activated, can be

applied to provided further control tuning by manipulating the transition rate [47].

It is important to note that this combination of control laws from Eqs. (4.37) and (4.38)

behaves similar to an observer-based control law. Instead of estimating the system’s state

to a true state, we are controlling the actual (true) state x to go to the ideal state xI , which

requires full knowledge of at least one of the systems. Because the actual system contains

some arbitrary uncertainties in the model, all the states in the ideal system are assumed to

be measurable, or known. This in turn determines the control gain of the ideal controller as

well as to which system the observers are applied. Any FO and RO observers will be applied

only to the actual system since no state estimation is needed for an ideal system in which

all state variables are known.

Adaptive Sliding Mode Control

An alternative to CSMC is an adaptive smooth control scheme for robust control which

attenuates chattering, eliminates the reaching phase, and successfully updates the control

gain in real time [31]. A sliding manifold with no singularity is defined to improve the

performance throughout the control implementation. Since the reaching phase vanishes,

robustness against uncertainties and perturbations is guaranteed from the beginning. The
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new sliding manifold has more flexibility to improve the transient performance in comparison

with CSMC. Based on the concept of CSMC, a simple but robust controller in continuous

fashion is also derived, and an adaptive gain-tuning algorithm is developed. The developed

algorithm guarantees that the error converges to a small domain in a finite time without

knowing the uncertainty bounds. Also, the gain update is performed using only the mag-

nitude of the control input, which greatly eases the application of the suggested algorithm

to real-world systems. This approach designed by Cho et al. [31] is applicable to stabiliza-

tion and trajectory tracking. However, Cho et al. [31] designed the ASMC control law and

adaptive rule for a problem in scalar dimensions, so the control law must be adapted to a

vector-matrix form that requires a new stability analysis.

The sliding manifold s(t) ∈ Rg is defined as

s(t) = ϵ̇(t) +
(
Λ + µ

(
exp(−ϵT (t)ϵ(t))− 1

))
ϵ(t) (4.45)

where s(t) is a directly related function of the system’s states. Λ and µ are constants, in

which Λ > µ > 0. It should be noted that at the initial time t = t0, if ϵ(t0) and ϵ̇(t0) are

zero, the sliding variable in Eq. (4.45) becomes zero, eliminating the reaching phase. Also,

by properly selecting the parameters Λ and µ, one can improve the transient response more

flexibly than when using a CSMC.

Consider an uncertain system with the sliding variable feedback control [31]

uASMC(t) = −1

ε
KT

ASMC(t)s(t) (4.46)

where ε is a small positive scalar number. If ||s(t0)|| > ε, then the state trajectories converge

to the region ||s(t)|| ≤ ε in a finite time and remain in the region thereafter. The time-

varying gain matrix KASMC(t) ∈ Rg×r, for (g ≥ r) only, is constructed in the following

manner. KASMC(t) is a matrix of ones and zeros and multiplied by a time-varying scalar

gain κg(t). The gain κg(t) has an upper bound, i.e., there exists a positive constant κ∗g such
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that κg ≤ κ∗g for all t ≥ 0. The location of every 1 is determined by the number of control

inputs r and the listed order of each control input in the control input vector u(t). All other

remaining matrix elements are filled with zeros. For example, if the control input is defined

as u(t) = [u1(t), u2(t)]
T , the gain matrix must be organized as

KASMC(t) = κg(t)



1 0

0 1

0 0

...
...

0 0


KASMC(t) is constructed in this fashion for several reasons. This allows the adaptive rule for

κg(t) to remain scalar, applying the time-varying gain equally to each sliding surface element

that requires control and simplifying the stability analysis of ASMC.

Suppose that one can represent the highest time-order derivative of the system output

in the form

Y (n̄)(X, t) = ξA(X, t) + bA(X, t)u(t) (4.47)

where n̄ is the highest order of differentiation of the system states, and ξA(X, t) ∈ Rg

and bA(X, t) ∈ Rg×r ̸= 0 are unknown. It is important to note that applying a similarity

transformation to convert the system states to modal coordinates is necessary to acquire a

bA(X, t) that will provide non-negative definiteness when multiplied to with KT
ASMC(t) later

in the stability analysis. This is acquired by solving the eigenvalue problem for an undamped

system, i.e., (K − ω2
nM)Ψ̄ = 0̄, where Ψ̄ ∈ Rp is the eigenvector. By using Eq. (4.45), its

differentiation with respect to time yields
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ṡ(t) = ϵ̈(t) +
(
Λ + µ

(
exp(−ϵT (t)ϵ(t))− 1

))
ϵ̇(t)

+
(
− 2µϵT (t)ϵ̇(t) exp(−ϵT (t)ϵ(t))

)
ϵ(t)

= ÿ(t)− ÿd(t) +
(
Λ + µ

(
exp(−ϵT (t)ϵ(t))− 1

))
ϵ̇(t)

+
(
− 2µϵT (t)ϵ̇(t) exp(−ϵT (t)ϵ(t))

)
ϵ(t)

= ξA(X, t)− ÿd(t) +
(
Λ + µ

(
exp(−ϵT (t)ϵ(t))ϵ̇(t)− 1

))
ϵ̇(t)

+
(
− 2µϵT (t)ϵ̇(t) exp(−ϵT (t)ϵ(t))

)
ϵ(t) + bA(X, t)u(t)

≜ z(X, t) + bA(X, t)u(t)

(4.48)

where z(X, t) ∈ Rg×1 and bA(X, t) are functions bounded by

||z(X, t)|| < Γr, 0 < br < ||bA(X, t)|| < Br (4.49)

and the uncertainty bounds Γr, br, and Br are assumed to exist but are unknown. Note

that all norms applied are Frobenius norms, which are equivalent to 2-norms for the case

of all single-column vectors. Although the boundedness condition Eq. (4.49) is a common

assumption in SMC literature, it guarantees only local or semi-global stability results since

one cannot state that the uncertainty is globally uniformly bounded by some constant on

the overall domain. Instead, Eq. (4.49) is used to simplify the presentation since we are

interested in applying adaptation laws to counteract the unknown bounds. We do not,

therefore, assume variable bounds with known upper bounds, as usually carried out in the

absence of adaptive control laws [31].

Cho et al. [31] first considered a sliding variable feedback control with the time-varying

gain κR(t) instead of κg(t), where κR(t) is a continuous function of time and κR(t) ≥ κr ≜ Γr

br

is satisfied for the time t ≥ t0. However, as determined by Cho et al. [31], the maximum

magnitude if the control input will be equal to the unknown real gain κr = Γr

br
only when
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s(t) is eventually bounded by the region ||s(t)|| ≤ ε̂, where ε̂ is the upper bound on ||s(t)||

for an estimated constant gain κ̂g. Thus, an adaptive rule is necessary to obtain the gain.

The time-varying gain κg(t) is updated in real time by the adaptive law

κ̇g(t) = η(||uASMC || − κg(t) + κg0), κg(0) ≥ κg0 (4.50)

where κg0 and η are specified positive constants. The control law uASMC(t) is given by

Eq. (4.46), and κg0 is reserved for margin. As soon as the gain κg(t) becomes greater than a

specific value (κr + κg0) at the time instant t = t0, ||s(t)|| decreases and there exists a finite

time t1 > t0 before which κg(t) becomes smaller than (κr + κg0). Furthermore, during this

finite-time interval, κg(t)’s upper bound κ
∗
g <∞ can be explicitly obtained. When the gain

becomes greater than (κr + κg0), the process restarts.

Before proceeding with the stability analysis of the ASMC, however, one final assumption

is made. It is assumed that only the system states that are controllable are considered. The

total number of controllable states is denoted by g′. Therefore, the sliding manifold s(t)

becomes s′(t) ∈ Rg′ , a function of ϵ′(t) and ϵ̇′(t), which are the errors of the controllable

states. Following suit, ξA(X, t) , z(X, t), bA(X, t), Y
(n̄)(X, t), and KASMC(t) are rewritten

as ξ′A(X, t) ∈ Rg′ , z′(X, t) ∈ Rg′ , b′A(X, t) ∈ Rg′×r, Y ′(n̄)(X, t) ∈ Rg′ , and K ′
ASMC(t) ∈

Rg′×r respectively. The uncertainty bounds for z′(X, t) and b′A(X, t) are still valid after this

assumption since ||z′(X, t)|| < ||z(X, t)|| < Γr and 0 < b′r < ||b′(X, t)|| < ||b(X, t)|| < Br.

This assumption will be referred to as the g′ assumption and is necessary in order to ensure

that the number of control inputs is equal to the number of controllable output states (r = g′),

which will become an important consideration in the stability analysis later on.

The stability of the ASMC is analyzed with the Lyapunov candidate function

VA =
1

2
s′T s′ +

1

2γA
(κg − κ∗g)

2 (4.51)

where γA is a positive scalar constant. Taking the first order derivative of Eq. (4.51) with
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respect to time and substituting ṡ using Eq. (4.48) yields

V̇A = s′T ṡ′ +
1

γA
(κg − κ∗g)κ̇g

= s′T (z′ + b′Au) +
1

γA
(κg − κ∗g)κ̇g

= s′T
(
z′ − 1

ε
b′AK

′T
ASMCs

′
)
+

1

γA
(κg − κ∗g)κ̇g

(4.52)

In order to utilize the matrix property λmin(W )||x||2 ≤ xTWx ≤ λmax(W )||x||2, the

matrix W must be a symmetric matrix that guarantees xTWx to be non-negative. The

matrix b′AK
′T
ASMC can be rewritten as the sum of its skew-symmetric and symmetric com-

ponents, i.e., b′AK
′T
ASMC = 1

2

(
b′AK

′T
ASMC − (b′AK

′T
ASMC)

T
)
+ 1

2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
)
. In

this form, s′T
(

1
2

(
b′AK

′T
ASMC − (b′AK

′T
ASMC)

T
))
s′ = 0, so only the symmetric component re-

mains. By substituting the symmetric component for W and utilizing λmin

(
1
2

(
b′AK

′T
ASMC +

(b′AK
′T
ASMC)

T
))

||s′||2, V̇A becomes

V̇A = s′T
(
z′ − 1

ε

(
1

2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
))
s′
)
+

1

γA
(κg − κ∗g)κ̇g

< ||s′||
(
Γr −

1

ε
λmin

(
1

2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
))

||s′||
)
+

1

γA
(κg − κ∗g)κ̇g

(4.53)

The case when ||s′(t)|| > ε′ is considered. Using some algebraic manipulation and the

definition of κr, V̇ becomes
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V̇A < ||s′||
(
Γr −

1

ε
λmin

(
1

2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
))

||s′||
)
+

1

γA
(κg − κ∗g)κ̇g

= ||s′||
(
Γr −

1

ε
λmin

(
1

2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
))

||s′||
)
+

1

γA
(κg − κ∗g)κ̇g

+ ||s′||||b′A||κ∗g − ||s′||||b′A||κ∗g

< ||s′||
(
Γr − ||b′A||κ∗g

)
+

1

γA
(κg − κ∗g)κ̇g + ||s′||||b′A||κ∗g

− 1

ε
||s′||λmin

(
1

2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
))

= ||s′||
(
b′rκr − ||b′A||κ∗g

)
− 1

γA
|κg − κ∗g|κ̇g + ||s′||||b′A||κ∗g

− 1

ε
||s′||λmin

(
1

2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
))

(4.54)

where b′rκr − ||b′A||κ∗g < 0, (κg − κ∗g) = −|κg − κ∗g|, and a proper selection of γA will always

make

− 1

γA
|κg − κ∗g|κ̇g + ||s′||||b′A||κ∗g − ||s′||λmin

(
1

2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
))

< 0

This condition yields

γA <
|κg − κ∗g|κ̇g

||s′||λmin

(
1
2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
))

− ||s′||||b′A||κ∗g
(4.55)

Substituting Eq. (4.50) into Eq. (4.55) yields

53



γA <
|κg − κ∗g|η(||uASMC || − κg(t) + κg0)

||s′||λmin

(
1
2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
))

− ||s′||||b′A||κ∗g

=
|κg − κ∗g|η(1ε ||K

′T
ASMCs

′|| − κg(t) + κg0)

||s′||λmin

(
1
2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
))

− ||s′||||b′A||κ∗g

(4.56)

One can select γA so that it is less than the minimum of the right-hand side of Eq. (4.56).

Let Θ(t) be defined as

Θ(t) ≜
|κg − κ∗g|η(1ε ||K

′T
ASMCs

′|| − κg(t) + κg0)

||s′||λmin

(
1
2

(
b′AK

′T
ASMC + (b′AK

′T
ASMC)

T
))

− ||s′||||b′A||κ∗g
(4.57)

Note that the case ||s′(t)|| > ε′ is being considered, and κg(t) is always greater than κg0 .

Then, the numerator and denominator of Θ(t) are positive, so

Θ(t) >
|κg − κ∗g|η(1ε ||K

′T
ASMCs

′|| − κg(t) + κg0)

||s′||||b′A||κg − ||s′||||b′A||κ∗g

=
|κg − κ∗g|η(1ε ||K

′T
ASMCs

′|| − κg(t) + κg0)

||s′||||b′A|||κg − κ∗g|

=
η(1

ε
||K ′T

ASMCs
′|| − κg(t) + κg0)

||s′||||b′A||

(4.58)

where λmin

(
1
2

(
b′AK

′T
ASMC +(b′AK

′T
ASMC)

T
))

< ||b′A||κg. The right-hand side of Eq. (4.58) has

its minimum when κg(t) = κg0 such that

Θ(t) >
η(1

ε
||K ′T

ASMCs
′|| − κg(t) + κg0)

||s′||||b′A||
≥
η(1

ε
||K ′T

ASMC0
s′||)

||s′||||b′A||
(4.59)

where K ′
ASMC0

is obtained by replacing κg(t) with κg0 in K ′
ASMC . Furthermore,

η(1
ε
||K ′T

ASMC0
s′||)

||s′||||b′A||
>
η(1

ε
||K ′T

ASMC0
s′||)

||s′||Br

(4.60)
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since ||b′A|| < Br. Lastly, recall the g′ assumption made before the stability analysis.

||KT
ASMC0

s|| can be rewritten as κg0

√∑m
j=1 |sj|2, and κg0||s|| is defined as κg0

√∑g
j=1 |sj|2.

Without this assumption, the number of output states is less than or equal to the number

of control inputs, i.e., r ≤ g. This inequality is directly related to the inequality between

||KT
ASMC0

s|| and κg0||s||, i.e., ||KT
ASMC0

s|| ≤ κg0||s||. Substitution of ||KT
ASMC0

s|| with κg0||s||

would violate the minimization of γA whenever r < g. Therefore, the g′ assumption is made

to ensure that the number of control inputs is always equal to the number of controllable

output states, i.e., r = g′ and ||K ′T
ASMC0

s′|| = κg0||s′||. Substituting ||K ′T
ASMC0

s′|| = κg0||s′||

into the right-hand side of Eq. (4.60) further minimizes the equation, i.e.,

η(1
ε
||K ′T

ASMC0
s′||)

||s′||Br

>
η(1

ε
κg0 ||s′||)
||s′||Br

=
ηκg0
εBr

(4.61)

Therefore, one can select γA such that

γA <
ηκg0
εBr

(4.62)

and the finite-time convergence to the region ||s(t)|| ≤ ε is guaranteed from the moment

when ||s(t)|| > ε starts to hold.

4.4 State Estimation for Feedback Control

In many systems all components of the state vector are not directly available as output

signals. As previously mentioned in the last section, the reason for wanting knowledge of

the states is for forming feedback control signals. Several approaches to this problem can

be considered. The first, and most direct, way is to simply add additional sensors that can

provide measurements for all the state variables, but this method is generally expensive or

unfeasible. A second option involves differentiation of the measured states that may provide

an estimate of the unmeasured states. However, differentiation may not give sufficiently
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accurate performance, especially since any noise in the data will also be propagated and

become noisier. A third approach that is most commonly used is to utilize the full knowledge

of the mathematical models of the system in a systematic way in an attempt to estimate,

or reconstruct, the states. This resulting algorithm is called a state estimator, or observer.

Along with state estimation, an observer is designed with the objective to achieve suitable

pole locations for these estimated model states that will maintain a stable system and produce

desired performance.

4.4.1 Full-Order Observer-Based Feedback Control

FO observers produce estimates of all state variables, both measurable and unmeasur-

able. Along with full-state estimation, FO observers also provide a smoothing effect when

measurements are noisy. Consider the observer system model

˙̂
X(t) = AX̂(t) +Bu(t) + LgFO

(Y (t)− Ŷ (t)) (4.63a)

Ŷ (t) = CX̂(t) (4.63b)

where X̂(t) is the augmented state estimate vector, Ŷ (t) is the estimated output vector, and

LgFO
is the constant FO observer gain matrix. An estimation error between the true state

variables and estimates is defined as

ϵFO(t) = X(t)− X̂(t) (4.64)

By taking the first-order time-derivative of Eq. (4.64) and using Eqs. (4.1a) and (4.63a),

the error dynamics are obtained as
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ϵ̇FO(t) = Ẋ(t)− ˙̂
X(t)

= AX(t) +Bu− (AX̂(t) +Bu+ LgFO
(Y (t)− Ŷ (t)))

= A(X(t)− X̂(t))− LgFO
C(X(t)− X̂(t))

= (A− LgFO
C)ϵFO(t)

(4.65)

with initial conditions ϵFO(0) = X(0)−X̂(0). Note that the initial conditions of the estimated

states are not necessarily the same as the initial conditions of the true states. The observer

is then designed such that it provides an asymptotically convergent estimate of the states.

This is done by obtaining an constant FO observer gain matrix LgFO
such that A− LgFO

C

yields the desired eigenvalues. In fact, there is a duality between obtaining the constant

state-feedback gain matrix Kg and the observer gain matrix. By including the observer in

the system model, the state variables are replaced with the state estimates in the control

input, and the system control law becomes

u(t) = −KgX̂ + r(t) (4.66)

where r(t) is some reference input for tracking a desired state. The new linear closed-loop

system that includes the FO observer-based feedback control can be written as

 Ẋ(t)

ϵ̇FO(t)

 =

A−BKg BKg

02p×2p A− LgFO
C


 X(t)

ϵFO(t)

+

 B

02p×1

 r(t) (4.67)

If the augmented state vector is chosen to be [XT (t) X̂T
FO(t)]

T , the closed-loop system

can be written as

 Ẋ(t)

˙̂
XFO(t)

 =

 A −BKg

LgFO
C A−BKg − LgFO

C


 X(t)

X̂FO(t)

+

B
B

 r(t) (4.68)
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The two augmented state vectors above are related by the invertible mapping

 X(t)

ϵFO(t)

 =

I2p 0̄2p×2p

I2p −I2p


 X(t)

X̂FO(t)

 (4.69)

One of the major uses of the state estimation observers is state feedback control system

design. The observers described are used to estimate the state variables X. If a constant-

state feedback matrix Kg is then used with X̂ as input instead of X, a new composite

system of the order 2(2p) is obtained. By proper selection of Kg, some of the 2p closed-loop

eigenvalues can be specified. By proper selection of LgFO
, the remaining eigenvalues of the

observer can be specified. This represents the separation principle. If a feedback system with

desired poles can be designed, proceeding as if all states were measurable, then a separate

design of the observer can be used to provide the desired observer poles [40].

4.4.2 Reduced-Order Observer-Based Feedback Control

Utilization of a FO observer results in a redundancy when providing estimates for states

that can already be measured. This redundancy can be avoided with a RO observer, which

estimates only the states that are not measured and uses raw measurement data for those

that are measured. Before considering an observer system, a transformation is defined such

that s outputs constitute the first s states, perhaps modified by a Du term. The similarity

transformation is defined as

Z(t) = TX(t) (4.70)

where T = [CT ,RT ]−T ∈ R2p×2p, and R ∈ R(2p−s)×2p is obtained by solving RCT = 0(2p−s)×s

and RRT = I2p−s. One way to obtain R is by taking the transpose of the null space of C,

or using the MATLAB function null(C)’. However, R can be any matrix such that T is

invertible. Once the similarity transformation is obtained and applied to Eqs. (4.1a) and

(4.1b), the state-space description of the transformed system becomes
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Ż(t) = ÃZ(t) + B̃u(t) (4.71a)

Ỹ (t) = C̃Z(t) +Du(t) (4.71b)

where Ã = T−1AT , B̃ = T−1B, and C̃ = CT = [Is 0s×(2p−s)]. By designing an estimator for

Z(t) = [ZT
1 (t), Z

T
2 (t)]

T ∈ R2p, where Z1(t) ∈ Rs and Z2(t) ∈ R2p−s, that same estimator can

be applied for Z(t) = TX(t). The transformed system in Eqs. (4.71a) and (4.71b) can be

written as

Ż1(t)

Ż2(t)

 =

Ã11 Ã12

Ã21 Ã22


Z1(t)

Z2(t)

+

B̃1

B̃2

u(t) (4.72a)

Ỹ (t) = Z1(t) +Du(t) (4.72b)

where Ã11 ∈ Rs×s, Ã12 ∈ Rs×(2p−s), Ã21 ∈ R(2p−s)×s, Ã22 ∈ R(2p−s)×(2p−s), B̃1 ∈ Rs×1, and

B̃2 ∈ R(2p−s)×1. Since Z1(t) is already known, only Z2(t) requires an estimator. Hence, the

state equations for Z2(t) are

Ż2(t) = Ã22Z2(t) + Ã21(Ŷ (t)−Du(t)) + B̃2u(t) (4.73)

In order to design an estimator for Z2(t), an output equation for Z2(t) is needed. The

equation for Z1(t) in Eqs. (4.72a) and (4.72b) is used to solve for Ã12Z2(t):
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Ã12Z2(t) = Ż1(t)− Ã11Z1(t)− B̃1u(t)

= ˙̃Y (t)− Ã11(Ỹ (t)−Du(t))− B̃1u(t)−Du̇(t)

(4.74)

where u̇(t) is a smooth, first-order differentiation with respect to time of the control input,

and Ã12Z2(t) can then be set equal to some Ỹr(t) so that

Ỹr(t) := Ã12Z2(t) =
˙̃Y (t)− Ã11(Ỹ (t)−Du(t))− B̃1u(t)−Du̇(t) (4.75)

Analogous to the FO observer design in Eq. (4.63a), and using the dynamics of the RO

system in Eqs. (4.73) and (4.75), the (2p−s)-dimensional dynamic system of the RO observer

is defined as

˙̂
Z2(t) =Ã22Ẑ2(t) + Ã21(Ỹ (t)−Du(t)) + B̃2u(t) + LgRO

(Ỹr(t)− Ŷr(t))

=Ã22Ẑ2(t) + Ã21(Ỹ (t)−Du(t)) + B̃2u(t) + LgRO
(Ỹr(t)− Ã12Ẑ2(t))

(4.76)

where LgRO
is the constant RO observer gain matrix. According to Eq. (4.75), the term

Ỹr(t) in Eq. (4.76) includes the time derivative of the output, i.e. ˙̃Y (t), which is generally

not available for measurement. Furthermore, differentiating Ỹ (t) with respect to time is

generally undesirable because of the undesirable noise amplification of a differentiator. In

order to avoid differentiating the outputs, a new variable ξ̂(t) is defined as

ξ̂(t) = Ẑ2(t)− LgRO
Ỹ (t) (4.77)

Differentiating both sides of Eq. (4.77) with respect to time and using Eqs. (4.75) and

(4.76) yields
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˙̂
ξ(t) =

˙̂
Z2(t)− LgRO

˙̃Y (t)

=(Ã22 − LgRO
Ã12)ξ̂(t) + (Ã22LgRO

− LgRO
Ã12LgRO

+ Ã21 − LgRO
Ã11)Ỹ (t)

+ (B̃2 − LgRO
B̃1 − Ã21D + LgRO

Ã11D)u(t)− LgRO
Du̇(t)

(4.78)

Recall that Eqs. (4.71a) and (4.71b) are obtained from Eqs. (4.1a) and (4.1b) using the

similarity transformation. Hence, if (A,C) in (4.1a) and (4.1b) is an observable pair, then so

is (Ã, C̃) in Eqs. (4.71a) and (4.71b). Furthermore, if (Ã, C̃) is an observable pair, then so

is (Ã22, Ã12) in the RO system described by Eqs. (4.73) and (4.75). Therefore, an observer

gain LgRO
can be designed. For the RO system, the estimation error is defined as

ϵRO(t) = Z2(t)− Ẑ2(t) (4.79)

After taking the first-order time-derivative of Eq. (4.79) and applying some algebra in a

similar fashion as in Eq. (4.65), the error dynamics are obtained as

ϵ̇RO(t) = Ż2(t)− ˙̂
Z2(t)

= (Ã22 − LgRO
Ã12)ϵRO(t)

(4.80)

with initial conditions ϵRO(0) = Z2(0)− Ẑ2(0). In similar principle as the FO observer, the

reduce-order observer gain matrix LgRO
is obtained such that Ã22 − LgRO

Ã12 yields desired

eigenvalues that provide an asymptotically convergent estimate of Z2(t). The new linear

close-loop system that includes the RO observer-based feedback control can be written as

 Ẋ(t)

ϵ̇RO(t)

 =

A−BKg BKT2

0(2p−s)×2p Ã22 − LgRO
Ã12


 X(t)

ϵRO(t)

+

 B

0(2p−s)×1

 r(t) (4.81)

where T1 ∈ R2p×s and T2 ∈ R2p×(2p−s) are partitions of T = [T1
... T2] ∈ R2p×2p. If the
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augmented state vector [XT (t) ξ̂(t)] is used instead, the closed-loop system can be written

as

Ẋ(t)

˙̂
ξ(t)

 =

Ξ11 Ξ12

Ξ21 Ξ22


X(t)

ξ̂(t)

+

 B

B̃2 − LgRO
B̃1

 r(t) (4.82)

where Ξ11 = A − BKg(T1 + T2LgRO
)C, Ξ12 = −BKgT2, Ξ21 = −(B̃2 − LgRO

B̃1)Kg(T1 +

T2LgRO
)C, and Ξ22 = (Ã22 −LgRO

Ã12)− (B̃2 −LgRO
B̃1)KgT2. The inverse mapping between

the two augmented state vectors is given as

 X(t)

ϵRO(t)

 =

 I2p 0̄p×p

R− LgRO
C −Ip


X(t)

ξ̂(t)

 (4.83)

Similar to the FO observer-based feedback control, the separation principle also holds for

the RO observer-based feedback control.
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5 Numerical Simulations and Discussions

In this chapter, numerical simulations are presented for the formulated rigid-flexible body

dynamics and designed control laws and state estimators. The physical parameters of the

rigid-flexible system modeled in Figure 2.3 are listed in Table 5.1.

Table 5.1 Physical Parameters of the Rigid-Flexible System

Aluminum Beam
L 1.7706 m
A 1.1089× 10−4 m2

ρ 2780 kg/m3

EI 3.9150× 102 N·m2

ζ1 0.02
ζ2 0.02

Central Body
L0 (radius) 2.0856 m

Jh 4.3497× 10−2 kg·m2

With the parameters defined, the stability of the rigid-flexible system can be studied

by obtaining and analyzing the eigenvalues of the system. The eigenvalues of the system

are listed in Table 5.2 for a system with a flexible structure divided into three elements of

equal length for the FEM-based dynamics and six admissible functions for the ASM-based

dynamics.
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Table 5.2 Rigid-Flexible System Eigenvalues

FEM Eigenvalues (n=3) ASM Eigenvalues (A=6)
0 0

−19428.3 −752.705 + j3375.68
−4347.01 −752.705− j3375.68

−722.478 + j613.391 −338.670 + j2293.41
−722.478− j613.391 −338.670− j2293.41

−728.760 −123.158 + j1389.411
−645.636 −123.158− j1389.411

−147.687 + j397.218 −33.2333 + j716.809
−147.687− j397.218 −33.2333− j716.809
−23.2402 + j153.182 −5.32560 + j266.226
−23.2402− j153.182 −5.32560− j266.226
−4.89025 + j32.2328 −1.03843 + j51.9113
−4.89025− j32.2328 −1.03843 + j51.9113

−8.08025 −1.73798

Based on the results displayed in Table 5.1, the rigid-flexible system for either formulated

dynamics consists of a singule zero eigenvalue and several negative simple and complex

conjugate eigenvalues for the rest. According to Lyapunov’s indirect method summarized in

Chapter 4, the rigid-flexible system is proven to be at least stable when under no control

law.

When designing the full-state feedback control law and FO observer-based feedback con-

trol law, the system’s output matrix is defined as C = I2p. Creating the observability matrix

with this output matrix shows that the system is completely observable because the observ-

ability matrix is found to be full rank. When designing the RO observer-based feedback

control law, the system’s output matrix becomes C = [Ip 0̄p×p]. Analysis of the observability

matrix for this output matrix shows that it is also full rank, which means the system with

the RO observer is also completely observable. The controllability matrix of the system does

not show full rank. However, checking the rank of [λI −A B] for the only eigenvalue that is

zero shows that the system is stabilizable, which is sufficient for the LQR control law.
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5.1 Simulation Results

Several cases are simulated and studied to understand and analyze the characteristic

behavior of the rigid-flexible structure with and without control laws. For all numerical sim-

ulations, the FEM-based dynamics are propagated following the explanation presented at the

end of Chapter 3. The flexible structure is divided into 10 elements of equal lengths to en-

sure sufficiently accurate representation of flexible behavior while also considering necessary

computational power.

5.1.1 Case A: No Control

For Case A, the rigid-flexible system is propagated over time without a control law. The

flexible structure is given a nonzero initial translational and rotational nodal displacement

that linearly increases as the nodes are located further away from the central rigid body.
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(a) Beam tip displacement relative to the
body-fixed B frame
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(b) Angular rotation θ and velocity θ̇ of the central
rigid body

Figure 5.1 Translational and rotational motion of the flexible structure and central rigid
body without control input.

When offset from its state of equilibrium, the flexible structure natural tends to return

to stable equilibrium after several oscillations. The amplitude of oscillation, damping ratio,

and settling time of the flexible structure are directly related to the physical properties of the

flexible structure. Physical properties such as length, density, and flexural rigidity directly
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impact the mass, damping, and stiffness matrices that describe the dynamic characteristics

of the flexible structure. The damped oscillation of the flexible structure is visible in Fig-

ure 5.1(a). Furthermore, the motion of the flexible structure affects the motion of the rigid

central body to which it is cantilevered. The rigid-flexible coupling between the flexible

appendage and rigid central body is present in Figure 5.1(b) as the angular rotation and

velocity of the central body also oscillate in a similar dampened fashion as the flexible struc-

ture, even settling at the same time. However, unlike the flexible structure, the central rigid

body does not have a unique state of equilibrium. Although its angular velocity returns to

zero, there is no stabilizing tendency that drives the central body back to its original angular

position. Thus, the central body finds itself at rest in a different orientation, as shown in

Figure 5.1(b).
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Figure 5.2 Shear force S0 and bending moment τ0 present at the root of the flexible
structure without control input.

Figure 5.2 displays the shear force and bending moment, respectively, at the root of the

flexible structure. Obtained from Eqs. (4.18) and (4.17), respectively, S0 and τ0 denote the
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reaction force and moment due to the flexible structure. This is the rigid-flexible coupling

present in the system. As the structure oscillates, so does the magnitudes of the shear force

and bending moment, resulting in the oscillation of the central rigid body. A large shear force

and bending moment magnitude is initially present due to the initial displacement of the

flexible structure while the central body remains in the original position. These components

decay towards zero as the flexible structure returns to a state of rest when no control is

implemented. A central body with a larger moment of inertia will increase the settling time

of the shear force and bending moment.

5.1.2 Case B: State-Feedback Control

For Case B, the full state-feedback control laws designed in Chapter 4 are applied to the

rigid-flexible system. In each simulation, the system is given zero initial conditions, and a

desired angular rotation θd = 5◦ (0.0873 rad) and desired angular velocity θ̇ = 0 rad/s for the

central rigid body are specified. Table 5.3 presents the various control gains and parameters

considered for the following full-state feedback simulations.
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Table 5.3 Control Gains and Parameters for Full-State Feedback

Lyapunov-based Control a1 = 100, a2 = 300, a3 = 99, a4 = 500

LQR Control Q = blkdiag( 1
θ2max

, 1
d2ymax

, 1
ϕ2
max

, · · · , 1
θ̇2max

, 1
ḋ2ymax

, 1
ϕ̇2
max

, · · · )

θmax = 0.1 rad, dymax = 0.05 m, ϕmax = 0.05 rad

θ̇max = 0.1 rad/s, ḋymax = 0.05 m/s, ϕ̇max = 0.05 rad/s

R = 5

C = I2p

CSMC Control sgn(s) CCSMC = 10

erf(s) KCSMC = 0.001(1̄1×p)

erf( s√
2σ2

) σ = 0.1

ASMC Control ε = 0.1

η = 0.001

κg0 = 0.005

κg(0) = 0.01

Λ = 10

µ = 0.5
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Figure 5.3 Angular rotation and velocity of the central rigid body and beam tip
displacement of the flexible structure when applying full-state feedback.

A comparison of the results from implementation of the Lyapunov-based control law

and the LQR in Figure 5.3 immediately depicts the difference in control behavior. While

both full-state feedback control laws accomplish the control objectives, difference in vibra-

tion suppression during motion is notable. The Lyapunov-based control law invokes several

vibrations present in the displacement of the beam, which in turn causes coupled oscillations

in the angular rotation and, more noticeably, in the the angular velocity of the central rigid-

body. The LQR control law produces a single offset in displacement of the flexible structure

with some small overshoot before reducing it to zero again. Figure 5.4 displays the control

input from both full-state feedback control laws. The LQR invokes a larger control input

that changes rapidily at the beginning onto the system to satisfy the cost function demand

on the system states that reduces flexible vibrations during motion. The Lyapunov-based

control input is initially smaller, but quickly matches the input from the LQR with some

oscillations due to the structural-flexible interaction with the control system.
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Figure 5.4 Control torque input for the Lyapunov-based control and LQR control.

Full-State Feedback Control Law with SMC

The previous simulations of the rigid-flexible system with the applied full-state feed-

back control laws assumed an ideal system without uncertainties. To incorporate model

uncertainties in the simulations, the system equations of motion in Eq. (4.36) include a 20%

uncertainty in the global mass, damping, and spring matrices. The model uncertainty is com-

pensated by the inclusion of an SMC. The following numerical simulations present results of

the additional control effort provided by the four different SMCs listed in Table 5.3.

70



0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0 5 10 15 20 25 30 35 40 45 50

0

0.01

0.02

0 5 10 15 20 25 30 35 40 45 50

-4

-2

0

2

4
10

-3

Figure 5.5 Angular rotation and velocity of the central rigid body and beam tip
displacement of the flexible structure when applying the Lyapunov-based control with

SMC.

Analysis of Figure 5.5 shows that the rigid-flexible system without the additional control

effort from the SMC settles at a steady-state error from the desired θd. It requires a greater

control input to move a system with an additional 20% mass. An increase in damping and

stiffness also decreases the time of oscillation and increases the vibration frequency of the

system, respectively. This makes controlling the system and achieving the control objectives

more difficult. Applying the appropriate SMC with proper tuning can reduce the steady-

state error caused by the uncertainties.

The CSMC with the sgn function reduced the steady-state error between the uncertain

system and ideal system; however, the discontinuous nature of the sgnfunction that provides

full control effort instantaneously at each time step, visible in Figure 5.6, results in significant

chattering in the system. The only SMC that did not come close to reducing the steady-

state error within the 50 s time span is the CSMC that utilizes the general error function

erf(s). While insufficient tuning of the parameters may be responsible for this result, another
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probable cause that resulted in the CSMC to produce a small uSMC input may be the

very nature of the error function. By providing a smooth, continuous transition instead of

an instantaneous but discontinuous transition, the control law may not have been able to

apply to entire control effort in time before switching direction. In fact, this exact effect is

demonstrated by the results from the CSMC with the modified error function erf( s√
2σ2

). By

setting the standard deviation to σ = 0.1, the input in the error function is increased by a

factor of 7.0711. This significant increase in value permitted the CSMC to apply more of

the control effort to the system and reduce the steady state error in θ by more than half

within the 50 s simulation time. The ASMC successfully reduced the steady-state error in a

significantly shorter time span compared to CSMCs without any chattering. It is important

to note that the oscillations present at the beginning of the simulation is not caused by

chattering but by the vibrations of the flexible structure.
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Figure 5.6 Control torque input from the SMC (top) and in combination with the
Lyapunov-based control law (bottom).

The control inputs of each SMC are presented in Figure 5.6. As stated before because the
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general error function does not allow enough time for the entire control effort to be applied,

the control input from the CSMC with erf(s) is nonzero but small, which results in the long

convergence time between the ideal trajectory and actual systems trajectory. The control

input produced by the CSMS with the modified error function is slightly larger because the

error function’s input is increased by a factor of 7.0711, allowing more of the control effort

to be applied before switching logic direction. The adaptive law in the ASMC that tunes the

upper bounded gain in real-time allows for the proper amount of control effort to be applied

over the entire simulation time span. Figure 5.7 displays the sliding manifold defined for

each SMC with the Lyapunov-based control law and reinforces the analyzed behavior of the

SMCs in Figures 5.5 and 5.6.
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Figure 5.7 Sliding manifold for each SMC with the Lyapunov-based control law.

Figure 5.8 presents the simulated results of the a system with the same uncertainties;

however, a full-state LQR feedback control is applied instead of the Lyapunov-based control

law. According to the result shown in Figure 5.8, the CSMC with the sgn function reduces

the steady-state error between the ideal system and the system with uncertainties; however,
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chattering is, once again, prominent, significantly increasing the vibrational amplitude of the

flexible structure. The CSMC with the general error function fails to provide a sufficient

control effort to compensate for the uncertainties within the 50 s time span. The CSMC

with the modified error function reduces the steady-state error by approximately half within

the simulated time span without chattering, and the ASMC reduces the steady-state error

within a quick convergence time while avoiding any chattering.
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Figure 5.8 Angular rotation and velocity of the central rigid body and beam tip
displacement of the flexible structure when applying the LQR control with SMC.

The resulting control inputs of the SMCs with the LQR control law resemble the control

inputs with the Lyapunov-based control law but without the additional vibrations. The

vibration suppression from the LQR control is shown to improve the performance of the

SMCs. The convergence time between the ideal trajectory and actual system is slightly

reduced for all three CSMCs, most notably the CSMC with sgn(s). The maximum control

effort required from the ASMC is also slightly reduced. All of the trajectories on the sliding

manifold in Figure 5.10 reflect the observed behavior and have either returned to s = 0 or
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are returning to it.
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Figure 5.9 Control torque input from the SMC (top) and in combination with the LQR
control law (bottom).
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Figure 5.10 Sliding manifold for each SMC with the LQR control law.
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5.1.3 Case C: Observer-based Feedback Control

For Case C, the full state-feedback control laws designed in Chapter 4 are no longer con-

sidered full-state. Instead, the FO and RO observers designed in Chapter 4 are implemented

into the rigid-flexible system. In each simulation, the system is given zero initial conditions,

and a desired angular rotation θd = 5◦ (0.0873 rad) and desired angular velocity θ̇ = 0

rad/s for the central rigid body are specified. The initial estimated states for the observers

are provided by the MATLAB function rand, which returns uniformly distributed random

numbers in the interval (0,1). The various control gains and parameters considered for the

following observer-based feedback simulations are the same as the ones presented in Table 5.3

except for a one difference. The output matrix utilized in the reduce-order observer-based

control simulations becomes C = [Ip 0̄p×p].
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Figure 5.11 Angular rotation and velocity of the central rigid body and beam tip
displacement of the flexible structure when applying a full-order and reduced-order

observer-based controller with Lyapunov-based control and LQR control.

An important difference between the simulations in Case B and in Case C is the rigid-

flexible system’s measurement matrix. In an ideal case, all the states are assumed known and
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measurable. However, in the real world, only the position states are generally measurable

with sensors. Therefore, an observer is needed to estimate the unmeasurable states for

feedback control. In Figure 5.11, the FO observer with brings the estimated angular rotation

and tip displacement to the true states within less than 5 s. However, it takes more time

to converge the estimated angular velocity with its true state for control laws. The FO

estimated angular velocity shows excessive oscillating errors about the true angular velocity

before converging after approximately 20 s. Implementation of the RO observer, however,

reduces this oscillating error, replacing it with an offset error, and more closely matches

the shape of the true state’s trajectory as it converges within approximately 15 to 20 s.

The control inputs computed from the FO and RO observer-based feedback controllers in

Figure 5.12 show some deviation and oscillations within the first 5 s, but soon converge to

match the full-state feedback control input.
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(a) Observer-based feedback control with
Lyapunov-based control.
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(b) Observer-based feedback control with LQR
control.

Figure 5.12 Control torque input for the full-order and reduced-order observer-based
controllers with Lyapunov-based control (a) and LQR control (b).

Observer-based Feedback Control Law with SMC

In a similar fashion to the numerical simulations in Case B, the rigid-flexible system

is given the same model uncertainties. Because the actual system can only measure the

position states, a FO observer-based feedback control and different SMCs are applied to the
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system. Unlike the case with the full-state feedback control, the error dynamics between the

ideal system and actual system used in the sliding manifold is a function of the ideal states

and estimated actual states.

Figure 5.13 displays the propagated dynamics of system with FO observer-based feed-

back control and the different SMCs. Unlike the results for full state feedback, the CSMC

with the sgn function produced an overshoot for θ and a large chattering at the beginning,

more notably with the Lyapunov-based control than the LQR control. Furthermore, the

convergence time has reduced significantly. However, the large chattering is not suitable

for real-life application. The CSMC with the general error function continues to show low

control effort with both the Lyapunov-based and LQR controls. The ASMC also continues

to produce quick convergence with no chattering.

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0 5 10 15 20 25 30 35 40 45 50

0

0.01

0.02

0.03

0 5 10 15 20 25 30 35 40 45 50
-0.01

0

0.01

(a) Observer-based feedback control with
Lyapunov-based control.
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(b) Observer-based feedback control with LQR
control.

Figure 5.13 Angular rotation and velocity of the central rigid body and beam tip
displacement of the flexible structure when applying the full-order observer with

Lyapunov-SMC control (a) and LQR-SMC control (b) .

The control inputs from the SMCs are shown in Figure 5.14. The large chattering from

the CSMC with sgn(s) shows concentrated control effort near the maximum upper bound.

With the implementation of the FO observer, the error function checks the difference between

the ideal states and the actual estimated states. Because the observer is initially trying to
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estimate the actual true states, the error function in the sliding manifold is larger, resulting

in a larger control input from the CSMC. This, in turn, would explain the overshoot in θ,

especially for the case with the Lyapunov-based control that does not suppress the vibration

of the flexible structure as well as the LQR control. The other CSMCs produced similar

control inputs as the full-state simulations since the control effort is limited. The ASMC

produces a large initial control input as it is working with the estimated states, but it quickly

diminishes within its upper bound. Figure 5.15 also displays the aggressive real-time tuning

of the ASMC gain KASMC(t) by the adaptive law at the very beginning as the ASMC works

with the estimated states to return to the desired sliding manifold.
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Lyapunov-based control.
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Figure 5.14 Control torque input from the SMC (top) and in combination with the
full-order observer-based feedback control (bottom).
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Figure 5.15 Sliding manifold for each SMC with the full-order observer-based feedback
control.

The final numerical simulations in Case C propagate the rigid-flexible system with un-

certainties under the applied control of the RO observer-based feedback control with LQR

and the different SMCs. Implementation of the RO observer to estimate only the unmea-

surable velocity states proves to be more efficient than the FO observer. Because the error

dynamics between the actual system with uncertainties and ideal system utilize the known

position states and estimated velocity states, only the estimation error from the velocity

states is present, reducing the difficulty for the SMCs. In fact, Figure 5.16 shows that the

CSMC with sgn(s) no longer produces an overshoot with the Lyapunov-based control but,

instead, more closely resembles the full-state simulation. The tip displacement of the flexible

structure also no longer has a large chattering at the very beginning for either the Lyapunov-

based control and LQR control. Once again, the other SMCs produced similar results as the

full-state simulations.
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(b) Observer-based feedback control with LQR
control.

Figure 5.16 Angular rotation and velocity of the central rigid body and beam tip
displacement of the flexible structure when applying the reduced-order observer with

Lyapunov-SMC control (a) and LQR-SMC control (b) .

However, the control input from these other SMCs is significantly smaller when the RO

observer is implemented. In Figure 5.16, the control input for the ASMC is on the scale of

10−3 with both the Lyapunov-based and LQR control laws. The overall deviation from the

desired sliding manifold is also significantly smaller for the case with a reduce-order observer,

as shown in Figure 5.18.
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Figure 5.17 Control torque input from the SMC (top) and in combination with the
reduced-order observer-based feedback control (bottom).
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Figure 5.18 Sliding manifold for each SMC with the reduced-order observer-based feedback
control.
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6 Conclusion and Future Work

This chapter presents the concluding remarks that summarize the results obtained using

the methods described in this thesis to formulate the dynamics of a space vehicle with a

flexible structure and the designed control laws that stabilize and control the rigid-flexible

system. Potential ideas of future research and current research for this work following this

thesis are also presented.

6.1 Conclusion

In this thesis, the dynamics of a space vehicle with a flexible structure has been formulated

and studied, and full-state and observer-based feedback control systems have been designed

and analyzed for the rigid-flexible system. The nonlinear ordinary and partial differential

equations of motion of a rigid-flexible system have been linearized through the application

of two different discretization techniques: the assumed modes method (ASM) and the finite

element method (FEM). The discretization of the system’s dynamics in conjunction with the

Lagrangian equations yielded a system of undamped vector-matrix second-order differential

equations that also included the rigid-flexible coupling present in such as system. Damping

was included in the form of proportional damping to increase the accuracy of the modeled

equations of motion. The dynamics formulated by through FEM were selected for control

design and numerical simulation for several reasons. FEM utilizes general coordinates that

directly reflect the physical behavior and motion of the system. In order to calculate the

displacement of a point along the flexible structure, a series summation of all the admissible

functions at that location is required. This makes it very ineffective in application with

control laws that require multiple positions along the flexible structure. FEM also provides

greater versatility than ASM, which allows for easier modification of the system model for

any future research.

Analysis of the system’s stability through the application of Lyapunov’s indirect method

showed that the open-loop rigid-flexible system is at least neutrally stable with all real,

distinct negative eigenvalues and one zero eigenvalue. Lyapunov’s direct method was also
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applied. Using an energy-based Lyapunov candidate function, the closed-loop rigid-flexible

system was proven to be asymptotically stable with the presented Lyapunov-based control

law. Observability and controllability analysis of the system showed that the system is fully

observable and at least stabilizable.

The control laws designed for the rigid-flexible system presented and studied are closed-

loop feedback control laws that utilize the feedback of the system’s states to apply corrective

control input to achieve the desired system orientation while suppressing the vibrations

of the flexible structure. Along with the Lyapunov-based control law, a linear quadratic

regular (LQR) was designed by minimizing the quadratic cost function and computing the

control gain by solving for the algebraic Riccati equation. Although the formulated dynamics

provide an accurate approximation of the true system dynamics, uncertainties in the model

are unavoidable. To correct for these uncertainties, sliding mode control (SMC) laws are

presented for their robustness in accommodating for uncertainties and disturbances. The

conventional SMC (CSMC) with a linear sliding manifold is studied with several variation

in the CSMC control law. To mitigate the chattering often present in CSMCs, the sgn

function is replaced with the general error function and a modified error function. An

adaptive SMC (ASMC) is also considered and presented. The ASMC utilizes a nonlinear

sliding manifold and an adaptive law that tunes the upper bound SMC gain in real-time,

attenuating chattering and eliminating the reaching phase. In extending this control to

real-world application, a full-order (FO) observer and reduced-order (RO) observer are also

designed and implemented in the feedback control system.

The rigid-flexible coupling is shown to effect the overall dynamics of the system. Without

control, initial offset displacement or excitation of the flexible structure produces a reaction

shear force and bending moment on the central rigid body at the root of the structure,

affecting the motion of the central rigid body and resulting in a change in the system’s

orientation. In full-state feedback of an ideal rigid-flexible system, both the Lyapunov-based

control and LQR control reached the desired angular rotation θ of the central rigid body
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within the same settling time. The LQR control demanded a larger and greatly varying

initial control input, but the Lyapunov-based control did not suppress the vibration of the

flexible structure as effectively during motion.

It is shown that inclusion of uncertainty in the system model produces a steady-state error

in θ. The simulated results for full-state feedback with both the Lyapunov-based control and

LQR control showed that the CSMCs either produced significant chattering or required a

greater factor in the error function to converge the actual system with uncertainties to the

ideal trajectory within the 50 s time span. The ASMC, however, consistently reached the

ideal trajectory with a very small convergence time and without demanding a relatively large

amount of control input. When the FO observer was implemented, the initial error in state

estimation due to the unsuppressed vibrations from the Lyapunov-based control showed to

introduce excessive control input for the CSMC with sgn(s), resulting in an overshoot much

greater than that produced for the system with the LQR control. The RO observer did

not produce this effect since the observer is only estimated the velocity states. Instead,

implementation of the true position states and estimated velocity states yielded a smaller

and more oscillating control effort by the SMCs, especially the ASMC.

6.2 Future Work

This research provided a reliable framework of dynamics and control that can be conve-

niently extended to different rigid-flexible system models and control designs. Some future

and current work based on the current study are summarized below.

The flexible structure in this work was assumed as an Euler-Bernoulli beam since it can

represent the characteristics of the flexible beam with sufficient accuracy. However, the

necessary assumptions associated with the Euler-Bernoulli beam limits the model accuracy,

especially for three-dimensional motion. A possible alternative would be the Timoshenko

beam. The Timoshenko beam includes the idea of shear deformation that is present when a

beam deforms, improving the model accuracy. The Timoshenko beam has been the subject

of significant research in the field of aerospace engineering and structural dynamics and
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has already been applied to the rigid-flexible spacecraft system. However, to the author’s

knowledge, not as much control law design has been implemented for the Timoshenko beam

as it has for the Euler-Bernoulli beam.

Experimental implementation of designed control laws can also be considered as future

work. It is important to ensure that theoretical control laws effectively work in real-life

applications that introduce discrete systems and limited sensors. The author is currently

working on a project that studies flexible body control using fiber optic strain sensors (Flex-

FOS). The research examines the feasibility and efficacy of fiber optic strain sensors as a

means of obtaining dynamic measurement data of a flexible structure that can be used to

control the rigid-flexible system. Properly modeled dynamics of a rigid-flexible system and

observer-based feedback control laws are integral in the experimentation of FlexFOS.

The author also has prior experience in studying rigid-body spacecraft with onboard

robotic manipulators. Similar in idea to FEM, several outside works have considered treating

flexible structures as a combination of several rigid-body linked robotic manipulators in

which the flexible nature of a flexible structure is incorporated in the hinges between each

link. However, flexible manipulators have also become a subject of great interest over recent

years, especially with rising interest in on-orbit servicing and manufacturing and space debris

collection. All of the aforementioned systems involve nonlinear coupled dynamics between a

central rigid body or hub and some protruding and less rigid, or even flexible, appendage.
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